]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - sys/kern/kern_clocksource.c
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / sys / kern / kern_clocksource.c
1 /*-
2  * Copyright (c) 2010-2012 Alexander Motin <mav@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification, immediately at the beginning of the file.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 /*
31  * Common routines to manage event timers hardware.
32  */
33
34 #include "opt_device_polling.h"
35 #include "opt_kdtrace.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/bus.h>
40 #include <sys/lock.h>
41 #include <sys/kdb.h>
42 #include <sys/ktr.h>
43 #include <sys/mutex.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/sched.h>
47 #include <sys/smp.h>
48 #include <sys/sysctl.h>
49 #include <sys/timeet.h>
50 #include <sys/timetc.h>
51
52 #include <machine/atomic.h>
53 #include <machine/clock.h>
54 #include <machine/cpu.h>
55 #include <machine/smp.h>
56
57 #ifdef KDTRACE_HOOKS
58 #include <sys/dtrace_bsd.h>
59 cyclic_clock_func_t     cyclic_clock_func = NULL;
60 #endif
61
62 int                     cpu_can_deep_sleep = 0; /* C3 state is available. */
63 int                     cpu_disable_deep_sleep = 0; /* Timer dies in C3. */
64
65 static void             setuptimer(void);
66 static void             loadtimer(struct bintime *now, int first);
67 static int              doconfigtimer(void);
68 static void             configtimer(int start);
69 static int              round_freq(struct eventtimer *et, int freq);
70
71 static void             getnextcpuevent(struct bintime *event, int idle);
72 static void             getnextevent(struct bintime *event);
73 static int              handleevents(struct bintime *now, int fake);
74 #ifdef SMP
75 static void             cpu_new_callout(int cpu, int ticks);
76 #endif
77
78 static struct mtx       et_hw_mtx;
79
80 #define ET_HW_LOCK(state)                                               \
81         {                                                               \
82                 if (timer->et_flags & ET_FLAGS_PERCPU)                  \
83                         mtx_lock_spin(&(state)->et_hw_mtx);             \
84                 else                                                    \
85                         mtx_lock_spin(&et_hw_mtx);                      \
86         }
87
88 #define ET_HW_UNLOCK(state)                                             \
89         {                                                               \
90                 if (timer->et_flags & ET_FLAGS_PERCPU)                  \
91                         mtx_unlock_spin(&(state)->et_hw_mtx);           \
92                 else                                                    \
93                         mtx_unlock_spin(&et_hw_mtx);                    \
94         }
95
96 static struct eventtimer *timer = NULL;
97 static struct bintime   timerperiod;    /* Timer period for periodic mode. */
98 static struct bintime   hardperiod;     /* hardclock() events period. */
99 static struct bintime   statperiod;     /* statclock() events period. */
100 static struct bintime   profperiod;     /* profclock() events period. */
101 static struct bintime   nexttick;       /* Next global timer tick time. */
102 static struct bintime   nexthard;       /* Next global hardlock() event. */
103 static u_int            busy = 0;       /* Reconfiguration is in progress. */
104 static int              profiling = 0;  /* Profiling events enabled. */
105
106 static char             timername[32];  /* Wanted timer. */
107 TUNABLE_STR("kern.eventtimer.timer", timername, sizeof(timername));
108
109 static int              singlemul = 0;  /* Multiplier for periodic mode. */
110 TUNABLE_INT("kern.eventtimer.singlemul", &singlemul);
111 SYSCTL_INT(_kern_eventtimer, OID_AUTO, singlemul, CTLFLAG_RW, &singlemul,
112     0, "Multiplier for periodic mode");
113
114 static u_int            idletick = 0;   /* Run periodic events when idle. */
115 TUNABLE_INT("kern.eventtimer.idletick", &idletick);
116 SYSCTL_UINT(_kern_eventtimer, OID_AUTO, idletick, CTLFLAG_RW, &idletick,
117     0, "Run periodic events when idle");
118
119 static u_int            activetick = 1; /* Run all periodic events when active. */
120 TUNABLE_INT("kern.eventtimer.activetick", &activetick);
121 SYSCTL_UINT(_kern_eventtimer, OID_AUTO, activetick, CTLFLAG_RW, &activetick,
122     0, "Run all periodic events when active");
123
124 static int              periodic = 0;   /* Periodic or one-shot mode. */
125 static int              want_periodic = 0; /* What mode to prefer. */
126 TUNABLE_INT("kern.eventtimer.periodic", &want_periodic);
127
128 struct pcpu_state {
129         struct mtx      et_hw_mtx;      /* Per-CPU timer mutex. */
130         u_int           action;         /* Reconfiguration requests. */
131         u_int           handle;         /* Immediate handle resuests. */
