]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - sys/kern/kern_thread.c
MFC r227657:
[FreeBSD/releng/9.0.git] / sys / kern / kern_thread.c
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28
29 #include "opt_witness.h"
30 #include "opt_hwpmc_hooks.h"
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/resourcevar.h>
42 #include <sys/smp.h>
43 #include <sys/sched.h>
44 #include <sys/sleepqueue.h>
45 #include <sys/selinfo.h>
46 #include <sys/turnstile.h>
47 #include <sys/ktr.h>
48 #include <sys/rwlock.h>
49 #include <sys/umtx.h>
50 #include <sys/cpuset.h>
51 #ifdef  HWPMC_HOOKS
52 #include <sys/pmckern.h>
53 #endif
54
55 #include <security/audit/audit.h>
56
57 #include <vm/vm.h>
58 #include <vm/vm_extern.h>
59 #include <vm/uma.h>
60 #include <sys/eventhandler.h>
61
62 /*
63  * thread related storage.
64  */
65 static uma_zone_t thread_zone;
66
67 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
68 static struct mtx zombie_lock;
69 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
70
71 static void thread_zombie(struct thread *);
72
73 #define TID_BUFFER_SIZE 1024
74
75 struct mtx tid_lock;
76 static struct unrhdr *tid_unrhdr;
77 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
78 static int tid_head, tid_tail;
79 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
80
81 struct  tidhashhead *tidhashtbl;
82 u_long  tidhash;
83 struct  rwlock tidhash_lock;
84
85 static lwpid_t
86 tid_alloc(void)
87 {
88         lwpid_t tid;
89
90         tid = alloc_unr(tid_unrhdr);
91         if (tid != -1)
92                 return (tid);
93         mtx_lock(&tid_lock);
94         if (tid_head == tid_tail) {
95                 mtx_unlock(&tid_lock);
96                 return (-1);
97         }
98         tid = tid_buffer[tid_head++];
99         tid_head %= TID_BUFFER_SIZE;
100         mtx_unlock(&tid_lock);
101         return (tid);
102 }
103
104 static void
105 tid_free(lwpid_t tid)
106 {
107         lwpid_t tmp_tid = -1;
108
109         mtx_lock(&tid_lock);
110         if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
111                 tmp_tid = tid_buffer[tid_head++];
112                 tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
113         }
114         tid_buffer[tid_tail++] = tid;
115         tid_tail %= TID_BUFFER_SIZE;
116         mtx_unlock(&tid_lock);
117         if (tmp_tid != -1)
118                 free_unr(tid_unrhdr, tmp_tid);
119 }
120
121 /*
122  * Prepare a thread for use.
123  */
124 static int
125 thread_ctor(void *mem, int size, void *arg, int flags)
126 {
127         struct thread   *td;
128
129         td = (struct thread *)mem;
130         td->td_state = TDS_INACTIVE;
131         td->td_oncpu = NOCPU;
132
133         td->td_tid = tid_alloc();
134
135         /*
136          * Note that td_critnest begins life as 1 because the thread is not
137          * running and is thereby implicitly waiting to be on the receiving
138          * end of a context switch.
139          */
140         td->td_critnest = 1;
141         td->td_lend_user_pri = PRI_MAX;
142         EVENTHANDLER_INVOKE(thread_ctor, td);
143 #ifdef AUDIT
144         audit_thread_alloc(td);
145 #endif
146         umtx_thread_alloc(td);
147         return (0);
148 }
149
150 /*
151  * Reclaim a thread after use.
152  */
153 static void
154 thread_dtor(void *mem, int size, void *arg)
155 {
156         struct thread *td;
157
158         td = (struct thread *)mem;
159
160 #ifdef INVARIANTS
161         /* Verify that this thread is in a safe state to free. */
162         switch (td->td_state) {
163         case TDS_INHIBITED:
164         case TDS_RUNNING:
165         case TDS_CAN_RUN:
166         case TDS_RUNQ:
167                 /*
168                  * We must never unlink a thread that is in one of
169                  * these states, because it is currently active.
