]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
MFC r228379:
[FreeBSD/stable/9.git] / contrib / llvm / lib / CodeGen / SelectionDAG / SelectionDAGBuilder.cpp
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "isel"
15 #include "SDNodeDbgValue.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Constants.h"
23 #include "llvm/CallingConv.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/InlineAsm.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/IntrinsicInst.h"
31 #include "llvm/LLVMContext.h"
32 #include "llvm/Module.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/FastISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCStrategy.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineJumpTableInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/CodeGen/PseudoSourceValue.h"
45 #include "llvm/CodeGen/SelectionDAG.h"
46 #include "llvm/Analysis/DebugInfo.h"
47 #include "llvm/Target/TargetData.h"
48 #include "llvm/Target/TargetFrameLowering.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/Target/TargetIntrinsicInfo.h"
51 #include "llvm/Target/TargetLowering.h"
52 #include "llvm/Target/TargetOptions.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 using namespace llvm;
60
61 /// LimitFloatPrecision - Generate low-precision inline sequences for
62 /// some float libcalls (6, 8 or 12 bits).
63 static unsigned LimitFloatPrecision;
64
65 static cl::opt<unsigned, true>
66 LimitFPPrecision("limit-float-precision",
67                  cl::desc("Generate low-precision inline sequences "
68                           "for some float libcalls"),
69                  cl::location(LimitFloatPrecision),
70                  cl::init(0));
71
72 // Limit the width of DAG chains. This is important in general to prevent
73 // prevent DAG-based analysis from blowing up. For example, alias analysis and
74 // load clustering may not complete in reasonable time. It is difficult to
75 // recognize and avoid this situation within each individual analysis, and
76 // future analyses are likely to have the same behavior. Limiting DAG width is
77 // the safe approach, and will be especially important with global DAGs.
78 //
79 // MaxParallelChains default is arbitrarily high to avoid affecting
80 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81 // sequence over this should have been converted to llvm.memcpy by the
82 // frontend. It easy to induce this behavior with .ll code such as:
83 // %buffer = alloca [4096 x i8]
84 // %data = load [4096 x i8]* %argPtr
85 // store [4096 x i8] %data, [4096 x i8]* %buffer
86 static const unsigned MaxParallelChains = 64;
87
88 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89                                       const SDValue *Parts, unsigned NumParts,
90                                       EVT PartVT, EVT ValueVT);
91
92 /// getCopyFromParts - Create a value that contains the specified legal parts
93 /// combined into the value they represent.  If the parts combine to a type
94 /// larger then ValueVT then AssertOp can be used to specify whether the extra
95 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96 /// (ISD::AssertSext).
97 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98                                 const SDValue *Parts,
99                                 unsigned NumParts, EVT PartVT, EVT ValueVT,
100                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101   if (ValueVT.isVector())
102     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
103
104   assert(NumParts > 0 && "No parts to assemble!");
105   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106   SDValue Val = Parts[0];
107
108   if (NumParts > 1) {
109     // Assemble the value from multiple parts.
110     if (ValueVT.isInteger()) {
111       unsigned PartBits = PartVT.getSizeInBits();
112       unsigned ValueBits = ValueVT.getSizeInBits();
113
114       // Assemble the power of 2 part.
115       unsigned RoundParts = NumParts & (NumParts - 1) ?
116         1 << Log2_32(NumParts) : NumParts;
117       unsigned RoundBits = PartBits * RoundParts;
118       EVT RoundVT = RoundBits == ValueBits ?
119         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120       SDValue Lo, Hi;
121
122       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
123
124       if (RoundParts > 2) {
125         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126                               PartVT, HalfVT);
127         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128                               RoundParts / 2, PartVT, HalfVT);
129       } else {
130         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
132       }
133
134       if (TLI.isBigEndian())
135         std::swap(Lo, Hi);
136
137       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
138
139       if (RoundParts < NumParts) {
140         // Assemble the trailing non-power-of-2 part.
141         unsigned OddParts = NumParts - RoundParts;
142         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143         Hi = getCopyFromParts(DAG, DL,
144                               Parts + RoundParts, OddParts, PartVT, OddVT);
145
146         // Combine the round and odd parts.
147         Lo = Val;
148         if (TLI.isBigEndian())
149           std::swap(Lo, Hi);
150         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153                          DAG.getConstant(Lo.getValueType().getSizeInBits(),
154                                          TLI.getPointerTy()));
155         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157       }
158     } else if (PartVT.isFloatingPoint()) {
159       // FP split into multiple FP parts (for ppcf128)
160       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161              "Unexpected split");
162       SDValue Lo, Hi;
163       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165       if (TLI.isBigEndian())
166         std::swap(Lo, Hi);
167       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168     } else {
169       // FP split into integer parts (soft fp)
170       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171              !PartVT.isVector() && "Unexpected split");
172       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174     }
175   }
176
177   // There is now one part, held in Val.  Correct it to match ValueVT.
178   PartVT = Val.getValueType();
179
180   if (PartVT == ValueVT)
181     return Val;
182
183   if (PartVT.isInteger() && ValueVT.isInteger()) {
184     if (ValueVT.bitsLT(PartVT)) {
185       // For a truncate, see if we have any information to
186       // indicate whether the truncated bits will always be
187       // zero or sign-extension.
188       if (AssertOp != ISD::DELETED_NODE)
189         Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190                           DAG.getValueType(ValueVT));
191       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192     }
193     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194   }
195
196   if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197     // FP_ROUND's are always exact here.
198     if (ValueVT.bitsLT(Val.getValueType()))
199       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200                          DAG.getIntPtrConstant(1));
201
202     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203   }
204
205   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207
208   llvm_unreachable("Unknown mismatch!");
209   return SDValue();
210 }
211
212 /// getCopyFromParts - Create a value that contains the specified legal parts
213 /// combined into the value they represent.  If the parts combine to a type
214 /// larger then ValueVT then AssertOp can be used to specify whether the extra
215 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
216 /// (ISD::AssertSext).
217 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
218                                       const SDValue *Parts, unsigned NumParts,
219                                       EVT PartVT, EVT ValueVT) {
220   assert(ValueVT.isVector() && "Not a vector value");
221   assert(NumParts > 0 && "No parts to assemble!");
222   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
223   SDValue Val = Parts[0];
224
225   // Handle a multi-element vector.
226   if (NumParts > 1) {
227     EVT IntermediateVT, RegisterVT;
228     unsigned NumIntermediates;
229     unsigned NumRegs =
230     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
231                                NumIntermediates, RegisterVT);
232     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
233     NumParts = NumRegs; // Silence a compiler warning.
234     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
235     assert(RegisterVT == Parts[0].getValueType() &&
236            "Part type doesn't match part!");
237
238     // Assemble the parts into intermediate operands.
239     SmallVector<SDValue, 8> Ops(NumIntermediates);
240     if (NumIntermediates == NumParts) {
241       // If the register was not expanded, truncate or copy the value,
242       // as appropriate.
243       for (unsigned i = 0; i != NumParts; ++i)
244         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
245                                   PartVT, IntermediateVT);
246     } else if (NumParts > 0) {
247       // If the intermediate type was expanded, build the intermediate
248       // operands from the parts.
249       assert(NumParts % NumIntermediates == 0 &&
250              "Must expand into a divisible number of parts!");
251       unsigned Factor = NumParts / NumIntermediates;
252       for (unsigned i = 0; i != NumIntermediates; ++i)
253         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
254                                   PartVT, IntermediateVT);
255     }
256
257     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
258     // intermediate operands.
259     Val = DAG.getNode(IntermediateVT.isVector() ?
260                       ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
261                       ValueVT, &Ops[0], NumIntermediates);
262   }
263
264   // There is now one part, held in Val.  Correct it to match ValueVT.
265   PartVT = Val.getValueType();
266
267   if (PartVT == ValueVT)
268     return Val;
269
270   if (PartVT.isVector()) {
271     // If the element type of the source/dest vectors are the same, but the
272     // parts vector has more elements than the value vector, then we have a
273     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
274     // elements we want.
275     if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
276       assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
277              "Cannot narrow, it would be a lossy transformation");
278       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
279                          DAG.getIntPtrConstant(0));
280     }
281
282     // Vector/Vector bitcast.
283     if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
284       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
285
286     assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
287       "Cannot handle this kind of promotion");
288     // Promoted vector extract
289     bool Smaller = ValueVT.bitsLE(PartVT);
290     return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
291                        DL, ValueVT, Val);
292
293   }
294
295   // Trivial bitcast if the types are the same size and the destination
296   // vector type is legal.
297   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
298       TLI.isTypeLegal(ValueVT))
299     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300
301   // Handle cases such as i8 -> <1 x i1>
302   assert(ValueVT.getVectorNumElements() == 1 &&
303          "Only trivial scalar-to-vector conversions should get here!");
304
305   if (ValueVT.getVectorNumElements() == 1 &&
306       ValueVT.getVectorElementType() != PartVT) {
307     bool Smaller = ValueVT.bitsLE(PartVT);
308     Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
309                        DL, ValueVT.getScalarType(), Val);
310   }
311
312   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
313 }
314
315
316
317
318 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
319                                  SDValue Val, SDValue *Parts, unsigned NumParts,
320                                  EVT PartVT);
321
322 /// getCopyToParts - Create a series of nodes that contain the specified value
323 /// split into legal parts.  If the parts contain more bits than Val, then, for
324 /// integers, ExtendKind can be used to specify how to generate the extra bits.
325 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
326                            SDValue Val, SDValue *Parts, unsigned NumParts,
327                            EVT PartVT,
328                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
329   EVT ValueVT = Val.getValueType();
330
331   // Handle the vector case separately.
332   if (ValueVT.isVector())
333     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
334
335   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
336   unsigned PartBits = PartVT.getSizeInBits();
337   unsigned OrigNumParts = NumParts;
338   assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
339
340   if (NumParts == 0)
341     return;
342
343   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
344   if (PartVT == ValueVT) {
345     assert(NumParts == 1 && "No-op copy with multiple parts!");
346     Parts[0] = Val;
347     return;
348   }
349
350   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
351     // If the parts cover more bits than the value has, promote the value.
352     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
353       assert(NumParts == 1 && "Do not know what to promote to!");
354       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
355     } else {
356       assert(PartVT.isInteger() && ValueVT.isInteger() &&
357              "Unknown mismatch!");
358       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
359       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
360     }
361   } else if (PartBits == ValueVT.getSizeInBits()) {
362     // Different types of the same size.
363     assert(NumParts == 1 && PartVT != ValueVT);
364     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
365   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
366     // If the parts cover less bits than value has, truncate the value.
367     assert(PartVT.isInteger() && ValueVT.isInteger() &&
368            "Unknown mismatch!");
369     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
370     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
371   }
372
373   // The value may have changed - recompute ValueVT.
374   ValueVT = Val.getValueType();
375   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
376          "Failed to tile the value with PartVT!");
377
378   if (NumParts == 1) {
379     assert(PartVT == ValueVT && "Type conversion failed!");
380     Parts[0] = Val;
381     return;
382   }
383
384   // Expand the value into multiple parts.
385   if (NumParts & (NumParts - 1)) {
386     // The number of parts is not a power of 2.  Split off and copy the tail.
387     assert(PartVT.isInteger() && ValueVT.isInteger() &&
388            "Do not know what to expand to!");
389     unsigned RoundParts = 1 << Log2_32(NumParts);
390     unsigned RoundBits = RoundParts * PartBits;
391     unsigned OddParts = NumParts - RoundParts;
392     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
393                                  DAG.getIntPtrConstant(RoundBits));
394     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
395
396     if (TLI.isBigEndian())
397       // The odd parts were reversed by getCopyToParts - unreverse them.
398       std::reverse(Parts + RoundParts, Parts + NumParts);
399
400     NumParts = RoundParts;
401     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
402     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
403   }
404
405   // The number of parts is a power of 2.  Repeatedly bisect the value using
406   // EXTRACT_ELEMENT.
407   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
408                          EVT::getIntegerVT(*DAG.getContext(),
409                                            ValueVT.getSizeInBits()),
410                          Val);
411
412   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
413     for (unsigned i = 0; i < NumParts; i += StepSize) {
414       unsigned ThisBits = StepSize * PartBits / 2;
415       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
416       SDValue &Part0 = Parts[i];
417       SDValue &Part1 = Parts[i+StepSize/2];
418
419       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
420                           ThisVT, Part0, DAG.getIntPtrConstant(1));
421       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
422                           ThisVT, Part0, DAG.getIntPtrConstant(0));
423
424       if (ThisBits == PartBits && ThisVT != PartVT) {
425         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
426         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
427       }
428     }
429   }
430
431   if (TLI.isBigEndian())
432     std::reverse(Parts, Parts + OrigNumParts);
433 }
434
435
436 /// getCopyToPartsVector - Create a series of nodes that contain the specified
437 /// value split into legal parts.
438 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
439                                  SDValue Val, SDValue *Parts, unsigned NumParts,
440                                  EVT PartVT) {
441   EVT ValueVT = Val.getValueType();
442   assert(ValueVT.isVector() && "Not a vector");
443   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
444
445   if (NumParts == 1) {
446     if (PartVT == ValueVT) {
447       // Nothing to do.
448     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
449       // Bitconvert vector->vector case.
450       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
451     } else if (PartVT.isVector() &&
452                PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
453                PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
454       EVT ElementVT = PartVT.getVectorElementType();
455       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
456       // undef elements.
457       SmallVector<SDValue, 16> Ops;
458       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
459         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
460                                   ElementVT, Val, DAG.getIntPtrConstant(i)));
461
462       for (unsigned i = ValueVT.getVectorNumElements(),
463            e = PartVT.getVectorNumElements(); i != e; ++i)
464         Ops.push_back(DAG.getUNDEF(ElementVT));
465
466       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
467
468       // FIXME: Use CONCAT for 2x -> 4x.
469
470       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
471       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
472     } else if (PartVT.isVector() &&
473                PartVT.getVectorElementType().bitsGE(
474                  ValueVT.getVectorElementType()) &&
475                PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
476
477       // Promoted vector extract
478       bool Smaller = PartVT.bitsLE(ValueVT);
479       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
480                         DL, PartVT, Val);
481     } else{
482       // Vector -> scalar conversion.
483       assert(ValueVT.getVectorNumElements() == 1 &&
484              "Only trivial vector-to-scalar conversions should get here!");
485       Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
486                         PartVT, Val, DAG.getIntPtrConstant(0));
487
488       bool Smaller = ValueVT.bitsLE(PartVT);
489       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
490                          DL, PartVT, Val);
491     }
492
493     Parts[0] = Val;
494     return;
495   }
496
497   // Handle a multi-element vector.
498   EVT IntermediateVT, RegisterVT;
499   unsigned NumIntermediates;
500   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
501                                                 IntermediateVT,
502                                                 NumIntermediates, RegisterVT);
503   unsigned NumElements = ValueVT.getVectorNumElements();
504
505   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
506   NumParts = NumRegs; // Silence a compiler warning.
507   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
508
509   // Split the vector into intermediate operands.
510   SmallVector<SDValue, 8> Ops(NumIntermediates);
511   for (unsigned i = 0; i != NumIntermediates; ++i) {
512     if (IntermediateVT.isVector())
513       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
514                            IntermediateVT, Val,
515                    DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
516     else
517       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
518                            IntermediateVT, Val, DAG.getIntPtrConstant(i));
519   }
520
521   // Split the intermediate operands into legal parts.
522   if (NumParts == NumIntermediates) {
523     // If the register was not expanded, promote or copy the value,
524     // as appropriate.
525     for (unsigned i = 0; i != NumParts; ++i)
526       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
527   } else if (NumParts > 0) {
528     // If the intermediate type was expanded, split each the value into
529     // legal parts.
530     assert(NumParts % NumIntermediates == 0 &&
531            "Must expand into a divisible number of parts!");
532     unsigned Factor = NumParts / NumIntermediates;
533     for (unsigned i = 0; i != NumIntermediates; ++i)
534       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
535   }
536 }
537
538
539
540
541 namespace {
542   /// RegsForValue - This struct represents the registers (physical or virtual)
543   /// that a particular set of values is assigned, and the type information
544   /// about the value. The most common situation is to represent one value at a
545   /// time, but struct or array values are handled element-wise as multiple
546   /// values.  The splitting of aggregates is performed recursively, so that we
547   /// never have aggregate-typed registers. The values at this point do not
548   /// necessarily have legal types, so each value may require one or more
549   /// registers of some legal type.
550   ///
551   struct RegsForValue {
552     /// ValueVTs - The value types of the values, which may not be legal, and
553     /// may need be promoted or synthesized from one or more registers.
554     ///
555     SmallVector<EVT, 4> ValueVTs;
556
557     /// RegVTs - The value types of the registers. This is the same size as
558     /// ValueVTs and it records, for each value, what the type of the assigned
559     /// register or registers are. (Individual values are never synthesized
560     /// from more than one type of register.)
561     ///
562     /// With virtual registers, the contents of RegVTs is redundant with TLI's
563     /// getRegisterType member function, however when with physical registers
564     /// it is necessary to have a separate record of the types.
565     ///
566     SmallVector<EVT, 4> RegVTs;
567
568     /// Regs - This list holds the registers assigned to the values.
569     /// Each legal or promoted value requires one register, and each
570     /// expanded value requires multiple registers.
571     ///
572     SmallVector<unsigned, 4> Regs;
573
574     RegsForValue() {}
575
576     RegsForValue(const SmallVector<unsigned, 4> &regs,
577                  EVT regvt, EVT valuevt)
578       : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
579
580     RegsForValue(LLVMContext &Context, const TargetLowering &tli,
581                  unsigned Reg, Type *Ty) {
582       ComputeValueVTs(tli, Ty, ValueVTs);
583
584       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
585         EVT ValueVT = ValueVTs[Value];
586         unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
587         EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
588         for (unsigned i = 0; i != NumRegs; ++i)
589           Regs.push_back(Reg + i);
590         RegVTs.push_back(RegisterVT);
591         Reg += NumRegs;
592       }
593     }
594
595     /// areValueTypesLegal - Return true if types of all the values are legal.
596     bool areValueTypesLegal(const TargetLowering &TLI) {
597       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
598         EVT RegisterVT = RegVTs[Value];
599         if (!TLI.isTypeLegal(RegisterVT))
600           return false;
601       }
602       return true;
603     }
604
605     /// append - Add the specified values to this one.
606     void append(const RegsForValue &RHS) {
607       ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
608       RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
609       Regs.append(RHS.Regs.begin(), RHS.Regs.end());
610     }
611
612     /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
613     /// this value and returns the result as a ValueVTs value.  This uses
614     /// Chain/Flag as the input and updates them for the output Chain/Flag.
615     /// If the Flag pointer is NULL, no flag is used.
616     SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
617                             DebugLoc dl,
618                             SDValue &Chain, SDValue *Flag) const;
619
620     /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
621     /// specified value into the registers specified by this object.  This uses
622     /// Chain/Flag as the input and updates them for the output Chain/Flag.
623     /// If the Flag pointer is NULL, no flag is used.
624     void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
625                        SDValue &Chain, SDValue *Flag) const;
626
627     /// AddInlineAsmOperands - Add this value to the specified inlineasm node
628     /// operand list.  This adds the code marker, matching input operand index
629     /// (if applicable), and includes the number of values added into it.
630     void AddInlineAsmOperands(unsigned Kind,
631                               bool HasMatching, unsigned MatchingIdx,
632                               SelectionDAG &DAG,
633                               std::vector<SDValue> &Ops) const;
634   };
635 }
636
637 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
638 /// this value and returns the result as a ValueVT value.  This uses
639 /// Chain/Flag as the input and updates them for the output Chain/Flag.
640 /// If the Flag pointer is NULL, no flag is used.
641 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
642                                       FunctionLoweringInfo &FuncInfo,
643                                       DebugLoc dl,
644                                       SDValue &Chain, SDValue *Flag) const {
645   // A Value with type {} or [0 x %t] needs no registers.
646   if (ValueVTs.empty())
647     return SDValue();
648
649   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
650
651   // Assemble the legal parts into the final values.
652   SmallVector<SDValue, 4> Values(ValueVTs.size());
653   SmallVector<SDValue, 8> Parts;
654   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
655     // Copy the legal parts from the registers.
656     EVT ValueVT = ValueVTs[Value];
657     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
658     EVT RegisterVT = RegVTs[Value];
659
660     Parts.resize(NumRegs);
661     for (unsigned i = 0; i != NumRegs; ++i) {
662       SDValue P;
663       if (Flag == 0) {
664         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
665       } else {
666         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
667         *Flag = P.getValue(2);
668       }
669
670       Chain = P.getValue(1);
671       Parts[i] = P;
672
673       // If the source register was virtual and if we know something about it,
674       // add an assert node.
675       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
676           !RegisterVT.isInteger() || RegisterVT.isVector())
677         continue;
678
679       const FunctionLoweringInfo::LiveOutInfo *LOI =
680         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
681       if (!LOI)
682         continue;
683
684       unsigned RegSize = RegisterVT.getSizeInBits();
685       unsigned NumSignBits = LOI->NumSignBits;
686       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
687
688       // FIXME: We capture more information than the dag can represent.  For
689       // now, just use the tightest assertzext/assertsext possible.
690       bool isSExt = true;
691       EVT FromVT(MVT::Other);
692       if (NumSignBits == RegSize)
693         isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
694       else if (NumZeroBits >= RegSize-1)
695         isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
696       else if (NumSignBits > RegSize-8)
697         isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
698       else if (NumZeroBits >= RegSize-8)
699         isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
700       else if (NumSignBits > RegSize-16)
701         isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
702       else if (NumZeroBits >= RegSize-16)
703         isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
704       else if (NumSignBits > RegSize-32)
705         isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
706       else if (NumZeroBits >= RegSize-32)
707         isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
708       else
709         continue;
710
711       // Add an assertion node.
712       assert(FromVT != MVT::Other);
713       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
714                              RegisterVT, P, DAG.getValueType(FromVT));
715     }
716
717     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
718                                      NumRegs, RegisterVT, ValueVT);
719     Part += NumRegs;
720     Parts.clear();
721   }
722
723   return DAG.getNode(ISD::MERGE_VALUES, dl,
724                      DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
725                      &Values[0], ValueVTs.size());
726 }
727
728 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
729 /// specified value into the registers specified by this object.  This uses
730 /// Chain/Flag as the input and updates them for the output Chain/Flag.
731 /// If the Flag pointer is NULL, no flag is used.
732 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
733                                  SDValue &Chain, SDValue *Flag) const {
734   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
735
736   // Get the list of the values's legal parts.
737   unsigned NumRegs = Regs.size();
738   SmallVector<SDValue, 8> Parts(NumRegs);
739   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
740     EVT ValueVT = ValueVTs[Value];
741     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
742     EVT RegisterVT = RegVTs[Value];
743
744     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
745                    &Parts[Part], NumParts, RegisterVT);
746     Part += NumParts;
747   }
748
749   // Copy the parts into the registers.
750   SmallVector<SDValue, 8> Chains(NumRegs);
751   for (unsigned i = 0; i != NumRegs; ++i) {
752     SDValue Part;
753     if (Flag == 0) {
754       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
755     } else {
756       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
757       *Flag = Part.getValue(1);
758     }
759
760     Chains[i] = Part.getValue(0);
761   }
762
763   if (NumRegs == 1 || Flag)
764     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
765     // flagged to it. That is the CopyToReg nodes and the user are considered
766     // a single scheduling unit. If we create a TokenFactor and return it as
767     // chain, then the TokenFactor is both a predecessor (operand) of the
768     // user as well as a successor (the TF operands are flagged to the user).
769     // c1, f1 = CopyToReg
770     // c2, f2 = CopyToReg
771     // c3     = TokenFactor c1, c2
772     // ...
773     //        = op c3, ..., f2
774     Chain = Chains[NumRegs-1];
775   else
776     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
777 }
778
779 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
780 /// operand list.  This adds the code marker and includes the number of
781 /// values added into it.
782 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
783                                         unsigned MatchingIdx,
784                                         SelectionDAG &DAG,
785                                         std::vector<SDValue> &Ops) const {
786   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
787
788   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
789   if (HasMatching)
790     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
791   else if (!Regs.empty() &&
792            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
793     // Put the register class of the virtual registers in the flag word.  That
794     // way, later passes can recompute register class constraints for inline
795     // assembly as well as normal instructions.
796     // Don't do this for tied operands that can use the regclass information
797     // from the def.
798     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
799     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
800     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
801   }
802
803   SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
804   Ops.push_back(Res);
805
806   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
807     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
808     EVT RegisterVT = RegVTs[Value];
809     for (unsigned i = 0; i != NumRegs; ++i) {
810       assert(Reg < Regs.size() && "Mismatch in # registers expected");
811       Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
812     }
813   }
814 }
815
816 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
817   AA = &aa;
818   GFI = gfi;
819   TD = DAG.getTarget().getTargetData();
820   LPadToCallSiteMap.clear();
821 }
822
823 /// clear - Clear out the current SelectionDAG and the associated
824 /// state and prepare this SelectionDAGBuilder object to be used
825 /// for a new block. This doesn't clear out information about
826 /// additional blocks that are needed to complete switch lowering
827 /// or PHI node updating; that information is cleared out as it is
828 /// consumed.
829 void SelectionDAGBuilder::clear() {
830   NodeMap.clear();
831   UnusedArgNodeMap.clear();
832   PendingLoads.clear();
833   PendingExports.clear();
834   CurDebugLoc = DebugLoc();
835   HasTailCall = false;
836 }
837
838 /// clearDanglingDebugInfo - Clear the dangling debug information
839 /// map. This function is seperated from the clear so that debug
840 /// information that is dangling in a basic block can be properly
841 /// resolved in a different basic block. This allows the
842 /// SelectionDAG to resolve dangling debug information attached
843 /// to PHI nodes.
844 void SelectionDAGBuilder::clearDanglingDebugInfo() {
845   DanglingDebugInfoMap.clear();
846 }
847
848 /// getRoot - Return the current virtual root of the Selection DAG,
849 /// flushing any PendingLoad items. This must be done before emitting
850 /// a store or any other node that may need to be ordered after any
851 /// prior load instructions.
852 ///
853 SDValue SelectionDAGBuilder::getRoot() {
854   if (PendingLoads.empty())
855     return DAG.getRoot();
856
857   if (PendingLoads.size() == 1) {
858     SDValue Root = PendingLoads[0];
859     DAG.setRoot(Root);
860     PendingLoads.clear();
861     return Root;
862   }
863
864   // Otherwise, we have to make a token factor node.
865   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
866                                &PendingLoads[0], PendingLoads.size());
867   PendingLoads.clear();
868   DAG.setRoot(Root);
869   return Root;
870 }
871
872 /// getControlRoot - Similar to getRoot, but instead of flushing all the
873 /// PendingLoad items, flush all the PendingExports items. It is necessary
874 /// to do this before emitting a terminator instruction.
875 ///
876 SDValue SelectionDAGBuilder::getControlRoot() {
877   SDValue Root = DAG.getRoot();
878
879   if (PendingExports.empty())
880     return Root;
881
882   // Turn all of the CopyToReg chains into one factored node.
883   if (Root.getOpcode() != ISD::EntryToken) {
884     unsigned i = 0, e = PendingExports.size();
885     for (; i != e; ++i) {
886       assert(PendingExports[i].getNode()->getNumOperands() > 1);
887       if (PendingExports[i].getNode()->getOperand(0) == Root)
888         break;  // Don't add the root if we already indirectly depend on it.