132         struct bintime  now;            /* Last tick time. */
133         struct bintime  nextevent;      /* Next scheduled event on this CPU. */
134         struct bintime  nexttick;       /* Next timer tick time. */
135         struct bintime  nexthard;       /* Next hardlock() event. */
136         struct bintime  nextstat;       /* Next statclock() event. */
137         struct bintime  nextprof;       /* Next profclock() event. */
138 #ifdef KDTRACE_HOOKS
139         struct bintime  nextcyc;        /* Next OpenSolaris cyclics event. */
140 #endif
141         int             ipi;            /* This CPU needs IPI. */
142         int             idle;           /* This CPU is in idle mode. */
143 };
144
145 static DPCPU_DEFINE(struct pcpu_state, timerstate);
146
147 #define FREQ2BT(freq, bt)                                               \
148 {                                                                       \
149         (bt)->sec = 0;                                                  \
150         (bt)->frac = ((uint64_t)0x8000000000000000  / (freq)) << 1;     \
151 }
152 #define BT2FREQ(bt)                                                     \
153         (((uint64_t)0x8000000000000000 + ((bt)->frac >> 2)) /           \
154             ((bt)->frac >> 1))
155
156 /*
157  * Timer broadcast IPI handler.
158  */
159 int
160 hardclockintr(void)
161 {
162         struct bintime now;
163         struct pcpu_state *state;
164         int done;
165
166         if (doconfigtimer() || busy)
167                 return (FILTER_HANDLED);
168         state = DPCPU_PTR(timerstate);
169         now = state->now;
170         CTR4(KTR_SPARE2, "ipi  at %d:    now  %d.%08x%08x",
171             curcpu, now.sec, (unsigned int)(now.frac >> 32),
172                              (unsigned int)(now.frac & 0xffffffff));
173         done = handleevents(&now, 0);
174         return (done ? FILTER_HANDLED : FILTER_STRAY);
175 }
176
177 /*
178  * Handle all events for specified time on this CPU
179  */
180 static int
181 handleevents(struct bintime *now, int fake)
182 {
183         struct bintime t;
184         struct trapframe *frame;
185         struct pcpu_state *state;
186         uintfptr_t pc;
187         int usermode;
188         int done, runs;
189
190         CTR4(KTR_SPARE2, "handle at %d:  now  %d.%08x%08x",
191             curcpu, now->sec, (unsigned int)(now->frac >> 32),
192                      (unsigned int)(now->frac & 0xffffffff));
193         done = 0;
194         if (fake) {
195                 frame = NULL;
196                 usermode = 0;
197                 pc = 0;
198         } else {
199                 frame = curthread->td_intr_frame;
200                 usermode = TRAPF_USERMODE(frame);
201                 pc = TRAPF_PC(frame);
202         }
203
204         state = DPCPU_PTR(timerstate);
205
206         runs = 0;
207         while (bintime_cmp(now, &state->nexthard, >=)) {
208                 bintime_add(&state->nexthard, &hardperiod);
209                 runs++;
210         }
211         if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 &&
212             bintime_cmp(&state->nexthard, &nexthard, >))
213                 nexthard = state->nexthard;
214         if (runs && fake < 2) {
215                 hardclock_cnt(runs, usermode);
216                 done = 1;
217         }
218         runs = 0;
219         while (bintime_cmp(now, &state->nextstat, >=)) {
220                 bintime_add(&state->nextstat, &statperiod);
221                 runs++;
222         }
223         if (runs && fake < 2) {
224                 statclock_cnt(runs, usermode);
225                 done = 1;
226         }
227         if (profiling) {
228                 runs = 0;
229                 while (bintime_cmp(now, &state->nextprof, >=)) {
230                         bintime_add(&state->nextprof, &profperiod);
231                         runs++;
232                 }
233                 if (runs && !fake) {
234                         profclock_cnt(runs, usermode, pc);
235                         done = 1;
236                 }
237         } else
238                 state->nextprof = state->nextstat;
239
240 #ifdef KDTRACE_HOOKS
241         if (fake == 0 && cyclic_clock_func != NULL &&
242             state->nextcyc.sec != -1 &&
243             bintime_cmp(now, &state->nextcyc, >=)) {
244                 state->nextcyc.sec = -1;
245                 (*cyclic_clock_func)(frame);
246         }
247 #endif
248
249         getnextcpuevent(&t, 0);
250         if (fake == 2) {
251                 state->nextevent = t;
252                 return (done);
253         }
254         ET_HW_LOCK(state);
255         if (!busy) {
256                 state->idle = 0;
257                 state->nextevent = t;
258                 loadtimer(now, 0);
259         }
260         ET_HW_UNLOCK(state);
261         return (done);
262 }
263
264 /*
265  * Schedule binuptime of the next event on current CPU.
