/** * Range.js * * Copyright 2009, Moxiecode Systems AB * Released under LGPL License. * * License: http://tinymce.moxiecode.com/license * Contributing: http://tinymce.moxiecode.com/contributing */ (function(ns) { // Range constructor function Range(dom) { var t = this, doc = dom.doc, EXTRACT = 0, CLONE = 1, DELETE = 2, TRUE = true, FALSE = false, START_OFFSET = 'startOffset', START_CONTAINER = 'startContainer', END_CONTAINER = 'endContainer', END_OFFSET = 'endOffset', extend = tinymce.extend, nodeIndex = dom.nodeIndex; extend(t, { // Inital states startContainer : doc, startOffset : 0, endContainer : doc, endOffset : 0, collapsed : TRUE, commonAncestorContainer : doc, // Range constants START_TO_START : 0, START_TO_END : 1, END_TO_END : 2, END_TO_START : 3, // Public methods setStart : setStart, setEnd : setEnd, setStartBefore : setStartBefore, setStartAfter : setStartAfter, setEndBefore : setEndBefore, setEndAfter : setEndAfter, collapse : collapse, selectNode : selectNode, selectNodeContents : selectNodeContents, compareBoundaryPoints : compareBoundaryPoints, deleteContents : deleteContents, extractContents : extractContents, cloneContents : cloneContents, insertNode : insertNode, surroundContents : surroundContents, cloneRange : cloneRange }); function setStart(n, o) { _setEndPoint(TRUE, n, o); }; function setEnd(n, o) { _setEndPoint(FALSE, n, o); }; function setStartBefore(n) { setStart(n.parentNode, nodeIndex(n)); }; function setStartAfter(n) { setStart(n.parentNode, nodeIndex(n) + 1); }; function setEndBefore(n) { setEnd(n.parentNode, nodeIndex(n)); }; function setEndAfter(n) { setEnd(n.parentNode, nodeIndex(n) + 1); }; function collapse(ts) { if (ts) { t[END_CONTAINER] = t[START_CONTAINER]; t[END_OFFSET] = t[START_OFFSET]; } else { t[START_CONTAINER] = t[END_CONTAINER]; t[START_OFFSET] = t[END_OFFSET]; } t.collapsed = TRUE; }; function selectNode(n) { setStartBefore(n); setEndAfter(n); }; function selectNodeContents(n) { setStart(n, 0); setEnd(n, n.nodeType === 1 ? n.childNodes.length : n.nodeValue.length); }; function compareBoundaryPoints(h, r) { var sc = t[START_CONTAINER], so = t[START_OFFSET], ec = t[END_CONTAINER], eo = t[END_OFFSET], rsc = r.startContainer, rso = r.startOffset, rec = r.endContainer, reo = r.endOffset; // Check START_TO_START if (h === 0) return _compareBoundaryPoints(sc, so, rsc, rso); // Check START_TO_END if (h === 1) return _compareBoundaryPoints(ec, eo, rsc, rso); // Check END_TO_END if (h === 2) return _compareBoundaryPoints(ec, eo, rec, reo); // Check END_TO_START if (h === 3) return _compareBoundaryPoints(sc, so, rec, reo); }; function deleteContents() { _traverse(DELETE); }; function extractContents() { return _traverse(EXTRACT); }; function cloneContents() { return _traverse(CLONE); }; function insertNode(n) { var startContainer = this[START_CONTAINER], startOffset = this[START_OFFSET], nn, o; // Node is TEXT_NODE or CDATA if ((startContainer.nodeType === 3 || startContainer.nodeType === 4) && startContainer.nodeValue) { if (!startOffset) { // At the start of text startContainer.parentNode.insertBefore(n, startContainer); } else if (startOffset >= startContainer.nodeValue.length) { // At the end of text dom.insertAfter(n, startContainer); } else { // Middle, need to split nn = startContainer.splitText(startOffset); startContainer.parentNode.insertBefore(n, nn); } } else { // Insert element node if (startContainer.childNodes.length > 0) o = startContainer.childNodes[startOffset]; if (o) startContainer.insertBefore(n, o); else startContainer.appendChild(n); } }; function surroundContents(n) { var f = t.extractContents(); t.insertNode(n); n.appendChild(f); t.selectNode(n); }; function cloneRange() { return