]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - contrib/llvm/tools/clang/lib/Parse/ParseDeclCXX.cpp
MFC r235864:
[FreeBSD/stable/9.git] / contrib / llvm / tools / clang / lib / Parse / ParseDeclCXX.cpp
1 //===--- ParseDeclCXX.cpp - C++ Declaration Parsing -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements the C++ Declaration portions of the Parser interfaces.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Basic/OperatorKinds.h"
15 #include "clang/Parse/Parser.h"
16 #include "clang/Parse/ParseDiagnostic.h"
17 #include "clang/Sema/DeclSpec.h"
18 #include "clang/Sema/Scope.h"
19 #include "clang/Sema/ParsedTemplate.h"
20 #include "clang/Sema/PrettyDeclStackTrace.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "RAIIObjectsForParser.h"
23 using namespace clang;
24
25 /// ParseNamespace - We know that the current token is a namespace keyword. This
26 /// may either be a top level namespace or a block-level namespace alias. If
27 /// there was an inline keyword, it has already been parsed.
28 ///
29 ///       namespace-definition: [C++ 7.3: basic.namespace]
30 ///         named-namespace-definition
31 ///         unnamed-namespace-definition
32 ///
33 ///       unnamed-namespace-definition:
34 ///         'inline'[opt] 'namespace' attributes[opt] '{' namespace-body '}'
35 ///
36 ///       named-namespace-definition:
37 ///         original-namespace-definition
38 ///         extension-namespace-definition
39 ///
40 ///       original-namespace-definition:
41 ///         'inline'[opt] 'namespace' identifier attributes[opt]
42 ///             '{' namespace-body '}'
43 ///
44 ///       extension-namespace-definition:
45 ///         'inline'[opt] 'namespace' original-namespace-name
46 ///             '{' namespace-body '}'
47 ///
48 ///       namespace-alias-definition:  [C++ 7.3.2: namespace.alias]
49 ///         'namespace' identifier '=' qualified-namespace-specifier ';'
50 ///
51 Decl *Parser::ParseNamespace(unsigned Context,
52                              SourceLocation &DeclEnd,
53                              SourceLocation InlineLoc) {
54   assert(Tok.is(tok::kw_namespace) && "Not a namespace!");
55   SourceLocation NamespaceLoc = ConsumeToken();  // eat the 'namespace'.
56   ObjCDeclContextSwitch ObjCDC(*this);
57     
58   if (Tok.is(tok::code_completion)) {
59     Actions.CodeCompleteNamespaceDecl(getCurScope());
60     cutOffParsing();
61     return 0;
62   }
63
64   SourceLocation IdentLoc;
65   IdentifierInfo *Ident = 0;
66   std::vector<SourceLocation> ExtraIdentLoc;
67   std::vector<IdentifierInfo*> ExtraIdent;
68   std::vector<SourceLocation> ExtraNamespaceLoc;
69
70   Token attrTok;
71
72   if (Tok.is(tok::identifier)) {
73     Ident = Tok.getIdentifierInfo();
74     IdentLoc = ConsumeToken();  // eat the identifier.
75     while (Tok.is(tok::coloncolon) && NextToken().is(tok::identifier)) {
76       ExtraNamespaceLoc.push_back(ConsumeToken());
77       ExtraIdent.push_back(Tok.getIdentifierInfo());
78       ExtraIdentLoc.push_back(ConsumeToken());
79     }
80   }
81
82   // Read label attributes, if present.
83   ParsedAttributes attrs(AttrFactory);
84   if (Tok.is(tok::kw___attribute)) {
85     attrTok = Tok;
86     ParseGNUAttributes(attrs);
87   }
88
89   if (Tok.is(tok::equal)) {
90     if (!attrs.empty())
91       Diag(attrTok, diag::err_unexpected_namespace_attributes_alias);
92     if (InlineLoc.isValid())
93       Diag(InlineLoc, diag::err_inline_namespace_alias)
94           << FixItHint::CreateRemoval(InlineLoc);
95     return ParseNamespaceAlias(NamespaceLoc, IdentLoc, Ident, DeclEnd);
96   }
97
98
99   BalancedDelimiterTracker T(*this, tok::l_brace);
100   if (T.consumeOpen()) {
101     if (!ExtraIdent.empty()) {
102       Diag(ExtraNamespaceLoc[0], diag::err_nested_namespaces_with_double_colon)
103           << SourceRange(ExtraNamespaceLoc.front(), ExtraIdentLoc.back());
104     }
105     Diag(Tok, Ident ? diag::err_expected_lbrace :
106          diag::err_expected_ident_lbrace);
107     return 0;
108   }
109
110   if (getCurScope()->isClassScope() || getCurScope()->isTemplateParamScope() || 
111       getCurScope()->isInObjcMethodScope() || getCurScope()->getBlockParent() || 
112       getCurScope()->getFnParent()) {
113     if (!ExtraIdent.empty()) {
114       Diag(ExtraNamespaceLoc[0], diag::err_nested_namespaces_with_double_colon)
115           << SourceRange(ExtraNamespaceLoc.front(), ExtraIdentLoc.back());
116     }
117     Diag(T.getOpenLocation(), diag::err_namespace_nonnamespace_scope);
118     SkipUntil(tok::r_brace, false);
119     return 0;
120   }
121
122   if (!ExtraIdent.empty()) {
123     TentativeParsingAction TPA(*this);
124     SkipUntil(tok::r_brace, /*StopAtSemi*/false, /*DontConsume*/true);
125     Token rBraceToken = Tok;
126     TPA.Revert();
127
128     if (!rBraceToken.is(tok::r_brace)) {
129       Diag(ExtraNamespaceLoc[0], diag::err_nested_namespaces_with_double_colon)
130           << SourceRange(ExtraNamespaceLoc.front(), ExtraIdentLoc.back());
131     } else {
132       std::string NamespaceFix;
133       for (std::vector<IdentifierInfo*>::iterator I = ExtraIdent.begin(),
134            E = ExtraIdent.end(); I != E; ++I) {
135         NamespaceFix += " { namespace ";
136         NamespaceFix += (*I)->getName();
137       }
138
139       std::string RBraces;
140       for (unsigned i = 0, e = ExtraIdent.size(); i != e; ++i)
141         RBraces +=  "} ";
142
143       Diag(ExtraNamespaceLoc[0], diag::err_nested_namespaces_with_double_colon)
144           << FixItHint::CreateReplacement(SourceRange(ExtraNamespaceLoc.front(),
145                                                       ExtraIdentLoc.back()),
146                                           NamespaceFix)
147           << FixItHint::CreateInsertion(rBraceToken.getLocation(), RBraces);
148     }
149   }
150
151   // If we're still good, complain about inline namespaces in non-C++0x now.
152   if (InlineLoc.isValid())
153     Diag(InlineLoc, getLangOpts().CPlusPlus0x ?
154          diag::warn_cxx98_compat_inline_namespace : diag::ext_inline_namespace);
155
156   // Enter a scope for the namespace.
157   ParseScope NamespaceScope(this, Scope::DeclScope);
158
159   Decl *NamespcDecl =
160     Actions.ActOnStartNamespaceDef(getCurScope(), InlineLoc, NamespaceLoc,
161                                    IdentLoc, Ident, T.getOpenLocation(), 
162                                    attrs.getList());
163
164   PrettyDeclStackTraceEntry CrashInfo(Actions, NamespcDecl, NamespaceLoc,
165                                       "parsing namespace");
166
167   // Parse the contents of the namespace.  This includes parsing recovery on 
168   // any improperly nested namespaces.
169   ParseInnerNamespace(ExtraIdentLoc, ExtraIdent, ExtraNamespaceLoc, 0,
170                       InlineLoc, attrs, T);
171
172   // Leave the namespace scope.
173   NamespaceScope.Exit();
174
175   DeclEnd = T.getCloseLocation();
176   Actions.ActOnFinishNamespaceDef(NamespcDecl, DeclEnd);
177
178   return NamespcDecl;
179 }
180
181 /// ParseInnerNamespace - Parse the contents of a namespace.
182 void Parser::ParseInnerNamespace(std::vector<SourceLocation>& IdentLoc,
183                                  std::vector<IdentifierInfo*>& Ident,
184                                  std::vector<SourceLocation>& NamespaceLoc,
185                                  unsigned int index, SourceLocation& InlineLoc,
186                                  ParsedAttributes& attrs,
187                                  BalancedDelimiterTracker &Tracker) {
188   if (index == Ident.size()) {
189     while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
190       ParsedAttributesWithRange attrs(AttrFactory);
191       MaybeParseCXX0XAttributes(attrs);
192       MaybeParseMicrosoftAttributes(attrs);
193       ParseExternalDeclaration(attrs);
194     }
195
196     // The caller is what called check -- we are simply calling
197     // the close for it.
198     Tracker.consumeClose();
199
200     return;
201   }
202
203   // Parse improperly nested namespaces.
204   ParseScope NamespaceScope(this, Scope::DeclScope);
205   Decl *NamespcDecl =
206     Actions.ActOnStartNamespaceDef(getCurScope(), SourceLocation(),
207                                    NamespaceLoc[index], IdentLoc[index],
208                                    Ident[index], Tracker.getOpenLocation(), 
209                                    attrs.getList());
210
211   ParseInnerNamespace(IdentLoc, Ident, NamespaceLoc, ++index, InlineLoc,
212                       attrs, Tracker);
213
214   NamespaceScope.Exit();
215
216   Actions.ActOnFinishNamespaceDef(NamespcDecl, Tracker.getCloseLocation());
217 }
218
219 /// ParseNamespaceAlias - Parse the part after the '=' in a namespace
220 /// alias definition.
221 ///
222 Decl *Parser::ParseNamespaceAlias(SourceLocation NamespaceLoc,
223                                   SourceLocation AliasLoc,
224                                   IdentifierInfo *Alias,
225                                   SourceLocation &DeclEnd) {
226   assert(Tok.is(tok::equal) && "Not equal token");
227
228   ConsumeToken(); // eat the '='.
229
230   if (Tok.is(tok::code_completion)) {
231     Actions.CodeCompleteNamespaceAliasDecl(getCurScope());
232     cutOffParsing();
233     return 0;
234   }
235
236   CXXScopeSpec SS;
237   // Parse (optional) nested-name-specifier.
238   ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
239
240   if (SS.isInvalid() || Tok.isNot(tok::identifier)) {
241     Diag(Tok, diag::err_expected_namespace_name);
242     // Skip to end of the definition and eat the ';'.
243     SkipUntil(tok::semi);
244     return 0;
245   }
246
247   // Parse identifier.
248   IdentifierInfo *Ident = Tok.getIdentifierInfo();
249   SourceLocation IdentLoc = ConsumeToken();
250
251   // Eat the ';'.
252   DeclEnd = Tok.getLocation();
253   ExpectAndConsume(tok::semi, diag::err_expected_semi_after_namespace_name,
254                    "", tok::semi);
255
256   return Actions.ActOnNamespaceAliasDef(getCurScope(), NamespaceLoc, AliasLoc, Alias,
257                                         SS, IdentLoc, Ident);
258 }
259
260 /// ParseLinkage - We know that the current token is a string_literal
261 /// and just before that, that extern was seen.
262 ///
263 ///       linkage-specification: [C++ 7.5p2: dcl.link]
264 ///         'extern' string-literal '{' declaration-seq[opt] '}'
265 ///         'extern' string-literal declaration
266 ///
267 Decl *Parser::ParseLinkage(ParsingDeclSpec &DS, unsigned Context) {
268   assert(Tok.is(tok::string_literal) && "Not a string literal!");
269   SmallString<8> LangBuffer;
270   bool Invalid = false;
271   StringRef Lang = PP.getSpelling(Tok, LangBuffer, &Invalid);
272   if (Invalid)
273     return 0;
274
275   // FIXME: This is incorrect: linkage-specifiers are parsed in translation
276   // phase 7, so string-literal concatenation is supposed to occur.
277   //   extern "" "C" "" "+" "+" { } is legal.
278   if (Tok.hasUDSuffix())
279     Diag(Tok, diag::err_invalid_string_udl);
280   SourceLocation Loc = ConsumeStringToken();
281
282   ParseScope LinkageScope(this, Scope::DeclScope);
283   Decl *LinkageSpec
284     = Actions.ActOnStartLinkageSpecification(getCurScope(),
285                                              DS.getSourceRange().getBegin(),
286                                              Loc, Lang,
287                                       Tok.is(tok::l_brace) ? Tok.getLocation()
288                                                            : SourceLocation());
289
290   ParsedAttributesWithRange attrs(AttrFactory);
291   MaybeParseCXX0XAttributes(attrs);
292   MaybeParseMicrosoftAttributes(attrs);
293
294   if (Tok.isNot(tok::l_brace)) {
295     // Reset the source range in DS, as the leading "extern"
296     // does not really belong to the inner declaration ...
297     DS.SetRangeStart(SourceLocation());
298     DS.SetRangeEnd(SourceLocation());
299     // ... but anyway remember that such an "extern" was seen.
300     DS.setExternInLinkageSpec(true);
301     ParseExternalDeclaration(attrs, &DS);
302     return Actions.ActOnFinishLinkageSpecification(getCurScope(), LinkageSpec,
303                                                    SourceLocation());
304   }
305
306   DS.abort();
307
308   ProhibitAttributes(attrs);
309
310   BalancedDelimiterTracker T(*this, tok::l_brace);
311   T.consumeOpen();
312   while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
313     ParsedAttributesWithRange attrs(AttrFactory);
314     MaybeParseCXX0XAttributes(attrs);
315     MaybeParseMicrosoftAttributes(attrs);
316     ParseExternalDeclaration(attrs);
317   }
318
319   T.consumeClose();
320   return Actions.ActOnFinishLinkageSpecification(getCurScope(), LinkageSpec,
321                                                  T.getCloseLocation());
322 }
323
324 /// ParseUsingDirectiveOrDeclaration - Parse C++ using using-declaration or
325 /// using-directive. Assumes that current token is 'using'.
326 Decl *Parser::ParseUsingDirectiveOrDeclaration(unsigned Context,
327                                          const ParsedTemplateInfo &TemplateInfo,
328                                                SourceLocation &DeclEnd,
329                                              ParsedAttributesWithRange &attrs,
330                                                Decl **OwnedType) {
331   assert(Tok.is(tok::kw_using) && "Not using token");
332   ObjCDeclContextSwitch ObjCDC(*this);
333   
334   // Eat 'using'.
335   SourceLocation UsingLoc = ConsumeToken();
336
337   if (Tok.is(tok::code_completion)) {
338     Actions.CodeCompleteUsing(getCurScope());
339     cutOffParsing();
340     return 0;
341   }
342
343   // 'using namespace' means this is a using-directive.
344   if (Tok.is(tok::kw_namespace)) {
345     // Template parameters are always an error here.
346     if (TemplateInfo.Kind) {
347       SourceRange R = TemplateInfo.getSourceRange();
348       Diag(UsingLoc, diag::err_templated_using_directive)
349         << R << FixItHint::CreateRemoval(R);
350     }
351
352     return ParseUsingDirective(Context, UsingLoc, DeclEnd, attrs);
353   }
354
355   // Otherwise, it must be a using-declaration or an alias-declaration.
356
357   // Using declarations can't have attributes.
358   ProhibitAttributes(attrs);
359
360   return ParseUsingDeclaration(Context, TemplateInfo, UsingLoc, DeclEnd,
361                                     AS_none, OwnedType);
362 }
363
364 /// ParseUsingDirective - Parse C++ using-directive, assumes
365 /// that current token is 'namespace' and 'using' was already parsed.
