]> CyberLeo.Net >> Repos - FreeBSD/releng/9.1.git/blob - contrib/llvm/lib/Transforms/Scalar/CodeGenPrepare.cpp
Copy stable/9 to releng/9.1 as part of the 9.1-RELEASE release process.
[FreeBSD/releng/9.1.git] / contrib / llvm / lib / Transforms / Scalar / CodeGenPrepare.cpp
1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass munges the code in the input function to better prepare it for
11 // SelectionDAG-based code generation. This works around limitations in it's
12 // basic-block-at-a-time approach. It should eventually be removed.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #define DEBUG_TYPE "codegenprepare"
17 #include "llvm/Transforms/Scalar.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Function.h"
21 #include "llvm/InlineAsm.h"
22 #include "llvm/Instructions.h"
23 #include "llvm/IntrinsicInst.h"
24 #include "llvm/Pass.h"
25 #include "llvm/Analysis/Dominators.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/ProfileInfo.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/Target/TargetLibraryInfo.h"
30 #include "llvm/Target/TargetLowering.h"
31 #include "llvm/Transforms/Utils/AddrModeMatcher.h"
32 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Transforms/Utils/BuildLibCalls.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/SmallSet.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/Assembly/Writer.h"
39 #include "llvm/Support/CallSite.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/GetElementPtrTypeIterator.h"
43 #include "llvm/Support/PatternMatch.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Support/IRBuilder.h"
46 #include "llvm/Support/ValueHandle.h"
47 using namespace llvm;
48 using namespace llvm::PatternMatch;
49
50 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
51 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
52 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
53 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
54                       "sunken Cmps");
55 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
56                        "of sunken Casts");
57 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
58                           "computations were sunk");
59 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
60 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
61 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
62 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
63
64 static cl::opt<bool> DisableBranchOpts(
65   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
66   cl::desc("Disable branch optimizations in CodeGenPrepare"));
67
68 // FIXME: Remove this abomination once all of the tests pass without it!
69 static cl::opt<bool> DisableDeleteDeadBlocks(
70   "disable-cgp-delete-dead-blocks", cl::Hidden, cl::init(false),
71   cl::desc("Disable deleting dead blocks in CodeGenPrepare"));
72
73 namespace {
74   class CodeGenPrepare : public FunctionPass {
75     /// TLI - Keep a pointer of a TargetLowering to consult for determining
76     /// transformation profitability.
77     const TargetLowering *TLI;
78     const TargetLibraryInfo *TLInfo;
79     DominatorTree *DT;
80     ProfileInfo *PFI;
81     
82     /// CurInstIterator - As we scan instructions optimizing them, this is the
83     /// next instruction to optimize.  Xforms that can invalidate this should
84     /// update it.
85     BasicBlock::iterator CurInstIterator;
86
87     /// Keeps track of non-local addresses that have been sunk into a block.
88     /// This allows us to avoid inserting duplicate code for blocks with
89     /// multiple load/stores of the same address.
90     DenseMap<Value*, Value*> SunkAddrs;
91
92     /// ModifiedDT - If CFG is modified in anyway, dominator tree may need to
93     /// be updated.
94     bool ModifiedDT;
95
96   public:
97     static char ID; // Pass identification, replacement for typeid
98     explicit CodeGenPrepare(const TargetLowering *tli = 0)
99       : FunctionPass(ID), TLI(tli) {
100         initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
101       }
102     bool runOnFunction(Function &F);
103
104     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
105       AU.addPreserved<DominatorTree>();
106       AU.addPreserved<ProfileInfo>();
107       AU.addRequired<TargetLibraryInfo>();
108     }
109
110   private:
111     bool EliminateMostlyEmptyBlocks(Function &F);
112     bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
113     void EliminateMostlyEmptyBlock(BasicBlock *BB);
114     bool OptimizeBlock(BasicBlock &BB);
115     bool OptimizeInst(Instruction *I);
116     bool OptimizeMemoryInst(Instruction *I, Value *Addr, Type *AccessTy);
117     bool OptimizeInlineAsmInst(CallInst *CS);
118     bool OptimizeCallInst(CallInst *CI);
119     bool MoveExtToFormExtLoad(Instruction *I);
120     bool OptimizeExtUses(Instruction *I);
121     bool DupRetToEnableTailCallOpts(ReturnInst *RI);
122     bool PlaceDbgValues(Function &F);
123   };
124 }
125
126 char CodeGenPrepare::ID = 0;
127 INITIALIZE_PASS_BEGIN(CodeGenPrepare, "codegenprepare",
128                 "Optimize for code generation", false, false)
129 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
130 INITIALIZE_PASS_END(CodeGenPrepare, "codegenprepare",
131                 "Optimize for code generation", false, false)
132
133 FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
134   return new CodeGenPrepare(TLI);
135 }
136
137 bool CodeGenPrepare::runOnFunction(Function &F) {
138   bool EverMadeChange = false;
139
140   ModifiedDT = false;
141   TLInfo = &getAnalysis<TargetLibraryInfo>();
142   DT = getAnalysisIfAvailable<DominatorTree>();
143   PFI = getAnalysisIfAvailable<ProfileInfo>();
144
145   // First pass, eliminate blocks that contain only PHI nodes and an
146   // unconditional branch.
