]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - contrib/llvm/tools/clang/lib/Parse/ParseExprCXX.cpp
MFC r234353:
[FreeBSD/stable/9.git] / contrib / llvm / tools / clang / lib / Parse / ParseExprCXX.cpp
1 //===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expression parsing implementation for C++.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Parse/ParseDiagnostic.h"
15 #include "clang/Parse/Parser.h"
16 #include "RAIIObjectsForParser.h"
17 #include "clang/Basic/PrettyStackTrace.h"
18 #include "clang/Lex/LiteralSupport.h"
19 #include "clang/Sema/DeclSpec.h"
20 #include "clang/Sema/Scope.h"
21 #include "clang/Sema/ParsedTemplate.h"
22 #include "llvm/Support/ErrorHandling.h"
23
24 using namespace clang;
25
26 static int SelectDigraphErrorMessage(tok::TokenKind Kind) {
27   switch (Kind) {
28     case tok::kw_template:         return 0;
29     case tok::kw_const_cast:       return 1;
30     case tok::kw_dynamic_cast:     return 2;
31     case tok::kw_reinterpret_cast: return 3;
32     case tok::kw_static_cast:      return 4;
33     default:
34       llvm_unreachable("Unknown type for digraph error message.");
35   }
36 }
37
38 // Are the two tokens adjacent in the same source file?
39 static bool AreTokensAdjacent(Preprocessor &PP, Token &First, Token &Second) {
40   SourceManager &SM = PP.getSourceManager();
41   SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation());
42   SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength());
43   return FirstEnd == SM.getSpellingLoc(Second.getLocation());
44 }
45
46 // Suggest fixit for "<::" after a cast.
47 static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken,
48                        Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) {
49   // Pull '<:' and ':' off token stream.
50   if (!AtDigraph)
51     PP.Lex(DigraphToken);
52   PP.Lex(ColonToken);
53
54   SourceRange Range;
55   Range.setBegin(DigraphToken.getLocation());
56   Range.setEnd(ColonToken.getLocation());
57   P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph)
58       << SelectDigraphErrorMessage(Kind)
59       << FixItHint::CreateReplacement(Range, "< ::");
60
61   // Update token information to reflect their change in token type.
62   ColonToken.setKind(tok::coloncolon);
63   ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1));
64   ColonToken.setLength(2);
65   DigraphToken.setKind(tok::less);
66   DigraphToken.setLength(1);
67
68   // Push new tokens back to token stream.
69   PP.EnterToken(ColonToken);
70   if (!AtDigraph)
71     PP.EnterToken(DigraphToken);
72 }
73
74 // Check for '<::' which should be '< ::' instead of '[:' when following
75 // a template name.
76 void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType,
77                                         bool EnteringContext,
78                                         IdentifierInfo &II, CXXScopeSpec &SS) {
79   if (!Next.is(tok::l_square) || Next.getLength() != 2)
80     return;
81
82   Token SecondToken = GetLookAheadToken(2);
83   if (!SecondToken.is(tok::colon) || !AreTokensAdjacent(PP, Next, SecondToken))
84     return;
85
86   TemplateTy Template;
87   UnqualifiedId TemplateName;
88   TemplateName.setIdentifier(&II, Tok.getLocation());
89   bool MemberOfUnknownSpecialization;
90   if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false,
91                               TemplateName, ObjectType, EnteringContext,
92                               Template, MemberOfUnknownSpecialization))
93     return;
94
95   FixDigraph(*this, PP, Next, SecondToken, tok::kw_template,
96              /*AtDigraph*/false);
97 }
98
99 /// \brief Parse global scope or nested-name-specifier if present.
100 ///
101 /// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
102 /// may be preceded by '::'). Note that this routine will not parse ::new or
103 /// ::delete; it will just leave them in the token stream.
