]> CyberLeo.Net >> Repos - FreeBSD/releng/10.3.git/blob - sys/kern/sys_process.c
Fix kernel data leak via ptrace(PT_LWPINFO). [SA-17:08]
[FreeBSD/releng/10.3.git] / sys / kern / sys_process.c
1 /*-
2  * Copyright (c) 1994, Sean Eric Fagan
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *      This product includes software developed by Sean Eric Fagan.
16  * 4. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include "opt_compat.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/syscallsubr.h>
42 #include <sys/sysent.h>
43 #include <sys/sysproto.h>
44 #include <sys/priv.h>
45 #include <sys/proc.h>
46 #include <sys/vnode.h>
47 #include <sys/ptrace.h>
48 #include <sys/rwlock.h>
49 #include <sys/sx.h>
50 #include <sys/malloc.h>
51 #include <sys/signalvar.h>
52
53 #include <machine/reg.h>
54
55 #include <security/audit/audit.h>
56
57 #include <vm/vm.h>
58 #include <vm/pmap.h>
59 #include <vm/vm_extern.h>
60 #include <vm/vm_map.h>
61 #include <vm/vm_kern.h>
62 #include <vm/vm_object.h>
63 #include <vm/vm_page.h>
64 #include <vm/vm_param.h>
65
66 #ifdef COMPAT_FREEBSD32
67 #include <sys/procfs.h>
68 #include <compat/freebsd32/freebsd32_signal.h>
69
70 struct ptrace_io_desc32 {
71         int             piod_op;
72         uint32_t        piod_offs;
73         uint32_t        piod_addr;
74         uint32_t        piod_len;
75 };
76
77 struct ptrace_vm_entry32 {
78         int             pve_entry;
79         int             pve_timestamp;
80         uint32_t        pve_start;
81         uint32_t        pve_end;
82         uint32_t        pve_offset;
83         u_int           pve_prot;
84         u_int           pve_pathlen;
85         int32_t         pve_fileid;
86         u_int           pve_fsid;
87         uint32_t        pve_path;
88 };
89
90 struct ptrace_lwpinfo32 {
91         lwpid_t pl_lwpid;       /* LWP described. */
92         int     pl_event;       /* Event that stopped the LWP. */
93         int     pl_flags;       /* LWP flags. */
94         sigset_t        pl_sigmask;     /* LWP signal mask */
95         sigset_t        pl_siglist;     /* LWP pending signal */
96         struct siginfo32 pl_siginfo;    /* siginfo for signal */
97         char    pl_tdname[MAXCOMLEN + 1];       /* LWP name. */
98         pid_t   pl_child_pid;           /* New child pid */
99         u_int           pl_syscall_code;
100         u_int           pl_syscall_narg;
101 };
102
103 #endif
104
105 /*
106  * Functions implemented using PROC_ACTION():
107  *
108  * proc_read_regs(proc, regs)
109  *      Get the current user-visible register set from the process
110  *      and copy it into the regs structure (<machine/reg.h>).
111  *      The process is stopped at the time read_regs is called.
112  *
113  * proc_write_regs(proc, regs)
114  *      Update the current register set from the passed in regs
115  *      structure.  Take care to avoid clobbering special CPU
116  *      registers or privileged bits in the PSL.
117  *      Depending on the architecture this may have fix-up work to do,
118  *      especially if the IAR or PCW are modified.
119  *      The process is stopped at the time write_regs is called.
120  *
121  * proc_read_fpregs, proc_write_fpregs
122  *      deal with the floating point register set, otherwise as above.
123  *
124  * proc_read_dbregs, proc_write_dbregs
125  *      deal with the processor debug register set, otherwise as above.
126  *
127  * proc_sstep(proc)
128  *      Arrange for the process to trap after executing a single instruction.
129  */
130
131 #define PROC_ACTION(action) do {                                        \
132         int error;                                                      \
133                                                                         \
134         PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);                        \
135         if ((td->td_proc->p_flag & P_INMEM) == 0)                       \
136                 error = EIO;                                            \
137         else                                                            \
138                 error = (action);                                       \
139         return (error);                                                 \
140 } while(0)
141
142 int
143 proc_read_regs(struct thread *td, struct reg *regs)
144 {
145
146         PROC_ACTION(fill_regs(td, regs));
147 }
148
149 int
150 proc_write_regs(struct thread *td, struct reg *regs)
151 {
152
153         PROC_ACTION(set_regs(td, regs));
154 }
155
156 int
157 proc_read_dbregs(struct thread *td, struct dbreg *dbregs)
158 {
159
160         PROC_ACTION(fill_dbregs(td, dbregs));
161 }
162
163 int
164 proc_write_dbregs(struct thread *td, struct dbreg *dbregs)
165 {
166
167         PROC_ACTION(set_dbregs(td, dbregs));
168 }
169
170 /*
171  * Ptrace doesn't support fpregs at all, and there are no security holes
172  * or translations for fpregs, so we can just copy them.
173  */
174 int
175 proc_read_fpregs(struct thread *td, struct fpreg *fpregs)
176 {
177
178         PROC_ACTION(fill_fpregs(td, fpregs));
179 }
180
181 int
182 proc_write_fpregs(struct thread *td, struct fpreg *fpregs)
183 {
184
185         PROC_ACTION(set_fpregs(td, fpregs));
186 }
187
188 #ifdef COMPAT_FREEBSD32
189 /* For 32 bit binaries, we need to expose the 32 bit regs layouts. */
190 int
191 proc_read_regs32(struct thread *td, struct reg32 *regs32)
192 {
193
194         PROC_ACTION(fill_regs32(td, regs32));
195 }
196
197 int
198 proc_write_regs32(struct thread *td, struct reg32 *regs32)
199 {
200
201         PROC_ACTION(set_regs32(td, regs32));
202 }
203
204 int
205 proc_read_dbregs32(struct thread *td, struct dbreg32 *dbregs32)
206 {
207
208         PROC_ACTION(fill_dbregs32(td, dbregs32));
209 }
210
211 int
212 proc_write_dbregs32(struct thread *td, struct dbreg32 *dbregs32)
213 {
214
215         PROC_ACTION(set_dbregs32(td, dbregs32));
216 }
217
218 int
219 proc_read_fpregs32(struct thread *td, struct fpreg32 *fpregs32)
220 {
221
222         PROC_ACTION(fill_fpregs32(td, fpregs32));
223 }
224
225 int
226 proc_write_fpregs32(struct thread *td, struct fpreg32 *fpregs32)
227 {
228
229         PROC_ACTION(set_fpregs32(td, fpregs32));
230 }
231 #endif
232
233 int
234 proc_sstep(struct thread *td)
235 {
236
237         PROC_ACTION(ptrace_single_step(td));
238 }
239
240 int
241 proc_rwmem(struct proc *p, struct uio *uio)
242 {
243         vm_map_t map;
244         vm_offset_t pageno;             /* page number */
245         vm_prot_t reqprot;
246         int error, fault_flags, page_offset, writing;
247
248         /*
249          * Assert that someone has locked this vmspace.  (Should be
250          * curthread but we can't assert that.)  This keeps the process
251          * from exiting out from under us until this operation completes.
