/* * Copyright (c) 2005 David Xu * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ #include "namespace.h" #include #include #include #include #include #include "un-namespace.h" #include "thr_private.h" /* * Prototypes */ int __pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex); int __pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex, const struct timespec * abstime); static int cond_init(pthread_cond_t *cond, const pthread_condattr_t *attr); static int cond_wait_common(pthread_cond_t *cond, pthread_mutex_t *mutex, const struct timespec *abstime, int cancel); static int cond_signal_common(pthread_cond_t *cond); static int cond_broadcast_common(pthread_cond_t *cond); /* * Double underscore versions are cancellation points. Single underscore * versions are not and are provided for libc internal usage (which * shouldn't introduce cancellation points). */ __weak_reference(__pthread_cond_wait, pthread_cond_wait); __weak_reference(__pthread_cond_timedwait, pthread_cond_timedwait); __weak_reference(_pthread_cond_init, pthread_cond_init); __weak_reference(_pthread_cond_destroy, pthread_cond_destroy); __weak_reference(_pthread_cond_signal, pthread_cond_signal); __weak_reference(_pthread_cond_broadcast, pthread_cond_broadcast); #define CV_PSHARED(cvp) (((cvp)->__flags & USYNC_PROCESS_SHARED) != 0) static int cond_init(pthread_cond_t *cond, const pthread_condattr_t *cond_attr) { struct pthread_cond *cvp; int error = 0; if ((cvp = (pthread_cond_t) calloc(1, sizeof(struct pthread_cond))) == NULL) { error = ENOMEM; } else { /* * Initialise the condition variable structure: */ if (cond_attr == NULL || *cond_attr == NULL) { cvp->__clock_id = CLOCK_REALTIME; } else { if ((*cond_attr)->c_pshared) cvp->__flags |= USYNC_PROCESS_SHARED; cvp->__clock_id = (*cond_attr)->c_clockid; } *cond = cvp; } return (error); } static int init_static(struct pthread *thread, pthread_cond_t *cond) { int ret; THR_LOCK_ACQUIRE(thread, &_cond_static_lock); if (*cond == NULL) ret = cond_init(cond, NULL); else ret = 0; THR_LOCK_RELEASE(thread, &_cond_static_lock); return (ret); } #define CHECK_AND_INIT_COND \ if (__predict_false((cvp = (*cond)) <= THR_COND_DESTROYED)) { \ if (cvp == THR_COND_INITIALIZER) { \ int ret; \ ret = init_static(_get_curthread(), cond); \ if (ret) \ return (ret); \ } else if (cvp == THR_COND_DESTROYED) { \ return (EINVAL); \ } \ cvp = *cond; \ } int _pthread_cond_init(pthread_cond_t *cond, const pthread_condattr_t *cond_attr) { *cond = NULL; return (cond_init(cond, cond_attr)); } int _pthread_cond_destroy(pthread_cond_t *cond) { struct pthread_cond *cvp; int error = 0; if ((cvp = *cond) == THR_COND_INITIALIZER) error = 0; else if (cvp == THR_COND_DESTROYED) error = EINVAL; else { cvp = *cond; *cond = THR_COND_DESTROYED; /* * Free the memory allocated for the condition * variable structure: */ free(cvp); } return (error); } /* * Cancellation behaivor: * Thread may be canceled at start, if thread is canceled, it means it * did not get a wakeup from pthread_cond_signal(), otherwise, it is * not canceled. * Thread cancellation never cause wakeup from pthread_cond_signal() * to be lost. */ static int cond_wait_kernel(struct pthread_cond *cvp, struct pthread_mutex *mp, const struct timespec *abstime, int cancel) { struct pthread *curthread = _get_curthread(); int recurse; int error, error2 = 0; error = _mutex_cv_detach(mp, &recurse); if (error != 0) return (error); if (cancel) { _thr_cancel_enter2(curthread, 0); error = _thr_ucond_wait((struct