170                  */
171                 panic("bad state for thread unlinking");
172                 /* NOTREACHED */
173         case TDS_INACTIVE:
174                 break;
175         default:
176                 panic("bad thread state");
177                 /* NOTREACHED */
178         }
179 #endif
180 #ifdef AUDIT
181         audit_thread_free(td);
182 #endif
183         /* Free all OSD associated to this thread. */
184         osd_thread_exit(td);
185
186         EVENTHANDLER_INVOKE(thread_dtor, td);
187         tid_free(td->td_tid);
188 }
189
190 /*
191  * Initialize type-stable parts of a thread (when newly created).
192  */
193 static int
194 thread_init(void *mem, int size, int flags)
195 {
196         struct thread *td;
197
198         td = (struct thread *)mem;
199
200         td->td_sleepqueue = sleepq_alloc();
201         td->td_turnstile = turnstile_alloc();
202         EVENTHANDLER_INVOKE(thread_init, td);
203         td->td_sched = (struct td_sched *)&td[1];
204         umtx_thread_init(td);
205         td->td_kstack = 0;
206         return (0);
207 }
208
209 /*
210  * Tear down type-stable parts of a thread (just before being discarded).
211  */
212 static void
213 thread_fini(void *mem, int size)
214 {
215         struct thread *td;
216
217         td = (struct thread *)mem;
218         EVENTHANDLER_INVOKE(thread_fini, td);
219         turnstile_free(td->td_turnstile);
220         sleepq_free(td->td_sleepqueue);
221         umtx_thread_fini(td);
222         seltdfini(td);
223 }
224
225 /*
226  * For a newly created process,
227  * link up all the structures and its initial threads etc.
228  * called from:
229  * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
230  * proc_dtor() (should go away)
231  * proc_init()
232  */
233 void
234 proc_linkup0(struct proc *p, struct thread *td)
235 {
236         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
237         proc_linkup(p, td);
238 }
239
240 void
241 proc_linkup(struct proc *p, struct thread *td)
242 {
243
244         sigqueue_init(&p->p_sigqueue, p);
245         p->p_ksi = ksiginfo_alloc(1);
246         if (p->p_ksi != NULL) {
247                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
248                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
249         }
250         LIST_INIT(&p->p_mqnotifier);
251         p->p_numthreads = 0;
252         thread_link(td, p);
253 }
254
255 /*
256  * Initialize global thread allocation resources.
257  */
258 void
259 threadinit(void)
260 {
261
262         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
263         /* leave one number for thread0 */
264         tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
265
266         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
267             thread_ctor, thread_dtor, thread_init, thread_fini,
268             16 - 1, 0);
269         tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
270         rw_init(&tidhash_lock, "tidhash");
271 }
272
273 /*
274  * Place an unused thread on the zombie list.
275  * Use the slpq as that must be unused by now.
276  */
277 void
278 thread_zombie(struct thread *td)
279 {
280         mtx_lock_spin(&zombie_lock);
281         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
282         mtx_unlock_spin(&zombie_lock);
283 }
284
285 /*
286  * Release a thread that has exited after cpu_throw().
287  */
288 void
289 thread_stash(struct thread *td)
290 {
291         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
292         thread_zombie(td);
293 }
294
295 /*
296  * Reap zombie resources.
297  */
298 void
299 thread_reap(void)
300 {
301         struct thread *td_first, *td_next;
302
303         /*
304          * Don't even bother to lock if none at this instant,
305          * we really don't care about the next instant..
306          */
307         if (!TAILQ_EMPTY(&zombie_threads)) {
308                 mtx_lock_spin(&zombie_lock);
309                 td_first = TAILQ_FIRST(&zombie_threads);
310                 if (td_first)
311                         TAILQ_INIT(&zombie_threads);
312                 mtx_unlock_spin(&zombie_lock);
313                 while (td_first) {
314                         td_next = TAILQ_NEXT(td_first, td_slpq);
315                         if (td_first->td_ucred)
316                                 crfree(td_first->td_ucred);
317                         thread_free(td_first);
318                         td_first = td_next;
319                 }
320         }
321 }
322
323 /*
324  * Allocate a thread.
