#include "openssl/bn.h" #include "openssl/sha.h" #include #include #include /* Copyright (C) 2008 Ben Laurie (ben@links.org) */ /* * Implement J-PAKE, as described in * http://grouper.ieee.org/groups/1363/Research/contributions/hao-ryan-2008.pdf * * With hints from http://www.cl.cam.ac.uk/~fh240/software/JPAKE2.java. */ static void showbn(const char *name, const BIGNUM *bn) { fputs(name, stdout); fputs(" = ", stdout); BN_print_fp(stdout, bn); putc('\n', stdout); } typedef struct { BN_CTX *ctx; // Perhaps not the best place for this? BIGNUM *p; BIGNUM *q; BIGNUM *g; } JPakeParameters; static void JPakeParametersInit(JPakeParameters *params) { params->ctx = BN_CTX_new(); // For now use p, q, g from Java sample code. Later, generate them. params->p = NULL; BN_hex2bn(¶ms->p, "fd7f53811d75122952df4a9c2eece4e7f611b7523cef4400c31e3f80b6512669455d402251fb593d8d58fabfc5f5ba30f6cb9b556cd7813b801d346ff26660b76b9950a5a49f9fe8047b1022c24fbba9d7feb7c61bf83b57e7c6a8a6150f04fb83f6d3c51ec3023554135a169132f675f3ae2b61d72aeff22203199dd14801c7"); params->q = NULL; BN_hex2bn(¶ms->q, "9760508f15230bccb292b982a2eb840bf0581cf5"); params->g = NULL; BN_hex2bn(¶ms->g, "f7e1a085d69b3ddecbbcab5c36b857b97994afbbfa3aea82f9574c0b3d0782675159578ebad4594fe67107108180b449167123e84c281613b7cf09328cc8a6e13c167a8b547c8d28e0a3ae1e2bb3a675916ea37f0bfa213562f1fb627a01243bcca4f1bea8519089a883dfe15ae59f06928b665e807b552564014c3bfecf492a"); showbn("p", params->p); showbn("q", params->q); showbn("g", params->g); } typedef struct { BIGNUM *gr; // g^r (r random) BIGNUM *b; // b = r - x*h, h=hash(g, g^r, g^x, name) } JPakeZKP; typedef struct { BIGNUM *gx; // g^x JPakeZKP zkpx; // ZKP(x) } JPakeStep1; typedef struct { BIGNUM *X; // g^(xa + xc + xd) * xb * s JPakeZKP zkpxbs; // ZKP(xb * s) } JPakeStep2; typedef struct { const char *name; // Must be unique int base; // 1 for Alice, 3 for Bob. Only used for printing stuff. JPakeStep1 s1c; // Alice's g^x3, ZKP(x3) or Bob's g^x1, ZKP(x1) JPakeStep1 s1d; // Alice's g^x4, ZKP(x4) or Bob's g^x2, ZKP(x2) JPakeStep2 s2; // Alice's A, ZKP(x2 * s) or Bob's B, ZKP(x4 * s) } JPakeUserPublic; /* * The user structure. In the definition, (xa, xb, xc, xd) are Alice's * (x1, x2, x3, x4) or Bob's (x3, x4, x1, x2). If you see what I mean. */ typedef struct { JPakeUserPublic p; BIGNUM *secret; // The shared secret BIGNUM *key; // The calculated (shared) key BIGNUM *xa; // Alice's x1 or Bob's x3 BIGNUM *xb; // Alice's x2 or Bob's x4 } JPakeUser; // Generate each party's random numbers. xa is in [0, q), xb is in [1, q). static void genrand(JPakeUser *user, const JPakeParameters *params) { BIGNUM *qm1; // xa in [0, q) user->xa = BN_new(); BN_rand_range(user->xa, params->q); // q-1 qm1 = BN_new(); BN_copy(qm1, params->q); BN_sub_word(qm1, 1); // ... and xb in [0, q-1) user->xb = BN_new(); BN_rand_range(user->xb, qm1); // [1, q) BN_add_word(user->xb, 1); // cleanup BN_free(qm1); // Show printf("x%d", user->p.base); showbn("", user->xa); printf("x%d", user->p.base+1); showbn("", user->xb); } static void hashlength(SHA_CTX *sha, size_t l) { unsigned char b[2]; assert(l <= 0xffff); b[0] = l >> 8; b[1] = l&0xff; SHA1_Update(sha, b, 2); } static void hashstring(SHA_CTX *sha, const char *string) { size_t l = strlen(string); hashlength(sha, l); SHA1_Update(sha, string, l); } static void hashbn(SHA_CTX *sha, const BIGNUM *bn) { size_t l = BN_num_bytes(bn); unsigned char *bin = alloca(l); hashlength(sha, l); BN_bn2bin(bn, bin); SHA1_Update(sha, bin, l); } // h=hash(g, g^r, g^x, name) static void zkpHash(BIGNUM *h, const JPakeZKP *zkp, const BIGNUM *gx, const JPakeUserPublic *from, const JPakeParameters *params) { unsigned char md[SHA_DIGEST_LENGTH]; SHA_CTX sha; // XXX: hash should not allow moving of the boundaries - Java code // is flawed in this respect. Length encoding seems simplest. SHA1_Init(&sha); hashbn(&sha, params->g); hashbn(&sha, zkp->gr); hashbn(&sha, gx); hashstring(&sha, from->name); SHA1_Final(md, &sha); BN_bin2bn(md, SHA_DIGEST_LENGTH, h); } // Prove knowledge of x // Note that we don't send g^x because, as it happens, we've always // sent it elsewhere. Also note that because of that, we could avoid // calculating it here, but we don't, for clarity... static void CreateZKP(JPakeZKP *zkp, const BIGNUM *x, const JPakeUser *us, const BIGNUM *zkpg, const JPakeParameters *params, int n, const char *suffix) { BIGNUM *r = BN_new(); BIGNUM *gx = BN_new(); BIGNUM *h = BN_new(); BIGNUM *t = BN_new(); // r in [0,q) // XXX: Java chooses r in [0, 2^160) - i.e. distribution not uniform BN_rand_range(r, params->q); // g^r zkp->gr = BN_new(); BN_mod_exp(zkp->gr, zkpg, r, params->p, params->ctx); // g^x BN_mod_exp(gx, zkpg, x, params->p, params->ctx); // h=hash... zkpHash(h, zkp, gx, &us->p, params); // b = r - x*h BN_mod_mul(t, x, h, params->q, params->ctx); zkp->b = BN_new(); BN_mod_sub(zkp->b, r, t, params->q, params->ctx); // show printf(" ZKP(x%d%s)\n", n, suffix); showbn(" zkpg", zkpg); showbn(" g^x", gx); showbn(" g^r", zkp->gr); showbn(" b", zkp->b); // cleanup BN_free(t); BN_free(h); BN_free(gx); BN_free(r); } static int VerifyZKP(const JPakeZKP *zkp, BIGNUM *gx, const JPakeUserPublic *them, const BIGNUM *zkpg, const JPakeParameters *params, int n, const char *suffix) { BIGNUM *h = BN_new(); BIGNUM *t1 = BN_new(); BIGNUM *t2 = BN_new(); BIGNUM *t3 = BN_new(); int ret = 0; zkpHash(h, zkp, gx, them, params); // t1 = g^b BN_mod_exp(t1, zkpg, zkp->b, params->p, params->ctx); // t2 = (g^x)^h = g^{hx} BN_mod_exp(t2, gx, h, params->p, params->ctx); // t3 = t1 * t2 = g^{hx} * g^b = g^{hx+b} = g^r (allegedly) BN_mod_mul(t3, t1, t2, params->p, params->ctx); printf(" ZKP(x%d%s)\n", n, suffix); showbn(" zkpg", zkpg); showbn(" g^r'", t3); // verify t3 == g^r if(BN_cmp(t3, zkp->gr) == 0) ret = 1; // cleanup BN_free(t3); BN_free(t2); BN_free(t1); BN_free(h); if(ret) puts(" OK"); else puts(" FAIL"); return ret; } static void sendstep1_substep(JPakeStep1 *s1, const BIGNUM *x, const JPakeUser *us, const JPakeParameters *params, int n) { s1->gx = BN_new(); BN_mod_exp(s1->gx, params->g, x, params->p, params->ctx); printf(" g^{x%d}", n); showbn("", s1->gx); CreateZKP(&s1->zkpx, x, us, params->g, params, n, ""); } static void sendstep1(const JPakeUser *us, JPakeUserPublic *them, const JPakeParameters *params) { printf("\n%s sends %s:\n\n", us->p.name, them->name); // from's g^xa (which becomes to's g^xc) and ZKP(xa) sendstep1_substep(&them->s1c, us->xa, us, params, us->p.base); // from's g^xb (which becomes to's g^xd) and ZKP(xb) sendstep1_substep(&them->s1d, us->xb, us, params, us->p.base+1); } static int verifystep1(const JPakeUser *us, const JPakeUserPublic *them, const JPakeParameters *params) { printf("\n%s verifies %s:\n\n", us->p.name, them->name); // verify their ZKP(xc) if(!VerifyZKP(&us->p.s1c.zkpx, us->p.s1c.gx, them, params->g, params, them->base, "")) return 0; // verify their ZKP(xd) if(!VerifyZKP(&us->p.s1d.zkpx, us->p.s1d.gx, them, params->g, params, them->base+1, "")) return 0; // g^xd != 1 printf(" g^{x%d} != 1: ", them->base+1); if(BN_is_one(us->p.s1d.gx)) { puts("FAIL"); return 0; } puts("OK"); return 1; } static void sendstep2(const JPakeUser *us, JPakeUserPublic *them, const JPakeParameters *params) { BIGNUM *t1 = BN_new(); BIGNUM *t2 = BN_new(); printf("\n%s sends %s:\n\n", us->p.name, them->name); // X = g^{(xa + xc + xd) * xb * s} // t1 = g^xa BN_mod_exp(t1, params->g, us->xa, params->p, params->ctx); // t2 = t1 * g^{xc} = g^{xa} * g^{xc} = g^{xa + xc} BN_mod_mul(t2, t1, us->p.s1c.gx, params->p, params->ctx); // t1 = t2 * g^{xd} = g^{xa + xc + xd} BN_mod_mul(t1, t2, us->p.s1d.gx, params->p, params->ctx); // t2 = xb * s BN_mod_mul(t2, us->xb, us->secret, params->q, params->ctx); // X = t1^{t2} = t1^{xb * s} = g^{(xa + xc + xd) * xb * s} them->s2.X = BN_new(); BN_mod_exp(them->s2.X, t1, t2, params->p, params->ctx); // Show printf(" g^{(x%d + x%d + x%d) * x%d * s)", us->p.base, them->base, them->base+1, us->p.base+1); showbn("", them->s2.X); // ZKP(xb * s) // XXX: this is kinda funky, because we're using // // g' = g^{xa + xc + xd} // // as the generator, which means X is g'^{xb * s} CreateZKP(&them->s2.zkpxbs, t2, us, t1, params, us->p.base+1, " * s"); // cleanup BN_free(t1); BN_free(t2); } static int verifystep2(const JPakeUser *us, const JPakeUserPublic *them, const JPakeParameters *params) { BIGNUM *t1 = BN_new(); BIGNUM *t2 = BN_new(); int ret = 0; printf("\n%s verifies %s:\n\n", us->p.name, them->name); // g' = g^{xc + xa + xb} [from our POV] // t1 = xa + xb BN_mod_add(t1, us->xa, us->xb, params->q, params->ctx); // t2 = g^{t1} = g^{xa+xb} BN_mod_exp(t2, params->g, t1, params->p, params->ctx); // t1 = g^{xc} * t2 = g^{xc + xa + xb} BN_mod_mul(t1, us->p.s1c.gx, t2, params->p, params->ctx); if(VerifyZKP(&us->p.s2.zkpxbs, us->p.s2.X, them, t1, params, them->base+1, " * s")) ret = 1; // cleanup BN_free(t2); BN_free(t1); return ret; } static void computekey(JPakeUser *us, const JPakeParameters *params) { BIGNUM *t1 = BN_new(); BIGNUM *t2 = BN_new(); BIGNUM *t3 = BN_new(); printf("\n%s calculates the shared key:\n\n", us->p.name); // K = (X/g^{xb * xd * s})^{xb} // = (g^{(xc + xa + xb) * xd * s - xb * xd *s})^{xb} // = (g^{(xa + xc) * xd * s})^{xb} // = g^{(xa + xc) * xb * xd * s} // [which is the same regardless of who calculates it] // t1 = (g^{xd})^{xb} = g^{xb * xd} BN_mod_exp(t1, us->p.s1d.gx, us->xb, params->p, params->ctx); // t2 = -s = q-s BN_sub(t2, params->q, us->secret); // t3 = t1^t2 = g^{-xb * xd * s} BN_mod_exp(t3, t1, t2, params->p, params->ctx); // t1 = X * t3 = X/g^{xb * xd * s} BN_mod_mul(t1, us->p.s2.X, t3, params->p, params->ctx); // K = t1^{xb} us->key = BN_new(); BN_mod_exp(us->key, t1, us->xb, params->p, params->ctx); // show showbn(" K", us->key); // cleanup BN_free(t3); BN_free(t2); BN_free(t1); } int main(int argc, char **argv) { JPakeParameters params; JPakeUser alice, bob; alice.p.name = "Alice"; alice.p.base = 1; bob.p.name = "Bob"; bob.p.base = 3; JPakeParametersInit(¶ms); // Shared secret alice.secret = BN_new(); BN_rand(alice.secret, 32, -1, 0); bob.secret = alice.secret; showbn("secret", alice.secret); assert(BN_cmp(alice.secret, params.q) < 0); // Alice's x1, x2 genrand(&alice, ¶ms); // Bob's x3, x4 genrand(&bob, ¶ms); // Now send stuff to each other... sendstep1(&alice, &bob.p, ¶ms); sendstep1(&bob, &alice.p, ¶ms); // And verify what each other sent if(!verifystep1(&alice, &bob.p, ¶ms)) return 1; if(!verifystep1(&bob, &alice.p, ¶ms)) return 2; // Second send sendstep2(&alice, &bob.p, ¶ms); sendstep2(&bob, &alice.p, ¶ms); // And second verify if(!verifystep2(&alice, &bob.p, ¶ms)) return 3; if(!verifystep2(&bob, &alice.p, ¶ms)) return 4; // Compute common key computekey(&alice, ¶ms); computekey(&bob, ¶ms); // Confirm the common key is identical // XXX: if the two secrets are not the same, everything works up // to this point, so the only way to detect a failure is by the // difference in the calculated keys. // Since we're all the same code, just compare them directly. In a // real system, Alice sends Bob H(H(K)), Bob checks it, then sends // back H(K), which Alice checks, or something equivalent. puts("\nAlice and Bob check keys are the same:"); if(BN_cmp(alice.key, bob.key) == 0) puts(" OK"); else { puts(" FAIL"); return 5; } return 0; }