366 ///
367 ///       using-directive: [C++ 7.3.p4: namespace.udir]
368 ///        'using' 'namespace' ::[opt] nested-name-specifier[opt]
369 ///                 namespace-name ;
370 /// [GNU] using-directive:
371 ///        'using' 'namespace' ::[opt] nested-name-specifier[opt]
372 ///                 namespace-name attributes[opt] ;
373 ///
374 Decl *Parser::ParseUsingDirective(unsigned Context,
375                                   SourceLocation UsingLoc,
376                                   SourceLocation &DeclEnd,
377                                   ParsedAttributes &attrs) {
378   assert(Tok.is(tok::kw_namespace) && "Not 'namespace' token");
379
380   // Eat 'namespace'.
381   SourceLocation NamespcLoc = ConsumeToken();
382
383   if (Tok.is(tok::code_completion)) {
384     Actions.CodeCompleteUsingDirective(getCurScope());
385     cutOffParsing();
386     return 0;
387   }
388
389   CXXScopeSpec SS;
390   // Parse (optional) nested-name-specifier.
391   ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
392
393   IdentifierInfo *NamespcName = 0;
394   SourceLocation IdentLoc = SourceLocation();
395
396   // Parse namespace-name.
397   if (SS.isInvalid() || Tok.isNot(tok::identifier)) {
398     Diag(Tok, diag::err_expected_namespace_name);
399     // If there was invalid namespace name, skip to end of decl, and eat ';'.
400     SkipUntil(tok::semi);
401     // FIXME: Are there cases, when we would like to call ActOnUsingDirective?
402     return 0;
403   }
404
405   // Parse identifier.
406   NamespcName = Tok.getIdentifierInfo();
407   IdentLoc = ConsumeToken();
408
409   // Parse (optional) attributes (most likely GNU strong-using extension).
410   bool GNUAttr = false;
411   if (Tok.is(tok::kw___attribute)) {
412     GNUAttr = true;
413     ParseGNUAttributes(attrs);
414   }
415
416   // Eat ';'.
417   DeclEnd = Tok.getLocation();
418   ExpectAndConsume(tok::semi,
419                    GNUAttr ? diag::err_expected_semi_after_attribute_list
420                            : diag::err_expected_semi_after_namespace_name, 
421                    "", tok::semi);
422
423   return Actions.ActOnUsingDirective(getCurScope(), UsingLoc, NamespcLoc, SS,
424                                      IdentLoc, NamespcName, attrs.getList());
425 }
426
427 /// ParseUsingDeclaration - Parse C++ using-declaration or alias-declaration.
428 /// Assumes that 'using' was already seen.
429 ///
430 ///     using-declaration: [C++ 7.3.p3: namespace.udecl]
431 ///       'using' 'typename'[opt] ::[opt] nested-name-specifier
432 ///               unqualified-id
433 ///       'using' :: unqualified-id
434 ///
435 ///     alias-declaration: C++0x [decl.typedef]p2
436 ///       'using' identifier = type-id ;
437 ///
438 Decl *Parser::ParseUsingDeclaration(unsigned Context,
439                                     const ParsedTemplateInfo &TemplateInfo,
440                                     SourceLocation UsingLoc,
441                                     SourceLocation &DeclEnd,
442                                     AccessSpecifier AS,
443                                     Decl **OwnedType) {
444   CXXScopeSpec SS;
445   SourceLocation TypenameLoc;
446   bool IsTypeName;
447
448   // Ignore optional 'typename'.
449   // FIXME: This is wrong; we should parse this as a typename-specifier.
450   if (Tok.is(tok::kw_typename)) {
451     TypenameLoc = Tok.getLocation();
452     ConsumeToken();
453     IsTypeName = true;
454   }
455   else
456     IsTypeName = false;
457
458   // Parse nested-name-specifier.
459   ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
460
461   // Check nested-name specifier.
462   if (SS.isInvalid()) {
463     SkipUntil(tok::semi);
464     return 0;
465   }
466
467   // Parse the unqualified-id. We allow parsing of both constructor and
468   // destructor names and allow the action module to diagnose any semantic
469   // errors.
470   SourceLocation TemplateKWLoc;
471   UnqualifiedId Name;
472   if (ParseUnqualifiedId(SS,
473                          /*EnteringContext=*/false,
474                          /*AllowDestructorName=*/true,
475                          /*AllowConstructorName=*/true,
476                          ParsedType(),
477                          TemplateKWLoc,
478                          Name)) {
479     SkipUntil(tok::semi);
480     return 0;
481   }
482
483   ParsedAttributes attrs(AttrFactory);
484
485   // Maybe this is an alias-declaration.
486   bool IsAliasDecl = Tok.is(tok::equal);
487   TypeResult TypeAlias;
488   if (IsAliasDecl) {
489     // TODO: Attribute support. C++0x attributes may appear before the equals.
490     // Where can GNU attributes appear?
491     ConsumeToken();
492
493     Diag(Tok.getLocation(), getLangOpts().CPlusPlus0x ?
494          diag::warn_cxx98_compat_alias_declaration :
495          diag::ext_alias_declaration);
496
497     // Type alias templates cannot be specialized.
498     int SpecKind = -1;
499     if (TemplateInfo.Kind == ParsedTemplateInfo::Template &&
500         Name.getKind() == UnqualifiedId::IK_TemplateId)
501       SpecKind = 0;
502     if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization)
503       SpecKind = 1;
504     if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation)
505       SpecKind = 2;
506     if (SpecKind != -1) {
507       SourceRange Range;
508       if (SpecKind == 0)
509         Range = SourceRange(Name.TemplateId->LAngleLoc,
510                             Name.TemplateId->RAngleLoc);
511       else
512         Range = TemplateInfo.getSourceRange();
513       Diag(Range.getBegin(), diag::err_alias_declaration_specialization)
514         << SpecKind << Range;
515       SkipUntil(tok::semi);
516       return 0;
517     }
518
519     // Name must be an identifier.
520     if (Name.getKind() != UnqualifiedId::IK_Identifier) {
521       Diag(Name.StartLocation, diag::err_alias_declaration_not_identifier);
522       // No removal fixit: can't recover from this.
523       SkipUntil(tok::semi);
524       return 0;
525     } else if (IsTypeName)
526       Diag(TypenameLoc, diag::err_alias_declaration_not_identifier)
527         << FixItHint::CreateRemoval(SourceRange(TypenameLoc,
528                              SS.isNotEmpty() ? SS.getEndLoc() : TypenameLoc));
529     else if (SS.isNotEmpty())
530       Diag(SS.getBeginLoc(), diag::err_alias_declaration_not_identifier)
531         << FixItHint::CreateRemoval(SS.getRange());
532
533     TypeAlias = ParseTypeName(0, TemplateInfo.Kind ?
534                               Declarator::AliasTemplateContext :
535                               Declarator::AliasDeclContext, AS, OwnedType);
536   } else
537     // Parse (optional) attributes (most likely GNU strong-using extension).
538     MaybeParseGNUAttributes(attrs);
539
540   // Eat ';'.
541   DeclEnd = Tok.getLocation();
542   ExpectAndConsume(tok::semi, diag::err_expected_semi_after,
543                    !attrs.empty() ? "attributes list" :
544                    IsAliasDecl ? "alias declaration" : "using declaration",
545                    tok::semi);
546
547   // Diagnose an attempt to declare a templated using-declaration.
548   // In C++0x, alias-declarations can be templates:
549   //   template <...> using id = type;
550   if (TemplateInfo.Kind && !IsAliasDecl) {
551     SourceRange R = TemplateInfo.getSourceRange();
552     Diag(UsingLoc, diag::err_templated_using_declaration)
553       << R << FixItHint::CreateRemoval(R);
554
555     // Unfortunately, we have to bail out instead of recovering by
556     // ignoring the parameters, just in case the nested name specifier
557     // depends on the parameters.
558     return 0;
559   }
560
561   // "typename" keyword is allowed for identifiers only,
562   // because it may be a type definition.
563   if (IsTypeName && Name.getKind() != UnqualifiedId::IK_Identifier) {
564     Diag(Name.getSourceRange().getBegin(), diag::err_typename_identifiers_only)
565       << FixItHint::CreateRemoval(SourceRange(TypenameLoc));
566     // Proceed parsing, but reset the IsTypeName flag.
567     IsTypeName = false;
568   }
569
570   if (IsAliasDecl) {
571     TemplateParameterLists *TemplateParams = TemplateInfo.TemplateParams;
572     MultiTemplateParamsArg TemplateParamsArg(Actions,
573       TemplateParams ? TemplateParams->data() : 0,
574       TemplateParams ? TemplateParams->size() : 0);
575     return Actions.ActOnAliasDeclaration(getCurScope(), AS, TemplateParamsArg,
576                                          UsingLoc, Name, TypeAlias);
577   }
578
579   return Actions.ActOnUsingDeclaration(getCurScope(), AS, true, UsingLoc, SS,
580                                        Name, attrs.getList(),
581                                        IsTypeName, TypenameLoc);
582 }
583
584 /// ParseStaticAssertDeclaration - Parse C++0x or C11 static_assert-declaration.
585 ///
586 /// [C++0x] static_assert-declaration:
587 ///           static_assert ( constant-expression  ,  string-literal  ) ;
588 ///
589 /// [C11]   static_assert-declaration:
590 ///           _Static_assert ( constant-expression  ,  string-literal  ) ;
591 ///
592 Decl *Parser::ParseStaticAssertDeclaration(SourceLocation &DeclEnd){
593   assert((Tok.is(tok::kw_static_assert) || Tok.is(tok::kw__Static_assert)) &&
594          "Not a static_assert declaration");
595
596   if (Tok.is(tok::kw__Static_assert) && !getLangOpts().C11)
597     Diag(Tok, diag::ext_c11_static_assert);
598   if (Tok.is(tok::kw_static_assert))
599     Diag(Tok, diag::warn_cxx98_compat_static_assert);
600
601   SourceLocation StaticAssertLoc = ConsumeToken();
602
603   BalancedDelimiterTracker T(*this, tok::l_paren);
604   if (T.consumeOpen()) {
605     Diag(Tok, diag::err_expected_lparen);
606     return 0;
607   }
608
609   ExprResult AssertExpr(ParseConstantExpression());
610   if (AssertExpr.isInvalid()) {
611     SkipUntil(tok::semi);
612     return 0;
613   }
614
615   if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "", tok::semi))
616     return 0;
617
618   if (!isTokenStringLiteral()) {
619     Diag(Tok, diag::err_expected_string_literal);
620     SkipUntil(tok::semi);
621     return 0;
622   }
623
624   ExprResult AssertMessage(ParseStringLiteralExpression());
625   if (AssertMessage.isInvalid()) {
626     SkipUntil(tok::semi);
627     return 0;
628   }
629
630   T.consumeClose();
631
632   DeclEnd = Tok.getLocation();
633   ExpectAndConsumeSemi(diag::err_expected_semi_after_static_assert);
634
635   return Actions.ActOnStaticAssertDeclaration(StaticAssertLoc,
636                                               AssertExpr.take(),
637                                               AssertMessage.take(),
638                                               T.getCloseLocation());
639 }
640
641 /// ParseDecltypeSpecifier - Parse a C++0x decltype specifier.
642 ///
643 /// 'decltype' ( expression )
644 ///
645 SourceLocation Parser::ParseDecltypeSpecifier(DeclSpec &DS) {
646   assert((Tok.is(tok::kw_decltype) || Tok.is(tok::annot_decltype))
647            && "Not a decltype specifier");
648   
649
650   ExprResult Result;
651   SourceLocation StartLoc = Tok.getLocation();
652   SourceLocation EndLoc;
653
654   if (Tok.is(tok::annot_decltype)) {
655     Result = getExprAnnotation(Tok);
656     EndLoc = Tok.getAnnotationEndLoc();
657     ConsumeToken();
658     if (Result.isInvalid()) {
659       DS.SetTypeSpecError();
660       return EndLoc;
661     }
662   } else {
663     if (Tok.getIdentifierInfo()->isStr("decltype"))
664       Diag(Tok, diag::warn_cxx98_compat_decltype);
665
666     ConsumeToken();
667
668     BalancedDelimiterTracker T(*this, tok::l_paren);
669     if (T.expectAndConsume(diag::err_expected_lparen_after,
670                            "decltype", tok::r_paren)) {
671       DS.SetTypeSpecError();
672       return T.getOpenLocation() == Tok.getLocation() ?
673              StartLoc : T.getOpenLocation();
674     }
675
676     // Parse the expression
677
678     // C++0x [dcl.type.simple]p4:
679     //   The operand of the decltype specifier is an unevaluated operand.
680     EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
681                                                  0, /*IsDecltype=*/true);
682     Result = ParseExpression();
683     if (Result.isInvalid()) {
684       SkipUntil(tok::r_paren);
685       DS.SetTypeSpecError();
686       return StartLoc;
687     }
688
689     // Match the ')'
690     T.consumeClose();
691     if (T.getCloseLocation().isInvalid()) {
692       DS.SetTypeSpecError();
693       // FIXME: this should return the location of the last token
694       //        that was consumed (by "consumeClose()")
695       return T.getCloseLocation();
696     }
697
698     Result = Actions.ActOnDecltypeExpression(Result.take());
699     if (Result.isInvalid()) {
700       DS.SetTypeSpecError();
701       return T.getCloseLocation();
702     }
703
704     EndLoc = T.getCloseLocation();
705   }
706
707   const char *PrevSpec = 0;
708   unsigned DiagID;
709   // Check for duplicate type specifiers (e.g. "int decltype(a)").
710   if (DS.SetTypeSpecType(DeclSpec::TST_decltype, StartLoc, PrevSpec,
711                          DiagID, Result.release())) {
712     Diag(StartLoc, DiagID) << PrevSpec;
713     DS.SetTypeSpecError();
714   }
715   return EndLoc;
716 }
717
718 void Parser::AnnotateExistingDecltypeSpecifier(const DeclSpec& DS, 
719                                                SourceLocation StartLoc,
720                                                SourceLocation EndLoc) {
721   // make sure we have a token we can turn into an annotation token
722   if (PP.isBacktrackEnabled())
723     PP.RevertCachedTokens(1);
724   else
725     PP.EnterToken(Tok);
726
727   Tok.setKind(tok::annot_decltype);
728   setExprAnnotation(Tok, DS.getTypeSpecType() == TST_decltype ? 
729                          DS.getRepAsExpr() : ExprResult());
730   Tok.setAnnotationEndLoc(EndLoc);
731   Tok.setLocation(StartLoc);
732   PP.AnnotateCachedTokens(Tok);
733 }
734
735 void Parser::ParseUnderlyingTypeSpecifier(DeclSpec &DS) {
736   assert(Tok.is(tok::kw___underlying_type) &&
737          "Not an underlying type specifier");
738
739   SourceLocation StartLoc = ConsumeToken();
740   BalancedDelimiterTracker T(*this, tok::l_paren);
741   if (T.expectAndConsume(diag::err_expected_lparen_after,
742                        "__underlying_type", tok::r_paren)) {
743     return;
744   }
745
746   TypeResult Result = ParseTypeName();
747   if (Result.isInvalid()) {
748     SkipUntil(tok::r_paren);
749     return;
750   }
751
752   // Match the ')'
753   T.consumeClose();
754   if (T.getCloseLocation().isInvalid())
755     return;
756
757   const char *PrevSpec = 0;
758   unsigned DiagID;
759   if (DS.SetTypeSpecType(DeclSpec::TST_underlyingType, StartLoc, PrevSpec,
760                          DiagID, Result.release()))
761     Diag(StartLoc, DiagID) << PrevSpec;
762 }
763
764 /// ParseBaseTypeSpecifier - Parse a C++ base-type-specifier which is either a
765 /// class name or decltype-specifier. Note that we only check that the result 
766 /// names a type; semantic analysis will need to verify that the type names a 
767 /// class. The result is either a type or null, depending on whether a type 
768 /// name was found.