325  */
326 struct thread *
327 thread_alloc(int pages)
328 {
329         struct thread *td;
330
331         thread_reap(); /* check if any zombies to get */
332
333         td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
334         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
335         if (!vm_thread_new(td, pages)) {
336                 uma_zfree(thread_zone, td);
337                 return (NULL);
338         }
339         cpu_thread_alloc(td);
340         return (td);
341 }
342
343 int
344 thread_alloc_stack(struct thread *td, int pages)
345 {
346
347         KASSERT(td->td_kstack == 0,
348             ("thread_alloc_stack called on a thread with kstack"));
349         if (!vm_thread_new(td, pages))
350                 return (0);
351         cpu_thread_alloc(td);
352         return (1);
353 }
354
355 /*
356  * Deallocate a thread.
357  */
358 void
359 thread_free(struct thread *td)
360 {
361
362         lock_profile_thread_exit(td);
363         if (td->td_cpuset)
364                 cpuset_rel(td->td_cpuset);
365         td->td_cpuset = NULL;
366         cpu_thread_free(td);
367         if (td->td_kstack != 0)
368                 vm_thread_dispose(td);
369         uma_zfree(thread_zone, td);
370 }
371
372 /*
373  * Discard the current thread and exit from its context.
374  * Always called with scheduler locked.
375  *
376  * Because we can't free a thread while we're operating under its context,
377  * push the current thread into our CPU's deadthread holder. This means
378  * we needn't worry about someone else grabbing our context before we
379  * do a cpu_throw().
380  */
381 void
382 thread_exit(void)
383 {
384         uint64_t new_switchtime;
385         struct thread *td;
386         struct thread *td2;
387         struct proc *p;
388         int wakeup_swapper;
389
390         td = curthread;
391         p = td->td_proc;
392
393         PROC_SLOCK_ASSERT(p, MA_OWNED);
394         mtx_assert(&Giant, MA_NOTOWNED);
395
396         PROC_LOCK_ASSERT(p, MA_OWNED);
397         KASSERT(p != NULL, ("thread exiting without a process"));
398         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
399             (long)p->p_pid, td->td_name);
400         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
401
402 #ifdef AUDIT
403         AUDIT_SYSCALL_EXIT(0, td);
404 #endif
405         umtx_thread_exit(td);
406         /*
407          * drop FPU & debug register state storage, or any other
408          * architecture specific resources that
409          * would not be on a new untouched process.
410          */
411         cpu_thread_exit(td);    /* XXXSMP */
412
413         /* Do the same timestamp bookkeeping that mi_switch() would do. */
414         new_switchtime = cpu_ticks();
415         p->p_rux.rux_runtime += (new_switchtime - PCPU_GET(switchtime));
416         PCPU_SET(switchtime, new_switchtime);
417         PCPU_SET(switchticks, ticks);
418         PCPU_INC(cnt.v_swtch);
419         /* Save our resource usage in our process. */
420         td->td_ru.ru_nvcsw++;
421         rucollect(&p->p_ru, &td->td_ru);
422         /*
423          * The last thread is left attached to the process
424          * So that the whole bundle gets recycled. Skip
425          * all this stuff if we never had threads.
426          * EXIT clears all sign of other threads when
427          * it goes to single threading, so the last thread always
428          * takes the short path.
429          */
430         if (p->p_flag & P_HADTHREADS) {
431                 if (p->p_numthreads > 1) {
432                         thread_unlink(td);
433                         td2 = FIRST_THREAD_IN_PROC(p);
434                         sched_exit_thread(td2, td);
435
436                         /*
437                          * The test below is NOT true if we are the
438                          * sole exiting thread. P_STOPPED_SINGLE is unset
439                          * in exit1() after it is the only survivor.
