//===--- Stmt.cpp - Statement AST Node Implementation ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Stmt class and statement subclasses. // //===----------------------------------------------------------------------===// #include "clang/AST/ASTContext.h" #include "clang/AST/ASTDiagnostic.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/Stmt.h" #include "clang/AST/StmtCXX.h" #include "clang/AST/StmtObjC.h" #include "clang/AST/Type.h" #include "clang/Basic/CharInfo.h" #include "clang/Basic/TargetInfo.h" #include "clang/Lex/Token.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/raw_ostream.h" using namespace clang; static struct StmtClassNameTable { const char *Name; unsigned Counter; unsigned Size; } StmtClassInfo[Stmt::lastStmtConstant+1]; static StmtClassNameTable &getStmtInfoTableEntry(Stmt::StmtClass E) { static bool Initialized = false; if (Initialized) return StmtClassInfo[E]; // Intialize the table on the first use. Initialized = true; #define ABSTRACT_STMT(STMT) #define STMT(CLASS, PARENT) \ StmtClassInfo[(unsigned)Stmt::CLASS##Class].Name = #CLASS; \ StmtClassInfo[(unsigned)Stmt::CLASS##Class].Size = sizeof(CLASS); #include "clang/AST/StmtNodes.inc" return StmtClassInfo[E]; } void *Stmt::operator new(size_t bytes, ASTContext& C, unsigned alignment) throw() { return ::operator new(bytes, C, alignment); } void *Stmt::operator new(size_t bytes, ASTContext* C, unsigned alignment) throw() { return ::operator new(bytes, *C, alignment); } const char *Stmt::getStmtClassName() const { return getStmtInfoTableEntry((StmtClass) StmtBits.sClass).Name; } void Stmt::PrintStats() { // Ensure the table is primed. getStmtInfoTableEntry(Stmt::NullStmtClass); unsigned sum = 0; llvm::errs() << "\n*** Stmt/Expr Stats:\n"; for (int i = 0; i != Stmt::lastStmtConstant+1; i++) { if (StmtClassInfo[i].Name == 0) continue; sum += StmtClassInfo[i].Counter; } llvm::errs() << " " << sum << " stmts/exprs total.\n"; sum = 0; for (int i = 0; i != Stmt::lastStmtConstant+1; i++) { if (StmtClassInfo[i].Name == 0) continue; if (StmtClassInfo[i].Counter == 0) continue; llvm::errs() << " " << StmtClassInfo[i].Counter << " " << StmtClassInfo[i].Name << ", " << StmtClassInfo[i].Size << " each (" << StmtClassInfo[i].Counter*StmtClassInfo[i].Size << " bytes)\n"; sum += StmtClassInfo[i].Counter*StmtClassInfo[i].Size; } llvm::errs() << "Total bytes = " << sum << "\n"; } void Stmt::addStmtClass(StmtClass s) { ++getStmtInfoTableEntry(s).Counter; } bool Stmt::StatisticsEnabled = false; void Stmt::EnableStatistics() { StatisticsEnabled = true; } Stmt *Stmt::IgnoreImplicit() { Stmt *s = this; if (ExprWithCleanups *ewc = dyn_cast(s)) s = ewc->getSubExpr(); while (ImplicitCastExpr *ice = dyn_cast(s)) s = ice->getSubExpr(); return s; } /// \brief Strip off all label-like statements. /// /// This will strip off label statements, case statements, attributed /// statements and default statements recursively. const Stmt *Stmt::stripLabelLikeStatements() const { const Stmt *S = this; while (true) { if (const LabelStmt *LS = dyn_cast(S)) S = LS->getSubStmt(); else if (const SwitchCase *SC = dyn_cast(S)) S = SC->getSubStmt(); else if (const AttributedStmt *AS = dyn_cast(S)) S = AS->getSubStmt(); else return S; } } namespace { struct good {}; struct bad {}; // These silly little functions have to be static inline to suppress // unused warnings, and they have to be defined to suppress other // warnings. static inline good is_good(good) { return good(); } typedef Stmt::child_range children_t(); template good implements_children(children_t T::*) { return good(); } static inline bad implements_children(children_t Stmt::*) { return bad(); } typedef SourceLocation getLocStart_t() const; template good implements_getLocStart(getLocStart_t T::*) { return good(); } static inline bad implements_getLocStart(getLocStart_t Stmt::*) { return bad(); } typedef SourceLocation getLocEnd_t() const; template good