147   EverMadeChange |= EliminateMostlyEmptyBlocks(F);
148
149   // llvm.dbg.value is far away from the value then iSel may not be able
150   // handle it properly. iSel will drop llvm.dbg.value if it can not 
151   // find a node corresponding to the value.
152   EverMadeChange |= PlaceDbgValues(F);
153
154   bool MadeChange = true;
155   while (MadeChange) {
156     MadeChange = false;
157     for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
158       BasicBlock *BB = I++;
159       MadeChange |= OptimizeBlock(*BB);
160     }
161     EverMadeChange |= MadeChange;
162   }
163
164   SunkAddrs.clear();
165
166   if (!DisableBranchOpts) {
167     MadeChange = false;
168     SmallPtrSet<BasicBlock*, 8> WorkList;
169     for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
170       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
171       MadeChange |= ConstantFoldTerminator(BB, true);
172       if (!MadeChange) continue;
173
174       for (SmallVectorImpl<BasicBlock*>::iterator
175              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
176         if (pred_begin(*II) == pred_end(*II))
177           WorkList.insert(*II);
178     }
179
180     if (!DisableDeleteDeadBlocks)
181       for (SmallPtrSet<BasicBlock*, 8>::iterator
182              I = WorkList.begin(), E = WorkList.end(); I != E; ++I)
183         DeleteDeadBlock(*I);
184
185     if (MadeChange)
186       ModifiedDT = true;
187     EverMadeChange |= MadeChange;
188   }
189
190   if (ModifiedDT && DT)
191     DT->DT->recalculate(F);
192
193   return EverMadeChange;
194 }
195
196 /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
197 /// debug info directives, and an unconditional branch.  Passes before isel
198 /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
199 /// isel.  Start by eliminating these blocks so we can split them the way we
200 /// want them.
201 bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
202   bool MadeChange = false;
203   // Note that this intentionally skips the entry block.
204   for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
205     BasicBlock *BB = I++;
206
207     // If this block doesn't end with an uncond branch, ignore it.
208     BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
209     if (!BI || !BI->isUnconditional())
210       continue;
211
212     // If the instruction before the branch (skipping debug info) isn't a phi
213     // node, then other stuff is happening here.
214     BasicBlock::iterator BBI = BI;
215     if (BBI != BB->begin()) {
216       --BBI;
217       while (isa<DbgInfoIntrinsic>(BBI)) {
218         if (BBI == BB->begin())
219           break;
220         --BBI;
221       }
222       if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
223         continue;
224     }
225
226     // Do not break infinite loops.
227     BasicBlock *DestBB = BI->getSuccessor(0);
228     if (DestBB == BB)
229       continue;
230
231     if (!CanMergeBlocks(BB, DestBB))
232       continue;
233
234     EliminateMostlyEmptyBlock(BB);
235     MadeChange = true;
236   }
237   return MadeChange;
238 }
239
240 /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
241 /// single uncond branch between them, and BB contains no other non-phi
242 /// instructions.
243 bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
244                                     const BasicBlock *DestBB) const {
245   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
246   // the successor.  If there are more complex condition (e.g. preheaders),
247   // don't mess around with them.
248   BasicBlock::const_iterator BBI = BB->begin();
249   while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
250     for (Value::const_use_iterator UI = PN->use_begin(), E = PN->use_end();
251          UI != E; ++UI) {
252       const Instruction *User = cast<Instruction>(*UI);
253       if (User->getParent() != DestBB || !isa<PHINode>(User))
254         return false;
255       // If User is inside DestBB block and it is a PHINode then check
256       // incoming value. If incoming value is not from BB then this is
257       // a complex condition (e.g. preheaders) we want to avoid here.
258       if (User->getParent() == DestBB) {
259         if (const PHINode *UPN = dyn_cast<PHINode>(User))
260           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
261             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
262             if (Insn && Insn->getParent() == BB &&
263                 Insn->getParent() != UPN->getIncomingBlock(I))
264               return false;
265           }
266       }
267     }
268   }
269
270   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
271   // and DestBB may have conflicting incoming values for the block.  If so, we
272   // can't merge the block.
273   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
274   if (!DestBBPN) return true;  // no conflict.
275
276   // Collect the preds of BB.
277   SmallPtrSet<const BasicBlock*, 16> BBPreds;
278   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
279     // It is faster to get preds from a PHI than with pred_iterator.
280     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
281       BBPreds.insert(BBPN->getIncomingBlock(i));
282   } else {
283     BBPreds.insert(pred_begin(BB), pred_end(BB));
284   }
285
286   // Walk the preds of DestBB.
287   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
288     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
289     if (BBPreds.count(Pred)) {   // Common predecessor?
290       BBI = DestBB->begin();
291       while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
292         const Value *V1 = PN->getIncomingValueForBlock(Pred);
293         const Value *V2 = PN->getIncomingValueForBlock(BB);
294
295         // If V2 is a phi node in BB, look up what the mapped value will be.