440                          */
441                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
442                                 if (p->p_numthreads == p->p_suspcount) {
443                                         thread_lock(p->p_singlethread);
444                                         wakeup_swapper = thread_unsuspend_one(
445                                                 p->p_singlethread);
446                                         thread_unlock(p->p_singlethread);
447                                         if (wakeup_swapper)
448                                                 kick_proc0();
449                                 }
450                         }
451
452                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
453                         PCPU_SET(deadthread, td);
454                 } else {
455                         /*
456                          * The last thread is exiting.. but not through exit()
457                          */
458                         panic ("thread_exit: Last thread exiting on its own");
459                 }
460         } 
461 #ifdef  HWPMC_HOOKS
462         /*
463          * If this thread is part of a process that is being tracked by hwpmc(4),
464          * inform the module of the thread's impending exit.
465          */
466         if (PMC_PROC_IS_USING_PMCS(td->td_proc))
467                 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
468 #endif
469         PROC_UNLOCK(p);
470         ruxagg(p, td);
471         thread_lock(td);
472         PROC_SUNLOCK(p);
473         td->td_state = TDS_INACTIVE;
474 #ifdef WITNESS
475         witness_thread_exit(td);
476 #endif
477         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
478         sched_throw(td);
479         panic("I'm a teapot!");
480         /* NOTREACHED */
481 }
482
483 /*
484  * Do any thread specific cleanups that may be needed in wait()
485  * called with Giant, proc and schedlock not held.
486  */
487 void
488 thread_wait(struct proc *p)
489 {
490         struct thread *td;
491
492         mtx_assert(&Giant, MA_NOTOWNED);
493         KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()"));
494         td = FIRST_THREAD_IN_PROC(p);
495         /* Lock the last thread so we spin until it exits cpu_throw(). */
496         thread_lock(td);
497         thread_unlock(td);
498         /* Wait for any remaining threads to exit cpu_throw(). */
499         while (p->p_exitthreads)
500                 sched_relinquish(curthread);
501         lock_profile_thread_exit(td);
502         cpuset_rel(td->td_cpuset);
503         td->td_cpuset = NULL;
504         cpu_thread_clean(td);
505         crfree(td->td_ucred);
506         thread_reap();  /* check for zombie threads etc. */
507 }
508
509 /*
510  * Link a thread to a process.
511  * set up anything that needs to be initialized for it to
512  * be used by the process.
513  */
514 void
515 thread_link(struct thread *td, struct proc *p)
516 {
517
518         /*
519          * XXX This can't be enabled because it's called for proc0 before
520          * its lock has been created.
521          * PROC_LOCK_ASSERT(p, MA_OWNED);
522          */
523         td->td_state    = TDS_INACTIVE;
524         td->td_proc     = p;
525         td->td_flags    = TDF_INMEM;
526
527         LIST_INIT(&td->td_contested);
528         LIST_INIT(&td->td_lprof[0]);
529         LIST_INIT(&td->td_lprof[1]);
530         sigqueue_init(&td->td_sigqueue, p);
531         callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
532         TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
533         p->p_numthreads++;
534 }
535
536 /*
537  * Convert a process with one thread to an unthreaded process.
538  */
539 void
540 thread_unthread(struct thread *td)
541 {
542         struct proc *p = td->td_proc;
543
544         KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads"));
545         p->p_flag &= ~P_HADTHREADS;
546 }
547
548 /*
549  * Called from:
550  *  thread_exit()
551  */
552 void
553 thread_unlink(struct thread *td)
554 {
555         struct proc *p = td->td_proc;
556
557         PROC_LOCK_ASSERT(p, MA_OWNED);
558         TAILQ_REMOVE(&p->p_threads, td, td_plist);
559         p->p_numthreads--;
560         /* could clear a few other things here */
561         /* Must  NOT clear links to proc! */
562 }
563
564 static int
565 calc_remaining(struct proc *p, int mode)
566 {
567         int remaining;
568
569         PROC_LOCK_ASSERT(p, MA_OWNED);
570         PROC_SLOCK_ASSERT(p, MA_OWNED);
571         if (mode == SINGLE_EXIT)
572                 remaining = p->p_numthreads;
573         else if (mode == SINGLE_BOUNDARY)
574                 remaining = p->p_numthreads - p->p_boundary_count;
575         else if (mode == SINGLE_NO_EXIT)
576                 remaining = p->p_numthreads - p->p_suspcount;
577         else
578                 panic("calc_remaining: wrong mode %d", mode);
579         return (remaining);
580 }
581
582 /*
583  * Enforce single-threading.
