/*- * Copyright (c) 2011 NetApp, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include "acpi.h" #include "bhyverun.h" #include "inout.h" #include "ioapic.h" #include "mem.h" #include "pci_emul.h" #include "pci_lpc.h" #define CONF1_ADDR_PORT 0x0cf8 #define CONF1_DATA_PORT 0x0cfc #define CONF1_ENABLE 0x80000000ul #define CFGWRITE(pi,off,val,b) \ do { \ if ((b) == 1) { \ pci_set_cfgdata8((pi),(off),(val)); \ } else if ((b) == 2) { \ pci_set_cfgdata16((pi),(off),(val)); \ } else { \ pci_set_cfgdata32((pi),(off),(val)); \ } \ } while (0) #define MAXSLOTS (PCI_SLOTMAX + 1) #define MAXFUNCS (PCI_FUNCMAX + 1) struct funcinfo { char *fi_name; char *fi_param; struct pci_devinst *fi_devi; }; struct intxinfo { int ii_count; int ii_ioapic_irq; }; struct slotinfo { struct intxinfo si_intpins[4]; struct funcinfo si_funcs[MAXFUNCS]; } pci_slotinfo[MAXSLOTS]; SET_DECLARE(pci_devemu_set, struct pci_devemu); static uint64_t pci_emul_iobase; static uint64_t pci_emul_membase32; static uint64_t pci_emul_membase64; #define PCI_EMUL_IOBASE 0x2000 #define PCI_EMUL_IOLIMIT 0x10000 #define PCI_EMUL_MEMLIMIT32 0xE0000000 /* 3.5GB */ #define PCI_EMUL_MEMBASE64 0xD000000000UL #define PCI_EMUL_MEMLIMIT64 0xFD00000000UL static struct pci_devemu *pci_emul_finddev(char *name); static void pci_lintr_update(struct pci_devinst *pi); static int pci_emul_devices; static struct mem_range pci_mem_hole; /* * I/O access */ /* * Slot options are in the form: * * [:],[,] * * slot is 0..31 * func is 0..7 * emul is a string describing the type of PCI device e.g. virtio-net * config is an optional string, depending on the device, that can be * used for configuration. * Examples are: * 1,virtio-net,tap0 * 3:0,dummy */ static void pci_parse_slot_usage(char *aopt) { fprintf(stderr, "Invalid PCI slot info field \"%s\"\n", aopt); } int pci_parse_slot(char *opt) { char *slot, *func, *emul, *config; char *str, *cpy; int error, snum, fnum; error = -1; str = cpy = strdup(opt); slot = strsep(&str, ","); func = NULL; if (strchr(slot, ':') != NULL) { func = cpy; (void) strsep(&func, ":"); } emul = strsep(&str, ","); config = str; if (emul == NULL) { pci_parse_slot_usage(opt); goto done; } snum = atoi(slot); fnum = func ? atoi(func) : 0; if (snum < 0 || snum >= MAXSLOTS || fnum < 0 || fnum >= MAXFUNCS) { pci_parse_slot_usage(opt); goto done; } if (pci_slotinfo[snum].si_funcs[fnum].fi_name != NULL) { fprintf(stderr, "pci slot %d:%d already occupied!\n", snum, fnum); goto done; } if (pci_emul_finddev(emul) == NULL) { fprintf(stderr, "pci slot %d:%d: unknown device \"%s\"\n", snum, fnum, emul); goto done; } error = 0; pci_slotinfo[snum].si_funcs[fnum].fi_name = emul; pci_slotinfo[snum].si_funcs[fnum].fi_param = config; done: if (error) free(cpy); return (error); } static int pci_valid_pba_offset(struct pci_devinst *pi, uint64_t offset) { if (offset < pi->pi_msix.pba_offset) return (0); if (offset >= pi->pi_msix.pba_offset + pi->pi_msix.pba_size) { return (0); } return (1); } int pci_emul_msix_twrite(struct pci_devinst *pi, uint64_t offset, int size, uint64_t value) { int msix_entry_offset; int tab_index; char *dest; /* support only 4 or 8 byte writes */ if (size != 4 && size != 8) return (-1); /* * Return if table index is beyond what device supports */ tab_index = offset / MSIX_TABLE_ENTRY_SIZE; if (tab_index >= pi->pi_msix.table_count) return (-1); msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE; /* support only aligned writes */ if ((msix_entry_offset % size) != 0) return (-1); dest = (char *)(pi->pi_msix.table + tab_index); dest += msix_entry_offset; if (size == 4) *((uint32_t *)dest) = value; else *((uint64_t *)dest) = value; return (0); } uint64_t pci_emul_msix_tread(struct pci_devinst *pi, uint64_t offset, int size) { char *dest; int msix_entry_offset; int tab_index; uint64_t retval = ~0; /* * The PCI standard only allows 4 and 8 byte accesses to the MSI-X * table but we also allow 1 byte access to accomodate reads from * ddb. */ if (size != 1 && size != 4 && size != 8) return (retval); msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE; /* support only aligned reads */ if ((msix_entry_offset % size) != 0) { return (retval); } tab_index = offset / MSIX_TABLE_ENTRY_SIZE; if (tab_index < pi->pi_msix.table_count) { /* valid MSI-X Table access */ dest = (char *)(pi->pi_msix.table + tab_index); dest += msix_entry_offset; if (size == 1) retval = *((uint8_t *)dest); else if (size == 4) retval = *((uint32_t *)dest); else retval = *((uint64_t *)dest); } else if (pci_valid_pba_offset(pi, offset)) { /* return 0 for PBA access */ retval = 0; } return (retval); } int pci_msix_table_bar(struct pci_devinst *pi) { if (pi->pi_msix.table != NULL) return (pi->pi_msix.table_bar); else return (-1); } int pci_msix_pba_bar(struct pci_devinst *pi) { if (pi->pi_msix.table != NULL) return (pi->pi_msix.pba_bar); else return (-1); } static int pci_emul_io_handler(struct vmctx *ctx, int vcpu, int in, int port, int bytes, uint32_t *eax, void *arg) { struct pci_devinst *pdi = arg; struct pci_devemu *pe = pdi->pi_d; uint64_t offset; int i; for (i = 0; i <= PCI_BARMAX; i++) { if (pdi->pi_bar[i].type == PCIBAR_IO && port >= pdi->pi_bar[i].addr && port + bytes <= pdi->pi_bar[i].addr + pdi->pi_bar[i].size) { offset = port - pdi->pi_bar[i].addr; if (in) *eax = (*pe->pe_barread)(ctx, vcpu, pdi, i, offset, bytes); else (*pe->pe_barwrite)(ctx, vcpu, pdi, i, offset, bytes, *eax); return (0); } } return (-1); } static int pci_emul_mem_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr, int size, uint64_t *val, void *arg1, long arg2) { struct pci_devinst *pdi = arg1; struct pci_devemu *pe = pdi->pi_d; uint64_t offset; int bidx = (int) arg2; assert(bidx <= PCI_BARMAX); assert(pdi->pi_bar[bidx].type == PCIBAR_MEM32 || pdi->pi_bar[bidx].type == PCIBAR_MEM64); assert(addr >= pdi->pi_bar[bidx].addr && addr + size <= pdi->pi_bar[bidx].addr + pdi->pi_bar[bidx].size); offset = addr - pdi->pi_bar[bidx].addr; if (dir == MEM_F_WRITE) (*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset, size, *val); else *val = (*pe->pe_barread)(ctx, vcpu, pdi, bidx, offset, size); return (0); } static int pci_emul_alloc_resource(uint64_t *baseptr, uint64_t limit, uint64_t size, uint64_t *addr) { uint64_t base; assert((size & (size - 1)) == 0); /* must be a power of 2 */ base = roundup2(*baseptr, size); if (base + size <= limit) { *addr = base; *baseptr = base + size; return (0); } else return (-1); } int pci_emul_alloc_bar(struct pci_devinst *pdi, int idx, enum pcibar_type type, uint64_t size) { return (pci_emul_alloc_pbar(pdi, idx, 0, type, size)); } /* * Register (or unregister) the MMIO or I/O region associated with the BAR * register 'idx' of an emulated pci device. */ static void modify_bar_registration(struct pci_devinst *pi, int idx, int registration) { int error; struct inout_port iop; struct mem_range mr; switch (pi->pi_bar[idx].type) { case PCIBAR_IO: bzero(&iop, sizeof(struct inout_port)); iop.name = pi->pi_name; iop.port = pi->pi_bar[idx].addr; iop.size = pi->pi_bar[idx].size; if (registration) { iop.flags = IOPORT_F_INOUT; iop.handler = pci_emul_io_handler; iop.arg = pi; error = register_inout(&iop); } else error = unregister_inout(&iop); break; case PCIBAR_MEM32: case PCIBAR_MEM64: bzero(&mr, sizeof(struct mem_range)); mr.name = pi->pi_name; mr.base = pi->pi_bar[idx].addr; mr.size = pi->pi_bar[idx].size; if (registration) { mr.flags = MEM_F_RW; mr.handler = pci_emul_mem_handler; mr.arg1 = pi; mr.arg2 = idx; error = register_mem(&mr); } else error = unregister_mem(&mr); break; default: error = EINVAL; break; } assert(error == 0); } static void unregister_bar(struct pci_devinst *pi, int idx) { modify_bar_registration(pi, idx, 0); } static void register_bar(struct pci_devinst *pi, int idx) { modify_bar_registration(pi, idx, 1); } /* Are we decoding i/o port accesses for the emulated pci device? */ static int porten(struct pci_devinst *pi) { uint16_t cmd; cmd = pci_get_cfgdata16(pi, PCIR_COMMAND); return (cmd & PCIM_CMD_PORTEN); } /* Are we decoding memory accesses for the emulated pci device? */ static int memen(struct pci_devinst *pi) { uint16_t cmd; cmd = pci_get_cfgdata16(pi, PCIR_COMMAND); return (cmd & PCIM_CMD_MEMEN); } /* * Update the MMIO or I/O address that is decoded by the BAR register. * * If the pci device has enabled the address space decoding then intercept * the address range decoded by the BAR register. */ static void update_bar_address(struct pci_devinst *pi, uint64_t addr, int idx, int type) { int decode; if (pi->pi_bar[idx].type == PCIBAR_IO) decode = porten(pi); else decode = memen(pi); if (decode) unregister_bar(pi, idx); switch (type) { case PCIBAR_IO: case PCIBAR_MEM32: pi->pi_bar[idx].addr = addr; break; case PCIBAR_MEM64: pi->pi_bar[idx].addr &= ~0xffffffffUL; pi->pi_bar[idx].addr |= addr; break; case PCIBAR_MEMHI64: pi->pi_bar[idx].addr &= 0xffffffff; pi->pi_bar[idx].addr |= addr; break; default: assert(0); } if (decode) register_bar(pi, idx); } int pci_emul_alloc_pbar(struct pci_devinst *pdi, int idx, uint64_t hostbase, enum pcibar_type type, uint64_t size) { int error; uint64_t *baseptr, limit, addr, mask, lobits, bar; assert(idx >= 0 && idx <= PCI_BARMAX); if ((size & (size - 1)) != 0) size = 1UL << flsl(size); /* round up to a power of 2 */ /* Enforce minimum BAR sizes required by the PCI standard */ if (type == PCIBAR_IO) { if (size < 4) size = 4; } else { if (size < 16) size = 16; } switch (type) { case PCIBAR_NONE: baseptr = NULL; addr = mask = lobits = 0; break; case PCIBAR_IO: baseptr = &pci_emul_iobase; limit = PCI_EMUL_IOLIMIT; mask = PCIM_BAR_IO_BASE; lobits = PCIM_BAR_IO_SPACE; break; case PCIBAR_MEM64: /* * XXX * Some drivers do not work well if the 64-bit BAR is allocated * above 4GB. Allow for this by allocating small requests under * 4GB unless then allocation size is larger than some arbitrary * number (32MB currently). */ if (size > 32 * 1024 * 1024) { /* * XXX special case for device requiring peer-peer DMA */ if (size == 0x100000000UL) baseptr = &hostbase; else baseptr = &pci_emul_membase64; limit = PCI_EMUL_MEMLIMIT64; mask = PCIM_BAR_MEM_BASE; lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 | PCIM_BAR_MEM_PREFETCH; break; } else { baseptr = &pci_emul_membase32; limit = PCI_EMUL_MEMLIMIT32; mask = PCIM_BAR_MEM_BASE; lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64; } break; case PCIBAR_MEM32: baseptr = &pci_emul_membase32; limit = PCI_EMUL_MEMLIMIT32; mask = PCIM_BAR_MEM_BASE; lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32; break; default: printf("pci_emul_alloc_base: invalid bar type %d\n", type); assert(0); } if (baseptr != NULL) { error = pci_emul_alloc_resource(baseptr, limit, size, &addr); if (error != 0) return (error); } pdi->pi_bar[idx].type = type; pdi->pi_bar[idx].addr = addr; pdi->pi_bar[idx].size = size; /* Initialize the BAR register in config space */ bar = (addr & mask) | lobits; pci_set_cfgdata32(pdi, PCIR_BAR(idx), bar); if (type == PCIBAR_MEM64) { assert(idx + 1 <= PCI_BARMAX); pdi->pi_bar[idx + 1].type = PCIBAR_MEMHI64; pci_set_cfgdata32(pdi, PCIR_BAR(idx + 1), bar >> 32); } register_bar(pdi, idx); return (0); } #define CAP_START_OFFSET 0x40 static int pci_emul_add_capability(struct pci_devinst *pi, u_char *capdata, int caplen) { int i, capoff, capid, reallen; uint16_t sts; static u_char endofcap[4] = { PCIY_RESERVED, 0, 0, 0 }; assert(caplen > 0 && capdata[0] != PCIY_RESERVED); reallen = roundup2(caplen, 4); /* dword aligned */ sts = pci_get_cfgdata16(pi, PCIR_STATUS); if ((sts & PCIM_STATUS_CAPPRESENT) == 0) { capoff = CAP_START_OFFSET; pci_set_cfgdata8(pi, PCIR_CAP_PTR, capoff); pci_set_cfgdata16(pi, PCIR_STATUS, sts|PCIM_STATUS_CAPPRESENT); } else { capoff = pci_get_cfgdata8(pi, PCIR_CAP_PTR); while (1) { assert((capoff & 0x3) == 0); capid = pci_get_cfgdata8(pi, capoff); if (capid == PCIY_RESERVED) break; capoff = pci_get_cfgdata8(pi, capoff + 1); } } /* Check if we have enough space */ if (capoff + reallen + sizeof(endofcap) > PCI_REGMAX + 1) return (-1); /* Copy the capability */ for (i = 0; i < caplen; i++) pci_set_cfgdata8(pi, capoff + i, capdata[i]); /* Set the next capability pointer */ pci_set_cfgdata8(pi, capoff + 1, capoff + reallen); /* Copy of the reserved capability which serves as the end marker */ for (i = 0; i < sizeof(endofcap); i++) pci_set_cfgdata8(pi, capoff + reallen + i, endofcap[i]); return (0); } static struct pci_devemu * pci_emul_finddev(char *name) { struct pci_devemu **pdpp, *pdp; SET_FOREACH(pdpp, pci_devemu_set) { pdp = *pdpp; if (!strcmp(pdp->pe_emu, name)) { return (pdp); } } return (NULL); } static int pci_emul_init(struct vmctx *ctx, struct pci_devemu *pde, int slot, int func, char *params) { struct pci_devinst *pdi; int err; pdi = malloc(sizeof(struct pci_devinst)); bzero(pdi, sizeof(*pdi)); pdi->pi_vmctx = ctx; pdi->pi_bus = 0; pdi->pi_slot = slot; pdi->pi_func = func; pthread_mutex_init(&pdi->pi_lintr.lock, NULL); pdi->pi_lintr.pin = 0; pdi->pi_lintr.state = IDLE; pdi->pi_lintr.ioapic_irq = 0; pdi->pi_d = pde; snprintf(pdi->pi_name, PI_NAMESZ, "%s-pci-%d", pde->pe_emu, slot); /* Disable legacy interrupts */ pci_set_cfgdata8(pdi, PCIR_INTLINE, 255); pci_set_cfgdata8(pdi, PCIR_INTPIN, 0); pci_set_cfgdata8(pdi, PCIR_COMMAND, PCIM_CMD_PORTEN | PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN); err = (*pde->pe_init)(ctx, pdi, params); if (err != 0) { free(pdi); } else { pci_emul_devices++; pci_slotinfo[slot].si_funcs[func].fi_devi = pdi; } return (err); } void pci_populate_msicap(struct msicap *msicap, int msgnum, int nextptr) { int mmc; CTASSERT(sizeof(struct msicap) == 14); /* Number of msi messages must be a power of 2 between 1 and 32 */ assert((msgnum & (msgnum - 1)) == 0 && msgnum >= 1 && msgnum <= 32); mmc = ffs(msgnum) - 1; bzero(msicap, sizeof(struct msicap)); msicap->capid = PCIY_MSI; msicap->nextptr = nextptr; msicap->msgctrl = PCIM_MSICTRL_64BIT | (mmc << 1); } int pci_emul_add_msicap(struct pci_devinst *pi, int msgnum) { struct msicap msicap; pci_populate_msicap(&msicap, msgnum, 0); return (pci_emul_add_capability(pi, (u_char *)&msicap, sizeof(msicap))); } static void pci_populate_msixcap(struct msixcap *msixcap, int msgnum, int barnum, uint32_t msix_tab_size, int nextptr) { CTASSERT(sizeof(struct msixcap) == 12); assert(msix_tab_size % 4096 == 0); bzero(msixcap, sizeof(struct msixcap)); msixcap->capid = PCIY_MSIX; msixcap->nextptr = nextptr; /* * Message