/*- * Copyright (c) 2004 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ /* * Regression test to do some very basic AIO exercising on several types of * file descriptors. Currently, the tests consist of initializing a fixed * size buffer with pseudo-random data, writing it to one fd using AIO, then * reading it from a second descriptor using AIO. For some targets, the same * fd is used for write and read (i.e., file, md device), but for others the * operation is performed on a peer (pty, socket, fifo, etc). A timeout is * initiated to detect undo blocking. This test does not attempt to exercise * error cases or more subtle asynchronous behavior, just make sure that the * basic operations work on some basic object types. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "freebsd_test_suite/macros.h" #define PATH_TEMPLATE "aio.XXXXXXXXXX" /* * GLOBAL_MAX sets the largest usable buffer size to be read and written, as * it sizes ac_buffer in the aio_context structure. It is also the default * size for file I/O. For other types, we use smaller blocks or we risk * blocking (and we run in a single process/thread so that would be bad). */ #define GLOBAL_MAX 16384 #define BUFFER_MAX GLOBAL_MAX struct aio_context { int ac_read_fd, ac_write_fd; long ac_seed; char ac_buffer[GLOBAL_MAX]; int ac_buflen; int ac_seconds; void (*ac_cleanup)(void *arg); void *ac_cleanup_arg; }; static int aio_timedout; /* * Each test run specifies a timeout in seconds. Use the somewhat obsoleted * signal(3) and alarm(3) APIs to set this up. */ static void aio_timeout_signal(int sig __unused) { aio_timedout = 1; } static void aio_timeout_start(int seconds) { aio_timedout = 0; ATF_REQUIRE_MSG(signal(SIGALRM, aio_timeout_signal) != SIG_ERR, "failed to set SIGALRM handler: %s", strerror(errno)); alarm(seconds); } static void aio_timeout_stop(void) { ATF_REQUIRE_MSG(signal(SIGALRM, NULL) != SIG_ERR, "failed to reset SIGALRM handler to default: %s", strerror(errno)); alarm(0); } /* * Fill a buffer given a seed that can be fed into srandom() to initialize * the PRNG in a repeatable manner. */ static void aio_fill_buffer(char *buffer, int len, long seed) { char ch; int i; srandom(seed); for (i = 0; i < len; i++) { ch = random() & 0xff; buffer[i] = ch; } } /* * Test that a buffer matches a given seed. See aio_fill_buffer(). Return * (1) on a match, (0) on a mismatch. */ static int aio_test_buffer(char *buffer, int len, long seed) { char ch; int i; srandom(seed); for (i = 0; i < len; i++) { ch = random() & 0xff; if (buffer[i] != ch) return (0); } return (1); } /* * Initialize a testing context given the file descriptors provided by the * test setup. */ static void aio_context_init(struct aio_context *ac, int read_fd, int write_fd, int buflen, int seconds, void (*cleanup)(void *), void *cleanup_arg) { ATF_REQUIRE_MSG(buflen <= BUFFER_MAX, "aio_context_init: buffer too large (%d > %d)", buflen, BUFFER_MAX); bzero(ac, sizeof(*ac)); ac->ac_read_fd = read_fd; ac->ac_write_fd = write_fd; ac->ac_buflen = buflen; srandomdev(); ac->ac_seed = random(); aio_fill_buffer(ac->ac_buffer, buflen, ac->ac_seed); ATF_REQUIRE_MSG(aio_test_buffer(ac->ac_buffer, buflen, ac->ac_seed) != 0, "aio_test_buffer: internal