769 ///
770 ///       base-type-specifier: [C++ 10.1]
771 ///         class-or-decltype
772 ///       class-or-decltype: [C++ 10.1]
773 ///         nested-name-specifier[opt] class-name
774 ///         decltype-specifier
775 ///       class-name: [C++ 9.1]
776 ///         identifier
777 ///         simple-template-id
778 ///
779 Parser::TypeResult Parser::ParseBaseTypeSpecifier(SourceLocation &BaseLoc,
780                                                   SourceLocation &EndLocation) {
781   // Ignore attempts to use typename
782   if (Tok.is(tok::kw_typename)) {
783     Diag(Tok, diag::err_expected_class_name_not_template)
784       << FixItHint::CreateRemoval(Tok.getLocation());
785     ConsumeToken();
786   }
787
788   // Parse optional nested-name-specifier
789   CXXScopeSpec SS;
790   ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
791
792   BaseLoc = Tok.getLocation();
793
794   // Parse decltype-specifier
795   // tok == kw_decltype is just error recovery, it can only happen when SS 
796   // isn't empty
797   if (Tok.is(tok::kw_decltype) || Tok.is(tok::annot_decltype)) {
798     if (SS.isNotEmpty())
799       Diag(SS.getBeginLoc(), diag::err_unexpected_scope_on_base_decltype)
800         << FixItHint::CreateRemoval(SS.getRange());
801     // Fake up a Declarator to use with ActOnTypeName.
802     DeclSpec DS(AttrFactory);
803
804     EndLocation = ParseDecltypeSpecifier(DS);
805
806     Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
807     return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
808   }
809
810   // Check whether we have a template-id that names a type.
811   if (Tok.is(tok::annot_template_id)) {
812     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
813     if (TemplateId->Kind == TNK_Type_template ||
814         TemplateId->Kind == TNK_Dependent_template_name) {
815       AnnotateTemplateIdTokenAsType();
816
817       assert(Tok.is(tok::annot_typename) && "template-id -> type failed");
818       ParsedType Type = getTypeAnnotation(Tok);
819       EndLocation = Tok.getAnnotationEndLoc();
820       ConsumeToken();
821
822       if (Type)
823         return Type;
824       return true;
825     }
826
827     // Fall through to produce an error below.
828   }
829
830   if (Tok.isNot(tok::identifier)) {
831     Diag(Tok, diag::err_expected_class_name);
832     return true;
833   }
834
835   IdentifierInfo *Id = Tok.getIdentifierInfo();
836   SourceLocation IdLoc = ConsumeToken();
837
838   if (Tok.is(tok::less)) {
839     // It looks the user intended to write a template-id here, but the
840     // template-name was wrong. Try to fix that.
841     TemplateNameKind TNK = TNK_Type_template;
842     TemplateTy Template;
843     if (!Actions.DiagnoseUnknownTemplateName(*Id, IdLoc, getCurScope(),
844                                              &SS, Template, TNK)) {
845       Diag(IdLoc, diag::err_unknown_template_name)
846         << Id;
847     }
848
849     if (!Template)
850       return true;
851
852     // Form the template name
853     UnqualifiedId TemplateName;
854     TemplateName.setIdentifier(Id, IdLoc);
855
856     // Parse the full template-id, then turn it into a type.
857     if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
858                                 TemplateName, true))
859       return true;
860     if (TNK == TNK_Dependent_template_name)
861       AnnotateTemplateIdTokenAsType();
862
863     // If we didn't end up with a typename token, there's nothing more we
864     // can do.
865     if (Tok.isNot(tok::annot_typename))
866       return true;
867
868     // Retrieve the type from the annotation token, consume that token, and
869     // return.
870     EndLocation = Tok.getAnnotationEndLoc();
871     ParsedType Type = getTypeAnnotation(Tok);
872     ConsumeToken();
873     return Type;
874   }
875
876   // We have an identifier; check whether it is actually a type.
877   ParsedType Type = Actions.getTypeName(*Id, IdLoc, getCurScope(), &SS, true,
878                                         false, ParsedType(),
879                                         /*IsCtorOrDtorName=*/false,
880                                         /*NonTrivialTypeSourceInfo=*/true);
881   if (!Type) {
882     Diag(IdLoc, diag::err_expected_class_name);
883     return true;
884   }
885
886   // Consume the identifier.
887   EndLocation = IdLoc;
888
889   // Fake up a Declarator to use with ActOnTypeName.
890   DeclSpec DS(AttrFactory);
891   DS.SetRangeStart(IdLoc);
892   DS.SetRangeEnd(EndLocation);
893   DS.getTypeSpecScope() = SS;
894
895   const char *PrevSpec = 0;
896   unsigned DiagID;
897   DS.SetTypeSpecType(TST_typename, IdLoc, PrevSpec, DiagID, Type);
898
899   Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
900   return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
901 }
902
903 /// ParseClassSpecifier - Parse a C++ class-specifier [C++ class] or
904 /// elaborated-type-specifier [C++ dcl.type.elab]; we can't tell which
905 /// until we reach the start of a definition or see a token that
906 /// cannot start a definition.
907 ///
908 ///       class-specifier: [C++ class]
909 ///         class-head '{' member-specification[opt] '}'
910 ///         class-head '{' member-specification[opt] '}' attributes[opt]
911 ///       class-head:
912 ///         class-key identifier[opt] base-clause[opt]
913 ///         class-key nested-name-specifier identifier base-clause[opt]
914 ///         class-key nested-name-specifier[opt] simple-template-id
915 ///                          base-clause[opt]
916 /// [GNU]   class-key attributes[opt] identifier[opt] base-clause[opt]
917 /// [GNU]   class-key attributes[opt] nested-name-specifier
918 ///                          identifier base-clause[opt]
919 /// [GNU]   class-key attributes[opt] nested-name-specifier[opt]
920 ///                          simple-template-id base-clause[opt]
921 ///       class-key:
922 ///         'class'
923 ///         'struct'
924 ///         'union'
925 ///
926 ///       elaborated-type-specifier: [C++ dcl.type.elab]
927 ///         class-key ::[opt] nested-name-specifier[opt] identifier
928 ///         class-key ::[opt] nested-name-specifier[opt] 'template'[opt]
929 ///                          simple-template-id
930 ///
931 ///  Note that the C++ class-specifier and elaborated-type-specifier,
932 ///  together, subsume the C99 struct-or-union-specifier:
933 ///
934 ///       struct-or-union-specifier: [C99 6.7.2.1]
935 ///         struct-or-union identifier[opt] '{' struct-contents '}'
936 ///         struct-or-union identifier
937 /// [GNU]   struct-or-union attributes[opt] identifier[opt] '{' struct-contents
938 ///                                                         '}' attributes[opt]
939 /// [GNU]   struct-or-union attributes[opt] identifier
940 ///       struct-or-union:
941 ///         'struct'
942 ///         'union'
943 void Parser::ParseClassSpecifier(tok::TokenKind TagTokKind,
944                                  SourceLocation StartLoc, DeclSpec &DS,
945                                  const ParsedTemplateInfo &TemplateInfo,
946                                  AccessSpecifier AS, 
947                                  bool EnteringContext, DeclSpecContext DSC) {
948   DeclSpec::TST TagType;
949   if (TagTokKind == tok::kw_struct)
950     TagType = DeclSpec::TST_struct;
951   else if (TagTokKind == tok::kw_class)
952     TagType = DeclSpec::TST_class;
953   else {
954     assert(TagTokKind == tok::kw_union && "Not a class specifier");
955     TagType = DeclSpec::TST_union;
956   }
957
958   if (Tok.is(tok::code_completion)) {
959     // Code completion for a struct, class, or union name.
960     Actions.CodeCompleteTag(getCurScope(), TagType);
961     return cutOffParsing();
962   }
963
964   // C++03 [temp.explicit] 14.7.2/8:
965   //   The usual access checking rules do not apply to names used to specify
966   //   explicit instantiations.
967   //
968   // As an extension we do not perform access checking on the names used to
969   // specify explicit specializations either. This is important to allow
970   // specializing traits classes for private types.
971   Sema::SuppressAccessChecksRAII SuppressAccess(Actions,
972     TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
973     TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
974
975   ParsedAttributes attrs(AttrFactory);
976   // If attributes exist after tag, parse them.
977   if (Tok.is(tok::kw___attribute))
978     ParseGNUAttributes(attrs);
979
980   // If declspecs exist after tag, parse them.
981   while (Tok.is(tok::kw___declspec))
982     ParseMicrosoftDeclSpec(attrs);
983
984   // If C++0x attributes exist here, parse them.
985   // FIXME: Are we consistent with the ordering of parsing of different
986   // styles of attributes?
987   MaybeParseCXX0XAttributes(attrs);
988
989   if (TagType == DeclSpec::TST_struct &&
990       !Tok.is(tok::identifier) &&
991       Tok.getIdentifierInfo() &&
992       (Tok.is(tok::kw___is_arithmetic) ||
993        Tok.is(tok::kw___is_convertible) ||
994        Tok.is(tok::kw___is_empty) ||
995        Tok.is(tok::kw___is_floating_point) ||
996        Tok.is(tok::kw___is_function) ||
997        Tok.is(tok::kw___is_fundamental) ||
998        Tok.is(tok::kw___is_integral) ||
999        Tok.is(tok::kw___is_member_function_pointer) ||
1000        Tok.is(tok::kw___is_member_pointer) ||
1001        Tok.is(tok::kw___is_pod) ||
1002        Tok.is(tok::kw___is_pointer) ||
1003        Tok.is(tok::kw___is_same) ||
1004        Tok.is(tok::kw___is_scalar) ||
1005        Tok.is(tok::kw___is_signed) ||
1006        Tok.is(tok::kw___is_unsigned) ||
1007        Tok.is(tok::kw___is_void))) {
1008     // GNU libstdc++ 4.2 and libc++ use certain intrinsic names as the
1009     // name of struct templates, but some are keywords in GCC >= 4.3
1010     // and Clang. Therefore, when we see the token sequence "struct
1011     // X", make X into a normal identifier rather than a keyword, to
1012     // allow libstdc++ 4.2 and libc++ to work properly.
1013     Tok.getIdentifierInfo()->RevertTokenIDToIdentifier();
1014     Tok.setKind(tok::identifier);
1015   }
1016
1017   // Parse the (optional) nested-name-specifier.
1018   CXXScopeSpec &SS = DS.getTypeSpecScope();
1019   if (getLangOpts().CPlusPlus) {
1020     // "FOO : BAR" is not a potential typo for "FOO::BAR".
1021     ColonProtectionRAIIObject X(*this);
1022
1023     if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), EnteringContext))
1024       DS.SetTypeSpecError();
1025     if (SS.isSet())
1026       if (Tok.isNot(tok::identifier) && Tok.isNot(tok::annot_template_id))
1027         Diag(Tok, diag::err_expected_ident);
1028   }
1029
1030   TemplateParameterLists *TemplateParams = TemplateInfo.TemplateParams;
1031
1032   // Parse the (optional) class name or simple-template-id.
1033   IdentifierInfo *Name = 0;
1034   SourceLocation NameLoc;
1035   TemplateIdAnnotation *TemplateId = 0;
1036   if (Tok.is(tok::identifier)) {
1037     Name = Tok.getIdentifierInfo();
1038     NameLoc = ConsumeToken();
1039
1040     if (Tok.is(tok::less) && getLangOpts().CPlusPlus) {
1041       // The name was supposed to refer to a template, but didn't.
1042       // Eat the template argument list and try to continue parsing this as
1043       // a class (or template thereof).
1044       TemplateArgList TemplateArgs;
1045       SourceLocation LAngleLoc, RAngleLoc;
1046       if (ParseTemplateIdAfterTemplateName(TemplateTy(), NameLoc, SS,
1047                                            true, LAngleLoc,
1048                                            TemplateArgs, RAngleLoc)) {
1049         // We couldn't parse the template argument list at all, so don't
1050         // try to give any location information for the list.
1051         LAngleLoc = RAngleLoc = SourceLocation();
1052       }
1053
1054       Diag(NameLoc, diag::err_explicit_spec_non_template)
1055         << (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation)
1056         << (TagType == DeclSpec::TST_class? 0
1057             : TagType == DeclSpec::TST_struct? 1
1058             : 2)
1059         << Name
1060         << SourceRange(LAngleLoc, RAngleLoc);
1061
1062       // Strip off the last template parameter list if it was empty, since
1063       // we've removed its template argument list.
1064       if (TemplateParams && TemplateInfo.LastParameterListWasEmpty) {
1065         if (TemplateParams && TemplateParams->size() > 1) {
1066           TemplateParams->pop_back();
1067         } else {
1068           TemplateParams = 0;
1069           const_cast<ParsedTemplateInfo&>(TemplateInfo).Kind
1070             = ParsedTemplateInfo::NonTemplate;
1071         }
1072       } else if (TemplateInfo.Kind
1073                                 == ParsedTemplateInfo::ExplicitInstantiation) {
1074         // Pretend this is just a forward declaration.
1075         TemplateParams = 0;
1076         const_cast<ParsedTemplateInfo&>(TemplateInfo).Kind
1077           = ParsedTemplateInfo::NonTemplate;
1078         const_cast<ParsedTemplateInfo&>(TemplateInfo).TemplateLoc
1079           = SourceLocation();
1080         const_cast<ParsedTemplateInfo&>(TemplateInfo).ExternLoc
1081           = SourceLocation();
1082       }
1083     }
1084   } else if (Tok.is(tok::annot_template_id)) {
1085     TemplateId = takeTemplateIdAnnotation(Tok);
1086     NameLoc = ConsumeToken();
1087
1088     if (TemplateId->Kind != TNK_Type_template &&
1089         TemplateId->Kind != TNK_Dependent_template_name) {
1090       // The template-name in the simple-template-id refers to
1091       // something other than a class template. Give an appropriate
1092       // error message and skip to the ';'.
1093       SourceRange Range(NameLoc);
1094       if (SS.isNotEmpty())
1095         Range.setBegin(SS.getBeginLoc());
1096
1097       Diag(TemplateId->LAngleLoc, diag::err_template_spec_syntax_non_template)
1098         << Name << static_cast<int>(TemplateId->Kind) << Range;
1099
1100       DS.SetTypeSpecError();
1101       SkipUntil(tok::semi, false, true);
1102       return;
1103     }
1104   }
1105
1106   // As soon as we're finished parsing the class's template-id, turn access
1107   // checking back on.
1108   SuppressAccess.done();
1109
1110   // There are four options here.
1111   //  - If we are in a trailing return type, this is always just a reference,
1112   //    and we must not try to parse a definition. For instance,
1113   //      [] () -> struct S { };
1114   //    does not define a type.
1115   //  - If we have 'struct foo {...', 'struct foo :...',
1116   //    'struct foo final :' or 'struct foo final {', then this is a definition.
1117   //  - If we have 'struct foo;', then this is either a forward declaration
1118   //    or a friend declaration, which have to be treated differently.
1119   //  - Otherwise we have something like 'struct foo xyz', a reference.
1120   // However, in type-specifier-seq's, things look like declarations but are
1121   // just references, e.g.
1122   //   new struct s;
1123   // or
1124   //   &T::operator struct s;
1125   // For these, DSC is DSC_type_specifier.
1126   Sema::TagUseKind TUK;
1127   if (DSC == DSC_trailing)
1128     TUK = Sema::TUK_Reference;
1129   else if (Tok.is(tok::l_brace) ||
1130            (getLangOpts().CPlusPlus && Tok.is(tok::colon)) ||
1131            (isCXX0XFinalKeyword() &&
1132             (NextToken().is(tok::l_brace) || NextToken().is(tok::colon)))) {
1133     if (DS.isFriendSpecified()) {
1134       // C++ [class.friend]p2:
1135       //   A class shall not be defined in a friend declaration.
1136       Diag(Tok.getLocation(), diag::err_friend_decl_defines_type)
1137         << SourceRange(DS.getFriendSpecLoc());
1138
1139       // Skip everything up to the semicolon, so that this looks like a proper
1140       // friend class (or template thereof) declaration.
1141       SkipUntil(tok::semi, true, true);
1142       TUK = Sema::TUK_Friend;
1143     } else {
1144       // Okay, this is a class definition.