296         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
297           if (V2PN->getParent() == BB)
298             V2 = V2PN->getIncomingValueForBlock(Pred);
299
300         // If there is a conflict, bail out.
301         if (V1 != V2) return false;
302       }
303     }
304   }
305
306   return true;
307 }
308
309
310 /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
311 /// an unconditional branch in it.
312 void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
313   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
314   BasicBlock *DestBB = BI->getSuccessor(0);
315
316   DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
317
318   // If the destination block has a single pred, then this is a trivial edge,
319   // just collapse it.
320   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
321     if (SinglePred != DestBB) {
322       // Remember if SinglePred was the entry block of the function.  If so, we
323       // will need to move BB back to the entry position.
324       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
325       MergeBasicBlockIntoOnlyPred(DestBB, this);
326
327       if (isEntry && BB != &BB->getParent()->getEntryBlock())
328         BB->moveBefore(&BB->getParent()->getEntryBlock());
329       
330       DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
331       return;
332     }
333   }
334
335   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
336   // to handle the new incoming edges it is about to have.
337   PHINode *PN;
338   for (BasicBlock::iterator BBI = DestBB->begin();
339        (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
340     // Remove the incoming value for BB, and remember it.
341     Value *InVal = PN->removeIncomingValue(BB, false);
342
343     // Two options: either the InVal is a phi node defined in BB or it is some
344     // value that dominates BB.
345     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
346     if (InValPhi && InValPhi->getParent() == BB) {
347       // Add all of the input values of the input PHI as inputs of this phi.
348       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
349         PN->addIncoming(InValPhi->getIncomingValue(i),
350                         InValPhi->getIncomingBlock(i));
351     } else {
352       // Otherwise, add one instance of the dominating value for each edge that
353       // we will be adding.
354       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
355         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
356           PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
357       } else {
358         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
359           PN->addIncoming(InVal, *PI);
360       }
361     }
362   }
363
364   // The PHIs are now updated, change everything that refers to BB to use
365   // DestBB and remove BB.
366   BB->replaceAllUsesWith(DestBB);
367   if (DT && !ModifiedDT) {
368     BasicBlock *BBIDom  = DT->getNode(BB)->getIDom()->getBlock();
369     BasicBlock *DestBBIDom = DT->getNode(DestBB)->getIDom()->getBlock();
370     BasicBlock *NewIDom = DT->findNearestCommonDominator(BBIDom, DestBBIDom);
371     DT->changeImmediateDominator(DestBB, NewIDom);
372     DT->eraseNode(BB);
373   }
374   if (PFI) {
375     PFI->replaceAllUses(BB, DestBB);
376     PFI->removeEdge(ProfileInfo::getEdge(BB, DestBB));
377   }
378   BB->eraseFromParent();
379   ++NumBlocksElim;
380
381   DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
382 }
383
384 /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
385 /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC),
386 /// sink it into user blocks to reduce the number of virtual
387 /// registers that must be created and coalesced.
388 ///
389 /// Return true if any changes are made.
390 ///
391 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
392   // If this is a noop copy,
393   EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
394   EVT DstVT = TLI.getValueType(CI->getType());
395
396   // This is an fp<->int conversion?
397   if (SrcVT.isInteger() != DstVT.isInteger())
398     return false;
399
400   // If this is an extension, it will be a zero or sign extension, which
401   // isn't a noop.
402   if (SrcVT.bitsLT(DstVT)) return false;
403
404   // If these values will be promoted, find out what they will be promoted
405   // to.  This helps us consider truncates on PPC as noop copies when they
406   // are.
407   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
408       TargetLowering::TypePromoteInteger)
409     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
410   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
411       TargetLowering::TypePromoteInteger)
412     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
413
414   // If, after promotion, these are the same types, this is a noop copy.
415   if (SrcVT != DstVT)
416     return false;
417
418   BasicBlock *DefBB = CI->getParent();
419
420   /// InsertedCasts - Only insert a cast in each block once.
421   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
422
423   bool MadeChange = false;
424   for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
425        UI != E; ) {
426     Use &TheUse = UI.getUse();
427     Instruction *User = cast<Instruction>(*UI);
428
429     // Figure out which BB this cast is used in.  For PHI's this is the
430     // appropriate predecessor block.
431     BasicBlock *UserBB = User->getParent();
432     if (PHINode *PN = dyn_cast<PHINode>(User)) {
433       UserBB = PN->getIncomingBlock(UI);
434     }
435
436     // Preincrement use iterator so we don't invalidate it.
437     ++UI;
438
439     // If this user is in the same block as the cast, don't change the cast.
440     if (UserBB == DefBB) continue;
441
442     // If we have already inserted a cast into this block, use it.
443     CastInst *&InsertedCast = InsertedCasts[UserBB];
444
445     if (!InsertedCast) {
446       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
447       InsertedCast =
448         CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
449                          InsertPt);
450       MadeChange = true;
451     }
452
453     // Replace a use of the cast with a use of the new cast.