104 ///
105 ///       '::'[opt] nested-name-specifier
106 ///       '::'
107 ///
108 ///       nested-name-specifier:
109 ///         type-name '::'
110 ///         namespace-name '::'
111 ///         nested-name-specifier identifier '::'
112 ///         nested-name-specifier 'template'[opt] simple-template-id '::'
113 ///
114 ///
115 /// \param SS the scope specifier that will be set to the parsed
116 /// nested-name-specifier (or empty)
117 ///
118 /// \param ObjectType if this nested-name-specifier is being parsed following
119 /// the "." or "->" of a member access expression, this parameter provides the
120 /// type of the object whose members are being accessed.
121 ///
122 /// \param EnteringContext whether we will be entering into the context of
123 /// the nested-name-specifier after parsing it.
124 ///
125 /// \param MayBePseudoDestructor When non-NULL, points to a flag that
126 /// indicates whether this nested-name-specifier may be part of a
127 /// pseudo-destructor name. In this case, the flag will be set false
128 /// if we don't actually end up parsing a destructor name. Moreorover,
129 /// if we do end up determining that we are parsing a destructor name,
130 /// the last component of the nested-name-specifier is not parsed as
131 /// part of the scope specifier.
132
133 /// member access expression, e.g., the \p T:: in \p p->T::m.
134 ///
135 /// \returns true if there was an error parsing a scope specifier
136 bool Parser::ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS,
137                                             ParsedType ObjectType,
138                                             bool EnteringContext,
139                                             bool *MayBePseudoDestructor,
140                                             bool IsTypename) {
141   assert(getLangOpts().CPlusPlus &&
142          "Call sites of this function should be guarded by checking for C++");
143
144   if (Tok.is(tok::annot_cxxscope)) {
145     Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
146                                                  Tok.getAnnotationRange(),
147                                                  SS);
148     ConsumeToken();
149     return false;
150   }
151
152   bool HasScopeSpecifier = false;
153
154   if (Tok.is(tok::coloncolon)) {
155     // ::new and ::delete aren't nested-name-specifiers.
156     tok::TokenKind NextKind = NextToken().getKind();
157     if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
158       return false;
159
160     // '::' - Global scope qualifier.
161     if (Actions.ActOnCXXGlobalScopeSpecifier(getCurScope(), ConsumeToken(), SS))
162       return true;
163     
164     HasScopeSpecifier = true;
165   }
166
167   bool CheckForDestructor = false;
168   if (MayBePseudoDestructor && *MayBePseudoDestructor) {
169     CheckForDestructor = true;
170     *MayBePseudoDestructor = false;
171   }
172
173   if (Tok.is(tok::kw_decltype) || Tok.is(tok::annot_decltype)) {
174     DeclSpec DS(AttrFactory);
175     SourceLocation DeclLoc = Tok.getLocation();
176     SourceLocation EndLoc  = ParseDecltypeSpecifier(DS);
177     if (Tok.isNot(tok::coloncolon)) {
178       AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc);
179       return false;
180     }
181     
182     SourceLocation CCLoc = ConsumeToken();
183     if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc))
184       SS.SetInvalid(SourceRange(DeclLoc, CCLoc));
185
186     HasScopeSpecifier = true;
187   }
188
189   while (true) {
190     if (HasScopeSpecifier) {
191       // C++ [basic.lookup.classref]p5:
192       //   If the qualified-id has the form
193       //
194       //       ::class-name-or-namespace-name::...
195       //
196       //   the class-name-or-namespace-name is looked up in global scope as a
197       //   class-name or namespace-name.
198       //
199       // To implement this, we clear out the object type as soon as we've
200       // seen a leading '::' or part of a nested-name-specifier.
201       ObjectType = ParsedType();
202       
203       if (Tok.is(tok::code_completion)) {
204         // Code completion for a nested-name-specifier, where the code
205         // code completion token follows the '::'.
206         Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext);
207         // Include code completion token into the range of the scope otherwise
208         // when we try to annotate the scope tokens the dangling code completion
209         // token will cause assertion in
210         // Preprocessor::AnnotatePreviousCachedTokens.
211         SS.setEndLoc(Tok.getLocation());
212         cutOffParsing();
213         return true;
214       }
215     }
216
217     // nested-name-specifier:
218     //   nested-name-specifier 'template'[opt] simple-template-id '::'
219
220     // Parse the optional 'template' keyword, then make sure we have
221     // 'identifier <' after it.