266  */
267 static void
268 getnextcpuevent(struct bintime *event, int idle)
269 {
270         struct bintime tmp;
271         struct pcpu_state *state;
272         int skip;
273
274         state = DPCPU_PTR(timerstate);
275         /* Handle hardclock() events. */
276         *event = state->nexthard;
277         if (idle || (!activetick && !profiling &&
278             (timer->et_flags & ET_FLAGS_PERCPU) == 0)) {
279                 skip = idle ? 4 : (stathz / 2);
280                 if (curcpu == CPU_FIRST() && tc_min_ticktock_freq > skip)
281                         skip = tc_min_ticktock_freq;
282                 skip = callout_tickstofirst(hz / skip) - 1;
283                 CTR2(KTR_SPARE2, "skip   at %d: %d", curcpu, skip);
284                 tmp = hardperiod;
285                 bintime_mul(&tmp, skip);
286                 bintime_add(event, &tmp);
287         }
288         if (!idle) { /* If CPU is active - handle other types of events. */
289                 if (bintime_cmp(event, &state->nextstat, >))
290                         *event = state->nextstat;
291                 if (profiling && bintime_cmp(event, &state->nextprof, >))
292                         *event = state->nextprof;
293         }
294 #ifdef KDTRACE_HOOKS
295         if (state->nextcyc.sec != -1 && bintime_cmp(event, &state->nextcyc, >))
296                 *event = state->nextcyc;
297 #endif
298 }
299
300 /*
301  * Schedule binuptime of the next event on all CPUs.
302  */
303 static void
304 getnextevent(struct bintime *event)
305 {
306         struct pcpu_state *state;
307 #ifdef SMP
308         int     cpu;
309 #endif
310         int     c, nonidle;
311
312         state = DPCPU_PTR(timerstate);
313         *event = state->nextevent;
314         c = curcpu;
315         nonidle = !state->idle;
316         if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) {
317 #ifdef SMP
318                 CPU_FOREACH(cpu) {
319                         if (curcpu == cpu)
320                                 continue;
321                         state = DPCPU_ID_PTR(cpu, timerstate);
322                         nonidle += !state->idle;
323                         if (bintime_cmp(event, &state->nextevent, >)) {
324                                 *event = state->nextevent;
325                                 c = cpu;
326                         }
327                 }
328 #endif
329                 if (nonidle != 0 && bintime_cmp(event, &nexthard, >))
330                         *event = nexthard;
331         }
332         CTR5(KTR_SPARE2, "next at %d:    next %d.%08x%08x by %d",
333             curcpu, event->sec, (unsigned int)(event->frac >> 32),
334                              (unsigned int)(event->frac & 0xffffffff), c);
335 }
336
337 /* Hardware timer callback function. */
338 static void
339 timercb(struct eventtimer *et, void *arg)
340 {
341         struct bintime now;
342         struct bintime *next;
343         struct pcpu_state *state;
344 #ifdef SMP
345         int cpu, bcast;
346 #endif
347
348         /* Do not touch anything if somebody reconfiguring timers. */
349         if (busy)
350                 return;
351         /* Update present and next tick times. */
352         state = DPCPU_PTR(timerstate);
353         if (et->et_flags & ET_FLAGS_PERCPU) {
354                 next = &state->nexttick;
355         } else
356                 next = &nexttick;
357         if (periodic) {
358                 now = *next;    /* Ex-next tick time becomes present time. */
359                 bintime_add(next, &timerperiod); /* Next tick in 1 period. */
360         } else {
361                 binuptime(&now);        /* Get present time from hardware. */
362                 next->sec = -1;         /* Next tick is not scheduled yet. */
363         }
364         state->now = now;
365         CTR4(KTR_SPARE2, "intr at %d:    now  %d.%08x%08x",
