/* $OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $ */ /*- * Copyright (c) 1997, 1998, 1999, 2000 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 2003 Nathan L. Binkert * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __FBSDID("$FreeBSD$"); /* * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports * the SK-984x series adapters, both single port and dual port. * References: * The XaQti XMAC II datasheet, * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf * The SysKonnect GEnesis manual, http://www.syskonnect.com * * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the * XMAC II datasheet online. I have put my copy at people.freebsd.org as a * convenience to others until Vitesse corrects this problem: * * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf * * Written by Bill Paul * Department of Electrical Engineering * Columbia University, New York City */ /* * The SysKonnect gigabit ethernet adapters consist of two main * components: the SysKonnect GEnesis controller chip and the XaQti Corp. * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC * components and a PHY while the GEnesis controller provides a PCI * interface with DMA support. Each card may have between 512K and * 2MB of SRAM on board depending on the configuration. * * The SysKonnect GEnesis controller can have either one or two XMAC * chips connected to it, allowing single or dual port NIC configurations. * SysKonnect has the distinction of being the only vendor on the market * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs, * dual DMA queues, packet/MAC/transmit arbiters and direct access to the * XMAC registers. This driver takes advantage of these features to allow * both XMACs to operate as independent interfaces. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if 0 #define SK_USEIOSPACE #endif #include #include #include MODULE_DEPEND(sk, pci, 1, 1, 1); MODULE_DEPEND(sk, ether, 1, 1, 1); MODULE_DEPEND(sk, miibus, 1, 1, 1); /* "device miibus" required. See GENERIC if you get errors here. */ #include "miibus_if.h" static const struct sk_type sk_devs[] = { { VENDORID_SK, DEVICEID_SK_V1, "SysKonnect Gigabit Ethernet (V1.0)" }, { VENDORID_SK, DEVICEID_SK_V2, "SysKonnect Gigabit Ethernet (V2.0)" }, { VENDORID_MARVELL, DEVICEID_SK_V2, "Marvell Gigabit Ethernet" }, { VENDORID_MARVELL, DEVICEID_BELKIN_5005, "Belkin F5D5005 Gigabit Ethernet" }, { VENDORID_3COM, DEVICEID_3COM_3C940, "3Com 3C940 Gigabit Ethernet" }, { VENDORID_LINKSYS, DEVICEID_LINKSYS_EG1032, "Linksys EG1032 Gigabit Ethernet" }, { VENDORID_DLINK, DEVICEID_DLINK_DGE530T_A1, "D-Link DGE-530T Gigabit Ethernet" }, { VENDORID_DLINK, DEVICEID_DLINK_DGE530T_B1, "D-Link DGE-530T Gigabit Ethernet" }, { 0, 0, NULL } }; static int skc_probe(device_t); static int skc_attach(device_t); static int skc_detach(device_t); static int skc_shutdown(device_t); static int skc_suspend(device_t); static int skc_resume(device_t); static bus_dma_tag_t skc_get_dma_tag(device_t, device_t); static int sk_detach(device_t); static int sk_probe(device_t); static int sk_attach(device_t); static void sk_tick(void *); static void sk_yukon_tick(void *); static void sk_intr(void *); static void sk_intr_xmac(struct sk_if_softc *); static void sk_intr_bcom(struct sk_if_softc *); static void sk_intr_yukon(struct sk_if_softc *); static __inline void sk_rxcksum(struct ifnet *, struct mbuf *, u_int32_t); static __inline int sk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t); static void sk_rxeof(struct sk_if_softc *); static void sk_jumbo_rxeof(struct sk_if_softc *); static void sk_txeof(struct sk_if_softc *); static void sk_txcksum(struct ifnet *, struct mbuf *, struct sk_tx_desc *); static int sk_encap(struct sk_if_softc *, struct mbuf **); static void sk_start(struct ifnet *); static void sk_start_locked(struct ifnet *); static int sk_ioctl(struct ifnet *, u_long, caddr_t); static void sk_init(void *); static void sk_init_locked(struct sk_if_softc *); static void sk_init_xmac(struct sk_if_softc *); static void sk_init_yukon(struct sk_if_softc *); static void sk_stop(struct sk_if_softc *); static void sk_watchdog(void *); static int sk_ifmedia_upd(struct ifnet *); static void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *); static void sk_reset(struct sk_softc *); static __inline void sk_discard_rxbuf(struct sk_if_softc *, int); static __inline void sk_discard_jumbo_rxbuf(struct sk_if_softc *, int); static int sk_newbuf(struct sk_if_softc *, int); static int sk_jumbo_newbuf(struct sk_if_softc *, int); static void sk_dmamap_cb(void *, bus_dma_segment_t *, int, int); static int sk_dma_alloc(struct sk_if_softc *); static int sk_dma_jumbo_alloc(struct sk_if_softc *); static void sk_dma_free(struct sk_if_softc *); static void sk_dma_jumbo_free(struct sk_if_softc *); static int sk_init_rx_ring(struct sk_if_softc *); static int sk_init_jumbo_rx_ring(struct sk_if_softc *); static void sk_init_tx_ring(struct sk_if_softc *); static u_int32_t sk_win_read_4(struct sk_softc *, int); static u_int16_t sk_win_read_2(struct sk_softc *, int); static u_int8_t sk_win_read_1(struct sk_softc *, int); static void sk_win_write_4(struct sk_softc *, int, u_int32_t); static void sk_win_write_2(struct sk_softc *, int, u_int32_t); static void sk_win_write_1(struct sk_softc *, int, u_int32_t); static int sk_miibus_readreg(device_t, int, int); static int sk_miibus_writereg(device_t, int, int, int); static void sk_miibus_statchg(device_t); static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int); static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int, int); static void sk_xmac_miibus_statchg(struct sk_if_softc *); static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int); static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int, int); static void sk_marv_miibus_statchg(struct sk_if_softc *); static uint32_t sk_xmchash(const uint8_t *); static void sk_setfilt(struct sk_if_softc *, u_int16_t *, int); static void sk_rxfilter(struct sk_if_softc *); static void sk_rxfilter_genesis(struct sk_if_softc *); static void sk_rxfilter_yukon(struct sk_if_softc *); static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high); static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS); /* Tunables. */ static int jumbo_disable = 0; TUNABLE_INT("hw.skc.jumbo_disable", &jumbo_disable); /* * It seems that SK-NET GENESIS supports very simple checksum offload * capability for Tx and I believe it can generate 0 checksum value for * UDP packets in Tx as the hardware can't differenciate UDP packets from * TCP packets. 0 chcecksum value for UDP packet is an invalid one as it * means sender didn't perforam checksum computation. For the safety I * disabled UDP checksum offload capability at the moment. Alternatively * we can intrduce a LINK0/LINK1 flag as hme(4) did in its Tx checksum * offload routine. */ #define SK_CSUM_FEATURES (CSUM_TCP) /* * Note that we have newbus methods for both the GEnesis controller * itself and the XMAC(s). The XMACs are children of the GEnesis, and * the miibus code is a child of the XMACs. We need to do it this way * so that the miibus drivers can access the PHY registers on the * right PHY. It's not quite what I had in mind, but it's the only * design that achieves the desired effect. */ static device_method_t skc_methods[] = { /* Device interface */ DEVMETHOD(device_probe, skc_probe), DEVMETHOD(device_attach, skc_attach), DEVMETHOD(device_detach, skc_detach), DEVMETHOD(device_suspend, skc_suspend), DEVMETHOD(device_resume, skc_resume), DEVMETHOD(device_shutdown, skc_shutdown), DEVMETHOD(bus_get_dma_tag, skc_get_dma_tag), DEVMETHOD_END }; static driver_t skc_driver = { "skc", skc_methods, sizeof(struct sk_softc) }; static devclass_t skc_devclass; static device_method_t sk_methods[] = { /* Device interface */ DEVMETHOD(device_probe, sk_probe), DEVMETHOD(device_attach, sk_attach), DEVMETHOD(device_detach, sk_detach), DEVMETHOD(device_shutdown, bus_generic_shutdown), /* MII interface */ DEVMETHOD(miibus_readreg, sk_miibus_readreg), DEVMETHOD(miibus_writereg, sk_miibus_writereg), DEVMETHOD(miibus_statchg, sk_miibus_statchg), DEVMETHOD_END }; static driver_t sk_driver = { "sk", sk_methods, sizeof(struct sk_if_softc) }; static devclass_t sk_devclass; DRIVER_MODULE(skc, pci, skc_driver, skc_devclass, NULL, NULL); DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, NULL, NULL); DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, NULL, NULL); static struct resource_spec sk_res_spec_io[] = { { SYS_RES_IOPORT, PCIR_BAR(1), RF_ACTIVE }, { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, { -1, 0, 0 } }; static struct resource_spec sk_res_spec_mem[] = { { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, { -1, 0, 0 } }; #define SK_SETBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x) #define SK_CLRBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x) #define SK_WIN_SETBIT_4(sc, reg, x) \ sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x) #define SK_WIN_CLRBIT_4(sc, reg, x) \ sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x) #define SK_WIN_SETBIT_2(sc, reg, x) \ sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x) #define SK_WIN_CLRBIT_2(sc, reg, x) \ sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x) static u_int32_t sk_win_read_4(sc, reg) struct sk_softc *sc; int reg; { #ifdef SK_USEIOSPACE CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg))); #else return(CSR_READ_4(sc, reg)); #endif } static u_int16_t sk_win_read_2(sc, reg) struct sk_softc *sc; int reg; { #ifdef SK_USEIOSPACE CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg))); #else return(CSR_READ_2(sc, reg)); #endif } static u_int8_t sk_win_read_1(sc, reg) struct sk_softc *sc; int reg; { #ifdef SK_USEIOSPACE CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg))); #else return(CSR_READ_1(sc, reg)); #endif } static void sk_win_write_4(sc, reg, val) struct sk_softc *sc; int reg; u_int32_t val; { #ifdef SK_USEIOSPACE CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val); #else CSR_WRITE_4(sc, reg, val); #endif return; } static void sk_win_write_2(sc, reg, val) struct sk_softc *sc; int reg; u_int32_t val; { #ifdef SK_USEIOSPACE CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val); #else CSR_WRITE_2(sc, reg, val); #endif return; } static void sk_win_write_1(sc, reg, val) struct sk_softc *sc; int reg; u_int32_t val; { #ifdef SK_USEIOSPACE CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val); #else CSR_WRITE_1(sc, reg, val); #endif return; } static int sk_miibus_readreg(dev, phy, reg) device_t dev; int phy, reg; { struct sk_if_softc *sc_if; int v; sc_if = device_get_softc(dev); SK_IF_MII_LOCK(sc_if); switch(sc_if->sk_softc->sk_type) { case SK_GENESIS: v = sk_xmac_miibus_readreg(sc_if, phy, reg); break; case SK_YUKON: case SK_YUKON_LITE: case SK_YUKON_LP: v = sk_marv_miibus_readreg(sc_if, phy, reg); break; default: v = 0; break; } SK_IF_MII_UNLOCK(sc_if); return (v); } static int sk_miibus_writereg(dev, phy, reg, val) device_t dev; int phy, reg, val; { struct sk_if_softc *sc_if; int v; sc_if = device_get_softc(dev); SK_IF_MII_LOCK(sc_if); switch(sc_if->sk_softc->sk_type) { case SK_GENESIS: v = sk_xmac_miibus_writereg(sc_if, phy, reg, val); break; case SK_YUKON: case SK_YUKON_LITE: case SK_YUKON_LP: v = sk_marv_miibus_writereg(sc_if, phy, reg, val); break; default: v = 0; break; } SK_IF_MII_UNLOCK(sc_if); return (v); } static void sk_miibus_statchg(dev) device_t dev; { struct