454     TheUse = InsertedCast;
455     ++NumCastUses;
456   }
457
458   // If we removed all uses, nuke the cast.
459   if (CI->use_empty()) {
460     CI->eraseFromParent();
461     MadeChange = true;
462   }
463
464   return MadeChange;
465 }
466
467 /// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
468 /// the number of virtual registers that must be created and coalesced.  This is
469 /// a clear win except on targets with multiple condition code registers
470 ///  (PowerPC), where it might lose; some adjustment may be wanted there.
471 ///
472 /// Return true if any changes are made.
473 static bool OptimizeCmpExpression(CmpInst *CI) {
474   BasicBlock *DefBB = CI->getParent();
475
476   /// InsertedCmp - Only insert a cmp in each block once.
477   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
478
479   bool MadeChange = false;
480   for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
481        UI != E; ) {
482     Use &TheUse = UI.getUse();
483     Instruction *User = cast<Instruction>(*UI);
484
485     // Preincrement use iterator so we don't invalidate it.
486     ++UI;
487
488     // Don't bother for PHI nodes.
489     if (isa<PHINode>(User))
490       continue;
491
492     // Figure out which BB this cmp is used in.
493     BasicBlock *UserBB = User->getParent();
494
495     // If this user is in the same block as the cmp, don't change the cmp.
496     if (UserBB == DefBB) continue;
497
498     // If we have already inserted a cmp into this block, use it.
499     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
500
501     if (!InsertedCmp) {
502       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
503       InsertedCmp =
504         CmpInst::Create(CI->getOpcode(),
505                         CI->getPredicate(),  CI->getOperand(0),
506                         CI->getOperand(1), "", InsertPt);
507       MadeChange = true;
508     }
509
510     // Replace a use of the cmp with a use of the new cmp.
511     TheUse = InsertedCmp;
512     ++NumCmpUses;
513   }
514
515   // If we removed all uses, nuke the cmp.
516   if (CI->use_empty())
517     CI->eraseFromParent();
518
519   return MadeChange;
520 }
521
522 namespace {
523 class CodeGenPrepareFortifiedLibCalls : public SimplifyFortifiedLibCalls {
524 protected:
525   void replaceCall(Value *With) {
526     CI->replaceAllUsesWith(With);
527     CI->eraseFromParent();
528   }
529   bool isFoldable(unsigned SizeCIOp, unsigned, bool) const {
530       if (ConstantInt *SizeCI =
531                              dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp)))
532         return SizeCI->isAllOnesValue();
533     return false;
534   }
535 };
536 } // end anonymous namespace
537
538 bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) {
539   BasicBlock *BB = CI->getParent();
540   
541   // Lower inline assembly if we can.
542   // If we found an inline asm expession, and if the target knows how to
543   // lower it to normal LLVM code, do so now.
544   if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
545     if (TLI->ExpandInlineAsm(CI)) {
546       // Avoid invalidating the iterator.
547       CurInstIterator = BB->begin();
548       // Avoid processing instructions out of order, which could cause
549       // reuse before a value is defined.
550       SunkAddrs.clear();
551       return true;
552     }
553     // Sink address computing for memory operands into the block.
554     if (OptimizeInlineAsmInst(CI))
555       return true;
556   }
557   
558   // Lower all uses of llvm.objectsize.*
559   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
560   if (II && II->getIntrinsicID() == Intrinsic::objectsize) {
561     bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
562     Type *ReturnTy = CI->getType();
563     Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);    
564     
565     // Substituting this can cause recursive simplifications, which can
566     // invalidate our iterator.  Use a WeakVH to hold onto it in case this
567     // happens.
568     WeakVH IterHandle(CurInstIterator);
569     
570     replaceAndRecursivelySimplify(CI, RetVal, TLI ? TLI->getTargetData() : 0,
571                                   TLInfo, ModifiedDT ? 0 : DT);
572
573     // If the iterator instruction was recursively deleted, start over at the
574     // start of the block.
575     if (IterHandle != CurInstIterator) {
576       CurInstIterator = BB->begin();
577       SunkAddrs.clear();
578     }
579     return true;
580   }
581
582   if (II && TLI) {
583     SmallVector<Value*, 2> PtrOps;
584     Type *AccessTy;
585     if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy))
586       while (!PtrOps.empty())
587         if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy))
588           return true;
589   }
590
591   // From here on out we're working with named functions.
592   if (CI->getCalledFunction() == 0) return false;
593
594   // We'll need TargetData from here on out.
595   const TargetData *TD = TLI ? TLI->getTargetData() : 0;
596   if (!TD) return false;
597   
598   // Lower all default uses of _chk calls.  This is very similar
599   // to what InstCombineCalls does, but here we are only lowering calls
600   // that have the default "don't know" as the objectsize.  Anything else
601   // should be left alone.