222     if (Tok.is(tok::kw_template)) {
223       // If we don't have a scope specifier or an object type, this isn't a
224       // nested-name-specifier, since they aren't allowed to start with
225       // 'template'.
226       if (!HasScopeSpecifier && !ObjectType)
227         break;
228
229       TentativeParsingAction TPA(*this);
230       SourceLocation TemplateKWLoc = ConsumeToken();
231       
232       UnqualifiedId TemplateName;
233       if (Tok.is(tok::identifier)) {
234         // Consume the identifier.
235         TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
236         ConsumeToken();
237       } else if (Tok.is(tok::kw_operator)) {
238         if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, 
239                                        TemplateName)) {
240           TPA.Commit();
241           break;
242         }
243         
244         if (TemplateName.getKind() != UnqualifiedId::IK_OperatorFunctionId &&
245             TemplateName.getKind() != UnqualifiedId::IK_LiteralOperatorId) {
246           Diag(TemplateName.getSourceRange().getBegin(),
247                diag::err_id_after_template_in_nested_name_spec)
248             << TemplateName.getSourceRange();
249           TPA.Commit();
250           break;
251         }
252       } else {
253         TPA.Revert();
254         break;
255       }
256
257       // If the next token is not '<', we have a qualified-id that refers
258       // to a template name, such as T::template apply, but is not a 
259       // template-id.
260       if (Tok.isNot(tok::less)) {
261         TPA.Revert();
262         break;
263       }        
264       
265       // Commit to parsing the template-id.
266       TPA.Commit();
267       TemplateTy Template;
268       if (TemplateNameKind TNK
269           = Actions.ActOnDependentTemplateName(getCurScope(),
270                                                SS, TemplateKWLoc, TemplateName,
271                                                ObjectType, EnteringContext,
272                                                Template)) {
273         if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc,
274                                     TemplateName, false))
275           return true;
276       } else
277         return true;
278
279       continue;
280     }
281
282     if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
283       // We have
284       //
285       //   simple-template-id '::'
286       //
287       // So we need to check whether the simple-template-id is of the
288       // right kind (it should name a type or be dependent), and then
289       // convert it into a type within the nested-name-specifier.
290       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
291       if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
292         *MayBePseudoDestructor = true;
293         return false;
294       }
295
296       // Consume the template-id token.
297       ConsumeToken();
298       
299       assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
300       SourceLocation CCLoc = ConsumeToken();
301
302       HasScopeSpecifier = true;
303       
304       ASTTemplateArgsPtr TemplateArgsPtr(Actions,
305                                          TemplateId->getTemplateArgs(),
306                                          TemplateId->NumArgs);
307       
308       if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(),
309                                               SS,
310                                               TemplateId->TemplateKWLoc,
311                                               TemplateId->Template,
312                                               TemplateId->TemplateNameLoc,
313                                               TemplateId->LAngleLoc,
314                                               TemplateArgsPtr,
315                                               TemplateId->RAngleLoc,
316                                               CCLoc,
317                                               EnteringContext)) {
318         SourceLocation StartLoc 
319           = SS.getBeginLoc().isValid()? SS.getBeginLoc()
320                                       : TemplateId->TemplateNameLoc;
321         SS.SetInvalid(SourceRange(StartLoc, CCLoc));
322       }
323
324       continue;
325     }
326
327
328     // The rest of the nested-name-specifier possibilities start with
329     // tok::identifier.
330     if (Tok.isNot(tok::identifier))
331       break;
332
333     IdentifierInfo &II = *Tok.getIdentifierInfo();
334
335     // nested-name-specifier:
336     //   type-name '::'
337     //   namespace-name '::'
338     //   nested-name-specifier identifier '::'
339     Token Next = NextToken();
340     
341     // If we get foo:bar, this is almost certainly a typo for foo::bar.  Recover
342     // and emit a fixit hint for it.