1145       TUK = Sema::TUK_Definition;
1146     }
1147   } else if (Tok.is(tok::semi) && DSC != DSC_type_specifier)
1148     TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration;
1149   else
1150     TUK = Sema::TUK_Reference;
1151
1152   if (!Name && !TemplateId && (DS.getTypeSpecType() == DeclSpec::TST_error ||
1153                                TUK != Sema::TUK_Definition)) {
1154     if (DS.getTypeSpecType() != DeclSpec::TST_error) {
1155       // We have a declaration or reference to an anonymous class.
1156       Diag(StartLoc, diag::err_anon_type_definition)
1157         << DeclSpec::getSpecifierName(TagType);
1158     }
1159
1160     SkipUntil(tok::comma, true);
1161     return;
1162   }
1163
1164   // Create the tag portion of the class or class template.
1165   DeclResult TagOrTempResult = true; // invalid
1166   TypeResult TypeResult = true; // invalid
1167
1168   bool Owned = false;
1169   if (TemplateId) {
1170     // Explicit specialization, class template partial specialization,
1171     // or explicit instantiation.
1172     ASTTemplateArgsPtr TemplateArgsPtr(Actions,
1173                                        TemplateId->getTemplateArgs(),
1174                                        TemplateId->NumArgs);
1175     if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation &&
1176         TUK == Sema::TUK_Declaration) {
1177       // This is an explicit instantiation of a class template.
1178       TagOrTempResult
1179         = Actions.ActOnExplicitInstantiation(getCurScope(),
1180                                              TemplateInfo.ExternLoc,
1181                                              TemplateInfo.TemplateLoc,
1182                                              TagType,
1183                                              StartLoc,
1184                                              SS,
1185                                              TemplateId->Template,
1186                                              TemplateId->TemplateNameLoc,
1187                                              TemplateId->LAngleLoc,
1188                                              TemplateArgsPtr,
1189                                              TemplateId->RAngleLoc,
1190                                              attrs.getList());
1191
1192     // Friend template-ids are treated as references unless
1193     // they have template headers, in which case they're ill-formed
1194     // (FIXME: "template <class T> friend class A<T>::B<int>;").
1195     // We diagnose this error in ActOnClassTemplateSpecialization.
1196     } else if (TUK == Sema::TUK_Reference ||
1197                (TUK == Sema::TUK_Friend &&
1198                 TemplateInfo.Kind == ParsedTemplateInfo::NonTemplate)) {
1199       TypeResult = Actions.ActOnTagTemplateIdType(TUK, TagType, StartLoc,
1200                                                   TemplateId->SS,
1201                                                   TemplateId->TemplateKWLoc,
1202                                                   TemplateId->Template,
1203                                                   TemplateId->TemplateNameLoc,
1204                                                   TemplateId->LAngleLoc,
1205                                                   TemplateArgsPtr,
1206                                                   TemplateId->RAngleLoc);
1207     } else {
1208       // This is an explicit specialization or a class template
1209       // partial specialization.
1210       TemplateParameterLists FakedParamLists;
1211
1212       if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
1213         // This looks like an explicit instantiation, because we have
1214         // something like
1215         //
1216         //   template class Foo<X>
1217         //
1218         // but it actually has a definition. Most likely, this was
1219         // meant to be an explicit specialization, but the user forgot
1220         // the '<>' after 'template'.
1221         assert(TUK == Sema::TUK_Definition && "Expected a definition here");
1222
1223         SourceLocation LAngleLoc
1224           = PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
1225         Diag(TemplateId->TemplateNameLoc,
1226              diag::err_explicit_instantiation_with_definition)
1227           << SourceRange(TemplateInfo.TemplateLoc)
1228           << FixItHint::CreateInsertion(LAngleLoc, "<>");
1229
1230         // Create a fake template parameter list that contains only
1231         // "template<>", so that we treat this construct as a class
1232         // template specialization.
1233         FakedParamLists.push_back(
1234           Actions.ActOnTemplateParameterList(0, SourceLocation(),
1235                                              TemplateInfo.TemplateLoc,
1236                                              LAngleLoc,
1237                                              0, 0,
1238                                              LAngleLoc));
1239         TemplateParams = &FakedParamLists;
1240       }
1241
1242       // Build the class template specialization.
1243       TagOrTempResult
1244         = Actions.ActOnClassTemplateSpecialization(getCurScope(), TagType, TUK,
1245                        StartLoc, DS.getModulePrivateSpecLoc(), SS,
1246                        TemplateId->Template,
1247                        TemplateId->TemplateNameLoc,
1248                        TemplateId->LAngleLoc,
1249                        TemplateArgsPtr,
1250                        TemplateId->RAngleLoc,
1251                        attrs.getList(),
1252                        MultiTemplateParamsArg(Actions,
1253                                     TemplateParams? &(*TemplateParams)[0] : 0,
1254                                  TemplateParams? TemplateParams->size() : 0));
1255     }
1256   } else if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation &&
1257              TUK == Sema::TUK_Declaration) {
1258     // Explicit instantiation of a member of a class template
1259     // specialization, e.g.,
1260     //
1261     //   template struct Outer<int>::Inner;
1262     //
1263     TagOrTempResult
1264       = Actions.ActOnExplicitInstantiation(getCurScope(),
1265                                            TemplateInfo.ExternLoc,
1266                                            TemplateInfo.TemplateLoc,
1267                                            TagType, StartLoc, SS, Name,
1268                                            NameLoc, attrs.getList());
1269   } else if (TUK == Sema::TUK_Friend &&
1270              TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate) {
1271     TagOrTempResult =
1272       Actions.ActOnTemplatedFriendTag(getCurScope(), DS.getFriendSpecLoc(),
1273                                       TagType, StartLoc, SS,
1274                                       Name, NameLoc, attrs.getList(),
1275                                       MultiTemplateParamsArg(Actions,
1276                                     TemplateParams? &(*TemplateParams)[0] : 0,
1277                                  TemplateParams? TemplateParams->size() : 0));
1278   } else {
1279     if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation &&
1280         TUK == Sema::TUK_Definition) {
1281       // FIXME: Diagnose this particular error.
1282     }
1283
1284     bool IsDependent = false;
1285
1286     // Don't pass down template parameter lists if this is just a tag
1287     // reference.  For example, we don't need the template parameters here:
1288     //   template <class T> class A *makeA(T t);
1289     MultiTemplateParamsArg TParams;
1290     if (TUK != Sema::TUK_Reference && TemplateParams)
1291       TParams =
1292         MultiTemplateParamsArg(&(*TemplateParams)[0], TemplateParams->size());
1293
1294     // Declaration or definition of a class type
1295     TagOrTempResult = Actions.ActOnTag(getCurScope(), TagType, TUK, StartLoc,
1296                                        SS, Name, NameLoc, attrs.getList(), AS,
1297                                        DS.getModulePrivateSpecLoc(),
1298                                        TParams, Owned, IsDependent,
1299                                        SourceLocation(), false,
1300                                        clang::TypeResult());
1301
1302     // If ActOnTag said the type was dependent, try again with the
1303     // less common call.
1304     if (IsDependent) {
1305       assert(TUK == Sema::TUK_Reference || TUK == Sema::TUK_Friend);
1306       TypeResult = Actions.ActOnDependentTag(getCurScope(), TagType, TUK,
1307                                              SS, Name, StartLoc, NameLoc);
1308     }
1309   }
1310
1311   // If there is a body, parse it and inform the actions module.
1312   if (TUK == Sema::TUK_Definition) {
1313     assert(Tok.is(tok::l_brace) ||
1314            (getLangOpts().CPlusPlus && Tok.is(tok::colon)) ||
1315            isCXX0XFinalKeyword());
1316     if (getLangOpts().CPlusPlus)
1317       ParseCXXMemberSpecification(StartLoc, TagType, TagOrTempResult.get());
1318     else
1319       ParseStructUnionBody(StartLoc, TagType, TagOrTempResult.get());
1320   }
1321
1322   const char *PrevSpec = 0;
1323   unsigned DiagID;
1324   bool Result;
1325   if (!TypeResult.isInvalid()) {
1326     Result = DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
1327                                 NameLoc.isValid() ? NameLoc : StartLoc,
1328                                 PrevSpec, DiagID, TypeResult.get());
1329   } else if (!TagOrTempResult.isInvalid()) {
1330     Result = DS.SetTypeSpecType(TagType, StartLoc,
1331                                 NameLoc.isValid() ? NameLoc : StartLoc,
1332                                 PrevSpec, DiagID, TagOrTempResult.get(), Owned);
1333   } else {
1334     DS.SetTypeSpecError();
1335     return;
1336   }
1337
1338   if (Result)
1339     Diag(StartLoc, DiagID) << PrevSpec;
1340
1341   // At this point, we've successfully parsed a class-specifier in 'definition'
1342   // form (e.g. "struct foo { int x; }".  While we could just return here, we're
1343   // going to look at what comes after it to improve error recovery.  If an
1344   // impossible token occurs next, we assume that the programmer forgot a ; at
1345   // the end of the declaration and recover that way.
1346   //
1347   // This switch enumerates the valid "follow" set for definition.
1348   if (TUK == Sema::TUK_Definition) {
1349     bool ExpectedSemi = true;
1350     switch (Tok.getKind()) {
1351     default: break;
1352     case tok::semi:               // struct foo {...} ;
1353     case tok::star:               // struct foo {...} *         P;
1354     case tok::amp:                // struct foo {...} &         R = ...
1355     case tok::identifier:         // struct foo {...} V         ;
1356     case tok::r_paren:            //(struct foo {...} )         {4}
1357     case tok::annot_cxxscope:     // struct foo {...} a::       b;
1358     case tok::annot_typename:     // struct foo {...} a         ::b;
1359     case tok::annot_template_id:  // struct foo {...} a<int>    ::b;
1360     case tok::l_paren:            // struct foo {...} (         x);
1361     case tok::comma:              // __builtin_offsetof(struct foo{...} ,
1362       ExpectedSemi = false;
1363       break;
1364     // Type qualifiers
1365     case tok::kw_const:           // struct foo {...} const     x;
1366     case tok::kw_volatile:        // struct foo {...} volatile  x;
1367     case tok::kw_restrict:        // struct foo {...} restrict  x;
1368     case tok::kw_inline:          // struct foo {...} inline    foo() {};
1369     // Storage-class specifiers
1370     case tok::kw_static:          // struct foo {...} static    x;
1371     case tok::kw_extern:          // struct foo {...} extern    x;
1372     case tok::kw_typedef:         // struct foo {...} typedef   x;
1373     case tok::kw_register:        // struct foo {...} register  x;
1374     case tok::kw_auto:            // struct foo {...} auto      x;
1375     case tok::kw_mutable:         // struct foo {...} mutable   x;
1376     case tok::kw_constexpr:       // struct foo {...} constexpr x;
1377       // As shown above, type qualifiers and storage class specifiers absolutely
1378       // can occur after class specifiers according to the grammar.  However,
1379       // almost no one actually writes code like this.  If we see one of these,
1380       // it is much more likely that someone missed a semi colon and the
1381       // type/storage class specifier we're seeing is part of the *next*
1382       // intended declaration, as in:
1383       //
1384       //   struct foo { ... }
1385       //   typedef int X;
1386       //
1387       // We'd really like to emit a missing semicolon error instead of emitting
1388       // an error on the 'int' saying that you can't have two type specifiers in
1389       // the same declaration of X.  Because of this, we look ahead past this
1390       // token to see if it's a type specifier.  If so, we know the code is
1391       // otherwise invalid, so we can produce the expected semi error.
1392       if (!isKnownToBeTypeSpecifier(NextToken()))
1393         ExpectedSemi = false;
1394       break;
1395
1396     case tok::r_brace:  // struct bar { struct foo {...} }
1397       // Missing ';' at end of struct is accepted as an extension in C mode.
1398       if (!getLangOpts().CPlusPlus)
1399         ExpectedSemi = false;
1400       break;
1401     }
1402
1403     // C++ [temp]p3 In a template-declaration which defines a class, no
1404     // declarator is permitted.
1405     if (TemplateInfo.Kind)
1406       ExpectedSemi = true;
1407
1408     if (ExpectedSemi) {
1409       ExpectAndConsume(tok::semi, diag::err_expected_semi_after_tagdecl,
1410                        TagType == DeclSpec::TST_class ? "class"
1411                        : TagType == DeclSpec::TST_struct? "struct" : "union");
1412       // Push this token back into the preprocessor and change our current token
1413       // to ';' so that the rest of the code recovers as though there were an
1414       // ';' after the definition.
1415       PP.EnterToken(Tok);
1416       Tok.setKind(tok::semi);
1417     }
1418   }
1419 }
1420
1421 /// ParseBaseClause - Parse the base-clause of a C++ class [C++ class.derived].
1422 ///
1423 ///       base-clause : [C++ class.derived]
1424 ///         ':' base-specifier-list
1425 ///       base-specifier-list:
1426 ///         base-specifier '...'[opt]
1427 ///         base-specifier-list ',' base-specifier '...'[opt]
1428 void Parser::ParseBaseClause(Decl *ClassDecl) {
1429   assert(Tok.is(tok::colon) && "Not a base clause");
1430   ConsumeToken();
1431
1432   // Build up an array of parsed base specifiers.
1433   SmallVector<CXXBaseSpecifier *, 8> BaseInfo;
1434
1435   while (true) {
1436     // Parse a base-specifier.
1437     BaseResult Result = ParseBaseSpecifier(ClassDecl);
1438     if (Result.isInvalid()) {
1439       // Skip the rest of this base specifier, up until the comma or
1440       // opening brace.
1441       SkipUntil(tok::comma, tok::l_brace, true, true);
1442     } else {
1443       // Add this to our array of base specifiers.
1444       BaseInfo.push_back(Result.get());
1445     }
1446
1447     // If the next token is a comma, consume it and keep reading
1448     // base-specifiers.
1449     if (Tok.isNot(tok::comma)) break;
1450
1451     // Consume the comma.
1452     ConsumeToken();
1453   }
1454
1455   // Attach the base specifiers
1456   Actions.ActOnBaseSpecifiers(ClassDecl, BaseInfo.data(), BaseInfo.size());
1457 }
1458
1459 /// ParseBaseSpecifier - Parse a C++ base-specifier. A base-specifier is
1460 /// one entry in the base class list of a class specifier, for example:
1461 ///    class foo : public bar, virtual private baz {
1462 /// 'public bar' and 'virtual private baz' are each base-specifiers.
1463 ///
1464 ///       base-specifier: [C++ class.derived]
1465 ///         ::[opt] nested-name-specifier[opt] class-name
1466 ///         'virtual' access-specifier[opt] ::[opt] nested-name-specifier[opt]
1467 ///                        base-type-specifier
1468 ///         access-specifier 'virtual'[opt] ::[opt] nested-name-specifier[opt]
1469 ///                        base-type-specifier
1470 Parser::BaseResult Parser::ParseBaseSpecifier(Decl *ClassDecl) {
1471   bool IsVirtual = false;
1472   SourceLocation StartLoc = Tok.getLocation();
1473
1474   // Parse the 'virtual' keyword.
1475   if (Tok.is(tok::kw_virtual))  {
1476     ConsumeToken();
1477     IsVirtual = true;
1478   }
1479
1480   // Parse an (optional) access specifier.
1481   AccessSpecifier Access = getAccessSpecifierIfPresent();
1482   if (Access != AS_none)
1483     ConsumeToken();
1484
1485   // Parse the 'virtual' keyword (again!), in case it came after the
1486   // access specifier.
1487   if (Tok.is(tok::kw_virtual))  {
1488     SourceLocation VirtualLoc = ConsumeToken();
1489     if (IsVirtual) {
1490       // Complain about duplicate 'virtual'
1491       Diag(VirtualLoc, diag::err_dup_virtual)
1492         << FixItHint::CreateRemoval(VirtualLoc);
1493     }
1494
1495     IsVirtual = true;
1496   }
1497
1498   // Parse the class-name.