implements_getLocEnd(getLocEnd_t T::*) { return good(); } static inline bad implements_getLocEnd(getLocEnd_t Stmt::*) { return bad(); } #define ASSERT_IMPLEMENTS_children(type) \ (void) sizeof(is_good(implements_children(&type::children))) #define ASSERT_IMPLEMENTS_getLocStart(type) \ (void) sizeof(is_good(implements_getLocStart(&type::getLocStart))) #define ASSERT_IMPLEMENTS_getLocEnd(type) \ (void) sizeof(is_good(implements_getLocEnd(&type::getLocEnd))) } /// Check whether the various Stmt classes implement their member /// functions. static inline void check_implementations() { #define ABSTRACT_STMT(type) #define STMT(type, base) \ ASSERT_IMPLEMENTS_children(type); \ ASSERT_IMPLEMENTS_getLocStart(type); \ ASSERT_IMPLEMENTS_getLocEnd(type); #include "clang/AST/StmtNodes.inc" } Stmt::child_range Stmt::children() { switch (getStmtClass()) { case Stmt::NoStmtClass: llvm_unreachable("statement without class"); #define ABSTRACT_STMT(type) #define STMT(type, base) \ case Stmt::type##Class: \ return static_cast(this)->children(); #include "clang/AST/StmtNodes.inc" } llvm_unreachable("unknown statement kind!"); } // Amusing macro metaprogramming hack: check whether a class provides // a more specific implementation of getSourceRange. // // See also Expr.cpp:getExprLoc(). namespace { /// This implementation is used when a class provides a custom /// implementation of getSourceRange. template SourceRange getSourceRangeImpl(const Stmt *stmt, SourceRange (T::*v)() const) { return static_cast(stmt)->getSourceRange(); } /// This implementation is used when a class doesn't provide a custom /// implementation of getSourceRange. Overload resolution should pick it over /// the implementation above because it's more specialized according to /// function template partial ordering. template SourceRange getSourceRangeImpl(const Stmt *stmt, SourceRange (Stmt::*v)() const) { return SourceRange(static_cast(stmt)->getLocStart(), static_cast(stmt)->getLocEnd()); } } SourceRange Stmt::getSourceRange() const { switch (getStmtClass()) { case Stmt::NoStmtClass: llvm_unreachable("statement without class"); #define ABSTRACT_STMT(type) #define STMT(type, base) \ case Stmt::type##Class: \ return getSourceRangeImpl(this, &type::getSourceRange); #include "clang/AST/StmtNodes.inc" } llvm_unreachable("unknown statement kind!"); } SourceLocation Stmt::getLocStart() const { // llvm::errs() << "getLocStart() for " << getStmtClassName() << "\n"; switch (getStmtClass()) { case Stmt::NoStmtClass: llvm_unreachable("statement without class"); #define ABSTRACT_STMT(type) #define STMT(type, base) \ case Stmt::type##Class: \ return static_cast(this)->getLocStart(); #include "clang/AST/StmtNodes.inc" } llvm_unreachable("unknown statement kind"); } SourceLocation Stmt::getLocEnd() const { switch (getStmtClass()) { case Stmt::NoStmtClass: llvm_unreachable("statement without class"); #define ABSTRACT_STMT(type) #define STMT(type, base) \ case Stmt::type##Class: \ return static_cast(this)->getLocEnd(); #include "clang/AST/StmtNodes.inc" } llvm_unreachable("unknown statement kind"); } CompoundStmt::CompoundStmt(ASTContext &C, ArrayRef Stmts, SourceLocation LB, SourceLocation RB) : Stmt(CompoundStmtClass), LBracLoc(LB), RBracLoc(RB) { CompoundStmtBits.NumStmts = Stmts.size(); assert(CompoundStmtBits.NumStmts == Stmts.size() && "NumStmts doesn't fit in bits of CompoundStmtBits.NumStmts!"); if (Stmts.size() == 0) { Body = 0; return; } Body = new (C) Stmt*[Stmts.size()]; std::copy(Stmts.begin(), Stmts.end(), Body); } void CompoundStmt::setStmts(ASTContext &C, Stmt **Stmts, unsigned NumStmts) { if (this->Body) C.Deallocate(Body); this->CompoundStmtBits.NumStmts = NumStmts; Body = new (C) Stmt*[NumStmts]; memcpy(Body, Stmts, sizeof(Stmt *) * NumStmts); } const char *LabelStmt::getName() const { return getDecl()->getIdentifier()->getNameStart(); } AttributedStmt *AttributedStmt::Create(ASTContext &C, SourceLocation Loc, ArrayRef Attrs, Stmt *SubStmt) { void *Mem = C.Allocate(sizeof(AttributedStmt) + sizeof(Attr*) * (Attrs.size() - 1), llvm::alignOf()); return new (Mem) AttributedStmt(Loc, Attrs, SubStmt); } AttributedStmt *AttributedStmt::CreateEmpty(ASTContext &C, unsigned NumAttrs) { assert(NumAttrs > 0 && "NumAttrs should be greater than zero"); void *Mem = C.Allocate(sizeof(AttributedStmt) + sizeof(Attr*) * (NumAttrs - 1), llvm::alignOf()); return new (Mem) AttributedStmt(EmptyShell(), NumAttrs); } bool Stmt::hasImplicitControlFlow() const { switch (StmtBits.sClass) { default: return false; case CallExprClass: case ConditionalOperatorClass: case ChooseExprClass: case StmtExprClass: case DeclStmtClass: return true; case Stmt::BinaryOperatorClass: { const BinaryOperator* B = cast(this); if (B->isLogicalOp() || B->getOpcode() == BO_Comma) return true; else return false; } } } std::string AsmStmt::generateAsmString(ASTContext &C) const { if (const GCCAsmStmt *gccAsmStmt = dyn_cast(this)) return gccAsmStmt->generateAsmString(C); if (const MSAsmStmt *msAsmStmt = dyn_cast(this)) return msAsmStmt->generateAsmString(C); llvm_unreachable("unknown asm statement kind!"); } StringRef AsmStmt::getOutputConstraint(unsigned i) const { if (const GCCAsmStmt *gccAsmStmt = dyn_cast(this)) return gccAsmStmt->getOutputConstraint(i); if (const MSAsmStmt *msAsmStmt = dyn_cast(this)) return msAsmStmt->getOutputConstraint(i); llvm_unreachable("unknown asm statement kind!"); } const Expr *AsmStmt::getOutputExpr(unsigned i) const { if (const GCCAsmStmt *gccAsmStmt = dyn_cast(this)) return gccAsmStmt->getOutputExpr(i); if (const MSAsmStmt *msAsmStmt = dyn_cast(this)) return msAsmStmt->getOutputExpr(i); llvm_unreachable("unknown asm statement kind!"); } StringRef AsmStmt::getInputConstraint(unsigned i) const { if (const GCCAsmStmt *gccAsmStmt = dyn_cast(this)) return gccAsmStmt->getInputConstraint(i); if (const MSAsmStmt *msAsmStmt = dyn_cast(this)) return msAsmStmt->getInputConstraint(i); llvm_unreachable("unknown asm statement kind!"); } const Expr *AsmStmt::getInputExpr(unsigned i) const { if (const GCCAsmStmt *gccAsmStmt = dyn_cast(this)) return gccAsmStmt->getInputExpr(i); if (const MSAsmStmt *msAsmStmt = dyn_cast(this)) return msAsmStmt->getInputExpr(i); llvm_unreachable("unknown asm statement kind!"); } StringRef AsmStmt::getClobber(unsigned i) const { if (const GCCAsmStmt *gccAsmStmt = dyn_cast(this)) return gccAsmStmt->getClobber(i); if (const MSAsmStmt *msAsmStmt = dyn_cast(this)) return msAsmStmt->getClobber(i); llvm_unreachable("unknown asm statement kind!"); } /// getNumPlusOperands - Return the number of output operands that have a "+" /// constraint. unsigned AsmStmt::getNumPlusOperands() const { unsigned Res = 0; for (unsigned i = 0, e = getNumOutputs(); i != e; ++i) if (isOutputPlusConstraint(i)) ++Res; return Res; } StringRef GCCAsmStmt::getClobber(unsigned i) const { return getClobberStringLiteral(i)->getString(); } Expr *GCCAsmStmt::getOutputExpr(unsigned i) { return cast(Exprs[i]); } /// getOutputConstraint - Return the constraint string for the specified /// output operand. All output constraints are known to be non-empty (either /// '=' or '+'). StringRef GCCAsmStmt::getOutputConstraint(unsigned i) const { return getOutputConstraintLiteral(i)->getString(); } Expr *GCCAsmStmt::getInputExpr(unsigned i) { return cast(Exprs[i + NumOutputs]); } void GCCAsmStmt::setInputExpr(unsigned i, Expr *E) { Exprs[i + NumOutputs] = E; } /// getInputConstraint - Return the specified input constraint. Unlike output /// constraints, these can be empty. StringRef GCCAsmStmt::getInputConstraint(unsigned i) const { return getInputConstraintLiteral(i)->getString(); } void GCCAsmStmt::setOutputsAndInputsAndClobbers(ASTContext &C, IdentifierInfo **Names, StringLiteral **Constraints, Stmt **Exprs, unsigned NumOutputs, unsigned NumInputs, StringLiteral **Clobbers, unsigned NumClobbers) { this->NumOutputs = NumOutputs; this->NumInputs = NumInputs; this->NumClobbers = NumClobbers; unsigned NumExprs = NumOutputs + NumInputs; C.Deallocate(this->Names); this->Names = new (C) IdentifierInfo*[NumExprs]; std::copy(Names, Names + NumExprs, this->Names); C.Deallocate(this->Exprs); this->Exprs = new (C) Stmt*[NumExprs]; std::copy(Exprs, Exprs + NumExprs, this->Exprs); C.Deallocate(this->Constraints); this->Constraints = new (C) StringLiteral*[NumExprs]; std::copy(Constraints, Constraints + NumExprs, this->Constraints); C.Deallocate(this->Clobbers); this->Clobbers = new (C) StringLiteral*[NumClobbers]; std::copy(Clobbers, Clobbers + NumClobbers, this->Clobbers); } /// getNamedOperand - Given a symbolic operand reference like %[foo], /// translate this into a numeric value needed to reference the same operand. /// This returns -1 if the operand name is invalid. int GCCAsmStmt::getNamedOperand(StringRef SymbolicName) const { unsigned NumPlusOperands = 0; // Check if this is an output operand. for (unsigned i = 0, e = getNumOutputs(); i != e; ++i) { if (getOutputName(i) == SymbolicName) return i; } for (unsigned i = 0, e = getNumInputs(); i != e; ++i) if (getInputName(i) == SymbolicName) return getNumOutputs() + NumPlusOperands + i; // Not found. return -1; } /// AnalyzeAsmString - Analyze the asm string of the current asm, decomposing /// it into pieces. If the asm string is erroneous, emit errors and return /// true, otherwise return false. unsigned GCCAsmStmt::AnalyzeAsmString(SmallVectorImpl&Pieces, ASTContext &C, unsigned &DiagOffs) const { StringRef Str = getAsmString()->getString(); const char *StrStart = Str.begin(); const char *StrEnd = Str.end(); const char *CurPtr = StrStart; // "Simple" inline asms have no constraints or operands, just convert the asm // string to escape $'s. if (isSimple()) { std::string Result; for (; CurPtr != StrEnd; ++CurPtr) { switch (*CurPtr) { case '$': Result += "$$"; break; default: Result += *CurPtr; break; } } Pieces.push_back(AsmStringPiece(Result)); return 0; } // CurStringPiece - The current string that we are building up as we scan the // asm string. std::string CurStringPiece; bool HasVariants = !C.getTargetInfo().hasNoAsmVariants(); while (1) { // Done with the string? if (CurPtr == StrEnd) { if (!CurStringPiece.empty()) Pieces.push_back(AsmStringPiece(CurStringPiece)); return 0; } char CurChar = *CurPtr++; switch (CurChar) { case '$': CurStringPiece += "$$"; continue; case '{': CurStringPiece += (HasVariants ? "$(" : "{"); continue; case '|': CurStringPiece += (HasVariants ? "$|" : "|"); continue; case '}': CurStringPiece += (HasVariants ? "$)" : "}"); continue; case '%': break; default: CurStringPiece += CurChar; continue; } // Escaped "%" character in asm string. if (CurPtr == StrEnd) { // % at end of string is invalid (no escape). DiagOffs = CurPtr-StrStart-1; return diag::err_asm_invalid_escape; } char EscapedChar = *CurPtr++; if (EscapedChar == '%') { // %% -> % // Escaped percentage sign. CurStringPiece += '%'; continue; } if (EscapedChar == '=') { // %= -> Generate an unique ID. CurStringPiece += "${:uid}"; continue; } // Otherwise, we have an operand. If we have accumulated a string so far, // add it to the Pieces list. if (!CurStringPiece.empty()) { Pieces.push_back(AsmStringPiece(CurStringPiece)); CurStringPiece.clear(); } // Handle %x4 and %x[foo] by capturing x as the modifier character. char Modifier = '\0'; if (isLetter(EscapedChar)) { if (CurPtr == StrEnd) { // Premature end. DiagOffs = CurPtr-StrStart-1; return diag::err_asm_invalid_escape; } Modifier = EscapedChar; EscapedChar = *CurPtr++; } if (isDigit(EscapedChar)) { // %n - Assembler operand n unsigned N = 0; --CurPtr; while (CurPtr != StrEnd && isDigit(*CurPtr)) N = N*10 + ((*CurPtr++)-'0'); unsigned NumOperands = getNumOutputs() + getNumPlusOperands() + getNumInputs(); if (N >= NumOperands) { DiagOffs = CurPtr-StrStart-1; return diag::err_asm_invalid_operand_number; } Pieces.push_back(AsmStringPiece(N, Modifier)); continue; } // Handle %[foo], a symbolic operand reference. if (EscapedChar == '[') { DiagOffs = CurPtr-StrStart-1; // Find the ']'. const char *NameEnd = (const char*)memchr(CurPtr, ']', StrEnd-CurPtr); if (NameEnd == 0) return diag::err_asm_unterminated_symbolic_operand_name; if (NameEnd == CurPtr) return diag::err_asm_empty_symbolic_operand_name; StringRef SymbolicName(CurPtr, NameEnd - CurPtr); int N = getNamedOperand(SymbolicName); if (N == -1) { // Verify that an operand with that name exists. DiagOffs = CurPtr-StrStart; return diag::err_asm_unknown_symbolic_operand_name; } Pieces.push_back(AsmStringPiece(N, Modifier)); CurPtr = NameEnd+1; continue; } DiagOffs = CurPtr-StrStart-1; return diag::err_asm_invalid_escape; } } /// Assemble final IR asm string (GCC-style). std::string GCCAsmStmt::generateAsmString(ASTContext &C) const { // Analyze the asm string to decompose it into its pieces. We know that Sema // has already done this, so it is guaranteed to be successful. SmallVector Pieces; unsigned DiagOffs; AnalyzeAsmString(Pieces, C, DiagOffs); std::string AsmString; for (unsigned i = 0, e = Pieces.size(); i != e; ++i) { if (Pieces[i].isString()) AsmString += Pieces[i].getString(); else if (Pieces[i].getModifier() == '\0') AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo()); else AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' + Pieces[i].getModifier() + '}'; } return AsmString; } /// Assemble final IR asm string (MS-style). std::string MSAsmStmt::generateAsmString(ASTContext &C) const { // FIXME: This needs to be translated into the IR string representation. return AsmStr; } Expr *MSAsmStmt::getOutputExpr(unsigned i) { return cast(Exprs[i]); } Expr *MSAsmStmt::getInputExpr(unsigned i) { return cast(Exprs[i + NumOutputs]); } void MSAsmStmt::setInputExpr(unsigned i, Expr *E) { Exprs[i + NumOutputs] = E; } QualType CXXCatchStmt::getCaughtType() const { if (ExceptionDecl) return ExceptionDecl->getType(); return QualType(); } //===----------------------------------------------------------------------===// // Constructors //===----------------------------------------------------------------------===// GCCAsmStmt::GCCAsmStmt(ASTContext &C, SourceLocation asmloc, bool issimple, bool isvolatile, unsigned numoutputs, unsigned numinputs, IdentifierInfo **names, StringLiteral **constraints, Expr **exprs, StringLiteral *asmstr, unsigned numclobbers, StringLiteral **clobbers, SourceLocation rparenloc) : AsmStmt(GCCAsmStmtClass, asmloc, issimple, isvolatile, numoutputs, numinputs, numclobbers), RParenLoc(rparenloc), AsmStr(asmstr) { unsigned NumExprs = NumOutputs + NumInputs; Names = new (C) IdentifierInfo*[NumExprs]; std::copy(names, names + NumExprs, Names); Exprs = new (C) Stmt*[NumExprs]; std::copy(exprs, exprs + NumExprs, Exprs); Constraints = new (C) StringLiteral*[NumExprs]; std::copy(constraints, constraints + NumExprs, Constraints); Clobbers = new (C) StringLiteral*[NumClobbers]; std::copy(clobbers, clobbers + NumClobbers, Clobbers); } MSAsmStmt::MSAsmStmt(ASTContext &C, SourceLocation asmloc, SourceLocation lbraceloc, bool issimple, bool isvolatile, ArrayRef asmtoks, unsigned numoutputs, unsigned numinputs, ArrayRef constraints, ArrayRef exprs, StringRef asmstr, ArrayRef clobbers, SourceLocation endloc) : AsmStmt(MSAsmStmtClass, asmloc, issimple, isvolatile, numoutputs, numinputs, clobbers.size()), LBraceLoc(lbraceloc), EndLoc(endloc), NumAsmToks(asmtoks.size()) { initialize(C, asmstr, asmtoks, constraints, exprs, clobbers); } static StringRef copyIntoContext(ASTContext &C, StringRef str) { size_t size = str.size(); char *buffer = new (C) char[size]; memcpy(buffer, str.data(), size); return StringRef(buffer, size); } void MSAsmStmt::initialize(ASTContext &C, StringRef asmstr, ArrayRef asmtoks, ArrayRef constraints, ArrayRef exprs, ArrayRef clobbers) { assert(NumAsmToks == asmtoks.size()); assert(NumClobbers == clobbers.size()); unsigned