#include "../bn_lcl.h" #ifdef __SUNPRO_C # include "../bn_asm.c" /* kind of dirty hack for Sun Studio */ #else /*- * x86_64 BIGNUM accelerator version 0.1, December 2002. * * Implemented by Andy Polyakov for the OpenSSL * project. * * Rights for redistribution and usage in source and binary forms are * granted according to the OpenSSL license. Warranty of any kind is * disclaimed. * * Q. Version 0.1? It doesn't sound like Andy, he used to assign real * versions, like 1.0... * A. Well, that's because this code is basically a quick-n-dirty * proof-of-concept hack. As you can see it's implemented with * inline assembler, which means that you're bound to GCC and that * there might be enough room for further improvement. * * Q. Why inline assembler? * A. x86_64 features own ABI which I'm not familiar with. This is * why I decided to let the compiler take care of subroutine * prologue/epilogue as well as register allocation. For reference. * Win64 implements different ABI for AMD64, different from Linux. * * Q. How much faster does it get? * A. 'apps/openssl speed rsa dsa' output with no-asm: * * sign verify sign/s verify/s * rsa 512 bits 0.0006s 0.0001s 1683.8 18456.2 * rsa 1024 bits 0.0028s 0.0002s 356.0 6407.0 * rsa 2048 bits 0.0172s 0.0005s 58.0 1957.8 * rsa 4096 bits 0.1155s 0.0018s 8.7 555.6 * sign verify sign/s verify/s * dsa 512 bits 0.0005s 0.0006s 2100.8 1768.3 * dsa 1024 bits 0.0014s 0.0018s 692.3 559.2 * dsa 2048 bits 0.0049s 0.0061s 204.7 165.0 * * 'apps/openssl speed rsa dsa' output with this module: * * sign verify sign/s verify/s * rsa 512 bits 0.0004s 0.0000s 2767.1 33297.9 * rsa 1024 bits 0.0012s 0.0001s 867.4 14674.7 * rsa 2048 bits 0.0061s 0.0002s 164.0 5270.0 * rsa 4096 bits 0.0384s 0.0006s 26.1 1650.8 * sign verify sign/s verify/s * dsa 512 bits 0.0002s 0.0003s 4442.2 3786.3 * dsa 1024 bits 0.0005s 0.0007s 1835.1 1497.4 * dsa 2048 bits 0.0016s 0.0020s 620.4 504.6 * * For the reference. IA-32 assembler implementation performs * very much like 64-bit code compiled with no-asm on the same * machine. */ # define BN_ULONG unsigned long # undef mul # undef mul_add # undef sqr /*- * "m"(a), "+m"(r) is the way to favor DirectPath µ-code; * "g"(0) let the compiler to decide where does it * want to keep the value of zero; */ # define mul_add(r,a,word,carry) do { \ register BN_ULONG high,low; \ asm ("mulq %3" \ : "=a"(low),"=d"(high) \ : "a"(word),"m"(a) \ : "cc"); \ asm ("addq %2,%0; adcq %3,%1" \ : "+r"(carry),"+d"(high)\ : "a"(low),"g"(0) \ : "cc"); \ asm ("addq %2,%0; adcq %3,%1" \ : "+m"(r),"+d"(high) \ : "r"(carry),"g"(0) \ : "cc"); \ carry=high; \ } while (0) # define mul(r,a,word,carry) do { \ register BN_ULONG high,low; \ asm ("mulq %3" \ : "=a"(low),"=d"(high) \ : "a"(word),"g"(a) \ : "cc"); \ asm ("addq %2,%0; adcq %3,%1" \ : "+r"(carry),"+d"(high)\ : "a"(low),"g"(0) \ : "cc"); \ (r)=carry, carry=high; \ } while (0) # define sqr(r0,r1,a) \ asm ("mulq %2" \ : "=a"(r0),"=d"(r1) \ : "a"(a) \ : "cc"); BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) { BN_ULONG c1 = 0; if (num <= 0) return (c1); while (num & ~3) { mul_add(rp[0], ap[0], w, c1); mul_add(rp[1], ap[1], w, c1); mul_add(rp[2], ap[2], w, c1); mul_add(rp[3], ap[3], w, c1); ap += 4; rp += 4; num -= 4; } if (num) { mul_add(rp[0], ap[0], w, c1); if (--num == 0) return c1; mul_add(rp[1], ap[1], w, c1); if (--num == 0) return c1; mul_add(rp[2], ap[2], w, c1); return c1; } return (c1); } BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) { BN_ULONG c1 = 0; if (num <= 0) return (c1); while (num & ~3) { mul(rp[0], ap[0], w, c1); mul(rp[1], ap[1], w, c1); mul(rp[2], ap[2], w, c1); mul(rp[3], ap[3], w, c1); ap += 4; rp += 4; num -= 4; } if (num) { mul(rp[0], ap[0], w, c1); if (--num == 0) return c1; mul(rp[1], ap[1], w, c1); if (--num == 0) return c1; mul(rp[2], ap[2], w, c1); } return (c1); } void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) { if (n <= 0) return; while (n & ~3) { sqr(r[0], r[1], a[0]); sqr(r[2], r[3], a[1]); sqr(r[4], r[5], a[2]); sqr(r[6], r[7], a[3]); a += 4; r += 8; n -= 4; } if (n) { sqr(r[0], r[1], a[0]); if (--n == 0) return; sqr(r[2], r[3], a[1]); if (--n == 0) return; sqr(r[4], r[5], a[2]); } } BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) { BN_ULONG ret, waste; asm("divq %4":"=a"(ret), "=d"(waste) : "a"(l), "d"(h), "g"(d) : "cc"); return ret; } BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, int n) { BN_ULONG ret = 0, i = 0; if (n <= 0) return 0; asm volatile (" subq %2,%2 \n" ".align 16 \n" "1: movq (%4,%2,8),%0 \n" " adcq (%5,%2,8),%0 \n" " movq %0,(%3,%2,8) \n" " leaq 1(%2),%2 \n" " loop 1b \n" " sbbq %0,%0 \n":"=&a" (ret), "+c"(n), "=&r"(i) :"r"(rp), "r"(ap), "r"(bp) :"cc", "memory"); return ret & 1; } # ifndef SIMICS BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, int n) { BN_ULONG ret = 0, i = 0; if (n <= 0) return 0; asm volatile (" subq %2,%2 \n" ".align 16 \n" "1: movq (%4,%2,8),%0 \n" " sbbq (%5,%2,8),%0 \n" " movq %0,(%3,%2,8) \n" " leaq 1(%2),%2 \n" " loop 1b \n" " sbbq %0,%0 \n":"=&a" (ret), "+c"(n), "=&r"(i) :"r"(rp), "r"(ap), "r"(bp) :"cc", "memory"); return ret & 1; } # else /* Simics 1.4<7 has buggy sbbq:-( */ # define BN_MASK2 0xffffffffffffffffL BN_ULONG bn_sub_words(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) { BN_ULONG t1, t2; int c = 0; if (n <= 0) return ((BN_ULONG)0); for (;;) { t1 = a[0]; t2 = b[0]; r[0] = (t1 - t2 - c) & BN_MASK2; if (t1 != t2) c = (t1 < t2); if (--n <= 0) break; t1 = a[1]; t2 = b[1]; r[1] = (t1 - t2 - c) & BN_MASK2; if (t1 != t2) c = (t1 < t2); if (--n <= 0) break; t1 = a[2]; t2 = b[2]; r[2] = (t1 - t2 - c) & BN_MASK2; if (t1 != t2) c = (t1 < t2); if (--n <= 0) break; t1 = a[3]; t2 = b[3]; r[3] = (t1 - t2 - c) & BN_MASK2; if (t1 != t2) c = (t1 < t2); if (--n <= 0) break; a += 4; b += 4; r += 4; } return (c); } # endif /* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */ /* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */ /* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */ /* * sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number * c=(c2,c1,c0) */ /* * Keep in mind that carrying into high part of multiplication result * can not overflow, because it cannot be all-ones. */ # if 0 /* original macros are kept for reference purposes */ # define mul_add_c(a,b,c0,c1,c2) { \ BN_ULONG ta=(a),tb=(b); \ t1 = ta * tb; \ t2 = BN_UMULT_HIGH(ta,tb); \ c0 += t1; t2 += (c0