1499   SourceLocation EndLocation;
1500   SourceLocation BaseLoc;
1501   TypeResult BaseType = ParseBaseTypeSpecifier(BaseLoc, EndLocation);
1502   if (BaseType.isInvalid())
1503     return true;
1504
1505   // Parse the optional ellipsis (for a pack expansion). The ellipsis is 
1506   // actually part of the base-specifier-list grammar productions, but we
1507   // parse it here for convenience.
1508   SourceLocation EllipsisLoc;
1509   if (Tok.is(tok::ellipsis))
1510     EllipsisLoc = ConsumeToken();
1511   
1512   // Find the complete source range for the base-specifier.
1513   SourceRange Range(StartLoc, EndLocation);
1514
1515   // Notify semantic analysis that we have parsed a complete
1516   // base-specifier.
1517   return Actions.ActOnBaseSpecifier(ClassDecl, Range, IsVirtual, Access,
1518                                     BaseType.get(), BaseLoc, EllipsisLoc);
1519 }
1520
1521 /// getAccessSpecifierIfPresent - Determine whether the next token is
1522 /// a C++ access-specifier.
1523 ///
1524 ///       access-specifier: [C++ class.derived]
1525 ///         'private'
1526 ///         'protected'
1527 ///         'public'
1528 AccessSpecifier Parser::getAccessSpecifierIfPresent() const {
1529   switch (Tok.getKind()) {
1530   default: return AS_none;
1531   case tok::kw_private: return AS_private;
1532   case tok::kw_protected: return AS_protected;
1533   case tok::kw_public: return AS_public;
1534   }
1535 }
1536
1537 /// \brief If the given declarator has any parts for which parsing has to be
1538 /// delayed, e.g., default arguments, create a late-parsed method declaration
1539 /// record to handle the parsing at the end of the class definition.
1540 void Parser::HandleMemberFunctionDeclDelays(Declarator& DeclaratorInfo,
1541                                             Decl *ThisDecl) {
1542   // We just declared a member function. If this member function
1543   // has any default arguments, we'll need to parse them later.
1544   LateParsedMethodDeclaration *LateMethod = 0;
1545   DeclaratorChunk::FunctionTypeInfo &FTI
1546     = DeclaratorInfo.getFunctionTypeInfo();
1547
1548   for (unsigned ParamIdx = 0; ParamIdx < FTI.NumArgs; ++ParamIdx) {
1549     if (LateMethod || FTI.ArgInfo[ParamIdx].DefaultArgTokens) {
1550       if (!LateMethod) {
1551         // Push this method onto the stack of late-parsed method
1552         // declarations.
1553         LateMethod = new LateParsedMethodDeclaration(this, ThisDecl);
1554         getCurrentClass().LateParsedDeclarations.push_back(LateMethod);
1555         LateMethod->TemplateScope = getCurScope()->isTemplateParamScope();
1556
1557         // Add all of the parameters prior to this one (they don't
1558         // have default arguments).
1559         LateMethod->DefaultArgs.reserve(FTI.NumArgs);
1560         for (unsigned I = 0; I < ParamIdx; ++I)
1561           LateMethod->DefaultArgs.push_back(
1562                              LateParsedDefaultArgument(FTI.ArgInfo[I].Param));
1563       }
1564
1565       // Add this parameter to the list of parameters (it may or may
1566       // not have a default argument).
1567       LateMethod->DefaultArgs.push_back(
1568         LateParsedDefaultArgument(FTI.ArgInfo[ParamIdx].Param,
1569                                   FTI.ArgInfo[ParamIdx].DefaultArgTokens));
1570     }
1571   }
1572 }
1573
1574 /// isCXX0XVirtSpecifier - Determine whether the given token is a C++0x
1575 /// virt-specifier.
1576 ///
1577 ///       virt-specifier:
1578 ///         override
1579 ///         final
1580 VirtSpecifiers::Specifier Parser::isCXX0XVirtSpecifier(const Token &Tok) const {
1581   if (!getLangOpts().CPlusPlus)
1582     return VirtSpecifiers::VS_None;
1583
1584   if (Tok.is(tok::identifier)) {
1585     IdentifierInfo *II = Tok.getIdentifierInfo();
1586
1587     // Initialize the contextual keywords.
1588     if (!Ident_final) {
1589       Ident_final = &PP.getIdentifierTable().get("final");
1590       Ident_override = &PP.getIdentifierTable().get("override");
1591     }
1592
1593     if (II == Ident_override)
1594       return VirtSpecifiers::VS_Override;
1595
1596     if (II == Ident_final)
1597       return VirtSpecifiers::VS_Final;
1598   }
1599
1600   return VirtSpecifiers::VS_None;
1601 }
1602
1603 /// ParseOptionalCXX0XVirtSpecifierSeq - Parse a virt-specifier-seq.
1604 ///
1605 ///       virt-specifier-seq:
1606 ///         virt-specifier
1607 ///         virt-specifier-seq virt-specifier
1608 void Parser::ParseOptionalCXX0XVirtSpecifierSeq(VirtSpecifiers &VS) {
1609   while (true) {
1610     VirtSpecifiers::Specifier Specifier = isCXX0XVirtSpecifier();
1611     if (Specifier == VirtSpecifiers::VS_None)
1612       return;
1613
1614     // C++ [class.mem]p8:
1615     //   A virt-specifier-seq shall contain at most one of each virt-specifier.
1616     const char *PrevSpec = 0;
1617     if (VS.SetSpecifier(Specifier, Tok.getLocation(), PrevSpec))
1618       Diag(Tok.getLocation(), diag::err_duplicate_virt_specifier)
1619         << PrevSpec
1620         << FixItHint::CreateRemoval(Tok.getLocation());
1621
1622     Diag(Tok.getLocation(), getLangOpts().CPlusPlus0x ?
1623          diag::warn_cxx98_compat_override_control_keyword :
1624          diag::ext_override_control_keyword)
1625       << VirtSpecifiers::getSpecifierName(Specifier);
1626     ConsumeToken();
1627   }
1628 }
1629
1630 /// isCXX0XFinalKeyword - Determine whether the next token is a C++0x
1631 /// contextual 'final' keyword.
1632 bool Parser::isCXX0XFinalKeyword() const {
1633   if (!getLangOpts().CPlusPlus)
1634     return false;
1635
1636   if (!Tok.is(tok::identifier))
1637     return false;
1638
1639   // Initialize the contextual keywords.
1640   if (!Ident_final) {
1641     Ident_final = &PP.getIdentifierTable().get("final");
1642     Ident_override = &PP.getIdentifierTable().get("override");
1643   }
1644   
1645   return Tok.getIdentifierInfo() == Ident_final;
1646 }
1647
1648 /// ParseCXXClassMemberDeclaration - Parse a C++ class member declaration.
1649 ///
1650 ///       member-declaration:
1651 ///         decl-specifier-seq[opt] member-declarator-list[opt] ';'
1652 ///         function-definition ';'[opt]
1653 ///         ::[opt] nested-name-specifier template[opt] unqualified-id ';'[TODO]
1654 ///         using-declaration                                            [TODO]
1655 /// [C++0x] static_assert-declaration
1656 ///         template-declaration
1657 /// [GNU]   '__extension__' member-declaration
1658 ///
1659 ///       member-declarator-list:
1660 ///         member-declarator
1661 ///         member-declarator-list ',' member-declarator
1662 ///
1663 ///       member-declarator:
1664 ///         declarator virt-specifier-seq[opt] pure-specifier[opt]
1665 ///         declarator constant-initializer[opt]
1666 /// [C++11] declarator brace-or-equal-initializer[opt]
1667 ///         identifier[opt] ':' constant-expression
1668 ///
1669 ///       virt-specifier-seq:
1670 ///         virt-specifier
1671 ///         virt-specifier-seq virt-specifier
1672 ///
1673 ///       virt-specifier:
1674 ///         override
1675 ///         final
1676 /// 
1677 ///       pure-specifier:
1678 ///         '= 0'
1679 ///
1680 ///       constant-initializer:
1681 ///         '=' constant-expression
1682 ///
1683 void Parser::ParseCXXClassMemberDeclaration(AccessSpecifier AS,
1684                                             AttributeList *AccessAttrs,
1685                                        const ParsedTemplateInfo &TemplateInfo,
1686                                        ParsingDeclRAIIObject *TemplateDiags) {
1687   if (Tok.is(tok::at)) {
1688     if (getLangOpts().ObjC1 && NextToken().isObjCAtKeyword(tok::objc_defs))
1689       Diag(Tok, diag::err_at_defs_cxx);
1690     else
1691       Diag(Tok, diag::err_at_in_class);
1692     
1693     ConsumeToken();
1694     SkipUntil(tok::r_brace);
1695     return;
1696   }
1697   
1698   // Access declarations.
1699   if (!TemplateInfo.Kind &&
1700       (Tok.is(tok::identifier) || Tok.is(tok::coloncolon)) &&
1701       !TryAnnotateCXXScopeToken() &&
1702       Tok.is(tok::annot_cxxscope)) {
1703     bool isAccessDecl = false;
1704     if (NextToken().is(tok::identifier))
1705       isAccessDecl = GetLookAheadToken(2).is(tok::semi);
1706     else
1707       isAccessDecl = NextToken().is(tok::kw_operator);
1708
1709     if (isAccessDecl) {
1710       // Collect the scope specifier token we annotated earlier.
1711       CXXScopeSpec SS;
1712       ParseOptionalCXXScopeSpecifier(SS, ParsedType(), 
1713                                      /*EnteringContext=*/false);
1714
1715       // Try to parse an unqualified-id.
1716       SourceLocation TemplateKWLoc;
1717       UnqualifiedId Name;
1718       if (ParseUnqualifiedId(SS, false, true, true, ParsedType(),
1719                              TemplateKWLoc, Name)) {
1720         SkipUntil(tok::semi);
1721         return;
1722       }
1723
1724       // TODO: recover from mistakenly-qualified operator declarations.
1725       if (ExpectAndConsume(tok::semi,
1726                            diag::err_expected_semi_after,
1727                            "access declaration",
1728                            tok::semi))
1729         return;
1730
1731       Actions.ActOnUsingDeclaration(getCurScope(), AS,
1732                                     false, SourceLocation(),
1733                                     SS, Name,
1734                                     /* AttrList */ 0,
1735                                     /* IsTypeName */ false,
1736                                     SourceLocation());
1737       return;
1738     }
1739   }
1740
1741   // static_assert-declaration
1742   if (Tok.is(tok::kw_static_assert) || Tok.is(tok::kw__Static_assert)) {
1743     // FIXME: Check for templates
1744     SourceLocation DeclEnd;
1745     ParseStaticAssertDeclaration(DeclEnd);
1746     return;
1747   }
1748
1749   if (Tok.is(tok::kw_template)) {
1750     assert(!TemplateInfo.TemplateParams &&
1751            "Nested template improperly parsed?");
1752     SourceLocation DeclEnd;
1753     ParseDeclarationStartingWithTemplate(Declarator::MemberContext, DeclEnd,
1754                                          AS, AccessAttrs);
1755     return;
1756   }
1757
1758   // Handle:  member-declaration ::= '__extension__' member-declaration
1759   if (Tok.is(tok::kw___extension__)) {
1760     // __extension__ silences extension warnings in the subexpression.
1761     ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1762     ConsumeToken();
1763     return ParseCXXClassMemberDeclaration(AS, AccessAttrs,
1764                                           TemplateInfo, TemplateDiags);
1765   }
1766
1767   // Don't parse FOO:BAR as if it were a typo for FOO::BAR, in this context it
1768   // is a bitfield.
1769   ColonProtectionRAIIObject X(*this);
1770
1771   ParsedAttributesWithRange attrs(AttrFactory);
1772   // Optional C++0x attribute-specifier
1773   MaybeParseCXX0XAttributes(attrs);
1774   MaybeParseMicrosoftAttributes(attrs);
1775
1776   if (Tok.is(tok::kw_using)) {
1777     ProhibitAttributes(attrs);
1778
1779     // Eat 'using'.
1780     SourceLocation UsingLoc = ConsumeToken();
1781
1782     if (Tok.is(tok::kw_namespace)) {
1783       Diag(UsingLoc, diag::err_using_namespace_in_class);
1784       SkipUntil(tok::semi, true, true);
1785     } else {
1786       SourceLocation DeclEnd;
1787       // Otherwise, it must be a using-declaration or an alias-declaration.
1788       ParseUsingDeclaration(Declarator::MemberContext, TemplateInfo,
1789                             UsingLoc, DeclEnd, AS);
1790     }
1791     return;
1792   }
1793
1794   // Hold late-parsed attributes so we can attach a Decl to them later.
1795   LateParsedAttrList CommonLateParsedAttrs;
1796
1797   // decl-specifier-seq:
1798   // Parse the common declaration-specifiers piece.
1799   ParsingDeclSpec DS(*this, TemplateDiags);
1800   DS.takeAttributesFrom(attrs);
1801   ParseDeclarationSpecifiers(DS, TemplateInfo, AS, DSC_class,
1802                              &CommonLateParsedAttrs);
1803
1804   MultiTemplateParamsArg TemplateParams(Actions,
1805       TemplateInfo.TemplateParams? TemplateInfo.TemplateParams->data() : 0,
1806       TemplateInfo.TemplateParams? TemplateInfo.TemplateParams->size() : 0);
1807
1808   if (Tok.is(tok::semi)) {
1809     ConsumeToken();
1810     Decl *TheDecl =
1811       Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS, DS, TemplateParams);
1812     DS.complete(TheDecl);
1813     return;
1814   }
1815
1816   ParsingDeclarator DeclaratorInfo(*this, DS, Declarator::MemberContext);
1817   VirtSpecifiers VS;
1818
1819   // Hold late-parsed attributes so we can attach a Decl to them later.
1820   LateParsedAttrList LateParsedAttrs;
1821
1822   SourceLocation EqualLoc;
1823   bool HasInitializer = false;
1824   ExprResult Init;
1825   if (Tok.isNot(tok::colon)) {
1826     // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
1827     ColonProtectionRAIIObject X(*this);
1828
1829     // Parse the first declarator.
1830     ParseDeclarator(DeclaratorInfo);
1831     // Error parsing the declarator?
1832     if (!DeclaratorInfo.hasName()) {
1833       // If so, skip until the semi-colon or a }.
1834       SkipUntil(tok::r_brace, true, true);
1835       if (Tok.is(tok::semi))
1836         ConsumeToken();
1837       return;
1838     }
1839
1840     ParseOptionalCXX0XVirtSpecifierSeq(VS);
1841
1842     // If attributes exist after the declarator, but before an '{', parse them.
1843     MaybeParseGNUAttributes(DeclaratorInfo, &LateParsedAttrs);
1844
1845     // MSVC permits pure specifier on inline functions declared at class scope.
1846     // Hence check for =0 before checking for function definition.
1847     if (getLangOpts().MicrosoftExt && Tok.is(tok::equal) &&
1848         DeclaratorInfo.isFunctionDeclarator() && 
1849         NextToken().is(tok::numeric_constant)) {
1850       EqualLoc = ConsumeToken();
1851       Init = ParseInitializer();
1852       if (Init.isInvalid())
1853         SkipUntil(tok::comma, true, true);
1854       else
1855         HasInitializer = true;
1856     }
1857
1858     FunctionDefinitionKind DefinitionKind = FDK_Declaration;
1859     // function-definition:
1860     //
1861     // In C++11, a non-function declarator followed by an open brace is a
1862     // braced-init-list for an in-class member initialization, not an
1863     // erroneous function definition.