252          */
253         KASSERT(p->p_lock >= 1, ("%s: process %p (pid %d) not held", __func__,
254             p, p->p_pid));
255
256         /*
257          * The map we want...
258          */
259         map = &p->p_vmspace->vm_map;
260
261         /*
262          * If we are writing, then we request vm_fault() to create a private
263          * copy of each page.  Since these copies will not be writeable by the
264          * process, we must explicity request that they be dirtied.
265          */
266         writing = uio->uio_rw == UIO_WRITE;
267         reqprot = writing ? VM_PROT_COPY | VM_PROT_READ : VM_PROT_READ;
268         fault_flags = writing ? VM_FAULT_DIRTY : VM_FAULT_NORMAL;
269
270         /*
271          * Only map in one page at a time.  We don't have to, but it
272          * makes things easier.  This way is trivial - right?
273          */
274         do {
275                 vm_offset_t uva;
276                 u_int len;
277                 vm_page_t m;
278
279                 uva = (vm_offset_t)uio->uio_offset;
280
281                 /*
282                  * Get the page number of this segment.
283                  */
284                 pageno = trunc_page(uva);
285                 page_offset = uva - pageno;
286
287                 /*
288                  * How many bytes to copy
289                  */
290                 len = min(PAGE_SIZE - page_offset, uio->uio_resid);
291
292                 /*
293                  * Fault and hold the page on behalf of the process.
294                  */
295                 error = vm_fault_hold(map, pageno, reqprot, fault_flags, &m);
296                 if (error != KERN_SUCCESS) {
297                         if (error == KERN_RESOURCE_SHORTAGE)
298                                 error = ENOMEM;
299                         else
300                                 error = EFAULT;
301                         break;
302                 }
303
304                 /*
305                  * Now do the i/o move.
306                  */
307                 error = uiomove_fromphys(&m, page_offset, len, uio);
308
309                 /* Make the I-cache coherent for breakpoints. */
310                 if (writing && error == 0) {
311                         vm_map_lock_read(map);
312                         if (vm_map_check_protection(map, pageno, pageno +
313                             PAGE_SIZE, VM_PROT_EXECUTE))
314                                 vm_sync_icache(map, uva, len);
315                         vm_map_unlock_read(map);
316                 }
317
318                 /*
319                  * Release the page.
320                  */
321                 vm_page_lock(m);
322                 vm_page_unhold(m);
323                 vm_page_unlock(m);
324
325         } while (error == 0 && uio->uio_resid > 0);
326
327         return (error);
328 }
329
330 static int
331 ptrace_vm_entry(struct thread *td, struct proc *p, struct ptrace_vm_entry *pve)
332 {
333         struct vattr vattr;
334         vm_map_t map;
335         vm_map_entry_t entry;
336         vm_object_t obj, tobj, lobj;
337         struct vmspace *vm;
338         struct vnode *vp;
339         char *freepath, *fullpath;
340         u_int pathlen;
341         int error, index;
342
343         error = 0;
344         obj = NULL;
345
346         vm = vmspace_acquire_ref(p);
347         map = &vm->vm_map;
348         vm_map_lock_read(map);
349
350         do {
351                 entry = map->header.next;
352                 index = 0;
353                 while (index < pve->pve_entry && entry != &map->header) {
354                         entry = entry->next;
355                         index++;
356                 }
357                 if (index != pve->pve_entry) {
358                         error = EINVAL;
359                         break;
360                 }
361                 while (entry != &map->header &&
362                     (entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
363                         entry = entry->next;
364                         index++;
365                 }
366                 if (entry == &map->header) {
367                         error = ENOENT;
368                         break;
369                 }
370
371                 /* We got an entry. */
372                 pve->pve_entry = index + 1;
373                 pve->pve_timestamp = map->timestamp;
374                 pve->pve_start = entry->start;
375                 pve->pve_end = entry->end - 1;
376                 pve->pve_offset = entry->offset;
377                 pve->pve_prot = entry->protection;
378
379                 /* Backing object's path needed? */
380                 if (pve->pve_pathlen == 0)
381                         break;
382
383                 pathlen = pve->pve_pathlen;
384                 pve->pve_pathlen = 0;
385
386                 obj = entry->object.vm_object;
387                 if (obj != NULL)
388                         VM_OBJECT_RLOCK(obj);
389         } while (0);
390
391         vm_map_unlock_read(map);
392         vmspace_free(vm);
393
394         pve->pve_fsid = VNOVAL;