889     }
890
891     if (i == e)
892       PendingExports.push_back(Root);
893   }
894
895   Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
896                      &PendingExports[0],
897                      PendingExports.size());
898   PendingExports.clear();
899   DAG.setRoot(Root);
900   return Root;
901 }
902
903 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
904   if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
905   DAG.AssignOrdering(Node, SDNodeOrder);
906
907   for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
908     AssignOrderingToNode(Node->getOperand(I).getNode());
909 }
910
911 void SelectionDAGBuilder::visit(const Instruction &I) {
912   // Set up outgoing PHI node register values before emitting the terminator.
913   if (isa<TerminatorInst>(&I))
914     HandlePHINodesInSuccessorBlocks(I.getParent());
915
916   CurDebugLoc = I.getDebugLoc();
917
918   visit(I.getOpcode(), I);
919
920   if (!isa<TerminatorInst>(&I) && !HasTailCall)
921     CopyToExportRegsIfNeeded(&I);
922
923   CurDebugLoc = DebugLoc();
924 }
925
926 void SelectionDAGBuilder::visitPHI(const PHINode &) {
927   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
928 }
929
930 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
931   // Note: this doesn't use InstVisitor, because it has to work with
932   // ConstantExpr's in addition to instructions.
933   switch (Opcode) {
934   default: llvm_unreachable("Unknown instruction type encountered!");
935     // Build the switch statement using the Instruction.def file.
936 #define HANDLE_INST(NUM, OPCODE, CLASS) \
937     case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
938 #include "llvm/Instruction.def"
939   }
940
941   // Assign the ordering to the freshly created DAG nodes.
942   if (NodeMap.count(&I)) {
943     ++SDNodeOrder;
944     AssignOrderingToNode(getValue(&I).getNode());
945   }
946 }
947
948 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
949 // generate the debug data structures now that we've seen its definition.
950 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
951                                                    SDValue Val) {
952   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
953   if (DDI.getDI()) {
954     const DbgValueInst *DI = DDI.getDI();
955     DebugLoc dl = DDI.getdl();
956     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
957     MDNode *Variable = DI->getVariable();
958     uint64_t Offset = DI->getOffset();
959     SDDbgValue *SDV;
960     if (Val.getNode()) {
961       if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
962         SDV = DAG.getDbgValue(Variable, Val.getNode(),
963                               Val.getResNo(), Offset, dl, DbgSDNodeOrder);
964         DAG.AddDbgValue(SDV, Val.getNode(), false);
965       }
966     } else
967       DEBUG(dbgs() << "Dropping debug info for " << DI);
968     DanglingDebugInfoMap[V] = DanglingDebugInfo();
969   }
970 }
971
972 /// getValue - Return an SDValue for the given Value.
973 SDValue SelectionDAGBuilder::getValue(const Value *V) {
974   // If we already have an SDValue for this value, use it. It's important
975   // to do this first, so that we don't create a CopyFromReg if we already
976   // have a regular SDValue.
977   SDValue &N = NodeMap[V];
978   if (N.getNode()) return N;
979
980   // If there's a virtual register allocated and initialized for this
981   // value, use it.
982   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
983   if (It != FuncInfo.ValueMap.end()) {
984     unsigned InReg = It->second;
985     RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
986     SDValue Chain = DAG.getEntryNode();
987     N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
988     resolveDanglingDebugInfo(V, N);
989     return N;
990   }
991
992   // Otherwise create a new SDValue and remember it.
993   SDValue Val = getValueImpl(V);
994   NodeMap[V] = Val;
995   resolveDanglingDebugInfo(V, Val);
996   return Val;
997 }
998
999 /// getNonRegisterValue - Return an SDValue for the given Value, but
1000 /// don't look in FuncInfo.ValueMap for a virtual register.
1001 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1002   // If we already have an SDValue for this value, use it.
1003   SDValue &N = NodeMap[V];
1004   if (N.getNode()) return N;
1005
1006   // Otherwise create a new SDValue and remember it.
1007   SDValue Val = getValueImpl(V);
1008   NodeMap[V] = Val;
1009   resolveDanglingDebugInfo(V, Val);
1010   return Val;
1011 }
1012
1013 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1014 /// Create an SDValue for the given value.
1015 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1016   if (const Constant *C = dyn_cast<Constant>(V)) {
1017     EVT VT = TLI.getValueType(V->getType(), true);
1018
1019     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1020       return DAG.getConstant(*CI, VT);
1021
1022     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1023       return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1024
1025     if (isa<ConstantPointerNull>(C))
1026       return DAG.getConstant(0, TLI.getPointerTy());
1027
1028     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1029       return DAG.getConstantFP(*CFP, VT);
1030
1031     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1032       return DAG.getUNDEF(VT);
1033
1034     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1035       visit(CE->getOpcode(), *CE);
1036       SDValue N1 = NodeMap[V];
1037       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1038       return N1;
1039     }
1040
1041     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1042       SmallVector<SDValue, 4> Constants;
1043       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1044            OI != OE; ++OI) {
1045         SDNode *Val = getValue(*OI).getNode();
1046         // If the operand is an empty aggregate, there are no values.
1047         if (!Val) continue;
1048         // Add each leaf value from the operand to the Constants list
1049         // to form a flattened list of all the values.
1050         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1051           Constants.push_back(SDValue(Val, i));
1052       }
1053
1054       return DAG.getMergeValues(&Constants[0], Constants.size(),
1055                                 getCurDebugLoc());
1056     }
1057
1058     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1059       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1060              "Unknown struct or array constant!");
1061
1062       SmallVector<EVT, 4> ValueVTs;
1063       ComputeValueVTs(TLI, C->getType(), ValueVTs);
1064       unsigned NumElts = ValueVTs.size();
1065       if (NumElts == 0)
1066         return SDValue(); // empty struct
1067       SmallVector<SDValue, 4> Constants(NumElts);
1068       for (unsigned i = 0; i != NumElts; ++i) {
1069         EVT EltVT = ValueVTs[i];
1070         if (isa<UndefValue>(C))
1071           Constants[i] = DAG.getUNDEF(EltVT);
1072         else if (EltVT.isFloatingPoint())
1073           Constants[i] = DAG.getConstantFP(0, EltVT);
1074         else
1075           Constants[i] = DAG.getConstant(0, EltVT);
1076       }
1077
1078       return DAG.getMergeValues(&Constants[0], NumElts,
1079                                 getCurDebugLoc());
1080     }
1081
1082     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1083       return DAG.getBlockAddress(BA, VT);
1084
1085     VectorType *VecTy = cast<VectorType>(V->getType());
1086     unsigned NumElements = VecTy->getNumElements();
1087
1088     // Now that we know the number and type of the elements, get that number of
1089     // elements into the Ops array based on what kind of constant it is.
1090     SmallVector<SDValue, 16> Ops;
1091     if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1092       for (unsigned i = 0; i != NumElements; ++i)
1093         Ops.push_back(getValue(CP->getOperand(i)));
1094     } else {
1095       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1096       EVT EltVT = TLI.getValueType(VecTy->getElementType());
1097
1098       SDValue Op;
1099       if (EltVT.isFloatingPoint())
1100         Op = DAG.getConstantFP(0, EltVT);
1101       else
1102         Op = DAG.getConstant(0, EltVT);
1103       Ops.assign(NumElements, Op);
1104     }
1105
1106     // Create a BUILD_VECTOR node.
1107     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1108                                     VT, &Ops[0], Ops.size());
1109   }
1110
1111   // If this is a static alloca, generate it as the frameindex instead of
1112   // computation.
1113   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1114     DenseMap<const AllocaInst*, int>::iterator SI =
1115       FuncInfo.StaticAllocaMap.find(AI);
1116     if (SI != FuncInfo.StaticAllocaMap.end())
1117       return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1118   }
1119
1120   // If this is an instruction which fast-isel has deferred, select it now.
1121   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1122     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1123     RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1124     SDValue Chain = DAG.getEntryNode();
1125     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1126   }
1127
1128   llvm_unreachable("Can't get register for value!");
1129   return SDValue();
1130 }
1131
1132 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1133   SDValue Chain = getControlRoot();
1134   SmallVector<ISD::OutputArg, 8> Outs;
1135   SmallVector<SDValue, 8> OutVals;
1136
1137   if (!FuncInfo.CanLowerReturn) {
1138     unsigned DemoteReg = FuncInfo.DemoteRegister;
1139     const Function *F = I.getParent()->getParent();
1140
1141     // Emit a store of the return value through the virtual register.
1142     // Leave Outs empty so that LowerReturn won't try to load return
1143     // registers the usual way.
1144     SmallVector<EVT, 1> PtrValueVTs;
1145     ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1146                     PtrValueVTs);
1147
1148     SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1149     SDValue RetOp = getValue(I.getOperand(0));
1150
1151     SmallVector<EVT, 4> ValueVTs;
1152     SmallVector<uint64_t, 4> Offsets;
1153     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1154     unsigned NumValues = ValueVTs.size();
1155
1156     SmallVector<SDValue, 4> Chains(NumValues);
1157     for (unsigned i = 0; i != NumValues; ++i) {
1158       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1159                                 RetPtr.getValueType(), RetPtr,
1160                                 DAG.getIntPtrConstant(Offsets[i]));
1161       Chains[i] =
1162         DAG.getStore(Chain, getCurDebugLoc(),
1163                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1164                      // FIXME: better loc info would be nice.
1165                      Add, MachinePointerInfo(), false, false, 0);
1166     }
1167
1168     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1169                         MVT::Other, &Chains[0], NumValues);
1170   } else if (I.getNumOperands() != 0) {
1171     SmallVector<EVT, 4> ValueVTs;
1172     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1173     unsigned NumValues = ValueVTs.size();
1174     if (NumValues) {
1175       SDValue RetOp = getValue(I.getOperand(0));
1176       for (unsigned j = 0, f = NumValues; j != f; ++j) {
1177         EVT VT = ValueVTs[j];
1178
1179         ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1180
1181         const Function *F = I.getParent()->getParent();
1182         if (F->paramHasAttr(0, Attribute::SExt))
1183           ExtendKind = ISD::SIGN_EXTEND;
1184         else if (F->paramHasAttr(0, Attribute::ZExt))
1185           ExtendKind = ISD::ZERO_EXTEND;
1186
1187         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1188           VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1189
1190         unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1191         EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1192         SmallVector<SDValue, 4> Parts(NumParts);
1193         getCopyToParts(DAG, getCurDebugLoc(),
1194                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1195                        &Parts[0], NumParts, PartVT, ExtendKind);
1196
1197         // 'inreg' on function refers to return value
1198         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1199         if (F->paramHasAttr(0, Attribute::InReg))
1200           Flags.setInReg();
1201
1202         // Propagate extension type if any
1203         if (ExtendKind == ISD::SIGN_EXTEND)
1204           Flags.setSExt();
1205         else if (ExtendKind == ISD::ZERO_EXTEND)
1206           Flags.setZExt();
1207
1208         for (unsigned i = 0; i < NumParts; ++i) {
1209           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1210                                         /*isfixed=*/true));
1211           OutVals.push_back(Parts[i]);
1212         }
1213       }
1214     }
1215   }
1216
1217   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1218   CallingConv::ID CallConv =
1219     DAG.getMachineFunction().getFunction()->getCallingConv();
1220   Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1221                           Outs, OutVals, getCurDebugLoc(), DAG);
1222
1223   // Verify that the target's LowerReturn behaved as expected.
1224   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1225          "LowerReturn didn't return a valid chain!");
1226
1227   // Update the DAG with the new chain value resulting from return lowering.
1228   DAG.setRoot(Chain);
1229 }
1230
1231 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1232 /// created for it, emit nodes to copy the value into the virtual
1233 /// registers.
1234 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1235   // Skip empty types
1236   if (V->getType()->isEmptyTy())
1237     return;
1238
1239   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1240   if (VMI != FuncInfo.ValueMap.end()) {
1241     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1242     CopyValueToVirtualRegister(V, VMI->second);
1243   }
1244 }
1245
1246 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1247 /// the current basic block, add it to ValueMap now so that we'll get a
1248 /// CopyTo/FromReg.
1249 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1250   // No need to export constants.
1251   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1252
1253   // Already exported?
1254   if (FuncInfo.isExportedInst(V)) return;
1255
1256   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1257   CopyValueToVirtualRegister(V, Reg);
1258 }
1259
1260 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1261                                                      const BasicBlock *FromBB) {
1262   // The operands of the setcc have to be in this block.  We don't know
1263   // how to export them from some other block.
1264   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1265     // Can export from current BB.
1266     if (VI->getParent() == FromBB)
1267       return true;
1268
1269     // Is already exported, noop.
1270     return FuncInfo.isExportedInst(V);
1271   }
1272
1273   // If this is an argument, we can export it if the BB is the entry block or
1274   // if it is already exported.
1275   if (isa<Argument>(V)) {
1276     if (FromBB == &FromBB->getParent()->getEntryBlock())
1277       return true;
1278
1279     // Otherwise, can only export this if it is already exported.
1280     return FuncInfo.isExportedInst(V);
1281   }
1282
1283   // Otherwise, constants can always be exported.
1284   return true;
1285 }
1286
1287 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1288 uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock *Src,
1289                                             MachineBasicBlock *Dst) {
1290   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1291   if (!BPI)
1292     return 0;
1293   const BasicBlock *SrcBB = Src->getBasicBlock();
1294   const BasicBlock *DstBB = Dst->getBasicBlock();
1295   return BPI->getEdgeWeight(SrcBB, DstBB);
1296 }
1297
1298 void SelectionDAGBuilder::
1299 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1300                        uint32_t Weight /* = 0 */) {
1301   if (!Weight)
1302     Weight = getEdgeWeight(Src, Dst);
1303   Src->addSuccessor(Dst, Weight);
1304 }
1305
1306
1307 static bool InBlock(const Value *V, const BasicBlock *BB) {
1308   if (const Instruction *I = dyn_cast<Instruction>(V))
1309     return I->getParent() == BB;
1310   return true;
1311 }
1312
1313 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1314 /// This function emits a branch and is used at the leaves of an OR or an
1315 /// AND operator tree.
1316 ///
1317 void
1318 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1319                                                   MachineBasicBlock *TBB,
1320                                                   MachineBasicBlock *FBB,
1321                                                   MachineBasicBlock *CurBB,
1322                                                   MachineBasicBlock *SwitchBB) {
1323   const BasicBlock *BB = CurBB->getBasicBlock();
1324
1325   // If the leaf of the tree is a comparison, merge the condition into
1326   // the caseblock.
1327   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1328     // The operands of the cmp have to be in this block.  We don't know
1329     // how to export them from some other block.  If this is the first block
1330     // of the sequence, no exporting is needed.
1331     if (CurBB == SwitchBB ||
1332         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1333          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1334       ISD::CondCode Condition;
1335       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1336         Condition = getICmpCondCode(IC->getPredicate());
1337       } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1338         Condition = getFCmpCondCode(FC->getPredicate());
1339       } else {
1340         Condition = ISD::SETEQ; // silence warning.
1341         llvm_unreachable("Unknown compare instruction");
1342       }
1343
1344       CaseBlock CB(Condition, BOp->getOperand(0),
1345                    BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1346       SwitchCases.push_back(CB);
1347       return;
1348     }
1349   }
1350
1351   // Create a CaseBlock record representing this branch.
1352   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1353                NULL, TBB, FBB, CurBB);
1354   SwitchCases.push_back(CB);
1355 }
1356
1357 /// FindMergedConditions - If Cond is an expression like
1358 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1359                                                MachineBasicBlock *TBB,
1360                                                MachineBasicBlock *FBB,
1361                                                MachineBasicBlock *CurBB,
1362                                                MachineBasicBlock *SwitchBB,
1363                                                unsigned Opc) {
1364   // If this node is not part of the or/and tree, emit it as a branch.
1365   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1366   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1367       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1368       BOp->getParent() != CurBB->getBasicBlock() ||
1369       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1370       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1371     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1372     return;
1373   }
1374
1375   //  Create TmpBB after CurBB.
1376   MachineFunction::iterator BBI = CurBB;
1377   MachineFunction &MF = DAG.getMachineFunction();
1378   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1379   CurBB->getParent()->insert(++BBI, TmpBB);
1380
1381   if (Opc == Instruction::Or) {
1382     // Codegen X | Y as:
1383     //   jmp_if_X TBB
1384     //   jmp TmpBB
1385     // TmpBB:
1386     //   jmp_if_Y TBB
1387     //   jmp FBB
1388     //
1389
1390     // Emit the LHS condition.
1391     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1392
1393     // Emit the RHS condition into TmpBB.
1394     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1395   } else {
1396     assert(Opc == Instruction::And && "Unknown merge op!");
1397     // Codegen X & Y as:
1398     //   jmp_if_X TmpBB
1399     //   jmp FBB
1400     // TmpBB:
1401     //   jmp_if_Y TBB
1402     //   jmp FBB
1403     //
1404     //  This requires creation of TmpBB after CurBB.
1405
1406     // Emit the LHS condition.
1407     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1408
1409     // Emit the RHS condition into TmpBB.
1410     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1411   }
1412 }
1413
1414 /// If the set of cases should be emitted as a series of branches, return true.
1415 /// If we should emit this as a bunch of and/or'd together conditions, return
1416 /// false.
1417 bool
1418 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1419   if (Cases.size() != 2) return true;
1420
1421   // If this is two comparisons of the same values or'd or and'd together, they
1422   // will get folded into a single comparison, so don't emit two blocks.
1423   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1424        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1425       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1426        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1427     return false;
1428   }
1429
1430   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1431   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1432   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1433       Cases[0].CC == Cases[1].CC &&
1434       isa<Constant>(Cases[0].CmpRHS) &&
1435       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1436     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1437       return false;
1438     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1439       return false;
1440   }
1441
1442   return true;
1443 }
1444
1445 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1446   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1447
1448   // Update machine-CFG edges.
1449   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1450
1451   // Figure out which block is immediately after the current one.
1452   MachineBasicBlock *NextBlock = 0;
1453   MachineFunction::iterator BBI = BrMBB;
1454   if (++BBI != FuncInfo.MF->end())
1455     NextBlock = BBI;
1456
1457   if (I.isUnconditional()) {
1458     // Update machine-CFG edges.
1459     BrMBB->addSuccessor(Succ0MBB);
1460
1461     // If this is not a fall-through branch, emit the branch.
1462     if (Succ0MBB != NextBlock)
1463       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1464                               MVT::Other, getControlRoot(),
1465                               DAG.getBasicBlock(Succ0MBB)));
1466
1467     return;
1468   }
1469
1470   // If this condition is one of the special cases we handle, do special stuff
1471   // now.
1472   const Value *CondVal = I.getCondition();
1473   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1474
1475   // If this is a series of conditions that are or'd or and'd together, emit
1476   // this as a sequence of branches instead of setcc's with and/or operations.
1477   // As long as jumps are not expensive, this should improve performance.
1478   // For example, instead of something like:
1479   //     cmp A, B
1480   //     C = seteq
1481   //     cmp D, E
1482   //     F = setle
1483   //     or C, F
1484   //     jnz foo
1485   // Emit:
1486   //     cmp A, B
1487   //     je foo
1488   //     cmp D, E
1489   //     jle foo
1490   //
1491   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1492     if (!TLI.isJumpExpensive() &&
1493         BOp->hasOneUse() &&
1494         (BOp->getOpcode() == Instruction::And ||
1495          BOp->getOpcode() == Instruction::Or)) {
1496       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1497                            BOp->getOpcode());
1498       // If the compares in later blocks need to use values not currently
1499       // exported from this block, export them now.  This block should always
1500       // be the first entry.
1501       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1502
1503       // Allow some cases to be rejected.
1504       if (ShouldEmitAsBranches(SwitchCases)) {
1505         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1506           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1507           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1508         }
1509
1510         // Emit the branch for this block.
1511         visitSwitchCase(SwitchCases[0], BrMBB);
1512         SwitchCases.erase(SwitchCases.begin());
1513         return;
1514       }
1515
1516       // Okay, we decided not to do this, remove any inserted MBB's and clear
1517       // SwitchCases.
1518       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1519         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1520
1521       SwitchCases.clear();
1522     }
1523   }
1524
1525   // Create a CaseBlock record representing this branch.
1526   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1527                NULL, Succ0MBB, Succ1MBB, BrMBB);
1528
1529   // Use visitSwitchCase to actually insert the fast branch sequence for this
1530   // cond branch.
1531   visitSwitchCase(CB, BrMBB);
1532 }
1533
1534 /// visitSwitchCase - Emits the necessary code to represent a single node in
1535 /// the binary search tree resulting from lowering a switch instruction.
1536 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1537                                           MachineBasicBlock *SwitchBB) {
1538   SDValue Cond;
1539   SDValue CondLHS = getValue(CB.CmpLHS);
1540   DebugLoc dl = getCurDebugLoc();
1541
1542   // Build the setcc now.
1543   if (CB.CmpMHS == NULL) {
1544     // Fold "(X == true)" to X and "(X == false)" to !X to
1545     // handle common cases produced by branch lowering.
1546     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1547         CB.CC == ISD::SETEQ)
1548       Cond = CondLHS;
1549     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1550              CB.CC == ISD::SETEQ) {
1551       SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1552       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1553     } else
1554       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1555   } else {
1556     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1557
1558     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1559     const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1560
1561     SDValue CmpOp = getValue(CB.CmpMHS);
1562     EVT VT = CmpOp.getValueType();
1563
1564     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1565       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1566                           ISD::SETLE);
1567     } else {
1568       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1569                                 VT, CmpOp, DAG.getConstant(Low, VT));
1570       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1571                           DAG.getConstant(High-Low, VT), ISD::SETULE);
1572     }
1573   }
1574
1575   // Update successor info
1576   addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1577   addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1578
1579   // Set NextBlock to be the MBB immediately after the current one, if any.
1580   // This is used to avoid emitting unnecessary branches to the next block.
1581   MachineBasicBlock *NextBlock = 0;
1582   MachineFunction::iterator BBI = SwitchBB;
1583   if (++BBI != FuncInfo.MF->end())
1584     NextBlock = BBI;
1585
1586   // If the lhs block is the next block, invert the condition so that we can
1587   // fall through to the lhs instead of the rhs block.
1588   if (CB.TrueBB == NextBlock) {
1589     std::swap(CB.TrueBB, CB.FalseBB);
1590     SDValue True = DAG.getConstant(1, Cond.getValueType());
1591     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1592   }
1593
1594   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1595                                MVT::Other, getControlRoot(), Cond,
1596                                DAG.getBasicBlock(CB.TrueBB));
1597
1598   // Insert the false branch. Do this even if it's a fall through branch,
1599   // this makes it easier to do DAG optimizations which require inverting
1600   // the branch condition.
1601   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1602                        DAG.getBasicBlock(CB.FalseBB));
1603
1604   DAG.setRoot(BrCond);
1605 }
1606
1607 /// visitJumpTable - Emit JumpTable node in the current MBB
1608 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1609   // Emit the code for the jump table
1610   assert(JT.Reg != -1U && "Should lower JT Header first!");
1611   EVT PTy = TLI.getPointerTy();
1612   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1613                                      JT.Reg, PTy);
1614   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1615   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1616                                     MVT::Other, Index.getValue(1),
1617                                     Table, Index);
1618   DAG.setRoot(BrJumpTable);
1619 }
1620
1621 /// visitJumpTableHeader - This function emits necessary code to produce index
1622 /// in the JumpTable from switch case.
1623 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1624                                                JumpTableHeader &JTH,
1625                                                MachineBasicBlock *SwitchBB) {
1626   // Subtract the lowest switch case value from the value being switched on and
1627   // conditional branch to default mbb if the result is greater than the
1628   // difference between smallest and largest cases.
1629   SDValue SwitchOp = getValue(JTH.SValue);
1630   EVT VT = SwitchOp.getValueType();
1631   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1632                             DAG.getConstant(JTH.First, VT));
1633
1634   // The SDNode we just created, which holds the value being switched on minus
1635   // the smallest case value, needs to be copied to a virtual register so it
1636   // can be used as an index into the jump table in a subsequent basic block.
1637   // This value may be smaller or larger than the target's pointer type, and
1638   // therefore require extension or truncating.
1639   SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1640
1641   unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1642   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1643                                     JumpTableReg, SwitchOp);
1644   JT.Reg = JumpTableReg;
1645
1646   // Emit the range check for the jump table, and branch to the default block
1647   // for the switch statement if the value being switched on exceeds the largest
1648   // case in the switch.
1649   SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1650                              TLI.getSetCCResultType(Sub.getValueType()), Sub,
1651                              DAG.getConstant(JTH.Last-JTH.First,VT),
1652                              ISD::SETUGT);
1653
1654   // Set NextBlock to be the MBB immediately after the current one, if any.
1655   // This is used to avoid emitting unnecessary branches to the next block.
1656   MachineBasicBlock *NextBlock = 0;
1657   MachineFunction::iterator BBI = SwitchBB;
1658
1659   if (++BBI != FuncInfo.MF->end())
1660     NextBlock = BBI;
1661
1662   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1663                                MVT::Other, CopyTo, CMP,
1664                                DAG.getBasicBlock(JT.Default));
1665
1666   if (JT.MBB != NextBlock)
1667     BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1668                          DAG.getBasicBlock(JT.MBB));
1669
1670   DAG.setRoot(BrCond);
1671 }
1672
1673 /// visitBitTestHeader - This function emits necessary code to produce value
1674 /// suitable for "bit tests"
1675 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1676                                              MachineBasicBlock *SwitchBB) {
1677   // Subtract the minimum value
1678   SDValue SwitchOp = getValue(B.SValue);
1679   EVT VT = SwitchOp.getValueType();
1680   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1681                             DAG.getConstant(B.First, VT));
1682
1683   // Check range
1684   SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1685                                   TLI.getSetCCResultType(Sub.getValueType()),
1686                                   Sub, DAG.getConstant(B.Range, VT),
1687                                   ISD::SETUGT);
1688
1689   // Determine the type of the test operands.
1690   bool UsePtrType = false;
1691   if (!TLI.isTypeLegal(VT))
1692     UsePtrType = true;
1693   else {
1694     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1695       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1696         // Switch table case range are encoded into series of masks.
1697         // Just use pointer type, it's guaranteed to fit.
1698         UsePtrType = true;
1699         break;
1700       }
1701   }
1702   if (UsePtrType) {
1703     VT = TLI.getPointerTy();
1704     Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1705   }
1706
1707   B.RegVT = VT;
1708   B.Reg = FuncInfo.CreateReg(VT);
1709   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1710                                     B.Reg, Sub);
1711
1712   // Set NextBlock to be the MBB immediately after the current one, if any.
1713   // This is used to avoid emitting unnecessary branches to the next block.
1714   MachineBasicBlock *NextBlock = 0;
1715   MachineFunction::iterator BBI = SwitchBB;
1716   if (++BBI != FuncInfo.MF->end())
1717     NextBlock = BBI;
1718
1719   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1720
1721   addSuccessorWithWeight(SwitchBB, B.Default);
1722   addSuccessorWithWeight(SwitchBB, MBB);
1723
1724   SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1725                                 MVT::Other, CopyTo, RangeCmp,
1726                                 DAG.getBasicBlock(B.Default));
1727
1728   if (MBB != NextBlock)
1729     BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1730                           DAG.getBasicBlock(MBB));
1731
1732   DAG.setRoot(BrRange);
1733 }
1734
1735 /// visitBitTestCase - this function produces one "bit test"
1736 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1737                                            MachineBasicBlock* NextMBB,
1738                                            unsigned Reg,
1739                                            BitTestCase &B,
1740                                            MachineBasicBlock *SwitchBB) {
1741   EVT VT = BB.RegVT;
1742   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1743                                        Reg, VT);
1744   SDValue Cmp;
1745   unsigned PopCount = CountPopulation_64(B.Mask);
1746   if (PopCount == 1) {
1747     // Testing for a single bit; just compare the shift count with what it
1748     // would need to be to shift a 1 bit in that position.