584  *
585  * Returns 1 if the caller must abort (another thread is waiting to
586  * exit the process or similar). Process is locked!
587  * Returns 0 when you are successfully the only thread running.
588  * A process has successfully single threaded in the suspend mode when
589  * There are no threads in user mode. Threads in the kernel must be
590  * allowed to continue until they get to the user boundary. They may even
591  * copy out their return values and data before suspending. They may however be
592  * accelerated in reaching the user boundary as we will wake up
593  * any sleeping threads that are interruptable. (PCATCH).
594  */
595 int
596 thread_single(int mode)
597 {
598         struct thread *td;
599         struct thread *td2;
600         struct proc *p;
601         int remaining, wakeup_swapper;
602
603         td = curthread;
604         p = td->td_proc;
605         mtx_assert(&Giant, MA_NOTOWNED);
606         PROC_LOCK_ASSERT(p, MA_OWNED);
607         KASSERT((td != NULL), ("curthread is NULL"));
608
609         if ((p->p_flag & P_HADTHREADS) == 0)
610                 return (0);
611
612         /* Is someone already single threading? */
613         if (p->p_singlethread != NULL && p->p_singlethread != td)
614                 return (1);
615
616         if (mode == SINGLE_EXIT) {
617                 p->p_flag |= P_SINGLE_EXIT;
618                 p->p_flag &= ~P_SINGLE_BOUNDARY;
619         } else {
620                 p->p_flag &= ~P_SINGLE_EXIT;
621                 if (mode == SINGLE_BOUNDARY)
622                         p->p_flag |= P_SINGLE_BOUNDARY;
623                 else
624                         p->p_flag &= ~P_SINGLE_BOUNDARY;
625         }
626         p->p_flag |= P_STOPPED_SINGLE;
627         PROC_SLOCK(p);
628         p->p_singlethread = td;
629         remaining = calc_remaining(p, mode);
630         while (remaining != 1) {
631                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
632                         goto stopme;
633                 wakeup_swapper = 0;
634                 FOREACH_THREAD_IN_PROC(p, td2) {
635                         if (td2 == td)
636                                 continue;
637                         thread_lock(td2);
638                         td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
639                         if (TD_IS_INHIBITED(td2)) {
640                                 switch (mode) {
641                                 case SINGLE_EXIT:
642                                         if (TD_IS_SUSPENDED(td2))
643                                                 wakeup_swapper |=
644                                                     thread_unsuspend_one(td2);
645                                         if (TD_ON_SLEEPQ(td2) &&
646                                             (td2->td_flags & TDF_SINTR))
647                                                 wakeup_swapper |=
648                                                     sleepq_abort(td2, EINTR);
649                                         break;
650                                 case SINGLE_BOUNDARY:
651                                         if (TD_IS_SUSPENDED(td2) &&
652                                             !(td2->td_flags & TDF_BOUNDARY))
653                                                 wakeup_swapper |=
654                                                     thread_unsuspend_one(td2);
655                                         if (TD_ON_SLEEPQ(td2) &&
656                                             (td2->td_flags & TDF_SINTR))
657                                                 wakeup_swapper |=
658                                                     sleepq_abort(td2, ERESTART);
659                                         break;
660                                 case SINGLE_NO_EXIT:
661                                         if (TD_IS_SUSPENDED(td2) &&
662                                             !(td2->td_flags & TDF_BOUNDARY))
663                                                 wakeup_swapper |=
664                                                     thread_unsuspend_one(td2);
665                                         if (TD_ON_SLEEPQ(td2) &&
666                                             (td2->td_flags & TDF_SINTR))
667                                                 wakeup_swapper |=
668                                                     sleepq_abort(td2, ERESTART);
669                                         break;
670                                 default:
671                                         break;
672                                 }
673                         }
674 #ifdef SMP
675                         else if (TD_IS_RUNNING(td2) && td != td2) {
676                                 forward_signal(td2);
677                         }
678 #endif
679                         thread_unlock(td2);
680                 }
681                 if (wakeup_swapper)
682                         kick_proc0();
683                 remaining = calc_remaining(p, mode);
684
685                 /*
686                  * Maybe we suspended some threads.. was it enough?