395         pve->pve_fileid = VNOVAL;
396
397         if (error == 0 && obj != NULL) {
398                 lobj = obj;
399                 for (tobj = obj; tobj != NULL; tobj = tobj->backing_object) {
400                         if (tobj != obj)
401                                 VM_OBJECT_RLOCK(tobj);
402                         if (lobj != obj)
403                                 VM_OBJECT_RUNLOCK(lobj);
404                         lobj = tobj;
405                         pve->pve_offset += tobj->backing_object_offset;
406                 }
407                 vp = vm_object_vnode(lobj);
408                 if (vp != NULL)
409                         vref(vp);
410                 if (lobj != obj)
411                         VM_OBJECT_RUNLOCK(lobj);
412                 VM_OBJECT_RUNLOCK(obj);
413
414                 if (vp != NULL) {
415                         freepath = NULL;
416                         fullpath = NULL;
417                         vn_fullpath(td, vp, &fullpath, &freepath);
418                         vn_lock(vp, LK_SHARED | LK_RETRY);
419                         if (VOP_GETATTR(vp, &vattr, td->td_ucred) == 0) {
420                                 pve->pve_fileid = vattr.va_fileid;
421                                 pve->pve_fsid = vattr.va_fsid;
422                         }
423                         vput(vp);
424
425                         if (fullpath != NULL) {
426                                 pve->pve_pathlen = strlen(fullpath) + 1;
427                                 if (pve->pve_pathlen <= pathlen) {
428                                         error = copyout(fullpath, pve->pve_path,
429                                             pve->pve_pathlen);
430                                 } else
431                                         error = ENAMETOOLONG;
432                         }
433                         if (freepath != NULL)
434                                 free(freepath, M_TEMP);
435                 }
436         }
437         if (error == 0)
438                 CTR3(KTR_PTRACE, "PT_VM_ENTRY: pid %d, entry %d, start %p",
439                     p->p_pid, pve->pve_entry, pve->pve_start);
440
441         return (error);
442 }
443
444 #ifdef COMPAT_FREEBSD32
445 static int
446 ptrace_vm_entry32(struct thread *td, struct proc *p,
447     struct ptrace_vm_entry32 *pve32)
448 {
449         struct ptrace_vm_entry pve;
450         int error;
451
452         pve.pve_entry = pve32->pve_entry;
453         pve.pve_pathlen = pve32->pve_pathlen;
454         pve.pve_path = (void *)(uintptr_t)pve32->pve_path;
455
456         error = ptrace_vm_entry(td, p, &pve);
457         if (error == 0) {
458                 pve32->pve_entry = pve.pve_entry;
459                 pve32->pve_timestamp = pve.pve_timestamp;
460                 pve32->pve_start = pve.pve_start;
461                 pve32->pve_end = pve.pve_end;
462                 pve32->pve_offset = pve.pve_offset;
463                 pve32->pve_prot = pve.pve_prot;
464                 pve32->pve_fileid = pve.pve_fileid;
465                 pve32->pve_fsid = pve.pve_fsid;
466         }
467
468         pve32->pve_pathlen = pve.pve_pathlen;
469         return (error);
470 }
471
472 static void
473 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl,
474     struct ptrace_lwpinfo32 *pl32)
475 {
476
477         bzero(pl32, sizeof(*pl32));
478         pl32->pl_lwpid = pl->pl_lwpid;
479         pl32->pl_event = pl->pl_event;
480         pl32->pl_flags = pl->pl_flags;
481         pl32->pl_sigmask = pl->pl_sigmask;
482         pl32->pl_siglist = pl->pl_siglist;
483         siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo);
484         strcpy(pl32->pl_tdname, pl->pl_tdname);
485         pl32->pl_child_pid = pl->pl_child_pid;
486         pl32->pl_syscall_code = pl->pl_syscall_code;
487         pl32->pl_syscall_narg = pl->pl_syscall_narg;
488 }
489 #endif /* COMPAT_FREEBSD32 */
490
491 /*
492  * Process debugging system call.
493  */
494 #ifndef _SYS_SYSPROTO_H_
495 struct ptrace_args {
496         int     req;
497         pid_t   pid;
498         caddr_t addr;
499         int     data;
500 };
501 #endif
502
503 #ifdef COMPAT_FREEBSD32
504 /*
505  * This CPP subterfuge is to try and reduce the number of ifdefs in
506  * the body of the code.
507  *   COPYIN(uap->addr, &r.reg, sizeof r.reg);
508  * becomes either:
509  *   copyin(uap->addr, &r.reg, sizeof r.reg);
510  * or
511  *   copyin(uap->addr, &r.reg32, sizeof r.reg32);
512  * .. except this is done at runtime.
513  */
514 #define COPYIN(u, k, s)         wrap32 ? \
515         copyin(u, k ## 32, s ## 32) : \
516         copyin(u, k, s)
517 #define COPYOUT(k, u, s)        wrap32 ? \
518         copyout(k ## 32, u, s ## 32) : \
519         copyout(k, u, s)
520 #else
521 #define COPYIN(u, k, s)         copyin(u, k, s)
522 #define COPYOUT(k, u, s)        copyout(k, u, s)
523 #endif
524 int
525 sys_ptrace(struct thread *td, struct ptrace_args *uap)
526 {
527         /*
528          * XXX this obfuscation is to reduce stack usage, but the register
529          * structs may be too large to put on the stack anyway.