366             curcpu, now.sec, (unsigned int)(now.frac >> 32),
367                              (unsigned int)(now.frac & 0xffffffff));
368
369 #ifdef SMP
370         /* Prepare broadcasting to other CPUs for non-per-CPU timers. */
371         bcast = 0;
372         if ((et->et_flags & ET_FLAGS_PERCPU) == 0 && smp_started) {
373                 CPU_FOREACH(cpu) {
374                         state = DPCPU_ID_PTR(cpu, timerstate);
375                         ET_HW_LOCK(state);
376                         state->now = now;
377                         if (bintime_cmp(&now, &state->nextevent, >=)) {
378                                 state->nextevent.sec++;
379                                 if (curcpu != cpu) {
380                                         state->ipi = 1;
381                                         bcast = 1;
382                                 }
383                         }
384                         ET_HW_UNLOCK(state);
385                 }
386         }
387 #endif
388
389         /* Handle events for this time on this CPU. */
390         handleevents(&now, 0);
391
392 #ifdef SMP
393         /* Broadcast interrupt to other CPUs for non-per-CPU timers. */
394         if (bcast) {
395                 CPU_FOREACH(cpu) {
396                         if (curcpu == cpu)
397                                 continue;
398                         state = DPCPU_ID_PTR(cpu, timerstate);
399                         if (state->ipi) {
400                                 state->ipi = 0;
401                                 ipi_cpu(cpu, IPI_HARDCLOCK);
402                         }
403                 }
404         }
405 #endif
406 }
407
408 /*
409  * Load new value into hardware timer.
410  */
411 static void
412 loadtimer(struct bintime *now, int start)
413 {
414         struct pcpu_state *state;
415         struct bintime new;
416         struct bintime *next;
417         uint64_t tmp;
418         int eq;
419
420         if (timer->et_flags & ET_FLAGS_PERCPU) {
421                 state = DPCPU_PTR(timerstate);
422                 next = &state->nexttick;
423         } else
424                 next = &nexttick;
425         if (periodic) {
426                 if (start) {
427                         /*
428                          * Try to start all periodic timers aligned
429                          * to period to make events synchronous.
430                          */
431                         tmp = ((uint64_t)now->sec << 36) + (now->frac >> 28);
432                         tmp = (tmp % (timerperiod.frac >> 28)) << 28;
433                         new.sec = 0;
434                         new.frac = timerperiod.frac - tmp;
435                         if (new.frac < tmp)     /* Left less then passed. */
436                                 bintime_add(&new, &timerperiod);
437                         CTR5(KTR_SPARE2, "load p at %d:   now %d.%08x first in %d.%08x",
438                             curcpu, now->sec, (unsigned int)(now->frac >> 32),
439                             new.sec, (unsigned int)(new.frac >> 32));
440                         *next = new;
441                         bintime_add(next, now);
442                         et_start(timer, &new, &timerperiod);
443                 }
444         } else {
445                 getnextevent(&new);
446                 eq = bintime_cmp(&new, next, ==);
447                 CTR5(KTR_SPARE2, "load at %d:    next %d.%08x%08x eq %d",
448                     curcpu, new.sec, (unsigned int)(new.frac >> 32),
449                              (unsigned int)(new.frac & 0xffffffff),
450                              eq);
451                 if (!eq) {
452                         *next = new;
453                         bintime_sub(&new, now);
454                         et_start(timer, &new, NULL);
455                 }
456         }
457 }
458
459 /*
460  * Prepare event timer parameters after configuration changes.