602   CodeGenPrepareFortifiedLibCalls Simplifier;
603   return Simplifier.fold(CI, TD);
604 }
605
606 /// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return
607 /// instructions to the predecessor to enable tail call optimizations. The
608 /// case it is currently looking for is:
609 /// bb0:
610 ///   %tmp0 = tail call i32 @f0()
611 ///   br label %return
612 /// bb1:
613 ///   %tmp1 = tail call i32 @f1()
614 ///   br label %return
615 /// bb2:
616 ///   %tmp2 = tail call i32 @f2()
617 ///   br label %return
618 /// return:
619 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
620 ///   ret i32 %retval
621 ///
622 /// =>
623 ///
624 /// bb0:
625 ///   %tmp0 = tail call i32 @f0()
626 ///   ret i32 %tmp0
627 /// bb1:
628 ///   %tmp1 = tail call i32 @f1()
629 ///   ret i32 %tmp1
630 /// bb2:
631 ///   %tmp2 = tail call i32 @f2()
632 ///   ret i32 %tmp2
633 ///
634 bool CodeGenPrepare::DupRetToEnableTailCallOpts(ReturnInst *RI) {
635   if (!TLI)
636     return false;
637
638   Value *V = RI->getReturnValue();
639   PHINode *PN = V ? dyn_cast<PHINode>(V) : NULL;
640   if (V && !PN)
641     return false;
642
643   BasicBlock *BB = RI->getParent();
644   if (PN && PN->getParent() != BB)
645     return false;
646
647   // It's not safe to eliminate the sign / zero extension of the return value.
648   // See llvm::isInTailCallPosition().
649   const Function *F = BB->getParent();
650   Attributes CallerRetAttr = F->getAttributes().getRetAttributes();
651   if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt))
652     return false;
653
654   // Make sure there are no instructions between the PHI and return, or that the
655   // return is the first instruction in the block.
656   if (PN) {
657     BasicBlock::iterator BI = BB->begin();
658     do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
659     if (&*BI != RI)
660       return false;
661   } else {
662     BasicBlock::iterator BI = BB->begin();
663     while (isa<DbgInfoIntrinsic>(BI)) ++BI;
664     if (&*BI != RI)
665       return false;
666   }
667
668   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
669   /// call.
670   SmallVector<CallInst*, 4> TailCalls;
671   if (PN) {
672     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
673       CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
674       // Make sure the phi value is indeed produced by the tail call.
675       if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
676           TLI->mayBeEmittedAsTailCall(CI))
677         TailCalls.push_back(CI);
678     }
679   } else {
680     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
681     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
682       if (!VisitedBBs.insert(*PI))
683         continue;
684
685       BasicBlock::InstListType &InstList = (*PI)->getInstList();
686       BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
687       BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
688       do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
689       if (RI == RE)
690         continue;
691
692       CallInst *CI = dyn_cast<CallInst>(&*RI);
693       if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI))
694         TailCalls.push_back(CI);
695     }
696   }
697
698   bool Changed = false;
699   for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
700     CallInst *CI = TailCalls[i];
701     CallSite CS(CI);
702
703     // Conservatively require the attributes of the call to match those of the
704     // return. Ignore noalias because it doesn't affect the call sequence.
705     Attributes CalleeRetAttr = CS.getAttributes().getRetAttributes();
706     if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias)
707       continue;
708
709     // Make sure the call instruction is followed by an unconditional branch to
710     // the return block.
711     BasicBlock *CallBB = CI->getParent();
712     BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
713     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
714       continue;
715
716     // Duplicate the return into CallBB.
717     (void)FoldReturnIntoUncondBranch(RI, BB, CallBB);
718     ModifiedDT = Changed = true;
719     ++NumRetsDup;
720   }
721
722   // If we eliminated all predecessors of the block, delete the block now.
723   if (Changed && pred_begin(BB) == pred_end(BB))
724     BB->eraseFromParent();
725
726   return Changed;
727 }
728
729 //===----------------------------------------------------------------------===//
730 // Memory Optimization
731 //===----------------------------------------------------------------------===//
732
733 /// IsNonLocalValue - Return true if the specified values are defined in a
734 /// different basic block than BB.
735 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
736   if (Instruction *I = dyn_cast<Instruction>(V))
737     return I->getParent() != BB;
738   return false;
739 }
740
741 /// OptimizeMemoryInst - Load and Store Instructions often have
742 /// addressing modes that can do significant amounts of computation.  As such,
743 /// instruction selection will try to get the load or store to do as much
744 /// computation as possible for the program.  The problem is that isel can only
745 /// see within a single block.  As such, we sink as much legal addressing mode
746 /// stuff into the block as possible.
747 ///
748 /// This method is used to optimize both load/store and inline asms with memory
749 /// operands.
750 bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
751                                         Type *AccessTy) {
752   Value *Repl = Addr;
753   
754   // Try to collapse single-value PHI nodes.  This is necessary to undo 
755   // unprofitable PRE transformations.
756   SmallVector<Value*, 8> worklist;
757   SmallPtrSet<Value*, 16> Visited;
758   worklist.push_back(Addr);
759   
760   // Use a worklist to iteratively look through PHI nodes, and ensure that
761   // the addressing mode obtained from the non-PHI roots of the graph
762   // are equivalent.
