/*- * Copyright (c) 1991, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * The Mach Operating System project at Carnegie-Mellon University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94 * * * Copyright (c) 1987, 1990 Carnegie-Mellon University. * All rights reserved. * * Authors: Avadis Tevanian, Jr., Michael Wayne Young * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /* * Kernel memory management. */ #include __FBSDID("$FreeBSD$"); #include #include #include /* for ticks and hz */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include vm_map_t kernel_map; vm_map_t kmem_map; vm_map_t exec_map; vm_map_t pipe_map; vm_map_t buffer_map; vm_map_t bio_transient_map; const void *zero_region; CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0); /* * kmem_alloc_nofault: * * Allocate a virtual address range with no underlying object and * no initial mapping to physical memory. Any mapping from this * range to physical memory must be explicitly created prior to * its use, typically with pmap_qenter(). Any attempt to create * a mapping on demand through vm_fault() will result in a panic. */ vm_offset_t kmem_alloc_nofault(map, size) vm_map_t map; vm_size_t size; { vm_offset_t addr; int result; size = round_page(size); addr = vm_map_min(map); result = vm_map_find(map, NULL, 0, &addr, size, VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); if (result != KERN_SUCCESS) { return (0); } return (addr); } /* * kmem_alloc_nofault_space: * * Allocate a virtual address range with no underlying object and * no initial mapping to physical memory within the specified * address space. Any mapping from this range to physical memory * must be explicitly created prior to its use, typically with * pmap_qenter(). Any attempt to create a mapping on demand * through vm_fault() will result in a panic. */ vm_offset_t kmem_alloc_nofault_space(map, size, find_space) vm_map_t map; vm_size_t size; int find_space; { vm_offset_t addr; int result; size = round_page(size); addr = vm_map_min(map); result = vm_map_find(map, NULL, 0, &addr, size, find_space, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); if (result != KERN_SUCCESS) { return (0); } return (addr); } /* * Allocate wired-down memory in the kernel's address map * or a submap. */ vm_offset_t kmem_alloc(map, size) vm_map_t map; vm_size_t size; { vm_offset_t addr; vm_offset_t offset; size = round_page(size); /* * Use the kernel object for wired-down kernel pages. Assume that no * region of the kernel object is referenced more than once. */ /* * Locate sufficient space in the map. This will give us the final * virtual address for the new memory, and thus will tell us the * offset within the kernel map. */ vm_map_lock(map); if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { vm_map_unlock(map); return (0); } offset = addr - VM_MIN_KERNEL_ADDRESS; vm_object_reference(kernel_object); vm_map_insert(map, kernel_object, offset, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0); vm_map_unlock(map); /* * And finally, mark the data as non-pageable. */ (void) vm_map_wire(map, addr, addr + size, VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES); return (addr); } /* * kmem_free: * * Release a region of kernel virtual memory allocated * with kmem_alloc, and return the physical pages * associated with that region. * * This routine may not block on kernel maps. */ void kmem_free(map, addr, size) vm_map_t map; vm_offset_t addr; vm_size_t size; { (void) vm_map_remove(map, trunc_page(addr), round_page(addr + size)); } /* * kmem_suballoc: * * Allocates a map to manage a subrange * of the kernel virtual address space. * * Arguments are as follows: * * parent Map to take range from * min, max Returned endpoints of map * size Size of range to find * superpage_align Request that min is superpage aligned */ vm_map_t kmem_suballoc(vm_map_t parent, vm_offset_t *min, vm_offset_t *max, vm_size_t size, boolean_t superpage_align) { int ret; vm_map_t result; size = round_page(size); *min = vm_map_min(parent); ret = vm_map_find(parent, NULL, 0, min, size, superpage_align ? VMFS_ALIGNED_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL, MAP_ACC_NO_CHARGE); if (ret != KERN_SUCCESS) panic("kmem_suballoc: bad status return of %d", ret); *max = *min + size; result = vm_map_create(vm_map_pmap(parent), *min, *max); if (result == NULL) panic("kmem_suballoc: cannot create submap"); if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS) panic("kmem_suballoc: unable to change range to submap"); return (result); } /* * kmem_malloc: * * Allocate wired-down memory in the kernel's address map for the higher * level kernel memory allocator (kern/kern_malloc.c). We cannot use * kmem_alloc() because we may need to allocate memory at interrupt * level where we cannot block (canwait == FALSE). * * This routine has its own private kernel submap (kmem_map) and object * (kmem_object). This, combined with the fact that only malloc uses * this routine, ensures that we will never block in map or object waits. * * We don't worry about expanding the map (adding entries) since entries * for wired maps are statically allocated. * * `map' is ONLY allowed to be kmem_map or one of the mbuf submaps to * which we never free. */ vm_offset_t kmem_malloc(map, size, flags) vm_map_t map; vm_size_t size; int flags; { vm_offset_t addr; int i, rv; size = round_page(size); addr = vm_map_min(map); /* * Locate sufficient space in the map. This will give us the final * virtual address for the new memory, and thus will tell us the * offset within the kernel map. */ vm_map_lock(map); if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { vm_map_unlock(map); if ((flags & M_NOWAIT) == 0) { for (i = 0; i < 8; i++) { EVENTHANDLER_INVOKE(vm_lowmem, 0); uma_reclaim(); vm_map_lock(map); if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0) { break; } vm_map_unlock(map); tsleep(&i, 0, "nokva", (hz / 4) * (i + 1)); } if (i == 8) { panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated", (long)size, (long)map->size); } } else { return (0); } } rv = kmem_back(map, addr, size, flags); vm_map_unlock(map); return (rv == KERN_SUCCESS ? addr : 0); } /* * kmem_back: * * Allocate physical pages for the specified virtual address range. */ int kmem_back(vm_map_t map, vm_offset_t addr, vm_size_t size, int flags) { vm_offset_t offset, i; vm_map_entry_t entry; vm_page_t m; int pflags; boolean_t found; KASSERT(vm_map_locked(map), ("kmem_back: map %p is not locked", map)); offset = addr - VM_MIN_KERNEL_ADDRESS; vm_object_reference(kmem_object); vm_map_insert(map, kmem_object, offset, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0); /* * Assert: vm_map_insert() will never be able to extend the * previous entry so vm_map_lookup_entry() will find a new * entry exactly corresponding to this address range and it * will have wired_count == 0. */ found = vm_map_lookup_entry(map, addr, &entry); KASSERT(found && entry->start == addr && entry->end == addr + size && entry->wired_count == 0 && (entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0, ("kmem_back: entry not found or misaligned")); if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT) pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED; else pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED; if (flags & M_ZERO) pflags |= VM_ALLOC_ZERO; if (flags & M_NODUMP) pflags |= VM_ALLOC_NODUMP; VM_OBJECT_LOCK(kmem_object); for (i = 0; i < size; i += PAGE_SIZE) { retry: m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags); /* * Ran out of space, free everything up and return. Don't need * to lock page queues here as we know that the pages we got * aren't on any queues. */ if (m == NULL) { if ((flags & M_NOWAIT) == 0) { VM_OBJECT_UNLOCK(kmem_object); entry->eflags |= MAP_ENTRY_IN_TRANSITION; vm_map_unlock(map); VM_WAIT; vm_map_lock(map); KASSERT( (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_NEEDS_WAKEUP)) == MAP_ENTRY_IN_TRANSITION, ("kmem_back: volatile entry")); entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; VM_OBJECT_LOCK(kmem_object); goto retry; } /* * Free the pages before removing the map entry. * They are already marked busy. Calling * vm_map_delete before the pages has been freed or * unbusied will cause a deadlock. */ while (i != 0) { i -= PAGE_SIZE; m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i)); vm_page_unwire(m, 0); vm_page_free(m); } VM_OBJECT_UNLOCK(kmem_object); vm_map_delete(map, addr, addr + size); return (KERN_NO_SPACE); } if (flags & M_ZERO && (m->flags & PG_ZERO) == 0) pmap_zero_page(m); m->valid = VM_PAGE_BITS_ALL; KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("kmem_malloc: page %p is managed", m)); } VM_OBJECT_UNLOCK(kmem_object); /* * Mark map entry as non-pageable. Repeat the assert. */ KASSERT(entry->start == addr && entry->end == addr + size && entry->wired_count == 0, ("kmem_back: entry not found or misaligned after allocation")); entry->wired_count = 1; /* * At this point, the kmem_object must be unlocked because * vm_map_simplify_entry() calls vm_object_deallocate(), which * locks the kmem_object. */ vm_map_simplify_entry(map, entry); /* * Loop thru pages, entering them in the pmap. */ VM_OBJECT_LOCK(kmem_object); for (i = 0; i < size; i += PAGE_SIZE) { m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i)); /* * Because this is kernel_pmap, this call will not block. */ pmap_enter(kernel_pmap, addr + i, VM_PROT_ALL, m, VM_PROT_ALL, TRUE); vm_page_wakeup(m); } VM_OBJECT_UNLOCK(kmem_object); return (KERN_SUCCESS); } /* * kmem_alloc_wait: * * Allocates pageable memory from a sub-map of the kernel. If the submap * has no room, the caller sleeps waiting for more memory in the submap. * * This routine may block. */ vm_offset_t kmem_alloc_wait(map, size) vm_map_t map; vm_size_t size; { vm_offset_t addr; size = round_page(size); if (!swap_reserve(size)) return (0); for (;;) { /* * To make this work for more than one map, use the map's lock * to lock out sleepers/wakers. */ vm_map_lock(map); if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0) break; /* no space now; see if we can ever get space */ if (vm_map_max(map) - vm_map_min(map) < size) { vm_map_unlock(map); swap_release(size); return (0); } map->needs_wakeup = TRUE; vm_map_unlock_and_wait(map, 0); } vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, MAP_ACC_CHARGED); vm_map_unlock(map); return (addr); } /* * kmem_free_wakeup: * * Returns memory to a submap of the kernel, and wakes up any processes * waiting for memory in that map. */ void kmem_free_wakeup(map, addr, size) vm_map_t map; vm_offset_t addr; vm_size_t size; { vm_map_lock(map); (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size)); if (map->needs_wakeup) { map->needs_wakeup = FALSE; vm_map_wakeup(map); } vm_map_unlock(map); } static void kmem_init_zero_region(void) { vm_offset_t addr, i; vm_page_t m; int error; /* * Map a single physical page of zeros to a larger virtual range. * This requires less looping in places that want large amounts of * zeros, while not using much more physical resources. */ addr = kmem_alloc_nofault(kernel_map, ZERO_REGION_SIZE); m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO); if ((m->flags & PG_ZERO) == 0) pmap_zero_page(m); for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE) pmap_qenter(addr + i, &m, 1); error = vm_map_protect(kernel_map, addr, addr + ZERO_REGION_SIZE, VM_PROT_READ, TRUE); KASSERT(error == 0, ("error=%d", error)); zero_region = (const void *)addr; } /* * kmem_init: * * Create the kernel map; insert a mapping covering kernel text, * data, bss, and all space allocated thus far (`boostrap' data). The * new map will thus map the range between VM_MIN_KERNEL_ADDRESS and * `start' as allocated, and the range between `start' and `end' as free. */ void kmem_init(start, end) vm_offset_t start, end; { vm_map_t m; m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end); m->system_map = 1; vm_map_lock(m); /* N.B.: cannot use kgdb to debug, starting with this assignment ... */ kernel_map = m; (void) vm_map_insert(m, NULL, (vm_ooffset_t) 0, #ifdef __amd64__ KERNBASE, #else VM_MIN_KERNEL_ADDRESS, #endif start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); /* ... and ending with the completion of the above `insert' */ vm_map_unlock(m); kmem_init_zero_region(); } #ifdef DIAGNOSTIC /* * Allow userspace to directly trigger the VM drain routine for testing * purposes. */ static int debug_vm_lowmem(SYSCTL_HANDLER_ARGS) { int error, i; i = 0; error = sysctl_handle_int(oidp, &i, 0, req); if (error) return (error); if (i) EVENTHANDLER_INVOKE(vm_lowmem, 0); return (0); } SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, CTLTYPE_INT | CTLFLAG_RW, 0, 0, debug_vm_lowmem, "I", "set to trigger vm_lowmem event"); #endif