1749     Cmp = DAG.getSetCC(getCurDebugLoc(),
1750                        TLI.getSetCCResultType(VT),
1751                        ShiftOp,
1752                        DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1753                        ISD::SETEQ);
1754   } else if (PopCount == BB.Range) {
1755     // There is only one zero bit in the range, test for it directly.
1756     Cmp = DAG.getSetCC(getCurDebugLoc(),
1757                        TLI.getSetCCResultType(VT),
1758                        ShiftOp,
1759                        DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1760                        ISD::SETNE);
1761   } else {
1762     // Make desired shift
1763     SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1764                                     DAG.getConstant(1, VT), ShiftOp);
1765
1766     // Emit bit tests and jumps
1767     SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1768                                 VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1769     Cmp = DAG.getSetCC(getCurDebugLoc(),
1770                        TLI.getSetCCResultType(VT),
1771                        AndOp, DAG.getConstant(0, VT),
1772                        ISD::SETNE);
1773   }
1774
1775   addSuccessorWithWeight(SwitchBB, B.TargetBB);
1776   addSuccessorWithWeight(SwitchBB, NextMBB);
1777
1778   SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1779                               MVT::Other, getControlRoot(),
1780                               Cmp, DAG.getBasicBlock(B.TargetBB));
1781
1782   // Set NextBlock to be the MBB immediately after the current one, if any.
1783   // This is used to avoid emitting unnecessary branches to the next block.
1784   MachineBasicBlock *NextBlock = 0;
1785   MachineFunction::iterator BBI = SwitchBB;
1786   if (++BBI != FuncInfo.MF->end())
1787     NextBlock = BBI;
1788
1789   if (NextMBB != NextBlock)
1790     BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1791                         DAG.getBasicBlock(NextMBB));
1792
1793   DAG.setRoot(BrAnd);
1794 }
1795
1796 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1797   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1798
1799   // Retrieve successors.
1800   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1801   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1802
1803   const Value *Callee(I.getCalledValue());
1804   if (isa<InlineAsm>(Callee))
1805     visitInlineAsm(&I);
1806   else
1807     LowerCallTo(&I, getValue(Callee), false, LandingPad);
1808
1809   // If the value of the invoke is used outside of its defining block, make it
1810   // available as a virtual register.
1811   CopyToExportRegsIfNeeded(&I);
1812
1813   // Update successor info
1814   InvokeMBB->addSuccessor(Return);
1815   InvokeMBB->addSuccessor(LandingPad);
1816
1817   // Drop into normal successor.
1818   DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1819                           MVT::Other, getControlRoot(),
1820                           DAG.getBasicBlock(Return)));
1821 }
1822
1823 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1824 }
1825
1826 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1827   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1828 }
1829
1830 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1831   assert(FuncInfo.MBB->isLandingPad() &&
1832          "Call to landingpad not in landing pad!");
1833
1834   MachineBasicBlock *MBB = FuncInfo.MBB;
1835   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1836   AddLandingPadInfo(LP, MMI, MBB);
1837
1838   SmallVector<EVT, 2> ValueVTs;
1839   ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1840
1841   // Insert the EXCEPTIONADDR instruction.
1842   assert(FuncInfo.MBB->isLandingPad() &&
1843          "Call to eh.exception not in landing pad!");
1844   SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1845   SDValue Ops[2];
1846   Ops[0] = DAG.getRoot();
1847   SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
1848   SDValue Chain = Op1.getValue(1);
1849
1850   // Insert the EHSELECTION instruction.
1851   VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1852   Ops[0] = Op1;
1853   Ops[1] = Chain;
1854   SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
1855   Chain = Op2.getValue(1);
1856   Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
1857
1858   Ops[0] = Op1;
1859   Ops[1] = Op2;
1860   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1861                             DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1862                             &Ops[0], 2);
1863
1864   std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1865   setValue(&LP, RetPair.first);
1866   DAG.setRoot(RetPair.second);
1867 }
1868
1869 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1870 /// small case ranges).
1871 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1872                                                  CaseRecVector& WorkList,
1873                                                  const Value* SV,
1874                                                  MachineBasicBlock *Default,
1875                                                  MachineBasicBlock *SwitchBB) {
1876   Case& BackCase  = *(CR.Range.second-1);
1877
1878   // Size is the number of Cases represented by this range.
1879   size_t Size = CR.Range.second - CR.Range.first;
1880   if (Size > 3)
1881     return false;
1882
1883   // Get the MachineFunction which holds the current MBB.  This is used when
1884   // inserting any additional MBBs necessary to represent the switch.
1885   MachineFunction *CurMF = FuncInfo.MF;
1886
1887   // Figure out which block is immediately after the current one.
1888   MachineBasicBlock *NextBlock = 0;
1889   MachineFunction::iterator BBI = CR.CaseBB;
1890
1891   if (++BBI != FuncInfo.MF->end())
1892     NextBlock = BBI;
1893
1894   // If any two of the cases has the same destination, and if one value
1895   // is the same as the other, but has one bit unset that the other has set,
1896   // use bit manipulation to do two compares at once.  For example:
1897   // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1898   // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1899   // TODO: Handle cases where CR.CaseBB != SwitchBB.
1900   if (Size == 2 && CR.CaseBB == SwitchBB) {
1901     Case &Small = *CR.Range.first;
1902     Case &Big = *(CR.Range.second-1);
1903
1904     if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1905       const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1906       const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1907
1908       // Check that there is only one bit different.
1909       if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1910           (SmallValue | BigValue) == BigValue) {
1911         // Isolate the common bit.
1912         APInt CommonBit = BigValue & ~SmallValue;
1913         assert((SmallValue | CommonBit) == BigValue &&
1914                CommonBit.countPopulation() == 1 && "Not a common bit?");
1915
1916         SDValue CondLHS = getValue(SV);
1917         EVT VT = CondLHS.getValueType();
1918         DebugLoc DL = getCurDebugLoc();
1919
1920         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1921                                  DAG.getConstant(CommonBit, VT));
1922         SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1923                                     Or, DAG.getConstant(BigValue, VT),
1924                                     ISD::SETEQ);
1925
1926         // Update successor info.
1927         addSuccessorWithWeight(SwitchBB, Small.BB);
1928         addSuccessorWithWeight(SwitchBB, Default);
1929
1930         // Insert the true branch.
1931         SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1932                                      getControlRoot(), Cond,
1933                                      DAG.getBasicBlock(Small.BB));
1934
1935         // Insert the false branch.
1936         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1937                              DAG.getBasicBlock(Default));
1938
1939         DAG.setRoot(BrCond);
1940         return true;
1941       }
1942     }
1943   }
1944
1945   // Rearrange the case blocks so that the last one falls through if possible.
1946   if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1947     // The last case block won't fall through into 'NextBlock' if we emit the
1948     // branches in this order.  See if rearranging a case value would help.
1949     for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1950       if (I->BB == NextBlock) {
1951         std::swap(*I, BackCase);
1952         break;
1953       }
1954     }
1955   }
1956
1957   // Create a CaseBlock record representing a conditional branch to
1958   // the Case's target mbb if the value being switched on SV is equal
1959   // to C.
1960   MachineBasicBlock *CurBlock = CR.CaseBB;
1961   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1962     MachineBasicBlock *FallThrough;
1963     if (I != E-1) {
1964       FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1965       CurMF->insert(BBI, FallThrough);
1966
1967       // Put SV in a virtual register to make it available from the new blocks.
1968       ExportFromCurrentBlock(SV);
1969     } else {
1970       // If the last case doesn't match, go to the default block.
1971       FallThrough = Default;
1972     }
1973
1974     const Value *RHS, *LHS, *MHS;
1975     ISD::CondCode CC;
1976     if (I->High == I->Low) {
1977       // This is just small small case range :) containing exactly 1 case
1978       CC = ISD::SETEQ;
1979       LHS = SV; RHS = I->High; MHS = NULL;
1980     } else {
1981       CC = ISD::SETLE;
1982       LHS = I->Low; MHS = SV; RHS = I->High;
1983     }
1984
1985     uint32_t ExtraWeight = I->ExtraWeight;
1986     CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
1987                  /* me */ CurBlock,
1988                  /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2);
1989
1990     // If emitting the first comparison, just call visitSwitchCase to emit the
1991     // code into the current block.  Otherwise, push the CaseBlock onto the
1992     // vector to be later processed by SDISel, and insert the node's MBB
1993     // before the next MBB.
1994     if (CurBlock == SwitchBB)
1995       visitSwitchCase(CB, SwitchBB);
1996     else
1997       SwitchCases.push_back(CB);
1998
1999     CurBlock = FallThrough;
2000   }
2001
2002   return true;
2003 }
2004
2005 static inline bool areJTsAllowed(const TargetLowering &TLI) {
2006   return !DisableJumpTables &&
2007           (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2008            TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2009 }
2010
2011 static APInt ComputeRange(const APInt &First, const APInt &Last) {
2012   uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2013   APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
2014   return (LastExt - FirstExt + 1ULL);
2015 }
2016
2017 /// handleJTSwitchCase - Emit jumptable for current switch case range
2018 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2019                                              CaseRecVector &WorkList,
2020                                              const Value *SV,
2021                                              MachineBasicBlock *Default,
2022                                              MachineBasicBlock *SwitchBB) {
2023   Case& FrontCase = *CR.Range.first;
2024   Case& BackCase  = *(CR.Range.second-1);
2025
2026   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2027   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2028
2029   APInt TSize(First.getBitWidth(), 0);
2030   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2031     TSize += I->size();
2032
2033   if (!areJTsAllowed(TLI) || TSize.ult(4))
2034     return false;
2035
2036   APInt Range = ComputeRange(First, Last);
2037   // The density is TSize / Range. Require at least 40%.
2038   // It should not be possible for IntTSize to saturate for sane code, but make
2039   // sure we handle Range saturation correctly.
2040   uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2041   uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2042   if (IntTSize * 10 < IntRange * 4)
2043     return false;
2044
2045   DEBUG(dbgs() << "Lowering jump table\n"
2046                << "First entry: " << First << ". Last entry: " << Last << '\n'
2047                << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2048
2049   // Get the MachineFunction which holds the current MBB.  This is used when
2050   // inserting any additional MBBs necessary to represent the switch.
2051   MachineFunction *CurMF = FuncInfo.MF;
2052
2053   // Figure out which block is immediately after the current one.
2054   MachineFunction::iterator BBI = CR.CaseBB;
2055   ++BBI;
2056
2057   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2058
2059   // Create a new basic block to hold the code for loading the address
2060   // of the jump table, and jumping to it.  Update successor information;
2061   // we will either branch to the default case for the switch, or the jump
2062   // table.
2063   MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2064   CurMF->insert(BBI, JumpTableBB);
2065
2066   addSuccessorWithWeight(CR.CaseBB, Default);
2067   addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2068
2069   // Build a vector of destination BBs, corresponding to each target
2070   // of the jump table. If the value of the jump table slot corresponds to
2071   // a case statement, push the case's BB onto the vector, otherwise, push
2072   // the default BB.
2073   std::vector<MachineBasicBlock*> DestBBs;
2074   APInt TEI = First;
2075   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2076     const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2077     const APInt &High = cast<ConstantInt>(I->High)->getValue();
2078
2079     if (Low.sle(TEI) && TEI.sle(High)) {
2080       DestBBs.push_back(I->BB);
2081       if (TEI==High)
2082         ++I;
2083     } else {
2084       DestBBs.push_back(Default);
2085     }
2086   }
2087
2088   // Update successor info. Add one edge to each unique successor.
2089   BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2090   for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2091          E = DestBBs.end(); I != E; ++I) {
2092     if (!SuccsHandled[(*I)->getNumber()]) {
2093       SuccsHandled[(*I)->getNumber()] = true;
2094       addSuccessorWithWeight(JumpTableBB, *I);
2095     }
2096   }
2097
2098   // Create a jump table index for this jump table.
2099   unsigned JTEncoding = TLI.getJumpTableEncoding();
2100   unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2101                        ->createJumpTableIndex(DestBBs);
2102
2103   // Set the jump table information so that we can codegen it as a second
2104   // MachineBasicBlock
2105   JumpTable JT(-1U, JTI, JumpTableBB, Default);
2106   JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2107   if (CR.CaseBB == SwitchBB)
2108     visitJumpTableHeader(JT, JTH, SwitchBB);
2109
2110   JTCases.push_back(JumpTableBlock(JTH, JT));
2111   return true;
2112 }
2113
2114 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2115 /// 2 subtrees.
2116 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2117                                                   CaseRecVector& WorkList,
2118                                                   const Value* SV,
2119                                                   MachineBasicBlock *Default,
2120                                                   MachineBasicBlock *SwitchBB) {
2121   // Get the MachineFunction which holds the current MBB.  This is used when
2122   // inserting any additional MBBs necessary to represent the switch.
2123   MachineFunction *CurMF = FuncInfo.MF;
2124
2125   // Figure out which block is immediately after the current one.
2126   MachineFunction::iterator BBI = CR.CaseBB;
2127   ++BBI;
2128
2129   Case& FrontCase = *CR.Range.first;
2130   Case& BackCase  = *(CR.Range.second-1);
2131   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2132
2133   // Size is the number of Cases represented by this range.
2134   unsigned Size = CR.Range.second - CR.Range.first;
2135
2136   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2137   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2138   double FMetric = 0;
2139   CaseItr Pivot = CR.Range.first + Size/2;
2140
2141   // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2142   // (heuristically) allow us to emit JumpTable's later.
2143   APInt TSize(First.getBitWidth(), 0);
2144   for (CaseItr I = CR.Range.first, E = CR.Range.second;
2145        I!=E; ++I)
2146     TSize += I->size();
2147
2148   APInt LSize = FrontCase.size();
2149   APInt RSize = TSize-LSize;
2150   DEBUG(dbgs() << "Selecting best pivot: \n"
2151                << "First: " << First << ", Last: " << Last <<'\n'
2152                << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2153   for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2154        J!=E; ++I, ++J) {
2155     const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2156     const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2157     APInt Range = ComputeRange(LEnd, RBegin);
2158     assert((Range - 2ULL).isNonNegative() &&
2159            "Invalid case distance");
2160     // Use volatile double here to avoid excess precision issues on some hosts,
2161     // e.g. that use 80-bit X87 registers.
2162     volatile double LDensity =
2163        (double)LSize.roundToDouble() /
2164                            (LEnd - First + 1ULL).roundToDouble();
2165     volatile double RDensity =
2166       (double)RSize.roundToDouble() /
2167                            (Last - RBegin + 1ULL).roundToDouble();
2168     double Metric = Range.logBase2()*(LDensity+RDensity);
2169     // Should always split in some non-trivial place
2170     DEBUG(dbgs() <<"=>Step\n"
2171                  << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2172                  << "LDensity: " << LDensity
2173                  << ", RDensity: " << RDensity << '\n'
2174                  << "Metric: " << Metric << '\n');
2175     if (FMetric < Metric) {
2176       Pivot = J;
2177       FMetric = Metric;
2178       DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2179     }
2180
2181     LSize += J->size();
2182     RSize -= J->size();
2183   }
2184   if (areJTsAllowed(TLI)) {
2185     // If our case is dense we *really* should handle it earlier!
2186     assert((FMetric > 0) && "Should handle dense range earlier!");
2187   } else {
2188     Pivot = CR.Range.first + Size/2;
2189   }
2190
2191   CaseRange LHSR(CR.Range.first, Pivot);
2192   CaseRange RHSR(Pivot, CR.Range.second);
2193   Constant *C = Pivot->Low;
2194   MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2195
2196   // We know that we branch to the LHS if the Value being switched on is
2197   // less than the Pivot value, C.  We use this to optimize our binary
2198   // tree a bit, by recognizing that if SV is greater than or equal to the
2199   // LHS's Case Value, and that Case Value is exactly one less than the
2200   // Pivot's Value, then we can branch directly to the LHS's Target,
2201   // rather than creating a leaf node for it.
2202   if ((LHSR.second - LHSR.first) == 1 &&
2203       LHSR.first->High == CR.GE &&
2204       cast<ConstantInt>(C)->getValue() ==
2205       (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2206     TrueBB = LHSR.first->BB;
2207   } else {
2208     TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2209     CurMF->insert(BBI, TrueBB);
2210     WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2211
2212     // Put SV in a virtual register to make it available from the new blocks.
2213     ExportFromCurrentBlock(SV);
2214   }
2215
2216   // Similar to the optimization above, if the Value being switched on is
2217   // known to be less than the Constant CR.LT, and the current Case Value
2218   // is CR.LT - 1, then we can branch directly to the target block for
2219   // the current Case Value, rather than emitting a RHS leaf node for it.
2220   if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2221       cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2222       (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2223     FalseBB = RHSR.first->BB;
2224   } else {
2225     FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2226     CurMF->insert(BBI, FalseBB);
2227     WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2228
2229     // Put SV in a virtual register to make it available from the new blocks.
2230     ExportFromCurrentBlock(SV);
2231   }
2232
2233   // Create a CaseBlock record representing a conditional branch to
2234   // the LHS node if the value being switched on SV is less than C.
2235   // Otherwise, branch to LHS.
2236   CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2237
2238   if (CR.CaseBB == SwitchBB)
2239     visitSwitchCase(CB, SwitchBB);
2240   else
2241     SwitchCases.push_back(CB);
2242
2243   return true;
2244 }
2245
2246 /// handleBitTestsSwitchCase - if current case range has few destination and
2247 /// range span less, than machine word bitwidth, encode case range into series
2248 /// of masks and emit bit tests with these masks.
2249 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2250                                                    CaseRecVector& WorkList,
2251                                                    const Value* SV,
2252                                                    MachineBasicBlock* Default,
2253                                                    MachineBasicBlock *SwitchBB){
2254   EVT PTy = TLI.getPointerTy();
2255   unsigned IntPtrBits = PTy.getSizeInBits();
2256
2257   Case& FrontCase = *CR.Range.first;
2258   Case& BackCase  = *(CR.Range.second-1);
2259
2260   // Get the MachineFunction which holds the current MBB.  This is used when
2261   // inserting any additional MBBs necessary to represent the switch.
2262   MachineFunction *CurMF = FuncInfo.MF;
2263
2264   // If target does not have legal shift left, do not emit bit tests at all.
2265   if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2266     return false;
2267
2268   size_t numCmps = 0;
2269   for (CaseItr I = CR.Range.first, E = CR.Range.second;
2270        I!=E; ++I) {
2271     // Single case counts one, case range - two.
2272     numCmps += (I->Low == I->High ? 1 : 2);
2273   }
2274
2275   // Count unique destinations
2276   SmallSet<MachineBasicBlock*, 4> Dests;
2277   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2278     Dests.insert(I->BB);
2279     if (Dests.size() > 3)
2280       // Don't bother the code below, if there are too much unique destinations
2281       return false;
2282   }
2283   DEBUG(dbgs() << "Total number of unique destinations: "
2284         << Dests.size() << '\n'
2285         << "Total number of comparisons: " << numCmps << '\n');
2286
2287   // Compute span of values.
2288   const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2289   const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2290   APInt cmpRange = maxValue - minValue;
2291
2292   DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2293                << "Low bound: " << minValue << '\n'
2294                << "High bound: " << maxValue << '\n');
2295
2296   if (cmpRange.uge(IntPtrBits) ||
2297       (!(Dests.size() == 1 && numCmps >= 3) &&
2298        !(Dests.size() == 2 && numCmps >= 5) &&
2299        !(Dests.size() >= 3 && numCmps >= 6)))
2300     return false;
2301
2302   DEBUG(dbgs() << "Emitting bit tests\n");
2303   APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2304
2305   // Optimize the case where all the case values fit in a
2306   // word without having to subtract minValue. In this case,
2307   // we can optimize away the subtraction.
2308   if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2309     cmpRange = maxValue;
2310   } else {
2311     lowBound = minValue;
2312   }
2313
2314   CaseBitsVector CasesBits;
2315   unsigned i, count = 0;
2316
2317   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2318     MachineBasicBlock* Dest = I->BB;
2319     for (i = 0; i < count; ++i)
2320       if (Dest == CasesBits[i].BB)
2321         break;
2322
2323     if (i == count) {
2324       assert((count < 3) && "Too much destinations to test!");
2325       CasesBits.push_back(CaseBits(0, Dest, 0));
2326       count++;
2327     }
2328
2329     const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2330     const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2331
2332     uint64_t lo = (lowValue - lowBound).getZExtValue();
2333     uint64_t hi = (highValue - lowBound).getZExtValue();
2334
2335     for (uint64_t j = lo; j <= hi; j++) {
2336       CasesBits[i].Mask |=  1ULL << j;
2337       CasesBits[i].Bits++;
2338     }
2339
2340   }
2341   std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2342
2343   BitTestInfo BTC;
2344
2345   // Figure out which block is immediately after the current one.
2346   MachineFunction::iterator BBI = CR.CaseBB;
2347   ++BBI;
2348
2349   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2350
2351   DEBUG(dbgs() << "Cases:\n");
2352   for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2353     DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2354                  << ", Bits: " << CasesBits[i].Bits
2355                  << ", BB: " << CasesBits[i].BB << '\n');
2356
2357     MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2358     CurMF->insert(BBI, CaseBB);
2359     BTC.push_back(BitTestCase(CasesBits[i].Mask,
2360                               CaseBB,
2361                               CasesBits[i].BB));
2362
2363     // Put SV in a virtual register to make it available from the new blocks.
2364     ExportFromCurrentBlock(SV);
2365   }
2366
2367   BitTestBlock BTB(lowBound, cmpRange, SV,
2368                    -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2369                    CR.CaseBB, Default, BTC);
2370
2371   if (CR.CaseBB == SwitchBB)
2372     visitBitTestHeader(BTB, SwitchBB);
2373
2374   BitTestCases.push_back(BTB);
2375
2376   return true;
2377 }
2378
2379 /// Clusterify - Transform simple list of Cases into list of CaseRange's
2380 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2381                                        const SwitchInst& SI) {
2382   size_t numCmps = 0;
2383
2384   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2385   // Start with "simple" cases
2386   for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2387     BasicBlock *SuccBB = SI.getSuccessor(i);
2388     MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2389
2390     uint32_t ExtraWeight = BPI ? BPI->getEdgeWeight(SI.getParent(), SuccBB) : 0;
2391
2392     Cases.push_back(Case(SI.getSuccessorValue(i),
2393                          SI.getSuccessorValue(i),
2394                          SMBB, ExtraWeight));
2395   }
2396   std::sort(Cases.begin(), Cases.end(), CaseCmp());
2397
2398   // Merge case into clusters
2399   if (Cases.size() >= 2)
2400     // Must recompute end() each iteration because it may be
2401     // invalidated by erase if we hold on to it
2402     for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2403          J != Cases.end(); ) {
2404       const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2405       const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2406       MachineBasicBlock* nextBB = J->BB;
2407       MachineBasicBlock* currentBB = I->BB;
2408
2409       // If the two neighboring cases go to the same destination, merge them
2410       // into a single case.
2411       if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2412         I->High = J->High;
2413         J = Cases.erase(J);
2414
2415         if (BranchProbabilityInfo *BPI = FuncInfo.BPI) {
2416           uint32_t CurWeight = currentBB->getBasicBlock() ?
2417             BPI->getEdgeWeight(SI.getParent(), currentBB->getBasicBlock()) : 16;
2418           uint32_t NextWeight = nextBB->getBasicBlock() ?
2419             BPI->getEdgeWeight(SI.getParent(), nextBB->getBasicBlock()) : 16;
2420
2421           BPI->setEdgeWeight(SI.getParent(), currentBB->getBasicBlock(),
2422                              CurWeight + NextWeight);
2423         }
2424       } else {
2425         I = J++;
2426       }
2427     }
2428
2429   for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2430     if (I->Low != I->High)
2431       // A range counts double, since it requires two compares.
2432       ++numCmps;
2433   }
2434
2435   return numCmps;
2436 }
2437
2438 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2439                                            MachineBasicBlock *Last) {
2440   // Update JTCases.
2441   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2442     if (JTCases[i].first.HeaderBB == First)
2443       JTCases[i].first.HeaderBB = Last;
2444
2445   // Update BitTestCases.
2446   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2447     if (BitTestCases[i].Parent == First)
2448       BitTestCases[i].Parent = Last;
2449 }
2450
2451 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2452   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2453
2454   // Figure out which block is immediately after the current one.
2455   MachineBasicBlock *NextBlock = 0;
2456   MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2457
2458   // If there is only the default destination, branch to it if it is not the
2459   // next basic block.  Otherwise, just fall through.
2460   if (SI.getNumCases() == 1) {
2461     // Update machine-CFG edges.
2462
2463     // If this is not a fall-through branch, emit the branch.
2464     SwitchMBB->addSuccessor(Default);
2465     if (Default != NextBlock)
2466       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2467                               MVT::Other, getControlRoot(),
2468                               DAG.getBasicBlock(Default)));
2469
2470     return;
2471   }
2472
2473   // If there are any non-default case statements, create a vector of Cases
2474   // representing each one, and sort the vector so that we can efficiently
2475   // create a binary search tree from them.
2476   CaseVector Cases;
2477   size_t numCmps = Clusterify(Cases, SI);
2478   DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2479                << ". Total compares: " << numCmps << '\n');
2480   (void)numCmps;
2481
2482   // Get the Value to be switched on and default basic blocks, which will be
2483   // inserted into CaseBlock records, representing basic blocks in the binary
2484   // search tree.
2485   const Value *SV = SI.getCondition();
2486
2487   // Push the initial CaseRec onto the worklist
2488   CaseRecVector WorkList;
2489   WorkList.push_back(CaseRec(SwitchMBB,0,0,
2490                              CaseRange(Cases.begin(),Cases.end())));
2491
2492   while (!WorkList.empty()) {
2493     // Grab a record representing a case range to process off the worklist
2494     CaseRec CR = WorkList.back();
2495     WorkList.pop_back();
2496
2497     if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2498       continue;
2499
2500     // If the range has few cases (two or less) emit a series of specific
2501     // tests.
2502     if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2503       continue;
2504
2505     // If the switch has more than 5 blocks, and at least 40% dense, and the
2506     // target supports indirect branches, then emit a jump table rather than
2507     // lowering the switch to a binary tree of conditional branches.
2508     if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2509       continue;
2510
2511     // Emit binary tree. We need to pick a pivot, and push left and right ranges
2512     // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2513     handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2514   }
2515 }
2516
2517 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2518   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2519
2520   // Update machine-CFG edges with unique successors.
2521   SmallVector<BasicBlock*, 32> succs;
2522   succs.reserve(I.getNumSuccessors());
2523   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2524     succs.push_back(I.getSuccessor(i));
2525   array_pod_sort(succs.begin(), succs.end());
2526   succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2527   for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2528     MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2529     addSuccessorWithWeight(IndirectBrMBB, Succ);
2530   }
2531
2532   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2533                           MVT::Other, getControlRoot(),
2534                           getValue(I.getAddress())));
2535 }
2536
2537 void SelectionDAGBuilder::visitFSub(const User &I) {
2538   // -0.0 - X --> fneg
2539   Type *Ty = I.getType();
2540   if (isa<Constant>(I.getOperand(0)) &&
2541       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2542     SDValue Op2 = getValue(I.getOperand(1));
2543     setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2544                              Op2.getValueType(), Op2));
2545     return;
2546   }
2547
2548   visitBinary(I, ISD::FSUB);
2549 }
2550
2551 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2552   SDValue Op1 = getValue(I.getOperand(0));
2553   SDValue Op2 = getValue(I.getOperand(1));
2554   setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2555                            Op1.getValueType(), Op1, Op2));
2556 }
2557
2558 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2559   SDValue Op1 = getValue(I.getOperand(0));
2560   SDValue Op2 = getValue(I.getOperand(1));
2561
2562   MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2563
2564   // Coerce the shift amount to the right type if we can.