461  */
462 static void
463 setuptimer(void)
464 {
465         int freq;
466
467         if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
468                 periodic = 0;
469         else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
470                 periodic = 1;
471         singlemul = MIN(MAX(singlemul, 1), 20);
472         freq = hz * singlemul;
473         while (freq < (profiling ? profhz : stathz))
474                 freq += hz;
475         freq = round_freq(timer, freq);
476         FREQ2BT(freq, &timerperiod);
477 }
478
479 /*
480  * Reconfigure specified per-CPU timer on other CPU. Called from IPI handler.
481  */
482 static int
483 doconfigtimer(void)
484 {
485         struct bintime now;
486         struct pcpu_state *state;
487
488         state = DPCPU_PTR(timerstate);
489         switch (atomic_load_acq_int(&state->action)) {
490         case 1:
491                 binuptime(&now);
492                 ET_HW_LOCK(state);
493                 loadtimer(&now, 1);
494                 ET_HW_UNLOCK(state);
495                 state->handle = 0;
496                 atomic_store_rel_int(&state->action, 0);
497                 return (1);
498         case 2:
499                 ET_HW_LOCK(state);
500                 et_stop(timer);
501                 ET_HW_UNLOCK(state);
502                 state->handle = 0;
503                 atomic_store_rel_int(&state->action, 0);
504                 return (1);
505         }
506         if (atomic_readandclear_int(&state->handle) && !busy) {
507                 binuptime(&now);
508                 handleevents(&now, 0);
509                 return (1);
510         }
511         return (0);
512 }
513
514 /*
515  * Reconfigure specified timer.
516  * For per-CPU timers use IPI to make other CPUs to reconfigure.
517  */
518 static void
519 configtimer(int start)
520 {
521         struct bintime now, next;
522         struct pcpu_state *state;
523         int cpu;
524
525         if (start) {
526                 setuptimer();
527                 binuptime(&now);
528         }
529         critical_enter();
530         ET_HW_LOCK(DPCPU_PTR(timerstate));
531         if (start) {
532                 /* Initialize time machine parameters. */
533                 next = now;
534                 bintime_add(&next, &timerperiod);
535                 if (periodic)
536                         nexttick = next;
537                 else
538                         nexttick.sec = -1;
539                 CPU_FOREACH(cpu) {
540                         state = DPCPU_ID_PTR(cpu, timerstate);
541                         state->now = now;
542                         state->nextevent = next;
543                         if (periodic)
544                                 state->nexttick = next;
545                         else
546                                 state->nexttick.sec = -1;
547                         state->nexthard = next;
548                         state->nextstat = next;
549                         state->nextprof = next;
550                         hardclock_sync(cpu);
551                 }
552                 busy = 0;
553                 /* Start global timer or per-CPU timer of this CPU. */
554                 loadtimer(&now, 1);
555         } else {
556                 busy = 1;
557                 /* Stop global timer or per-CPU timer of this CPU. */
558                 et_stop(timer);
559         }
560         ET_HW_UNLOCK(DPCPU_PTR(timerstate));
561 #ifdef SMP
562         /* If timer is global or there is no other CPUs yet - we are done. */
563         if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || !smp_started) {
564                 critical_exit();
565                 return;
566         }
567         /* Set reconfigure flags for other CPUs. */
568         CPU_FOREACH(cpu) {
569                 state = DPCPU_ID_PTR(cpu, timerstate);
570                 atomic_store_rel_int(&state->action,
571                     (cpu == curcpu) ? 0 : ( start ? 1 : 2));
572         }
573         /* Broadcast reconfigure IPI. */
574         ipi_all_but_self(IPI_HARDCLOCK);
575         /* Wait for reconfiguration completed. */
576 restart:
577         cpu_spinwait();
578         CPU_FOREACH(cpu) {
579                 if (cpu == curcpu)
580                         continue;
581                 state = DPCPU_ID_PTR(cpu, timerstate);
582                 if (atomic_load_acq_int(&state->action))
583                         goto restart;
584         }
585 #endif
586         critical_exit();
587 }
588
589 /*
590  * Calculate nearest frequency supported by hardware timer.