error"); ac->ac_seconds = seconds; ac->ac_cleanup = cleanup; ac->ac_cleanup_arg = cleanup_arg; } /* * Each tester can register a callback to clean up in the event the test * fails. Preserve the value of errno so that subsequent calls to errx() * work properly. */ static void aio_cleanup(struct aio_context *ac) { int error; if (ac->ac_cleanup == NULL) return; error = errno; (ac->ac_cleanup)(ac->ac_cleanup_arg); errno = error; } /* * Perform a simple write test of our initialized data buffer to the provided * file descriptor. */ static void aio_write_test(struct aio_context *ac) { struct aiocb aio, *aiop; ssize_t len; ATF_REQUIRE_KERNEL_MODULE("aio"); bzero(&aio, sizeof(aio)); aio.aio_buf = ac->ac_buffer; aio.aio_nbytes = ac->ac_buflen; aio.aio_fildes = ac->ac_write_fd; aio.aio_offset = 0; aio_timeout_start(ac->ac_seconds); if (aio_write(&aio) < 0) { if (errno == EINTR) { if (aio_timedout) { aio_cleanup(ac); atf_tc_fail("aio_write timed out"); } } aio_cleanup(ac); atf_tc_fail("aio_write failed: %s", strerror(errno)); } len = aio_waitcomplete(&aiop, NULL); if (len < 0) { if (errno == EINTR) { if (aio_timedout) { aio_cleanup(ac); atf_tc_fail("aio_waitcomplete timed out"); } } aio_cleanup(ac); atf_tc_fail("aio_waitcomplete failed: %s", strerror(errno)); } aio_timeout_stop(); if (len != ac->ac_buflen) { aio_cleanup(ac); atf_tc_fail("aio_waitcomplete short write (%jd)", (intmax_t)len); } } /* * Perform a simple read test of our initialized data buffer from the * provided file descriptor. */ static void aio_read_test(struct aio_context *ac) { struct aiocb aio, *aiop; ssize_t len; ATF_REQUIRE_KERNEL_MODULE("aio"); bzero(ac->ac_buffer, ac->ac_buflen); bzero(&aio, sizeof(aio)); aio.aio_buf = ac->ac_buffer; aio.aio_nbytes = ac->ac_buflen; aio.aio_fildes = ac->ac_read_fd; aio.aio_offset = 0; aio_timeout_start(ac->ac_seconds); if (aio_read(&aio) < 0) { if (errno == EINTR) { if (aio_timedout) { aio_cleanup(ac); atf_tc_fail("aio_write timed out"); } } aio_cleanup(ac); atf_tc_fail("aio_read failed: %s", strerror(errno)); } len = aio_waitcomplete(&aiop, NULL); if (len < 0) { if (errno == EINTR) { if (aio_timedout) { aio_cleanup(ac); atf_tc_fail("aio_waitcomplete timed out"); } } aio_cleanup(ac); atf_tc_fail("aio_waitcomplete failed: %s", strerror(errno)); } aio_timeout_stop(); if (len != ac->ac_buflen) { aio_cleanup(ac); atf_tc_fail("aio_waitcomplete short read (%jd)", (intmax_t)len); } if (aio_test_buffer(ac->ac_buffer, ac->ac_buflen, ac->ac_seed) == 0) { aio_cleanup(ac); atf_tc_fail("buffer mismatched"); } } /* * Series of type-specific tests for AIO. For now, we just make sure we can * issue a write and then a read to each type. We assume that once a write * is issued, a read can follow. */ /* * Test with a classic file. Assumes we can create a moderate size temporary * file. */ struct aio_file_arg { int afa_fd; char *afa_pathname; }; static void aio_file_cleanup(void *arg) { struct aio_file_arg *afa; afa = arg; close(afa->afa_fd); unlink(afa->afa_pathname); } #define FILE_LEN GLOBAL_MAX #define FILE_TIMEOUT 30 ATF_TC_WITHOUT_HEAD(aio_file_test); ATF_TC_BODY(aio_file_test, tc) { char pathname[PATH_MAX]; struct aio_file_arg arg; struct aio_context ac; int