Control Register, all fields set to * zero except for the Table Size. * Note: Table size N is encoded as N-1 */ msixcap->msgctrl = msgnum - 1; /* * MSI-X BAR setup: * - MSI-X table start at offset 0 * - PBA table starts at a 4K aligned offset after the MSI-X table */ msixcap->table_info = barnum & PCIM_MSIX_BIR_MASK; msixcap->pba_info = msix_tab_size | (barnum & PCIM_MSIX_BIR_MASK); } static void pci_msix_table_init(struct pci_devinst *pi, int table_entries) { int i, table_size; assert(table_entries > 0); assert(table_entries <= MAX_MSIX_TABLE_ENTRIES); table_size = table_entries * MSIX_TABLE_ENTRY_SIZE; pi->pi_msix.table = malloc(table_size); bzero(pi->pi_msix.table, table_size); /* set mask bit of vector control register */ for (i = 0; i < table_entries; i++) pi->pi_msix.table[i].vector_control |= PCIM_MSIX_VCTRL_MASK; } int pci_emul_add_msixcap(struct pci_devinst *pi, int msgnum, int barnum) { uint16_t pba_index; uint32_t tab_size; struct msixcap msixcap; assert(msgnum >= 1 && msgnum <= MAX_MSIX_TABLE_ENTRIES); assert(barnum >= 0 && barnum <= PCIR_MAX_BAR_0); tab_size = msgnum * MSIX_TABLE_ENTRY_SIZE; /* Align table size to nearest 4K */ tab_size = roundup2(tab_size, 4096); pi->pi_msix.table_bar = barnum; pi->pi_msix.pba_bar = barnum; pi->pi_msix.table_offset = 0; pi->pi_msix.table_count = msgnum; pi->pi_msix.pba_offset = tab_size; /* calculate the MMIO size required for MSI-X PBA */ pba_index = (msgnum - 1) / (PBA_TABLE_ENTRY_SIZE * 8); pi->pi_msix.pba_size = (pba_index + 1) * PBA_TABLE_ENTRY_SIZE; pci_msix_table_init(pi, msgnum); pci_populate_msixcap(&msixcap, msgnum, barnum, tab_size, 0); /* allocate memory for MSI-X Table and PBA */ pci_emul_alloc_bar(pi, barnum, PCIBAR_MEM32, tab_size + pi->pi_msix.pba_size); return (pci_emul_add_capability(pi, (u_char *)&msixcap, sizeof(msixcap))); } void msixcap_cfgwrite(struct pci_devinst *pi, int capoff, int offset, int bytes, uint32_t val) { uint16_t msgctrl, rwmask; int off, table_bar; off = offset - capoff; table_bar = pi->pi_msix.table_bar; /* Message Control Register */ if (off == 2 && bytes == 2) { rwmask = PCIM_MSIXCTRL_MSIX_ENABLE | PCIM_MSIXCTRL_FUNCTION_MASK; msgctrl = pci_get_cfgdata16(pi, offset); msgctrl &= ~rwmask; msgctrl |= val & rwmask; val = msgctrl; pi->pi_msix.enabled = val & PCIM_MSIXCTRL_MSIX_ENABLE; pi->pi_msix.function_mask = val & PCIM_MSIXCTRL_FUNCTION_MASK; pci_lintr_update(pi); } CFGWRITE(pi, offset, val, bytes); } void msicap_cfgwrite(struct pci_devinst *pi, int capoff, int offset, int bytes, uint32_t val) { uint16_t msgctrl, rwmask, msgdata, mme; uint32_t addrlo; /* * If guest is writing to the message control register make sure * we do not overwrite read-only fields. */ if ((offset - capoff) == 2 && bytes == 2) { rwmask = PCIM_MSICTRL_MME_MASK | PCIM_MSICTRL_MSI_ENABLE; msgctrl = pci_get_cfgdata16(pi, offset); msgctrl &= ~rwmask; msgctrl |= val & rwmask; val = msgctrl; addrlo = pci_get_cfgdata32(pi, capoff + 4); if (msgctrl & PCIM_MSICTRL_64BIT) msgdata = pci_get_cfgdata16(pi, capoff + 12); else msgdata = pci_get_cfgdata16(pi, capoff + 8); mme = msgctrl & PCIM_MSICTRL_MME_MASK; pi->pi_msi.enabled = msgctrl & PCIM_MSICTRL_MSI_ENABLE ? 1 : 0; if (pi->pi_msi.enabled) { pi->pi_msi.addr = addrlo; pi->pi_msi.msg_data = msgdata; pi->pi_msi.maxmsgnum = 1 << (mme >> 4); } else { pi->pi_msi.maxmsgnum = 0; } pci_lintr_update(pi); } CFGWRITE(pi, offset, val, bytes); } void pciecap_cfgwrite(struct pci_devinst *pi, int capoff, int offset, int bytes, uint32_t val) { /* XXX don't write to the readonly parts */ CFGWRITE(pi, offset, val, bytes); } #define PCIECAP_VERSION 0x2 int pci_emul_add_pciecap(struct pci_devinst *pi, int type) { int err; struct pciecap pciecap; CTASSERT(sizeof(struct pciecap) == 60); if (type != PCIEM_TYPE_ROOT_PORT) return (-1); bzero(&pciecap, sizeof(pciecap)); pciecap.capid = PCIY_EXPRESS; pciecap.pcie_capabilities = PCIECAP_VERSION | PCIEM_TYPE_ROOT_PORT; pciecap.link_capabilities = 0x411; /* gen1, x1 */ pciecap.link_status = 0x11; /* gen1, x1 */ err = pci_emul_add_capability(pi, (u_char *)&pciecap, sizeof(pciecap)); return (err); } /* * This function assumes that 'coff' is in the capabilities region of the * config space. */ static void pci_emul_capwrite(struct pci_devinst *pi, int offset, int bytes, uint32_t val) { int capid; uint8_t capoff, nextoff; /* Do not allow un-aligned writes */ if ((offset & (bytes - 1)) != 0) return; /* Find the capability that we want to update */ capoff = CAP_START_OFFSET; while (1) { capid = pci_get_cfgdata8(pi, capoff); if (capid == PCIY_RESERVED) break; nextoff = pci_get_cfgdata8(pi, capoff + 1); if (offset >= capoff && offset < nextoff) break; capoff = nextoff; } assert(offset >= capoff); /* * Capability ID and Next Capability Pointer are readonly. * However, some o/s's do 4-byte writes that