591  */
592 static int
593 round_freq(struct eventtimer *et, int freq)
594 {
595         uint64_t div;
596
597         if (et->et_frequency != 0) {
598                 div = lmax((et->et_frequency + freq / 2) / freq, 1);
599                 if (et->et_flags & ET_FLAGS_POW2DIV)
600                         div = 1 << (flsl(div + div / 2) - 1);
601                 freq = (et->et_frequency + div / 2) / div;
602         }
603         if (et->et_min_period.sec > 0)
604                 freq = 0;
605         else if (et->et_min_period.frac != 0)
606                 freq = min(freq, BT2FREQ(&et->et_min_period));
607         if (et->et_max_period.sec == 0 && et->et_max_period.frac != 0)
608                 freq = max(freq, BT2FREQ(&et->et_max_period));
609         return (freq);
610 }
611
612 /*
613  * Configure and start event timers (BSP part).
614  */
615 void
616 cpu_initclocks_bsp(void)
617 {
618         struct pcpu_state *state;
619         int base, div, cpu;
620
621         mtx_init(&et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
622         CPU_FOREACH(cpu) {
623                 state = DPCPU_ID_PTR(cpu, timerstate);
624                 mtx_init(&state->et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
625 #ifdef KDTRACE_HOOKS
626                 state->nextcyc.sec = -1;
627 #endif
628         }
629 #ifdef SMP
630         callout_new_inserted = cpu_new_callout;
631 #endif
632         periodic = want_periodic;
633         /* Grab requested timer or the best of present. */
634         if (timername[0])
635                 timer = et_find(timername, 0, 0);
636         if (timer == NULL && periodic) {
637                 timer = et_find(NULL,
638                     ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
639         }
640         if (timer == NULL) {
641                 timer = et_find(NULL,
642                     ET_FLAGS_ONESHOT, ET_FLAGS_ONESHOT);
643         }
644         if (timer == NULL && !periodic) {
645                 timer = et_find(NULL,
646                     ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
647         }
648         if (timer == NULL)
649                 panic("No usable event timer found!");
650         et_init(timer, timercb, NULL, NULL);
651
652         /* Adapt to timer capabilities. */
653         if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
654                 periodic = 0;
655         else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
656                 periodic = 1;
657         if (timer->et_flags & ET_FLAGS_C3STOP)
658                 cpu_disable_deep_sleep++;
659
660         /*
661          * We honor the requested 'hz' value.
662          * We want to run stathz in the neighborhood of 128hz.
663          * We would like profhz to run as often as possible.
664          */
665         if (singlemul <= 0 || singlemul > 20) {
666                 if (hz >= 1500 || (hz % 128) == 0)
667                         singlemul = 1;
668                 else if (hz >= 750)
669                         singlemul = 2;
670                 else
671                         singlemul = 4;
672         }
673         if (periodic) {
674                 base = round_freq(timer, hz * singlemul);
675                 singlemul = max((base + hz / 2) / hz, 1);
676                 hz = (base + singlemul / 2) / singlemul;
677                 if (base <= 128)
678                         stathz = base;
679                 else {
680                         div = base / 128;
681                         if (div >= singlemul && (div % singlemul) == 0)
682                                 div++;
683                         stathz = base / div;
684                 }
685                 profhz = stathz;
686                 while ((profhz + stathz) <= 128 * 64)
687                         profhz += stathz;
688                 profhz = round_freq(timer, profhz);
689         } else {
690                 hz = round_freq(timer, hz);
691                 stathz = round_freq(timer, 127);
692                 profhz = round_freq(timer, stathz * 64);
693         }
694         tick = 1000000 / hz;
695         FREQ2BT(hz, &hardperiod);
696         FREQ2BT(stathz, &statperiod);
697         FREQ2BT(profhz, &profperiod);
698         ET_LOCK();
699         configtimer(1);
700         ET_UNLOCK();
701 }
702
703 /*
704  * Start per-CPU event timers on APs.