1864     if (Tok.is(tok::l_brace) && !getLangOpts().CPlusPlus0x) {
1865       DefinitionKind = FDK_Definition;
1866     } else if (DeclaratorInfo.isFunctionDeclarator()) {
1867       if (Tok.is(tok::l_brace) || Tok.is(tok::colon) || Tok.is(tok::kw_try)) {
1868         DefinitionKind = FDK_Definition;
1869       } else if (Tok.is(tok::equal)) {
1870         const Token &KW = NextToken();
1871         if (KW.is(tok::kw_default))
1872           DefinitionKind = FDK_Defaulted;
1873         else if (KW.is(tok::kw_delete))
1874           DefinitionKind = FDK_Deleted;
1875       }
1876     }
1877
1878     if (DefinitionKind) {
1879       if (!DeclaratorInfo.isFunctionDeclarator()) {
1880         Diag(DeclaratorInfo.getIdentifierLoc(), diag::err_func_def_no_params);
1881         ConsumeBrace();
1882         SkipUntil(tok::r_brace, /*StopAtSemi*/false);
1883         
1884         // Consume the optional ';'
1885         if (Tok.is(tok::semi))
1886           ConsumeToken();
1887         return;
1888       }
1889
1890       if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
1891         Diag(DeclaratorInfo.getIdentifierLoc(),
1892              diag::err_function_declared_typedef);
1893         // This recovery skips the entire function body. It would be nice
1894         // to simply call ParseCXXInlineMethodDef() below, however Sema
1895         // assumes the declarator represents a function, not a typedef.
1896         ConsumeBrace();
1897         SkipUntil(tok::r_brace, /*StopAtSemi*/false);
1898
1899         // Consume the optional ';'
1900         if (Tok.is(tok::semi))
1901           ConsumeToken();
1902         return;
1903       }
1904
1905       Decl *FunDecl =
1906         ParseCXXInlineMethodDef(AS, AccessAttrs, DeclaratorInfo, TemplateInfo,
1907                                 VS, DefinitionKind, Init);
1908
1909       for (unsigned i = 0, ni = CommonLateParsedAttrs.size(); i < ni; ++i) {
1910         CommonLateParsedAttrs[i]->addDecl(FunDecl);
1911       }
1912       for (unsigned i = 0, ni = LateParsedAttrs.size(); i < ni; ++i) {
1913         LateParsedAttrs[i]->addDecl(FunDecl);
1914       }
1915       LateParsedAttrs.clear();
1916
1917       // Consume the ';' - it's optional unless we have a delete or default
1918       if (Tok.is(tok::semi)) {
1919         ConsumeToken();
1920       }
1921
1922       return;
1923     }
1924   }
1925
1926   // member-declarator-list:
1927   //   member-declarator
1928   //   member-declarator-list ',' member-declarator
1929
1930   SmallVector<Decl *, 8> DeclsInGroup;
1931   ExprResult BitfieldSize;
1932   bool ExpectSemi = true;
1933
1934   while (1) {
1935     // member-declarator:
1936     //   declarator pure-specifier[opt]
1937     //   declarator brace-or-equal-initializer[opt]
1938     //   identifier[opt] ':' constant-expression
1939     if (Tok.is(tok::colon)) {
1940       ConsumeToken();
1941       BitfieldSize = ParseConstantExpression();
1942       if (BitfieldSize.isInvalid())
1943         SkipUntil(tok::comma, true, true);
1944     }
1945
1946     // If a simple-asm-expr is present, parse it.
1947     if (Tok.is(tok::kw_asm)) {
1948       SourceLocation Loc;
1949       ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1950       if (AsmLabel.isInvalid())
1951         SkipUntil(tok::comma, true, true);
1952  
1953       DeclaratorInfo.setAsmLabel(AsmLabel.release());
1954       DeclaratorInfo.SetRangeEnd(Loc);
1955     }
1956
1957     // If attributes exist after the declarator, parse them.
1958     MaybeParseGNUAttributes(DeclaratorInfo, &LateParsedAttrs);
1959
1960     // FIXME: When g++ adds support for this, we'll need to check whether it
1961     // goes before or after the GNU attributes and __asm__.
1962     ParseOptionalCXX0XVirtSpecifierSeq(VS);
1963
1964     bool HasDeferredInitializer = false;
1965     if ((Tok.is(tok::equal) || Tok.is(tok::l_brace)) && !HasInitializer) {
1966       if (BitfieldSize.get()) {
1967         Diag(Tok, diag::err_bitfield_member_init);
1968         SkipUntil(tok::comma, true, true);
1969       } else {
1970         HasInitializer = true;
1971         HasDeferredInitializer = !DeclaratorInfo.isDeclarationOfFunction() &&
1972           DeclaratorInfo.getDeclSpec().getStorageClassSpec()
1973             != DeclSpec::SCS_static &&
1974           DeclaratorInfo.getDeclSpec().getStorageClassSpec()
1975             != DeclSpec::SCS_typedef;
1976       }
1977     }
1978
1979     // NOTE: If Sema is the Action module and declarator is an instance field,
1980     // this call will *not* return the created decl; It will return null.
1981     // See Sema::ActOnCXXMemberDeclarator for details.
1982
1983     Decl *ThisDecl = 0;
1984     if (DS.isFriendSpecified()) {
1985       // TODO: handle initializers, bitfields, 'delete'
1986       ThisDecl = Actions.ActOnFriendFunctionDecl(getCurScope(), DeclaratorInfo,
1987                                                  move(TemplateParams));
1988     } else {
1989       ThisDecl = Actions.ActOnCXXMemberDeclarator(getCurScope(), AS,
1990                                                   DeclaratorInfo,
1991                                                   move(TemplateParams),
1992                                                   BitfieldSize.release(),
1993                                                   VS, HasDeferredInitializer);
1994       if (AccessAttrs)
1995         Actions.ProcessDeclAttributeList(getCurScope(), ThisDecl, AccessAttrs,
1996                                          false, true);
1997     }
1998     
1999     // Set the Decl for any late parsed attributes
2000     for (unsigned i = 0, ni = CommonLateParsedAttrs.size(); i < ni; ++i) {
2001       CommonLateParsedAttrs[i]->addDecl(ThisDecl);
2002     }
2003     for (unsigned i = 0, ni = LateParsedAttrs.size(); i < ni; ++i) {
2004       LateParsedAttrs[i]->addDecl(ThisDecl);
2005     }
2006     LateParsedAttrs.clear();
2007
2008     // Handle the initializer.
2009     if (HasDeferredInitializer) {
2010       // The initializer was deferred; parse it and cache the tokens.
2011       Diag(Tok, getLangOpts().CPlusPlus0x ?
2012            diag::warn_cxx98_compat_nonstatic_member_init :
2013            diag::ext_nonstatic_member_init);
2014
2015       if (DeclaratorInfo.isArrayOfUnknownBound()) {
2016         // C++0x [dcl.array]p3: An array bound may also be omitted when the
2017         // declarator is followed by an initializer. 
2018         //
2019         // A brace-or-equal-initializer for a member-declarator is not an
2020         // initializer in the grammar, so this is ill-formed.
2021         Diag(Tok, diag::err_incomplete_array_member_init);
2022         SkipUntil(tok::comma, true, true);
2023         if (ThisDecl)
2024           // Avoid later warnings about a class member of incomplete type.
2025           ThisDecl->setInvalidDecl();
2026       } else
2027         ParseCXXNonStaticMemberInitializer(ThisDecl);
2028     } else if (HasInitializer) {
2029       // Normal initializer.
2030       if (!Init.isUsable())
2031         Init = ParseCXXMemberInitializer(ThisDecl,
2032                  DeclaratorInfo.isDeclarationOfFunction(), EqualLoc);
2033       
2034       if (Init.isInvalid())
2035         SkipUntil(tok::comma, true, true);
2036       else if (ThisDecl)
2037         Actions.AddInitializerToDecl(ThisDecl, Init.get(), EqualLoc.isInvalid(),
2038                                    DS.getTypeSpecType() == DeclSpec::TST_auto);      
2039     } else if (ThisDecl && DS.getStorageClassSpec() == DeclSpec::SCS_static) {
2040       // No initializer.
2041       Actions.ActOnUninitializedDecl(ThisDecl, 
2042                                    DS.getTypeSpecType() == DeclSpec::TST_auto);
2043     }
2044     
2045     if (ThisDecl) {
2046       Actions.FinalizeDeclaration(ThisDecl);
2047       DeclsInGroup.push_back(ThisDecl);
2048     }
2049     
2050     if (ThisDecl && DeclaratorInfo.isFunctionDeclarator() &&
2051         DeclaratorInfo.getDeclSpec().getStorageClassSpec()
2052           != DeclSpec::SCS_typedef) {
2053       HandleMemberFunctionDeclDelays(DeclaratorInfo, ThisDecl);
2054     }
2055
2056     DeclaratorInfo.complete(ThisDecl);
2057
2058     // If we don't have a comma, it is either the end of the list (a ';')
2059     // or an error, bail out.
2060     if (Tok.isNot(tok::comma))
2061       break;
2062
2063     // Consume the comma.
2064     SourceLocation CommaLoc = ConsumeToken();
2065
2066     if (Tok.isAtStartOfLine() &&
2067         !MightBeDeclarator(Declarator::MemberContext)) {
2068       // This comma was followed by a line-break and something which can't be
2069       // the start of a declarator. The comma was probably a typo for a
2070       // semicolon.
2071       Diag(CommaLoc, diag::err_expected_semi_declaration)
2072         << FixItHint::CreateReplacement(CommaLoc, ";");
2073       ExpectSemi = false;
2074       break;
2075     }
2076
2077     // Parse the next declarator.
2078     DeclaratorInfo.clear();
2079     VS.clear();
2080     BitfieldSize = true;
2081     Init = true;
2082     HasInitializer = false;
2083     DeclaratorInfo.setCommaLoc(CommaLoc);
2084
2085     // Attributes are only allowed on the second declarator.
2086     MaybeParseGNUAttributes(DeclaratorInfo);
2087
2088     if (Tok.isNot(tok::colon))
2089       ParseDeclarator(DeclaratorInfo);
2090   }
2091
2092   if (ExpectSemi &&
2093       ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list)) {
2094     // Skip to end of block or statement.
2095     SkipUntil(tok::r_brace, true, true);
2096     // If we stopped at a ';', eat it.
2097     if (Tok.is(tok::semi)) ConsumeToken();
2098     return;
2099   }
2100
2101   Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup.data(),
2102                                   DeclsInGroup.size());
2103 }
2104
2105 /// ParseCXXMemberInitializer - Parse the brace-or-equal-initializer or
2106 /// pure-specifier. Also detect and reject any attempted defaulted/deleted
2107 /// function definition. The location of the '=', if any, will be placed in
2108 /// EqualLoc.
2109 ///
2110 ///   pure-specifier:
2111 ///     '= 0'
2112 ///
2113 ///   brace-or-equal-initializer:
2114 ///     '=' initializer-expression
2115 ///     braced-init-list
2116 ///
2117 ///   initializer-clause:
2118 ///     assignment-expression
2119 ///     braced-init-list
2120 ///
2121 ///   defaulted/deleted function-definition:                                                                                                                                                                                               
2122 ///     '=' 'default'
2123 ///     '=' 'delete'
2124 ///
2125 /// Prior to C++0x, the assignment-expression in an initializer-clause must
2126 /// be a constant-expression.
2127 ExprResult Parser::ParseCXXMemberInitializer(Decl *D, bool IsFunction,
2128                                              SourceLocation &EqualLoc) {
2129   assert((Tok.is(tok::equal) || Tok.is(tok::l_brace))
2130          && "Data member initializer not starting with '=' or '{'");
2131
2132   EnterExpressionEvaluationContext Context(Actions, 
2133                                            Sema::PotentiallyEvaluated,
2134                                            D);
2135   if (Tok.is(tok::equal)) {
2136     EqualLoc = ConsumeToken();
2137     if (Tok.is(tok::kw_delete)) {
2138       // In principle, an initializer of '= delete p;' is legal, but it will
2139       // never type-check. It's better to diagnose it as an ill-formed expression
2140       // than as an ill-formed deleted non-function member.
2141       // An initializer of '= delete p, foo' will never be parsed, because
2142       // a top-level comma always ends the initializer expression.
2143       const Token &Next = NextToken();
2144       if (IsFunction || Next.is(tok::semi) || Next.is(tok::comma) ||
2145            Next.is(tok::eof)) {
2146         if (IsFunction)
2147           Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
2148             << 1 /* delete */;
2149         else
2150           Diag(ConsumeToken(), diag::err_deleted_non_function);
2151         return ExprResult();
2152       }
2153     } else if (Tok.is(tok::kw_default)) {
2154       if (IsFunction)
2155         Diag(Tok, diag::err_default_delete_in_multiple_declaration)
2156           << 0 /* default */;
2157       else
2158         Diag(ConsumeToken(), diag::err_default_special_members);
2159       return ExprResult();
2160     }
2161
2162   }
2163   return ParseInitializer();
2164 }
2165
2166 /// ParseCXXMemberSpecification - Parse the class definition.
2167 ///
2168 ///       member-specification:
2169 ///         member-declaration member-specification[opt]
2170 ///         access-specifier ':' member-specification[opt]
2171 ///
2172 void Parser::ParseCXXMemberSpecification(SourceLocation RecordLoc,
2173                                          unsigned TagType, Decl *TagDecl) {
2174   assert((TagType == DeclSpec::TST_struct ||
2175          TagType == DeclSpec::TST_union  ||
2176          TagType == DeclSpec::TST_class) && "Invalid TagType!");
2177
2178   PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
2179                                       "parsing struct/union/class body");
2180
2181   // Determine whether this is a non-nested class. Note that local
2182   // classes are *not* considered to be nested classes.
2183   bool NonNestedClass = true;
2184   if (!ClassStack.empty()) {
2185     for (const Scope *S = getCurScope(); S; S = S->getParent()) {
2186       if (S->isClassScope()) {
2187         // We're inside a class scope, so this is a nested class.
2188         NonNestedClass = false;
2189         break;
2190       }
2191
2192       if ((S->getFlags() & Scope::FnScope)) {
2193         // If we're in a function or function template declared in the
2194         // body of a class, then this is a local class rather than a
2195         // nested class.
2196         const Scope *Parent = S->getParent();
2197         if (Parent->isTemplateParamScope())
2198           Parent = Parent->getParent();
2199         if (Parent->isClassScope())
2200           break;
2201       }
2202     }
2203   }
2204
2205   // Enter a scope for the class.
2206   ParseScope ClassScope(this, Scope::ClassScope|Scope::DeclScope);
2207
2208   // Note that we are parsing a new (potentially-nested) class definition.
2209   ParsingClassDefinition ParsingDef(*this, TagDecl, NonNestedClass);
2210
2211   if (TagDecl)
2212     Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
2213
2214   SourceLocation FinalLoc;
2215
2216   // Parse the optional 'final' keyword.
2217   if (getLangOpts().CPlusPlus && Tok.is(tok::identifier)) {
2218     assert(isCXX0XFinalKeyword() && "not a class definition");
2219     FinalLoc = ConsumeToken();
2220
2221     Diag(FinalLoc, getLangOpts().CPlusPlus0x ?
2222          diag::warn_cxx98_compat_override_control_keyword :
2223          diag::ext_override_control_keyword) << "final";
2224   }
2225
2226   if (Tok.is(tok::colon)) {
2227     ParseBaseClause(TagDecl);
2228
2229     if (!Tok.is(tok::l_brace)) {
2230       Diag(Tok, diag::err_expected_lbrace_after_base_specifiers);
2231
2232       if (TagDecl)
2233         Actions.ActOnTagDefinitionError(getCurScope(), TagDecl);
2234       return;
2235     }
2236   }
2237
2238   assert(Tok.is(tok::l_brace));
2239   BalancedDelimiterTracker T(*this, tok::l_brace);
2240   T.consumeOpen();
2241
2242   if (TagDecl)
2243     Actions.ActOnStartCXXMemberDeclarations(getCurScope(), TagDecl, FinalLoc,
2244                                             T.getOpenLocation());
2245
2246   // C++ 11p3: Members of a class defined with the keyword class are private
2247   // by default. Members of a class defined with the keywords struct or union
2248   // are public by default.