include these. * For this case, trim the write back to 2 bytes and adjust * the data. */ if (offset == capoff || offset == capoff + 1) { if (offset == capoff && bytes == 4) { bytes = 2; offset += 2; val >>= 16; } else return; } switch (capid) { case PCIY_MSI: msicap_cfgwrite(pi, capoff, offset, bytes, val); break; case PCIY_MSIX: msixcap_cfgwrite(pi, capoff, offset, bytes, val); break; case PCIY_EXPRESS: pciecap_cfgwrite(pi, capoff, offset, bytes, val); break; default: break; } } static int pci_emul_iscap(struct pci_devinst *pi, int offset) { int found; uint16_t sts; uint8_t capid, lastoff; found = 0; sts = pci_get_cfgdata16(pi, PCIR_STATUS); if ((sts & PCIM_STATUS_CAPPRESENT) != 0) { lastoff = pci_get_cfgdata8(pi, PCIR_CAP_PTR); while (1) { assert((lastoff & 0x3) == 0); capid = pci_get_cfgdata8(pi, lastoff); if (capid == PCIY_RESERVED) break; lastoff = pci_get_cfgdata8(pi, lastoff + 1); } if (offset >= CAP_START_OFFSET && offset <= lastoff) found = 1; } return (found); } static int pci_emul_fallback_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr, int size, uint64_t *val, void *arg1, long arg2) { /* * Ignore writes; return 0xff's for reads. The mem read code * will take care of truncating to the correct size. */ if (dir == MEM_F_READ) { *val = 0xffffffffffffffff; } return (0); } int init_pci(struct vmctx *ctx) { struct pci_devemu *pde; struct funcinfo *fi; size_t lowmem; int slot, func; int error; pci_emul_iobase = PCI_EMUL_IOBASE; pci_emul_membase32 = vm_get_lowmem_limit(ctx); pci_emul_membase64 = PCI_EMUL_MEMBASE64; for (slot = 0; slot < MAXSLOTS; slot++) { for (func = 0; func < MAXFUNCS; func++) { fi = &pci_slotinfo[slot].si_funcs[func]; if (fi->fi_name != NULL) { pde = pci_emul_finddev(fi->fi_name); assert(pde != NULL); error = pci_emul_init(ctx, pde, slot, func, fi->fi_param); if (error) return (error); } } } /* * The guest physical memory map looks like the following: * [0, lowmem) guest system memory * [lowmem, lowmem_limit) memory hole (may be absent) * [lowmem_limit, 4GB) PCI hole (32-bit BAR allocation) * [4GB, 4GB + highmem) * * Accesses to memory addresses that are not allocated to system * memory or PCI devices return 0xff's. */ error = vm_get_memory_seg(ctx, 0, &lowmem, NULL); assert(error == 0); memset(&pci_mem_hole, 0, sizeof(struct mem_range)); pci_mem_hole.name = "PCI hole"; pci_mem_hole.flags = MEM_F_RW; pci_mem_hole.base = lowmem; pci_mem_hole.size = (4ULL * 1024 * 1024 * 1024) - lowmem; pci_mem_hole.handler = pci_emul_fallback_handler; error = register_mem_fallback(&pci_mem_hole); assert(error == 0); return (0); } static void pci_prt_entry(int slot, int pin, int ioapic_irq, void *arg) { int *count; count = arg; dsdt_line(" Package (0x04)"); dsdt_line(" {"); dsdt_line(" 0x%X,", slot << 16 | 0xffff); dsdt_line(" 0x%02X,", pin - 1); dsdt_line(" Zero,"); dsdt_line(" 0x%X", ioapic_irq); dsdt_line(" }%s", *count == 1 ? "" : ","); (*count)--; } void pci_write_dsdt(void) { struct pci_devinst *pi; int count, slot, func; dsdt_indent(1); dsdt_line("Scope (_SB)"); dsdt_line("{"); dsdt_line(" Device (PCI0)"); dsdt_line(" {"); dsdt_line(" Name (_HID, EisaId (\"PNP0A03\"))"); dsdt_line(" Name (_ADR, Zero)"); dsdt_line(" Name (_CRS, ResourceTemplate ()"); dsdt_line(" {"); dsdt_line(" WordBusNumber (ResourceProducer, MinFixed, " "MaxFixed, PosDecode,"); dsdt_line(" 0x0000, // Granularity"); dsdt_line(" 0x0000, // Range Minimum"); dsdt_line(" 0x00FF, // Range Maximum"); dsdt_line(" 0x0000, // Translation Offset"); dsdt_line(" 0x0100, // Length"); dsdt_line(" ,, )"); dsdt_indent(3); dsdt_fixed_ioport(0xCF8, 8); dsdt_unindent(3); dsdt_line(" WordIO (ResourceProducer, MinFixed, MaxFixed, " "PosDecode, EntireRange,"); dsdt_line(" 0x0000, // Granularity"); dsdt_line(" 0x0000, // Range Minimum"); dsdt_line(" 0x0CF7, // Range Maximum"); dsdt_line(" 0x0000, // Translation Offset"); dsdt_line(" 0x0CF8, // Length"); dsdt_line(" ,, , TypeStatic)"); dsdt_line(" WordIO (ResourceProducer, MinFixed, MaxFixed, " "PosDecode, EntireRange,"); dsdt_line(" 0x0000, // Granularity"); dsdt_line(" 0x0D00, // Range Minimum"); dsdt_line(" 0xFFFF, // Range Maximum"); dsdt_line(" 0x0000, // Translation Offset"); dsdt_line(" 0xF300, // Length"); dsdt_line(" ,, , TypeStatic)"); dsdt_line(" DWordMemory (ResourceProducer, PosDecode, " "MinFixed, MaxFixed, NonCacheable, ReadWrite,"); dsdt_line(" 0x00000000, // Granularity"); dsdt_line(" 0x%08lX, // Range Minimum\n", pci_mem_hole.base); dsdt_line(" 0x%08X, // Range Maximum\n", PCI_EMUL_MEMLIMIT32 - 1); dsdt_line(" 0x00000000, // Translation Offset"); dsdt_line(" 0x%08lX, // Length\n", PCI_EMUL_MEMLIMIT32 - pci_mem_hole.base); dsdt_line(" ,, , AddressRangeMemory, TypeStatic)"); dsdt_line(" QWordMemory (ResourceProducer, PosDecode, " "MinFixed, MaxFixed, NonCacheable, ReadWrite,"); dsdt_line(" 