705  */
706 void
707 cpu_initclocks_ap(void)
708 {
709         struct bintime now;
710         struct pcpu_state *state;
711
712         state = DPCPU_PTR(timerstate);
713         binuptime(&now);
714         ET_HW_LOCK(state);
715         if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 && periodic) {
716                 state->now = nexttick;
717                 bintime_sub(&state->now, &timerperiod);
718         } else
719                 state->now = now;
720         hardclock_sync(curcpu);
721         handleevents(&state->now, 2);
722         if (timer->et_flags & ET_FLAGS_PERCPU)
723                 loadtimer(&now, 1);
724         ET_HW_UNLOCK(state);
725 }
726
727 /*
728  * Switch to profiling clock rates.
729  */
730 void
731 cpu_startprofclock(void)
732 {
733
734         ET_LOCK();
735         if (profiling == 0) {
736                 if (periodic) {
737                         configtimer(0);
738                         profiling = 1;
739                         configtimer(1);
740                 } else
741                         profiling = 1;
742         } else
743                 profiling++;
744         ET_UNLOCK();
745 }
746
747 /*
748  * Switch to regular clock rates.
749  */
750 void
751 cpu_stopprofclock(void)
752 {
753
754         ET_LOCK();
755         if (profiling == 1) {
756                 if (periodic) {
757                         configtimer(0);
758                         profiling = 0;
759                         configtimer(1);
760                 } else
761                 profiling = 0;
762         } else
763                 profiling--;
764         ET_UNLOCK();
765 }
766
767 /*
768  * Switch to idle mode (all ticks handled).
769  */
770 void
771 cpu_idleclock(void)
772 {
773         struct bintime now, t;
774         struct pcpu_state *state;
775
776         if (idletick || busy ||
777             (periodic && (timer->et_flags & ET_FLAGS_PERCPU))
778 #ifdef DEVICE_POLLING
779             || curcpu == CPU_FIRST()
780 #endif
781             )
782                 return;
783         state = DPCPU_PTR(timerstate);
784         if (periodic)
785                 now = state->now;
786         else
787                 binuptime(&now);
788         CTR4(KTR_SPARE2, "idle at %d:    now  %d.%08x%08x",
789             curcpu, now.sec, (unsigned int)(now.frac >> 32),
790                              (unsigned int)(now.frac & 0xffffffff));
791         getnextcpuevent(&t, 1);
792         ET_HW_LOCK(state);
793         state->idle = 1;
794         state->nextevent = t;
795         if (!periodic)
796                 loadtimer(&now, 0);
797         ET_HW_UNLOCK(state);
798 }
799
800 /*
801  * Switch to active mode (skip empty ticks).
802  */
803 void
804 cpu_activeclock(void)
805 {
806         struct bintime now;
807         struct pcpu_state *state;
808         struct thread *td;
809
810         state = DPCPU_PTR(timerstate);
811         if (state->idle == 0 || busy)
812                 return;
813         if (periodic)
814                 now = state->now;
815         else
816                 binuptime(&now);
817         CTR4(KTR_SPARE2, "active at %d:  now  %d.%08x%08x",
818             curcpu, now.sec, (unsigned int)(now.frac >> 32),
819                              (unsigned int)(now.frac & 0xffffffff));
820         spinlock_enter();
821         td = curthread;
822         td->td_intr_nesting_level++;
823         handleevents(&now, 1);
824         td->td_intr_nesting_level--;
825         spinlock_exit();
826 }
827
828 #ifdef KDTRACE_HOOKS
829 void
830 clocksource_cyc_set(const struct bintime *t)
831 {
832         struct bintime now;
833         struct pcpu_state *state;
834
835         state = DPCPU_PTR(timerstate);
836         if (periodic)
837                 now = state->now;
838         else
839                 binuptime(&now);
840
841         CTR4(KTR_SPARE2, "set_cyc at %d:  now  %d.%08x%08x",
842             curcpu, now.sec, (unsigned int)(now.frac >> 32),
843                              (unsigned int)(now.frac & 0xffffffff));
844         CTR4(KTR_SPARE2, "set_cyc at %d:  t  %d.%08x%08x",
845             curcpu, t->sec, (unsigned int)(t->frac >> 32),
846                              (unsigned int)(t->frac & 0xffffffff));
847
848         ET_HW_LOCK(state);
849         if (bintime_cmp(t, &state->nextcyc, ==)) {
850                 ET_HW_UNLOCK(state);
851                 return;
852         }
853         state->nextcyc = *t;
854         if (bintime_cmp(&state->nextcyc, &state->nextevent, >=)) {
855                 ET_HW_UNLOCK(state);
856                 return;
857         }
858         state->nextevent = state->nextcyc;
859         if (!periodic)
860                 loadtimer(&now, 0);
861         ET_HW_UNLOCK(state);
862 }
863 #endif
864
865 #ifdef SMP
866 static void
867 cpu_new_callout(int cpu, int ticks)
868 {
869         struct bintime tmp;
870         struct pcpu_state *state;
871
872         CTR3(KTR_SPARE2, "new co at %d:    on %d in %d",
873             curcpu, cpu, ticks);
874         state = DPCPU_ID_PTR(cpu, timerstate);
875         ET_HW_LOCK(state);
876         if (state->idle == 0 || busy) {
877                 ET_HW_UNLOCK(state);
878                 return;
879         }
880         /*
881          * If timer is periodic - just update next event time for target CPU.