530          */
531         union {
532                 struct ptrace_io_desc piod;
533                 struct ptrace_lwpinfo pl;
534                 struct ptrace_vm_entry pve;
535                 struct dbreg dbreg;
536                 struct fpreg fpreg;
537                 struct reg reg;
538 #ifdef COMPAT_FREEBSD32
539                 struct dbreg32 dbreg32;
540                 struct fpreg32 fpreg32;
541                 struct reg32 reg32;
542                 struct ptrace_io_desc32 piod32;
543                 struct ptrace_lwpinfo32 pl32;
544                 struct ptrace_vm_entry32 pve32;
545 #endif
546         } r;
547         void *addr;
548         int error = 0;
549 #ifdef COMPAT_FREEBSD32
550         int wrap32 = 0;
551
552         if (SV_CURPROC_FLAG(SV_ILP32))
553                 wrap32 = 1;
554 #endif
555         AUDIT_ARG_PID(uap->pid);
556         AUDIT_ARG_CMD(uap->req);
557         AUDIT_ARG_VALUE(uap->data);
558         addr = &r;
559         switch (uap->req) {
560         case PT_GETREGS:
561         case PT_GETFPREGS:
562         case PT_GETDBREGS:
563         case PT_LWPINFO:
564                 break;
565         case PT_SETREGS:
566                 error = COPYIN(uap->addr, &r.reg, sizeof r.reg);
567                 break;
568         case PT_SETFPREGS:
569                 error = COPYIN(uap->addr, &r.fpreg, sizeof r.fpreg);
570                 break;
571         case PT_SETDBREGS:
572                 error = COPYIN(uap->addr, &r.dbreg, sizeof r.dbreg);
573                 break;
574         case PT_IO:
575                 error = COPYIN(uap->addr, &r.piod, sizeof r.piod);
576                 break;
577         case PT_VM_ENTRY:
578                 error = COPYIN(uap->addr, &r.pve, sizeof r.pve);
579                 break;
580         default:
581                 addr = uap->addr;
582                 break;
583         }
584         if (error)
585                 return (error);
586
587         error = kern_ptrace(td, uap->req, uap->pid, addr, uap->data);
588         if (error)
589                 return (error);
590
591         switch (uap->req) {
592         case PT_VM_ENTRY:
593                 error = COPYOUT(&r.pve, uap->addr, sizeof r.pve);
594                 break;
595         case PT_IO:
596                 error = COPYOUT(&r.piod, uap->addr, sizeof r.piod);
597                 break;
598         case PT_GETREGS:
599                 error = COPYOUT(&r.reg, uap->addr, sizeof r.reg);
600                 break;
601         case PT_GETFPREGS:
602                 error = COPYOUT(&r.fpreg, uap->addr, sizeof r.fpreg);
603                 break;
604         case PT_GETDBREGS:
605                 error = COPYOUT(&r.dbreg, uap->addr, sizeof r.dbreg);
606                 break;
607         case PT_LWPINFO:
608                 error = copyout(&r.pl, uap->addr, uap->data);
609                 break;
610         }
611
612         return (error);
613 }
614 #undef COPYIN
615 #undef COPYOUT
616
617 #ifdef COMPAT_FREEBSD32
618 /*
619  *   PROC_READ(regs, td2, addr);
620  * becomes either:
621  *   proc_read_regs(td2, addr);
622  * or
623  *   proc_read_regs32(td2, addr);
624  * .. except this is done at runtime.  There is an additional
625  * complication in that PROC_WRITE disallows 32 bit consumers
626  * from writing to 64 bit address space targets.
627  */
628 #define PROC_READ(w, t, a)      wrap32 ? \
629         proc_read_ ## w ## 32(t, a) : \
630         proc_read_ ## w (t, a)
631 #define PROC_WRITE(w, t, a)     wrap32 ? \
632         (safe ? proc_write_ ## w ## 32(t, a) : EINVAL ) : \
633         proc_write_ ## w (t, a)
634 #else
635 #define PROC_READ(w, t, a)      proc_read_ ## w (t, a)
636 #define PROC_WRITE(w, t, a)     proc_write_ ## w (t, a)
637 #endif
638
639 int
640 kern_ptrace(struct thread *td, int req, pid_t pid, void *addr, int data)
641 {
642         struct iovec iov;
643         struct uio uio;
644         struct proc *curp, *p, *pp;
645         struct thread *td2 = NULL, *td3;
646         struct ptrace_io_desc *piod = NULL;
647         struct ptrace_lwpinfo *pl;
648         int error, write, tmp, num;
649         int proctree_locked = 0;
650         lwpid_t tid = 0, *buf;
651 #ifdef COMPAT_FREEBSD32
652         int wrap32 = 0, safe = 0;
653         struct ptrace_io_desc32 *piod32 = NULL;
654         struct ptrace_lwpinfo32 *pl32 = NULL;
655         struct ptrace_lwpinfo plr;
656 #endif
657
658         curp = td->td_proc;
659
660         /* Lock proctree before locking the process. */
661         switch (req) {
662         case PT_TRACE_ME:
663         case PT_ATTACH:
664         case PT_STEP:
665         case PT_CONTINUE:
666         case PT_TO_SCE:
667         case PT_TO_SCX:
668         case PT_SYSCALL:
669         case PT_FOLLOW_FORK:
670         case PT_DETACH:
671                 sx_xlock(&proctree_lock);
672                 proctree_locked = 1;
673                 break;
674         default:
675                 break;
676         }
677
678         write = 0;
679         if (req == PT_TRACE_ME) {
680                 p = td->td_proc;
681                 PROC_LOCK(p);
682         } else {
683                 if (pid <= PID_MAX) {
684                         if ((p = pfind(pid)) == NULL) {
685                                 if (proctree_locked)
686                                         sx_xunlock(&proctree_lock);
687                                 return (ESRCH);
688                         }
689                 } else {
690                         td2 = tdfind(pid, -1);
691                         if (td2 == NULL) {
692                                 if (proctree_locked)
693                                         sx_xunlock(&proctree_lock);
694                                 return (ESRCH);
695                         }
696                         p = td2->td_proc;
697                         tid = pid;
698                         pid = p->p_pid;
699                 }
700         }
701         AUDIT_ARG_PROCESS(p);
702
703         if ((p->p_flag & P_WEXIT) != 0) {
704                 error = ESRCH;
705                 goto fail;
706         }
707         if ((error = p_cansee(td, p)) != 0)
708                 goto fail;
709
710         if ((error = p_candebug(td, p)) != 0)
711                 goto fail;
712
713         /*
714          * System processes can't be debugged.
715          */
716         if ((p->p_flag & P_SYSTEM) != 0) {
717                 error = EINVAL;
718                 goto fail;
719         }
720
721         if (tid == 0) {
722                 if ((p->p_flag & P_STOPPED_TRACE) != 0) {
723                         KASSERT(p->p_xthread != NULL, ("NULL p_xthread"));
724                         td2 = p->p_xthread;
725                 } else {
726                         td2 = FIRST_THREAD_IN_PROC(p);
727                 }
728                 tid = td2->td_tid;
729         }
730
731 #ifdef COMPAT_FREEBSD32
732         /*
733          * Test if we're a 32 bit client and what the target is.
734          * Set the wrap controls accordingly.
735          */
736         if (SV_CURPROC_FLAG(SV_ILP32)) {
737                 if (SV_PROC_FLAG(td2->td_proc, SV_ILP32))
738                         safe = 1;
739                 wrap32 = 1;
740         }
741 #endif
742         /*
743          * Permissions check
744          */
745         switch (req) {
746         case PT_TRACE_ME:
747                 /*
748                  * Always legal, when there is a parent process which
749                  * could trace us.  Otherwise, reject.