2565   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2566     unsigned ShiftSize = ShiftTy.getSizeInBits();
2567     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2568     DebugLoc DL = getCurDebugLoc();
2569
2570     // If the operand is smaller than the shift count type, promote it.
2571     if (ShiftSize > Op2Size)
2572       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2573
2574     // If the operand is larger than the shift count type but the shift
2575     // count type has enough bits to represent any shift value, truncate
2576     // it now. This is a common case and it exposes the truncate to
2577     // optimization early.
2578     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2579       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2580     // Otherwise we'll need to temporarily settle for some other convenient
2581     // type.  Type legalization will make adjustments once the shiftee is split.
2582     else
2583       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2584   }
2585
2586   setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2587                            Op1.getValueType(), Op1, Op2));
2588 }
2589
2590 void SelectionDAGBuilder::visitSDiv(const User &I) {
2591   SDValue Op1 = getValue(I.getOperand(0));
2592   SDValue Op2 = getValue(I.getOperand(1));
2593
2594   // Turn exact SDivs into multiplications.
2595   // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2596   // exact bit.
2597   if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2598       !isa<ConstantSDNode>(Op1) &&
2599       isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2600     setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2601   else
2602     setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2603                              Op1, Op2));
2604 }
2605
2606 void SelectionDAGBuilder::visitICmp(const User &I) {
2607   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2608   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2609     predicate = IC->getPredicate();
2610   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2611     predicate = ICmpInst::Predicate(IC->getPredicate());
2612   SDValue Op1 = getValue(I.getOperand(0));
2613   SDValue Op2 = getValue(I.getOperand(1));
2614   ISD::CondCode Opcode = getICmpCondCode(predicate);
2615
2616   EVT DestVT = TLI.getValueType(I.getType());
2617   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2618 }
2619
2620 void SelectionDAGBuilder::visitFCmp(const User &I) {
2621   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2622   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2623     predicate = FC->getPredicate();
2624   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2625     predicate = FCmpInst::Predicate(FC->getPredicate());
2626   SDValue Op1 = getValue(I.getOperand(0));
2627   SDValue Op2 = getValue(I.getOperand(1));
2628   ISD::CondCode Condition = getFCmpCondCode(predicate);
2629   EVT DestVT = TLI.getValueType(I.getType());
2630   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2631 }
2632
2633 void SelectionDAGBuilder::visitSelect(const User &I) {
2634   SmallVector<EVT, 4> ValueVTs;
2635   ComputeValueVTs(TLI, I.getType(), ValueVTs);
2636   unsigned NumValues = ValueVTs.size();
2637   if (NumValues == 0) return;
2638
2639   SmallVector<SDValue, 4> Values(NumValues);
2640   SDValue Cond     = getValue(I.getOperand(0));
2641   SDValue TrueVal  = getValue(I.getOperand(1));
2642   SDValue FalseVal = getValue(I.getOperand(2));
2643   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2644     ISD::VSELECT : ISD::SELECT;
2645
2646   for (unsigned i = 0; i != NumValues; ++i)
2647     Values[i] = DAG.getNode(OpCode, getCurDebugLoc(),
2648                             TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2649                             Cond,
2650                             SDValue(TrueVal.getNode(),
2651                                     TrueVal.getResNo() + i),
2652                             SDValue(FalseVal.getNode(),
2653                                     FalseVal.getResNo() + i));
2654
2655   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2656                            DAG.getVTList(&ValueVTs[0], NumValues),
2657                            &Values[0], NumValues));
2658 }
2659
2660 void SelectionDAGBuilder::visitTrunc(const User &I) {
2661   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2662   SDValue N = getValue(I.getOperand(0));
2663   EVT DestVT = TLI.getValueType(I.getType());
2664   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2665 }
2666
2667 void SelectionDAGBuilder::visitZExt(const User &I) {
2668   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2669   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2670   SDValue N = getValue(I.getOperand(0));
2671   EVT DestVT = TLI.getValueType(I.getType());
2672   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2673 }
2674
2675 void SelectionDAGBuilder::visitSExt(const User &I) {
2676   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2677   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2678   SDValue N = getValue(I.getOperand(0));
2679   EVT DestVT = TLI.getValueType(I.getType());
2680   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2681 }
2682
2683 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2684   // FPTrunc is never a no-op cast, no need to check
2685   SDValue N = getValue(I.getOperand(0));
2686   EVT DestVT = TLI.getValueType(I.getType());
2687   setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2688                            DestVT, N, DAG.getIntPtrConstant(0)));
2689 }
2690
2691 void SelectionDAGBuilder::visitFPExt(const User &I){
2692   // FPTrunc is never a no-op cast, no need to check
2693   SDValue N = getValue(I.getOperand(0));
2694   EVT DestVT = TLI.getValueType(I.getType());
2695   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2696 }
2697
2698 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2699   // FPToUI is never a no-op cast, no need to check
2700   SDValue N = getValue(I.getOperand(0));
2701   EVT DestVT = TLI.getValueType(I.getType());
2702   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2703 }
2704
2705 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2706   // FPToSI is never a no-op cast, no need to check
2707   SDValue N = getValue(I.getOperand(0));
2708   EVT DestVT = TLI.getValueType(I.getType());
2709   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2710 }
2711
2712 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2713   // UIToFP is never a no-op cast, no need to check
2714   SDValue N = getValue(I.getOperand(0));
2715   EVT DestVT = TLI.getValueType(I.getType());
2716   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2717 }
2718
2719 void SelectionDAGBuilder::visitSIToFP(const User &I){
2720   // SIToFP is never a no-op cast, no need to check
2721   SDValue N = getValue(I.getOperand(0));
2722   EVT DestVT = TLI.getValueType(I.getType());
2723   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2724 }
2725
2726 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2727   // What to do depends on the size of the integer and the size of the pointer.
2728   // We can either truncate, zero extend, or no-op, accordingly.
2729   SDValue N = getValue(I.getOperand(0));
2730   EVT DestVT = TLI.getValueType(I.getType());
2731   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2732 }
2733
2734 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2735   // What to do depends on the size of the integer and the size of the pointer.
2736   // We can either truncate, zero extend, or no-op, accordingly.
2737   SDValue N = getValue(I.getOperand(0));
2738   EVT DestVT = TLI.getValueType(I.getType());
2739   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2740 }
2741
2742 void SelectionDAGBuilder::visitBitCast(const User &I) {
2743   SDValue N = getValue(I.getOperand(0));
2744   EVT DestVT = TLI.getValueType(I.getType());
2745
2746   // BitCast assures us that source and destination are the same size so this is
2747   // either a BITCAST or a no-op.
2748   if (DestVT != N.getValueType())
2749     setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2750                              DestVT, N)); // convert types.
2751   else
2752     setValue(&I, N);            // noop cast.
2753 }
2754
2755 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2756   SDValue InVec = getValue(I.getOperand(0));
2757   SDValue InVal = getValue(I.getOperand(1));
2758   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2759                               TLI.getPointerTy(),
2760                               getValue(I.getOperand(2)));
2761   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2762                            TLI.getValueType(I.getType()),
2763                            InVec, InVal, InIdx));
2764 }
2765
2766 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2767   SDValue InVec = getValue(I.getOperand(0));
2768   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2769                               TLI.getPointerTy(),
2770                               getValue(I.getOperand(1)));
2771   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2772                            TLI.getValueType(I.getType()), InVec, InIdx));
2773 }
2774
2775 // Utility for visitShuffleVector - Returns true if the mask is mask starting
2776 // from SIndx and increasing to the element length (undefs are allowed).
2777 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2778   unsigned MaskNumElts = Mask.size();
2779   for (unsigned i = 0; i != MaskNumElts; ++i)
2780     if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2781       return false;
2782   return true;
2783 }
2784
2785 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2786   SmallVector<int, 8> Mask;
2787   SDValue Src1 = getValue(I.getOperand(0));
2788   SDValue Src2 = getValue(I.getOperand(1));
2789
2790   // Convert the ConstantVector mask operand into an array of ints, with -1
2791   // representing undef values.
2792   SmallVector<Constant*, 8> MaskElts;
2793   cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2794   unsigned MaskNumElts = MaskElts.size();
2795   for (unsigned i = 0; i != MaskNumElts; ++i) {
2796     if (isa<UndefValue>(MaskElts[i]))
2797       Mask.push_back(-1);
2798     else
2799       Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2800   }
2801
2802   EVT VT = TLI.getValueType(I.getType());
2803   EVT SrcVT = Src1.getValueType();
2804   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2805
2806   if (SrcNumElts == MaskNumElts) {
2807     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2808                                       &Mask[0]));
2809     return;
2810   }
2811
2812   // Normalize the shuffle vector since mask and vector length don't match.
2813   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2814     // Mask is longer than the source vectors and is a multiple of the source
2815     // vectors.  We can use concatenate vector to make the mask and vectors
2816     // lengths match.
2817     if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2818       // The shuffle is concatenating two vectors together.
2819       setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2820                                VT, Src1, Src2));
2821       return;
2822     }
2823
2824     // Pad both vectors with undefs to make them the same length as the mask.
2825     unsigned NumConcat = MaskNumElts / SrcNumElts;
2826     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2827     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2828     SDValue UndefVal = DAG.getUNDEF(SrcVT);
2829
2830     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2831     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2832     MOps1[0] = Src1;
2833     MOps2[0] = Src2;
2834
2835     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2836                                                   getCurDebugLoc(), VT,
2837                                                   &MOps1[0], NumConcat);
2838     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2839                                                   getCurDebugLoc(), VT,
2840                                                   &MOps2[0], NumConcat);
2841
2842     // Readjust mask for new input vector length.
2843     SmallVector<int, 8> MappedOps;
2844     for (unsigned i = 0; i != MaskNumElts; ++i) {
2845       int Idx = Mask[i];
2846       if (Idx < (int)SrcNumElts)
2847         MappedOps.push_back(Idx);
2848       else
2849         MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2850     }
2851
2852     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2853                                       &MappedOps[0]));
2854     return;
2855   }
2856
2857   if (SrcNumElts > MaskNumElts) {
2858     // Analyze the access pattern of the vector to see if we can extract
2859     // two subvectors and do the shuffle. The analysis is done by calculating
2860     // the range of elements the mask access on both vectors.
2861     int MinRange[2] = { static_cast<int>(SrcNumElts+1),
2862                         static_cast<int>(SrcNumElts+1)};
2863     int MaxRange[2] = {-1, -1};
2864
2865     for (unsigned i = 0; i != MaskNumElts; ++i) {
2866       int Idx = Mask[i];
2867       int Input = 0;
2868       if (Idx < 0)
2869         continue;
2870
2871       if (Idx >= (int)SrcNumElts) {
2872         Input = 1;
2873         Idx -= SrcNumElts;
2874       }
2875       if (Idx > MaxRange[Input])
2876         MaxRange[Input] = Idx;
2877       if (Idx < MinRange[Input])
2878         MinRange[Input] = Idx;
2879     }
2880
2881     // Check if the access is smaller than the vector size and can we find
2882     // a reasonable extract index.
2883     int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2884                                  // Extract.
2885     int StartIdx[2];  // StartIdx to extract from
2886     for (int Input=0; Input < 2; ++Input) {
2887       if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2888         RangeUse[Input] = 0; // Unused
2889         StartIdx[Input] = 0;
2890       } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2891         // Fits within range but we should see if we can find a good
2892         // start index that is a multiple of the mask length.
2893         if (MaxRange[Input] < (int)MaskNumElts) {
2894           RangeUse[Input] = 1; // Extract from beginning of the vector
2895           StartIdx[Input] = 0;
2896         } else {
2897           StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2898           if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2899               StartIdx[Input] + MaskNumElts <= SrcNumElts)
2900             RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2901         }
2902       }
2903     }
2904
2905     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2906       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2907       return;
2908     }
2909     else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2910       // Extract appropriate subvector and generate a vector shuffle
2911       for (int Input=0; Input < 2; ++Input) {
2912         SDValue &Src = Input == 0 ? Src1 : Src2;
2913         if (RangeUse[Input] == 0)
2914           Src = DAG.getUNDEF(VT);
2915         else
2916           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2917                             Src, DAG.getIntPtrConstant(StartIdx[Input]));
2918       }
2919
2920       // Calculate new mask.
2921       SmallVector<int, 8> MappedOps;
2922       for (unsigned i = 0; i != MaskNumElts; ++i) {
2923         int Idx = Mask[i];
2924         if (Idx < 0)
2925           MappedOps.push_back(Idx);
2926         else if (Idx < (int)SrcNumElts)
2927           MappedOps.push_back(Idx - StartIdx[0]);
2928         else
2929           MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2930       }
2931
2932       setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2933                                         &MappedOps[0]));
2934       return;
2935     }
2936   }
2937
2938   // We can't use either concat vectors or extract subvectors so fall back to
2939   // replacing the shuffle with extract and build vector.
2940   // to insert and build vector.
2941   EVT EltVT = VT.getVectorElementType();
2942   EVT PtrVT = TLI.getPointerTy();
2943   SmallVector<SDValue,8> Ops;
2944   for (unsigned i = 0; i != MaskNumElts; ++i) {
2945     if (Mask[i] < 0) {
2946       Ops.push_back(DAG.getUNDEF(EltVT));
2947     } else {
2948       int Idx = Mask[i];
2949       SDValue Res;
2950
2951       if (Idx < (int)SrcNumElts)
2952         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2953                           EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2954       else
2955         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2956                           EltVT, Src2,
2957                           DAG.getConstant(Idx - SrcNumElts, PtrVT));
2958
2959       Ops.push_back(Res);
2960     }
2961   }
2962
2963   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2964                            VT, &Ops[0], Ops.size()));
2965 }
2966
2967 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2968   const Value *Op0 = I.getOperand(0);
2969   const Value *Op1 = I.getOperand(1);
2970   Type *AggTy = I.getType();
2971   Type *ValTy = Op1->getType();
2972   bool IntoUndef = isa<UndefValue>(Op0);
2973   bool FromUndef = isa<UndefValue>(Op1);
2974
2975   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2976
2977   SmallVector<EVT, 4> AggValueVTs;
2978   ComputeValueVTs(TLI, AggTy, AggValueVTs);
2979   SmallVector<EVT, 4> ValValueVTs;
2980   ComputeValueVTs(TLI, ValTy, ValValueVTs);
2981
2982   unsigned NumAggValues = AggValueVTs.size();
2983   unsigned NumValValues = ValValueVTs.size();
2984   SmallVector<SDValue, 4> Values(NumAggValues);
2985
2986   SDValue Agg = getValue(Op0);
2987   unsigned i = 0;
2988   // Copy the beginning value(s) from the original aggregate.
2989   for (; i != LinearIndex; ++i)
2990     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2991                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2992   // Copy values from the inserted value(s).
2993   if (NumValValues) {
2994     SDValue Val = getValue(Op1);
2995     for (; i != LinearIndex + NumValValues; ++i)
2996       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2997                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2998   }
2999   // Copy remaining value(s) from the original aggregate.
3000   for (; i != NumAggValues; ++i)
3001     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3002                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3003
3004   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3005                            DAG.getVTList(&AggValueVTs[0], NumAggValues),
3006                            &Values[0], NumAggValues));
3007 }
3008
3009 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3010   const Value *Op0 = I.getOperand(0);
3011   Type *AggTy = Op0->getType();
3012   Type *ValTy = I.getType();
3013   bool OutOfUndef = isa<UndefValue>(Op0);
3014
3015   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3016
3017   SmallVector<EVT, 4> ValValueVTs;
3018   ComputeValueVTs(TLI, ValTy, ValValueVTs);
3019
3020   unsigned NumValValues = ValValueVTs.size();
3021
3022   // Ignore a extractvalue that produces an empty object
3023   if (!NumValValues) {
3024     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3025     return;
3026   }
3027
3028   SmallVector<SDValue, 4> Values(NumValValues);
3029
3030   SDValue Agg = getValue(Op0);
3031   // Copy out the selected value(s).
3032   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3033     Values[i - LinearIndex] =
3034       OutOfUndef ?
3035         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3036         SDValue(Agg.getNode(), Agg.getResNo() + i);
3037
3038   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3039                            DAG.getVTList(&ValValueVTs[0], NumValValues),
3040                            &Values[0], NumValValues));
3041 }
3042
3043 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3044   SDValue N = getValue(I.getOperand(0));
3045   Type *Ty = I.getOperand(0)->getType();
3046
3047   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3048        OI != E; ++OI) {
3049     const Value *Idx = *OI;
3050     if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3051       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3052       if (Field) {
3053         // N = N + Offset
3054         uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3055         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3056                         DAG.getIntPtrConstant(Offset));
3057       }
3058
3059       Ty = StTy->getElementType(Field);
3060     } else {
3061       Ty = cast<SequentialType>(Ty)->getElementType();
3062
3063       // If this is a constant subscript, handle it quickly.
3064       if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3065         if (CI->isZero()) continue;
3066         uint64_t Offs =
3067             TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3068         SDValue OffsVal;
3069         EVT PTy = TLI.getPointerTy();
3070         unsigned PtrBits = PTy.getSizeInBits();
3071         if (PtrBits < 64)
3072           OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3073                                 TLI.getPointerTy(),
3074                                 DAG.getConstant(Offs, MVT::i64));
3075         else
3076           OffsVal = DAG.getIntPtrConstant(Offs);
3077
3078         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3079                         OffsVal);
3080         continue;
3081       }
3082
3083       // N = N + Idx * ElementSize;
3084       APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3085                                 TD->getTypeAllocSize(Ty));
3086       SDValue IdxN = getValue(Idx);
3087
3088       // If the index is smaller or larger than intptr_t, truncate or extend
3089       // it.
3090       IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3091
3092       // If this is a multiply by a power of two, turn it into a shl
3093       // immediately.  This is a very common case.
3094       if (ElementSize != 1) {
3095         if (ElementSize.isPowerOf2()) {
3096           unsigned Amt = ElementSize.logBase2();
3097           IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3098                              N.getValueType(), IdxN,
3099                              DAG.getConstant(Amt, TLI.getPointerTy()));
3100         } else {
3101           SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3102           IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3103                              N.getValueType(), IdxN, Scale);
3104         }
3105       }
3106
3107       N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3108                       N.getValueType(), N, IdxN);
3109     }
3110   }
3111
3112   setValue(&I, N);
3113 }
3114
3115 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3116   // If this is a fixed sized alloca in the entry block of the function,
3117   // allocate it statically on the stack.
3118   if (FuncInfo.StaticAllocaMap.count(&I))
3119     return;   // getValue will auto-populate this.
3120
3121   Type *Ty = I.getAllocatedType();
3122   uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3123   unsigned Align =
3124     std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3125              I.getAlignment());
3126
3127   SDValue AllocSize = getValue(I.getArraySize());
3128
3129   EVT IntPtr = TLI.getPointerTy();
3130   if (AllocSize.getValueType() != IntPtr)
3131     AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3132
3133   AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3134                           AllocSize,
3135                           DAG.getConstant(TySize, IntPtr));
3136
3137   // Handle alignment.  If the requested alignment is less than or equal to
3138   // the stack alignment, ignore it.  If the size is greater than or equal to
3139   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3140   unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3141   if (Align <= StackAlign)
3142     Align = 0;
3143
3144   // Round the size of the allocation up to the stack alignment size
3145   // by add SA-1 to the size.
3146   AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3147                           AllocSize.getValueType(), AllocSize,
3148                           DAG.getIntPtrConstant(StackAlign-1));
3149
3150   // Mask out the low bits for alignment purposes.
3151   AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3152                           AllocSize.getValueType(), AllocSize,
3153                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3154
3155   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3156   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3157   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3158                             VTs, Ops, 3);
3159   setValue(&I, DSA);
3160   DAG.setRoot(DSA.getValue(1));
3161
3162   // Inform the Frame Information that we have just allocated a variable-sized
3163   // object.
3164   FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3165 }
3166
3167 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3168   if (I.isAtomic())
3169     return visitAtomicLoad(I);
3170
3171   const Value *SV = I.getOperand(0);
3172   SDValue Ptr = getValue(SV);
3173
3174   Type *Ty = I.getType();
3175
3176   bool isVolatile = I.isVolatile();
3177   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3178   unsigned Alignment = I.getAlignment();
3179   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3180
3181   SmallVector<EVT, 4> ValueVTs;
3182   SmallVector<uint64_t, 4> Offsets;
3183   ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3184   unsigned NumValues = ValueVTs.size();
3185   if (NumValues == 0)
3186     return;
3187
3188   SDValue Root;
3189   bool ConstantMemory = false;
3190   if (I.isVolatile() || NumValues > MaxParallelChains)
3191     // Serialize volatile loads with other side effects.
3192     Root = getRoot();
3193   else if (AA->pointsToConstantMemory(
3194              AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3195     // Do not serialize (non-volatile) loads of constant memory with anything.
3196     Root = DAG.getEntryNode();
3197     ConstantMemory = true;
3198   } else {
3199     // Do not serialize non-volatile loads against each other.
3200     Root = DAG.getRoot();
3201   }
3202
3203   SmallVector<SDValue, 4> Values(NumValues);
3204   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3205                                           NumValues));
3206   EVT PtrVT = Ptr.getValueType();
3207   unsigned ChainI = 0;
3208   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3209     // Serializing loads here may result in excessive register pressure, and
3210     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3211     // could recover a bit by hoisting nodes upward in the chain by recognizing
3212     // they are side-effect free or do not alias. The optimizer should really
3213     // avoid this case by converting large object/array copies to llvm.memcpy
3214     // (MaxParallelChains should always remain as failsafe).
3215     if (ChainI == MaxParallelChains) {
3216       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3217       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3218                                   MVT::Other, &Chains[0], ChainI);
3219       Root = Chain;
3220       ChainI = 0;
3221     }
3222     SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3223                             PtrVT, Ptr,
3224                             DAG.getConstant(Offsets[i], PtrVT));
3225     SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3226                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3227                             isNonTemporal, Alignment, TBAAInfo);
3228
3229     Values[i] = L;
3230     Chains[ChainI] = L.getValue(1);
3231   }
3232
3233   if (!ConstantMemory) {
3234     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3235                                 MVT::Other, &Chains[0], ChainI);
3236     if (isVolatile)
3237       DAG.setRoot(Chain);
3238     else
3239       PendingLoads.push_back(Chain);
3240   }
3241
3242   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3243                            DAG.getVTList(&ValueVTs[0], NumValues),
3244                            &Values[0], NumValues));
3245 }
3246
3247 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3248   if (I.isAtomic())
3249     return visitAtomicStore(I);
3250
3251   const Value *SrcV = I.getOperand(0);
3252   const Value *PtrV = I.getOperand(1);
3253
3254   SmallVector<EVT, 4> ValueVTs;
3255   SmallVector<uint64_t, 4> Offsets;
3256   ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3257   unsigned NumValues = ValueVTs.size();
3258   if (NumValues == 0)
3259     return;
3260
3261   // Get the lowered operands. Note that we do this after
3262   // checking if NumResults is zero, because with zero results
3263   // the operands won't have values in the map.
3264   SDValue Src = getValue(SrcV);
3265   SDValue Ptr = getValue(PtrV);
3266
3267   SDValue Root = getRoot();
3268   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3269                                           NumValues));
3270   EVT PtrVT = Ptr.getValueType();
3271   bool isVolatile = I.isVolatile();
3272   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3273   unsigned Alignment = I.getAlignment();
3274   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3275
3276   unsigned ChainI = 0;
3277   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3278     // See visitLoad comments.
3279     if (ChainI == MaxParallelChains) {
3280       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3281                                   MVT::Other, &Chains[0], ChainI);
3282       Root = Chain;
3283       ChainI = 0;
3284     }
3285     SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3286                               DAG.getConstant(Offsets[i], PtrVT));
3287     SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3288                               SDValue(Src.getNode(), Src.getResNo() + i),
3289                               Add, MachinePointerInfo(PtrV, Offsets[i]),
3290                               isVolatile, isNonTemporal, Alignment, TBAAInfo);
3291     Chains[ChainI] = St;
3292   }
3293
3294   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3295                                   MVT::Other, &Chains[0], ChainI);
3296   ++SDNodeOrder;
3297   AssignOrderingToNode(StoreNode.getNode());
3298   DAG.setRoot(StoreNode);
3299 }
3300
3301 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3302                                     SynchronizationScope Scope,
3303                                     bool Before, DebugLoc dl,
3304                                     SelectionDAG &DAG,
3305                                     const TargetLowering &TLI) {
3306   // Fence, if necessary
3307   if (Before) {
3308     if (Order == AcquireRelease || Order == SequentiallyConsistent)
3309       Order = Release;
3310     else if (Order == Acquire || Order == Monotonic)
3311       return Chain;
3312   } else {
3313     if (Order == AcquireRelease)
3314       Order = Acquire;
3315     else if (Order == Release || Order == Monotonic)
3316       return Chain;
3317   }
3318   SDValue Ops[3];
3319   Ops[0] = Chain;
3320   Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3321   Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3322   return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3323 }
3324
3325 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3326   DebugLoc dl = getCurDebugLoc();
3327   AtomicOrdering Order = I.getOrdering();
3328   SynchronizationScope Scope = I.getSynchScope();
3329
3330   SDValue InChain = getRoot();
3331
3332   if (TLI.getInsertFencesForAtomic())
3333     InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3334                                    DAG, TLI);
3335
3336   SDValue L =
3337     DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3338                   getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3339                   InChain,
3340                   getValue(I.getPointerOperand()),
3341                   getValue(I.getCompareOperand()),
3342                   getValue(I.getNewValOperand()),
3343                   MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3344                   TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3345                   Scope);
3346
3347   SDValue OutChain = L.getValue(1);
3348
3349   if (TLI.getInsertFencesForAtomic())
3350     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3351                                     DAG, TLI);
3352
3353   setValue(&I, L);
3354   DAG.setRoot(OutChain);
3355 }
3356
3357 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3358   DebugLoc dl = getCurDebugLoc();
3359   ISD::NodeType NT;
3360   switch (I.getOperation()) {
3361   default: llvm_unreachable("Unknown atomicrmw operation"); return;
3362   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3363   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3364   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3365   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3366   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3367   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3368   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3369   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3370   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3371   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3372   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3373   }
3374   AtomicOrdering Order = I.getOrdering();
3375   SynchronizationScope Scope = I.getSynchScope();
3376
3377   SDValue InChain = getRoot();
3378
3379   if (TLI.getInsertFencesForAtomic())
3380     InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3381                                    DAG, TLI);
3382
3383   SDValue L =
3384     DAG.getAtomic(NT, dl,
3385                   getValue(I.getValOperand()).getValueType().getSimpleVT(),
3386                   InChain,
3387                   getValue(I.getPointerOperand()),
3388                   getValue(I.getValOperand()),
3389                   I.getPointerOperand(), 0 /* Alignment */,
3390                   TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3391                   Scope);
3392
3393   SDValue OutChain = L.getValue(1);
3394
3395   if (TLI.getInsertFencesForAtomic())
3396     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3397                                     DAG, TLI);
3398
3399   setValue(&I, L);
3400   DAG.setRoot(OutChain);
3401 }
3402
3403 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3404   DebugLoc dl = getCurDebugLoc();
3405   SDValue Ops[3];
3406   Ops[0] = getRoot();
3407   Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3408   Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3409   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3410 }
3411
3412 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3413   DebugLoc dl = getCurDebugLoc();
3414   AtomicOrdering Order = I.getOrdering();
3415   SynchronizationScope Scope = I.getSynchScope();
3416
3417   SDValue InChain = getRoot();
3418
3419   EVT VT = EVT::getEVT(I.getType());
3420
3421   if (I.getAlignment() * 8 < VT.getSizeInBits())
3422     report_fatal_error("Cannot generate unaligned atomic load");
3423
3424   SDValue L =
3425     DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3426                   getValue(I.getPointerOperand()),
3427                   I.getPointerOperand(), I.getAlignment(),
3428                   TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3429                   Scope);
3430
3431   SDValue OutChain = L.getValue(1);
3432
3433   if (TLI.getInsertFencesForAtomic())
3434     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3435                                     DAG, TLI);
3436
3437   setValue(&I, L);
3438   DAG.setRoot(OutChain);
3439 }
3440
3441 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3442   DebugLoc dl = getCurDebugLoc();
3443
3444   AtomicOrdering Order = I.getOrdering();
3445   SynchronizationScope Scope = I.getSynchScope();
3446
3447   SDValue InChain = getRoot();
3448
3449   EVT VT = EVT::getEVT(I.getValueOperand()->getType());
3450
3451   if (I.getAlignment() * 8 < VT.getSizeInBits())
3452     report_fatal_error("Cannot generate unaligned atomic store");
3453
3454   if (TLI.getInsertFencesForAtomic())
3455     InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3456                                    DAG, TLI);
3457
3458   SDValue OutChain =
3459     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3460                   InChain,
3461                   getValue(I.getPointerOperand()),
3462                   getValue(I.getValueOperand()),
3463                   I.getPointerOperand(), I.getAlignment(),
3464                   TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3465                   Scope);
3466
3467   if (TLI.getInsertFencesForAtomic())
3468     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3469                                     DAG, TLI);
3470
3471   DAG.setRoot(OutChain);
3472 }
3473
3474 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3475 /// node.