0x0000000000000000, // Granularity"); dsdt_line(" 0x%016lX, // Range Minimum\n", PCI_EMUL_MEMBASE64); dsdt_line(" 0x%016lX, // Range Maximum\n", PCI_EMUL_MEMLIMIT64 - 1); dsdt_line(" 0x0000000000000000, // Translation Offset"); dsdt_line(" 0x%016lX, // Length\n", PCI_EMUL_MEMLIMIT64 - PCI_EMUL_MEMBASE64); dsdt_line(" ,, , AddressRangeMemory, TypeStatic)"); dsdt_line(" })"); count = pci_count_lintr(); if (count != 0) { dsdt_indent(2); dsdt_line("Name (_PRT, Package (0x%02X)", count); dsdt_line("{"); pci_walk_lintr(pci_prt_entry, &count); dsdt_line("})"); dsdt_unindent(2); } dsdt_indent(2); for (slot = 0; slot < MAXSLOTS; slot++) { for (func = 0; func < MAXFUNCS; func++) { pi = pci_slotinfo[slot].si_funcs[func].fi_devi; if (pi != NULL && pi->pi_d->pe_write_dsdt != NULL) pi->pi_d->pe_write_dsdt(pi); } } dsdt_unindent(2); dsdt_line(" }"); dsdt_line("}"); dsdt_unindent(1); } int pci_msi_enabled(struct pci_devinst *pi) { return (pi->pi_msi.enabled); } int pci_msi_maxmsgnum(struct pci_devinst *pi) { if (pi->pi_msi.enabled) return (pi->pi_msi.maxmsgnum); else return (0); } int pci_msix_enabled(struct pci_devinst *pi) { return (pi->pi_msix.enabled && !pi->pi_msi.enabled); } void pci_generate_msix(struct pci_devinst *pi, int index) { struct msix_table_entry *mte; if (!pci_msix_enabled(pi)) return; if (pi->pi_msix.function_mask) return; if (index >= pi->pi_msix.table_count) return; mte = &pi->pi_msix.table[index]; if ((mte->vector_control & PCIM_MSIX_VCTRL_MASK) == 0) { /* XXX Set PBA bit if interrupt is disabled */ vm_lapic_msi(pi->pi_vmctx, mte->addr, mte->msg_data); } } void pci_generate_msi(struct pci_devinst *pi, int index) { if (pci_msi_enabled(pi) && index < pci_msi_maxmsgnum(pi)) { vm_lapic_msi(pi->pi_vmctx, pi->pi_msi.addr, pi->pi_msi.msg_data + index); } } static bool pci_lintr_permitted(struct pci_devinst *pi) { uint16_t cmd; cmd = pci_get_cfgdata16(pi, PCIR_COMMAND); return (!(pi->pi_msi.enabled || pi->pi_msix.enabled || (cmd & PCIM_CMD_INTxDIS))); } int pci_lintr_request(struct pci_devinst *pi) { struct slotinfo *si; int bestpin, bestcount, irq, pin; /* * First, allocate a pin from our slot. */ si = &pci_slotinfo[pi->pi_slot]; bestpin = 0; bestcount = si->si_intpins[0].ii_count; for (pin = 1; pin < 4; pin++) { if (si->si_intpins[pin].ii_count < bestcount) { bestpin = pin; bestcount = si->si_intpins[pin].ii_count; } } /* * Attempt to allocate an I/O APIC pin for this intpin. If * 8259A support is added we will need a separate field to * assign the intpin to an input pin on the PCI interrupt * router. */ if (si->si_intpins[bestpin].ii_count == 0) { irq = ioapic_pci_alloc_irq(); if (irq < 0) return (-1); si->si_intpins[bestpin].ii_ioapic_irq = irq; } else irq = si->si_intpins[bestpin].ii_ioapic_irq; si->si_intpins[bestpin].ii_count++; pi->pi_lintr.pin = bestpin + 1; pi->pi_lintr.ioapic_irq = irq; pci_set_cfgdata8(pi, PCIR_INTLINE, irq); pci_set_cfgdata8(pi, PCIR_INTPIN, bestpin + 1); return (0); } void pci_lintr_assert(struct pci_devinst *pi) { assert(pi->pi_lintr.pin > 0); pthread_mutex_lock(&pi->pi_lintr.lock); if (pi->pi_lintr.state == IDLE) { if (pci_lintr_permitted(pi)) { pi->pi_lintr.state = ASSERTED; vm_ioapic_assert_irq(pi->pi_vmctx, pi->pi_lintr.ioapic_irq); } else pi->pi_lintr.state = PENDING; } pthread_mutex_unlock(&pi->pi_lintr.lock); } void pci_lintr_deassert(struct pci_devinst *pi) { assert(pi->pi_lintr.pin > 0); pthread_mutex_lock(&pi->pi_lintr.lock); if (pi->pi_lintr.state == ASSERTED) { pi->pi_lintr.state = IDLE; vm_ioapic_deassert_irq(pi->pi_vmctx, pi->pi_lintr.ioapic_irq); } else if (pi->pi_lintr.state == PENDING) pi->pi_lintr.state = IDLE; pthread_mutex_unlock(&pi->pi_lintr.lock); } static void pci_lintr_update(struct pci_devinst *pi) { pthread_mutex_lock(&pi->pi_lintr.lock); if (pi->pi_lintr.state == ASSERTED && !pci_lintr_permitted(pi)) { vm_ioapic_deassert_irq(pi->pi_vmctx, pi->pi_lintr.ioapic_irq); pi->pi_lintr.state = PENDING; } else if (pi->pi_lintr.state == PENDING && pci_lintr_permitted(pi)) { pi->pi_lintr.state = ASSERTED; vm_ioapic_assert_irq(pi->pi_vmctx, pi->pi_lintr.ioapic_irq); } pthread_mutex_unlock(&pi->pi_lintr.lock); } int pci_count_lintr(void) { int count, slot, pin; count = 0; for (slot = 0; slot < MAXSLOTS; slot++) { for (pin = 0; pin < 4; pin++) { if (pci_slotinfo[slot].si_intpins[pin].ii_count != 0) count++; } } return (count); } void pci_walk_lintr(pci_lintr_cb cb, void *arg) { struct intxinfo *ii; int slot, pin; for (slot = 0; slot < MAXSLOTS; slot++) { for (pin = 0; pin < 4; pin++) { ii = &pci_slotinfo[slot].si_intpins[pin]; if (ii->ii_count != 0) cb(slot, pin + 1, ii->ii_ioapic_irq, arg); } } } /* * Return 1 if the emulated device in 'slot' is a multi-function device. * Return 0 otherwise. */ static int pci_emul_is_mfdev(int slot) { int f, numfuncs; numfuncs = 0; for (f = 0; f < MAXFUNCS; f++) { if (pci_slotinfo[slot].si_funcs[f].fi_devi != NULL) { numfuncs++; } } return (numfuncs > 1); } /* * Ensure that the PCIM_MFDEV bit is properly set (or unset) depending on * whether or not is a multi-function being emulated in the pci 'slot'. */ static void pci_emul_hdrtype_fixup(int slot, int off, int bytes, uint32_t *rv) { int mfdev; if (off <= PCIR_HDRTYPE && off + bytes > PCIR_HDRTYPE) { mfdev = pci_emul_is_mfdev(slot); switch (bytes) { case 1: case 2: *rv &= ~PCIM_MFDEV; if (mfdev) { *rv |= PCIM_MFDEV; } break; case 4: *rv &= ~(PCIM_MFDEV << 16); if (mfdev) { *rv |= (PCIM_MFDEV << 16); } break; } } } static int cfgbus, cfgslot, cfgfunc, cfgoff; static int pci_emul_cfgaddr(struct vmctx *ctx, int vcpu, int in, int port, int bytes, uint32_t *eax, void *arg) { uint32_t x; if (bytes != 4) { if (in) *eax = (bytes == 2) ? 0xffff : 0xff; return (0); } if (in) { x = (cfgbus << 16) | (cfgslot << 11) | (cfgfunc << 8) | cfgoff; *eax = x | CONF1_ENABLE; } else { x = *eax; cfgoff = x & PCI_REGMAX; cfgfunc = (x >> 8) & PCI_FUNCMAX; cfgslot = (x >> 11) & PCI_SLOTMAX; cfgbus = (x >> 16) & PCI_BUSMAX; } return (0); } INOUT_PORT(pci_cfgaddr, CONF1_ADDR_PORT, IOPORT_F_INOUT, pci_emul_cfgaddr); static uint32_t bits_changed(uint32_t old, uint32_t new, uint32_t mask) { return ((old ^ new) & mask); } static void pci_emul_cmdwrite(struct pci_devinst *pi, uint32_t new, int bytes) { int i; uint16_t old; /* * The command register is at an offset of 4 bytes and thus the * guest could write 1, 2 or 4 bytes starting at this offset. */ old = pci_get_cfgdata16(pi, PCIR_COMMAND); /* stash old value */ CFGWRITE(pi, PCIR_COMMAND, new, bytes); /* update config */ new = pci_get_cfgdata16(pi, PCIR_COMMAND); /* get updated value */ /* * If the MMIO or I/O address space decoding has changed then * register/unregister all BARs that decode that address space. */ for (i = 0; i <= PCI_BARMAX; i++) { switch (pi->pi_bar[i].type) { case PCIBAR_NONE: case PCIBAR_MEMHI64: break; case PCIBAR_IO: /* I/O address space decoding changed? */ if (bits_changed(old, new, PCIM_CMD_PORTEN)) { if (porten(pi)) register_bar(pi, i); else unregister_bar(pi, i); } break; case PCIBAR_MEM32: case PCIBAR_MEM64: /* MMIO address space decoding changed? */ if (bits_changed(old, new, PCIM_CMD_MEMEN)) { if (memen(pi)) register_bar(pi, i); else unregister_bar(pi, i); } break; default: assert(0); } } /* * If INTx has been unmasked and is pending, assert the * interrupt. */ pci_lintr_update(pi); } static int pci_emul_cfgdata(struct vmctx *ctx, int vcpu, int in, int port, int bytes, uint32_t *eax, void *arg) { struct pci_devinst *pi; struct pci_devemu *pe; int coff, idx, needcfg; uint64_t addr, bar, mask; assert(bytes == 1 || bytes == 2 || bytes == 4); if (cfgbus == 0) pi = pci_slotinfo[cfgslot].si_funcs[cfgfunc].fi_devi; else pi = NULL; coff = cfgoff + (port - CONF1_DATA_PORT); #if 0 printf("pcicfg-%s from 0x%0x of %d bytes (%d/%d/%d)\n\r", in ? "read" : "write", coff, bytes, cfgbus, cfgslot, cfgfunc); #endif /* * Just return if there is no device at this cfgslot:cfgfunc or * if the guest is doing an un-aligned access */ if (pi == NULL || (coff & (bytes - 1)) != 0) { if (in) *eax = 0xffffffff; return (0); } pe = pi->pi_d; /* * Config read */ if (in) { /* Let the device emulation override the default handler */ if (pe->pe_cfgread != NULL) { needcfg = pe->pe_cfgread(ctx, vcpu, pi, coff, bytes, eax); } else { needcfg = 1; } if (needcfg) { if (bytes == 1) *eax = pci_get_cfgdata8(pi, coff); else if (bytes == 2) *eax = pci_get_cfgdata16(pi, coff); else *eax = pci_get_cfgdata32(pi, coff); } pci_emul_hdrtype_fixup(cfgslot, coff, bytes, eax); } else { /* Let the device emulation override the default handler */ if (pe->pe_cfgwrite != NULL && (*pe->pe_cfgwrite)(ctx, vcpu, pi, coff, bytes, *eax) == 0) return (0); /* * Special handling for write to BAR registers */ if (coff >= PCIR_BAR(0) && coff < PCIR_BAR(PCI_BARMAX + 1)) { /* * Ignore writes to BAR registers that are not * 4-byte aligned. */ if (bytes != 4 || (coff & 0x3) != 0) return (0); idx = (coff - PCIR_BAR(0)) / 4; mask = ~(pi->pi_bar[idx].size - 1); switch (pi->pi_bar[idx].type) { case PCIBAR_NONE: pi->pi_bar[idx].addr = bar = 0; break; case PCIBAR_IO: addr = *eax & mask; addr &= 0xffff; bar = addr | PCIM_BAR_IO_SPACE; /* * Register the new BAR value for interception */ if (addr != pi->pi_bar[idx].addr) { update_bar_address(pi, addr, idx, PCIBAR_IO); } break; case PCIBAR_MEM32: addr = bar = *eax & mask; bar |= PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32; if (addr != pi->pi_bar[idx].addr) { update_bar_address(pi, addr, idx, PCIBAR_MEM32); } break; case PCIBAR_MEM64: addr = bar = *eax & mask; bar |= PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 | PCIM_BAR_MEM_PREFETCH; if (addr != (uint32_t)pi->pi_bar[idx].addr) { update_bar_address(pi, addr, idx, PCIBAR_MEM64); } break; case PCIBAR_MEMHI64: mask = ~(pi->pi_bar[idx - 1].size - 1); addr = ((uint64_t)*eax << 32) & mask; bar = addr >> 32; if (bar != pi->pi_bar[idx - 1].addr >> 32) { update_bar_address(pi, addr, idx - 1, PCIBAR_MEMHI64); } break; default: assert(0); } pci_set_cfgdata32(pi, coff, bar); } else if (pci_emul_iscap(pi, coff)) { pci_emul_capwrite(pi, coff, bytes, *eax); } else if (coff == PCIR_COMMAND) { pci_emul_cmdwrite(pi, *eax, bytes); } else { CFGWRITE(pi, coff, *eax, bytes); } } return (0); } INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+0, IOPORT_F_INOUT, pci_emul_cfgdata); INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+1, IOPORT_F_INOUT, pci_emul_cfgdata); INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+2, IOPORT_F_INOUT, pci_emul_cfgdata); INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+3, IOPORT_F_INOUT, pci_emul_cfgdata); /* * I/O ports to configure PCI IRQ routing. We ignore all writes to it. */ static int pci_irq_port_handler(struct vmctx *ctx, int vcpu, int in, int port, int bytes, uint32_t *eax, void *arg) { assert(in == 0); return (0); } INOUT_PORT(pci_irq, 0xC00, IOPORT_F_OUT, pci_irq_port_handler); INOUT_PORT(pci_irq, 0xC01, IOPORT_F_OUT, pci_irq_port_handler); SYSRES_IO(0xC00, 2); #define PCI_EMUL_TEST #ifdef PCI_EMUL_TEST /* * Define a dummy test device */ #define DIOSZ 20 #define DMEMSZ 4096 struct pci_emul_dsoftc { uint8_t ioregs[DIOSZ]; uint8_t memregs[DMEMSZ]; }; #define PCI_EMUL_MSI_MSGS 4 #define PCI_EMUL_MSIX_MSGS 16 static int pci_emul_dinit(struct vmctx *ctx, struct pci_devinst *pi, char *opts) { int error; struct pci_emul_dsoftc *sc; sc = malloc(sizeof(struct pci_emul_dsoftc)); memset(sc, 0, sizeof(struct pci_emul_dsoftc)); pi->pi_arg = sc; pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0001); pci_set_cfgdata16(pi, PCIR_VENDOR, 0x10DD); pci_set_cfgdata8(pi, PCIR_CLASS, 0x02); error = pci_emul_add_msicap(pi, PCI_EMUL_MSI_MSGS); assert(error == 0); error = pci_emul_alloc_bar(pi, 0, PCIBAR_IO, DIOSZ); assert(error == 0); error = pci_emul_alloc_bar(pi, 1, PCIBAR_MEM32, DMEMSZ); assert(error == 0); return (0); } static void pci_emul_diow(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx, uint64_t offset, int size, uint64_t value) { int i; struct pci_emul_dsoftc *sc = pi->pi_arg; if (baridx == 0) { if (offset + size > DIOSZ) { printf("diow: iow too large, offset %ld size %d\n", offset, size); return; } if (size == 1) { sc->ioregs[offset] = value & 0xff; } else if (size == 2) { *(uint16_t *)&sc->ioregs[offset] = value & 0xffff; } else if (size == 4) { *(uint32_t *)&sc->ioregs[offset] = value; } else { printf("diow: iow unknown size %d\n", size); } /* * Special magic value to generate an interrupt */ if (offset == 4 && size == 4 && pci_msi_enabled(pi)) pci_generate_msi(pi, value % pci_msi_maxmsgnum(pi)); if (value == 0xabcdef) { for (i = 0; i < pci_msi_maxmsgnum(pi); i++) pci_generate_msi(pi, i); } } if (baridx == 1) { if (offset + size > DMEMSZ) { printf("diow: memw too large, offset %ld size %d\n", offset, size); return; } if (size == 1) { sc->memregs[offset] = value; } else if (size == 2) { *(uint16_t *)&sc->memregs[offset] = value; } else if (size == 4) { *(uint32_t *)&sc->memregs[offset] = value; } else if (size == 8) { *(uint64_t *)&sc->memregs[offset] = value; } else { printf("diow: memw unknown size %d\n", size); } /* * magic interrupt ?? */ } if (baridx > 1) { printf("diow: unknown bar idx %d\n", baridx); } } static uint64_t pci_emul_dior(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx, uint64_t offset, int size) { struct pci_emul_dsoftc *sc = pi->pi_arg; uint32_t value; if (baridx == 0) { if (offset + size > DIOSZ) { printf("dior: ior too large, offset %ld size %d\n", offset, size); return (0); } if (size == 1) { value = sc->ioregs[offset]; } else if (size == 2) { value = *(uint16_t *) &sc->ioregs[offset]; } else if (size == 4) { value = *(uint32_t *) &sc->ioregs[offset]; } else { printf("dior: ior unknown size %d\n", size); } } if (baridx == 1) { if (offset + size > DMEMSZ) { printf("dior: memr too large, offset %ld size %d\n", offset, size); return (0); } if (size == 1) { value = sc->memregs[offset]; } else if (size == 2) { value = *(uint16_t *) &sc->memregs[offset]; } else if (size == 4) { value = *(uint32_t *) &sc->memregs[offset]; } else if (size == 8) { value = *(uint64_t *) &sc->memregs[offset]; } else { printf("dior: ior unknown size %d\n", size); } } if (baridx > 1) { printf("dior: unknown bar idx %d\n", baridx); return (0); } return (value); } struct pci_devemu pci_dummy = { .pe_emu = "dummy", .pe_init = pci_emul_dinit, .pe_barwrite = pci_emul_diow, .pe_barread = pci_emul_dior }; PCI_EMUL_SET(pci_dummy); #endif /* PCI_EMUL_TEST */