sk_if_softc *sc_if; sc_if = device_get_softc(dev); SK_IF_MII_LOCK(sc_if); switch(sc_if->sk_softc->sk_type) { case SK_GENESIS: sk_xmac_miibus_statchg(sc_if); break; case SK_YUKON: case SK_YUKON_LITE: case SK_YUKON_LP: sk_marv_miibus_statchg(sc_if); break; } SK_IF_MII_UNLOCK(sc_if); return; } static int sk_xmac_miibus_readreg(sc_if, phy, reg) struct sk_if_softc *sc_if; int phy, reg; { int i; SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8)); SK_XM_READ_2(sc_if, XM_PHY_DATA); if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) { for (i = 0; i < SK_TIMEOUT; i++) { DELAY(1); if (SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYDATARDY) break; } if (i == SK_TIMEOUT) { if_printf(sc_if->sk_ifp, "phy failed to come ready\n"); return(0); } } DELAY(1); i = SK_XM_READ_2(sc_if, XM_PHY_DATA); return(i); } static int sk_xmac_miibus_writereg(sc_if, phy, reg, val) struct sk_if_softc *sc_if; int phy, reg, val; { int i; SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8)); for (i = 0; i < SK_TIMEOUT; i++) { if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) break; } if (i == SK_TIMEOUT) { if_printf(sc_if->sk_ifp, "phy failed to come ready\n"); return (ETIMEDOUT); } SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val); for (i = 0; i < SK_TIMEOUT; i++) { DELAY(1); if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) break; } if (i == SK_TIMEOUT) if_printf(sc_if->sk_ifp, "phy write timed out\n"); return(0); } static void sk_xmac_miibus_statchg(sc_if) struct sk_if_softc *sc_if; { struct mii_data *mii; mii = device_get_softc(sc_if->sk_miibus); /* * If this is a GMII PHY, manually set the XMAC's * duplex mode accordingly. */ if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) { if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX); } else { SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX); } } } static int sk_marv_miibus_readreg(sc_if, phy, reg) struct sk_if_softc *sc_if; int phy, reg; { u_int16_t val; int i; if (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER && sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER) { return(0); } SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) | YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ); for (i = 0; i < SK_TIMEOUT; i++) { DELAY(1); val = SK_YU_READ_2(sc_if, YUKON_SMICR); if (val & YU_SMICR_READ_VALID) break; } if (i == SK_TIMEOUT) { if_printf(sc_if->sk_ifp, "phy failed to come ready\n"); return(0); } val = SK_YU_READ_2(sc_if, YUKON_SMIDR); return(val); } static int sk_marv_miibus_writereg(sc_if, phy, reg, val) struct sk_if_softc *sc_if; int phy, reg, val; { int i; SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val); SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) | YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE); for (i = 0; i < SK_TIMEOUT; i++) { DELAY(1); if ((SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) == 0) break; } if (i == SK_TIMEOUT) if_printf(sc_if->sk_ifp, "phy write timeout\n"); return(0); } static void sk_marv_miibus_statchg(sc_if) struct sk_if_softc *sc_if; { return; } #define HASH_BITS 6 static u_int32_t sk_xmchash(addr) const uint8_t *addr; { uint32_t crc; /* Compute CRC for the address value. */ crc = ether_crc32_le(addr, ETHER_ADDR_LEN); return (~crc & ((1 << HASH_BITS) - 1)); } static void sk_setfilt(sc_if, addr, slot) struct sk_if_softc *sc_if; u_int16_t *addr; int slot; { int base; base = XM_RXFILT_ENTRY(slot); SK_XM_WRITE_2(sc_if, base, addr[0]); SK_XM_WRITE_2(sc_if, base + 2, addr[1]); SK_XM_WRITE_2(sc_if, base + 4, addr[2]); return; } static void sk_rxfilter(sc_if) struct sk_if_softc *sc_if; { struct sk_softc *sc; SK_IF_LOCK_ASSERT(sc_if); sc = sc_if->sk_softc; if (sc->sk_type == SK_GENESIS) sk_rxfilter_genesis(sc_if); else sk_rxfilter_yukon(sc_if); } static void sk_rxfilter_genesis(sc_if) struct sk_if_softc *sc_if; { struct ifnet *ifp = sc_if->sk_ifp; u_int32_t hashes[2] = { 0, 0 }, mode; int h = 0, i; struct ifmultiaddr *ifma; u_int16_t dummy[] = { 0, 0, 0 }; u_int16_t maddr[(ETHER_ADDR_LEN+1)/2]; SK_IF_LOCK_ASSERT(sc_if); mode = SK_XM_READ_4(sc_if, XM_MODE); mode &= ~(XM_MODE_RX_PROMISC | XM_MODE_RX_USE_HASH | XM_MODE_RX_USE_PERFECT); /* First, zot all the existing perfect filters. */ for (i = 1; i < XM_RXFILT_MAX; i++) sk_setfilt(sc_if, dummy, i); /* Now program new ones. */ if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { if (ifp->if_flags & IFF_ALLMULTI) mode |= XM_MODE_RX_USE_HASH; if (ifp->if_flags & IFF_PROMISC) mode |= XM_MODE_RX_PROMISC; hashes[0] = 0xFFFFFFFF; hashes[1] = 0xFFFFFFFF; } else { i = 1; if_maddr_rlock(ifp); TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; /* * Program the first XM_RXFILT_MAX multicast groups * into the perfect filter. */ bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), maddr, ETHER_ADDR_LEN); if (i < XM_RXFILT_MAX) { sk_setfilt(sc_if, maddr, i); mode |= XM_MODE_RX_USE_PERFECT; i++; continue; } h = sk_xmchash((const uint8_t *)maddr); if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); mode |= XM_MODE_RX_USE_HASH; } if_maddr_runlock(ifp); } SK_XM_WRITE_4(sc_if, XM_MODE, mode); SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]); SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]); } static void sk_rxfilter_yukon(sc_if) struct sk_if_softc *sc_if; { struct ifnet *ifp; u_int32_t crc, hashes[2] = { 0, 0 }, mode; struct ifmultiaddr *ifma; SK_IF_LOCK_ASSERT(sc_if); ifp = sc_if->sk_ifp; mode = SK_YU_READ_2(sc_if, YUKON_RCR); if (ifp->if_flags & IFF_PROMISC) mode &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN); else if (ifp->if_flags & IFF_ALLMULTI) { mode |= YU_RCR_UFLEN | YU_RCR_MUFLEN; hashes[0] = 0xFFFFFFFF; hashes[1] = 0xFFFFFFFF; } else { mode |= YU_RCR_UFLEN; if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; crc = ether_crc32_be(LLADDR((struct sockaddr_dl *) ifma->ifma_addr), ETHER_ADDR_LEN); /* Just want the 6 least significant bits. */ crc &= 0x3f; /* Set the corresponding bit in the hash table. */ hashes[crc >> 5] |= 1 << (crc & 0x1f); } if_maddr_runlock(ifp); if (hashes[0] != 0 || hashes[1] != 0) mode |= YU_RCR_MUFLEN; } SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff); SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff); SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff); SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff); SK_YU_WRITE_2(sc_if, YUKON_RCR, mode); } static int sk_init_rx_ring(sc_if) struct sk_if_softc *sc_if; { struct sk_ring_data *rd; bus_addr_t addr; u_int32_t csum_start; int i; sc_if->sk_cdata.sk_rx_cons = 0; csum_start = (ETHER_HDR_LEN + sizeof(struct ip)) << 16 | ETHER_HDR_LEN; rd = &sc_if->sk_rdata; bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT); for (i = 0; i < SK_RX_RING_CNT; i++) { if (sk_newbuf(sc_if, i) != 0) return (ENOBUFS); if (i == (SK_RX_RING_CNT - 1)) addr = SK_RX_RING_ADDR(sc_if, 0); else addr = SK_RX_RING_ADDR(sc_if, i + 1); rd->sk_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr)); rd->sk_rx_ring[i].sk_csum_start = htole32(csum_start); } bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag, sc_if->sk_cdata.sk_rx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return(0); } static int sk_init_jumbo_rx_ring(sc_if) struct sk_if_softc *sc_if; { struct sk_ring_data *rd; bus_addr_t addr; u_int32_t csum_start; int i; sc_if->sk_cdata.sk_jumbo_rx_cons = 0; csum_start = ((ETHER_HDR_LEN + sizeof(struct ip)) << 16) | ETHER_HDR_LEN; rd = &sc_if->sk_rdata; bzero(rd->sk_jumbo_rx_ring, sizeof(struct sk_rx_desc) * SK_JUMBO_RX_RING_CNT); for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) { if (sk_jumbo_newbuf(sc_if, i) != 0) return (ENOBUFS); if (i == (SK_JUMBO_RX_RING_CNT - 1)) addr = SK_JUMBO_RX_RING_ADDR(sc_if, 0); else addr = SK_JUMBO_RX_RING_ADDR(sc_if, i + 1); rd->sk_jumbo_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr)); rd->sk_jumbo_rx_ring[i].sk_csum_start = htole32(csum_start); } bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, sc_if->sk_cdata.sk_jumbo_rx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return (0); } static void sk_init_tx_ring(sc_if) struct sk_if_softc *sc_if; { struct sk_ring_data *rd; struct sk_txdesc *txd; bus_addr_t addr; int i; STAILQ_INIT(&sc_if->sk_cdata.sk_txfreeq); STAILQ_INIT(&sc_if->sk_cdata.sk_txbusyq); sc_if->sk_cdata.sk_tx_prod = 0; sc_if->sk_cdata.sk_tx_cons = 0; sc_if->sk_cdata.sk_tx_cnt = 0; rd = &sc_if->sk_rdata; bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT); for (i = 0; i < SK_TX_RING_CNT; i++) { if (i == (SK_TX_RING_CNT - 1)) addr = SK_TX_RING_ADDR(sc_if, 0); else addr = SK_TX_RING_ADDR(sc_if, i + 1); rd->sk_tx_ring[i].sk_next = htole32(SK_ADDR_LO(addr)); txd = &sc_if->sk_cdata.sk_txdesc[i]; STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q); } bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag, sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } static __inline void sk_discard_rxbuf(sc_if, idx) struct sk_if_softc *sc_if; int idx; { struct sk_rx_desc *r; struct sk_rxdesc *rxd; struct mbuf *m; r = &sc_if->sk_rdata.sk_rx_ring[idx]; rxd = &sc_if->sk_cdata.sk_rxdesc[idx]; m = rxd->rx_m; r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM); } static __inline void sk_discard_jumbo_rxbuf(sc_if, idx) struct sk_if_softc *sc_if; int idx; { struct sk_rx_desc *r; struct sk_rxdesc *rxd; struct mbuf *m; r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx]; rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx]; m = rxd->rx_m; r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM); } static int sk_newbuf(sc_if, idx) struct sk_if_softc *sc_if; int idx; { struct sk_rx_desc *r; struct sk_rxdesc *rxd; struct mbuf *m; bus_dma_segment_t segs[1]; bus_dmamap_t map; int nsegs; m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) return (ENOBUFS); m->m_len = m->m_pkthdr.len = MCLBYTES; m_adj(m, ETHER_ALIGN); if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_rx_tag, sc_if->sk_cdata.sk_rx_sparemap, m, segs, &nsegs, 0) != 0) { m_freem(m); return (ENOBUFS); } KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); rxd = &sc_if->sk_cdata.sk_rxdesc[idx]; if (rxd->rx_m != NULL) { bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap); } map = rxd->rx_dmamap; rxd->rx_dmamap = sc_if->sk_cdata.sk_rx_sparemap; sc_if->sk_cdata.sk_rx_sparemap = map; bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_PREREAD); rxd->rx_m = m; r = &sc_if->sk_rdata.sk_rx_ring[idx]; r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr)); r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr)); r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM); return (0); } static int sk_jumbo_newbuf(sc_if, idx) struct sk_if_softc *sc_if; int idx; { struct sk_rx_desc *r; struct sk_rxdesc *rxd; struct mbuf *m; bus_dma_segment_t segs[1]; bus_dmamap_t map; int nsegs; m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES); if (m == NULL) return (ENOBUFS); if ((m->m_flags & M_EXT) == 0) { m_freem(m); return (ENOBUFS); } m->m_pkthdr.len = m->m_len = MJUM9BYTES; /* * Adjust alignment so packet payload begins on a * longword boundary. Mandatory for Alpha, useful on * x86 too. */ m_adj(m, ETHER_ALIGN); if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_jumbo_rx_tag, sc_if->sk_cdata.sk_jumbo_rx_sparemap, m, segs, &nsegs, 0) != 0) { m_freem(m); return (ENOBUFS); } KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx]; if (rxd->rx_m != NULL) { bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap); } map = rxd->rx_dmamap; rxd->rx_dmamap = sc_if->sk_cdata.sk_jumbo_rx_sparemap; sc_if->sk_cdata.sk_jumbo_rx_sparemap = map; bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_PREREAD); rxd->rx_m = m; r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx]; r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr)); r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr)); r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM); return (0); } /* * Set media options. */ static int sk_ifmedia_upd(ifp) struct ifnet *ifp; { struct sk_if_softc *sc_if = ifp->if_softc; struct mii_data *mii; mii = device_get_softc(sc_if->sk_miibus); sk_init(sc_if); mii_mediachg(mii); return(0); } /* * Report current media status. */ static void sk_ifmedia_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct sk_if_softc *sc_if; struct mii_data *mii; sc_if = ifp->if_softc; mii = device_get_softc(sc_if->sk_miibus); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; return; } static int sk_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct sk_if_softc *sc_if = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; int error, mask; struct mii_data *mii; error = 0; switch(command) { case SIOCSIFMTU: if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > SK_JUMBO_MTU) error = EINVAL; else if (ifp->if_mtu != ifr->ifr_mtu) { if (sc_if->sk_jumbo_disable != 0 && ifr->ifr_mtu > SK_MAX_FRAMELEN) error = EINVAL; else { SK_IF_LOCK(sc_if); ifp->if_mtu = ifr->ifr_mtu; if (ifp->if_drv_flags & IFF_DRV_RUNNING) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; sk_init_locked(sc_if); } SK_IF_UNLOCK(sc_if); } } break; case SIOCSIFFLAGS: SK_IF_LOCK(sc_if); if (ifp->if_flags & IFF_UP) { if (ifp->if_drv_flags & IFF_DRV_RUNNING) { if ((ifp->if_flags ^ sc_if->sk_if_flags) & (IFF_PROMISC | IFF_ALLMULTI)) sk_rxfilter(sc_if); } else sk_init_locked(sc_if); } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) sk_stop(sc_if); } sc_if->sk_if_flags = ifp->if_flags; SK_IF_UNLOCK(sc_if); break; case SIOCADDMULTI: case SIOCDELMULTI: SK_IF_LOCK(sc_if); if (ifp->if_drv_flags & IFF_DRV_RUNNING) sk_rxfilter(sc_if); SK_IF_UNLOCK(sc_if); break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = device_get_softc(sc_if->sk_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; case SIOCSIFCAP: SK_IF_LOCK(sc_if); if (sc_if->sk_softc->sk_type == SK_GENESIS) { SK_IF_UNLOCK(sc_if); break; } mask = ifr->ifr_reqcap ^ ifp->if_capenable; if ((mask & IFCAP_TXCSUM) != 0 && (IFCAP_TXCSUM & ifp->if_capabilities) != 0) { ifp->if_capenable ^= IFCAP_TXCSUM; if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) ifp->if_hwassist |= SK_CSUM_FEATURES; else ifp->if_hwassist &= ~SK_CSUM_FEATURES; } if ((mask & IFCAP_RXCSUM) != 0 && (IFCAP_RXCSUM & ifp->if_capabilities) != 0) ifp->if_capenable ^= IFCAP_RXCSUM; SK_IF_UNLOCK(sc_if); break; default: error = ether_ioctl(ifp, command, data); break; } return (error); } /* * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ static int skc_probe(dev) device_t dev; { const struct sk_type *t = sk_devs; while(t->sk_name != NULL) { if ((pci_get_vendor(dev) == t->sk_vid) && (pci_get_device(dev) == t->sk_did)) { /* * Only attach to rev. 2 of the Linksys EG1032 adapter. * Rev. 3 is supported by re(4). */ if ((t->sk_vid == VENDORID_LINKSYS) && (t->sk_did == DEVICEID_LINKSYS_EG1032) && (pci_get_subdevice(dev) != SUBDEVICEID_LINKSYS_EG1032_REV2)) { t++; continue; } device_set_desc(dev, t->sk_name); return (BUS_PROBE_DEFAULT); } t++; } return(ENXIO); } /* * Force the GEnesis into reset, then bring it out of reset. */ static void sk_reset(sc) struct sk_softc *sc; { CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET); CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET); if (SK_YUKON_FAMILY(sc->sk_type)) CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET); DELAY(1000); CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET); DELAY(2); CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET); if (SK_YUKON_FAMILY(sc->sk_type)) CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR); if (sc->sk_type == SK_GENESIS) { /* Configure packet arbiter */ sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET); sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT); sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT); sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT); sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT); } /* Enable RAM interface */ sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET); /* * Configure interrupt moderation. The moderation timer * defers interrupts specified in the interrupt moderation * timer mask based on the timeout specified in the interrupt * moderation timer init register. Each bit in the timer * register represents one tick, so to specify a timeout in * microseconds, we have to multiply by the correct number of * ticks-per-microsecond. */ switch (sc->sk_type) { case SK_GENESIS: sc->sk_int_ticks = SK_IMTIMER_TICKS_GENESIS; break; default: sc->sk_int_ticks = SK_IMTIMER_TICKS_YUKON; break; } if (bootverbose) device_printf(sc->sk_dev, "interrupt moderation is %d us\n", sc->sk_int_mod); sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)); sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF| SK_ISR_RX1_EOF|SK_ISR_RX2_EOF); sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START); return; } static int sk_probe(dev) device_t dev; { struct sk_softc *sc; sc = device_get_softc(device_get_parent(dev)); /* * Not much to do here. We always know there will be * at least one XMAC present, and if there are two, * skc_attach() will create a second device instance * for us. */ switch (sc->sk_type) { case SK_GENESIS: device_set_desc(dev, "XaQti Corp. XMAC II"); break; case SK_YUKON: case SK_YUKON_LITE: case SK_YUKON_LP: device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon"); break; } return (BUS_PROBE_DEFAULT); } /* * Each XMAC chip is attached as a separate logical IP interface. * Single port cards will have only one logical interface of course. */ static int sk_attach(dev) device_t dev; { struct sk_softc *sc; struct sk_if_softc *sc_if; struct ifnet *ifp; u_int32_t r; int error, i, phy, port; u_char eaddr[6]; u_char inv_mac[] = {0, 0, 0, 0, 0, 0}; if (dev == NULL) return(EINVAL); error = 0; sc_if = device_get_softc(dev); sc = device_get_softc(device_get_parent(dev)); port = *(int *)device_get_ivars(dev); sc_if->sk_if_dev = dev; sc_if->sk_port = port; sc_if->sk_softc = sc; sc->sk_if[port] = sc_if; if (port == SK_PORT_A) sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0; if (port == SK_PORT_B) sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1; callout_init_mtx(&sc_if->sk_tick_ch, &sc_if->sk_softc->sk_mtx, 0); callout_init_mtx(&sc_if->sk_watchdog_ch, &sc_if->sk_softc->sk_mtx, 0); if (sk_dma_alloc(sc_if) != 0) { error = ENOMEM; goto fail; } sk_dma_jumbo_alloc(sc_if); ifp = sc_if->sk_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(sc_if->sk_if_dev, "can not if_alloc()\n"); error = ENOSPC; goto fail; } ifp->if_softc = sc_if; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; /* * SK_GENESIS has a bug in checksum offload - From linux. */ if (sc_if->sk_softc->sk_type != SK_GENESIS) { ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM; ifp->if_hwassist = 0; } else { ifp->if_capabilities = 0; ifp->if_hwassist = 0; } ifp->if_capenable = ifp->if_capabilities; /* * Some revision of Yukon controller generates corrupted * frame when TX checksum offloading is enabled. The * frame has a valid checksum value so payload might be * modified during TX checksum calculation. Disable TX * checksum offloading but give users chance to enable it * when they know their controller works without problems * with TX checksum offloading. */ ifp->if_capenable &= ~IFCAP_TXCSUM; ifp->if_ioctl = sk_ioctl; ifp->if_start = sk_start; ifp->if_init = sk_init; IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1); ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1; IFQ_SET_READY(&ifp->if_snd); /* * Get station address for this interface. Note that * dual port cards actually come with three station * addresses: one for each port, plus an extra. The * extra one is used by the SysKonnect driver software * as a 'virtual' station address for when both ports * are operating in failover mode. Currently we don't * use this extra address. */ SK_IF_LOCK(sc_if); for (i = 0; i < ETHER_ADDR_LEN; i++) eaddr[i] = sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i); /* Verify whether the station address is invalid or not. */ if (bcmp(eaddr, inv_mac, sizeof(inv_mac)) == 0) { device_printf(sc_if->sk_if_dev, "Generating random ethernet address\n"); r = arc4random(); /* * Set OUI to convenient locally assigned address. 'b' * is 0x62, which has the locally assigned bit set, and * the broadcast/multicast bit clear. */ eaddr[0] = 'b'; eaddr[1] = 's'; eaddr[2] = 'd'; eaddr[3] = (r >> 16) & 0xff; eaddr[4] = (r >> 8) & 0xff; eaddr[5] = (r >> 0) & 0xff; } /* * Set up RAM buffer addresses. The NIC will have a certain * amount of SRAM on it, somewhere between 512K and 2MB. We * need to divide this up a) between the transmitter and * receiver and b) between the two XMACs, if this is a * dual port NIC. Our algotithm is to divide up the memory * evenly so that everyone gets a fair share. * * Just to be contrary, Yukon2 appears to have separate memory * for each MAC. */ if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) { u_int32_t chunk, val; chunk = sc->sk_ramsize / 2; val = sc->sk_rboff / sizeof(u_int64_t); sc_if->sk_rx_ramstart = val; val += (chunk / sizeof(u_int64_t)); sc_if->sk_rx_ramend = val - 1; sc_if->sk_tx_ramstart = val; val += (chunk / sizeof(u_int64_t)); sc_if->sk_tx_ramend = val - 1; } else { u_int32_t chunk, val; chunk = sc->sk_ramsize / 4; val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) / sizeof(u_int64_t); sc_if->sk_rx_ramstart = val; val += (chunk / sizeof(u_int64_t)); sc_if->sk_rx_ramend = val - 1; sc_if->sk_tx_ramstart = val; val += (chunk / sizeof(u_int64_t)); sc_if->sk_tx_ramend = val - 1; } /* Read and save PHY type and set PHY address */ sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF; if (!SK_YUKON_FAMILY(sc->sk_type)) { switch(sc_if->sk_phytype) { case SK_PHYTYPE_XMAC: sc_if->sk_phyaddr = SK_PHYADDR_XMAC; break; case SK_PHYTYPE_BCOM: sc_if->sk_phyaddr = SK_PHYADDR_BCOM; break; default: device_printf(sc->sk_dev, "unsupported PHY type: %d\n", sc_if->sk_phytype); error = ENODEV; SK_IF_UNLOCK(sc_if); goto fail; } } else { if (sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER && sc->sk_pmd != 'S') { /* not initialized, punt */ sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER; sc->sk_coppertype = 1; } sc_if->sk_phyaddr = SK_PHYADDR_MARV; if (!