343     if (Next.is(tok::colon) && !ColonIsSacred) {
344       if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, II, 
345                                             Tok.getLocation(), 
346                                             Next.getLocation(), ObjectType,
347                                             EnteringContext) &&
348           // If the token after the colon isn't an identifier, it's still an
349           // error, but they probably meant something else strange so don't
350           // recover like this.
351           PP.LookAhead(1).is(tok::identifier)) {
352         Diag(Next, diag::err_unexected_colon_in_nested_name_spec)
353           << FixItHint::CreateReplacement(Next.getLocation(), "::");
354         
355         // Recover as if the user wrote '::'.
356         Next.setKind(tok::coloncolon);
357       }
358     }
359     
360     if (Next.is(tok::coloncolon)) {
361       if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde) &&
362           !Actions.isNonTypeNestedNameSpecifier(getCurScope(), SS, Tok.getLocation(),
363                                                 II, ObjectType)) {
364         *MayBePseudoDestructor = true;
365         return false;
366       }
367
368       // We have an identifier followed by a '::'. Lookup this name
369       // as the name in a nested-name-specifier.
370       SourceLocation IdLoc = ConsumeToken();
371       assert((Tok.is(tok::coloncolon) || Tok.is(tok::colon)) &&
372              "NextToken() not working properly!");
373       SourceLocation CCLoc = ConsumeToken();
374
375       HasScopeSpecifier = true;
376       if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(), II, IdLoc, CCLoc,
377                                               ObjectType, EnteringContext, SS))
378         SS.SetInvalid(SourceRange(IdLoc, CCLoc));
379       
380       continue;
381     }
382
383     CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS);
384
385     // nested-name-specifier:
386     //   type-name '<'
387     if (Next.is(tok::less)) {
388       TemplateTy Template;
389       UnqualifiedId TemplateName;
390       TemplateName.setIdentifier(&II, Tok.getLocation());
391       bool MemberOfUnknownSpecialization;
392       if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS, 
393                                               /*hasTemplateKeyword=*/false,
394                                                         TemplateName,
395                                                         ObjectType,
396                                                         EnteringContext,
397                                                         Template,
398                                               MemberOfUnknownSpecialization)) {
399         // We have found a template name, so annotate this token
400         // with a template-id annotation. We do not permit the
401         // template-id to be translated into a type annotation,
402         // because some clients (e.g., the parsing of class template
403         // specializations) still want to see the original template-id
404         // token.
405         ConsumeToken();
406         if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
407                                     TemplateName, false))
408           return true;
409         continue;
410       } 
411       
412       if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) && 
413           (IsTypename || IsTemplateArgumentList(1))) {
414         // We have something like t::getAs<T>, where getAs is a 
415         // member of an unknown specialization. However, this will only
416         // parse correctly as a template, so suggest the keyword 'template'
417         // before 'getAs' and treat this as a dependent template name.
418         unsigned DiagID = diag::err_missing_dependent_template_keyword;
419         if (getLangOpts().MicrosoftExt)
420           DiagID = diag::warn_missing_dependent_template_keyword;
421         
422         Diag(Tok.getLocation(), DiagID)
423           << II.getName()
424           << FixItHint::CreateInsertion(Tok.getLocation(), "template ");
425         
426         if (TemplateNameKind TNK 
427               = Actions.ActOnDependentTemplateName(getCurScope(), 
428                                                    SS, SourceLocation(),
429                                                    TemplateName, ObjectType,
430                                                    EnteringContext, Template)) {
431           // Consume the identifier.
432           ConsumeToken();
433           if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
434                                       TemplateName, false))
435             return true;
436         }
437         else
438           return true;     
439                 
440         continue;        
441       }
442     }
443
444     // We don't have any tokens that form the beginning of a
445     // nested-name-specifier, so we're done.
446     break;
447   }
448
449   // Even if we didn't see any pieces of a nested-name-specifier, we
450   // still check whether there is a tilde in this position, which
451   // indicates a potential pseudo-destructor.