687                  */
688                 if (remaining == 1)
689                         break;
690
691 stopme:
692                 /*
693                  * Wake us up when everyone else has suspended.
694                  * In the mean time we suspend as well.
695                  */
696                 thread_suspend_switch(td);
697                 remaining = calc_remaining(p, mode);
698         }
699         if (mode == SINGLE_EXIT) {
700                 /*
701                  * We have gotten rid of all the other threads and we
702                  * are about to either exit or exec. In either case,
703                  * we try our utmost  to revert to being a non-threaded
704                  * process.
705                  */
706                 p->p_singlethread = NULL;
707                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT);
708                 thread_unthread(td);
709         }
710         PROC_SUNLOCK(p);
711         return (0);
712 }
713
714 /*
715  * Called in from locations that can safely check to see
716  * whether we have to suspend or at least throttle for a
717  * single-thread event (e.g. fork).
718  *
719  * Such locations include userret().
720  * If the "return_instead" argument is non zero, the thread must be able to
721  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
722  *
723  * The 'return_instead' argument tells the function if it may do a
724  * thread_exit() or suspend, or whether the caller must abort and back
725  * out instead.
726  *
727  * If the thread that set the single_threading request has set the
728  * P_SINGLE_EXIT bit in the process flags then this call will never return
729  * if 'return_instead' is false, but will exit.
730  *
731  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
732  *---------------+--------------------+---------------------
733  *       0       | returns 0          |   returns 0 or 1
734  *               | when ST ends       |   immediatly
735  *---------------+--------------------+---------------------
736  *       1       | thread exits       |   returns 1
737  *               |                    |  immediatly
738  * 0 = thread_exit() or suspension ok,
739  * other = return error instead of stopping the thread.
740  *
741  * While a full suspension is under effect, even a single threading
742  * thread would be suspended if it made this call (but it shouldn't).
743  * This call should only be made from places where
744  * thread_exit() would be safe as that may be the outcome unless
745  * return_instead is set.
746  */
747 int
748 thread_suspend_check(int return_instead)
749 {
750         struct thread *td;
751         struct proc *p;
752         int wakeup_swapper;
753
754         td = curthread;
755         p = td->td_proc;
756         mtx_assert(&Giant, MA_NOTOWNED);
757         PROC_LOCK_ASSERT(p, MA_OWNED);
758         while (P_SHOULDSTOP(p) ||
759               ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND))) {
760                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
761                         KASSERT(p->p_singlethread != NULL,
762                             ("singlethread not set"));
763                         /*
764                          * The only suspension in action is a
765                          * single-threading. Single threader need not stop.
766                          * XXX Should be safe to access unlocked
767                          * as it can only be set to be true by us.
768                          */
769                         if (p->p_singlethread == td)
770                                 return (0);     /* Exempt from stopping. */
771                 }
772                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
773                         return (EINTR);
774
775                 /* Should we goto user boundary if we didn't come from there? */
776                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
777                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
778                         return (ERESTART);
779
780                 /*
781                  * If the process is waiting for us to exit,
782                  * this thread should just suicide.