2249   AccessSpecifier CurAS;
2250   if (TagType == DeclSpec::TST_class)
2251     CurAS = AS_private;
2252   else
2253     CurAS = AS_public;
2254   ParsedAttributes AccessAttrs(AttrFactory);
2255
2256   if (TagDecl) {
2257     // While we still have something to read, read the member-declarations.
2258     while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
2259       // Each iteration of this loop reads one member-declaration.
2260
2261       if (getLangOpts().MicrosoftExt && (Tok.is(tok::kw___if_exists) ||
2262           Tok.is(tok::kw___if_not_exists))) {
2263         ParseMicrosoftIfExistsClassDeclaration((DeclSpec::TST)TagType, CurAS);
2264         continue;
2265       }
2266
2267       // Check for extraneous top-level semicolon.
2268       if (Tok.is(tok::semi)) {
2269         Diag(Tok, diag::ext_extra_struct_semi)
2270           << DeclSpec::getSpecifierName((DeclSpec::TST)TagType)
2271           << FixItHint::CreateRemoval(Tok.getLocation());
2272         ConsumeToken();
2273         continue;
2274       }
2275
2276       if (Tok.is(tok::annot_pragma_vis)) {
2277         HandlePragmaVisibility();
2278         continue;
2279       }
2280
2281       if (Tok.is(tok::annot_pragma_pack)) {
2282         HandlePragmaPack();
2283         continue;
2284       }
2285
2286       AccessSpecifier AS = getAccessSpecifierIfPresent();
2287       if (AS != AS_none) {
2288         // Current token is a C++ access specifier.
2289         CurAS = AS;
2290         SourceLocation ASLoc = Tok.getLocation();
2291         unsigned TokLength = Tok.getLength();
2292         ConsumeToken();
2293         AccessAttrs.clear();
2294         MaybeParseGNUAttributes(AccessAttrs);
2295
2296         SourceLocation EndLoc;
2297         if (Tok.is(tok::colon)) {
2298           EndLoc = Tok.getLocation();
2299           ConsumeToken();
2300         } else if (Tok.is(tok::semi)) {
2301           EndLoc = Tok.getLocation();
2302           ConsumeToken();
2303           Diag(EndLoc, diag::err_expected_colon) 
2304             << FixItHint::CreateReplacement(EndLoc, ":");
2305         } else {
2306           EndLoc = ASLoc.getLocWithOffset(TokLength);
2307           Diag(EndLoc, diag::err_expected_colon) 
2308             << FixItHint::CreateInsertion(EndLoc, ":");
2309         }
2310
2311         if (Actions.ActOnAccessSpecifier(AS, ASLoc, EndLoc,
2312                                          AccessAttrs.getList())) {
2313           // found another attribute than only annotations
2314           AccessAttrs.clear();
2315         }
2316
2317         continue;
2318       }
2319
2320       // FIXME: Make sure we don't have a template here.
2321
2322       // Parse all the comma separated declarators.
2323       ParseCXXClassMemberDeclaration(CurAS, AccessAttrs.getList());
2324     }
2325
2326     T.consumeClose();
2327   } else {
2328     SkipUntil(tok::r_brace, false, false);
2329   }
2330
2331   // If attributes exist after class contents, parse them.
2332   ParsedAttributes attrs(AttrFactory);
2333   MaybeParseGNUAttributes(attrs);
2334
2335   if (TagDecl)
2336     Actions.ActOnFinishCXXMemberSpecification(getCurScope(), RecordLoc, TagDecl,
2337                                               T.getOpenLocation(), 
2338                                               T.getCloseLocation(),
2339                                               attrs.getList());
2340
2341   // C++11 [class.mem]p2:
2342   //   Within the class member-specification, the class is regarded as complete
2343   //   within function bodies, default arguments, and
2344   //   brace-or-equal-initializers for non-static data members (including such
2345   //   things in nested classes).
2346   if (TagDecl && NonNestedClass) {
2347     // We are not inside a nested class. This class and its nested classes
2348     // are complete and we can parse the delayed portions of method
2349     // declarations and the lexed inline method definitions, along with any
2350     // delayed attributes.
2351     SourceLocation SavedPrevTokLocation = PrevTokLocation;
2352     ParseLexedAttributes(getCurrentClass());
2353     ParseLexedMethodDeclarations(getCurrentClass());
2354
2355     // We've finished with all pending member declarations.
2356     Actions.ActOnFinishCXXMemberDecls();
2357
2358     ParseLexedMemberInitializers(getCurrentClass());
2359     ParseLexedMethodDefs(getCurrentClass());
2360     PrevTokLocation = SavedPrevTokLocation;
2361   }
2362
2363   if (TagDecl)
2364     Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl, 
2365                                      T.getCloseLocation());
2366
2367   // Leave the class scope.
2368   ParsingDef.Pop();
2369   ClassScope.Exit();
2370 }
2371
2372 /// ParseConstructorInitializer - Parse a C++ constructor initializer,
2373 /// which explicitly initializes the members or base classes of a
2374 /// class (C++ [class.base.init]). For example, the three initializers
2375 /// after the ':' in the Derived constructor below:
2376 ///
2377 /// @code
2378 /// class Base { };
2379 /// class Derived : Base {
2380 ///   int x;
2381 ///   float f;
2382 /// public:
2383 ///   Derived(float f) : Base(), x(17), f(f) { }
2384 /// };
2385 /// @endcode
2386 ///
2387 /// [C++]  ctor-initializer:
2388 ///          ':' mem-initializer-list
2389 ///
2390 /// [C++]  mem-initializer-list:
2391 ///          mem-initializer ...[opt]
2392 ///          mem-initializer ...[opt] , mem-initializer-list
2393 void Parser::ParseConstructorInitializer(Decl *ConstructorDecl) {
2394   assert(Tok.is(tok::colon) && "Constructor initializer always starts with ':'");
2395
2396   // Poison the SEH identifiers so they are flagged as illegal in constructor initializers
2397   PoisonSEHIdentifiersRAIIObject PoisonSEHIdentifiers(*this, true);
2398   SourceLocation ColonLoc = ConsumeToken();
2399
2400   SmallVector<CXXCtorInitializer*, 4> MemInitializers;
2401   bool AnyErrors = false;
2402
2403   do {
2404     if (Tok.is(tok::code_completion)) {
2405       Actions.CodeCompleteConstructorInitializer(ConstructorDecl, 
2406                                                  MemInitializers.data(), 
2407                                                  MemInitializers.size());
2408       return cutOffParsing();
2409     } else {
2410       MemInitResult MemInit = ParseMemInitializer(ConstructorDecl);
2411       if (!MemInit.isInvalid())
2412         MemInitializers.push_back(MemInit.get());
2413       else
2414         AnyErrors = true;
2415     }
2416     
2417     if (Tok.is(tok::comma))
2418       ConsumeToken();
2419     else if (Tok.is(tok::l_brace))
2420       break;
2421     // If the next token looks like a base or member initializer, assume that
2422     // we're just missing a comma.
2423     else if (Tok.is(tok::identifier) || Tok.is(tok::coloncolon)) {
2424       SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
2425       Diag(Loc, diag::err_ctor_init_missing_comma)
2426         << FixItHint::CreateInsertion(Loc, ", ");
2427     } else {
2428       // Skip over garbage, until we get to '{'.  Don't eat the '{'.
2429       Diag(Tok.getLocation(), diag::err_expected_lbrace_or_comma);
2430       SkipUntil(tok::l_brace, true, true);
2431       break;
2432     }
2433   } while (true);
2434
2435   Actions.ActOnMemInitializers(ConstructorDecl, ColonLoc,
2436                                MemInitializers.data(), MemInitializers.size(),
2437                                AnyErrors);
2438 }
2439
2440 /// ParseMemInitializer - Parse a C++ member initializer, which is
2441 /// part of a constructor initializer that explicitly initializes one
2442 /// member or base class (C++ [class.base.init]). See
2443 /// ParseConstructorInitializer for an example.
2444 ///
2445 /// [C++] mem-initializer:
2446 ///         mem-initializer-id '(' expression-list[opt] ')'
2447 /// [C++0x] mem-initializer-id braced-init-list
2448 ///
2449 /// [C++] mem-initializer-id:
2450 ///         '::'[opt] nested-name-specifier[opt] class-name
2451 ///         identifier
2452 Parser::MemInitResult Parser::ParseMemInitializer(Decl *ConstructorDecl) {
2453   // parse '::'[opt] nested-name-specifier[opt]
2454   CXXScopeSpec SS;
2455   ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
2456   ParsedType TemplateTypeTy;
2457   if (Tok.is(tok::annot_template_id)) {
2458     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2459     if (TemplateId->Kind == TNK_Type_template ||
2460         TemplateId->Kind == TNK_Dependent_template_name) {
2461       AnnotateTemplateIdTokenAsType();
2462       assert(Tok.is(tok::annot_typename) && "template-id -> type failed");
2463       TemplateTypeTy = getTypeAnnotation(Tok);
2464     }
2465   }
2466   // Uses of decltype will already have been converted to annot_decltype by
2467   // ParseOptionalCXXScopeSpecifier at this point.
2468   if (!TemplateTypeTy && Tok.isNot(tok::identifier)
2469       && Tok.isNot(tok::annot_decltype)) {
2470     Diag(Tok, diag::err_expected_member_or_base_name);
2471     return true;
2472   }
2473
2474   IdentifierInfo *II = 0;
2475   DeclSpec DS(AttrFactory);
2476   SourceLocation IdLoc = Tok.getLocation();
2477   if (Tok.is(tok::annot_decltype)) {
2478     // Get the decltype expression, if there is one.
2479     ParseDecltypeSpecifier(DS);
2480   } else {
2481     if (Tok.is(tok::identifier))
2482       // Get the identifier. This may be a member name or a class name,
2483       // but we'll let the semantic analysis determine which it is.
2484       II = Tok.getIdentifierInfo();
2485     ConsumeToken();
2486   }
2487
2488
2489   // Parse the '('.
2490   if (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)) {
2491     Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2492
2493     ExprResult InitList = ParseBraceInitializer();
2494     if (InitList.isInvalid())
2495       return true;
2496
2497     SourceLocation EllipsisLoc;
2498     if (Tok.is(tok::ellipsis))
2499       EllipsisLoc = ConsumeToken();
2500
2501     return Actions.ActOnMemInitializer(ConstructorDecl, getCurScope(), SS, II,
2502                                        TemplateTypeTy, DS, IdLoc, 
2503                                        InitList.take(), EllipsisLoc);
2504   } else if(Tok.is(tok::l_paren)) {
2505     BalancedDelimiterTracker T(*this, tok::l_paren);
2506     T.consumeOpen();
2507
2508     // Parse the optional expression-list.
2509     ExprVector ArgExprs(Actions);
2510     CommaLocsTy CommaLocs;
2511     if (Tok.isNot(tok::r_paren) && ParseExpressionList(ArgExprs, CommaLocs)) {
2512       SkipUntil(tok::r_paren);
2513       return true;
2514     }
2515
2516     T.consumeClose();
2517
2518     SourceLocation EllipsisLoc;
2519     if (Tok.is(tok::ellipsis))
2520       EllipsisLoc = ConsumeToken();
2521
2522     return Actions.ActOnMemInitializer(ConstructorDecl, getCurScope(), SS, II,
2523                                        TemplateTypeTy, DS, IdLoc,
2524                                        T.getOpenLocation(), ArgExprs.take(),
2525                                        ArgExprs.size(), T.getCloseLocation(),
2526                                        EllipsisLoc);
2527   }
2528
2529   Diag(Tok, getLangOpts().CPlusPlus0x ? diag::err_expected_lparen_or_lbrace
2530                                   : diag::err_expected_lparen);
2531   return true;
2532 }
2533
2534 /// \brief Parse a C++ exception-specification if present (C++0x [except.spec]).
2535 ///
2536 ///       exception-specification:
2537 ///         dynamic-exception-specification
2538 ///         noexcept-specification
2539 ///
2540 ///       noexcept-specification:
2541 ///         'noexcept'
2542 ///         'noexcept' '(' constant-expression ')'
2543 ExceptionSpecificationType
2544 Parser::tryParseExceptionSpecification(
2545                     SourceRange &SpecificationRange,
2546                     SmallVectorImpl<ParsedType> &DynamicExceptions,
2547                     SmallVectorImpl<SourceRange> &DynamicExceptionRanges,
2548                     ExprResult &NoexceptExpr) {
2549   ExceptionSpecificationType Result = EST_None;
2550
2551   // See if there's a dynamic specification.
2552   if (Tok.is(tok::kw_throw)) {
2553     Result = ParseDynamicExceptionSpecification(SpecificationRange,
2554                                                 DynamicExceptions,
2555                                                 DynamicExceptionRanges);
2556     assert(DynamicExceptions.size() == DynamicExceptionRanges.size() &&
2557            "Produced different number of exception types and ranges.");
2558   }
2559
2560   // If there's no noexcept specification, we're done.
2561   if (Tok.isNot(tok::kw_noexcept))
2562     return Result;
2563
2564   Diag(Tok, diag::warn_cxx98_compat_noexcept_decl);
2565
2566   // If we already had a dynamic specification, parse the noexcept for,
2567   // recovery, but emit a diagnostic and don't store the results.
2568   SourceRange NoexceptRange;
2569   ExceptionSpecificationType NoexceptType = EST_None;
2570
2571   SourceLocation KeywordLoc = ConsumeToken();
2572   if (Tok.is(tok::l_paren)) {
2573     // There is an argument.
2574     BalancedDelimiterTracker T(*this, tok::l_paren);
2575     T.consumeOpen();
2576     NoexceptType = EST_ComputedNoexcept;
2577     NoexceptExpr = ParseConstantExpression();
2578     // The argument must be contextually convertible to bool. We use
2579     // ActOnBooleanCondition for this purpose.
2580     if (!NoexceptExpr.isInvalid())
2581       NoexceptExpr = Actions.ActOnBooleanCondition(getCurScope(), KeywordLoc,
2582                                                    NoexceptExpr.get());
2583     T.consumeClose();
2584     NoexceptRange = SourceRange(KeywordLoc, T.getCloseLocation());
2585   } else {
2586     // There is no argument.
2587     NoexceptType = EST_BasicNoexcept;
2588     NoexceptRange = SourceRange(KeywordLoc, KeywordLoc);
2589   }
2590
2591   if (Result == EST_None) {
2592     SpecificationRange = NoexceptRange;
2593     Result = NoexceptType;
2594
2595     // If there's a dynamic specification after a noexcept specification,
2596     // parse that and ignore the results.
2597     if (Tok.is(tok::kw_throw)) {
2598       Diag(Tok.getLocation(), diag::err_dynamic_and_noexcept_specification);
2599       ParseDynamicExceptionSpecification(NoexceptRange, DynamicExceptions,
2600                                          DynamicExceptionRanges);
2601     }
2602   } else {
2603     Diag(Tok.getLocation(), diag::err_dynamic_and_noexcept_specification);
2604   }
2605
2606   return Result;
2607 }
2608
2609 /// ParseDynamicExceptionSpecification - Parse a C++
2610 /// dynamic-exception-specification (C++ [except.spec]).
2611 ///
2612 ///       dynamic-exception-specification:
2613 ///         'throw' '(' type-id-list [opt] ')'
2614 /// [MS]    'throw' '(' '...' ')'
2615 ///
2616 ///       type-id-list:
2617 ///         type-id ... [opt]
2618 ///         type-id-list ',' type-id ... [opt]
2619 ///
2620 ExceptionSpecificationType Parser::ParseDynamicExceptionSpecification(
2621                                   SourceRange &SpecificationRange,
2622                                   SmallVectorImpl<ParsedType> &Exceptions,
2623                                   SmallVectorImpl<SourceRange> &Ranges) {
2624   assert(Tok.is(tok::kw_throw) && "expected throw");
2625
2626   SpecificationRange.setBegin(ConsumeToken());
2627   BalancedDelimiterTracker T(*this, tok::l_paren);
2628   if (T.consumeOpen()) {
2629     Diag(Tok, diag::err_expected_lparen_after) << "throw";
2630     SpecificationRange.setEnd(SpecificationRange.getBegin());
2631     return EST_DynamicNone;
2632   }
2633
2634   // Parse throw(...), a Microsoft extension that means "this function
2635   // can throw anything".