750                  */
751                 if ((p->p_flag & P_TRACED) != 0) {
752                         error = EBUSY;
753                         goto fail;
754                 }
755                 if (p->p_pptr == initproc) {
756                         error = EPERM;
757                         goto fail;
758                 }
759                 break;
760
761         case PT_ATTACH:
762                 /* Self */
763                 if (p == td->td_proc) {
764                         error = EINVAL;
765                         goto fail;
766                 }
767
768                 /* Already traced */
769                 if (p->p_flag & P_TRACED) {
770                         error = EBUSY;
771                         goto fail;
772                 }
773
774                 /* Can't trace an ancestor if you're being traced. */
775                 if (curp->p_flag & P_TRACED) {
776                         for (pp = curp->p_pptr; pp != NULL; pp = pp->p_pptr) {
777                                 if (pp == p) {
778                                         error = EINVAL;
779                                         goto fail;
780                                 }
781                         }
782                 }
783
784
785                 /* OK */
786                 break;
787
788         case PT_CLEARSTEP:
789                 /* Allow thread to clear single step for itself */
790                 if (td->td_tid == tid)
791                         break;
792
793                 /* FALLTHROUGH */
794         default:
795                 /* not being traced... */
796                 if ((p->p_flag & P_TRACED) == 0) {
797                         error = EPERM;
798                         goto fail;
799                 }
800
801                 /* not being traced by YOU */
802                 if (p->p_pptr != td->td_proc) {
803                         error = EBUSY;
804                         goto fail;
805                 }
806
807                 /* not currently stopped */
808                 if ((p->p_flag & (P_STOPPED_SIG | P_STOPPED_TRACE)) == 0 ||
809                     p->p_suspcount != p->p_numthreads  ||
810                     (p->p_flag & P_WAITED) == 0) {
811                         error = EBUSY;
812                         goto fail;
813                 }
814
815                 if ((p->p_flag & P_STOPPED_TRACE) == 0) {
816                         static int count = 0;
817                         if (count++ == 0)
818                                 printf("P_STOPPED_TRACE not set.\n");
819                 }
820
821                 /* OK */
822                 break;
823         }
824
825         /* Keep this process around until we finish this request. */
826         _PHOLD(p);
827
828 #ifdef FIX_SSTEP
829         /*
830          * Single step fixup ala procfs
831          */
832         FIX_SSTEP(td2);
833 #endif
834
835         /*
836          * Actually do the requests
837          */
838
839         td->td_retval[0] = 0;
840
841         switch (req) {
842         case PT_TRACE_ME:
843                 /* set my trace flag and "owner" so it can read/write me */
844                 p->p_flag |= P_TRACED;
845                 if (p->p_flag & P_PPWAIT)
846                         p->p_flag |= P_PPTRACE;
847                 p->p_oppid = p->p_pptr->p_pid;
848                 CTR1(KTR_PTRACE, "PT_TRACE_ME: pid %d", p->p_pid);
849                 break;
850
851         case PT_ATTACH:
852                 /* security check done above */
853                 /*
854                  * It would be nice if the tracing relationship was separate
855                  * from the parent relationship but that would require
856                  * another set of links in the proc struct or for "wait"
857                  * to scan the entire proc table.  To make life easier,
858                  * we just re-parent the process we're trying to trace.
859                  * The old parent is remembered so we can put things back
860                  * on a "detach".
861                  */
862                 p->p_flag |= P_TRACED;
863                 p->p_oppid = p->p_pptr->p_pid;
864                 if (p->p_pptr != td->td_proc) {
865                         proc_reparent(p, td->td_proc);
866                 }
867                 data = SIGSTOP;
868                 CTR2(KTR_PTRACE, "PT_ATTACH: pid %d, oppid %d", p->p_pid,
869                     p->p_oppid);
870                 goto sendsig;   /* in PT_CONTINUE below */
871
872         case PT_CLEARSTEP:
873                 CTR2(KTR_PTRACE, "PT_CLEARSTEP: tid %d (pid %d)", td2->td_tid,
874                     p->p_pid);
875                 error = ptrace_clear_single_step(td2);
876                 break;
877
878         case PT_SETSTEP:
879                 CTR2(KTR_PTRACE, "PT_SETSTEP: tid %d (pid %d)", td2->td_tid,
880                     p->p_pid);
881                 error = ptrace_single_step(td2);
882                 break;
883
884         case PT_SUSPEND:
885                 CTR2(KTR_PTRACE, "PT_SUSPEND: tid %d (pid %d)", td2->td_tid,
886                     p->p_pid);
887                 td2->td_dbgflags |= TDB_SUSPEND;
888                 thread_lock(td2);
889                 td2->td_flags |= TDF_NEEDSUSPCHK;
890                 thread_unlock(td2);
891                 break;
892
893         case PT_RESUME:
894                 CTR2(KTR_PTRACE, "PT_RESUME: tid %d (pid %d)", td2->td_tid,
895                     p->p_pid);
896                 td2->td_dbgflags &= ~TDB_SUSPEND;
897                 break;
898
899         case PT_FOLLOW_FORK:
900                 CTR3(KTR_PTRACE, "PT_FOLLOW_FORK: pid %d %s -> %s", p->p_pid,
901                     p->p_flag & P_FOLLOWFORK ? "enabled" : "disabled",
902                     data ? "enabled" : "disabled");
903                 if (data)
904                         p->p_flag |= P_FOLLOWFORK;
905                 else
906                         p->p_flag &= ~P_FOLLOWFORK;
907                 break;
908
909         case PT_STEP:
910         case PT_CONTINUE:
911         case PT_TO_SCE:
912         case PT_TO_SCX:
913         case PT_SYSCALL:
914         case PT_DETACH:
915                 /* Zero means do not send any signal */
916                 if (data < 0 || data > _SIG_MAXSIG) {
917                         error = EINVAL;
918                         break;
919                 }
920
921                 switch (req) {
922                 case PT_STEP:
923                         CTR2(KTR_PTRACE, "PT_STEP: tid %d (pid %d)",
924                             td2->td_tid, p->p_pid);
925                         error = ptrace_single_step(td2);
926                         if (error)
927                                 goto out;
928                         break;
929                 case PT_CONTINUE:
930                 case PT_TO_SCE:
931                 case PT_TO_SCX:
932                 case PT_SYSCALL:
933                         if (addr != (void *)1) {
934                                 error = ptrace_set_pc(td2,
935                                     (u_long)(uintfptr_t)addr);
936                                 if (error)
937                                         goto out;
938                         }
939                         switch (req) {
940                         case PT_TO_SCE:
941                                 p->p_stops |= S_PT_SCE;
942                                 CTR4(KTR_PTRACE,
943                     "PT_TO_SCE: pid %d, stops = %#x, PC = %#lx, sig = %d",
944                                     p->p_pid, p->p_stops,
945                                     (u_long)(uintfptr_t)addr, data);
946                                 break;
947                         case PT_TO_SCX:
948                                 p->p_stops |= S_PT_SCX;
949                                 CTR4(KTR_PTRACE,
950                     "PT_TO_SCX: pid %d, stops = %#x, PC = %#lx, sig = %d",
951                                     p->p_pid, p->p_stops,
952                                     (u_long)(uintfptr_t)addr, data);
953                                 break;
954                         case PT_SYSCALL:
955                                 p->p_stops |= S_PT_SCE | S_PT_SCX;
956                                 CTR4(KTR_PTRACE,
957                     "PT_SYSCALL: pid %d, stops = %#x, PC = %#lx, sig = %d",
958                                     p->p_pid, p->p_stops,
959                                     (u_long)(uintfptr_t)addr, data);
960                                 break;
961                         case PT_CONTINUE:
962                                 CTR3(KTR_PTRACE,
963                                     "PT_CONTINUE: pid %d, PC = %#lx, sig = %d",
964                                     p->p_pid, (u_long)(uintfptr_t)addr, data);
965                                 break;
966                         }
967                         break;
968                 case PT_DETACH:
969                         /*
970                          * Reset the process parent.