882          * If timer is global - there is chance it is already programmed.
883          */
884         if (periodic || (timer->et_flags & ET_FLAGS_PERCPU) == 0) {
885                 tmp = hardperiod;
886                 bintime_mul(&tmp, ticks - 1);
887                 bintime_add(&tmp, &state->nexthard);
888                 if (bintime_cmp(&tmp, &state->nextevent, <))
889                         state->nextevent = tmp;
890                 if (periodic ||
891                     bintime_cmp(&state->nextevent, &nexttick, >=)) {
892                         ET_HW_UNLOCK(state);
893                         return;
894                 }
895         }
896         /*
897          * Otherwise we have to wake that CPU up, as we can't get present
898          * bintime to reprogram global timer from here. If timer is per-CPU,
899          * we by definition can't do it from here.
900          */
901         ET_HW_UNLOCK(state);
902         if (timer->et_flags & ET_FLAGS_PERCPU) {
903                 state->handle = 1;
904                 ipi_cpu(cpu, IPI_HARDCLOCK);
905         } else {
906                 if (!cpu_idle_wakeup(cpu))
907                         ipi_cpu(cpu, IPI_AST);
908         }
909 }
910 #endif
911
912 /*
913  * Report or change the active event timers hardware.
914  */
915 static int
916 sysctl_kern_eventtimer_timer(SYSCTL_HANDLER_ARGS)
917 {
918         char buf[32];
919         struct eventtimer *et;
920         int error;
921
922         ET_LOCK();
923         et = timer;
924         snprintf(buf, sizeof(buf), "%s", et->et_name);
925         ET_UNLOCK();
926         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
927         ET_LOCK();
928         et = timer;
929         if (error != 0 || req->newptr == NULL ||
930             strcasecmp(buf, et->et_name) == 0) {
931                 ET_UNLOCK();
932                 return (error);
933         }
934         et = et_find(buf, 0, 0);
935         if (et == NULL) {
936                 ET_UNLOCK();
937                 return (ENOENT);
938         }
939         configtimer(0);
940         et_free(timer);
941         if (et->et_flags & ET_FLAGS_C3STOP)
942                 cpu_disable_deep_sleep++;
943         if (timer->et_flags & ET_FLAGS_C3STOP)
944                 cpu_disable_deep_sleep--;
945         periodic = want_periodic;
946         timer = et;
947         et_init(timer, timercb, NULL, NULL);
948         configtimer(1);
949         ET_UNLOCK();
950         return (error);
951 }
952 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, timer,
953     CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
954     0, 0, sysctl_kern_eventtimer_timer, "A", "Chosen event timer");
955
956 /*
957  * Report or change the active event timer periodicity.
958  */
959 static int
960 sysctl_kern_eventtimer_periodic(SYSCTL_HANDLER_ARGS)
961 {
962         int error, val;
963
964         val = periodic;
965         error = sysctl_handle_int(oidp, &val, 0, req);
966         if (error != 0 || req->newptr == NULL)
967                 return (error);
968         ET_LOCK();
969         configtimer(0);
970         periodic = want_periodic = val;
971         configtimer(1);
972         ET_UNLOCK();
973         return (error);
974 }
975 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, periodic,
976     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
977     0, 0, sysctl_kern_eventtimer_periodic, "I", "Enable event timer periodic mode");