fd; ATF_REQUIRE_KERNEL_MODULE("aio"); strcpy(pathname, PATH_TEMPLATE); fd = mkstemp(pathname); ATF_REQUIRE_MSG(fd != -1, "mkstemp failed: %s", strerror(errno)); arg.afa_fd = fd; arg.afa_pathname = pathname; aio_context_init(&ac, fd, fd, FILE_LEN, FILE_TIMEOUT, aio_file_cleanup, &arg); aio_write_test(&ac); aio_read_test(&ac); aio_file_cleanup(&arg); } struct aio_fifo_arg { int afa_read_fd; int afa_write_fd; char *afa_pathname; }; static void aio_fifo_cleanup(void *arg) { struct aio_fifo_arg *afa; afa = arg; if (afa->afa_read_fd != -1) close(afa->afa_read_fd); if (afa->afa_write_fd != -1) close(afa->afa_write_fd); unlink(afa->afa_pathname); } #define FIFO_LEN 256 #define FIFO_TIMEOUT 30 ATF_TC_WITHOUT_HEAD(aio_fifo_test); ATF_TC_BODY(aio_fifo_test, tc) { int error, read_fd = -1, write_fd = -1; struct aio_fifo_arg arg; char pathname[PATH_MAX]; struct aio_context ac; ATF_REQUIRE_KERNEL_MODULE("aio"); /* * In theory, mkstemp() can return a name that is then collided with. * Because this is a regression test, we treat that as a test failure * rather than retrying. */ strcpy(pathname, PATH_TEMPLATE); ATF_REQUIRE_MSG(mkstemp(pathname) != -1, "mkstemp failed: %s", strerror(errno)); ATF_REQUIRE_MSG(unlink(pathname) == 0, "unlink failed: %s", strerror(errno)); ATF_REQUIRE_MSG(mkfifo(pathname, 0600) != -1, "mkfifo failed: %s", strerror(errno)); arg.afa_pathname = pathname; arg.afa_read_fd = -1; arg.afa_write_fd = -1; read_fd = open(pathname, O_RDONLY | O_NONBLOCK); if (read_fd == -1) { error = errno; aio_fifo_cleanup(&arg); errno = error; atf_tc_fail("read_fd open failed: %s", strerror(errno)); } arg.afa_read_fd = read_fd; write_fd = open(pathname, O_WRONLY); if (write_fd == -1) { error = errno; aio_fifo_cleanup(&arg); errno = error; atf_tc_fail("write_fd open failed: %s", strerror(errno)); } arg.afa_write_fd = write_fd; aio_context_init(&ac, read_fd, write_fd, FIFO_LEN, FIFO_TIMEOUT, aio_fifo_cleanup, &arg); aio_write_test(&ac); aio_read_test(&ac); aio_fifo_cleanup(&arg); } struct aio_unix_socketpair_arg { int asa_sockets[2]; }; static void aio_unix_socketpair_cleanup(void *arg) { struct aio_unix_socketpair_arg *asa; asa = arg; close(asa->asa_sockets[0]); close(asa->asa_sockets[1]); } #define UNIX_SOCKETPAIR_LEN 256 #define UNIX_SOCKETPAIR_TIMEOUT 30 ATF_TC_WITHOUT_HEAD(aio_unix_socketpair_test); ATF_TC_BODY(aio_unix_socketpair_test, tc) { struct aio_unix_socketpair_arg arg; struct aio_context ac; int sockets[2]; ATF_REQUIRE_KERNEL_MODULE("aio"); ATF_REQUIRE_MSG(socketpair(PF_UNIX, SOCK_STREAM, 0, sockets) != -1, "socketpair failed: %s", strerror(errno)); arg.asa_sockets[0] = sockets[0]; arg.asa_sockets[1] = sockets[1]; aio_context_init(&ac, sockets[0], sockets[1], UNIX_SOCKETPAIR_LEN, UNIX_SOCKETPAIR_TIMEOUT, aio_unix_socketpair_cleanup, &arg); aio_write_test(&ac); aio_read_test(&ac); aio_unix_socketpair_cleanup(&arg); } struct aio_pty_arg { int apa_read_fd; int apa_write_fd; }; static void aio_pty_cleanup(void *arg) { struct aio_pty_arg *apa; apa = arg; close(apa->apa_read_fd); close(apa->apa_write_fd); }; #define PTY_LEN 256 #define PTY_TIMEOUT 30 ATF_TC_WITHOUT_HEAD(aio_pty_test); ATF_TC_BODY(aio_pty_test, tc) { struct aio_pty_arg arg; struct aio_context ac; int read_fd, write_fd; struct termios ts; int