ucond *)&cvp->__has_kern_waiters, (struct umutex *)&mp->m_lock, abstime, CVWAIT_ABSTIME|CVWAIT_CLOCKID); _thr_cancel_leave(curthread, 0); } else { error = _thr_ucond_wait((struct ucond *)&cvp->__has_kern_waiters, (struct umutex *)&mp->m_lock, abstime, CVWAIT_ABSTIME|CVWAIT_CLOCKID); } /* * Note that PP mutex and ROBUST mutex may return * interesting error codes. */ if (error == 0) { error2 = _mutex_cv_lock(mp, recurse); } else if (error == EINTR || error == ETIMEDOUT) { error2 = _mutex_cv_lock(mp, recurse); if (error2 == 0 && cancel) _thr_testcancel(curthread); if (error == EINTR) error = 0; } else { /* We know that it didn't unlock the mutex. */ error2 = _mutex_cv_attach(mp, recurse); if (error2 == 0 && cancel) _thr_testcancel(curthread); } return (error2 != 0 ? error2 : error); } /* * Thread waits in userland queue whenever possible, when thread * is signaled or broadcasted, it is removed from the queue, and * is saved in curthread's defer_waiters[] buffer, but won't be * woken up until mutex is unlocked. */ static int cond_wait_user(struct pthread_cond *cvp, struct pthread_mutex *mp, const struct timespec *abstime, int cancel) { struct pthread *curthread = _get_curthread(); struct sleepqueue *sq; int recurse; int error; int defered; if (curthread->wchan != NULL) PANIC("thread was already on queue."); if (cancel) _thr_testcancel(curthread); _sleepq_lock(cvp); /* * set __has_user_waiters before unlocking mutex, this allows * us to check it without locking in pthread_cond_signal(). */ cvp->__has_user_waiters = 1; defered = 0; (void)_mutex_cv_unlock(mp, &recurse, &defered); curthread->mutex_obj = mp; _sleepq_add(cvp, curthread); for(;;) { _thr_clear_wake(curthread); _sleepq_unlock(cvp); if (defered) { defered = 0; if ((mp->m_lock.m_owner & UMUTEX_CONTESTED) == 0) (void)_umtx_op_err(&mp->m_lock, UMTX_OP_MUTEX_WAKE2, mp->m_lock.m_flags, 0, 0); } if (curthread->nwaiter_defer > 0) { _thr_wake_all(curthread->defer_waiters, curthread->nwaiter_defer); curthread->nwaiter_defer = 0; } if (cancel) { _thr_cancel_enter2(curthread, 0); error = _thr_sleep(curthread, cvp->__clock_id, abstime); _thr_cancel_leave(curthread, 0); } else { error = _thr_sleep(curthread, cvp->__clock_id, abstime); } _sleepq_lock(cvp); if (curthread->wchan == NULL) { error = 0; break; } else if (cancel && SHOULD_CANCEL(curthread)) { sq = _sleepq_lookup(cvp); cvp->__has_user_waiters = _sleepq_remove(sq, curthread); _sleepq_unlock(cvp); curthread->mutex_obj = NULL; _mutex_cv_lock(mp, recurse); if (!THR_IN_CRITICAL(curthread)) _pthread_exit(PTHREAD_CANCELED); else /* this should not happen */ return (0); } else if (error == ETIMEDOUT) { sq = _sleepq_lookup(cvp); cvp->__has_user_waiters = _sleepq_remove(sq, curthread); break; } } _sleepq_unlock(cvp); curthread->mutex_obj = NULL; _mutex_cv_lock(mp, recurse); return (error); } static int cond_wait_common(pthread_cond_t *cond, pthread_mutex_t *mutex, const struct timespec *abstime, int cancel) { struct pthread *curthread = _get_curthread(); struct pthread_cond *cvp; struct pthread_mutex *mp; int error; CHECK_AND_INIT_COND mp = *mutex; if ((error = _mutex_owned(curthread, mp)) != 0) return (error); if (curthread->attr.sched_policy != SCHED_OTHER || (mp->m_lock.m_flags & (UMUTEX_PRIO_PROTECT|UMUTEX_PRIO_INHERIT| USYNC_PROCESS_SHARED)) != 0 || (cvp->__flags & USYNC_PROCESS_SHARED) != 0) return cond_wait_kernel(cvp, mp, abstime, cancel); else return cond_wait_user(cvp, mp, abstime, cancel); } int _pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex) { return (cond_wait_common(cond, mutex, NULL, 0)); } int __pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex) { return (cond_wait_common(cond, mutex, NULL, 1)); } int _pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex, const struct timespec * abstime) { if (abstime == NULL || abstime->tv_sec < 0 || abstime->tv_nsec < 0 || abstime->tv_nsec >= 1000000000) return (EINVAL); return (cond_wait_common(cond, mutex, abstime, 0)); } int __pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex, const struct timespec *abstime) { if (abstime == NULL || abstime->tv_sec < 0 || abstime->tv_nsec < 0 || abstime->tv_nsec >= 1000000000) return (EINVAL); return (cond_wait_common(cond, mutex, abstime, 1)); } static int cond_signal_common(pthread_cond_t *cond) { struct pthread *curthread = _get_curthread(); struct pthread *td; struct pthread_cond *cvp; struct pthread_mutex *mp; struct sleepqueue *sq; int *waddr; int pshared; /* * If the condition variable is statically initialized, perform dynamic * initialization. */ CHECK_AND_INIT_COND pshared = CV_PSHARED(cvp); _thr_ucond_signal((struct ucond *)&cvp->__has_kern_waiters); if (pshared || cvp->__has_user_waiters == 0) return (0); curthread = _get_curthread(); waddr = NULL; _sleepq_lock(cvp); sq = _sleepq_lookup(cvp); if (sq == NULL) { _sleepq_unlock(cvp); return (0); } td = _sleepq_first(sq); mp = td->mutex_obj; cvp->__has_user_waiters = _sleepq_remove(sq, td); if (mp->m_owner == curthread) { if (curthread->nwaiter_defer >= MAX_DEFER_WAITERS) { _thr_wake_all(curthread->defer_waiters, curthread->nwaiter_defer); curthread->nwaiter_defer = 0; } curthread->defer_waiters[curthread->nwaiter_defer++] = &td->wake_addr->value; mp->m_flags |= PMUTEX_FLAG_DEFERED; } else { waddr = &td->wake_addr->value; } _sleepq_unlock(cvp); if (waddr != NULL) _thr_set_wake(waddr); return (0); } struct broadcast_arg { struct pthread *curthread; unsigned int *waddrs[MAX_DEFER_WAITERS]; int count; }; static void drop_cb(struct pthread *td, void *arg) { struct broadcast_arg *ba = arg; struct pthread_mutex *mp; struct pthread *curthread = ba->curthread; mp = td->mutex_obj; if (mp->m_owner == curthread) { if (curthread->nwaiter_defer >= MAX_DEFER_WAITERS) { _thr_wake_all(curthread->defer_waiters, curthread->nwaiter_defer); curthread->nwaiter_defer = 0; } curthread->defer_waiters[curthread->nwaiter_defer++] = &td->wake_addr->value; mp->m_flags |= PMUTEX_FLAG_DEFERED; } else { if (ba->count >= MAX_DEFER_WAITERS) { _thr_wake_all(ba->waddrs, ba->count); ba->count = 0; } ba->waddrs[ba->count++] = &td->wake_addr->value; } } static int cond_broadcast_common(pthread_cond_t *cond) { int pshared; struct pthread_cond *cvp; struct sleepqueue *sq; struct broadcast_arg ba; /* * If the condition variable is statically initialized, perform dynamic * initialization. */ CHECK_AND_INIT_COND pshared = CV_PSHARED(cvp); _thr_ucond_broadcast((struct ucond *)&cvp->__has_kern_waiters); if (pshared || cvp->__has_user_waiters == 0) return (0); ba.curthread = _get_curthread(); ba.count = 0; _sleepq_lock(cvp); sq = _sleepq_lookup(cvp); if (sq == NULL) { _sleepq_unlock(cvp); return (0); } _sleepq_drop(sq, drop_cb, &ba); cvp->__has_user_waiters = 0; _sleepq_unlock(cvp); if (ba.count > 0) _thr_wake_all(ba.waddrs, ba.count); return (0); } int _pthread_cond_signal(pthread_cond_t * cond) { return (cond_signal_common(cond)); } int _pthread_cond_broadcast(pthread_cond_t * cond) { return (cond_broadcast_common(cond)); }