3476 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3477                                                unsigned Intrinsic) {
3478   bool HasChain = !I.doesNotAccessMemory();
3479   bool OnlyLoad = HasChain && I.onlyReadsMemory();
3480
3481   // Build the operand list.
3482   SmallVector<SDValue, 8> Ops;
3483   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3484     if (OnlyLoad) {
3485       // We don't need to serialize loads against other loads.
3486       Ops.push_back(DAG.getRoot());
3487     } else {
3488       Ops.push_back(getRoot());
3489     }
3490   }
3491
3492   // Info is set by getTgtMemInstrinsic
3493   TargetLowering::IntrinsicInfo Info;
3494   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3495
3496   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3497   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3498       Info.opc == ISD::INTRINSIC_W_CHAIN)
3499     Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3500
3501   // Add all operands of the call to the operand list.
3502   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3503     SDValue Op = getValue(I.getArgOperand(i));
3504     assert(TLI.isTypeLegal(Op.getValueType()) &&
3505            "Intrinsic uses a non-legal type?");
3506     Ops.push_back(Op);
3507   }
3508
3509   SmallVector<EVT, 4> ValueVTs;
3510   ComputeValueVTs(TLI, I.getType(), ValueVTs);
3511 #ifndef NDEBUG
3512   for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3513     assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3514            "Intrinsic uses a non-legal type?");
3515   }
3516 #endif // NDEBUG
3517
3518   if (HasChain)
3519     ValueVTs.push_back(MVT::Other);
3520
3521   SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3522
3523   // Create the node.
3524   SDValue Result;
3525   if (IsTgtIntrinsic) {
3526     // This is target intrinsic that touches memory
3527     Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3528                                      VTs, &Ops[0], Ops.size(),
3529                                      Info.memVT,
3530                                    MachinePointerInfo(Info.ptrVal, Info.offset),
3531                                      Info.align, Info.vol,
3532                                      Info.readMem, Info.writeMem);
3533   } else if (!HasChain) {
3534     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3535                          VTs, &Ops[0], Ops.size());
3536   } else if (!I.getType()->isVoidTy()) {
3537     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3538                          VTs, &Ops[0], Ops.size());
3539   } else {
3540     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3541                          VTs, &Ops[0], Ops.size());
3542   }
3543
3544   if (HasChain) {
3545     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3546     if (OnlyLoad)
3547       PendingLoads.push_back(Chain);
3548     else
3549       DAG.setRoot(Chain);
3550   }
3551
3552   if (!I.getType()->isVoidTy()) {
3553     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3554       EVT VT = TLI.getValueType(PTy);
3555       Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3556     }
3557
3558     setValue(&I, Result);
3559   }
3560 }
3561
3562 /// GetSignificand - Get the significand and build it into a floating-point
3563 /// number with exponent of 1:
3564 ///
3565 ///   Op = (Op & 0x007fffff) | 0x3f800000;
3566 ///
3567 /// where Op is the hexidecimal representation of floating point value.
3568 static SDValue
3569 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3570   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3571                            DAG.getConstant(0x007fffff, MVT::i32));
3572   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3573                            DAG.getConstant(0x3f800000, MVT::i32));
3574   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3575 }
3576
3577 /// GetExponent - Get the exponent:
3578 ///
3579 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3580 ///
3581 /// where Op is the hexidecimal representation of floating point value.
3582 static SDValue
3583 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3584             DebugLoc dl) {
3585   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3586                            DAG.getConstant(0x7f800000, MVT::i32));
3587   SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3588                            DAG.getConstant(23, TLI.getPointerTy()));
3589   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3590                            DAG.getConstant(127, MVT::i32));
3591   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3592 }
3593
3594 /// getF32Constant - Get 32-bit floating point constant.
3595 static SDValue
3596 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3597   return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3598 }
3599
3600 // implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3601 const char *
3602 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3603   SDValue Op1 = getValue(I.getArgOperand(0));
3604   SDValue Op2 = getValue(I.getArgOperand(1));
3605
3606   SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3607   setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3608   return 0;
3609 }
3610
3611 /// visitExp - Lower an exp intrinsic. Handles the special sequences for
3612 /// limited-precision mode.
3613 void
3614 SelectionDAGBuilder::visitExp(const CallInst &I) {
3615   SDValue result;
3616   DebugLoc dl = getCurDebugLoc();
3617
3618   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3619       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3620     SDValue Op = getValue(I.getArgOperand(0));
3621
3622     // Put the exponent in the right bit position for later addition to the
3623     // final result:
3624     //
3625     //   #define LOG2OFe 1.4426950f
3626     //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3627     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3628                              getF32Constant(DAG, 0x3fb8aa3b));
3629     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3630
3631     //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3632     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3633     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3634
3635     //   IntegerPartOfX <<= 23;
3636     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3637                                  DAG.getConstant(23, TLI.getPointerTy()));
3638
3639     if (LimitFloatPrecision <= 6) {
3640       // For floating-point precision of 6:
3641       //
3642       //   TwoToFractionalPartOfX =
3643       //     0.997535578f +
3644       //       (0.735607626f + 0.252464424f * x) * x;
3645       //
3646       // error 0.0144103317, which is 6 bits
3647       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3648                                getF32Constant(DAG, 0x3e814304));
3649       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3650                                getF32Constant(DAG, 0x3f3c50c8));
3651       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3652       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3653                                getF32Constant(DAG, 0x3f7f5e7e));
3654       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3655
3656       // Add the exponent into the result in integer domain.
3657       SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3658                                TwoToFracPartOfX, IntegerPartOfX);
3659
3660       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3661     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3662       // For floating-point precision of 12:
3663       //
3664       //   TwoToFractionalPartOfX =
3665       //     0.999892986f +
3666       //       (0.696457318f +
3667       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3668       //
3669       // 0.000107046256 error, which is 13 to 14 bits
3670       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3671                                getF32Constant(DAG, 0x3da235e3));
3672       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3673                                getF32Constant(DAG, 0x3e65b8f3));
3674       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3675       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3676                                getF32Constant(DAG, 0x3f324b07));
3677       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3678       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3679                                getF32Constant(DAG, 0x3f7ff8fd));
3680       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3681
3682       // Add the exponent into the result in integer domain.
3683       SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3684                                TwoToFracPartOfX, IntegerPartOfX);
3685
3686       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3687     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3688       // For floating-point precision of 18:
3689       //
3690       //   TwoToFractionalPartOfX =
3691       //     0.999999982f +
3692       //       (0.693148872f +
3693       //         (0.240227044f +
3694       //           (0.554906021e-1f +
3695       //             (0.961591928e-2f +
3696       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3697       //
3698       // error 2.47208000*10^(-7), which is better than 18 bits
3699       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3700                                getF32Constant(DAG, 0x3924b03e));
3701       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3702                                getF32Constant(DAG, 0x3ab24b87));
3703       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3704       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3705                                getF32Constant(DAG, 0x3c1d8c17));
3706       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3707       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3708                                getF32Constant(DAG, 0x3d634a1d));
3709       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3710       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3711                                getF32Constant(DAG, 0x3e75fe14));
3712       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3713       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3714                                 getF32Constant(DAG, 0x3f317234));
3715       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3716       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3717                                 getF32Constant(DAG, 0x3f800000));
3718       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3719                                              MVT::i32, t13);
3720
3721       // Add the exponent into the result in integer domain.
3722       SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3723                                 TwoToFracPartOfX, IntegerPartOfX);
3724
3725       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3726     }
3727   } else {
3728     // No special expansion.
3729     result = DAG.getNode(ISD::FEXP, dl,
3730                          getValue(I.getArgOperand(0)).getValueType(),
3731                          getValue(I.getArgOperand(0)));
3732   }
3733
3734   setValue(&I, result);
3735 }
3736
3737 /// visitLog - Lower a log intrinsic. Handles the special sequences for
3738 /// limited-precision mode.
3739 void
3740 SelectionDAGBuilder::visitLog(const CallInst &I) {
3741   SDValue result;
3742   DebugLoc dl = getCurDebugLoc();
3743
3744   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3745       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3746     SDValue Op = getValue(I.getArgOperand(0));
3747     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3748
3749     // Scale the exponent by log(2) [0.69314718f].
3750     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3751     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3752                                         getF32Constant(DAG, 0x3f317218));
3753
3754     // Get the significand and build it into a floating-point number with
3755     // exponent of 1.
3756     SDValue X = GetSignificand(DAG, Op1, dl);
3757
3758     if (LimitFloatPrecision <= 6) {
3759       // For floating-point precision of 6:
3760       //
3761       //   LogofMantissa =
3762       //     -1.1609546f +
3763       //       (1.4034025f - 0.23903021f * x) * x;
3764       //
3765       // error 0.0034276066, which is better than 8 bits
3766       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3767                                getF32Constant(DAG, 0xbe74c456));
3768       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3769                                getF32Constant(DAG, 0x3fb3a2b1));
3770       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3771       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3772                                           getF32Constant(DAG, 0x3f949a29));
3773
3774       result = DAG.getNode(ISD::FADD, dl,
3775                            MVT::f32, LogOfExponent, LogOfMantissa);
3776     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3777       // For floating-point precision of 12:
3778       //
3779       //   LogOfMantissa =
3780       //     -1.7417939f +
3781       //       (2.8212026f +
3782       //         (-1.4699568f +
3783       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3784       //
3785       // error 0.000061011436, which is 14 bits
3786       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3787                                getF32Constant(DAG, 0xbd67b6d6));
3788       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3789                                getF32Constant(DAG, 0x3ee4f4b8));
3790       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3791       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3792                                getF32Constant(DAG, 0x3fbc278b));
3793       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3794       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3795                                getF32Constant(DAG, 0x40348e95));
3796       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3797       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3798                                           getF32Constant(DAG, 0x3fdef31a));
3799
3800       result = DAG.getNode(ISD::FADD, dl,
3801                            MVT::f32, LogOfExponent, LogOfMantissa);
3802     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3803       // For floating-point precision of 18:
3804       //
3805       //   LogOfMantissa =
3806       //     -2.1072184f +
3807       //       (4.2372794f +
3808       //         (-3.7029485f +
3809       //           (2.2781945f +
3810       //             (-0.87823314f +
3811       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3812       //
3813       // error 0.0000023660568, which is better than 18 bits
3814       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3815                                getF32Constant(DAG, 0xbc91e5ac));
3816       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3817                                getF32Constant(DAG, 0x3e4350aa));
3818       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3819       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3820                                getF32Constant(DAG, 0x3f60d3e3));
3821       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3822       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3823                                getF32Constant(DAG, 0x4011cdf0));
3824       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3825       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3826                                getF32Constant(DAG, 0x406cfd1c));
3827       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3828       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3829                                getF32Constant(DAG, 0x408797cb));
3830       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3831       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3832                                           getF32Constant(DAG, 0x4006dcab));
3833
3834       result = DAG.getNode(ISD::FADD, dl,
3835                            MVT::f32, LogOfExponent, LogOfMantissa);
3836     }
3837   } else {
3838     // No special expansion.
3839     result = DAG.getNode(ISD::FLOG, dl,
3840                          getValue(I.getArgOperand(0)).getValueType(),
3841                          getValue(I.getArgOperand(0)));
3842   }
3843
3844   setValue(&I, result);
3845 }
3846
3847 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3848 /// limited-precision mode.
3849 void
3850 SelectionDAGBuilder::visitLog2(const CallInst &I) {
3851   SDValue result;
3852   DebugLoc dl = getCurDebugLoc();
3853
3854   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3855       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3856     SDValue Op = getValue(I.getArgOperand(0));
3857     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3858
3859     // Get the exponent.
3860     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3861
3862     // Get the significand and build it into a floating-point number with
3863     // exponent of 1.
3864     SDValue X = GetSignificand(DAG, Op1, dl);
3865
3866     // Different possible minimax approximations of significand in
3867     // floating-point for various degrees of accuracy over [1,2].
3868     if (LimitFloatPrecision <= 6) {
3869       // For floating-point precision of 6:
3870       //
3871       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3872       //
3873       // error 0.0049451742, which is more than 7 bits
3874       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3875                                getF32Constant(DAG, 0xbeb08fe0));
3876       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3877                                getF32Constant(DAG, 0x40019463));
3878       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3879       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3880                                            getF32Constant(DAG, 0x3fd6633d));
3881
3882       result = DAG.getNode(ISD::FADD, dl,
3883                            MVT::f32, LogOfExponent, Log2ofMantissa);
3884     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3885       // For floating-point precision of 12:
3886       //
3887       //   Log2ofMantissa =
3888       //     -2.51285454f +
3889       //       (4.07009056f +
3890       //         (-2.12067489f +
3891       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3892       //
3893       // error 0.0000876136000, which is better than 13 bits
3894       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3895                                getF32Constant(DAG, 0xbda7262e));
3896       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3897                                getF32Constant(DAG, 0x3f25280b));
3898       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3899       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3900                                getF32Constant(DAG, 0x4007b923));
3901       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3902       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3903                                getF32Constant(DAG, 0x40823e2f));
3904       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3905       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3906                                            getF32Constant(DAG, 0x4020d29c));
3907
3908       result = DAG.getNode(ISD::FADD, dl,
3909                            MVT::f32, LogOfExponent, Log2ofMantissa);
3910     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3911       // For floating-point precision of 18:
3912       //
3913       //   Log2ofMantissa =
3914       //     -3.0400495f +
3915       //       (6.1129976f +
3916       //         (-5.3420409f +
3917       //           (3.2865683f +
3918       //             (-1.2669343f +
3919       //               (0.27515199f -
3920       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3921       //
3922       // error 0.0000018516, which is better than 18 bits
3923       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3924                                getF32Constant(DAG, 0xbcd2769e));
3925       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3926                                getF32Constant(DAG, 0x3e8ce0b9));
3927       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3928       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3929                                getF32Constant(DAG, 0x3fa22ae7));
3930       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3931       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3932                                getF32Constant(DAG, 0x40525723));
3933       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3934       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3935                                getF32Constant(DAG, 0x40aaf200));
3936       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3937       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3938                                getF32Constant(DAG, 0x40c39dad));
3939       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3940       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3941                                            getF32Constant(DAG, 0x4042902c));
3942
3943       result = DAG.getNode(ISD::FADD, dl,
3944                            MVT::f32, LogOfExponent, Log2ofMantissa);
3945     }
3946   } else {
3947     // No special expansion.
3948     result = DAG.getNode(ISD::FLOG2, dl,
3949                          getValue(I.getArgOperand(0)).getValueType(),
3950                          getValue(I.getArgOperand(0)));
3951   }
3952
3953   setValue(&I, result);
3954 }
3955
3956 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3957 /// limited-precision mode.
3958 void
3959 SelectionDAGBuilder::visitLog10(const CallInst &I) {
3960   SDValue result;
3961   DebugLoc dl = getCurDebugLoc();
3962
3963   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3964       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3965     SDValue Op = getValue(I.getArgOperand(0));
3966     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3967
3968     // Scale the exponent by log10(2) [0.30102999f].
3969     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3970     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3971                                         getF32Constant(DAG, 0x3e9a209a));
3972
3973     // Get the significand and build it into a floating-point number with
3974     // exponent of 1.
3975     SDValue X = GetSignificand(DAG, Op1, dl);
3976
3977     if (LimitFloatPrecision <= 6) {
3978       // For floating-point precision of 6:
3979       //
3980       //   Log10ofMantissa =
3981       //     -0.50419619f +
3982       //       (0.60948995f - 0.10380950f * x) * x;
3983       //
3984       // error 0.0014886165, which is 6 bits
3985       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3986                                getF32Constant(DAG, 0xbdd49a13));
3987       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3988                                getF32Constant(DAG, 0x3f1c0789));
3989       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3990       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3991                                             getF32Constant(DAG, 0x3f011300));
3992
3993       result = DAG.getNode(ISD::FADD, dl,
3994                            MVT::f32, LogOfExponent, Log10ofMantissa);
3995     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3996       // For floating-point precision of 12:
3997       //
3998       //   Log10ofMantissa =
3999       //     -0.64831180f +
4000       //       (0.91751397f +
4001       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4002       //
4003       // error 0.00019228036, which is better than 12 bits
4004       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4005                                getF32Constant(DAG, 0x3d431f31));
4006       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4007                                getF32Constant(DAG, 0x3ea21fb2));
4008       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4009       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4010                                getF32Constant(DAG, 0x3f6ae232));
4011       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4012       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4013                                             getF32Constant(DAG, 0x3f25f7c3));
4014
4015       result = DAG.getNode(ISD::FADD, dl,
4016                            MVT::f32, LogOfExponent, Log10ofMantissa);
4017     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4018       // For floating-point precision of 18:
4019       //
4020       //   Log10ofMantissa =
4021       //     -0.84299375f +
4022       //       (1.5327582f +
4023       //         (-1.0688956f +
4024       //           (0.49102474f +
4025       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4026       //
4027       // error 0.0000037995730, which is better than 18 bits
4028       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4029                                getF32Constant(DAG, 0x3c5d51ce));
4030       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4031                                getF32Constant(DAG, 0x3e00685a));
4032       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4033       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4034                                getF32Constant(DAG, 0x3efb6798));
4035       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4036       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4037                                getF32Constant(DAG, 0x3f88d192));
4038       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4039       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4040                                getF32Constant(DAG, 0x3fc4316c));
4041       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4042       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4043                                             getF32Constant(DAG, 0x3f57ce70));
4044
4045       result = DAG.getNode(ISD::FADD, dl,
4046                            MVT::f32, LogOfExponent, Log10ofMantissa);
4047     }
4048   } else {
4049     // No special expansion.
4050     result = DAG.getNode(ISD::FLOG10, dl,
4051                          getValue(I.getArgOperand(0)).getValueType(),
4052                          getValue(I.getArgOperand(0)));
4053   }
4054
4055   setValue(&I, result);
4056 }
4057
4058 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4059 /// limited-precision mode.
4060 void
4061 SelectionDAGBuilder::visitExp2(const CallInst &I) {
4062   SDValue result;
4063   DebugLoc dl = getCurDebugLoc();
4064
4065   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
4066       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4067     SDValue Op = getValue(I.getArgOperand(0));
4068
4069     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4070
4071     //   FractionalPartOfX = x - (float)IntegerPartOfX;
4072     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4073     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4074
4075     //   IntegerPartOfX <<= 23;
4076     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4077                                  DAG.getConstant(23, TLI.getPointerTy()));
4078
4079     if (LimitFloatPrecision <= 6) {
4080       // For floating-point precision of 6:
4081       //
4082       //   TwoToFractionalPartOfX =
4083       //     0.997535578f +
4084       //       (0.735607626f + 0.252464424f * x) * x;
4085       //
4086       // error 0.0144103317, which is 6 bits
4087       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4088                                getF32Constant(DAG, 0x3e814304));
4089       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4090                                getF32Constant(DAG, 0x3f3c50c8));
4091       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4092       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4093                                getF32Constant(DAG, 0x3f7f5e7e));
4094       SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4095       SDValue TwoToFractionalPartOfX =
4096         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4097
4098       result = DAG.getNode(ISD::BITCAST, dl,
4099                            MVT::f32, TwoToFractionalPartOfX);
4100     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4101       // For floating-point precision of 12:
4102       //
4103       //   TwoToFractionalPartOfX =
4104       //     0.999892986f +
4105       //       (0.696457318f +
4106       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4107       //
4108       // error 0.000107046256, which is 13 to 14 bits
4109       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4110                                getF32Constant(DAG, 0x3da235e3));
4111       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4112                                getF32Constant(DAG, 0x3e65b8f3));
4113       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4114       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4115                                getF32Constant(DAG, 0x3f324b07));
4116       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4117       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4118                                getF32Constant(DAG, 0x3f7ff8fd));
4119       SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4120       SDValue TwoToFractionalPartOfX =
4121         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4122
4123       result = DAG.getNode(ISD::BITCAST, dl,
4124                            MVT::f32, TwoToFractionalPartOfX);
4125     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4126       // For floating-point precision of 18:
4127       //
4128       //   TwoToFractionalPartOfX =
4129       //     0.999999982f +
4130       //       (0.693148872f +
4131       //         (0.240227044f +
4132       //           (0.554906021e-1f +
4133       //             (0.961591928e-2f +
4134       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4135       // error 2.47208000*10^(-7), which is better than 18 bits
4136       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4137                                getF32Constant(DAG, 0x3924b03e));
4138       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4139                                getF32Constant(DAG, 0x3ab24b87));
4140       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4141       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4142                                getF32Constant(DAG, 0x3c1d8c17));
4143       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4144       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4145                                getF32Constant(DAG, 0x3d634a1d));
4146       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4147       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4148                                getF32Constant(DAG, 0x3e75fe14));
4149       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4150       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4151                                 getF32Constant(DAG, 0x3f317234));
4152       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4153       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4154                                 getF32Constant(DAG, 0x3f800000));
4155       SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4156       SDValue TwoToFractionalPartOfX =
4157         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4158
4159       result = DAG.getNode(ISD::BITCAST, dl,
4160                            MVT::f32, TwoToFractionalPartOfX);
4161     }
4162   } else {
4163     // No special expansion.
4164     result = DAG.getNode(ISD::FEXP2, dl,
4165                          getValue(I.getArgOperand(0)).getValueType(),
4166                          getValue(I.getArgOperand(0)));
4167   }
4168
4169   setValue(&I, result);
4170 }
4171
4172 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4173 /// limited-precision mode with x == 10.0f.
4174 void
4175 SelectionDAGBuilder::visitPow(const CallInst &I) {
4176   SDValue result;
4177   const Value *Val = I.getArgOperand(0);
4178   DebugLoc dl = getCurDebugLoc();
4179   bool IsExp10 = false;
4180
4181   if (getValue(Val).getValueType() == MVT::f32 &&
4182       getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
4183       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4184     if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4185       if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4186         APFloat Ten(10.0f);
4187         IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4188       }
4189     }
4190   }
4191
4192   if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4193     SDValue Op = getValue(I.getArgOperand(1));
4194
4195     // Put the exponent in the right bit position for later addition to the
4196     // final result:
4197     //
4198     //   #define LOG2OF10 3.3219281f
4199     //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4200     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4201                              getF32Constant(DAG, 0x40549a78));
4202     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4203
4204     //   FractionalPartOfX = x - (float)IntegerPartOfX;
4205     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4206     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4207
4208     //   IntegerPartOfX <<= 23;
4209     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4210                                  DAG.getConstant(23, TLI.getPointerTy()));
4211
4212     if (LimitFloatPrecision <= 6) {
4213       // For floating-point precision of 6:
4214       //
4215       //   twoToFractionalPartOfX =
4216       //     0.997535578f +
4217       //       (0.735607626f + 0.252464424f * x) * x;
4218       //
4219       // error 0.0144103317, which is 6 bits
4220       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4221                                getF32Constant(DAG, 0x3e814304));
4222       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4223                                getF32Constant(DAG, 0x3f3c50c8));
4224       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4225       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4226                                getF32Constant(DAG, 0x3f7f5e7e));
4227       SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4228       SDValue TwoToFractionalPartOfX =
4229         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4230
4231       result = DAG.getNode(ISD::BITCAST, dl,
4232                            MVT::f32, TwoToFractionalPartOfX);
4233     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4234       // For floating-point precision of 12:
4235       //
4236       //   TwoToFractionalPartOfX =
4237       //     0.999892986f +
4238       //       (0.696457318f +
4239       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4240       //
4241       // error 0.000107046256, which is 13 to 14 bits
4242       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4243                                getF32Constant(DAG, 0x3da235e3));
4244       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4245                                getF32Constant(DAG, 0x3e65b8f3));
4246       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4247       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4248                                getF32Constant(DAG, 0x3f324b07));
4249       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4250       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4251                                getF32Constant(DAG, 0x3f7ff8fd));
4252       SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4253       SDValue TwoToFractionalPartOfX =
4254         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4255
4256       result = DAG.getNode(ISD::BITCAST, dl,
4257                            MVT::f32, TwoToFractionalPartOfX);
4258     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4259       // For floating-point precision of 18:
4260       //
4261       //   TwoToFractionalPartOfX =
4262       //     0.999999982f +
4263       //       (0.693148872f +
4264       //         (0.240227044f +
4265       //           (0.554906021e-1f +
4266       //             (0.961591928e-2f +
4267       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4268       // error 2.47208000*10^(-7), which is better than 18 bits
4269       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4270                                getF32Constant(DAG, 0x3924b03e));
4271       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4272                                getF32Constant(DAG, 0x3ab24b87));
4273       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4274       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4275                                getF32Constant(DAG, 0x3c1d8c17));
4276       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4277       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4278                                getF32Constant(DAG, 0x3d634a1d));
4279       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4280       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4281                                getF32Constant(DAG, 0x3e75fe14));
4282       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4283       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4284                                 getF32Constant(DAG, 0x3f317234));
4285       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4286       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4287                                 getF32Constant(DAG, 0x3f800000));
4288       SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4289       SDValue TwoToFractionalPartOfX =
4290         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4291
4292       result = DAG.getNode(ISD::BITCAST, dl,
4293                            MVT::f32, TwoToFractionalPartOfX);
4294     }
4295   } else {
4296     // No special expansion.
4297     result = DAG.getNode(ISD::FPOW, dl,
4298                          getValue(I.getArgOperand(0)).getValueType(),
4299                          getValue(I.getArgOperand(0)),
4300                          getValue(I.getArgOperand(1)));
4301   }
4302
4303   setValue(&I, result);
4304 }
4305
4306
4307 /// ExpandPowI - Expand a llvm.powi intrinsic.
4308 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4309                           SelectionDAG &DAG) {
4310   // If RHS is a constant, we can expand this out to a multiplication tree,
4311   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4312   // optimizing for size, we only want to do this if the expansion would produce
4313   // a small number of multiplies, otherwise we do the full expansion.
4314   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4315     // Get the exponent as a positive value.
4316     unsigned Val = RHSC->getSExtValue();
4317     if ((int)Val < 0) Val = -Val;
4318
4319     // powi(x, 0) -> 1.0
4320     if (Val == 0)
4321       return DAG.getConstantFP(1.0, LHS.getValueType());
4322
4323     const Function *F = DAG.getMachineFunction().getFunction();
4324     if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4325         // If optimizing for size, don't insert too many multiplies.  This
4326         // inserts up to 5 multiplies.