error; ATF_REQUIRE_KERNEL_MODULE("aio"); ATF_REQUIRE_MSG(openpty(&read_fd, &write_fd, NULL, NULL, NULL) == 0, "openpty failed: %s", strerror(errno)); arg.apa_read_fd = read_fd; arg.apa_write_fd = write_fd; if (tcgetattr(write_fd, &ts) < 0) { error = errno; aio_pty_cleanup(&arg); errno = error; atf_tc_fail("tcgetattr failed: %s", strerror(errno)); } cfmakeraw(&ts); if (tcsetattr(write_fd, TCSANOW, &ts) < 0) { error = errno; aio_pty_cleanup(&arg); errno = error; atf_tc_fail("tcsetattr failed: %s", strerror(errno)); } aio_context_init(&ac, read_fd, write_fd, PTY_LEN, PTY_TIMEOUT, aio_pty_cleanup, &arg); aio_write_test(&ac); aio_read_test(&ac); aio_pty_cleanup(&arg); } static void aio_pipe_cleanup(void *arg) { int *pipes = arg; close(pipes[0]); close(pipes[1]); } #define PIPE_LEN 256 #define PIPE_TIMEOUT 30 ATF_TC_WITHOUT_HEAD(aio_pipe_test); ATF_TC_BODY(aio_pipe_test, tc) { struct aio_context ac; int pipes[2]; ATF_REQUIRE_KERNEL_MODULE("aio"); ATF_REQUIRE_MSG(pipe(pipes) != -1, "pipe failed: %s", strerror(errno)); aio_context_init(&ac, pipes[0], pipes[1], PIPE_LEN, PIPE_TIMEOUT, aio_pipe_cleanup, pipes); aio_write_test(&ac); aio_read_test(&ac); aio_pipe_cleanup(pipes); } struct aio_md_arg { int ama_mdctl_fd; int ama_unit; int ama_fd; }; static void aio_md_cleanup(void *arg) { struct aio_md_arg *ama; struct md_ioctl mdio; int error; ama = arg; if (ama->ama_fd != -1) close(ama->ama_fd); if (ama->ama_unit != -1) { bzero(&mdio, sizeof(mdio)); mdio.md_version = MDIOVERSION; mdio.md_unit = ama->ama_unit; if (ioctl(ama->ama_mdctl_fd, MDIOCDETACH, &mdio) == -1) { error = errno; close(ama->ama_mdctl_fd); errno = error; atf_tc_fail("ioctl MDIOCDETACH failed: %s", strerror(errno)); } } close(ama->ama_mdctl_fd); } #define MD_LEN GLOBAL_MAX #define MD_TIMEOUT 30 ATF_TC(aio_md_test); ATF_TC_HEAD(aio_md_test, tc) { atf_tc_set_md_var(tc, "require.user", "root"); } ATF_TC_BODY(aio_md_test, tc) { int error, fd, mdctl_fd, unit; char pathname[PATH_MAX]; struct aio_md_arg arg; struct aio_context ac; struct md_ioctl mdio; ATF_REQUIRE_KERNEL_MODULE("aio"); mdctl_fd = open("/dev/" MDCTL_NAME, O_RDWR, 0); ATF_REQUIRE_MSG(mdctl_fd != -1, "opening /dev/%s failed: %s", MDCTL_NAME, strerror(errno)); bzero(&mdio, sizeof(mdio)); mdio.md_version = MDIOVERSION; mdio.md_type = MD_MALLOC; mdio.md_options = MD_AUTOUNIT | MD_COMPRESS; mdio.md_mediasize = GLOBAL_MAX; mdio.md_sectorsize = 512; arg.ama_mdctl_fd = mdctl_fd; arg.ama_unit = -1; arg.ama_fd = -1; if (ioctl(mdctl_fd, MDIOCATTACH, &mdio) < 0) { error = errno; aio_md_cleanup(&arg); errno = error; atf_tc_fail("ioctl MDIOCATTACH failed: %s", strerror(errno)); } arg.ama_unit = unit = mdio.md_unit; snprintf(pathname, PATH_MAX, "/dev/md%d", unit); fd = open(pathname, O_RDWR); ATF_REQUIRE_MSG(fd != -1, "opening %s failed: %s", pathname, strerror(errno)); arg.ama_fd = fd; aio_context_init(&ac, fd, fd, MD_LEN, MD_TIMEOUT, aio_md_cleanup, &arg); aio_write_test(&ac); aio_read_test(&ac); aio_md_cleanup(&arg); } ATF_TP_ADD_TCS(tp) { ATF_TP_ADD_TC(tp, aio_file_test); ATF_TP_ADD_TC(tp, aio_fifo_test); ATF_TP_ADD_TC(tp, aio_unix_socketpair_test); ATF_TP_ADD_TC(tp, aio_pty_test); ATF_TP_ADD_TC(tp, aio_pipe_test); ATF_TP_ADD_TC(tp, aio_md_test); return (atf_no_error()); }