extend(new Range(dom), { startContainer : t[START_CONTAINER], startOffset : t[START_OFFSET], endContainer : t[END_CONTAINER], endOffset : t[END_OFFSET], collapsed : t.collapsed, commonAncestorContainer : t.commonAncestorContainer }); }; // Private methods function _getSelectedNode(container, offset) { var child; if (container.nodeType == 3 /* TEXT_NODE */) return container; if (offset < 0) return container; child = container.firstChild; while (child && offset > 0) { --offset; child = child.nextSibling; } if (child) return child; return container; }; function _isCollapsed() { return (t[START_CONTAINER] == t[END_CONTAINER] && t[START_OFFSET] == t[END_OFFSET]); }; function _compareBoundaryPoints(containerA, offsetA, containerB, offsetB) { var c, offsetC, n, cmnRoot, childA, childB; // In the first case the boundary-points have the same container. A is before B // if its offset is less than the offset of B, A is equal to B if its offset is // equal to the offset of B, and A is after B if its offset is greater than the // offset of B. if (containerA == containerB) { if (offsetA == offsetB) return 0; // equal if (offsetA < offsetB) return -1; // before return 1; // after } // In the second case a child node C of the container of A is an ancestor // container of B. In this case, A is before B if the offset of A is less than or // equal to the index of the child node C and A is after B otherwise. c = containerB; while (c && c.parentNode != containerA) c = c.parentNode; if (c) { offsetC = 0; n = containerA.firstChild; while (n != c && offsetC < offsetA) { offsetC++; n = n.nextSibling; } if (offsetA <= offsetC) return -1; // before return 1; // after } // In the third case a child node C of the container of B is an ancestor container // of A. In this case, A is before B if the index of the child node C is less than // the offset of B and A is after B otherwise. c = containerA; while (c && c.parentNode != containerB) { c = c.parentNode; } if (c) { offsetC = 0; n = containerB.firstChild; while (n != c && offsetC < offsetB) { offsetC++; n = n.nextSibling; } if (offsetC < offsetB) return -1; // before return 1; // after } // In the fourth case, none of three other cases hold: the containers of A and B // are siblings or descendants of sibling nodes. In this case, A is before B if // the container of A is before the container of B in a pre-order traversal of the // Ranges' context tree and A is after B otherwise. cmnRoot = dom.findCommonAncestor(containerA, containerB); childA = containerA; while (childA && childA.parentNode != cmnRoot) childA = childA.parentNode; if (!childA) childA = cmnRoot; childB = containerB; while (childB && childB.parentNode != cmnRoot) childB = childB.parentNode; if (!childB) childB = cmnRoot; if (childA == childB) return 0; // equal n = cmnRoot.firstChild; while (n) { if (n == childA) return -1; // before if (n == childB) return 1; // after n = n.nextSibling; } }; function _setEndPoint(st, n, o) { var ec, sc; if (st) { t[START_CONTAINER] = n; t[START_OFFSET] = o; } else { t[END_CONTAINER] = n; t[END_OFFSET] = o; } // If one boundary-point of a Range is set to have a root container // other than the current one for the Range, the Range is collapsed to // the new position. This enforces the restriction that both boundary- // points of a Range must have the same root container. ec = t[END_CONTAINER]; while (ec.parentNode) ec = ec.parentNode; sc = t[START_CONTAINER]; while (sc.parentNode) sc = sc.parentNode; if (sc == ec) { // The start position of a Range is guaranteed to never be after the // end position. To enforce this restriction, if the start is set to // be at a position after the end, the Range is collapsed to that // position. if (_compareBoundaryPoints(t[START_CONTAINER], t[START_OFFSET], t[END_CONTAINER], t[END_OFFSET]) > 0) t.collapse(st); } else t.collapse(st); t.collapsed = _isCollapsed(); t.commonAncestorContainer = dom.findCommonAncestor(t[START_CONTAINER], t[END_CONTAINER]); }; function _traverse(how) { var c, endContainerDepth = 0, startContainerDepth = 0, p, depthDiff, startNode, endNode, sp, ep; if (t[START_CONTAINER] == t[END_CONTAINER]) return _traverseSameContainer(how); for (c = t[END_CONTAINER], p = c.parentNode; p; c = p, p = p.parentNode) { if (p == t[START_CONTAINER]) return _traverseCommonStartContainer(c, how); ++endContainerDepth; } for (c = t[START_CONTAINER], p = c.parentNode; p; c = p, p = p.parentNode) { if (p == t[END_CONTAINER]) return _traverseCommonEndContainer(c, how); ++startContainerDepth; } depthDiff = startContainerDepth - endContainerDepth; startNode = t[START_CONTAINER]; while (depthDiff > 0) { startNode = startNode.parentNode; depthDiff--; } endNode = t[END_CONTAINER]; while (depthDiff < 0) { endNode = endNode.parentNode; depthDiff++; } // ascend the ancestor hierarchy until we have a common parent. for (sp = startNode.parentNode, ep = endNode.parentNode; sp != ep; sp = sp.parentNode, ep = ep.parentNode) { startNode = sp; endNode = ep; } return _traverseCommonAncestors(startNode, endNode, how); }; function _traverseSameContainer(how) { var frag, s, sub, n, cnt, sibling, xferNode; if (how != DELETE) frag = doc.createDocumentFragment(); // If selection is empty, just return the fragment if (t[START_OFFSET] == t[END_OFFSET]) return frag; // Text node needs special case handling if (t[START_CONTAINER].nodeType == 3 /* TEXT_NODE */) { // get the substring s = t[START_CONTAINER].nodeValue; sub = s.substring(t[START_OFFSET], t[END_OFFSET]); // set the original text node to its new value if (how != CLONE) { t[START_CONTAINER].deleteData(t[START_OFFSET], t[END_OFFSET] - t[START_OFFSET]); // Nothing is partially selected, so collapse to start point t.collapse(TRUE); } if (how == DELETE) return; frag.appendChild(doc.createTextNode(sub)); return frag; } // Copy nodes between the start/end offsets. n = _getSelectedNode(t[START_CONTAINER], t[START_OFFSET]); cnt = t[END_OFFSET] - t[START_OFFSET]; while (cnt > 0) { sibling = n.nextSibling; xferNode = _traverseFullySelected(n, how); if (frag) frag.appendChild( xferNode ); --cnt; n = sibling; } // Nothing is partially selected, so collapse to start point if (how != CLONE) t.collapse(TRUE); return frag; }; function _traverseCommonStartContainer(endAncestor, how) { var frag, n, endIdx, cnt, sibling, xferNode; if (how != DELETE) frag = doc.createDocumentFragment(); n = _traverseRightBoundary(endAncestor, how); if (frag) frag.appendChild(n); endIdx = nodeIndex(endAncestor); cnt = endIdx - t[START_OFFSET]; if (cnt <= 0) { // Collapse to just before the endAncestor, which // is partially selected. if (how != CLONE) { t.setEndBefore(endAncestor); t.collapse(FALSE); } return frag; } n = endAncestor.previousSibling; while (cnt > 0) { sibling = n.previousSibling; xferNode = _traverseFullySelected(n, how); if (frag) frag.insertBefore(xferNode, frag.firstChild); --cnt; n = sibling; } // Collapse to just before the endAncestor, which // is partially selected. if (how != CLONE) { t.setEndBefore(endAncestor); t.collapse(FALSE); } return frag; }; function _traverseCommonEndContainer(startAncestor, how) { var frag, startIdx, n, cnt, sibling, xferNode; if (how != DELETE) frag = doc.createDocumentFragment(); n = _traverseLeftBoundary(startAncestor, how); if (frag) frag.appendChild(n); startIdx = nodeIndex(startAncestor); ++startIdx; // Because we already traversed it cnt = t[END_OFFSET] - startIdx; n = startAncestor.nextSibling; while (cnt > 0) { sibling = n.nextSibling; xferNode = _traverseFullySelected(n, how); if (frag) frag.appendChild(xferNode); --cnt; n = sibling; } if (how != CLONE) { t.setStartAfter(startAncestor); t.collapse(TRUE); } return frag; }; function _traverseCommonAncestors(startAncestor, endAncestor, how) { var n, frag, commonParent, startOffset, endOffset, cnt, sibling, nextSibling; if (how != DELETE) frag = doc.createDocumentFragment(); n = _traverseLeftBoundary(startAncestor, how); if (frag) frag.appendChild(n); commonParent = startAncestor.parentNode; startOffset = nodeIndex(startAncestor); endOffset = nodeIndex(endAncestor); ++startOffset; cnt = endOffset - startOffset; sibling = startAncestor.nextSibling; while (cnt > 0) { nextSibling = sibling.nextSibling; n = _traverseFullySelected(sibling, how); if (frag) frag.appendChild(n); sibling = nextSibling; --cnt; } n = _traverseRightBoundary(endAncestor, how); if (frag) frag.appendChild(n); if (how != CLONE) { t.setStartAfter(startAncestor); t.collapse(TRUE); } return frag; }; function _traverseRightBoundary(root, how) { var next = _getSelectedNode(t[END_CONTAINER], t[END_OFFSET] - 1), parent, clonedParent, prevSibling, clonedChild, clonedGrandParent, isFullySelected = next != t[END_CONTAINER]; if (next == root) return _traverseNode(next, isFullySelected, FALSE, how); parent = next.parentNode; clonedParent = _traverseNode(parent, FALSE, FALSE, how); while (parent) { while (next) { prevSibling = next.previousSibling; clonedChild = _traverseNode(next, isFullySelected, FALSE, how); if (how != DELETE) clonedParent.insertBefore(clonedChild, clonedParent.firstChild); isFullySelected = TRUE; next = prevSibling; } if (parent == root) return clonedParent; next = parent.previousSibling; parent = parent.parentNode; clonedGrandParent = _traverseNode(parent, FALSE, FALSE, how); if (how != DELETE) clonedGrandParent.appendChild(clonedParent); clonedParent = clonedGrandParent; } }; function _traverseLeftBoundary(root, how) { var next = _getSelectedNode(t[START_CONTAINER], t[START_OFFSET]), isFullySelected = next != t[START_CONTAINER], parent, clonedParent, nextSibling, clonedChild, clonedGrandParent; if (next == root) return _traverseNode(next, isFullySelected, TRUE, how); parent = next.parentNode; clonedParent = _traverseNode(parent, FALSE, TRUE, how); while (parent) { while (next) { nextSibling = next.nextSibling; clonedChild = _traverseNode(next, isFullySelected, TRUE, how); if (how != DELETE) clonedParent.appendChild(clonedChild); isFullySelected = TRUE; next = nextSibling; } if (parent == root) return clonedParent; next = parent.nextSibling; parent = parent.parentNode; clonedGrandParent = _traverseNode(parent, FALSE, TRUE, how); if (how != DELETE) clonedGrandParent.appendChild(clonedParent); clonedParent = clonedGrandParent; } }; function _traverseNode(n, isFullySelected, isLeft, how) { var txtValue, newNodeValue, oldNodeValue, offset, newNode; if (isFullySelected) return _traverseFullySelected(n, how); if (n.nodeType == 3 /* TEXT_NODE */) { txtValue = n.nodeValue; if (isLeft) { offset = t[START_OFFSET]; newNodeValue = txtValue.substring(offset); oldNodeValue = txtValue.substring(0, offset); } else { offset = t[END_OFFSET]; newNodeValue = txtValue.substring(0, offset); oldNodeValue = txtValue.substring(offset); } if (how != CLONE) n.nodeValue = oldNodeValue; if (how == DELETE) return; newNode = n.cloneNode(FALSE); newNode.nodeValue = newNodeValue; return newNode; } if (how == DELETE) return; return n.cloneNode(FALSE); }; function _traverseFullySelected(n, how) { if (how != DELETE) return how == CLONE ? n.cloneNode(TRUE) : n; n.parentNode.removeChild(n); }; }; ns.Range = Range; })(tinymce.dom);