4327         CountPopulation_32(Val)+Log2_32(Val) < 7) {
4328       // We use the simple binary decomposition method to generate the multiply
4329       // sequence.  There are more optimal ways to do this (for example,
4330       // powi(x,15) generates one more multiply than it should), but this has
4331       // the benefit of being both really simple and much better than a libcall.
4332       SDValue Res;  // Logically starts equal to 1.0
4333       SDValue CurSquare = LHS;
4334       while (Val) {
4335         if (Val & 1) {
4336           if (Res.getNode())
4337             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4338           else
4339             Res = CurSquare;  // 1.0*CurSquare.
4340         }
4341
4342         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4343                                 CurSquare, CurSquare);
4344         Val >>= 1;
4345       }
4346
4347       // If the original was negative, invert the result, producing 1/(x*x*x).
4348       if (RHSC->getSExtValue() < 0)
4349         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4350                           DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4351       return Res;
4352     }
4353   }
4354
4355   // Otherwise, expand to a libcall.
4356   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4357 }
4358
4359 // getTruncatedArgReg - Find underlying register used for an truncated
4360 // argument.
4361 static unsigned getTruncatedArgReg(const SDValue &N) {
4362   if (N.getOpcode() != ISD::TRUNCATE)
4363     return 0;
4364
4365   const SDValue &Ext = N.getOperand(0);
4366   if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4367     const SDValue &CFR = Ext.getOperand(0);
4368     if (CFR.getOpcode() == ISD::CopyFromReg)
4369       return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4370     else
4371       if (CFR.getOpcode() == ISD::TRUNCATE)
4372         return getTruncatedArgReg(CFR);
4373   }
4374   return 0;
4375 }
4376
4377 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4378 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4379 /// At the end of instruction selection, they will be inserted to the entry BB.
4380 bool
4381 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4382                                               int64_t Offset,
4383                                               const SDValue &N) {
4384   const Argument *Arg = dyn_cast<Argument>(V);
4385   if (!Arg)
4386     return false;
4387
4388   MachineFunction &MF = DAG.getMachineFunction();
4389   const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4390   const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4391
4392   // Ignore inlined function arguments here.
4393   DIVariable DV(Variable);
4394   if (DV.isInlinedFnArgument(MF.getFunction()))
4395     return false;
4396
4397   unsigned Reg = 0;
4398   // Some arguments' frame index is recorded during argument lowering.
4399   Offset = FuncInfo.getArgumentFrameIndex(Arg);
4400   if (Offset)
4401       Reg = TRI->getFrameRegister(MF);
4402
4403   if (!Reg && N.getNode()) {
4404     if (N.getOpcode() == ISD::CopyFromReg)
4405       Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4406     else
4407       Reg = getTruncatedArgReg(N);
4408     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4409       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4410       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4411       if (PR)
4412         Reg = PR;
4413     }
4414   }
4415
4416   if (!Reg) {
4417     // Check if ValueMap has reg number.
4418     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4419     if (VMI != FuncInfo.ValueMap.end())
4420       Reg = VMI->second;
4421   }
4422
4423   if (!Reg && N.getNode()) {
4424     // Check if frame index is available.
4425     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4426       if (FrameIndexSDNode *FINode =
4427           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4428         Reg = TRI->getFrameRegister(MF);
4429         Offset = FINode->getIndex();
4430       }
4431   }
4432
4433   if (!Reg)
4434     return false;
4435
4436   MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4437                                     TII->get(TargetOpcode::DBG_VALUE))
4438     .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4439   FuncInfo.ArgDbgValues.push_back(&*MIB);
4440   return true;
4441 }
4442
4443 // VisualStudio defines setjmp as _setjmp
4444 #if defined(_MSC_VER) && defined(setjmp) && \
4445                          !defined(setjmp_undefined_for_msvc)
4446 #  pragma push_macro("setjmp")
4447 #  undef setjmp
4448 #  define setjmp_undefined_for_msvc
4449 #endif
4450
4451 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4452 /// we want to emit this as a call to a named external function, return the name
4453 /// otherwise lower it and return null.
4454 const char *
4455 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4456   DebugLoc dl = getCurDebugLoc();
4457   SDValue Res;
4458
4459   switch (Intrinsic) {
4460   default:
4461     // By default, turn this into a target intrinsic node.
4462     visitTargetIntrinsic(I, Intrinsic);
4463     return 0;
4464   case Intrinsic::vastart:  visitVAStart(I); return 0;
4465   case Intrinsic::vaend:    visitVAEnd(I); return 0;
4466   case Intrinsic::vacopy:   visitVACopy(I); return 0;
4467   case Intrinsic::returnaddress:
4468     setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4469                              getValue(I.getArgOperand(0))));
4470     return 0;
4471   case Intrinsic::frameaddress:
4472     setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4473                              getValue(I.getArgOperand(0))));
4474     return 0;
4475   case Intrinsic::setjmp:
4476     return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4477   case Intrinsic::longjmp:
4478     return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4479   case Intrinsic::memcpy: {
4480     // Assert for address < 256 since we support only user defined address
4481     // spaces.
4482     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4483            < 256 &&
4484            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4485            < 256 &&
4486            "Unknown address space");
4487     SDValue Op1 = getValue(I.getArgOperand(0));
4488     SDValue Op2 = getValue(I.getArgOperand(1));
4489     SDValue Op3 = getValue(I.getArgOperand(2));
4490     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4491     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4492     DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4493                               MachinePointerInfo(I.getArgOperand(0)),
4494                               MachinePointerInfo(I.getArgOperand(1))));
4495     return 0;
4496   }
4497   case Intrinsic::memset: {
4498     // Assert for address < 256 since we support only user defined address
4499     // spaces.
4500     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4501            < 256 &&
4502            "Unknown address space");
4503     SDValue Op1 = getValue(I.getArgOperand(0));
4504     SDValue Op2 = getValue(I.getArgOperand(1));
4505     SDValue Op3 = getValue(I.getArgOperand(2));
4506     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4507     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4508     DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4509                               MachinePointerInfo(I.getArgOperand(0))));
4510     return 0;
4511   }
4512   case Intrinsic::memmove: {
4513     // Assert for address < 256 since we support only user defined address
4514     // spaces.
4515     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4516            < 256 &&
4517            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4518            < 256 &&
4519            "Unknown address space");
4520     SDValue Op1 = getValue(I.getArgOperand(0));
4521     SDValue Op2 = getValue(I.getArgOperand(1));
4522     SDValue Op3 = getValue(I.getArgOperand(2));
4523     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4524     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4525     DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4526                                MachinePointerInfo(I.getArgOperand(0)),
4527                                MachinePointerInfo(I.getArgOperand(1))));
4528     return 0;
4529   }
4530   case Intrinsic::dbg_declare: {
4531     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4532     MDNode *Variable = DI.getVariable();
4533     const Value *Address = DI.getAddress();
4534     if (!Address || !DIVariable(Variable).Verify())
4535       return 0;
4536
4537     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4538     // but do not always have a corresponding SDNode built.  The SDNodeOrder
4539     // absolute, but not relative, values are different depending on whether
4540     // debug info exists.
4541     ++SDNodeOrder;
4542
4543     // Check if address has undef value.
4544     if (isa<UndefValue>(Address) ||
4545         (Address->use_empty() && !isa<Argument>(Address))) {
4546       DEBUG(dbgs() << "Dropping debug info for " << DI);
4547       return 0;
4548     }
4549
4550     SDValue &N = NodeMap[Address];
4551     if (!N.getNode() && isa<Argument>(Address))
4552       // Check unused arguments map.
4553       N = UnusedArgNodeMap[Address];
4554     SDDbgValue *SDV;
4555     if (N.getNode()) {
4556       // Parameters are handled specially.
4557       bool isParameter =
4558         DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4559       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4560         Address = BCI->getOperand(0);
4561       const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4562
4563       if (isParameter && !AI) {
4564         FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4565         if (FINode)
4566           // Byval parameter.  We have a frame index at this point.
4567           SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4568                                 0, dl, SDNodeOrder);
4569         else {
4570           // Address is an argument, so try to emit its dbg value using
4571           // virtual register info from the FuncInfo.ValueMap.
4572           EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4573           return 0;
4574         }
4575       } else if (AI)
4576         SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4577                               0, dl, SDNodeOrder);
4578       else {
4579         // Can't do anything with other non-AI cases yet.
4580         DEBUG(dbgs() << "Dropping debug info for " << DI);
4581         return 0;
4582       }
4583       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4584     } else {
4585       // If Address is an argument then try to emit its dbg value using
4586       // virtual register info from the FuncInfo.ValueMap.
4587       if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4588         // If variable is pinned by a alloca in dominating bb then
4589         // use StaticAllocaMap.
4590         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4591           if (AI->getParent() != DI.getParent()) {
4592             DenseMap<const AllocaInst*, int>::iterator SI =
4593               FuncInfo.StaticAllocaMap.find(AI);
4594             if (SI != FuncInfo.StaticAllocaMap.end()) {
4595               SDV = DAG.getDbgValue(Variable, SI->second,
4596                                     0, dl, SDNodeOrder);
4597               DAG.AddDbgValue(SDV, 0, false);
4598               return 0;
4599             }
4600           }
4601         }
4602         DEBUG(dbgs() << "Dropping debug info for " << DI);
4603       }
4604     }
4605     return 0;
4606   }
4607   case Intrinsic::dbg_value: {
4608     const DbgValueInst &DI = cast<DbgValueInst>(I);
4609     if (!DIVariable(DI.getVariable()).Verify())
4610       return 0;
4611
4612     MDNode *Variable = DI.getVariable();
4613     uint64_t Offset = DI.getOffset();
4614     const Value *V = DI.getValue();
4615     if (!V)
4616       return 0;
4617
4618     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4619     // but do not always have a corresponding SDNode built.  The SDNodeOrder
4620     // absolute, but not relative, values are different depending on whether
4621     // debug info exists.
4622     ++SDNodeOrder;
4623     SDDbgValue *SDV;
4624     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4625       SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4626       DAG.AddDbgValue(SDV, 0, false);
4627     } else {
4628       // Do not use getValue() in here; we don't want to generate code at
4629       // this point if it hasn't been done yet.
4630       SDValue N = NodeMap[V];
4631       if (!N.getNode() && isa<Argument>(V))
4632         // Check unused arguments map.
4633         N = UnusedArgNodeMap[V];
4634       if (N.getNode()) {
4635         if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4636           SDV = DAG.getDbgValue(Variable, N.getNode(),
4637                                 N.getResNo(), Offset, dl, SDNodeOrder);
4638           DAG.AddDbgValue(SDV, N.getNode(), false);
4639         }
4640       } else if (!V->use_empty() ) {
4641         // Do not call getValue(V) yet, as we don't want to generate code.
4642         // Remember it for later.
4643         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4644         DanglingDebugInfoMap[V] = DDI;
4645       } else {
4646         // We may expand this to cover more cases.  One case where we have no
4647         // data available is an unreferenced parameter.
4648         DEBUG(dbgs() << "Dropping debug info for " << DI);
4649       }
4650     }
4651
4652     // Build a debug info table entry.
4653     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4654       V = BCI->getOperand(0);
4655     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4656     // Don't handle byval struct arguments or VLAs, for example.
4657     if (!AI)
4658       return 0;
4659     DenseMap<const AllocaInst*, int>::iterator SI =
4660       FuncInfo.StaticAllocaMap.find(AI);
4661     if (SI == FuncInfo.StaticAllocaMap.end())
4662       return 0; // VLAs.
4663     int FI = SI->second;
4664
4665     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4666     if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4667       MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4668     return 0;
4669   }
4670   case Intrinsic::eh_exception: {
4671     // Insert the EXCEPTIONADDR instruction.
4672     assert(FuncInfo.MBB->isLandingPad() &&
4673            "Call to eh.exception not in landing pad!");
4674     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4675     SDValue Ops[1];
4676     Ops[0] = DAG.getRoot();
4677     SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4678     setValue(&I, Op);
4679     DAG.setRoot(Op.getValue(1));
4680     return 0;
4681   }
4682
4683   case Intrinsic::eh_selector: {
4684     MachineBasicBlock *CallMBB = FuncInfo.MBB;
4685     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4686     if (CallMBB->isLandingPad())
4687       AddCatchInfo(I, &MMI, CallMBB);
4688     else {
4689 #ifndef NDEBUG
4690       FuncInfo.CatchInfoLost.insert(&I);
4691 #endif
4692       // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4693       unsigned Reg = TLI.getExceptionSelectorRegister();
4694       if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4695     }
4696
4697     // Insert the EHSELECTION instruction.
4698     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4699     SDValue Ops[2];
4700     Ops[0] = getValue(I.getArgOperand(0));
4701     Ops[1] = getRoot();
4702     SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4703     DAG.setRoot(Op.getValue(1));
4704     setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4705     return 0;
4706   }
4707
4708   case Intrinsic::eh_typeid_for: {
4709     // Find the type id for the given typeinfo.
4710     GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4711     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4712     Res = DAG.getConstant(TypeID, MVT::i32);
4713     setValue(&I, Res);
4714     return 0;
4715   }
4716
4717   case Intrinsic::eh_return_i32:
4718   case Intrinsic::eh_return_i64:
4719     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4720     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4721                             MVT::Other,
4722                             getControlRoot(),
4723                             getValue(I.getArgOperand(0)),
4724                             getValue(I.getArgOperand(1))));
4725     return 0;
4726   case Intrinsic::eh_unwind_init:
4727     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4728     return 0;
4729   case Intrinsic::eh_dwarf_cfa: {
4730     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4731                                         TLI.getPointerTy());
4732     SDValue Offset = DAG.getNode(ISD::ADD, dl,
4733                                  TLI.getPointerTy(),
4734                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4735                                              TLI.getPointerTy()),
4736                                  CfaArg);
4737     SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4738                              TLI.getPointerTy(),
4739                              DAG.getConstant(0, TLI.getPointerTy()));
4740     setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4741                              FA, Offset));
4742     return 0;
4743   }
4744   case Intrinsic::eh_sjlj_callsite: {
4745     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4746     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4747     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4748     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4749
4750     MMI.setCurrentCallSite(CI->getZExtValue());
4751     return 0;
4752   }
4753   case Intrinsic::eh_sjlj_functioncontext: {
4754     // Get and store the index of the function context.
4755     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4756     AllocaInst *FnCtx =
4757       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4758     int FI = FuncInfo.StaticAllocaMap[FnCtx];
4759     MFI->setFunctionContextIndex(FI);
4760     return 0;
4761   }
4762   case Intrinsic::eh_sjlj_setjmp: {
4763     SDValue Ops[2];
4764     Ops[0] = getRoot();
4765     Ops[1] = getValue(I.getArgOperand(0));
4766     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl,
4767                              DAG.getVTList(MVT::i32, MVT::Other),
4768                              Ops, 2);
4769     setValue(&I, Op.getValue(0));
4770     DAG.setRoot(Op.getValue(1));
4771     return 0;
4772   }
4773   case Intrinsic::eh_sjlj_longjmp: {
4774     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4775                             getRoot(), getValue(I.getArgOperand(0))));
4776     return 0;
4777   }
4778   case Intrinsic::eh_sjlj_dispatch_setup: {
4779     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
4780                             getRoot(), getValue(I.getArgOperand(0))));
4781     return 0;
4782   }
4783
4784   case Intrinsic::x86_mmx_pslli_w:
4785   case Intrinsic::x86_mmx_pslli_d:
4786   case Intrinsic::x86_mmx_pslli_q:
4787   case Intrinsic::x86_mmx_psrli_w:
4788   case Intrinsic::x86_mmx_psrli_d:
4789   case Intrinsic::x86_mmx_psrli_q:
4790   case Intrinsic::x86_mmx_psrai_w:
4791   case Intrinsic::x86_mmx_psrai_d: {
4792     SDValue ShAmt = getValue(I.getArgOperand(1));
4793     if (isa<ConstantSDNode>(ShAmt)) {
4794       visitTargetIntrinsic(I, Intrinsic);
4795       return 0;
4796     }
4797     unsigned NewIntrinsic = 0;
4798     EVT ShAmtVT = MVT::v2i32;
4799     switch (Intrinsic) {
4800     case Intrinsic::x86_mmx_pslli_w:
4801       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4802       break;
4803     case Intrinsic::x86_mmx_pslli_d:
4804       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4805       break;
4806     case Intrinsic::x86_mmx_pslli_q:
4807       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4808       break;
4809     case Intrinsic::x86_mmx_psrli_w:
4810       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4811       break;
4812     case Intrinsic::x86_mmx_psrli_d:
4813       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4814       break;
4815     case Intrinsic::x86_mmx_psrli_q:
4816       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4817       break;
4818     case Intrinsic::x86_mmx_psrai_w:
4819       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4820       break;
4821     case Intrinsic::x86_mmx_psrai_d:
4822       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4823       break;
4824     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4825     }
4826
4827     // The vector shift intrinsics with scalars uses 32b shift amounts but
4828     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4829     // to be zero.
4830     // We must do this early because v2i32 is not a legal type.
4831     DebugLoc dl = getCurDebugLoc();
4832     SDValue ShOps[2];
4833     ShOps[0] = ShAmt;
4834     ShOps[1] = DAG.getConstant(0, MVT::i32);
4835     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4836     EVT DestVT = TLI.getValueType(I.getType());
4837     ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4838     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4839                        DAG.getConstant(NewIntrinsic, MVT::i32),
4840                        getValue(I.getArgOperand(0)), ShAmt);
4841     setValue(&I, Res);
4842     return 0;
4843   }
4844   case Intrinsic::convertff:
4845   case Intrinsic::convertfsi:
4846   case Intrinsic::convertfui:
4847   case Intrinsic::convertsif:
4848   case Intrinsic::convertuif:
4849   case Intrinsic::convertss:
4850   case Intrinsic::convertsu:
4851   case Intrinsic::convertus:
4852   case Intrinsic::convertuu: {
4853     ISD::CvtCode Code = ISD::CVT_INVALID;
4854     switch (Intrinsic) {
4855     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4856     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4857     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4858     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4859     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4860     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4861     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4862     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4863     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4864     }
4865     EVT DestVT = TLI.getValueType(I.getType());
4866     const Value *Op1 = I.getArgOperand(0);
4867     Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4868                                DAG.getValueType(DestVT),
4869                                DAG.getValueType(getValue(Op1).getValueType()),
4870                                getValue(I.getArgOperand(1)),
4871                                getValue(I.getArgOperand(2)),
4872                                Code);
4873     setValue(&I, Res);
4874     return 0;
4875   }
4876   case Intrinsic::sqrt:
4877     setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4878                              getValue(I.getArgOperand(0)).getValueType(),
4879                              getValue(I.getArgOperand(0))));
4880     return 0;
4881   case Intrinsic::powi:
4882     setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4883                             getValue(I.getArgOperand(1)), DAG));
4884     return 0;
4885   case Intrinsic::sin:
4886     setValue(&I, DAG.getNode(ISD::FSIN, dl,
4887                              getValue(I.getArgOperand(0)).getValueType(),
4888                              getValue(I.getArgOperand(0))));
4889     return 0;
4890   case Intrinsic::cos:
4891     setValue(&I, DAG.getNode(ISD::FCOS, dl,
4892                              getValue(I.getArgOperand(0)).getValueType(),
4893                              getValue(I.getArgOperand(0))));
4894     return 0;
4895   case Intrinsic::log:
4896     visitLog(I);
4897     return 0;
4898   case Intrinsic::log2:
4899     visitLog2(I);
4900     return 0;
4901   case Intrinsic::log10:
4902     visitLog10(I);
4903     return 0;
4904   case Intrinsic::exp:
4905     visitExp(I);
4906     return 0;
4907   case Intrinsic::exp2:
4908     visitExp2(I);
4909     return 0;
4910   case Intrinsic::pow:
4911     visitPow(I);
4912     return 0;
4913   case Intrinsic::fma:
4914     setValue(&I, DAG.getNode(ISD::FMA, dl,
4915                              getValue(I.getArgOperand(0)).getValueType(),
4916                              getValue(I.getArgOperand(0)),
4917                              getValue(I.getArgOperand(1)),
4918                              getValue(I.getArgOperand(2))));
4919     return 0;
4920   case Intrinsic::convert_to_fp16:
4921     setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4922                              MVT::i16, getValue(I.getArgOperand(0))));
4923     return 0;
4924   case Intrinsic::convert_from_fp16:
4925     setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4926                              MVT::f32, getValue(I.getArgOperand(0))));
4927     return 0;
4928   case Intrinsic::pcmarker: {
4929     SDValue Tmp = getValue(I.getArgOperand(0));
4930     DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4931     return 0;
4932   }
4933   case Intrinsic::readcyclecounter: {
4934     SDValue Op = getRoot();
4935     Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4936                       DAG.getVTList(MVT::i64, MVT::Other),
4937                       &Op, 1);
4938     setValue(&I, Res);
4939     DAG.setRoot(Res.getValue(1));
4940     return 0;
4941   }
4942   case Intrinsic::bswap:
4943     setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4944                              getValue(I.getArgOperand(0)).getValueType(),
4945                              getValue(I.getArgOperand(0))));
4946     return 0;
4947   case Intrinsic::cttz: {
4948     SDValue Arg = getValue(I.getArgOperand(0));
4949     EVT Ty = Arg.getValueType();
4950     setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4951     return 0;
4952   }
4953   case Intrinsic::ctlz: {
4954     SDValue Arg = getValue(I.getArgOperand(0));
4955     EVT Ty = Arg.getValueType();
4956     setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4957     return 0;
4958   }
4959   case Intrinsic::ctpop: {
4960     SDValue Arg = getValue(I.getArgOperand(0));
4961     EVT Ty = Arg.getValueType();
4962     setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4963     return 0;
4964   }
4965   case Intrinsic::stacksave: {
4966     SDValue Op = getRoot();
4967     Res = DAG.getNode(ISD::STACKSAVE, dl,
4968                       DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4969     setValue(&I, Res);
4970     DAG.setRoot(Res.getValue(1));
4971     return 0;
4972   }
4973   case Intrinsic::stackrestore: {
4974     Res = getValue(I.getArgOperand(0));
4975     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4976     return 0;
4977   }
4978   case Intrinsic::stackprotector: {
4979     // Emit code into the DAG to store the stack guard onto the stack.
4980     MachineFunction &MF = DAG.getMachineFunction();
4981     MachineFrameInfo *MFI = MF.getFrameInfo();
4982     EVT PtrTy = TLI.getPointerTy();
4983
4984     SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4985     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4986
4987     int FI = FuncInfo.StaticAllocaMap[Slot];
4988     MFI->setStackProtectorIndex(FI);
4989
4990     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4991
4992     // Store the stack protector onto the stack.
4993     Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4994                        MachinePointerInfo::getFixedStack(FI),
4995                        true, false, 0);
4996     setValue(&I, Res);
4997     DAG.setRoot(Res);
4998     return 0;
4999   }
5000   case Intrinsic::objectsize: {
5001     // If we don't know by now, we're never going to know.
5002     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5003
5004     assert(CI && "Non-constant type in __builtin_object_size?");
5005
5006     SDValue Arg = getValue(I.getCalledValue());
5007     EVT Ty = Arg.getValueType();
5008
5009     if (CI->isZero())
5010       Res = DAG.getConstant(-1ULL, Ty);
5011     else
5012       Res = DAG.getConstant(0, Ty);
5013
5014     setValue(&I, Res);
5015     return 0;
5016   }
5017   case Intrinsic::var_annotation:
5018     // Discard annotate attributes
5019     return 0;
5020
5021   case Intrinsic::init_trampoline: {
5022     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5023
5024     SDValue Ops[6];
5025     Ops[0] = getRoot();
5026     Ops[1] = getValue(I.getArgOperand(0));
5027     Ops[2] = getValue(I.getArgOperand(1));
5028     Ops[3] = getValue(I.getArgOperand(2));
5029     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5030     Ops[5] = DAG.getSrcValue(F);
5031
5032     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6);
5033
5034     DAG.setRoot(Res);
5035     return 0;
5036   }
5037   case Intrinsic::adjust_trampoline: {
5038     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl,
5039                              TLI.getPointerTy(),
5040                              getValue(I.getArgOperand(0))));
5041     return 0;
5042   }
5043   case Intrinsic::gcroot:
5044     if (GFI) {
5045       const Value *Alloca = I.getArgOperand(0);
5046       const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5047
5048       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5049       GFI->addStackRoot(FI->getIndex(), TypeMap);
5050     }
5051     return 0;
5052   case Intrinsic::gcread:
5053   case Intrinsic::gcwrite:
5054     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5055     return 0;
5056   case Intrinsic::flt_rounds:
5057     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
5058     return 0;
5059
5060   case Intrinsic::expect: {
5061     // Just replace __builtin_expect(exp, c) with EXP.
5062     setValue(&I, getValue(I.getArgOperand(0)));
5063     return 0;
5064   }
5065
5066   case Intrinsic::trap: {
5067     StringRef TrapFuncName = getTrapFunctionName();
5068     if (TrapFuncName.empty()) {
5069       DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
5070       return 0;
5071     }
5072     TargetLowering::ArgListTy Args;
5073     std::pair<SDValue, SDValue> Result =
5074       TLI.LowerCallTo(getRoot(), I.getType(),
5075                  false, false, false, false, 0, CallingConv::C,
5076                  /*isTailCall=*/false, /*isReturnValueUsed=*/true,
5077                  DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5078                  Args, DAG, getCurDebugLoc());
5079     DAG.setRoot(Result.second);
5080     return 0;
5081   }
5082   case Intrinsic::uadd_with_overflow:
5083     return implVisitAluOverflow(I, ISD::UADDO);
5084   case Intrinsic::sadd_with_overflow:
5085     return implVisitAluOverflow(I, ISD::SADDO);
5086   case Intrinsic::usub_with_overflow:
5087     return implVisitAluOverflow(I, ISD::USUBO);
5088   case Intrinsic::ssub_with_overflow:
5089     return implVisitAluOverflow(I, ISD::SSUBO);
5090   case Intrinsic::umul_with_overflow:
5091     return implVisitAluOverflow(I, ISD::UMULO);
5092   case Intrinsic::smul_with_overflow:
5093     return implVisitAluOverflow(I, ISD::SMULO);
5094
5095   case Intrinsic::prefetch: {
5096     SDValue Ops[5];
5097     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5098     Ops[0] = getRoot();
5099     Ops[1] = getValue(I.getArgOperand(0));
5100     Ops[2] = getValue(I.getArgOperand(1));
5101     Ops[3] = getValue(I.getArgOperand(2));
5102     Ops[4] = getValue(I.getArgOperand(3));
5103     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
5104                                         DAG.getVTList(MVT::Other),
5105                                         &Ops[0], 5,
5106                                         EVT::getIntegerVT(*Context, 8),
5107                                         MachinePointerInfo(I.getArgOperand(0)),
5108                                         0, /* align */
5109                                         false, /* volatile */
5110                                         rw==0, /* read */
5111                                         rw==1)); /* write */
5112     return 0;
5113   }
5114
5115   case Intrinsic::invariant_start:
5116   case Intrinsic::lifetime_start:
5117     // Discard region information.
5118     setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5119     return 0;
5120   case Intrinsic::invariant_end:
5121   case Intrinsic::lifetime_end:
5122     // Discard region information.
5123     return 0;
5124   }
5125 }
5126
5127 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5128                                       bool isTailCall,
5129                                       MachineBasicBlock *LandingPad) {
5130   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5131   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5132   Type *RetTy = FTy->getReturnType();
5133   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5134   MCSymbol *BeginLabel = 0;
5135
5136   TargetLowering::ArgListTy Args;
5137   TargetLowering::ArgListEntry Entry;
5138   Args.reserve(CS.arg_size());
5139
5140   // Check whether the function can return without sret-demotion.