783                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
784                  */
785                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
786                         PROC_UNLOCK(p);
787                         tidhash_remove(td);
788                         PROC_LOCK(p);
789                         tdsigcleanup(td);
790                         PROC_SLOCK(p);
791                         thread_stopped(p);
792                         thread_exit();
793                 }
794
795                 PROC_SLOCK(p);
796                 thread_stopped(p);
797                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
798                         if (p->p_numthreads == p->p_suspcount + 1) {
799                                 thread_lock(p->p_singlethread);
800                                 wakeup_swapper =
801                                     thread_unsuspend_one(p->p_singlethread);
802                                 thread_unlock(p->p_singlethread);
803                                 if (wakeup_swapper)
804                                         kick_proc0();
805                         }
806                 }
807                 PROC_UNLOCK(p);
808                 thread_lock(td);
809                 /*
810                  * When a thread suspends, it just
811                  * gets taken off all queues.
812                  */
813                 thread_suspend_one(td);
814                 if (return_instead == 0) {
815                         p->p_boundary_count++;
816                         td->td_flags |= TDF_BOUNDARY;
817                 }
818                 PROC_SUNLOCK(p);
819                 mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
820                 if (return_instead == 0)
821                         td->td_flags &= ~TDF_BOUNDARY;
822                 thread_unlock(td);
823                 PROC_LOCK(p);
824                 if (return_instead == 0) {
825                         PROC_SLOCK(p);
826                         p->p_boundary_count--;
827                         PROC_SUNLOCK(p);
828                 }
829         }
830         return (0);
831 }
832
833 void
834 thread_suspend_switch(struct thread *td)
835 {
836         struct proc *p;
837
838         p = td->td_proc;
839         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
840         PROC_LOCK_ASSERT(p, MA_OWNED);
841         PROC_SLOCK_ASSERT(p, MA_OWNED);
842         /*
843          * We implement thread_suspend_one in stages here to avoid
844          * dropping the proc lock while the thread lock is owned.
845          */
846         thread_stopped(p);
847         p->p_suspcount++;
848         PROC_UNLOCK(p);
849         thread_lock(td);
850         td->td_flags &= ~TDF_NEEDSUSPCHK;
851         TD_SET_SUSPENDED(td);
852         sched_sleep(td, 0);
853         PROC_SUNLOCK(p);
854         DROP_GIANT();
855         mi_switch(SW_VOL | SWT_SUSPEND, NULL);
856         thread_unlock(td);
857         PICKUP_GIANT();
858         PROC_LOCK(p);
859         PROC_SLOCK(p);
860 }
861
862 void
863 thread_suspend_one(struct thread *td)
864 {
865         struct proc *p = td->td_proc;
866
867         PROC_SLOCK_ASSERT(p, MA_OWNED);
868         THREAD_LOCK_ASSERT(td, MA_OWNED);
869         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
870         p->p_suspcount++;
871         td->td_flags &= ~TDF_NEEDSUSPCHK;
872         TD_SET_SUSPENDED(td);
873         sched_sleep(td, 0);
874 }
875
876 int
877 thread_unsuspend_one(struct thread *td)
878 {
879         struct proc *p = td->td_proc;
880
881         PROC_SLOCK_ASSERT(p, MA_OWNED);
882         THREAD_LOCK_ASSERT(td, MA_OWNED);
883         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
884         TD_CLR_SUSPENDED(td);
885         p->p_suspcount--;
886         return (setrunnable(td));
887 }
888
889 /*
890  * Allow all threads blocked by single threading to continue running.