452   if (CheckForDestructor && Tok.is(tok::tilde))
453     *MayBePseudoDestructor = true;
454
455   return false;
456 }
457
458 /// ParseCXXIdExpression - Handle id-expression.
459 ///
460 ///       id-expression:
461 ///         unqualified-id
462 ///         qualified-id
463 ///
464 ///       qualified-id:
465 ///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
466 ///         '::' identifier
467 ///         '::' operator-function-id
468 ///         '::' template-id
469 ///
470 /// NOTE: The standard specifies that, for qualified-id, the parser does not
471 /// expect:
472 ///
473 ///   '::' conversion-function-id
474 ///   '::' '~' class-name
475 ///
476 /// This may cause a slight inconsistency on diagnostics:
477 ///
478 /// class C {};
479 /// namespace A {}
480 /// void f() {
481 ///   :: A :: ~ C(); // Some Sema error about using destructor with a
482 ///                  // namespace.
483 ///   :: ~ C(); // Some Parser error like 'unexpected ~'.
484 /// }
485 ///
486 /// We simplify the parser a bit and make it work like:
487 ///
488 ///       qualified-id:
489 ///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
490 ///         '::' unqualified-id
491 ///
492 /// That way Sema can handle and report similar errors for namespaces and the
493 /// global scope.
494 ///
495 /// The isAddressOfOperand parameter indicates that this id-expression is a
496 /// direct operand of the address-of operator. This is, besides member contexts,
497 /// the only place where a qualified-id naming a non-static class member may
498 /// appear.
499 ///
500 ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
501   // qualified-id:
502   //   '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
503   //   '::' unqualified-id
504   //
505   CXXScopeSpec SS;
506   ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
507
508   SourceLocation TemplateKWLoc;
509   UnqualifiedId Name;
510   if (ParseUnqualifiedId(SS,
511                          /*EnteringContext=*/false,
512                          /*AllowDestructorName=*/false,
513                          /*AllowConstructorName=*/false,
514                          /*ObjectType=*/ ParsedType(),
515                          TemplateKWLoc,
516                          Name))
517     return ExprError();
518
519   // This is only the direct operand of an & operator if it is not
520   // followed by a postfix-expression suffix.
521   if (isAddressOfOperand && isPostfixExpressionSuffixStart())
522     isAddressOfOperand = false;
523
524   return Actions.ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Name,
525                                    Tok.is(tok::l_paren), isAddressOfOperand);
526 }
527
528 /// ParseLambdaExpression - Parse a C++0x lambda expression.
529 ///
530 ///       lambda-expression:
531 ///         lambda-introducer lambda-declarator[opt] compound-statement
532 ///
533 ///       lambda-introducer:
534 ///         '[' lambda-capture[opt] ']'
535 ///
536 ///       lambda-capture:
537 ///         capture-default
538 ///         capture-list
539 ///         capture-default ',' capture-list
540 ///
541 ///       capture-default:
542 ///         '&'
543 ///         '='
544 ///
545 ///       capture-list:
546 ///         capture
547 ///         capture-list ',' capture
548 ///
549 ///       capture:
550 ///         identifier
551 ///         '&' identifier
552 ///         'this'
553 ///
554 ///       lambda-declarator:
555 ///         '(' parameter-declaration-clause ')' attribute-specifier[opt]
556 ///           'mutable'[opt] exception-specification[opt]
557 ///           trailing-return-type[opt]
558 ///
559 ExprResult Parser::ParseLambdaExpression() {
560   // Parse lambda-introducer.
561   LambdaIntroducer Intro;
562
563   llvm::Optional<unsigned> DiagID(ParseLambdaIntroducer(Intro));
564   if (DiagID) {
565     Diag(Tok, DiagID.getValue());
566     SkipUntil(tok::r_square);
567     SkipUntil(tok::l_brace);
568     SkipUntil(tok::r_brace);
569     return ExprError();
570   }
571
572   return ParseLambdaExpressionAfterIntroducer(Intro);
573 }
574
575 /// TryParseLambdaExpression - Use lookahead and potentially tentative
576 /// parsing to determine if we are looking at a C++0x lambda expression, and parse
577 /// it if we are.