5141   SmallVector<ISD::OutputArg, 4> Outs;
5142   SmallVector<uint64_t, 4> Offsets;
5143   GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5144                 Outs, TLI, &Offsets);
5145
5146   bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5147                                            DAG.getMachineFunction(),
5148                                            FTy->isVarArg(), Outs,
5149                                            FTy->getContext());
5150
5151   SDValue DemoteStackSlot;
5152   int DemoteStackIdx = -100;
5153
5154   if (!CanLowerReturn) {
5155     uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
5156                       FTy->getReturnType());
5157     unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
5158                       FTy->getReturnType());
5159     MachineFunction &MF = DAG.getMachineFunction();
5160     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5161     Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5162
5163     DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5164     Entry.Node = DemoteStackSlot;
5165     Entry.Ty = StackSlotPtrType;
5166     Entry.isSExt = false;
5167     Entry.isZExt = false;
5168     Entry.isInReg = false;
5169     Entry.isSRet = true;
5170     Entry.isNest = false;
5171     Entry.isByVal = false;
5172     Entry.Alignment = Align;
5173     Args.push_back(Entry);
5174     RetTy = Type::getVoidTy(FTy->getContext());
5175   }
5176
5177   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5178        i != e; ++i) {
5179     const Value *V = *i;
5180
5181     // Skip empty types
5182     if (V->getType()->isEmptyTy())
5183       continue;
5184
5185     SDValue ArgNode = getValue(V);
5186     Entry.Node = ArgNode; Entry.Ty = V->getType();
5187
5188     unsigned attrInd = i - CS.arg_begin() + 1;
5189     Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
5190     Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
5191     Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5192     Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
5193     Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
5194     Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5195     Entry.Alignment = CS.getParamAlignment(attrInd);
5196     Args.push_back(Entry);
5197   }
5198
5199   if (LandingPad) {
5200     // Insert a label before the invoke call to mark the try range.  This can be
5201     // used to detect deletion of the invoke via the MachineModuleInfo.
5202     BeginLabel = MMI.getContext().CreateTempSymbol();
5203
5204     // For SjLj, keep track of which landing pads go with which invokes
5205     // so as to maintain the ordering of pads in the LSDA.
5206     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5207     if (CallSiteIndex) {
5208       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5209       LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5210
5211       // Now that the call site is handled, stop tracking it.
5212       MMI.setCurrentCallSite(0);
5213     }
5214
5215     // Both PendingLoads and PendingExports must be flushed here;
5216     // this call might not return.
5217     (void)getRoot();
5218     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5219   }
5220
5221   // Check if target-independent constraints permit a tail call here.
5222   // Target-dependent constraints are checked within TLI.LowerCallTo.
5223   if (isTailCall &&
5224       !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5225     isTailCall = false;
5226
5227   // If there's a possibility that fast-isel has already selected some amount
5228   // of the current basic block, don't emit a tail call.
5229   if (isTailCall && EnableFastISel)
5230     isTailCall = false;
5231
5232   std::pair<SDValue,SDValue> Result =
5233     TLI.LowerCallTo(getRoot(), RetTy,
5234                     CS.paramHasAttr(0, Attribute::SExt),
5235                     CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
5236                     CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
5237                     CS.getCallingConv(),
5238                     isTailCall,
5239                     !CS.getInstruction()->use_empty(),
5240                     Callee, Args, DAG, getCurDebugLoc());
5241   assert((isTailCall || Result.second.getNode()) &&
5242          "Non-null chain expected with non-tail call!");
5243   assert((Result.second.getNode() || !Result.first.getNode()) &&
5244          "Null value expected with tail call!");
5245   if (Result.first.getNode()) {
5246     setValue(CS.getInstruction(), Result.first);
5247   } else if (!CanLowerReturn && Result.second.getNode()) {
5248     // The instruction result is the result of loading from the
5249     // hidden sret parameter.
5250     SmallVector<EVT, 1> PVTs;
5251     Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5252
5253     ComputeValueVTs(TLI, PtrRetTy, PVTs);
5254     assert(PVTs.size() == 1 && "Pointers should fit in one register");
5255     EVT PtrVT = PVTs[0];
5256     unsigned NumValues = Outs.size();
5257     SmallVector<SDValue, 4> Values(NumValues);
5258     SmallVector<SDValue, 4> Chains(NumValues);
5259
5260     for (unsigned i = 0; i < NumValues; ++i) {
5261       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5262                                 DemoteStackSlot,
5263                                 DAG.getConstant(Offsets[i], PtrVT));
5264       SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
5265                               Add,
5266                   MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5267                               false, false, 1);
5268       Values[i] = L;
5269       Chains[i] = L.getValue(1);
5270     }
5271
5272     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5273                                 MVT::Other, &Chains[0], NumValues);
5274     PendingLoads.push_back(Chain);
5275
5276     // Collect the legal value parts into potentially illegal values
5277     // that correspond to the original function's return values.
5278     SmallVector<EVT, 4> RetTys;
5279     RetTy = FTy->getReturnType();
5280     ComputeValueVTs(TLI, RetTy, RetTys);
5281     ISD::NodeType AssertOp = ISD::DELETED_NODE;
5282     SmallVector<SDValue, 4> ReturnValues;
5283     unsigned CurReg = 0;
5284     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5285       EVT VT = RetTys[I];
5286       EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
5287       unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
5288
5289       SDValue ReturnValue =
5290         getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
5291                          RegisterVT, VT, AssertOp);
5292       ReturnValues.push_back(ReturnValue);
5293       CurReg += NumRegs;
5294     }
5295
5296     setValue(CS.getInstruction(),
5297              DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5298                          DAG.getVTList(&RetTys[0], RetTys.size()),
5299                          &ReturnValues[0], ReturnValues.size()));
5300   }
5301
5302   // Assign order to nodes here. If the call does not produce a result, it won't
5303   // be mapped to a SDNode and visit() will not assign it an order number.
5304   if (!Result.second.getNode()) {
5305     // As a special case, a null chain means that a tail call has been emitted and
5306     // the DAG root is already updated.
5307     HasTailCall = true;
5308     ++SDNodeOrder;
5309     AssignOrderingToNode(DAG.getRoot().getNode());
5310   } else {
5311     DAG.setRoot(Result.second);
5312     ++SDNodeOrder;
5313     AssignOrderingToNode(Result.second.getNode());
5314   }
5315
5316   if (LandingPad) {
5317     // Insert a label at the end of the invoke call to mark the try range.  This
5318     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5319     MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5320     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5321
5322     // Inform MachineModuleInfo of range.
5323     MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5324   }
5325 }
5326
5327 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5328 /// value is equal or not-equal to zero.
5329 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5330   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5331        UI != E; ++UI) {
5332     if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5333       if (IC->isEquality())
5334         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5335           if (C->isNullValue())
5336             continue;
5337     // Unknown instruction.
5338     return false;
5339   }
5340   return true;
5341 }
5342
5343 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5344                              Type *LoadTy,
5345                              SelectionDAGBuilder &Builder) {
5346
5347   // Check to see if this load can be trivially constant folded, e.g. if the
5348   // input is from a string literal.
5349   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5350     // Cast pointer to the type we really want to load.
5351     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5352                                          PointerType::getUnqual(LoadTy));
5353
5354     if (const Constant *LoadCst =
5355           ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5356                                        Builder.TD))
5357       return Builder.getValue(LoadCst);
5358   }
5359
5360   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5361   // still constant memory, the input chain can be the entry node.
5362   SDValue Root;
5363   bool ConstantMemory = false;
5364
5365   // Do not serialize (non-volatile) loads of constant memory with anything.
5366   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5367     Root = Builder.DAG.getEntryNode();
5368     ConstantMemory = true;
5369   } else {
5370     // Do not serialize non-volatile loads against each other.
5371     Root = Builder.DAG.getRoot();
5372   }
5373
5374   SDValue Ptr = Builder.getValue(PtrVal);
5375   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5376                                         Ptr, MachinePointerInfo(PtrVal),
5377                                         false /*volatile*/,
5378                                         false /*nontemporal*/, 1 /* align=1 */);
5379
5380   if (!ConstantMemory)
5381     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5382   return LoadVal;
5383 }
5384
5385
5386 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5387 /// If so, return true and lower it, otherwise return false and it will be
5388 /// lowered like a normal call.
5389 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5390   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5391   if (I.getNumArgOperands() != 3)
5392     return false;
5393
5394   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5395   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5396       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5397       !I.getType()->isIntegerTy())
5398     return false;
5399
5400   const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5401
5402   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5403   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5404   if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5405     bool ActuallyDoIt = true;
5406     MVT LoadVT;
5407     Type *LoadTy;
5408     switch (Size->getZExtValue()) {
5409     default:
5410       LoadVT = MVT::Other;
5411       LoadTy = 0;
5412       ActuallyDoIt = false;
5413       break;
5414     case 2:
5415       LoadVT = MVT::i16;
5416       LoadTy = Type::getInt16Ty(Size->getContext());
5417       break;
5418     case 4:
5419       LoadVT = MVT::i32;
5420       LoadTy = Type::getInt32Ty(Size->getContext());
5421       break;
5422     case 8:
5423       LoadVT = MVT::i64;
5424       LoadTy = Type::getInt64Ty(Size->getContext());
5425       break;
5426         /*
5427     case 16:
5428       LoadVT = MVT::v4i32;
5429       LoadTy = Type::getInt32Ty(Size->getContext());
5430       LoadTy = VectorType::get(LoadTy, 4);
5431       break;
5432          */
5433     }
5434
5435     // This turns into unaligned loads.  We only do this if the target natively
5436     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5437     // we'll only produce a small number of byte loads.
5438
5439     // Require that we can find a legal MVT, and only do this if the target
5440     // supports unaligned loads of that type.  Expanding into byte loads would
5441     // bloat the code.
5442     if (ActuallyDoIt && Size->getZExtValue() > 4) {
5443       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5444       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5445       if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5446         ActuallyDoIt = false;
5447     }
5448
5449     if (ActuallyDoIt) {
5450       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5451       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5452
5453       SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5454                                  ISD::SETNE);
5455       EVT CallVT = TLI.getValueType(I.getType(), true);
5456       setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5457       return true;
5458     }
5459   }
5460
5461
5462   return false;
5463 }
5464
5465
5466 void SelectionDAGBuilder::visitCall(const CallInst &I) {
5467   // Handle inline assembly differently.
5468   if (isa<InlineAsm>(I.getCalledValue())) {
5469     visitInlineAsm(&I);
5470     return;
5471   }
5472
5473   // See if any floating point values are being passed to this function. This is
5474   // used to emit an undefined reference to fltused on Windows.
5475   FunctionType *FT =
5476     cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5477   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5478   if (FT->isVarArg() &&
5479       !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5480     for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5481       Type* T = I.getArgOperand(i)->getType();
5482       for (po_iterator<Type*> i = po_begin(T), e = po_end(T);
5483            i != e; ++i) {
5484         if (!i->isFloatingPointTy()) continue;
5485         MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5486         break;
5487       }
5488     }
5489   }
5490
5491   const char *RenameFn = 0;
5492   if (Function *F = I.getCalledFunction()) {
5493     if (F->isDeclaration()) {
5494       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5495         if (unsigned IID = II->getIntrinsicID(F)) {
5496           RenameFn = visitIntrinsicCall(I, IID);
5497           if (!RenameFn)
5498             return;
5499         }
5500       }
5501       if (unsigned IID = F->getIntrinsicID()) {
5502         RenameFn = visitIntrinsicCall(I, IID);
5503         if (!RenameFn)
5504           return;
5505       }
5506     }
5507
5508     // Check for well-known libc/libm calls.  If the function is internal, it
5509     // can't be a library call.
5510     if (!F->hasLocalLinkage() && F->hasName()) {
5511       StringRef Name = F->getName();
5512       if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5513         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5514             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5515             I.getType() == I.getArgOperand(0)->getType() &&
5516             I.getType() == I.getArgOperand(1)->getType()) {
5517           SDValue LHS = getValue(I.getArgOperand(0));
5518           SDValue RHS = getValue(I.getArgOperand(1));
5519           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5520                                    LHS.getValueType(), LHS, RHS));
5521           return;
5522         }
5523       } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5524         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5525             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5526             I.getType() == I.getArgOperand(0)->getType()) {
5527           SDValue Tmp = getValue(I.getArgOperand(0));
5528           setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5529                                    Tmp.getValueType(), Tmp));
5530           return;
5531         }
5532       } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5533         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5534             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5535             I.getType() == I.getArgOperand(0)->getType() &&
5536             I.onlyReadsMemory()) {
5537           SDValue Tmp = getValue(I.getArgOperand(0));
5538           setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5539                                    Tmp.getValueType(), Tmp));
5540           return;
5541         }
5542       } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5543         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5544             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5545             I.getType() == I.getArgOperand(0)->getType() &&
5546             I.onlyReadsMemory()) {
5547           SDValue Tmp = getValue(I.getArgOperand(0));
5548           setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5549                                    Tmp.getValueType(), Tmp));
5550           return;
5551         }
5552       } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5553         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5554             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5555             I.getType() == I.getArgOperand(0)->getType() &&
5556             I.onlyReadsMemory()) {
5557           SDValue Tmp = getValue(I.getArgOperand(0));
5558           setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5559                                    Tmp.getValueType(), Tmp));
5560           return;
5561         }
5562       } else if (Name == "memcmp") {
5563         if (visitMemCmpCall(I))
5564           return;
5565       }
5566     }
5567   }
5568
5569   SDValue Callee;
5570   if (!RenameFn)
5571     Callee = getValue(I.getCalledValue());
5572   else
5573     Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5574
5575   // Check if we can potentially perform a tail call. More detailed checking is
5576   // be done within LowerCallTo, after more information about the call is known.
5577   LowerCallTo(&I, Callee, I.isTailCall());
5578 }
5579
5580 namespace {
5581
5582 /// AsmOperandInfo - This contains information for each constraint that we are
5583 /// lowering.
5584 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5585 public:
5586   /// CallOperand - If this is the result output operand or a clobber
5587   /// this is null, otherwise it is the incoming operand to the CallInst.
5588   /// This gets modified as the asm is processed.
5589   SDValue CallOperand;
5590
5591   /// AssignedRegs - If this is a register or register class operand, this
5592   /// contains the set of register corresponding to the operand.
5593   RegsForValue AssignedRegs;
5594
5595   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5596     : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5597   }
5598
5599   /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5600   /// busy in OutputRegs/InputRegs.
5601   void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5602                          std::set<unsigned> &OutputRegs,
5603                          std::set<unsigned> &InputRegs,
5604                          const TargetRegisterInfo &TRI) const {
5605     if (isOutReg) {
5606       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5607         MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5608     }
5609     if (isInReg) {
5610       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5611         MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5612     }
5613   }
5614
5615   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5616   /// corresponds to.  If there is no Value* for this operand, it returns
5617   /// MVT::Other.
5618   EVT getCallOperandValEVT(LLVMContext &Context,
5619                            const TargetLowering &TLI,
5620                            const TargetData *TD) const {
5621     if (CallOperandVal == 0) return MVT::Other;
5622
5623     if (isa<BasicBlock>(CallOperandVal))
5624       return TLI.getPointerTy();
5625
5626     llvm::Type *OpTy = CallOperandVal->getType();
5627
5628     // FIXME: code duplicated from TargetLowering::ParseConstraints().
5629     // If this is an indirect operand, the operand is a pointer to the
5630     // accessed type.
5631     if (isIndirect) {
5632       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5633       if (!PtrTy)
5634         report_fatal_error("Indirect operand for inline asm not a pointer!");
5635       OpTy = PtrTy->getElementType();
5636     }
5637
5638     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5639     if (StructType *STy = dyn_cast<StructType>(OpTy))
5640       if (STy->getNumElements() == 1)
5641         OpTy = STy->getElementType(0);
5642
5643     // If OpTy is not a single value, it may be a struct/union that we
5644     // can tile with integers.
5645     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5646       unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5647       switch (BitSize) {
5648       default: break;
5649       case 1:
5650       case 8:
5651       case 16:
5652       case 32:
5653       case 64:
5654       case 128:
5655         OpTy = IntegerType::get(Context, BitSize);
5656         break;
5657       }
5658     }
5659
5660     return TLI.getValueType(OpTy, true);
5661   }
5662
5663 private:
5664   /// MarkRegAndAliases - Mark the specified register and all aliases in the
5665   /// specified set.
5666   static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5667                                 const TargetRegisterInfo &TRI) {
5668     assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5669     Regs.insert(Reg);
5670     if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5671       for (; *Aliases; ++Aliases)
5672         Regs.insert(*Aliases);
5673   }
5674 };
5675
5676 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5677
5678 } // end anonymous namespace
5679
5680 /// GetRegistersForValue - Assign registers (virtual or physical) for the
5681 /// specified operand.  We prefer to assign virtual registers, to allow the
5682 /// register allocator to handle the assignment process.  However, if the asm
5683 /// uses features that we can't model on machineinstrs, we have SDISel do the
5684 /// allocation.  This produces generally horrible, but correct, code.
5685 ///
5686 ///   OpInfo describes the operand.
5687 ///   Input and OutputRegs are the set of already allocated physical registers.
5688 ///
5689 static void GetRegistersForValue(SelectionDAG &DAG,
5690                                  const TargetLowering &TLI,
5691                                  DebugLoc DL,
5692                                  SDISelAsmOperandInfo &OpInfo,
5693                                  std::set<unsigned> &OutputRegs,
5694                                  std::set<unsigned> &InputRegs) {
5695   LLVMContext &Context = *DAG.getContext();
5696
5697   // Compute whether this value requires an input register, an output register,
5698   // or both.
5699   bool isOutReg = false;
5700   bool isInReg = false;
5701   switch (OpInfo.Type) {
5702   case InlineAsm::isOutput:
5703     isOutReg = true;
5704
5705     // If there is an input constraint that matches this, we need to reserve
5706     // the input register so no other inputs allocate to it.
5707     isInReg = OpInfo.hasMatchingInput();
5708     break;
5709   case InlineAsm::isInput:
5710     isInReg = true;
5711     isOutReg = false;
5712     break;
5713   case InlineAsm::isClobber:
5714     isOutReg = true;
5715     isInReg = true;
5716     break;
5717   }
5718
5719
5720   MachineFunction &MF = DAG.getMachineFunction();
5721   SmallVector<unsigned, 4> Regs;
5722
5723   // If this is a constraint for a single physreg, or a constraint for a
5724   // register class, find it.
5725   std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5726     TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5727                                      OpInfo.ConstraintVT);
5728
5729   unsigned NumRegs = 1;
5730   if (OpInfo.ConstraintVT != MVT::Other) {
5731     // If this is a FP input in an integer register (or visa versa) insert a bit
5732     // cast of the input value.  More generally, handle any case where the input
5733     // value disagrees with the register class we plan to stick this in.
5734     if (OpInfo.Type == InlineAsm::isInput &&
5735         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5736       // Try to convert to the first EVT that the reg class contains.  If the
5737       // types are identical size, use a bitcast to convert (e.g. two differing
5738       // vector types).
5739       EVT RegVT = *PhysReg.second->vt_begin();
5740       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5741         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5742                                          RegVT, OpInfo.CallOperand);
5743         OpInfo.ConstraintVT = RegVT;
5744       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5745         // If the input is a FP value and we want it in FP registers, do a
5746         // bitcast to the corresponding integer type.  This turns an f64 value
5747         // into i64, which can be passed with two i32 values on a 32-bit
5748         // machine.
5749         RegVT = EVT::getIntegerVT(Context,
5750                                   OpInfo.ConstraintVT.getSizeInBits());
5751         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5752                                          RegVT, OpInfo.CallOperand);
5753         OpInfo.ConstraintVT = RegVT;
5754       }
5755     }
5756
5757     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5758   }
5759
5760   EVT RegVT;
5761   EVT ValueVT = OpInfo.ConstraintVT;
5762
5763   // If this is a constraint for a specific physical register, like {r17},
5764   // assign it now.
5765   if (unsigned AssignedReg = PhysReg.first) {
5766     const TargetRegisterClass *RC = PhysReg.second;
5767     if (OpInfo.ConstraintVT == MVT::Other)
5768       ValueVT = *RC->vt_begin();
5769
5770     // Get the actual register value type.  This is important, because the user
5771     // may have asked for (e.g.) the AX register in i32 type.  We need to
5772     // remember that AX is actually i16 to get the right extension.
5773     RegVT = *RC->vt_begin();
5774
5775     // This is a explicit reference to a physical register.
5776     Regs.push_back(AssignedReg);
5777
5778     // If this is an expanded reference, add the rest of the regs to Regs.
5779     if (NumRegs != 1) {
5780       TargetRegisterClass::iterator I = RC->begin();
5781       for (; *I != AssignedReg; ++I)
5782         assert(I != RC->end() && "Didn't find reg!");
5783
5784       // Already added the first reg.
5785       --NumRegs; ++I;
5786       for (; NumRegs; --NumRegs, ++I) {
5787         assert(I != RC->end() && "Ran out of registers to allocate!");
5788         Regs.push_back(*I);
5789       }
5790     }
5791
5792     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5793     const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5794     OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5795     return;
5796   }
5797
5798   // Otherwise, if this was a reference to an LLVM register class, create vregs
5799   // for this reference.
5800   if (const TargetRegisterClass *RC = PhysReg.second) {
5801     RegVT = *RC->vt_begin();
5802     if (OpInfo.ConstraintVT == MVT::Other)
5803       ValueVT = RegVT;
5804
5805     // Create the appropriate number of virtual registers.
5806     MachineRegisterInfo &RegInfo = MF.getRegInfo();
5807     for (; NumRegs; --NumRegs)
5808       Regs.push_back(RegInfo.createVirtualRegister(RC));
5809
5810     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5811     return;
5812   }
5813
5814   // Otherwise, we couldn't allocate enough registers for this.
5815 }
5816
5817 /// visitInlineAsm - Handle a call to an InlineAsm object.
5818 ///
5819 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5820   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5821
5822   /// ConstraintOperands - Information about all of the constraints.
5823   SDISelAsmOperandInfoVector ConstraintOperands;
5824
5825   std::set<unsigned> OutputRegs, InputRegs;
5826
5827   TargetLowering::AsmOperandInfoVector
5828     TargetConstraints = TLI.ParseConstraints(CS);
5829
5830   bool hasMemory = false;
5831
5832   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5833   unsigned ResNo = 0;   // ResNo - The result number of the next output.
5834   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5835     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5836     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5837
5838     EVT OpVT = MVT::Other;
5839
5840     // Compute the value type for each operand.
5841     switch (OpInfo.Type) {
5842     case InlineAsm::isOutput:
5843       // Indirect outputs just consume an argument.
5844       if (OpInfo.isIndirect) {
5845         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5846         break;
5847       }
5848
5849       // The return value of the call is this value.  As such, there is no
5850       // corresponding argument.
5851       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5852       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5853         OpVT = TLI.getValueType(STy->getElementType(ResNo));
5854       } else {
5855         assert(ResNo == 0 && "Asm only has one result!");
5856         OpVT = TLI.getValueType(CS.getType());
5857       }
5858       ++ResNo;
5859       break;
5860     case InlineAsm::isInput:
5861       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5862       break;
5863     case InlineAsm::isClobber:
5864       // Nothing to do.
5865       break;
5866     }
5867
5868     // If this is an input or an indirect output, process the call argument.
5869     // BasicBlocks are labels, currently appearing only in asm's.
5870     if (OpInfo.CallOperandVal) {
5871       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5872         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5873       } else {
5874         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5875       }
5876
5877       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5878     }
5879
5880     OpInfo.ConstraintVT = OpVT;
5881
5882     // Indirect operand accesses access memory.
5883     if (OpInfo.isIndirect)
5884       hasMemory = true;
5885     else {
5886       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5887         TargetLowering::ConstraintType
5888           CType = TLI.getConstraintType(OpInfo.Codes[j]);
5889         if (CType == TargetLowering::C_Memory) {
5890           hasMemory = true;
5891           break;
5892         }
5893       }
5894     }
5895   }
5896
5897   SDValue Chain, Flag;
5898
5899   // We won't need to flush pending loads if this asm doesn't touch
5900   // memory and is nonvolatile.
5901   if (hasMemory || IA->hasSideEffects())
5902     Chain = getRoot();
5903   else
5904     Chain = DAG.getRoot();
5905
5906   // Second pass over the constraints: compute which constraint option to use
5907   // and assign registers to constraints that want a specific physreg.
5908   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5909     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5910
5911     // If this is an output operand with a matching input operand, look up the
5912     // matching input. If their types mismatch, e.g. one is an integer, the
5913     // other is floating point, or their sizes are different, flag it as an
5914     // error.
5915     if (OpInfo.hasMatchingInput()) {
5916       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5917
5918       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5919         std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5920           TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5921                                            OpInfo.ConstraintVT);
5922         std::pair<unsigned, const TargetRegisterClass*> InputRC =
5923           TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
5924                                            Input.ConstraintVT);
5925         if ((OpInfo.ConstraintVT.isInteger() !=
5926              Input.ConstraintVT.isInteger()) ||
5927             (MatchRC.second != InputRC.second)) {
5928           report_fatal_error("Unsupported asm: input constraint"
5929                              " with a matching output constraint of"
5930                              " incompatible type!");
5931         }
5932         Input.ConstraintVT = OpInfo.ConstraintVT;
5933       }
5934     }
5935
5936     // Compute the constraint code and ConstraintType to use.
5937     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5938
5939     // If this is a memory input, and if the operand is not indirect, do what we
5940     // need to to provide an address for the memory input.
5941     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5942         !OpInfo.isIndirect) {
5943       assert((OpInfo.isMultipleAlternative ||
5944               (OpInfo.Type == InlineAsm::isInput)) &&
5945              "Can only indirectify direct input operands!");
5946
5947       // Memory operands really want the address of the value.  If we don't have
5948       // an indirect input, put it in the constpool if we can, otherwise spill
5949       // it to a stack slot.
5950       // TODO: This isn't quite right. We need to handle these according to
5951       // the addressing mode that the constraint wants. Also, this may take
5952       // an additional register for the computation and we don't want that
5953       // either.
5954
5955       // If the operand is a float, integer, or vector constant, spill to a
5956       // constant pool entry to get its address.
5957       const Value *OpVal = OpInfo.CallOperandVal;
5958       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5959           isa<ConstantVector>(OpVal)) {
5960         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5961                                                  TLI.getPointerTy());
5962       } else {
5963         // Otherwise, create a stack slot and emit a store to it before the
5964         // asm.
5965         Type *Ty = OpVal->getType();
5966         uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5967         unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5968         MachineFunction &MF = DAG.getMachineFunction();
5969         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5970         SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5971         Chain = DAG.getStore(Chain, getCurDebugLoc(),
5972                              OpInfo.CallOperand, StackSlot,
5973                              MachinePointerInfo::getFixedStack(SSFI),
5974                              false, false, 0);
5975         OpInfo.CallOperand = StackSlot;
5976       }
5977
5978       // There is no longer a Value* corresponding to this operand.
5979       OpInfo.CallOperandVal = 0;
5980
5981       // It is now an indirect operand.
5982       OpInfo.isIndirect = true;
5983     }
5984
5985     // If this constraint is for a specific register, allocate it before
5986     // anything else.
5987     if (OpInfo.ConstraintType == TargetLowering::C_Register)
5988       GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5989                            InputRegs);
5990   }
5991
5992   // Second pass - Loop over all of the operands, assigning virtual or physregs
5993   // to register class operands.
5994   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5995     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5996
5997     // C_Register operands have already been allocated, Other/Memory don't need
5998     // to be.