763   Value *Consensus = 0;
764   unsigned NumUsesConsensus = 0;
765   bool IsNumUsesConsensusValid = false;
766   SmallVector<Instruction*, 16> AddrModeInsts;
767   ExtAddrMode AddrMode;
768   while (!worklist.empty()) {
769     Value *V = worklist.back();
770     worklist.pop_back();
771     
772     // Break use-def graph loops.
773     if (!Visited.insert(V)) {
774       Consensus = 0;
775       break;
776     }
777     
778     // For a PHI node, push all of its incoming values.
779     if (PHINode *P = dyn_cast<PHINode>(V)) {
780       for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i)
781         worklist.push_back(P->getIncomingValue(i));
782       continue;
783     }
784     
785     // For non-PHIs, determine the addressing mode being computed.
786     SmallVector<Instruction*, 16> NewAddrModeInsts;
787     ExtAddrMode NewAddrMode =
788       AddressingModeMatcher::Match(V, AccessTy, MemoryInst,
789                                    NewAddrModeInsts, *TLI);
790
791     // This check is broken into two cases with very similar code to avoid using
792     // getNumUses() as much as possible. Some values have a lot of uses, so
793     // calling getNumUses() unconditionally caused a significant compile-time
794     // regression.
795     if (!Consensus) {
796       Consensus = V;
797       AddrMode = NewAddrMode;
798       AddrModeInsts = NewAddrModeInsts;
799       continue;
800     } else if (NewAddrMode == AddrMode) {
801       if (!IsNumUsesConsensusValid) {
802         NumUsesConsensus = Consensus->getNumUses();
803         IsNumUsesConsensusValid = true;
804       }
805
806       // Ensure that the obtained addressing mode is equivalent to that obtained
807       // for all other roots of the PHI traversal.  Also, when choosing one
808       // such root as representative, select the one with the most uses in order
809       // to keep the cost modeling heuristics in AddressingModeMatcher
810       // applicable.
811       unsigned NumUses = V->getNumUses();
812       if (NumUses > NumUsesConsensus) {
813         Consensus = V;
814         NumUsesConsensus = NumUses;
815         AddrModeInsts = NewAddrModeInsts;
816       }
817       continue;
818     }
819     
820     Consensus = 0;
821     break;
822   }
823   
824   // If the addressing mode couldn't be determined, or if multiple different
825   // ones were determined, bail out now.
826   if (!Consensus) return false;
827   
828   // Check to see if any of the instructions supersumed by this addr mode are
829   // non-local to I's BB.
830   bool AnyNonLocal = false;
831   for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
832     if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
833       AnyNonLocal = true;
834       break;
835     }
836   }
837
838   // If all the instructions matched are already in this BB, don't do anything.
839   if (!AnyNonLocal) {
840     DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode << "\n");
841     return false;
842   }
843
844   // Insert this computation right after this user.  Since our caller is
845   // scanning from the top of the BB to the bottom, reuse of the expr are
846   // guaranteed to happen later.
847   IRBuilder<> Builder(MemoryInst);
848
849   // Now that we determined the addressing expression we want to use and know
850   // that we have to sink it into this block.  Check to see if we have already
851   // done this for some other load/store instr in this block.  If so, reuse the
852   // computation.
853   Value *&SunkAddr = SunkAddrs[Addr];
854   if (SunkAddr) {
855     DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
856                  << *MemoryInst);
857     if (SunkAddr->getType() != Addr->getType())
858       SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
859   } else {
860     DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
861                  << *MemoryInst);
862     Type *IntPtrTy =
863           TLI->getTargetData()->getIntPtrType(AccessTy->getContext());
864
865     Value *Result = 0;
866
867     // Start with the base register. Do this first so that subsequent address
868     // matching finds it last, which will prevent it from trying to match it
869     // as the scaled value in case it happens to be a mul. That would be
870     // problematic if we've sunk a different mul for the scale, because then
871     // we'd end up sinking both muls.
872     if (AddrMode.BaseReg) {
873       Value *V = AddrMode.BaseReg;
874       if (V->getType()->isPointerTy())
875         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
876       if (V->getType() != IntPtrTy)
877         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
878       Result = V;
879     }
880
881     // Add the scale value.
882     if (AddrMode.Scale) {
883       Value *V = AddrMode.ScaledReg;
884       if (V->getType() == IntPtrTy) {
885         // done.
886       } else if (V->getType()->isPointerTy()) {
887         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
888       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
889                  cast<IntegerType>(V->getType())->getBitWidth()) {
890         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
891       } else {
892         V = Builder.CreateSExt(V, IntPtrTy, "sunkaddr");
893       }
894       if (AddrMode.Scale != 1)
895         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
896                               "sunkaddr");
897       if (Result)
898         Result = Builder.CreateAdd(Result, V, "sunkaddr");
899       else
900         Result = V;
901     }
902
903     // Add in the BaseGV if present.
904     if (AddrMode.BaseGV) {
905       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
906       if (Result)
907         Result = Builder.CreateAdd(Result, V, "sunkaddr");
908       else
909         Result = V;
910     }
911
912     // Add in the Base Offset if present.