971                          *
972                          * NB: This clears P_TRACED before reparenting
973                          * a detached process back to its original
974                          * parent.  Otherwise the debugee will be set
975                          * as an orphan of the debugger.
976                          */
977                         p->p_flag &= ~(P_TRACED | P_WAITED | P_FOLLOWFORK);
978                         if (p->p_oppid != p->p_pptr->p_pid) {
979                                 PROC_LOCK(p->p_pptr);
980                                 sigqueue_take(p->p_ksi);
981                                 PROC_UNLOCK(p->p_pptr);
982
983                                 pp = proc_realparent(p);
984                                 proc_reparent(p, pp);
985                                 if (pp == initproc)
986                                         p->p_sigparent = SIGCHLD;
987                                 CTR3(KTR_PTRACE,
988                             "PT_DETACH: pid %d reparented to pid %d, sig %d",
989                                     p->p_pid, pp->p_pid, data);
990                         } else
991                                 CTR2(KTR_PTRACE, "PT_DETACH: pid %d, sig %d",
992                                     p->p_pid, data);
993                         p->p_oppid = 0;
994                         p->p_stops = 0;
995
996                         /* should we send SIGCHLD? */
997                         /* childproc_continued(p); */
998                         break;
999                 }
1000
1001         sendsig:
1002                 if (proctree_locked) {
1003                         sx_xunlock(&proctree_lock);
1004                         proctree_locked = 0;
1005                 }
1006                 p->p_xstat = data;
1007                 p->p_xthread = NULL;
1008                 if ((p->p_flag & (P_STOPPED_SIG | P_STOPPED_TRACE)) != 0) {
1009                         /* deliver or queue signal */
1010                         td2->td_dbgflags &= ~TDB_XSIG;
1011                         td2->td_xsig = data;
1012
1013                         if (req == PT_DETACH) {
1014                                 FOREACH_THREAD_IN_PROC(p, td3)
1015                                         td3->td_dbgflags &= ~TDB_SUSPEND; 
1016                         }
1017                         /*
1018                          * unsuspend all threads, to not let a thread run,
1019                          * you should use PT_SUSPEND to suspend it before
1020                          * continuing process.
1021                          */
1022                         PROC_SLOCK(p);
1023                         p->p_flag &= ~(P_STOPPED_TRACE|P_STOPPED_SIG|P_WAITED);
1024                         thread_unsuspend(p);
1025                         PROC_SUNLOCK(p);
1026                         if (req == PT_ATTACH)
1027                                 kern_psignal(p, data);
1028                 } else {
1029                         if (data)
1030                                 kern_psignal(p, data);
1031                 }
1032                 break;
1033
1034         case PT_WRITE_I:
1035         case PT_WRITE_D:
1036                 td2->td_dbgflags |= TDB_USERWR;
1037                 write = 1;
1038                 /* FALLTHROUGH */
1039         case PT_READ_I:
1040         case PT_READ_D:
1041                 PROC_UNLOCK(p);
1042                 tmp = 0;
1043                 /* write = 0 set above */
1044                 iov.iov_base = write ? (caddr_t)&data : (caddr_t)&tmp;
1045                 iov.iov_len = sizeof(int);
1046                 uio.uio_iov = &iov;
1047                 uio.uio_iovcnt = 1;
1048                 uio.uio_offset = (off_t)(uintptr_t)addr;
1049                 uio.uio_resid = sizeof(int);
1050                 uio.uio_segflg = UIO_SYSSPACE;  /* i.e.: the uap */
1051                 uio.uio_rw = write ? UIO_WRITE : UIO_READ;
1052                 uio.uio_td = td;
1053                 error = proc_rwmem(p, &uio);
1054                 if (uio.uio_resid != 0) {
1055                         /*
1056                          * XXX proc_rwmem() doesn't currently return ENOSPC,
1057                          * so I think write() can bogusly return 0.
1058                          * XXX what happens for short writes?  We don't want
1059                          * to write partial data.
1060                          * XXX proc_rwmem() returns EPERM for other invalid
1061                          * addresses.  Convert this to EINVAL.  Does this
1062                          * clobber returns of EPERM for other reasons?