578 ///
579 /// If we are not looking at a lambda expression, returns ExprError().
580 ExprResult Parser::TryParseLambdaExpression() {
581   assert(getLangOpts().CPlusPlus0x
582          && Tok.is(tok::l_square)
583          && "Not at the start of a possible lambda expression.");
584
585   const Token Next = NextToken(), After = GetLookAheadToken(2);
586
587   // If lookahead indicates this is a lambda...
588   if (Next.is(tok::r_square) ||     // []
589       Next.is(tok::equal) ||        // [=
590       (Next.is(tok::amp) &&         // [&] or [&,
591        (After.is(tok::r_square) ||
592         After.is(tok::comma))) ||
593       (Next.is(tok::identifier) &&  // [identifier]
594        After.is(tok::r_square))) {
595     return ParseLambdaExpression();
596   }
597
598   // If lookahead indicates an ObjC message send...
599   // [identifier identifier
600   if (Next.is(tok::identifier) && After.is(tok::identifier)) {
601     return ExprEmpty();
602   }
603
604   // Here, we're stuck: lambda introducers and Objective-C message sends are
605   // unambiguous, but it requires arbitrary lookhead.  [a,b,c,d,e,f,g] is a
606   // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send.  Instead of
607   // writing two routines to parse a lambda introducer, just try to parse
608   // a lambda introducer first, and fall back if that fails.
609   // (TryParseLambdaIntroducer never produces any diagnostic output.)
610   LambdaIntroducer Intro;
611   if (TryParseLambdaIntroducer(Intro))
612     return ExprEmpty();
613   return ParseLambdaExpressionAfterIntroducer(Intro);
614 }
615
616 /// ParseLambdaExpression - Parse a lambda introducer.
617 ///
618 /// Returns a DiagnosticID if it hit something unexpected.
619 llvm::Optional<unsigned> Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro){
620   typedef llvm::Optional<unsigned> DiagResult;
621
622   assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['.");
623   BalancedDelimiterTracker T(*this, tok::l_square);
624   T.consumeOpen();
625
626   Intro.Range.setBegin(T.getOpenLocation());
627
628   bool first = true;
629
630   // Parse capture-default.
631   if (Tok.is(tok::amp) &&
632       (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) {
633     Intro.Default = LCD_ByRef;
634     Intro.DefaultLoc = ConsumeToken();
635     first = false;
636   } else if (Tok.is(tok::equal)) {
637     Intro.Default = LCD_ByCopy;
638     Intro.DefaultLoc = ConsumeToken();
639     first = false;
640   }
641
642   while (Tok.isNot(tok::r_square)) {
643     if (!first) {
644       if (Tok.isNot(tok::comma)) {
645         if (Tok.is(tok::code_completion)) {
646           Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro, 
647                                                /*AfterAmpersand=*/false);
648           ConsumeCodeCompletionToken();
649           break;
650         }
651
652         return DiagResult(diag::err_expected_comma_or_rsquare);
653       }
654       ConsumeToken();
655     }
656
657     if (Tok.is(tok::code_completion)) {
658       // If we're in Objective-C++ and we have a bare '[', then this is more
659       // likely to be a message receiver.
660       if (getLangOpts().ObjC1 && first)
661         Actions.CodeCompleteObjCMessageReceiver(getCurScope());
662       else
663         Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro, 
664                                              /*AfterAmpersand=*/false);
665       ConsumeCodeCompletionToken();
666       break;
667     }
668
669     first = false;
670     
671     // Parse capture.