913     if (AddrMode.BaseOffs) {
914       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
915       if (Result)
916         Result = Builder.CreateAdd(Result, V, "sunkaddr");
917       else
918         Result = V;
919     }
920
921     if (Result == 0)
922       SunkAddr = Constant::getNullValue(Addr->getType());
923     else
924       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
925   }
926
927   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
928
929   // If we have no uses, recursively delete the value and all dead instructions
930   // using it.
931   if (Repl->use_empty()) {
932     // This can cause recursive deletion, which can invalidate our iterator.
933     // Use a WeakVH to hold onto it in case this happens.
934     WeakVH IterHandle(CurInstIterator);
935     BasicBlock *BB = CurInstIterator->getParent();
936     
937     RecursivelyDeleteTriviallyDeadInstructions(Repl);
938
939     if (IterHandle != CurInstIterator) {
940       // If the iterator instruction was recursively deleted, start over at the
941       // start of the block.
942       CurInstIterator = BB->begin();
943       SunkAddrs.clear();
944     } else {
945       // This address is now available for reassignment, so erase the table
946       // entry; we don't want to match some completely different instruction.
947       SunkAddrs[Addr] = 0;
948     }    
949   }
950   ++NumMemoryInsts;
951   return true;
952 }
953
954 /// OptimizeInlineAsmInst - If there are any memory operands, use
955 /// OptimizeMemoryInst to sink their address computing into the block when
956 /// possible / profitable.
957 bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) {
958   bool MadeChange = false;
959
960   TargetLowering::AsmOperandInfoVector 
961     TargetConstraints = TLI->ParseConstraints(CS);
962   unsigned ArgNo = 0;
963   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
964     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
965     
966     // Compute the constraint code and ConstraintType to use.
967     TLI->ComputeConstraintToUse(OpInfo, SDValue());
968
969     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
970         OpInfo.isIndirect) {
971       Value *OpVal = CS->getArgOperand(ArgNo++);
972       MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType());
973     } else if (OpInfo.Type == InlineAsm::isInput)
974       ArgNo++;
975   }
976
977   return MadeChange;
978 }
979
980 /// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same
981 /// basic block as the load, unless conditions are unfavorable. This allows
982 /// SelectionDAG to fold the extend into the load.
983 ///
984 bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) {
985   // Look for a load being extended.
986   LoadInst *LI = dyn_cast<LoadInst>(I->getOperand(0));
987   if (!LI) return false;
988
989   // If they're already in the same block, there's nothing to do.
990   if (LI->getParent() == I->getParent())
991     return false;
992
993   // If the load has other users and the truncate is not free, this probably
994   // isn't worthwhile.
995   if (!LI->hasOneUse() &&
996       TLI && (TLI->isTypeLegal(TLI->getValueType(LI->getType())) ||
997               !TLI->isTypeLegal(TLI->getValueType(I->getType()))) &&
998       !TLI->isTruncateFree(I->getType(), LI->getType()))
999     return false;
1000
1001   // Check whether the target supports casts folded into loads.
1002   unsigned LType;
1003   if (isa<ZExtInst>(I))
1004     LType = ISD::ZEXTLOAD;
1005   else {
1006     assert(isa<SExtInst>(I) && "Unexpected ext type!");
1007     LType = ISD::SEXTLOAD;
1008   }
1009   if (TLI && !TLI->isLoadExtLegal(LType, TLI->getValueType(LI->getType())))
1010     return false;
1011
1012   // Move the extend into the same block as the load, so that SelectionDAG
1013   // can fold it.
1014   I->removeFromParent();
1015   I->insertAfter(LI);
1016   ++NumExtsMoved;
1017   return true;
1018 }
1019
1020 bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
1021   BasicBlock *DefBB = I->getParent();
1022
1023   // If the result of a {s|z}ext and its source are both live out, rewrite all
1024   // other uses of the source with result of extension.
1025   Value *Src = I->getOperand(0);
1026   if (Src->hasOneUse())
1027     return false;
1028
1029   // Only do this xform if truncating is free.
1030   if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
1031     return false;
1032
1033   // Only safe to perform the optimization if the source is also defined in
1034   // this block.
1035   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
1036     return false;
1037
1038   bool DefIsLiveOut = false;
1039   for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1040        UI != E; ++UI) {
1041     Instruction *User = cast<Instruction>(*UI);
1042
1043     // Figure out which BB this ext is used in.
1044     BasicBlock *UserBB = User->getParent();
1045     if (UserBB == DefBB) continue;
1046     DefIsLiveOut = true;
1047     break;
1048   }
1049   if (!DefIsLiveOut)
1050     return false;
1051
1052   // Make sure non of the uses are PHI nodes.
1053   for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
1054        UI != E; ++UI) {
1055     Instruction *User = cast<Instruction>(*UI);
1056     BasicBlock *UserBB = User->getParent();
1057     if (UserBB == DefBB) continue;
1058     // Be conservative. We don't want this xform to end up introducing
1059     // reloads just before load / store instructions.