1063                          */
1064                         if (error == 0 || error == ENOSPC || error == EPERM)
1065                                 error = EINVAL; /* EOF */
1066                 }
1067                 if (!write)
1068                         td->td_retval[0] = tmp;
1069                 if (error == 0) {
1070                         if (write)
1071                                 CTR3(KTR_PTRACE, "PT_WRITE: pid %d: %p <= %#x",
1072                                     p->p_pid, addr, data);
1073                         else
1074                                 CTR3(KTR_PTRACE, "PT_READ: pid %d: %p >= %#x",
1075                                     p->p_pid, addr, tmp);
1076                 }
1077                 PROC_LOCK(p);
1078                 break;
1079
1080         case PT_IO:
1081 #ifdef COMPAT_FREEBSD32
1082                 if (wrap32) {
1083                         piod32 = addr;
1084                         iov.iov_base = (void *)(uintptr_t)piod32->piod_addr;
1085                         iov.iov_len = piod32->piod_len;
1086                         uio.uio_offset = (off_t)(uintptr_t)piod32->piod_offs;
1087                         uio.uio_resid = piod32->piod_len;
1088                 } else
1089 #endif
1090                 {
1091                         piod = addr;
1092                         iov.iov_base = piod->piod_addr;
1093                         iov.iov_len = piod->piod_len;
1094                         uio.uio_offset = (off_t)(uintptr_t)piod->piod_offs;
1095                         uio.uio_resid = piod->piod_len;
1096                 }
1097                 uio.uio_iov = &iov;
1098                 uio.uio_iovcnt = 1;
1099                 uio.uio_segflg = UIO_USERSPACE;
1100                 uio.uio_td = td;
1101 #ifdef COMPAT_FREEBSD32
1102                 tmp = wrap32 ? piod32->piod_op : piod->piod_op;
1103 #else
1104                 tmp = piod->piod_op;
1105 #endif
1106                 switch (tmp) {
1107                 case PIOD_READ_D:
1108                 case PIOD_READ_I:
1109                         CTR3(KTR_PTRACE, "PT_IO: pid %d: READ (%p, %#x)",
1110                             p->p_pid, (uintptr_t)uio.uio_offset, uio.uio_resid);
1111                         uio.uio_rw = UIO_READ;
1112                         break;
1113                 case PIOD_WRITE_D:
1114                 case PIOD_WRITE_I:
1115                         CTR3(KTR_PTRACE, "PT_IO: pid %d: WRITE (%p, %#x)",
1116                             p->p_pid, (uintptr_t)uio.uio_offset, uio.uio_resid);
1117                         td2->td_dbgflags |= TDB_USERWR;
1118                         uio.uio_rw = UIO_WRITE;
1119                         break;
1120                 default:
1121                         error = EINVAL;
1122                         goto out;
1123                 }
1124                 PROC_UNLOCK(p);
1125                 error = proc_rwmem(p, &uio);
1126 #ifdef COMPAT_FREEBSD32
1127                 if (wrap32)
1128                         piod32->piod_len -= uio.uio_resid;
1129                 else
1130 #endif
1131                         piod->piod_len -= uio.uio_resid;
1132                 PROC_LOCK(p);
1133                 break;
1134
1135         case PT_KILL:
1136                 CTR1(KTR_PTRACE, "PT_KILL: pid %d", p->p_pid);
1137                 data = SIGKILL;
1138                 goto sendsig;   /* in PT_CONTINUE above */
1139
1140         case PT_SETREGS:
1141                 CTR2(KTR_PTRACE, "PT_SETREGS: tid %d (pid %d)", td2->td_tid,
1142                     p->p_pid);
1143                 td2->td_dbgflags |= TDB_USERWR;
1144                 error = PROC_WRITE(regs, td2, addr);
1145                 break;
1146
1147         case PT_GETREGS:
1148                 CTR2(KTR_PTRACE, "PT_GETREGS: tid %d (pid %d)", td2->td_tid,
1149                     p->p_pid);
1150                 error = PROC_READ(regs, td2, addr);
1151                 break;
1152
1153         case PT_SETFPREGS:
1154                 CTR2(KTR_PTRACE, "PT_SETFPREGS: tid %d (pid %d)", td2->td_tid,
1155                     p->p_pid);
1156                 td2->td_dbgflags |= TDB_USERWR;
1157                 error = PROC_WRITE(fpregs, td2, addr);
1158                 break;
1159
1160         case PT_GETFPREGS:
1161                 CTR2(KTR_PTRACE, "PT_GETFPREGS: tid %d (pid %d)", td2->td_tid,
1162                     p->p_pid);
1163                 error = PROC_READ(fpregs, td2, addr);
1164                 break;
1165
1166         case PT_SETDBREGS:
1167                 CTR2(KTR_PTRACE, "PT_SETDBREGS: tid %d (pid %d)", td2->td_tid,
1168                     p->p_pid);
1169                 td2->td_dbgflags |= TDB_USERWR;
1170                 error = PROC_WRITE(dbregs, td2, addr);
1171                 break;
1172
1173         case PT_GETDBREGS:
1174                 CTR2(KTR_PTRACE, "PT_GETDBREGS: tid %d (pid %d)", td2->td_tid,
1175                     p->p_pid);
1176                 error = PROC_READ(dbregs, td2, addr);
1177                 break;
1178
1179         case PT_LWPINFO:
1180                 if (data <= 0 ||
1181 #ifdef COMPAT_FREEBSD32
1182                     (!wrap32 && data > sizeof(*pl)) ||
1183                     (wrap32 && data > sizeof(*pl32))) {
1184 #else
1185                     data > sizeof(*pl)) {
1186 #endif
1187                         error = EINVAL;
1188                         break;
1189                 }
1190 #ifdef COMPAT_FREEBSD32
1191                 if (wrap32) {
1192                         pl = &plr;
1193                         pl32 = addr;
1194                 } else
1195 #endif
1196                 pl = addr;
1197                 bzero(pl, sizeof(*pl));
1198                 pl->pl_lwpid = td2->td_tid;
1199                 pl->pl_event = PL_EVENT_NONE;
1200                 pl->pl_flags = 0;
1201                 if (td2->td_dbgflags & TDB_XSIG) {
1202                         pl->pl_event = PL_EVENT_SIGNAL;