NumExprs = exprs.size(); assert(NumExprs == NumOutputs + NumInputs); assert(NumExprs == constraints.size()); AsmStr = copyIntoContext(C, asmstr); Exprs = new (C) Stmt*[NumExprs]; for (unsigned i = 0, e = NumExprs; i != e; ++i) Exprs[i] = exprs[i]; AsmToks = new (C) Token[NumAsmToks]; for (unsigned i = 0, e = NumAsmToks; i != e; ++i) AsmToks[i] = asmtoks[i]; Constraints = new (C) StringRef[NumExprs]; for (unsigned i = 0, e = NumExprs; i != e; ++i) { Constraints[i] = copyIntoContext(C, constraints[i]); } Clobbers = new (C) StringRef[NumClobbers]; for (unsigned i = 0, e = NumClobbers; i != e; ++i) { // FIXME: Avoid the allocation/copy if at all possible. Clobbers[i] = copyIntoContext(C, clobbers[i]); } } ObjCForCollectionStmt::ObjCForCollectionStmt(Stmt *Elem, Expr *Collect, Stmt *Body, SourceLocation FCL, SourceLocation RPL) : Stmt(ObjCForCollectionStmtClass) { SubExprs[ELEM] = Elem; SubExprs[COLLECTION] = reinterpret_cast(Collect); SubExprs[BODY] = Body; ForLoc = FCL; RParenLoc = RPL; } ObjCAtTryStmt::ObjCAtTryStmt(SourceLocation atTryLoc, Stmt *atTryStmt, Stmt **CatchStmts, unsigned NumCatchStmts, Stmt *atFinallyStmt) : Stmt(ObjCAtTryStmtClass), AtTryLoc(atTryLoc), NumCatchStmts(NumCatchStmts), HasFinally(atFinallyStmt != 0) { Stmt **Stmts = getStmts(); Stmts[0] = atTryStmt; for (unsigned I = 0; I != NumCatchStmts; ++I) Stmts[I + 1] = CatchStmts[I]; if (HasFinally) Stmts[NumCatchStmts + 1] = atFinallyStmt; } ObjCAtTryStmt *ObjCAtTryStmt::Create(ASTContext &Context, SourceLocation atTryLoc, Stmt *atTryStmt, Stmt **CatchStmts, unsigned NumCatchStmts, Stmt *atFinallyStmt) { unsigned Size = sizeof(ObjCAtTryStmt) + (1 + NumCatchStmts + (atFinallyStmt != 0)) * sizeof(Stmt *); void *Mem = Context.Allocate(Size, llvm::alignOf()); return new (Mem) ObjCAtTryStmt(atTryLoc, atTryStmt, CatchStmts, NumCatchStmts, atFinallyStmt); } ObjCAtTryStmt *ObjCAtTryStmt::CreateEmpty(ASTContext &Context, unsigned NumCatchStmts, bool HasFinally) { unsigned Size = sizeof(ObjCAtTryStmt) + (1 + NumCatchStmts + HasFinally) * sizeof(Stmt *); void *Mem = Context.Allocate(Size, llvm::alignOf()); return new (Mem) ObjCAtTryStmt(EmptyShell(), NumCatchStmts, HasFinally); } SourceLocation ObjCAtTryStmt::getLocEnd() const { if (HasFinally) return getFinallyStmt()->getLocEnd(); if (NumCatchStmts) return getCatchStmt(NumCatchStmts - 1)->getLocEnd(); return getTryBody()->getLocEnd(); } CXXTryStmt *CXXTryStmt::Create(ASTContext &C, SourceLocation tryLoc, Stmt *tryBlock, ArrayRef handlers) { std::size_t Size = sizeof(CXXTryStmt); Size += ((handlers.size() + 1) * sizeof(Stmt)); void *Mem = C.Allocate(Size, llvm::alignOf()); return new (Mem) CXXTryStmt(tryLoc, tryBlock, handlers); } CXXTryStmt *CXXTryStmt::Create(ASTContext &C, EmptyShell Empty, unsigned numHandlers) { std::size_t Size = sizeof(CXXTryStmt); Size += ((numHandlers + 1) * sizeof(Stmt)); void *Mem = C.Allocate(Size, llvm::alignOf()); return new (Mem) CXXTryStmt(Empty, numHandlers); } CXXTryStmt::CXXTryStmt(SourceLocation tryLoc, Stmt *tryBlock, ArrayRef handlers) : Stmt(CXXTryStmtClass), TryLoc(tryLoc), NumHandlers(handlers.size()) { Stmt **Stmts = reinterpret_cast(this + 1); Stmts[0] = tryBlock; std::copy(handlers.begin(), handlers.end(), Stmts + 1); } CXXForRangeStmt::CXXForRangeStmt(DeclStmt *Range, DeclStmt *BeginEndStmt, Expr *Cond, Expr *Inc, DeclStmt *LoopVar, Stmt *Body, SourceLocation FL, SourceLocation CL, SourceLocation RPL) : Stmt(CXXForRangeStmtClass), ForLoc(FL), ColonLoc(CL), RParenLoc(RPL) { SubExprs[RANGE] = Range; SubExprs[BEGINEND] = BeginEndStmt; SubExprs[COND] = reinterpret_cast(Cond); SubExprs[INC] = reinterpret_cast(Inc); SubExprs[LOOPVAR] = LoopVar; SubExprs[BODY] = Body; } Expr *CXXForRangeStmt::getRangeInit() { DeclStmt *RangeStmt = getRangeStmt(); VarDecl *RangeDecl = dyn_cast_or_null(RangeStmt->getSingleDecl()); assert(RangeDecl &&& "for-range should have a single var decl"); return RangeDecl->getInit(); } const Expr *CXXForRangeStmt::getRangeInit() const { return const_cast(this)->getRangeInit(); } VarDecl *CXXForRangeStmt::getLoopVariable() { Decl *LV = cast(getLoopVarStmt())->getSingleDecl(); assert(LV && "No loop variable in CXXForRangeStmt"); return cast(LV); } const VarDecl *CXXForRangeStmt::getLoopVariable() const { return const_cast(this)->getLoopVariable(); } IfStmt::IfStmt(ASTContext &C, SourceLocation IL, VarDecl *var, Expr *cond, Stmt *then, SourceLocation EL, Stmt *elsev) : Stmt(IfStmtClass), IfLoc(IL), ElseLoc(EL) { setConditionVariable(C, var); SubExprs[COND] = reinterpret_cast(cond); SubExprs[THEN] = then; SubExprs[ELSE] = elsev; } VarDecl *IfStmt::getConditionVariable() const { if (!SubExprs[VAR]) return 0; DeclStmt *DS = cast(SubExprs[VAR]); return cast(DS->getSingleDecl()); } void IfStmt::setConditionVariable(ASTContext &C, VarDecl *V) { if (!V) { SubExprs[VAR] = 0; return; } SourceRange VarRange = V->getSourceRange(); SubExprs[VAR] = new (C) DeclStmt(DeclGroupRef(V), VarRange.getBegin(), VarRange.getEnd()); } ForStmt::ForStmt(ASTContext &C, Stmt *Init, Expr *Cond, VarDecl *condVar, Expr *Inc, Stmt *Body, SourceLocation FL, SourceLocation LP, SourceLocation RP) : Stmt(ForStmtClass), ForLoc(FL), LParenLoc(LP), RParenLoc(RP) { SubExprs[INIT] = Init; setConditionVariable(C, condVar); SubExprs[COND] = reinterpret_cast(Cond); SubExprs[INC] = reinterpret_cast(Inc); SubExprs[BODY] = Body; } VarDecl *ForStmt::getConditionVariable() const { if (!SubExprs[CONDVAR]) return 0; DeclStmt *DS = cast(SubExprs[CONDVAR]); return cast(DS->getSingleDecl()); } void ForStmt::setConditionVariable(ASTContext &C, VarDecl *V) { if (!V) { SubExprs[CONDVAR] = 0; return; } SourceRange VarRange = V->getSourceRange(); SubExprs[CONDVAR] = new (C) DeclStmt(DeclGroupRef(V), VarRange.getBegin(), VarRange.getEnd()); } SwitchStmt::SwitchStmt(ASTContext &C, VarDecl *Var, Expr *cond) : Stmt(SwitchStmtClass), FirstCase(0), AllEnumCasesCovered(0) { setConditionVariable(C, Var); SubExprs[COND] = reinterpret_cast(cond); SubExprs[BODY] = NULL; } VarDecl *SwitchStmt::getConditionVariable() const { if (!SubExprs[VAR]) return 0; DeclStmt *DS = cast(SubExprs[VAR]); return cast(DS->getSingleDecl()); } void SwitchStmt::setConditionVariable(ASTContext &C, VarDecl *V) { if (!V) { SubExprs[VAR] = 0; return; } SourceRange VarRange = V->getSourceRange(); SubExprs[VAR] = new (C) DeclStmt(DeclGroupRef(V), VarRange.getBegin(), VarRange.getEnd()); } Stmt *SwitchCase::getSubStmt() { if (isa(this)) return cast(this)->getSubStmt(); return cast(this)->getSubStmt(); } WhileStmt::WhileStmt(ASTContext &C, VarDecl *Var, Expr *cond, Stmt *body, SourceLocation WL) : Stmt(WhileStmtClass) { setConditionVariable(C, Var); SubExprs[COND] = reinterpret_cast(cond); SubExprs[BODY] = body; WhileLoc = WL; } VarDecl *WhileStmt::getConditionVariable() const { if (!SubExprs[VAR]) return 0; DeclStmt *DS = cast(SubExprs[VAR]); return cast(DS->getSingleDecl()); } void WhileStmt::setConditionVariable(ASTContext &C, VarDecl *V) { if (!V) { SubExprs[VAR] = 0; return; } SourceRange VarRange = V->getSourceRange(); SubExprs[VAR] = new (C) DeclStmt(DeclGroupRef(V), VarRange.getBegin(), VarRange.getEnd()); } // IndirectGotoStmt LabelDecl *IndirectGotoStmt::getConstantTarget() { if (AddrLabelExpr *E = dyn_cast(getTarget()->IgnoreParenImpCasts())) return E->getLabel(); return 0; } // ReturnStmt const Expr* ReturnStmt::getRetValue() const { return cast_or_null(RetExpr); } Expr* ReturnStmt::getRetValue() { return cast_or_null(RetExpr); } SEHTryStmt::SEHTryStmt(bool IsCXXTry, SourceLocation TryLoc, Stmt *TryBlock, Stmt *Handler) : Stmt(SEHTryStmtClass), IsCXXTry(IsCXXTry), TryLoc(TryLoc) { Children[TRY] = TryBlock; Children[HANDLER] = Handler; } SEHTryStmt* SEHTryStmt::Create(ASTContext &C, bool IsCXXTry, SourceLocation TryLoc, Stmt *TryBlock, Stmt *Handler) { return new(C) SEHTryStmt(IsCXXTry,TryLoc,TryBlock,Handler); } SEHExceptStmt* SEHTryStmt::getExceptHandler() const { return dyn_cast(getHandler()); } SEHFinallyStmt* SEHTryStmt::getFinallyHandler() const { return dyn_cast(getHandler()); } SEHExceptStmt::SEHExceptStmt(SourceLocation Loc, Expr *FilterExpr, Stmt *Block) : Stmt(SEHExceptStmtClass), Loc(Loc) { Children[FILTER_EXPR] = reinterpret_cast(FilterExpr); Children[BLOCK] = Block; } SEHExceptStmt* SEHExceptStmt::Create(ASTContext &C, SourceLocation Loc, Expr *FilterExpr, Stmt *Block) { return new(C) SEHExceptStmt(Loc,FilterExpr,Block); } SEHFinallyStmt::SEHFinallyStmt(SourceLocation Loc, Stmt *Block) : Stmt(SEHFinallyStmtClass), Loc(Loc), Block(Block) {} SEHFinallyStmt* SEHFinallyStmt::Create(ASTContext &C, SourceLocation Loc, Stmt *Block) { return new(C)SEHFinallyStmt(Loc,Block); } CapturedStmt::Capture *CapturedStmt::getStoredCaptures() const { unsigned Size = sizeof(CapturedStmt) + sizeof(Stmt *) * (NumCaptures + 1); // Offset of the first Capture object. unsigned FirstCaptureOffset = llvm::RoundUpToAlignment(Size, llvm::alignOf()); return reinterpret_cast( reinterpret_cast(const_cast(this)) + FirstCaptureOffset); } CapturedStmt::CapturedStmt(Stmt *S, CapturedRegionKind Kind, ArrayRef Captures, ArrayRef CaptureInits, CapturedDecl *CD, RecordDecl *RD) : Stmt(CapturedStmtClass), NumCaptures(Captures.size()), CapDeclAndKind(CD, Kind), TheRecordDecl(RD) { assert( S && "null captured statement"); assert(CD && "null captured declaration for captured statement"); assert(RD && "null record declaration for captured statement"); // Copy initialization expressions. Stmt **Stored = getStoredStmts(); for (unsigned I = 0, N = NumCaptures; I != N; ++I) *Stored++ = CaptureInits[I]; // Copy the statement being captured. *Stored = S; // Copy all Capture objects. Capture *Buffer = getStoredCaptures(); std::copy(Captures.begin(), Captures.end(), Buffer); } CapturedStmt::CapturedStmt(EmptyShell Empty, unsigned NumCaptures) : Stmt(CapturedStmtClass, Empty), NumCaptures(NumCaptures), CapDeclAndKind(0, CR_Default), TheRecordDecl(0) { getStoredStmts()[NumCaptures] = 0; } CapturedStmt *CapturedStmt::Create(ASTContext &Context, Stmt *S, CapturedRegionKind Kind, ArrayRef Captures, ArrayRef CaptureInits, CapturedDecl *CD, RecordDecl *RD) { // The layout is // // ----------------------------------------------------------- // | CapturedStmt, Init, ..., Init, S, Capture, ..., Capture | // ----------------^-------------------^---------------------- // getStoredStmts() getStoredCaptures() // // where S is the statement being captured. // assert(CaptureInits.size() == Captures.size() && "wrong number of arguments"); unsigned Size = sizeof(CapturedStmt) + sizeof(Stmt *) * (Captures.size() + 1); if (!Captures.empty()) { // Realign for the following Capture array. Size = llvm::RoundUpToAlignment(Size, llvm::alignOf()); Size += sizeof(Capture) * Captures.size(); } void *Mem = Context.Allocate(Size); return new (Mem) CapturedStmt(S, Kind, Captures, CaptureInits, CD, RD); } CapturedStmt *CapturedStmt::CreateDeserialized(ASTContext &Context, unsigned NumCaptures) { unsigned Size = sizeof(CapturedStmt) + sizeof(Stmt *) * (NumCaptures + 1); if (NumCaptures > 0) { // Realign for the following Capture array. Size = llvm::RoundUpToAlignment(Size, llvm::alignOf()); Size += sizeof(Capture) * NumCaptures; } void *Mem = Context.Allocate(Size); return new (Mem) CapturedStmt(EmptyShell(), NumCaptures); } Stmt::child_range CapturedStmt::children() { // Children are captured field initilizers. return child_range(getStoredStmts(), getStoredStmts() + NumCaptures); } bool CapturedStmt::capturesVariable(const VarDecl *Var) const { for (const_capture_iterator I = capture_begin(), E = capture_end(); I != E; ++I) { if (I->capturesThis()) continue; // This does not handle variable redeclarations. This should be // extended to capture variables with redeclarations, for example // a thread-private variable in OpenMP. if (I->getCapturedVar() == Var) return true; } return false; }