(sc->sk_coppertype)) sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER; } /* * Call MI attach routine. Can't hold locks when calling into ether_*. */ SK_IF_UNLOCK(sc_if); ether_ifattach(ifp, eaddr); SK_IF_LOCK(sc_if); /* * The hardware should be ready for VLAN_MTU by default: * XMAC II has 0x8100 in VLAN Tag Level 1 register initially; * YU_SMR_MFL_VLAN is set by this driver in Yukon. * */ ifp->if_capabilities |= IFCAP_VLAN_MTU; ifp->if_capenable |= IFCAP_VLAN_MTU; /* * Tell the upper layer(s) we support long frames. * Must appear after the call to ether_ifattach() because * ether_ifattach() sets ifi_hdrlen to the default value. */ ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); /* * Do miibus setup. */ phy = MII_PHY_ANY; switch (sc->sk_type) { case SK_GENESIS: sk_init_xmac(sc_if); if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) phy = 0; break; case SK_YUKON: case SK_YUKON_LITE: case SK_YUKON_LP: sk_init_yukon(sc_if); phy = 0; break; } SK_IF_UNLOCK(sc_if); error = mii_attach(dev, &sc_if->sk_miibus, ifp, sk_ifmedia_upd, sk_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0); if (error != 0) { device_printf(sc_if->sk_if_dev, "attaching PHYs failed\n"); ether_ifdetach(ifp); goto fail; } fail: if (error) { /* Access should be ok even though lock has been dropped */ sc->sk_if[port] = NULL; sk_detach(dev); } return(error); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static int skc_attach(dev) device_t dev; { struct sk_softc *sc; int error = 0, *port; uint8_t skrs; const char *pname = NULL; char *revstr; sc = device_get_softc(dev); sc->sk_dev = dev; mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); mtx_init(&sc->sk_mii_mtx, "sk_mii_mutex", NULL, MTX_DEF); /* * Map control/status registers. */ pci_enable_busmaster(dev); /* Allocate resources */ #ifdef SK_USEIOSPACE sc->sk_res_spec = sk_res_spec_io; #else sc->sk_res_spec = sk_res_spec_mem; #endif error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res); if (error) { if (sc->sk_res_spec == sk_res_spec_mem) sc->sk_res_spec = sk_res_spec_io; else sc->sk_res_spec = sk_res_spec_mem; error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res); if (error) { device_printf(dev, "couldn't allocate %s resources\n", sc->sk_res_spec == sk_res_spec_mem ? "memory" : "I/O"); goto fail; } } sc->sk_type = sk_win_read_1(sc, SK_CHIPVER); sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf; /* Bail out if chip is not recognized. */ if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) { device_printf(dev, "unknown device: chipver=%02x, rev=%x\n", sc->sk_type, sc->sk_rev); error = ENXIO; goto fail; } SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "int_mod", CTLTYPE_INT|CTLFLAG_RW, &sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I", "SK interrupt moderation"); /* Pull in device tunables. */ sc->sk_int_mod = SK_IM_DEFAULT; error = resource_int_value(device_get_name(dev), device_get_unit(dev), "int_mod", &sc->sk_int_mod); if (error == 0) { if (sc->sk_int_mod < SK_IM_MIN || sc->sk_int_mod > SK_IM_MAX) { device_printf(dev, "int_mod value out of range; " "using default: %d\n", SK_IM_DEFAULT); sc->sk_int_mod = SK_IM_DEFAULT; } } /* Reset the adapter. */ sk_reset(sc); skrs = sk_win_read_1(sc, SK_EPROM0); if (sc->sk_type == SK_GENESIS) { /* Read and save RAM size and RAMbuffer offset */ switch(skrs) { case SK_RAMSIZE_512K_64: sc->sk_ramsize = 0x80000; sc->sk_rboff = SK_RBOFF_0; break; case SK_RAMSIZE_1024K_64: sc->sk_ramsize = 0x100000; sc->sk_rboff = SK_RBOFF_80000; break; case SK_RAMSIZE_1024K_128: sc->sk_ramsize = 0x100000; sc->sk_rboff = SK_RBOFF_0; break; case SK_RAMSIZE_2048K_128: sc->sk_ramsize = 0x200000; sc->sk_rboff = SK_RBOFF_0; break; default: device_printf(dev, "unknown ram size: %d\n", skrs); error = ENXIO; goto fail; } } else { /* SK_YUKON_FAMILY */ if (skrs == 0x00) sc->sk_ramsize = 0x20000; else sc->sk_ramsize = skrs * (1<<12); sc->sk_rboff = SK_RBOFF_0; } /* Read and save physical media type */ sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE); if (sc->sk_pmd == 'T' || sc->sk_pmd == '1') sc->sk_coppertype = 1; else sc->sk_coppertype = 0; /* Determine whether to name it with VPD PN or just make it up. * Marvell Yukon VPD PN seems to freqently be bogus. */ switch (pci_get_device(dev)) { case DEVICEID_SK_V1: case DEVICEID_BELKIN_5005: case DEVICEID_3COM_3C940: case DEVICEID_LINKSYS_EG1032: case DEVICEID_DLINK_DGE530T_A1: case DEVICEID_DLINK_DGE530T_B1: /* Stay with VPD PN. */ (void) pci_get_vpd_ident(dev, &pname); break; case DEVICEID_SK_V2: /* YUKON VPD PN might bear no resemblance to reality. */ switch (sc->sk_type) { case SK_GENESIS: /* Stay with VPD PN. */ (void) pci_get_vpd_ident(dev, &pname); break; case SK_YUKON: pname = "Marvell Yukon Gigabit Ethernet"; break; case SK_YUKON_LITE: pname = "Marvell Yukon Lite Gigabit Ethernet"; break; case SK_YUKON_LP: pname = "Marvell Yukon LP Gigabit Ethernet"; break; default: pname = "Marvell Yukon (Unknown) Gigabit Ethernet"; break; } /* Yukon Lite Rev. A0 needs special test. */ if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) { u_int32_t far; u_int8_t testbyte; /* Save flash address register before testing. */ far = sk_win_read_4(sc, SK_EP_ADDR); sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff); testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03); if (testbyte != 0x00) { /* Yukon Lite Rev. A0 detected. */ sc->sk_type = SK_YUKON_LITE; sc->sk_rev = SK_YUKON_LITE_REV_A0; /* Restore flash address register. */ sk_win_write_4(sc, SK_EP_ADDR, far); } } break; default: device_printf(dev, "unknown device: vendor=%04x, device=%04x, " "chipver=%02x, rev=%x\n", pci_get_vendor(dev), pci_get_device(dev), sc->sk_type, sc->sk_rev); error = ENXIO; goto fail; } if (sc->sk_type == SK_YUKON_LITE) { switch (sc->sk_rev) { case SK_YUKON_LITE_REV_A0: revstr = "A0"; break; case SK_YUKON_LITE_REV_A1: revstr = "A1"; break; case SK_YUKON_LITE_REV_A3: revstr = "A3"; break; default: revstr = ""; break; } } else { revstr = ""; } /* Announce the product name and more VPD data if there. */ if (pname != NULL) device_printf(dev, "%s rev. %s(0x%x)\n", pname, revstr, sc->sk_rev); if (bootverbose) { device_printf(dev, "chip ver = 0x%02x\n", sc->sk_type); device_printf(dev, "chip rev = 0x%02x\n", sc->sk_rev); device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs); device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize); } sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1); if (sc->sk_devs[SK_PORT_A] == NULL) { device_printf(dev, "failed to add child for PORT_A\n"); error = ENXIO; goto fail; } port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT); if (port == NULL) { device_printf(dev, "failed to allocate memory for " "ivars of PORT_A\n"); error = ENXIO; goto fail; } *port = SK_PORT_A; device_set_ivars(sc->sk_devs[SK_PORT_A], port); if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) { sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1); if (sc->sk_devs[SK_PORT_B] == NULL) { device_printf(dev, "failed to add child for PORT_B\n"); error = ENXIO; goto fail; } port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT); if (port == NULL) { device_printf(dev, "failed to allocate memory for " "ivars of PORT_B\n"); error = ENXIO; goto fail; } *port = SK_PORT_B; device_set_ivars(sc->sk_devs[SK_PORT_B], port); } /* Turn on the 'driver is loaded' LED. */ CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON); error = bus_generic_attach(dev); if (error) { device_printf(dev, "failed to attach port(s)\n"); goto fail; } /* Hook interrupt last to avoid having to lock softc */ error = bus_setup_intr(dev, sc->sk_res[1], INTR_TYPE_NET|INTR_MPSAFE, NULL, sk_intr, sc, &sc->sk_intrhand); if (error) { device_printf(dev, "couldn't set up irq\n"); goto fail; } fail: if (error) skc_detach(dev); return(error); } /* * Shutdown hardware and free up resources. This can be called any * time after the mutex has been initialized. It is called in both * the error case in attach and the normal detach case so it needs * to be careful about only freeing resources that have actually been * allocated. */ static int sk_detach(dev) device_t dev; { struct sk_if_softc *sc_if; struct ifnet *ifp; sc_if = device_get_softc(dev); KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx), ("sk mutex not initialized in sk_detach")); SK_IF_LOCK(sc_if); ifp = sc_if->sk_ifp; /* These should only be active if attach_xmac succeeded */ if (device_is_attached(dev)) { sk_stop(sc_if); /* Can't hold locks while calling detach */ SK_IF_UNLOCK(sc_if); callout_drain(&sc_if->sk_tick_ch); callout_drain(&sc_if->sk_watchdog_ch); ether_ifdetach(ifp); SK_IF_LOCK(sc_if); } if (ifp) if_free(ifp); /* * We're generally called from skc_detach() which is using * device_delete_child() to get to here. It's already trashed * miibus for us, so don't do it here or we'll panic. */ /* if (sc_if->sk_miibus != NULL) device_delete_child(dev, sc_if->sk_miibus); */ bus_generic_detach(dev); sk_dma_jumbo_free(sc_if); sk_dma_free(sc_if); SK_IF_UNLOCK(sc_if); return(0); } static int skc_detach(dev) device_t dev; { struct sk_softc *sc; sc = device_get_softc(dev); KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized")); if (device_is_alive(dev)) { if (sc->sk_devs[SK_PORT_A] != NULL) { free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF); device_delete_child(dev, sc->sk_devs[SK_PORT_A]); } if (sc->sk_devs[SK_PORT_B] != NULL) { free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF); device_delete_child(dev, sc->sk_devs[SK_PORT_B]); } bus_generic_detach(dev); } if (sc->sk_intrhand) bus_teardown_intr(dev, sc->sk_res[1], sc->sk_intrhand); bus_release_resources(dev, sc->sk_res_spec, sc->sk_res); mtx_destroy(&sc->sk_mii_mtx); mtx_destroy(&sc->sk_mtx); return(0); } static bus_dma_tag_t skc_get_dma_tag(device_t bus, device_t child __unused) { return (bus_get_dma_tag(bus)); } struct sk_dmamap_arg { bus_addr_t sk_busaddr; }; static void sk_dmamap_cb(arg, segs, nseg, error) void *arg; bus_dma_segment_t *segs; int nseg; int error; { struct sk_dmamap_arg *ctx; if (error != 0) return; ctx = arg; ctx->sk_busaddr = segs[0].ds_addr; } /* * Allocate jumbo buffer storage. The SysKonnect adapters support * "jumbograms" (9K frames), although SysKonnect doesn't currently * use them in their drivers. In order for us to use them, we need * large 9K receive buffers, however standard mbuf clusters are only * 2048 bytes in size. Consequently, we need to allocate and manage * our own jumbo buffer pool. Fortunately, this does not require an * excessive amount of additional code. */ static int sk_dma_alloc(sc_if) struct sk_if_softc *sc_if; { struct sk_dmamap_arg ctx; struct sk_txdesc *txd; struct sk_rxdesc *rxd; int error, i; /* create parent tag */ /* * XXX * This driver should use BUS_SPACE_MAXADDR for lowaddr argument * in bus_dma_tag_create(9) as the NIC would support DAC mode. * However bz@ reported that it does not work on amd64 with > 4GB * RAM. Until we have more clues of the breakage, disable DAC mode * by limiting DMA address to be in 32bit address space. */ error = bus_dma_tag_create( bus_get_dma_tag(sc_if->sk_if_dev),/* parent */ 1, 0, /* algnmnt, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 0, /* nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc_if->sk_cdata.sk_parent_tag); if (error != 0) { device_printf(sc_if->sk_if_dev, "failed to create parent DMA tag\n"); goto fail; } /* create tag for Tx ring */ error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ SK_RING_ALIGN, 0, /* algnmnt, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ SK_TX_RING_SZ, /* maxsize */ 1, /* nsegments */ SK_TX_RING_SZ, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc_if->sk_cdata.sk_tx_ring_tag); if (error != 0) { device_printf(sc_if->sk_if_dev, "failed to allocate Tx ring DMA tag\n"); goto fail; } /* create tag for Rx ring */ error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ SK_RING_ALIGN, 0, /* algnmnt, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ SK_RX_RING_SZ, /* maxsize */ 1, /* nsegments */ SK_RX_RING_SZ, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc_if->sk_cdata.sk_rx_ring_tag); if (error != 0) { device_printf(sc_if->sk_if_dev, "failed to allocate Rx ring DMA tag\n"); goto fail; } /* create tag for Tx buffers */ error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ 1, 0, /* algnmnt, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES * SK_MAXTXSEGS, /* maxsize */ SK_MAXTXSEGS, /* nsegments */ MCLBYTES, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc_if->sk_cdata.sk_tx_tag); if (error != 0) { device_printf(sc_if->sk_if_dev, "failed to allocate Tx DMA tag\n"); goto fail; } /* create tag for Rx buffers */ error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ 1, 0, /* algnmnt, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES, /* maxsize */ 1, /* nsegments */ MCLBYTES, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc_if->sk_cdata.sk_rx_tag); if (error != 0) { device_printf(sc_if->sk_if_dev, "failed to allocate Rx DMA tag\n"); goto fail; } /* allocate DMA'able memory and load the DMA map for Tx ring */ error = bus_dmamem_alloc(sc_if->sk_cdata.sk_tx_ring_tag, (void **)&sc_if->sk_rdata.sk_tx_ring, BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_tx_ring_map); if (error != 0) { device_printf(sc_if->sk_if_dev, "failed to allocate DMA'able memory for Tx ring\n"); goto fail; } ctx.sk_busaddr = 0; error = bus_dmamap_load(sc_if->sk_cdata.sk_tx_ring_tag, sc_if->sk_cdata.sk_tx_ring_map, sc_if->sk_rdata.sk_tx_ring, SK_TX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc_if->sk_if_dev, "failed to load DMA'able memory for Tx ring\n"); goto fail; } sc_if->sk_rdata.sk_tx_ring_paddr = ctx.sk_busaddr; /* allocate DMA'able memory and load the DMA map for Rx ring */ error = bus_dmamem_alloc(sc_if->sk_cdata.sk_rx_ring_tag, (void **)&sc_if->sk_rdata.sk_rx_ring, BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_rx_ring_map); if (error != 0) { device_printf(sc_if->sk_if_dev, "failed to allocate DMA'able memory for Rx ring\n"); goto fail; } ctx.sk_busaddr = 0; error = bus_dmamap_load(sc_if->sk_cdata.sk_rx_ring_tag, sc_if->sk_cdata.sk_rx_ring_map, sc_if->sk_rdata.sk_rx_ring, SK_RX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc_if->sk_if_dev, "failed to load DMA'able memory for Rx ring\n"); goto fail; } sc_if->sk_rdata.sk_rx_ring_paddr = ctx.sk_busaddr; /* create DMA maps for Tx buffers */ for (i = 0; i < SK_TX_RING_CNT; i++) { txd = &sc_if->sk_cdata.sk_txdesc[i]; txd->tx_m = NULL; txd->tx_dmamap = NULL; error = bus_dmamap_create(sc_if->sk_cdata.sk_tx_tag, 0, &txd->tx_dmamap); if (error != 0) { device_printf(sc_if->sk_if_dev, "failed to create Tx dmamap\n"); goto fail; } } /* create DMA maps for Rx buffers */ if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0, &sc_if->sk_cdata.sk_rx_sparemap)) != 0) { device_printf(sc_if->sk_if_dev, "failed to create spare Rx dmamap\n"); goto fail; } for (i = 0; i < SK_RX_RING_CNT; i++) { rxd = &sc_if->sk_cdata.sk_rxdesc[i]; rxd->rx_m = NULL; rxd->rx_dmamap = NULL; error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0, &rxd->rx_dmamap); if (error != 0) { device_printf(sc_if->sk_if_dev, "failed to create Rx dmamap\n"); goto fail; } } fail: return (error); } static int sk_dma_jumbo_alloc(sc_if) struct sk_if_softc *sc_if; { struct sk_dmamap_arg ctx; struct sk_rxdesc *jrxd; int error, i; if (jumbo_disable != 0) { device_printf(sc_if->sk_if_dev, "disabling jumbo frame support\n"); sc_if->sk_jumbo_disable = 1; return (0); } /* create tag for jumbo Rx ring */ error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ SK_RING_ALIGN, 0, /* algnmnt, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ SK_JUMBO_RX_RING_SZ, /* maxsize */ 1, /* nsegments */ SK_JUMBO_RX_RING_SZ, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc_if->sk_cdata.sk_jumbo_rx_ring_tag); if (error != 0) { device_printf(sc_if->sk_if_dev, "failed to allocate jumbo Rx ring DMA tag\n"); goto jumbo_fail; } /* create tag for jumbo Rx buffers */ error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ 1, 0, /* algnmnt, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MJUM9BYTES, /* maxsize */ 1, /* nsegments */ MJUM9BYTES, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc_if->sk_cdata.sk_jumbo_rx_tag); if (error != 0) { device_printf(sc_if->sk_if_dev, "failed to allocate jumbo Rx DMA tag\n"); goto jumbo_fail; } /* allocate DMA'able memory and load the DMA map for jumbo Rx ring */ error = bus_dmamem_alloc(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, (void **)&sc_if->sk_rdata.sk_jumbo_rx_ring, BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_jumbo_rx_ring_map); if (error != 0) { device_printf(sc_if->sk_if_dev, "failed to allocate DMA'able memory for jumbo Rx ring\n"); goto jumbo_fail; } ctx.sk_busaddr = 0; error = bus_dmamap_load(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, sc_if->sk_cdata.sk_jumbo_rx_ring_map, sc_if->sk_rdata.sk_jumbo_rx_ring, SK_JUMBO_RX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc_if->sk_if_dev, "failed to load DMA'able memory for jumbo Rx ring\n"); goto jumbo_fail; } sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = ctx.sk_busaddr; /* create DMA maps for jumbo Rx buffers */ if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0, &sc_if->sk_cdata.sk_jumbo_rx_sparemap)) != 0) { device_printf(sc_if->sk_if_dev, "failed to create spare jumbo Rx dmamap\n"); goto jumbo_fail; } for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) { jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i]; jrxd->rx_m = NULL; jrxd->rx_dmamap = NULL; error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0, &jrxd->rx_dmamap); if (error != 0) { device_printf(sc_if->sk_if_dev, "failed to create jumbo Rx dmamap\n"); goto jumbo_fail; } } return (0); jumbo_fail: sk_dma_jumbo_free(sc_if); device_printf(sc_if->sk_if_dev, "disabling jumbo frame support due to " "resource shortage\n"); sc_if->sk_jumbo_disable = 1; return (0); } static void sk_dma_free(sc_if) struct sk_if_softc *sc_if; { struct sk_txdesc *txd; struct sk_rxdesc *rxd; int i; /* Tx ring */ if (sc_if->sk_cdata.sk_tx_ring_tag) { if (sc_if->sk_cdata.sk_tx_ring_map) bus_dmamap_unload(sc_if->sk_cdata.sk_tx_ring_tag, sc_if->sk_cdata.sk_tx_ring_map); if (sc_if->sk_cdata.sk_tx_ring_map && sc_if->sk_rdata.sk_tx_ring) bus_dmamem_free(sc_if->sk_cdata.sk_tx_ring_tag, sc_if->sk_rdata.sk_tx_ring, sc_if->sk_cdata.sk_tx_ring_map); sc_if->sk_rdata.sk_tx_ring = NULL; sc_if->sk_cdata.sk_tx_ring_map = NULL; bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_ring_tag); sc_if->sk_cdata.sk_tx_ring_tag = NULL; } /* Rx ring */ if (sc_if->sk_cdata.sk_rx_ring_tag) { if (sc_if->sk_cdata.sk_rx_ring_map) bus_dmamap_unload(sc_if->sk_cdata.sk_rx_ring_tag, sc_if->sk_cdata.sk_rx_ring_map); if (sc_if->sk_cdata.sk_rx_ring_map && sc_if->sk_rdata.sk_rx_ring) bus_dmamem_free(sc_if->sk_cdata.sk_rx_ring_tag, sc_if->sk_rdata.sk_rx_ring, sc_if->sk_cdata.sk_rx_ring_map); sc_if->sk_rdata.sk_rx_ring = NULL; sc_if->sk_cdata.sk_rx_ring_map = NULL; bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_ring_tag); sc_if->sk_cdata.sk_rx_ring_tag = NULL; } /* Tx buffers */ if (sc_if->sk_cdata.sk_tx_tag) { for (i = 0; i < SK_TX_RING_CNT; i++) { txd = &sc_if->sk_cdata.sk_txdesc[i]; if (txd->tx_dmamap) { bus_dmamap_destroy(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap); txd->tx_dmamap = NULL; } } bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_tag); sc_if->sk_cdata.sk_tx_tag = NULL; } /* Rx buffers */ if (sc_if->sk_cdata.sk_rx_tag) { for (i = 0; i < SK_RX_RING_CNT; i++) { rxd = &sc_if->sk_cdata.sk_rxdesc[i]; if (rxd->rx_dmamap) { bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap); rxd->rx_dmamap = NULL; } } if (sc_if->sk_cdata.sk_rx_sparemap) { bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag, sc_if->sk_cdata.sk_rx_sparemap); sc_if->sk_cdata.sk_rx_sparemap = NULL; } bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_tag); sc_if->sk_cdata.sk_rx_tag = NULL; } if (sc_if->sk_cdata.sk_parent_tag) { bus_dma_tag_destroy(sc_if->sk_cdata.sk_parent_tag); sc_if->sk_cdata.sk_parent_tag = NULL; } } static void sk_dma_jumbo_free(sc_if) struct sk_if_softc *sc_if; { struct sk_rxdesc *jrxd; int i; /* jumbo Rx ring */ if (sc_if->sk_cdata.sk_jumbo_rx_ring_tag) { if (sc_if->sk_cdata.sk_jumbo_rx_ring_map) bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, sc_if->sk_cdata.sk_jumbo_rx_ring_map); if (sc_if->sk_cdata.sk_jumbo_rx_ring_map && sc_if->sk_rdata.sk_jumbo_rx_ring) bus_dmamem_free(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, sc_if->sk_rdata.sk_jumbo_rx_ring, sc_if->sk_cdata.sk_jumbo_rx_ring_map); sc_if->sk_rdata.sk_jumbo_rx_ring = NULL; sc_if->sk_cdata.sk_jumbo_rx_ring_map = NULL; bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_ring_tag); sc_if->sk_cdata.sk_jumbo_rx_ring_tag = NULL; } /* jumbo Rx buffers */ if (sc_if->sk_cdata.sk_jumbo_rx_tag) { for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) { jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i]; if (jrxd->rx_dmamap) { bus_dmamap_destroy( sc_if->sk_cdata.sk_jumbo_rx_tag, jrxd->rx_dmamap); jrxd->rx_dmamap = NULL; } } if (sc_if->sk_cdata.sk_jumbo_rx_sparemap) { bus_dmamap_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag, sc_if->sk_cdata.sk_jumbo_rx_sparemap); sc_if->sk_cdata.sk_jumbo_rx_sparemap = NULL; } bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag); sc_if->sk_cdata.sk_jumbo_rx_tag = NULL; } } static void sk_txcksum(ifp, m, f) struct ifnet *ifp; struct mbuf *m; struct sk_tx_desc *f; { struct ip *ip; u_int16_t offset; u_int8_t *p; offset = sizeof(struct ip) + ETHER_HDR_LEN; for(; m && m->m_len == 0; m = m->m_next) ; if (m == NULL || m->m_len < ETHER_HDR_LEN) { if_printf(ifp, "%s: m_len < ETHER_HDR_LEN\n", __func__); /* checksum may be corrupted */ goto sendit; } if (m->m_len < ETHER_HDR_LEN + sizeof(u_int32_t)) { if (m->m_len != ETHER_HDR_LEN) { if_printf(ifp, "%s: m_len != ETHER_HDR_LEN\n", __func__); /* checksum may be corrupted */ goto sendit; } for(m = m->m_next; m && m->m_len == 0; m = m->m_next) ; if (m == NULL) { offset = sizeof(struct ip) + ETHER_HDR_LEN; /* checksum may be corrupted */ goto sendit; } ip = mtod(m, struct ip *); } else { p = mtod(m, u_int8_t *); p += ETHER_HDR_LEN; ip = (struct ip *)p; } offset = (ip->ip_hl << 2) + ETHER_HDR_LEN; sendit: f->sk_csum_startval = 0; f->sk_csum_start = htole32(((offset + m->m_pkthdr.csum_data) & 0xffff) | (offset << 16)); } static int sk_encap(sc_if, m_head) struct sk_if_softc *sc_if; struct mbuf **m_head; { struct sk_txdesc *txd; struct sk_tx_desc *f = NULL; struct mbuf *m; bus_dma_segment_t txsegs[SK_MAXTXSEGS]; u_int32_t cflags, frag, si, sk_ctl; int error, i, nseg; SK_IF_LOCK_ASSERT(sc_if); if ((txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txfreeq)) == NULL) return (ENOBUFS); error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap, *m_head, txsegs, &nseg, 0); if (error == EFBIG) { m = m_defrag(*m_head, M_NOWAIT); if (m == NULL) { m_freem(*m_head); *m_head = NULL; return (ENOMEM); } *m_head = m; error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap, *m_head, txsegs, &nseg, 0); if (error != 0) { m_freem(*m_head); *m_head = NULL; return (error); } } else if (error != 0) return (error); if (nseg == 0) { m_freem(*m_head); *m_head = NULL; return (EIO); } if (sc_if->sk_cdata.sk_tx_cnt + nseg >= SK_TX_RING_CNT) { bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap); return (ENOBUFS); } m = *m_head; if ((m->m_pkthdr.csum_flags & sc_if->sk_ifp->if_hwassist) != 0) cflags = SK_OPCODE_CSUM; else cflags = SK_OPCODE_DEFAULT; si = frag = sc_if->sk_cdata.sk_tx_prod; for (i = 0; i < nseg; i++) { f = &sc_if->sk_rdata.sk_tx_ring[frag]; f->sk_data_lo = htole32(SK_ADDR_LO(txsegs[i].ds_addr)); f->sk_data_hi = htole32(SK_ADDR_HI(txsegs[i].ds_addr)); sk_ctl = txsegs[i].ds_len | cflags; if (i == 0) { if (cflags == SK_OPCODE_CSUM) sk_txcksum(sc_if->sk_ifp, m, f); sk_ctl |= SK_TXCTL_FIRSTFRAG; } else sk_ctl |= SK_TXCTL_OWN; f->sk_ctl = htole32(sk_ctl); sc_if->sk_cdata.sk_tx_cnt++; SK_INC(frag, SK_TX_RING_CNT); } sc_if->sk_cdata.sk_tx_prod = frag; /* set EOF on the last desciptor */ frag = (frag + SK_TX_RING_CNT - 1) % SK_TX_RING_CNT; f = &sc_if->sk_rdata.sk_tx_ring[frag]; f->sk_ctl |= htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR); /* turn the first descriptor ownership to NIC */ f = &sc_if->sk_rdata.sk_tx_ring[si]; f->sk_ctl |= htole32(SK_TXCTL_OWN); STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txfreeq, tx_q); STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txbusyq, txd, tx_q); txd->tx_m = m; /* sync descriptors */ bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag, sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return (0); } static void sk_start(ifp) struct ifnet *ifp; { struct sk_if_softc *sc_if; sc_if = ifp->if_softc; SK_IF_LOCK(sc_if); sk_start_locked(ifp); SK_IF_UNLOCK(sc_if); return; } static void sk_start_locked(ifp) struct ifnet *ifp; { struct sk_softc *sc; struct sk_if_softc *sc_if; struct mbuf *m_head; int enq; sc_if = ifp->if_softc; sc = sc_if->sk_softc; SK_IF_LOCK_ASSERT(sc_if); for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 1; ) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* * Pack the data into the transmit ring. If we * don't have room, set the OACTIVE flag and wait * for the NIC to drain the ring. */ if (sk_encap(sc_if, &m_head)) { if (m_head == NULL) break; IFQ_DRV_PREPEND(&ifp->if_snd, m_head); ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } enq++; /* * If there's a BPF listener, bounce a copy of this frame * to him. */ BPF_MTAP(ifp, m_head); } if (enq > 0) { /* Transmit */ CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START); /* Set a timeout in case the chip goes out to lunch. */ sc_if->sk_watchdog_timer = 5; } } static void sk_watchdog(arg) void *arg; { struct sk_if_softc *sc_if; struct ifnet *ifp; ifp = arg; sc_if = ifp->if_softc; SK_IF_LOCK_ASSERT(sc_if); if (sc_if->sk_watchdog_timer == 0 || --sc_if->sk_watchdog_timer) goto done; /* * Reclaim first as there is a possibility of losing Tx completion * interrupts. */ sk_txeof(sc_if); if (sc_if->sk_cdata.sk_tx_cnt != 0) { if_printf(sc_if->sk_ifp, "watchdog timeout\n"); ifp->if_oerrors++; ifp->if_drv_flags &= ~IFF_DRV_RUNNING; sk_init_locked(sc_if); } done: callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp); return; } static int skc_shutdown(dev) device_t dev; { struct sk_softc *sc; sc = device_get_softc(dev); SK_LOCK(sc); /* Turn off the 'driver is loaded' LED. */ CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF); /* * Reset the GEnesis controller. Doing this should also * assert the resets on the attached XMAC(s). */ sk_reset(sc); SK_UNLOCK(sc); return (0); } static int skc_suspend(dev) device_t dev; { struct sk_softc *sc; struct sk_if_softc *sc_if0, *sc_if1; struct ifnet *ifp0 = NULL, *ifp1 = NULL; sc = device_get_softc(dev); SK_LOCK(sc); sc_if0 = sc->sk_if[SK_PORT_A]; sc_if1 = sc->sk_if[SK_PORT_B]; if (sc_if0 != NULL) ifp0 = sc_if0->sk_ifp; if (sc_if1 != NULL) ifp1 = sc_if1->sk_ifp; if (ifp0 != NULL) sk_stop(sc_if0); if (ifp1 != NULL) sk_stop(sc_if1); sc->sk_suspended = 1; SK_UNLOCK(sc); return (0); } static int skc_resume(dev) device_t dev; { struct sk_softc *sc; struct sk_if_softc *sc_if0, *sc_if1; struct ifnet *ifp0 = NULL, *ifp1 = NULL; sc = device_get_softc(dev); SK_LOCK(sc); sc_if0 = sc->sk_if[SK_PORT_A]; sc_if1 = sc->sk_if[SK_PORT_B]; if (sc_if0 != NULL) ifp0 = sc_if0->sk_ifp; if (sc_if1 != NULL) ifp1 = sc_if1->sk_ifp; if (ifp0 != NULL && ifp0->if_flags & IFF_UP) sk_init_locked(sc_if0); if (ifp1 != NULL && ifp1->if_flags & IFF_UP) sk_init_locked(sc_if1); sc->sk_suspended = 0; SK_UNLOCK(sc); return (0); } /* * According to the data sheet from SK-NET GENESIS the hardware can compute * two Rx checksums at the same time(Each checksum start position is * programmed in Rx descriptors). However it seems that TCP/UDP checksum * does not work at least on my Yukon hardware. I tried every possible ways * to get correct checksum value but couldn't get correct one. So TCP/UDP * checksum offload was disabled at the moment and only IP checksum offload * was enabled. * As nomral IP header size is 20 bytes I can't expect it would give an * increase in throughput. However it seems it doesn't hurt performance in * my testing. If there is a more detailed information for checksum secret * of the hardware in question please contact yongari@FreeBSD.org to add * TCP/UDP checksum offload support. */ static __inline void sk_rxcksum(ifp, m, csum) struct ifnet *ifp; struct mbuf *m; u_int32_t csum; { struct ether_header *eh; struct ip *ip; int32_t hlen, len, pktlen; u_int16_t csum1, csum2, ipcsum; pktlen = m->m_pkthdr.len; if (pktlen < sizeof(struct ether_header) + sizeof(struct ip)) return; eh = mtod(m, struct ether_header *); if (eh->ether_type != htons(ETHERTYPE_IP)) return; ip = (struct ip *)(eh + 1); if (ip->ip_v != IPVERSION) return; hlen = ip->ip_hl << 2; pktlen -= sizeof(struct ether_header); if (hlen < sizeof(struct ip)) return; if (ntohs(ip->ip_len) < hlen) return; if (ntohs(ip->ip_len) != pktlen) return; csum1 = htons(csum & 0xffff); csum2 = htons((csum >> 16) & 0xffff); ipcsum = in_addword(csum1, ~csum2 & 0xffff); /* checksum fixup for IP options */ len = hlen - sizeof(struct ip); if (len > 0) { /* * If the second checksum value is correct we can compute IP * checksum with simple math. Unfortunately the second checksum * value is wrong so we can't verify the checksum from the * value(It seems there is some magic here to get correct * value). If the second checksum value is correct it also * means we can get TCP/UDP checksum) here. However, it still * needs pseudo header checksum calculation due to hardware * limitations. */ return; } m->m_pkthdr.csum_flags = CSUM_IP_CHECKED; if (ipcsum == 0xffff) m->m_pkthdr.csum_flags |= CSUM_IP_VALID; } static __inline int sk_rxvalid(sc, stat, len) struct sk_softc *sc; u_int32_t stat, len; { if (sc->sk_type == SK_GENESIS) { if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME || XM_RXSTAT_BYTES(stat) != len) return (0); } else { if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR | YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_JABBER)) != 0 || (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK || YU_RXSTAT_BYTES(stat) != len) return (0); } return (1); } static void sk_rxeof(sc_if) struct sk_if_softc *sc_if; { struct sk_softc *sc; struct mbuf *m; struct ifnet *ifp; struct sk_rx_desc *cur_rx; struct sk_rxdesc *rxd; int cons, prog; u_int32_t csum, rxstat, sk_ctl; sc = sc_if->sk_softc; ifp = sc_if->sk_ifp; SK_IF_LOCK_ASSERT(sc_if); bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag, sc_if->sk_cdata.sk_rx_ring_map, BUS_DMASYNC_POSTREAD); prog = 0; for (cons = sc_if->sk_cdata.sk_rx_cons; prog < SK_RX_RING_CNT; prog++, SK_INC(cons, SK_RX_RING_CNT)) { cur_rx = &sc_if->sk_rdata.sk_rx_ring[cons]; sk_ctl = le32toh(cur_rx->sk_ctl); if ((sk_ctl & SK_RXCTL_OWN) != 0) break; rxd = &sc_if->sk_cdata.sk_rxdesc[cons]; rxstat = le32toh(cur_rx->sk_xmac_rxstat); if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) || SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN || SK_RXBYTES(sk_ctl) > SK_MAX_FRAMELEN || sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) { ifp->if_ierrors++; sk_discard_rxbuf(sc_if, cons); continue; } m = rxd->rx_m; csum = le32toh(cur_rx->sk_csum); if (sk_newbuf(sc_if, cons) != 0) { ifp->if_iqdrops++; /* reuse old buffer */ sk_discard_rxbuf(sc_if, cons); continue; } m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl); ifp->if_ipackets++; if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) sk_rxcksum(ifp, m, csum); SK_IF_UNLOCK(sc_if); (*ifp->if_input)(ifp, m); SK_IF_LOCK(sc_if); } if (prog > 0) { sc_if->sk_cdata.sk_rx_cons = cons; bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag, sc_if->sk_cdata.sk_rx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } } static void sk_jumbo_rxeof(sc_if) struct sk_if_softc *sc_if; { struct sk_softc *sc; struct mbuf *m; struct ifnet *ifp; struct sk_rx_desc *cur_rx; struct sk_rxdesc *jrxd; int cons, prog; u_int32_t csum, rxstat, sk_ctl; sc = sc_if->sk_softc; ifp = sc_if->sk_ifp; SK_IF_LOCK_ASSERT(sc_if); bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, sc_if->sk_cdata.sk_jumbo_rx_ring_map, BUS_DMASYNC_POSTREAD); prog = 0; for (cons = sc_if->sk_cdata.sk_jumbo_rx_cons; prog < SK_JUMBO_RX_RING_CNT; prog++, SK_INC(cons, SK_JUMBO_RX_RING_CNT)) { cur_rx = &sc_if->sk_rdata.sk_jumbo_rx_ring[cons]; sk_ctl = le32toh(cur_rx->sk_ctl); if ((sk_ctl & SK_RXCTL_OWN) != 0) break; jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[cons]; rxstat = le32toh(cur_rx->sk_xmac_rxstat); if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) || SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN || SK_RXBYTES(sk_ctl) > SK_JUMBO_FRAMELEN || sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) { ifp->if_ierrors++; sk_discard_jumbo_rxbuf(sc_if, cons); continue; } m = jrxd->rx_m; csum = le32toh(cur_rx->sk_csum); if (sk_jumbo_newbuf(sc_if, cons) != 0) { ifp->if_iqdrops++; /* reuse old buffer */ sk_discard_jumbo_rxbuf(sc_if, cons); continue; } m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl); ifp->if_ipackets++; if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) sk_rxcksum(ifp, m, csum); SK_IF_UNLOCK(sc_if); (*ifp->if_input)(ifp, m); SK_IF_LOCK(sc_if); } if (prog > 0) { sc_if->sk_cdata.sk_jumbo_rx_cons = cons; bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, sc_if->sk_cdata.sk_jumbo_rx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } } static void sk_txeof(sc_if) struct sk_if_softc *sc_if; { struct sk_softc *sc; struct sk_txdesc *txd; struct sk_tx_desc *cur_tx; struct ifnet *ifp; u_int32_t idx, sk_ctl; sc = sc_if->sk_softc; ifp = sc_if->sk_ifp; txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq); if (txd == NULL) return; bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag, sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_POSTREAD); /* * Go through our tx ring and free mbufs for those * frames that have been sent. */ for (idx = sc_if->sk_cdata.sk_tx_cons;; SK_INC(idx, SK_TX_RING_CNT)) { if (sc_if->sk_cdata.sk_tx_cnt <= 0) break; cur_tx = &sc_if->sk_rdata.sk_tx_ring[idx]; sk_ctl = le32toh(cur_tx->sk_ctl); if (sk_ctl & SK_TXCTL_OWN) break; sc_if->sk_cdata.sk_tx_cnt--; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; if ((sk_ctl & SK_TXCTL_LASTFRAG) == 0) continue; bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap); ifp->if_opackets++; m_freem(txd->tx_m); txd->tx_m = NULL; STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txbusyq, tx_q); STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q); txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq); } sc_if->sk_cdata.sk_tx_cons = idx; sc_if->sk_watchdog_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0; bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag, sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } static void sk_tick(xsc_if) void *xsc_if; { struct sk_if_softc *sc_if; struct mii_data *mii; struct ifnet *ifp; int i; sc_if = xsc_if; ifp = sc_if->sk_ifp; mii = device_get_softc(sc_if->sk_miibus); if (!