5999     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6000       GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
6001                            InputRegs);
6002   }
6003
6004   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6005   std::vector<SDValue> AsmNodeOperands;
6006   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6007   AsmNodeOperands.push_back(
6008           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6009                                       TLI.getPointerTy()));
6010
6011   // If we have a !srcloc metadata node associated with it, we want to attach
6012   // this to the ultimately generated inline asm machineinstr.  To do this, we
6013   // pass in the third operand as this (potentially null) inline asm MDNode.
6014   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6015   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6016
6017   // Remember the HasSideEffect and AlignStack bits as operand 3.
6018   unsigned ExtraInfo = 0;
6019   if (IA->hasSideEffects())
6020     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6021   if (IA->isAlignStack())
6022     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6023   AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6024                                                   TLI.getPointerTy()));
6025
6026   // Loop over all of the inputs, copying the operand values into the
6027   // appropriate registers and processing the output regs.
6028   RegsForValue RetValRegs;
6029
6030   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6031   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6032
6033   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6034     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6035
6036     switch (OpInfo.Type) {
6037     case InlineAsm::isOutput: {
6038       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6039           OpInfo.ConstraintType != TargetLowering::C_Register) {
6040         // Memory output, or 'other' output (e.g. 'X' constraint).
6041         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6042
6043         // Add information to the INLINEASM node to know about this output.
6044         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6045         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6046                                                         TLI.getPointerTy()));
6047         AsmNodeOperands.push_back(OpInfo.CallOperand);
6048         break;
6049       }
6050
6051       // Otherwise, this is a register or register class output.
6052
6053       // Copy the output from the appropriate register.  Find a register that
6054       // we can use.
6055       if (OpInfo.AssignedRegs.Regs.empty())
6056         report_fatal_error("Couldn't allocate output reg for constraint '" +
6057                            Twine(OpInfo.ConstraintCode) + "'!");
6058
6059       // If this is an indirect operand, store through the pointer after the
6060       // asm.
6061       if (OpInfo.isIndirect) {
6062         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6063                                                       OpInfo.CallOperandVal));
6064       } else {
6065         // This is the result value of the call.
6066         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6067         // Concatenate this output onto the outputs list.
6068         RetValRegs.append(OpInfo.AssignedRegs);
6069       }
6070
6071       // Add information to the INLINEASM node to know that this register is
6072       // set.
6073       OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6074                                            InlineAsm::Kind_RegDefEarlyClobber :
6075                                                InlineAsm::Kind_RegDef,
6076                                                false,
6077                                                0,
6078                                                DAG,
6079                                                AsmNodeOperands);
6080       break;
6081     }
6082     case InlineAsm::isInput: {
6083       SDValue InOperandVal = OpInfo.CallOperand;
6084
6085       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6086         // If this is required to match an output register we have already set,
6087         // just use its register.
6088         unsigned OperandNo = OpInfo.getMatchedOperand();
6089
6090         // Scan until we find the definition we already emitted of this operand.
6091         // When we find it, create a RegsForValue operand.
6092         unsigned CurOp = InlineAsm::Op_FirstOperand;
6093         for (; OperandNo; --OperandNo) {
6094           // Advance to the next operand.
6095           unsigned OpFlag =
6096             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6097           assert((InlineAsm::isRegDefKind(OpFlag) ||
6098                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6099                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6100           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6101         }
6102
6103         unsigned OpFlag =
6104           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6105         if (InlineAsm::isRegDefKind(OpFlag) ||
6106             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6107           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6108           if (OpInfo.isIndirect) {
6109             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6110             LLVMContext &Ctx = *DAG.getContext();
6111             Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6112                           " don't know how to handle tied "
6113                           "indirect register inputs");
6114           }
6115
6116           RegsForValue MatchedRegs;
6117           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6118           EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
6119           MatchedRegs.RegVTs.push_back(RegVT);
6120           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6121           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6122                i != e; ++i)
6123             MatchedRegs.Regs.push_back
6124               (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6125
6126           // Use the produced MatchedRegs object to
6127           MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6128                                     Chain, &Flag);
6129           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6130                                            true, OpInfo.getMatchedOperand(),
6131                                            DAG, AsmNodeOperands);
6132           break;
6133         }
6134
6135         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6136         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6137                "Unexpected number of operands");
6138         // Add information to the INLINEASM node to know about this input.
6139         // See InlineAsm.h isUseOperandTiedToDef.
6140         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6141                                                     OpInfo.getMatchedOperand());
6142         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6143                                                         TLI.getPointerTy()));
6144         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6145         break;
6146       }
6147
6148       // Treat indirect 'X' constraint as memory.
6149       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6150           OpInfo.isIndirect)
6151         OpInfo.ConstraintType = TargetLowering::C_Memory;
6152
6153       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6154         std::vector<SDValue> Ops;
6155         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6156                                          Ops, DAG);
6157         if (Ops.empty())
6158           report_fatal_error("Invalid operand for inline asm constraint '" +
6159                              Twine(OpInfo.ConstraintCode) + "'!");
6160
6161         // Add information to the INLINEASM node to know about this input.
6162         unsigned ResOpType =
6163           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6164         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6165                                                         TLI.getPointerTy()));
6166         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6167         break;
6168       }
6169
6170       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6171         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6172         assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6173                "Memory operands expect pointer values");
6174
6175         // Add information to the INLINEASM node to know about this input.
6176         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6177         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6178                                                         TLI.getPointerTy()));
6179         AsmNodeOperands.push_back(InOperandVal);
6180         break;
6181       }
6182
6183       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6184               OpInfo.ConstraintType == TargetLowering::C_Register) &&
6185              "Unknown constraint type!");
6186       assert(!OpInfo.isIndirect &&
6187              "Don't know how to handle indirect register inputs yet!");
6188
6189       // Copy the input into the appropriate registers.
6190       if (OpInfo.AssignedRegs.Regs.empty())
6191         report_fatal_error("Couldn't allocate input reg for constraint '" +
6192                            Twine(OpInfo.ConstraintCode) + "'!");
6193
6194       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6195                                         Chain, &Flag);
6196
6197       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6198                                                DAG, AsmNodeOperands);
6199       break;
6200     }
6201     case InlineAsm::isClobber: {
6202       // Add the clobbered value to the operand list, so that the register
6203       // allocator is aware that the physreg got clobbered.
6204       if (!OpInfo.AssignedRegs.Regs.empty())
6205         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6206                                                  false, 0, DAG,
6207                                                  AsmNodeOperands);
6208       break;
6209     }
6210     }
6211   }
6212
6213   // Finish up input operands.  Set the input chain and add the flag last.
6214   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6215   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6216
6217   Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6218                       DAG.getVTList(MVT::Other, MVT::Glue),
6219                       &AsmNodeOperands[0], AsmNodeOperands.size());
6220   Flag = Chain.getValue(1);
6221
6222   // If this asm returns a register value, copy the result from that register
6223   // and set it as the value of the call.
6224   if (!RetValRegs.Regs.empty()) {
6225     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6226                                              Chain, &Flag);
6227
6228     // FIXME: Why don't we do this for inline asms with MRVs?
6229     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6230       EVT ResultType = TLI.getValueType(CS.getType());
6231
6232       // If any of the results of the inline asm is a vector, it may have the
6233       // wrong width/num elts.  This can happen for register classes that can
6234       // contain multiple different value types.  The preg or vreg allocated may
6235       // not have the same VT as was expected.  Convert it to the right type
6236       // with bit_convert.
6237       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6238         Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6239                           ResultType, Val);
6240
6241       } else if (ResultType != Val.getValueType() &&
6242                  ResultType.isInteger() && Val.getValueType().isInteger()) {
6243         // If a result value was tied to an input value, the computed result may
6244         // have a wider width than the expected result.  Extract the relevant
6245         // portion.
6246         Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6247       }
6248
6249       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6250     }
6251
6252     setValue(CS.getInstruction(), Val);
6253     // Don't need to use this as a chain in this case.
6254     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6255       return;
6256   }
6257
6258   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6259
6260   // Process indirect outputs, first output all of the flagged copies out of
6261   // physregs.
6262   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6263     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6264     const Value *Ptr = IndirectStoresToEmit[i].second;
6265     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6266                                              Chain, &Flag);
6267     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6268   }
6269
6270   // Emit the non-flagged stores from the physregs.
6271   SmallVector<SDValue, 8> OutChains;
6272   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6273     SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6274                                StoresToEmit[i].first,
6275                                getValue(StoresToEmit[i].second),
6276                                MachinePointerInfo(StoresToEmit[i].second),
6277                                false, false, 0);
6278     OutChains.push_back(Val);
6279   }
6280
6281   if (!OutChains.empty())
6282     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6283                         &OutChains[0], OutChains.size());
6284
6285   DAG.setRoot(Chain);
6286 }
6287
6288 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6289   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6290                           MVT::Other, getRoot(),
6291                           getValue(I.getArgOperand(0)),
6292                           DAG.getSrcValue(I.getArgOperand(0))));
6293 }
6294
6295 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6296   const TargetData &TD = *TLI.getTargetData();
6297   SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6298                            getRoot(), getValue(I.getOperand(0)),
6299                            DAG.getSrcValue(I.getOperand(0)),
6300                            TD.getABITypeAlignment(I.getType()));
6301   setValue(&I, V);
6302   DAG.setRoot(V.getValue(1));
6303 }
6304
6305 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6306   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6307                           MVT::Other, getRoot(),
6308                           getValue(I.getArgOperand(0)),
6309                           DAG.getSrcValue(I.getArgOperand(0))));
6310 }
6311
6312 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6313   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6314                           MVT::Other, getRoot(),
6315                           getValue(I.getArgOperand(0)),
6316                           getValue(I.getArgOperand(1)),
6317                           DAG.getSrcValue(I.getArgOperand(0)),
6318                           DAG.getSrcValue(I.getArgOperand(1))));
6319 }
6320
6321 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
6322 /// implementation, which just calls LowerCall.
6323 /// FIXME: When all targets are
6324 /// migrated to using LowerCall, this hook should be integrated into SDISel.
6325 std::pair<SDValue, SDValue>
6326 TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy,
6327                             bool RetSExt, bool RetZExt, bool isVarArg,
6328                             bool isInreg, unsigned NumFixedArgs,
6329                             CallingConv::ID CallConv, bool isTailCall,
6330                             bool isReturnValueUsed,
6331                             SDValue Callee,
6332                             ArgListTy &Args, SelectionDAG &DAG,
6333                             DebugLoc dl) const {
6334   // Handle all of the outgoing arguments.
6335   SmallVector<ISD::OutputArg, 32> Outs;
6336   SmallVector<SDValue, 32> OutVals;
6337   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6338     SmallVector<EVT, 4> ValueVTs;
6339     ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6340     for (unsigned Value = 0, NumValues = ValueVTs.size();
6341          Value != NumValues; ++Value) {
6342       EVT VT = ValueVTs[Value];
6343       Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6344       SDValue Op = SDValue(Args[i].Node.getNode(),
6345                            Args[i].Node.getResNo() + Value);
6346       ISD::ArgFlagsTy Flags;
6347       unsigned OriginalAlignment =
6348         getTargetData()->getABITypeAlignment(ArgTy);
6349
6350       if (Args[i].isZExt)
6351         Flags.setZExt();
6352       if (Args[i].isSExt)
6353         Flags.setSExt();
6354       if (Args[i].isInReg)
6355         Flags.setInReg();
6356       if (Args[i].isSRet)
6357         Flags.setSRet();
6358       if (Args[i].isByVal) {
6359         Flags.setByVal();
6360         PointerType *Ty = cast<PointerType>(Args[i].Ty);
6361         Type *ElementTy = Ty->getElementType();
6362         Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6363         // For ByVal, alignment should come from FE.  BE will guess if this
6364         // info is not there but there are cases it cannot get right.
6365         unsigned FrameAlign;
6366         if (Args[i].Alignment)
6367           FrameAlign = Args[i].Alignment;
6368         else
6369           FrameAlign = getByValTypeAlignment(ElementTy);
6370         Flags.setByValAlign(FrameAlign);
6371       }
6372       if (Args[i].isNest)
6373         Flags.setNest();
6374       Flags.setOrigAlign(OriginalAlignment);
6375
6376       EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6377       unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6378       SmallVector<SDValue, 4> Parts(NumParts);
6379       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6380
6381       if (Args[i].isSExt)
6382         ExtendKind = ISD::SIGN_EXTEND;
6383       else if (Args[i].isZExt)
6384         ExtendKind = ISD::ZERO_EXTEND;
6385
6386       getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6387                      PartVT, ExtendKind);
6388
6389       for (unsigned j = 0; j != NumParts; ++j) {
6390         // if it isn't first piece, alignment must be 1
6391         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6392                                i < NumFixedArgs);
6393         if (NumParts > 1 && j == 0)
6394           MyFlags.Flags.setSplit();
6395         else if (j != 0)
6396           MyFlags.Flags.setOrigAlign(1);
6397
6398         Outs.push_back(MyFlags);
6399         OutVals.push_back(Parts[j]);
6400       }
6401     }
6402   }
6403
6404   // Handle the incoming return values from the call.
6405   SmallVector<ISD::InputArg, 32> Ins;
6406   SmallVector<EVT, 4> RetTys;
6407   ComputeValueVTs(*this, RetTy, RetTys);
6408   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6409     EVT VT = RetTys[I];
6410     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6411     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6412     for (unsigned i = 0; i != NumRegs; ++i) {
6413       ISD::InputArg MyFlags;
6414       MyFlags.VT = RegisterVT.getSimpleVT();
6415       MyFlags.Used = isReturnValueUsed;
6416       if (RetSExt)
6417         MyFlags.Flags.setSExt();
6418       if (RetZExt)
6419         MyFlags.Flags.setZExt();
6420       if (isInreg)
6421         MyFlags.Flags.setInReg();
6422       Ins.push_back(MyFlags);
6423     }
6424   }
6425
6426   SmallVector<SDValue, 4> InVals;
6427   Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6428                     Outs, OutVals, Ins, dl, DAG, InVals);
6429
6430   // Verify that the target's LowerCall behaved as expected.
6431   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6432          "LowerCall didn't return a valid chain!");
6433   assert((!isTailCall || InVals.empty()) &&
6434          "LowerCall emitted a return value for a tail call!");
6435   assert((isTailCall || InVals.size() == Ins.size()) &&
6436          "LowerCall didn't emit the correct number of values!");
6437
6438   // For a tail call, the return value is merely live-out and there aren't
6439   // any nodes in the DAG representing it. Return a special value to
6440   // indicate that a tail call has been emitted and no more Instructions
6441   // should be processed in the current block.
6442   if (isTailCall) {
6443     DAG.setRoot(Chain);
6444     return std::make_pair(SDValue(), SDValue());
6445   }
6446
6447   DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6448           assert(InVals[i].getNode() &&
6449                  "LowerCall emitted a null value!");
6450           assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6451                  "LowerCall emitted a value with the wrong type!");
6452         });
6453
6454   // Collect the legal value parts into potentially illegal values
6455   // that correspond to the original function's return values.
6456   ISD::NodeType AssertOp = ISD::DELETED_NODE;
6457   if (RetSExt)
6458     AssertOp = ISD::AssertSext;
6459   else if (RetZExt)
6460     AssertOp = ISD::AssertZext;
6461   SmallVector<SDValue, 4> ReturnValues;
6462   unsigned CurReg = 0;
6463   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6464     EVT VT = RetTys[I];
6465     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6466     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6467
6468     ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6469                                             NumRegs, RegisterVT, VT,
6470                                             AssertOp));
6471     CurReg += NumRegs;
6472   }
6473
6474   // For a function returning void, there is no return value. We can't create
6475   // such a node, so we just return a null return value in that case. In
6476   // that case, nothing will actually look at the value.
6477   if (ReturnValues.empty())
6478     return std::make_pair(SDValue(), Chain);
6479
6480   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6481                             DAG.getVTList(&RetTys[0], RetTys.size()),
6482                             &ReturnValues[0], ReturnValues.size());
6483   return std::make_pair(Res, Chain);
6484 }
6485
6486 void TargetLowering::LowerOperationWrapper(SDNode *N,
6487                                            SmallVectorImpl<SDValue> &Results,
6488                                            SelectionDAG &DAG) const {
6489   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6490   if (Res.getNode())
6491     Results.push_back(Res);
6492 }
6493
6494 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6495   llvm_unreachable("LowerOperation not implemented for this target!");
6496   return SDValue();
6497 }
6498
6499 void
6500 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6501   SDValue Op = getNonRegisterValue(V);
6502   assert((Op.getOpcode() != ISD::CopyFromReg ||
6503           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6504          "Copy from a reg to the same reg!");
6505   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6506
6507   RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6508   SDValue Chain = DAG.getEntryNode();
6509   RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6510   PendingExports.push_back(Chain);
6511 }
6512
6513 #include "llvm/CodeGen/SelectionDAGISel.h"
6514
6515 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6516 /// entry block, return true.  This includes arguments used by switches, since
6517 /// the switch may expand into multiple basic blocks.
6518 static bool isOnlyUsedInEntryBlock(const Argument *A) {
6519   // With FastISel active, we may be splitting blocks, so force creation
6520   // of virtual registers for all non-dead arguments.
6521   if (EnableFastISel)
6522     return A->use_empty();
6523
6524   const BasicBlock *Entry = A->getParent()->begin();
6525   for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6526        UI != E; ++UI) {
6527     const User *U = *UI;
6528     if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6529       return false;  // Use not in entry block.
6530   }
6531   return true;
6532 }
6533
6534 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6535   // If this is the entry block, emit arguments.
6536   const Function &F = *LLVMBB->getParent();
6537   SelectionDAG &DAG = SDB->DAG;
6538   DebugLoc dl = SDB->getCurDebugLoc();
6539   const TargetData *TD = TLI.getTargetData();
6540   SmallVector<ISD::InputArg, 16> Ins;
6541
6542   // Check whether the function can return without sret-demotion.
6543   SmallVector<ISD::OutputArg, 4> Outs;
6544   GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6545                 Outs, TLI);
6546
6547   if (!FuncInfo->CanLowerReturn) {
6548     // Put in an sret pointer parameter before all the other parameters.
6549     SmallVector<EVT, 1> ValueVTs;
6550     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6551
6552     // NOTE: Assuming that a pointer will never break down to more than one VT
6553     // or one register.
6554     ISD::ArgFlagsTy Flags;
6555     Flags.setSRet();
6556     EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6557     ISD::InputArg RetArg(Flags, RegisterVT, true);
6558     Ins.push_back(RetArg);
6559   }
6560
6561   // Set up the incoming argument description vector.
6562   unsigned Idx = 1;
6563   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6564        I != E; ++I, ++Idx) {
6565     SmallVector<EVT, 4> ValueVTs;
6566     ComputeValueVTs(TLI, I->getType(), ValueVTs);
6567     bool isArgValueUsed = !I->use_empty();
6568     for (unsigned Value = 0, NumValues = ValueVTs.size();
6569          Value != NumValues; ++Value) {
6570       EVT VT = ValueVTs[Value];
6571       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6572       ISD::ArgFlagsTy Flags;
6573       unsigned OriginalAlignment =
6574         TD->getABITypeAlignment(ArgTy);
6575
6576       if (F.paramHasAttr(Idx, Attribute::ZExt))
6577         Flags.setZExt();
6578       if (F.paramHasAttr(Idx, Attribute::SExt))
6579         Flags.setSExt();
6580       if (F.paramHasAttr(Idx, Attribute::InReg))
6581         Flags.setInReg();
6582       if (F.paramHasAttr(Idx, Attribute::StructRet))
6583         Flags.setSRet();
6584       if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6585         Flags.setByVal();
6586         PointerType *Ty = cast<PointerType>(I->getType());
6587         Type *ElementTy = Ty->getElementType();
6588         Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6589         // For ByVal, alignment should be passed from FE.  BE will guess if
6590         // this info is not there but there are cases it cannot get right.
6591         unsigned FrameAlign;
6592         if (F.getParamAlignment(Idx))
6593           FrameAlign = F.getParamAlignment(Idx);
6594         else
6595           FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6596         Flags.setByValAlign(FrameAlign);
6597       }
6598       if (F.paramHasAttr(Idx, Attribute::Nest))
6599         Flags.setNest();
6600       Flags.setOrigAlign(OriginalAlignment);
6601
6602       EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6603       unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6604       for (unsigned i = 0; i != NumRegs; ++i) {
6605         ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6606         if (NumRegs > 1 && i == 0)
6607           MyFlags.Flags.setSplit();
6608         // if it isn't first piece, alignment must be 1
6609         else if (i > 0)
6610           MyFlags.Flags.setOrigAlign(1);
6611         Ins.push_back(MyFlags);
6612       }
6613     }
6614   }
6615
6616   // Call the target to set up the argument values.
6617   SmallVector<SDValue, 8> InVals;
6618   SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6619                                              F.isVarArg(), Ins,
6620                                              dl, DAG, InVals);
6621
6622   // Verify that the target's LowerFormalArguments behaved as expected.
6623   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6624          "LowerFormalArguments didn't return a valid chain!");
6625   assert(InVals.size() == Ins.size() &&
6626          "LowerFormalArguments didn't emit the correct number of values!");
6627   DEBUG({
6628       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6629         assert(InVals[i].getNode() &&
6630                "LowerFormalArguments emitted a null value!");
6631         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6632                "LowerFormalArguments emitted a value with the wrong type!");
6633       }
6634     });
6635
6636   // Update the DAG with the new chain value resulting from argument lowering.
6637   DAG.setRoot(NewRoot);
6638
6639   // Set up the argument values.
6640   unsigned i = 0;
6641   Idx = 1;
6642   if (!FuncInfo->CanLowerReturn) {
6643     // Create a virtual register for the sret pointer, and put in a copy
6644     // from the sret argument into it.
6645     SmallVector<EVT, 1> ValueVTs;
6646     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6647     EVT VT = ValueVTs[0];
6648     EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6649     ISD::NodeType AssertOp = ISD::DELETED_NODE;
6650     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6651                                         RegVT, VT, AssertOp);
6652
6653     MachineFunction& MF = SDB->DAG.getMachineFunction();
6654     MachineRegisterInfo& RegInfo = MF.getRegInfo();
6655     unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6656     FuncInfo->DemoteRegister = SRetReg;
6657     NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6658                                     SRetReg, ArgValue);
6659     DAG.setRoot(NewRoot);
6660
6661     // i indexes lowered arguments.  Bump it past the hidden sret argument.
6662     // Idx indexes LLVM arguments.  Don't touch it.
6663     ++i;
6664   }
6665
6666   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6667       ++I, ++Idx) {
6668     SmallVector<SDValue, 4> ArgValues;
6669     SmallVector<EVT, 4> ValueVTs;
6670     ComputeValueVTs(TLI, I->getType(), ValueVTs);
6671     unsigned NumValues = ValueVTs.size();
6672
6673     // If this argument is unused then remember its value. It is used to generate
6674     // debugging information.
6675     if (I->use_empty() && NumValues)
6676       SDB->setUnusedArgValue(I, InVals[i]);
6677
6678     for (unsigned Val = 0; Val != NumValues; ++Val) {
6679       EVT VT = ValueVTs[Val];
6680       EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6681       unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6682
6683       if (!I->use_empty()) {
6684         ISD::NodeType AssertOp = ISD::DELETED_NODE;
6685         if (F.paramHasAttr(Idx, Attribute::SExt))
6686           AssertOp = ISD::AssertSext;
6687         else if (F.paramHasAttr(Idx, Attribute::ZExt))
6688           AssertOp = ISD::AssertZext;
6689
6690         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6691                                              NumParts, PartVT, VT,
6692                                              AssertOp));
6693       }
6694
6695       i += NumParts;
6696     }
6697
6698     // We don't need to do anything else for unused arguments.
6699     if (ArgValues.empty())
6700       continue;
6701
6702     // Note down frame index.
6703     if (FrameIndexSDNode *FI =
6704         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6705       FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6706
6707     SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6708                                      SDB->getCurDebugLoc());
6709
6710     SDB->setValue(I, Res);
6711     if (!EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6712       if (LoadSDNode *LNode = 
6713           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6714         if (FrameIndexSDNode *FI =
6715             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6716         FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6717     }
6718
6719     // If this argument is live outside of the entry block, insert a copy from
6720     // wherever we got it to the vreg that other BB's will reference it as.
6721     if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6722       // If we can, though, try to skip creating an unnecessary vreg.
6723       // FIXME: This isn't very clean... it would be nice to make this more
6724       // general.  It's also subtly incompatible with the hacks FastISel
6725       // uses with vregs.
6726       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6727       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6728         FuncInfo->ValueMap[I] = Reg;
6729         continue;
6730       }
6731     }
6732     if (!isOnlyUsedInEntryBlock(I)) {
6733       FuncInfo->InitializeRegForValue(I);
6734       SDB->CopyToExportRegsIfNeeded(I);
6735     }
6736   }
6737
6738   assert(i == InVals.size() && "Argument register count mismatch!");
6739
6740   // Finally, if the target has anything special to do, allow it to do so.
6741   // FIXME: this should insert code into the DAG!
6742   EmitFunctionEntryCode();
6743 }
6744
6745 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6746 /// ensure constants are generated when needed.  Remember the virtual registers
6747 /// that need to be added to the Machine PHI nodes as input.  We cannot just
6748 /// directly add them, because expansion might result in multiple MBB's for one
6749 /// BB.  As such, the start of the BB might correspond to a different MBB than
6750 /// the end.
6751 ///
6752 void
6753 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6754   const TerminatorInst *TI = LLVMBB->getTerminator();
6755
6756   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6757
6758   // Check successor nodes' PHI nodes that expect a constant to be available
6759   // from this block.
6760   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6761     const BasicBlock *SuccBB = TI->getSuccessor(succ);
6762     if (!isa<PHINode>(SuccBB->begin())) continue;
6763     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6764
6765     // If this terminator has multiple identical successors (common for
6766     // switches), only handle each succ once.
6767     if (!SuccsHandled.insert(SuccMBB)) continue;
6768
6769     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6770
6771     // At this point we know that there is a 1-1 correspondence between LLVM PHI
6772     // nodes and Machine PHI nodes, but the incoming operands have not been
6773     // emitted yet.
6774     for (BasicBlock::const_iterator I = SuccBB->begin();
6775          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6776       // Ignore dead phi's.
6777       if (PN->use_empty()) continue;
6778
6779       // Skip empty types
6780       if (PN->getType()->isEmptyTy())
6781         continue;
6782
6783       unsigned Reg;
6784       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6785
6786       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6787         unsigned &RegOut = ConstantsOut[C];
6788         if (RegOut == 0) {
6789           RegOut = FuncInfo.CreateRegs(C->getType());
6790           CopyValueToVirtualRegister(C, RegOut);
6791         }
6792         Reg = RegOut;
6793       } else {
6794         DenseMap<const Value *, unsigned>::iterator I =
6795           FuncInfo.ValueMap.find(PHIOp);
6796         if (I != FuncInfo.ValueMap.end())
6797           Reg = I->second;
6798         else {
6799           assert(isa<AllocaInst>(PHIOp) &&
6800                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6801                  "Didn't codegen value into a register!??");
6802           Reg = FuncInfo.CreateRegs(PHIOp->getType());
6803           CopyValueToVirtualRegister(PHIOp, Reg);
6804         }
6805       }
6806
6807       // Remember that this register needs to added to the machine PHI node as
6808       // the input for this MBB.
6809       SmallVector<EVT, 4> ValueVTs;
6810       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6811       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6812         EVT VT = ValueVTs[vti];
6813         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6814         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6815           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6816         Reg += NumRegisters;
6817       }
6818     }
6819   }
6820   ConstantsOut.clear();
6821 }