2636   if (Tok.is(tok::ellipsis)) {
2637     SourceLocation EllipsisLoc = ConsumeToken();
2638     if (!getLangOpts().MicrosoftExt)
2639       Diag(EllipsisLoc, diag::ext_ellipsis_exception_spec);
2640     T.consumeClose();
2641     SpecificationRange.setEnd(T.getCloseLocation());
2642     return EST_MSAny;
2643   }
2644
2645   // Parse the sequence of type-ids.
2646   SourceRange Range;
2647   while (Tok.isNot(tok::r_paren)) {
2648     TypeResult Res(ParseTypeName(&Range));
2649
2650     if (Tok.is(tok::ellipsis)) {
2651       // C++0x [temp.variadic]p5:
2652       //   - In a dynamic-exception-specification (15.4); the pattern is a 
2653       //     type-id.
2654       SourceLocation Ellipsis = ConsumeToken();
2655       Range.setEnd(Ellipsis);
2656       if (!Res.isInvalid())
2657         Res = Actions.ActOnPackExpansion(Res.get(), Ellipsis);
2658     }
2659
2660     if (!Res.isInvalid()) {
2661       Exceptions.push_back(Res.get());
2662       Ranges.push_back(Range);
2663     }
2664     
2665     if (Tok.is(tok::comma))
2666       ConsumeToken();
2667     else
2668       break;
2669   }
2670
2671   T.consumeClose();
2672   SpecificationRange.setEnd(T.getCloseLocation());
2673   return Exceptions.empty() ? EST_DynamicNone : EST_Dynamic;
2674 }
2675
2676 /// ParseTrailingReturnType - Parse a trailing return type on a new-style
2677 /// function declaration.
2678 TypeResult Parser::ParseTrailingReturnType(SourceRange &Range) {
2679   assert(Tok.is(tok::arrow) && "expected arrow");
2680
2681   ConsumeToken();
2682
2683   return ParseTypeName(&Range, Declarator::TrailingReturnContext);
2684 }
2685
2686 /// \brief We have just started parsing the definition of a new class,
2687 /// so push that class onto our stack of classes that is currently
2688 /// being parsed.
2689 Sema::ParsingClassState
2690 Parser::PushParsingClass(Decl *ClassDecl, bool NonNestedClass) {
2691   assert((NonNestedClass || !ClassStack.empty()) &&
2692          "Nested class without outer class");
2693   ClassStack.push(new ParsingClass(ClassDecl, NonNestedClass));
2694   return Actions.PushParsingClass();
2695 }
2696
2697 /// \brief Deallocate the given parsed class and all of its nested
2698 /// classes.
2699 void Parser::DeallocateParsedClasses(Parser::ParsingClass *Class) {
2700   for (unsigned I = 0, N = Class->LateParsedDeclarations.size(); I != N; ++I)
2701     delete Class->LateParsedDeclarations[I];
2702   delete Class;
2703 }
2704
2705 /// \brief Pop the top class of the stack of classes that are
2706 /// currently being parsed.
2707 ///
2708 /// This routine should be called when we have finished parsing the
2709 /// definition of a class, but have not yet popped the Scope
2710 /// associated with the class's definition.
2711 ///
2712 /// \returns true if the class we've popped is a top-level class,
2713 /// false otherwise.
2714 void Parser::PopParsingClass(Sema::ParsingClassState state) {
2715   assert(!ClassStack.empty() && "Mismatched push/pop for class parsing");
2716
2717   Actions.PopParsingClass(state);
2718
2719   ParsingClass *Victim = ClassStack.top();
2720   ClassStack.pop();
2721   if (Victim->TopLevelClass) {
2722     // Deallocate all of the nested classes of this class,
2723     // recursively: we don't need to keep any of this information.
2724     DeallocateParsedClasses(Victim);
2725     return;
2726   }
2727   assert(!ClassStack.empty() && "Missing top-level class?");
2728
2729   if (Victim->LateParsedDeclarations.empty()) {
2730     // The victim is a nested class, but we will not need to perform
2731     // any processing after the definition of this class since it has
2732     // no members whose handling was delayed. Therefore, we can just
2733     // remove this nested class.
2734     DeallocateParsedClasses(Victim);
2735     return;
2736   }
2737
2738   // This nested class has some members that will need to be processed
2739   // after the top-level class is completely defined. Therefore, add
2740   // it to the list of nested classes within its parent.
2741   assert(getCurScope()->isClassScope() && "Nested class outside of class scope?");
2742   ClassStack.top()->LateParsedDeclarations.push_back(new LateParsedClass(this, Victim));
2743   Victim->TemplateScope = getCurScope()->getParent()->isTemplateParamScope();
2744 }
2745
2746 /// \brief Try to parse an 'identifier' which appears within an attribute-token.
2747 ///
2748 /// \return the parsed identifier on success, and 0 if the next token is not an
2749 /// attribute-token.
2750 ///
2751 /// C++11 [dcl.attr.grammar]p3:
2752 ///   If a keyword or an alternative token that satisfies the syntactic
2753 ///   requirements of an identifier is contained in an attribute-token,
2754 ///   it is considered an identifier.
2755 IdentifierInfo *Parser::TryParseCXX11AttributeIdentifier(SourceLocation &Loc) {
2756   switch (Tok.getKind()) {
2757   default:
2758     // Identifiers and keywords have identifier info attached.
2759     if (IdentifierInfo *II = Tok.getIdentifierInfo()) {
2760       Loc = ConsumeToken();
2761       return II;
2762     }
2763     return 0;
2764
2765   case tok::ampamp:       // 'and'
2766   case tok::pipe:         // 'bitor'
2767   case tok::pipepipe:     // 'or'
2768   case tok::caret:        // 'xor'
2769   case tok::tilde:        // 'compl'
2770   case tok::amp:          // 'bitand'
2771   case tok::ampequal:     // 'and_eq'
2772   case tok::pipeequal:    // 'or_eq'
2773   case tok::caretequal:   // 'xor_eq'
2774   case tok::exclaim:      // 'not'
2775   case tok::exclaimequal: // 'not_eq'
2776     // Alternative tokens do not have identifier info, but their spelling
2777     // starts with an alphabetical character.
2778     llvm::SmallString<8> SpellingBuf;
2779     StringRef Spelling = PP.getSpelling(Tok.getLocation(), SpellingBuf);
2780     if (std::isalpha(Spelling[0])) {
2781       Loc = ConsumeToken();
2782       return &PP.getIdentifierTable().get(Spelling.data());
2783     }
2784     return 0;
2785   }
2786 }
2787
2788 /// ParseCXX11AttributeSpecifier - Parse a C++11 attribute-specifier. Currently
2789 /// only parses standard attributes.
2790 ///
2791 /// [C++11] attribute-specifier:
2792 ///         '[' '[' attribute-list ']' ']'
2793 ///         alignment-specifier
2794 ///
2795 /// [C++11] attribute-list:
2796 ///         attribute[opt]
2797 ///         attribute-list ',' attribute[opt]
2798 ///         attribute '...'
2799 ///         attribute-list ',' attribute '...'
2800 ///
2801 /// [C++11] attribute:
2802 ///         attribute-token attribute-argument-clause[opt]
2803 ///
2804 /// [C++11] attribute-token:
2805 ///         identifier
2806 ///         attribute-scoped-token
2807 ///
2808 /// [C++11] attribute-scoped-token:
2809 ///         attribute-namespace '::' identifier
2810 ///
2811 /// [C++11] attribute-namespace:
2812 ///         identifier
2813 ///
2814 /// [C++11] attribute-argument-clause:
2815 ///         '(' balanced-token-seq ')'
2816 ///
2817 /// [C++11] balanced-token-seq:
2818 ///         balanced-token
2819 ///         balanced-token-seq balanced-token
2820 ///
2821 /// [C++11] balanced-token:
2822 ///         '(' balanced-token-seq ')'
2823 ///         '[' balanced-token-seq ']'
2824 ///         '{' balanced-token-seq '}'
2825 ///         any token but '(', ')', '[', ']', '{', or '}'
2826 void Parser::ParseCXX11AttributeSpecifier(ParsedAttributes &attrs,
2827                                           SourceLocation *endLoc) {
2828   if (Tok.is(tok::kw_alignas)) {
2829     Diag(Tok.getLocation(), diag::warn_cxx98_compat_alignas);
2830     ParseAlignmentSpecifier(attrs, endLoc);
2831     return;
2832   }
2833
2834   assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square)
2835       && "Not a C++11 attribute list");
2836
2837   Diag(Tok.getLocation(), diag::warn_cxx98_compat_attribute);
2838
2839   ConsumeBracket();
2840   ConsumeBracket();
2841
2842   while (Tok.isNot(tok::r_square)) {
2843     // attribute not present
2844     if (Tok.is(tok::comma)) {
2845       ConsumeToken();
2846       continue;
2847     }
2848
2849     SourceLocation ScopeLoc, AttrLoc;
2850     IdentifierInfo *ScopeName = 0, *AttrName = 0;
2851
2852     AttrName = TryParseCXX11AttributeIdentifier(AttrLoc);
2853     if (!AttrName)
2854       // Break out to the "expected ']'" diagnostic.
2855       break;
2856
2857     // scoped attribute
2858     if (Tok.is(tok::coloncolon)) {
2859       ConsumeToken();
2860
2861       ScopeName = AttrName;
2862       ScopeLoc = AttrLoc;
2863
2864       AttrName = TryParseCXX11AttributeIdentifier(AttrLoc);
2865       if (!AttrName) {
2866         Diag(Tok.getLocation(), diag::err_expected_ident);
2867         SkipUntil(tok::r_square, tok::comma, true, true);
2868         continue;
2869       }
2870     }
2871
2872     bool AttrParsed = false;
2873     // No scoped names are supported; ideally we could put all non-standard
2874     // attributes into namespaces.
2875     if (!ScopeName) {
2876       switch (AttributeList::getKind(AttrName)) {
2877       // No arguments
2878       case AttributeList::AT_carries_dependency:
2879       case AttributeList::AT_noreturn: {
2880         if (Tok.is(tok::l_paren)) {
2881           Diag(Tok.getLocation(), diag::err_cxx11_attribute_forbids_arguments)
2882             << AttrName->getName();
2883           break;
2884         }
2885
2886         attrs.addNew(AttrName, AttrLoc, 0, AttrLoc, 0,
2887                      SourceLocation(), 0, 0, false, true);
2888         AttrParsed = true;
2889         break;
2890       }
2891
2892       // Silence warnings
2893       default: break;
2894       }
2895     }
2896
2897     // Skip the entire parameter clause, if any
2898     if (!AttrParsed && Tok.is(tok::l_paren)) {
2899       ConsumeParen();
2900       // SkipUntil maintains the balancedness of tokens.
2901       SkipUntil(tok::r_paren, false);
2902     }
2903
2904     if (Tok.is(tok::ellipsis)) {
2905       if (AttrParsed)
2906         Diag(Tok, diag::err_cxx11_attribute_forbids_ellipsis)
2907           << AttrName->getName();
2908       ConsumeToken();
2909     }
2910   }
2911
2912   if (ExpectAndConsume(tok::r_square, diag::err_expected_rsquare))
2913     SkipUntil(tok::r_square, false);
2914   if (endLoc)
2915     *endLoc = Tok.getLocation();
2916   if (ExpectAndConsume(tok::r_square, diag::err_expected_rsquare))
2917     SkipUntil(tok::r_square, false);
2918 }
2919
2920 /// ParseCXX11Attributes - Parse a C++0x attribute-specifier-seq.
2921 ///
2922 /// attribute-specifier-seq:
2923 ///       attribute-specifier-seq[opt] attribute-specifier
2924 void Parser::ParseCXX11Attributes(ParsedAttributesWithRange &attrs,
2925                                   SourceLocation *endLoc) {
2926   SourceLocation StartLoc = Tok.getLocation(), Loc;
2927   if (!endLoc)
2928     endLoc = &Loc;
2929
2930   do {
2931     ParseCXX11AttributeSpecifier(attrs, endLoc);
2932   } while (isCXX11AttributeSpecifier());
2933
2934   attrs.Range = SourceRange(StartLoc, *endLoc);
2935 }
2936
2937 /// ParseMicrosoftAttributes - Parse a Microsoft attribute [Attr]
2938 ///
2939 /// [MS] ms-attribute:
2940 ///             '[' token-seq ']'
2941 ///
2942 /// [MS] ms-attribute-seq:
2943 ///             ms-attribute[opt]
2944 ///             ms-attribute ms-attribute-seq
2945 void Parser::ParseMicrosoftAttributes(ParsedAttributes &attrs,
2946                                       SourceLocation *endLoc) {
2947   assert(Tok.is(tok::l_square) && "Not a Microsoft attribute list");
2948
2949   while (Tok.is(tok::l_square)) {
2950     // FIXME: If this is actually a C++11 attribute, parse it as one.
2951     ConsumeBracket();
2952     SkipUntil(tok::r_square, true, true);
2953     if (endLoc) *endLoc = Tok.getLocation();
2954     ExpectAndConsume(tok::r_square, diag::err_expected_rsquare);
2955   }
2956 }
2957
2958 void Parser::ParseMicrosoftIfExistsClassDeclaration(DeclSpec::TST TagType,
2959                                                     AccessSpecifier& CurAS) {
2960   IfExistsCondition Result;
2961   if (ParseMicrosoftIfExistsCondition(Result))
2962     return;
2963   
2964   BalancedDelimiterTracker Braces(*this, tok::l_brace);
2965   if (Braces.consumeOpen()) {
2966     Diag(Tok, diag::err_expected_lbrace);
2967     return;
2968   }
2969
2970   switch (Result.Behavior) {
2971   case IEB_Parse:
2972     // Parse the declarations below.
2973     break;
2974         
2975   case IEB_Dependent:
2976     Diag(Result.KeywordLoc, diag::warn_microsoft_dependent_exists)
2977       << Result.IsIfExists;
2978     // Fall through to skip.
2979       
2980   case IEB_Skip:
2981     Braces.skipToEnd();
2982     return;
2983   }
2984
2985   while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
2986     // __if_exists, __if_not_exists can nest.
2987     if ((Tok.is(tok::kw___if_exists) || Tok.is(tok::kw___if_not_exists))) {
2988       ParseMicrosoftIfExistsClassDeclaration((DeclSpec::TST)TagType, CurAS);
2989       continue;
2990     }
2991
2992     // Check for extraneous top-level semicolon.
2993     if (Tok.is(tok::semi)) {
2994       Diag(Tok, diag::ext_extra_struct_semi)
2995         << DeclSpec::getSpecifierName((DeclSpec::TST)TagType)
2996         << FixItHint::CreateRemoval(Tok.getLocation());
2997       ConsumeToken();
2998       continue;
2999     }
3000
3001     AccessSpecifier AS = getAccessSpecifierIfPresent();
3002     if (AS != AS_none) {
3003       // Current token is a C++ access specifier.
3004       CurAS = AS;
3005       SourceLocation ASLoc = Tok.getLocation();
3006       ConsumeToken();
3007       if (Tok.is(tok::colon))
3008         Actions.ActOnAccessSpecifier(AS, ASLoc, Tok.getLocation());
3009       else
3010         Diag(Tok, diag::err_expected_colon);
3011       ConsumeToken();
3012       continue;
3013     }
3014
3015     // Parse all the comma separated declarators.
3016     ParseCXXClassMemberDeclaration(CurAS, 0);
3017   }
3018   
3019   Braces.consumeClose();
3020 }