1060     if (isa<PHINode>(User) || isa<LoadInst>(User) || isa<StoreInst>(User))
1061       return false;
1062   }
1063
1064   // InsertedTruncs - Only insert one trunc in each block once.
1065   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
1066
1067   bool MadeChange = false;
1068   for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
1069        UI != E; ++UI) {
1070     Use &TheUse = UI.getUse();
1071     Instruction *User = cast<Instruction>(*UI);
1072
1073     // Figure out which BB this ext is used in.
1074     BasicBlock *UserBB = User->getParent();
1075     if (UserBB == DefBB) continue;
1076
1077     // Both src and def are live in this block. Rewrite the use.
1078     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
1079
1080     if (!InsertedTrunc) {
1081       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1082       InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
1083     }
1084
1085     // Replace a use of the {s|z}ext source with a use of the result.
1086     TheUse = InsertedTrunc;
1087     ++NumExtUses;
1088     MadeChange = true;
1089   }
1090
1091   return MadeChange;
1092 }
1093
1094 bool CodeGenPrepare::OptimizeInst(Instruction *I) {
1095   if (PHINode *P = dyn_cast<PHINode>(I)) {
1096     // It is possible for very late stage optimizations (such as SimplifyCFG)
1097     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
1098     // trivial PHI, go ahead and zap it here.
1099     if (Value *V = SimplifyInstruction(P)) {
1100       P->replaceAllUsesWith(V);
1101       P->eraseFromParent();
1102       ++NumPHIsElim;
1103       return true;
1104     }
1105     return false;
1106   }
1107   
1108   if (CastInst *CI = dyn_cast<CastInst>(I)) {
1109     // If the source of the cast is a constant, then this should have
1110     // already been constant folded.  The only reason NOT to constant fold
1111     // it is if something (e.g. LSR) was careful to place the constant
1112     // evaluation in a block other than then one that uses it (e.g. to hoist
1113     // the address of globals out of a loop).  If this is the case, we don't
1114     // want to forward-subst the cast.
1115     if (isa<Constant>(CI->getOperand(0)))
1116       return false;
1117
1118     if (TLI && OptimizeNoopCopyExpression(CI, *TLI))
1119       return true;
1120
1121     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
1122       bool MadeChange = MoveExtToFormExtLoad(I);
1123       return MadeChange | OptimizeExtUses(I);
1124     }
1125     return false;
1126   }
1127   
1128   if (CmpInst *CI = dyn_cast<CmpInst>(I))
1129     return OptimizeCmpExpression(CI);
1130   
1131   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1132     if (TLI)
1133       return OptimizeMemoryInst(I, I->getOperand(0), LI->getType());
1134     return false;
1135   }
1136   
1137   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1138     if (TLI)
1139       return OptimizeMemoryInst(I, SI->getOperand(1),
1140                                 SI->getOperand(0)->getType());
1141     return false;
1142   }
1143   
1144   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
1145     if (GEPI->hasAllZeroIndices()) {
1146       /// The GEP operand must be a pointer, so must its result -> BitCast
1147       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
1148                                         GEPI->getName(), GEPI);
1149       GEPI->replaceAllUsesWith(NC);
1150       GEPI->eraseFromParent();
1151       ++NumGEPsElim;
1152       OptimizeInst(NC);
1153       return true;
1154     }
1155     return false;
1156   }
1157   
1158   if (CallInst *CI = dyn_cast<CallInst>(I))
1159     return OptimizeCallInst(CI);
1160
1161   if (ReturnInst *RI = dyn_cast<ReturnInst>(I))
1162     return DupRetToEnableTailCallOpts(RI);
1163
1164   return false;
1165 }
1166
1167 // In this pass we look for GEP and cast instructions that are used
1168 // across basic blocks and rewrite them to improve basic-block-at-a-time
1169 // selection.
1170 bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
1171   SunkAddrs.clear();
1172   bool MadeChange = false;
1173
1174   CurInstIterator = BB.begin();
1175   for (BasicBlock::iterator E = BB.end(); CurInstIterator != E; )
1176     MadeChange |= OptimizeInst(CurInstIterator++);
1177
1178   return MadeChange;
1179 }
1180
1181 // llvm.dbg.value is far away from the value then iSel may not be able
1182 // handle it properly. iSel will drop llvm.dbg.value if it can not 
1183 // find a node corresponding to the value.
1184 bool CodeGenPrepare::PlaceDbgValues(Function &F) {
1185   bool MadeChange = false;
1186   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
1187     Instruction *PrevNonDbgInst = NULL;
1188     for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE;) {
1189       Instruction *Insn = BI; ++BI;
1190       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
1191       if (!DVI) {
1192         PrevNonDbgInst = Insn;
1193         continue;
1194       }
1195
1196       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
1197       if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
1198         DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI);
1199         DVI->removeFromParent();
1200         if (isa<PHINode>(VI))
1201           DVI->insertBefore(VI->getParent()->getFirstInsertionPt());
1202         else
1203           DVI->insertAfter(VI);
1204         MadeChange = true;
1205         ++NumDbgValueMoved;
1206       }
1207     }
1208   }
1209   return MadeChange;
1210 }