1203                         if (td2->td_dbgksi.ksi_signo != 0 &&
1204 #ifdef COMPAT_FREEBSD32
1205                             ((!wrap32 && data >= offsetof(struct ptrace_lwpinfo,
1206                             pl_siginfo) + sizeof(pl->pl_siginfo)) ||
1207                             (wrap32 && data >= offsetof(struct ptrace_lwpinfo32,
1208                             pl_siginfo) + sizeof(struct siginfo32)))
1209 #else
1210                             data >= offsetof(struct ptrace_lwpinfo, pl_siginfo)
1211                             + sizeof(pl->pl_siginfo)
1212 #endif
1213                         ){
1214                                 pl->pl_flags |= PL_FLAG_SI;
1215                                 pl->pl_siginfo = td2->td_dbgksi.ksi_info;
1216                         }
1217                 }
1218                 if (td2->td_dbgflags & TDB_SCE)
1219                         pl->pl_flags |= PL_FLAG_SCE;
1220                 else if (td2->td_dbgflags & TDB_SCX)
1221                         pl->pl_flags |= PL_FLAG_SCX;
1222                 if (td2->td_dbgflags & TDB_EXEC)
1223                         pl->pl_flags |= PL_FLAG_EXEC;
1224                 if (td2->td_dbgflags & TDB_FORK) {
1225                         pl->pl_flags |= PL_FLAG_FORKED;
1226                         pl->pl_child_pid = td2->td_dbg_forked;
1227                 }
1228                 if (td2->td_dbgflags & TDB_CHILD)
1229                         pl->pl_flags |= PL_FLAG_CHILD;
1230                 pl->pl_sigmask = td2->td_sigmask;
1231                 pl->pl_siglist = td2->td_siglist;
1232                 strcpy(pl->pl_tdname, td2->td_name);
1233                 if ((td2->td_dbgflags & (TDB_SCE | TDB_SCX)) != 0) {
1234                         pl->pl_syscall_code = td2->td_dbg_sc_code;
1235                         pl->pl_syscall_narg = td2->td_dbg_sc_narg;
1236                 } else {
1237                         pl->pl_syscall_code = 0;
1238                         pl->pl_syscall_narg = 0;
1239                 }
1240 #ifdef COMPAT_FREEBSD32
1241                 if (wrap32)
1242                         ptrace_lwpinfo_to32(pl, pl32);
1243 #endif
1244                 CTR6(KTR_PTRACE,
1245     "PT_LWPINFO: tid %d (pid %d) event %d flags %#x child pid %d syscall %d",
1246                     td2->td_tid, p->p_pid, pl->pl_event, pl->pl_flags,
1247                     pl->pl_child_pid, pl->pl_syscall_code);
1248                 break;
1249
1250         case PT_GETNUMLWPS:
1251                 CTR2(KTR_PTRACE, "PT_GETNUMLWPS: pid %d: %d threads", p->p_pid,
1252                     p->p_numthreads);
1253                 td->td_retval[0] = p->p_numthreads;
1254                 break;
1255
1256         case PT_GETLWPLIST:
1257                 CTR3(KTR_PTRACE, "PT_GETLWPLIST: pid %d: data %d, actual %d",
1258                     p->p_pid, data, p->p_numthreads);
1259                 if (data <= 0) {
1260                         error = EINVAL;
1261                         break;
1262                 }
1263                 num = imin(p->p_numthreads, data);
1264                 PROC_UNLOCK(p);
1265                 buf = malloc(num * sizeof(lwpid_t), M_TEMP, M_WAITOK);
1266                 tmp = 0;
1267                 PROC_LOCK(p);
1268                 FOREACH_THREAD_IN_PROC(p, td2) {
1269                         if (tmp >= num)
1270                                 break;
1271                         buf[tmp++] = td2->td_tid;
1272                 }
1273                 PROC_UNLOCK(p);
1274                 error = copyout(buf, addr, tmp * sizeof(lwpid_t));
1275                 free(buf, M_TEMP);
1276                 if (!error)
1277                         td->td_retval[0] = tmp;
1278                 PROC_LOCK(p);
1279                 break;
1280
1281         case PT_VM_TIMESTAMP:
1282                 CTR2(KTR_PTRACE, "PT_VM_TIMESTAMP: pid %d: timestamp %d",
1283                     p->p_pid, p->p_vmspace->vm_map.timestamp);
1284                 td->td_retval[0] = p->p_vmspace->vm_map.timestamp;
1285                 break;
1286
1287         case PT_VM_ENTRY:
1288                 PROC_UNLOCK(p);
1289 #ifdef COMPAT_FREEBSD32
1290                 if (wrap32)
1291                         error = ptrace_vm_entry32(td, p, addr);
1292                 else
1293 #endif
1294                 error = ptrace_vm_entry(td, p, addr);
1295                 PROC_LOCK(p);
1296                 break;
1297
1298         default:
1299 #ifdef __HAVE_PTRACE_MACHDEP
1300                 if (req >= PT_FIRSTMACH) {
1301                         PROC_UNLOCK(p);
1302                         error = cpu_ptrace(td2, req, addr, data);
1303                         PROC_LOCK(p);
1304                 } else
1305 #endif
1306                         /* Unknown request. */
1307                         error = EINVAL;
1308                 break;
1309         }
1310
1311 out:
1312         /* Drop our hold on this process now that the request has completed. */
1313         _PRELE(p);
1314 fail:
1315         PROC_UNLOCK(p);
1316         if (proctree_locked)
1317                 sx_xunlock(&proctree_lock);
1318         return (error);
1319 }
1320 #undef PROC_READ
1321 #undef PROC_WRITE
1322
1323 /*
1324  * Stop a process because of a debugging event;
1325  * stay stopped until p->p_step is cleared
1326  * (cleared by PIOCCONT in procfs).
1327  */
1328 void
1329 stopevent(struct proc *p, unsigned int event, unsigned int val)
1330 {
1331
1332         PROC_LOCK_ASSERT(p, MA_OWNED);
1333         p->p_step = 1;
1334         CTR3(KTR_PTRACE, "stopevent: pid %d event %u val %u", p->p_pid, event,
1335             val);
1336         do {
1337                 p->p_xstat = val;
1338                 p->p_xthread = NULL;
1339                 p->p_stype = event;     /* Which event caused the stop? */
1340                 wakeup(&p->p_stype);    /* Wake up any PIOCWAIT'ing procs */
1341                 msleep(&p->p_step, &p->p_mtx, PWAIT, "stopevent", 0);
1342         } while (p->p_step);
1343 }