891  */
892 void
893 thread_unsuspend(struct proc *p)
894 {
895         struct thread *td;
896         int wakeup_swapper;
897
898         PROC_LOCK_ASSERT(p, MA_OWNED);
899         PROC_SLOCK_ASSERT(p, MA_OWNED);
900         wakeup_swapper = 0;
901         if (!P_SHOULDSTOP(p)) {
902                 FOREACH_THREAD_IN_PROC(p, td) {
903                         thread_lock(td);
904                         if (TD_IS_SUSPENDED(td)) {
905                                 wakeup_swapper |= thread_unsuspend_one(td);
906                         }
907                         thread_unlock(td);
908                 }
909         } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
910             (p->p_numthreads == p->p_suspcount)) {
911                 /*
912                  * Stopping everything also did the job for the single
913                  * threading request. Now we've downgraded to single-threaded,
914                  * let it continue.
915                  */
916                 thread_lock(p->p_singlethread);
917                 wakeup_swapper = thread_unsuspend_one(p->p_singlethread);
918                 thread_unlock(p->p_singlethread);
919         }
920         if (wakeup_swapper)
921                 kick_proc0();
922 }
923
924 /*
925  * End the single threading mode..
926  */
927 void
928 thread_single_end(void)
929 {
930         struct thread *td;
931         struct proc *p;
932         int wakeup_swapper;
933
934         td = curthread;
935         p = td->td_proc;
936         PROC_LOCK_ASSERT(p, MA_OWNED);
937         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY);
938         PROC_SLOCK(p);
939         p->p_singlethread = NULL;
940         wakeup_swapper = 0;
941         /*
942          * If there are other threads they may now run,
943          * unless of course there is a blanket 'stop order'
944          * on the process. The single threader must be allowed
945          * to continue however as this is a bad place to stop.
946          */
947         if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
948                 FOREACH_THREAD_IN_PROC(p, td) {
949                         thread_lock(td);
950                         if (TD_IS_SUSPENDED(td)) {
951                                 wakeup_swapper |= thread_unsuspend_one(td);
952                         }
953                         thread_unlock(td);
954                 }
955         }
956         PROC_SUNLOCK(p);
957         if (wakeup_swapper)
958                 kick_proc0();
959 }
960
961 struct thread *
962 thread_find(struct proc *p, lwpid_t tid)
963 {
964         struct thread *td;
965
966         PROC_LOCK_ASSERT(p, MA_OWNED);
967         FOREACH_THREAD_IN_PROC(p, td) {
968                 if (td->td_tid == tid)
969                         break;
970         }
971         return (td);
972 }
973
974 /* Locate a thread by number; return with proc lock held. */
975 struct thread *
976 tdfind(lwpid_t tid, pid_t pid)
977 {
978 #define RUN_THRESH      16
979         struct thread *td;
980         int run = 0;
981
982         rw_rlock(&tidhash_lock);
983         LIST_FOREACH(td, TIDHASH(tid), td_hash) {
984                 if (td->td_tid == tid) {
985                         if (pid != -1 && td->td_proc->p_pid != pid) {
986                                 td = NULL;
987                                 break;
988                         }
989                         PROC_LOCK(td->td_proc);
990                         if (td->td_proc->p_state == PRS_NEW) {
991                                 PROC_UNLOCK(td->td_proc);
992                                 td = NULL;
993                                 break;
994                         }
995                         if (run > RUN_THRESH) {
996                                 if (rw_try_upgrade(&tidhash_lock)) {
997                                         LIST_REMOVE(td, td_hash);
998                                         LIST_INSERT_HEAD(TIDHASH(td->td_tid),
999                                                 td, td_hash);
1000                                         rw_wunlock(&tidhash_lock);
1001                                         return (td);
1002                                 }
1003                         }
1004                         break;
1005                 }
1006                 run++;
1007         }
1008         rw_runlock(&tidhash_lock);
1009         return (td);
1010 }
1011
1012 void
1013 tidhash_add(struct thread *td)
1014 {
1015         rw_wlock(&tidhash_lock);
1016         LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1017         rw_wunlock(&tidhash_lock);
1018 }
1019
1020 void
1021 tidhash_remove(struct thread *td)
1022 {
1023         rw_wlock(&tidhash_lock);
1024         LIST_REMOVE(td, td_hash);
1025         rw_wunlock(&tidhash_lock);
1026 }