(ifp->if_flags & IFF_UP)) return; if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { sk_intr_bcom(sc_if); return; } /* * According to SysKonnect, the correct way to verify that * the link has come back up is to poll bit 0 of the GPIO * register three times. This pin has the signal from the * link_sync pin connected to it; if we read the same link * state 3 times in a row, we know the link is up. */ for (i = 0; i < 3; i++) { if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET) break; } if (i != 3) { callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); return; } /* Turn the GP0 interrupt back on. */ SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET); SK_XM_READ_2(sc_if, XM_ISR); mii_tick(mii); callout_stop(&sc_if->sk_tick_ch); } static void sk_yukon_tick(xsc_if) void *xsc_if; { struct sk_if_softc *sc_if; struct mii_data *mii; sc_if = xsc_if; mii = device_get_softc(sc_if->sk_miibus); mii_tick(mii); callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if); } static void sk_intr_bcom(sc_if) struct sk_if_softc *sc_if; { struct mii_data *mii; struct ifnet *ifp; int status; mii = device_get_softc(sc_if->sk_miibus); ifp = sc_if->sk_ifp; SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); /* * Read the PHY interrupt register to make sure * we clear any pending interrupts. */ status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR); if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { sk_init_xmac(sc_if); return; } if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) { int lstat; lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS); if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) { mii_mediachg(mii); /* Turn off the link LED. */ SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF); sc_if->sk_link = 0; } else if (status & BRGPHY_ISR_LNK_CHG) { sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00); mii_tick(mii); sc_if->sk_link = 1; /* Turn on the link LED. */ SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF| SK_LINKLED_BLINK_OFF); } else { mii_tick(mii); callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); } } SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); return; } static void sk_intr_xmac(sc_if) struct sk_if_softc *sc_if; { struct sk_softc *sc; u_int16_t status; sc = sc_if->sk_softc; status = SK_XM_READ_2(sc_if, XM_ISR); /* * Link has gone down. Start MII tick timeout to * watch for link resync. */ if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) { if (status & XM_ISR_GP0_SET) { SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET); callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); } if (status & XM_ISR_AUTONEG_DONE) { callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); } } if (status & XM_IMR_TX_UNDERRUN) SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO); if (status & XM_IMR_RX_OVERRUN) SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO); status = SK_XM_READ_2(sc_if, XM_ISR); return; } static void sk_intr_yukon(sc_if) struct sk_if_softc *sc_if; { u_int8_t status; status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR); /* RX overrun */ if ((status & SK_GMAC_INT_RX_OVER) != 0) { SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RX_FIFO_OVER); } /* TX underrun */ if ((status & SK_GMAC_INT_TX_UNDER) != 0) { SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_TFCTL_TX_FIFO_UNDER); } } static void sk_intr(xsc) void *xsc; { struct sk_softc *sc = xsc; struct sk_if_softc *sc_if0, *sc_if1; struct ifnet *ifp0 = NULL, *ifp1 = NULL; u_int32_t status; SK_LOCK(sc); status = CSR_READ_4(sc, SK_ISSR); if (status == 0 || status == 0xffffffff || sc->sk_suspended) goto done_locked; sc_if0 = sc->sk_if[SK_PORT_A]; sc_if1 = sc->sk_if[SK_PORT_B]; if (sc_if0 != NULL) ifp0 = sc_if0->sk_ifp; if (sc_if1 != NULL) ifp1 = sc_if1->sk_ifp; for (; (status &= sc->sk_intrmask) != 0;) { /* Handle receive interrupts first. */ if (status & SK_ISR_RX1_EOF) { if (ifp0->if_mtu > SK_MAX_FRAMELEN) sk_jumbo_rxeof(sc_if0); else sk_rxeof(sc_if0); CSR_WRITE_4(sc, SK_BMU_RX_CSR0, SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START); } if (status & SK_ISR_RX2_EOF) { if (ifp1->if_mtu > SK_MAX_FRAMELEN) sk_jumbo_rxeof(sc_if1); else sk_rxeof(sc_if1); CSR_WRITE_4(sc, SK_BMU_RX_CSR1, SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START); } /* Then transmit interrupts. */ if (status & SK_ISR_TX1_S_EOF) { sk_txeof(sc_if0); CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF); } if (status & SK_ISR_TX2_S_EOF) { sk_txeof(sc_if1); CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF); } /* Then MAC interrupts. */ if (status & SK_ISR_MAC1 && ifp0->if_drv_flags & IFF_DRV_RUNNING) { if (sc->sk_type == SK_GENESIS) sk_intr_xmac(sc_if0); else sk_intr_yukon(sc_if0); } if (status & SK_ISR_MAC2 && ifp1->if_drv_flags & IFF_DRV_RUNNING) { if (sc->sk_type == SK_GENESIS) sk_intr_xmac(sc_if1); else sk_intr_yukon(sc_if1); } if (status & SK_ISR_EXTERNAL_REG) { if (ifp0 != NULL && sc_if0->sk_phytype == SK_PHYTYPE_BCOM) sk_intr_bcom(sc_if0); if (ifp1 != NULL && sc_if1->sk_phytype == SK_PHYTYPE_BCOM) sk_intr_bcom(sc_if1); } status = CSR_READ_4(sc, SK_ISSR); } CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd)) sk_start_locked(ifp0); if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd)) sk_start_locked(ifp1); done_locked: SK_UNLOCK(sc); } static void sk_init_xmac(sc_if) struct sk_if_softc *sc_if; { struct sk_softc *sc; struct ifnet *ifp; u_int16_t eaddr[(ETHER_ADDR_LEN+1)/2]; static const struct sk_bcom_hack bhack[] = { { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 }, { 0, 0 } }; SK_IF_LOCK_ASSERT(sc_if); sc = sc_if->sk_softc; ifp = sc_if->sk_ifp; /* Unreset the XMAC. */ SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET); DELAY(1000); /* Reset the XMAC's internal state. */ SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC); /* Save the XMAC II revision */ sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID)); /* * Perform additional initialization for external PHYs, * namely for the 1000baseTX cards that use the XMAC's * GMII mode. */ if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { int i = 0; u_int32_t val; /* Take PHY out of reset. */ val = sk_win_read_4(sc, SK_GPIO); if (sc_if->sk_port == SK_PORT_A) val |= SK_GPIO_DIR0|SK_GPIO_DAT0; else val |= SK_GPIO_DIR2|SK_GPIO_DAT2; sk_win_write_4(sc, SK_GPIO, val); /* Enable GMII mode on the XMAC. */ SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE); sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET); DELAY(10000); sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0); /* * Early versions of the BCM5400 apparently have * a bug that requires them to have their reserved * registers initialized to some magic values. I don't * know what the numbers do, I'm just the messenger. */ if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03) == 0x6041) { while(bhack[i].reg) { sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, bhack[i].reg, bhack[i].val); i++; } } } /* Set station address */ bcopy(IF_LLADDR(sc_if->sk_ifp), eaddr, ETHER_ADDR_LEN); SK_XM_WRITE_2(sc_if, XM_PAR0, eaddr[0]); SK_XM_WRITE_2(sc_if, XM_PAR1, eaddr[1]); SK_XM_WRITE_2(sc_if, XM_PAR2, eaddr[2]); SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION); if (ifp->if_flags & IFF_BROADCAST) { SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); } else { SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); } /* We don't need the FCS appended to the packet. */ SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS); /* We want short frames padded to 60 bytes. */ SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD); /* * Enable the reception of all error frames. This is is * a necessary evil due to the design of the XMAC. The * XMAC's receive FIFO is only 8K in size, however jumbo * frames can be up to 9000 bytes in length. When bad * frame filtering is enabled, the XMAC's RX FIFO operates * in 'store and forward' mode. For this to work, the * entire frame has to fit into the FIFO, but that means * that jumbo frames larger than 8192 bytes will be * truncated. Disabling all bad frame filtering causes * the RX FIFO to operate in streaming mode, in which * case the XMAC will start transfering frames out of the * RX FIFO as soon as the FIFO threshold is reached. */ if (ifp->if_mtu > SK_MAX_FRAMELEN) { SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES| XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS| XM_MODE_RX_INRANGELEN); SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK); } else SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK); /* * Bump up the transmit threshold. This helps hold off transmit * underruns when we're blasting traffic from both ports at once. */ SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH); /* Set Rx filter */ sk_rxfilter_genesis(sc_if); /* Clear and enable interrupts */ SK_XM_READ_2(sc_if, XM_ISR); if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS); else SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF); /* Configure MAC arbiter */ switch(sc_if->sk_xmac_rev) { case XM_XMAC_REV_B2: sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2); sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2); sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2); sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2); sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2); sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2); sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2); sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2); sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); break; case XM_XMAC_REV_C1: sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1); sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1); sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1); sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1); sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1); sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1); sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1); sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1); sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); break; default: break; } sk_win_write_2(sc, SK_MACARB_CTL, SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF); sc_if->sk_link = 1; return; } static void sk_init_yukon(sc_if) struct sk_if_softc *sc_if; { u_int32_t phy, v; u_int16_t reg; struct sk_softc *sc; struct ifnet *ifp; u_int8_t *eaddr; int i; SK_IF_LOCK_ASSERT(sc_if); sc = sc_if->sk_softc; ifp = sc_if->sk_ifp; if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev >= SK_YUKON_LITE_REV_A3) { /* * Workaround code for COMA mode, set PHY reset. * Otherwise it will not correctly take chip out of * powerdown (coma) */ v = sk_win_read_4(sc, SK_GPIO); v |= SK_GPIO_DIR9 | SK_GPIO_DAT9; sk_win_write_4(sc, SK_GPIO, v); } /* GMAC and GPHY Reset */ SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET); SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET); DELAY(1000); if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev >= SK_YUKON_LITE_REV_A3) { /* * Workaround code for COMA mode, clear PHY reset */ v = sk_win_read_4(sc, SK_GPIO); v |= SK_GPIO_DIR9; v &= ~SK_GPIO_DAT9; sk_win_write_4(sc, SK_GPIO, v); } phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP | SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE; if (sc->sk_coppertype) phy |= SK_GPHY_COPPER; else phy |= SK_GPHY_FIBER; SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET); DELAY(1000); SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR); SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF | SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR); /* unused read of the interrupt source register */ SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR); reg = SK_YU_READ_2(sc_if, YUKON_PAR); /* MIB Counter Clear Mode set */ reg |= YU_PAR_MIB_CLR; SK_YU_WRITE_2(sc_if, YUKON_PAR, reg); /* MIB Counter Clear Mode clear */ reg &= ~YU_PAR_MIB_CLR; SK_YU_WRITE_2(sc_if, YUKON_PAR, reg); /* receive control reg */ SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR); /* transmit parameter register */ SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) | YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) ); /* serial mode register */ reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e); if (ifp->if_mtu > SK_MAX_FRAMELEN) reg |= YU_SMR_MFL_JUMBO; SK_YU_WRITE_2(sc_if, YUKON_SMR, reg); /* Setup Yukon's station address */ eaddr = IF_LLADDR(sc_if->sk_ifp); for (i = 0; i < 3; i++) SK_YU_WRITE_2(sc_if, SK_MAC0_0 + i * 4, eaddr[i * 2] | eaddr[i * 2 + 1] << 8); /* Set GMAC source address of flow control. */ for (i = 0; i < 3; i++) SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4, eaddr[i * 2] | eaddr[i * 2 + 1] << 8); /* Set GMAC virtual address. */ for (i = 0; i < 3; i++) SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, eaddr[i * 2] | eaddr[i * 2 + 1] << 8); /* Set Rx filter */ sk_rxfilter_yukon(sc_if); /* enable interrupt mask for counter overflows */ SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0); SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0); SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0); /* Configure RX MAC FIFO Flush Mask */ v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT | YU_RXSTAT_JABBER; SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v); /* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */ if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0) v = SK_TFCTL_OPERATION_ON; else v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON; /* Configure RX MAC FIFO */ SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR); SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v); /* Increase flush threshould to 64 bytes */ SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD, SK_RFCTL_FIFO_THRESHOLD + 1); /* Configure TX MAC FIFO */ SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR); SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON); } /* * Note that to properly initialize any part of the GEnesis chip, * you first have to take it out of reset mode. */ static void sk_init(xsc) void *xsc; { struct sk_if_softc *sc_if = xsc; SK_IF_LOCK(sc_if); sk_init_locked(sc_if); SK_IF_UNLOCK(sc_if); return; } static void sk_init_locked(sc_if) struct sk_if_softc *sc_if; { struct sk_softc *sc; struct ifnet *ifp; struct mii_data *mii; u_int16_t reg; u_int32_t imr; int error; SK_IF_LOCK_ASSERT(sc_if); ifp = sc_if->sk_ifp; sc = sc_if->sk_softc; mii = device_get_softc(sc_if->sk_miibus); if (ifp->if_drv_flags & IFF_DRV_RUNNING) return; /* Cancel pending I/O and free all RX/TX buffers. */ sk_stop(sc_if); if (sc->sk_type == SK_GENESIS) { /* Configure LINK_SYNC LED */ SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON); SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_ON); /* Configure RX LED */ SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_START); /* Configure TX LED */ SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_START); } /* * Configure descriptor poll timer * * SK-NET GENESIS data sheet says that possibility of losing Start * transmit command due to CPU/cache related interim storage problems * under certain conditions. The document recommends a polling * mechanism to send a Start transmit command to initiate transfer * of ready descriptors regulary. To cope with this issue sk(4) now * enables descriptor poll timer to initiate descriptor processing * periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still * issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx * command instead of waiting for next descriptor polling time. * The same rule may apply to Rx side too but it seems that is not * needed at the moment. * Since sk(4) uses descriptor polling as a last resort there is no * need to set smaller polling time than maximum allowable one. */ SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX); /* Configure I2C registers */ /* Configure XMAC(s) */ switch (sc->sk_type) { case SK_GENESIS: sk_init_xmac(sc_if); break; case SK_YUKON: case SK_YUKON_LITE: case SK_YUKON_LP: sk_init_yukon(sc_if); break; } mii_mediachg(mii); if (sc->sk_type == SK_GENESIS) { /* Configure MAC FIFOs */ SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET); SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END); SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON); SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET); SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END); SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON); } /* Configure transmit arbiter(s) */ SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON); /* Configure RAMbuffers */ SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON); /* Configure BMUs */ SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE); if (ifp->if_mtu > SK_MAX_FRAMELEN) { SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO, SK_ADDR_LO(SK_JUMBO_RX_RING_ADDR(sc_if, 0))); SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, SK_ADDR_HI(SK_JUMBO_RX_RING_ADDR(sc_if, 0))); } else { SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO, SK_ADDR_LO(SK_RX_RING_ADDR(sc_if, 0))); SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, SK_ADDR_HI(SK_RX_RING_ADDR(sc_if, 0))); } SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE); SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO, SK_ADDR_LO(SK_TX_RING_ADDR(sc_if, 0))); SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, SK_ADDR_HI(SK_TX_RING_ADDR(sc_if, 0))); /* Init descriptors */ if (ifp->if_mtu > SK_MAX_FRAMELEN) error = sk_init_jumbo_rx_ring(sc_if); else error = sk_init_rx_ring(sc_if); if (error != 0) { device_printf(sc_if->sk_if_dev, "initialization failed: no memory for rx buffers\n"); sk_stop(sc_if); return; } sk_init_tx_ring(sc_if); /* Set interrupt moderation if changed via sysctl. */ imr = sk_win_read_4(sc, SK_IMTIMERINIT); if (imr != SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)) { sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)); if (bootverbose) device_printf(sc_if->sk_if_dev, "interrupt moderation is %d us.\n", sc->sk_int_mod); } /* Configure interrupt handling */ CSR_READ_4(sc, SK_ISSR); if (sc_if->sk_port == SK_PORT_A) sc->sk_intrmask |= SK_INTRS1; else sc->sk_intrmask |= SK_INTRS2; sc->sk_intrmask |= SK_ISR_EXTERNAL_REG; CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); /* Start BMUs. */ SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START); switch(sc->sk_type) { case SK_GENESIS: /* Enable XMACs TX and RX state machines */ SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE); SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); break; case SK_YUKON: case SK_YUKON_LITE: case SK_YUKON_LP: reg = SK_YU_READ_2(sc_if, YUKON_GPCR); reg |= YU_GPCR_TXEN | YU_GPCR_RXEN; #if 0 /* XXX disable 100Mbps and full duplex mode? */ reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS); #endif SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg); } /* Activate descriptor polling timer */ SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START); /* start transfer of Tx descriptors */ CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START); ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; switch (sc->sk_type) { case SK_YUKON: case SK_YUKON_LITE: case SK_YUKON_LP: callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if); break; } callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp); return; } static void sk_stop(sc_if) struct sk_if_softc *sc_if; { int i; struct sk_softc *sc; struct sk_txdesc *txd; struct sk_rxdesc *rxd; struct sk_rxdesc *jrxd; struct ifnet *ifp; u_int32_t val; SK_IF_LOCK_ASSERT(sc_if); sc = sc_if->sk_softc; ifp = sc_if->sk_ifp; callout_stop(&sc_if->sk_tick_ch); callout_stop(&sc_if->sk_watchdog_ch); /* stop Tx descriptor polling timer */ SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP); /* stop transfer of Tx descriptors */ CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP); for (i = 0; i < SK_TIMEOUT; i++) { val = CSR_READ_4(sc, sc_if->sk_tx_bmu); if ((val & SK_TXBMU_TX_STOP) == 0) break; DELAY(1); } if (i == SK_TIMEOUT) device_printf(sc_if->sk_if_dev, "can not stop transfer of Tx descriptor\n"); /* stop transfer of Rx descriptors */ SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP); for (i = 0; i < SK_TIMEOUT; i++) { val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR); if ((val & SK_RXBMU_RX_STOP) == 0) break; DELAY(1); } if (i == SK_TIMEOUT) device_printf(sc_if->sk_if_dev, "can not stop transfer of Rx descriptor\n"); if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { /* Put PHY back into reset. */ val = sk_win_read_4(sc, SK_GPIO); if (sc_if->sk_port == SK_PORT_A) { val |= SK_GPIO_DIR0; val &= ~SK_GPIO_DAT0; } else { val |= SK_GPIO_DIR2; val &= ~SK_GPIO_DAT2; } sk_win_write_4(sc, SK_GPIO, val); } /* Turn off various components of this interface. */ SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC); switch (sc->sk_type) { case SK_GENESIS: SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET); SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET); break; case SK_YUKON: case SK_YUKON_LITE: case SK_YUKON_LP: SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET); SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET); break; } SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF); SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF); SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF); /* Disable interrupts */ if (sc_if->sk_port == SK_PORT_A) sc->sk_intrmask &= ~SK_INTRS1; else sc->sk_intrmask &= ~SK_INTRS2; CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); SK_XM_READ_2(sc_if, XM_ISR); SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF); /* Free RX and TX mbufs still in the queues. */ for (i = 0; i < SK_RX_RING_CNT; i++) { rxd = &sc_if->sk_cdata.sk_rxdesc[i]; if (rxd->rx_m != NULL) { bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap); m_freem(rxd->rx_m); rxd->rx_m = NULL; } } for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) { jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i]; if (jrxd->rx_m != NULL) { bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag, jrxd->rx_dmamap); m_freem(jrxd->rx_m); jrxd->rx_m = NULL; } } for (i = 0; i < SK_TX_RING_CNT; i++) { txd = &sc_if->sk_cdata.sk_txdesc[i]; if (txd->tx_m != NULL) { bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap); m_freem(txd->tx_m); txd->tx_m = NULL; } } ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE); return; } static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) { int error, value; if (!arg1) return (EINVAL); value = *(int *)arg1; error = sysctl_handle_int(oidp, &value, 0, req); if (error || !req->newptr) return (error); if (value < low || value > high) return (EINVAL); *(int *)arg1 = value; return (0); } static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS) { return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX)); }