672     LambdaCaptureKind Kind = LCK_ByCopy;
673     SourceLocation Loc;
674     IdentifierInfo* Id = 0;
675     SourceLocation EllipsisLoc;
676     
677     if (Tok.is(tok::kw_this)) {
678       Kind = LCK_This;
679       Loc = ConsumeToken();
680     } else {
681       if (Tok.is(tok::amp)) {
682         Kind = LCK_ByRef;
683         ConsumeToken();
684
685         if (Tok.is(tok::code_completion)) {
686           Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro, 
687                                                /*AfterAmpersand=*/true);
688           ConsumeCodeCompletionToken();
689           break;
690         }
691       }
692
693       if (Tok.is(tok::identifier)) {
694         Id = Tok.getIdentifierInfo();
695         Loc = ConsumeToken();
696         
697         if (Tok.is(tok::ellipsis))
698           EllipsisLoc = ConsumeToken();
699       } else if (Tok.is(tok::kw_this)) {
700         // FIXME: If we want to suggest a fixit here, will need to return more
701         // than just DiagnosticID. Perhaps full DiagnosticBuilder that can be
702         // Clear()ed to prevent emission in case of tentative parsing?
703         return DiagResult(diag::err_this_captured_by_reference);
704       } else {
705         return DiagResult(diag::err_expected_capture);
706       }
707     }
708
709     Intro.addCapture(Kind, Loc, Id, EllipsisLoc);
710   }
711
712   T.consumeClose();
713   Intro.Range.setEnd(T.getCloseLocation());
714
715   return DiagResult();
716 }
717
718 /// TryParseLambdaIntroducer - Tentatively parse a lambda introducer.
719 ///
720 /// Returns true if it hit something unexpected.
721 bool Parser::TryParseLambdaIntroducer(LambdaIntroducer &Intro) {
722   TentativeParsingAction PA(*this);
723
724   llvm::Optional<unsigned> DiagID(ParseLambdaIntroducer(Intro));
725
726   if (DiagID) {
727     PA.Revert();
728     return true;
729   }
730
731   PA.Commit();
732   return false;
733 }
734
735 /// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda
736 /// expression.
737 ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
738                      LambdaIntroducer &Intro) {
739   SourceLocation LambdaBeginLoc = Intro.Range.getBegin();
740   Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda);
741
742   PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc,
743                                 "lambda expression parsing");
744
745   // Parse lambda-declarator[opt].
746   DeclSpec DS(AttrFactory);
747   Declarator D(DS, Declarator::LambdaExprContext);
748
749   if (Tok.is(tok::l_paren)) {
750     ParseScope PrototypeScope(this,
751                               Scope::FunctionPrototypeScope |
752                               Scope::DeclScope);
753
754     SourceLocation DeclLoc, DeclEndLoc;
755     BalancedDelimiterTracker T(*this, tok::l_paren);
756     T.consumeOpen();
757     DeclLoc = T.getOpenLocation();
758
759     // Parse parameter-declaration-clause.
760     ParsedAttributes Attr(AttrFactory);
761     llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
762     SourceLocation EllipsisLoc;
763
764     if (Tok.isNot(tok::r_paren))
765       ParseParameterDeclarationClause(D, Attr, ParamInfo, EllipsisLoc);
766
767     T.consumeClose();
768     DeclEndLoc = T.getCloseLocation();
769
770     // Parse 'mutable'[opt].
771     SourceLocation MutableLoc;
772     if (Tok.is(tok::kw_mutable)) {
773       MutableLoc = ConsumeToken();
774       DeclEndLoc = MutableLoc;
775     }
776
777     // Parse exception-specification[opt].
778     ExceptionSpecificationType ESpecType = EST_None;
779     SourceRange ESpecRange;
780     llvm::SmallVector<ParsedType, 2> DynamicExceptions;
781     llvm::SmallVector<SourceRange, 2> DynamicExceptionRanges;
782     ExprResult NoexceptExpr;
783     CachedTokens *ExceptionSpecTokens;
784     ESpecType = tryParseExceptionSpecification(/*Delayed=*/false,
785                                                ESpecRange,
786                                                DynamicExceptions,
787                                                DynamicExceptionRanges,
788                                                NoexceptExpr,
789                                                ExceptionSpecTokens);
790
791     if (ESpecType != EST_None)
792       DeclEndLoc = ESpecRange.getEnd();
793
794     // Parse attribute-specifier[opt].
795     MaybeParseCXX0XAttributes(Attr, &DeclEndLoc);
796
797     // Parse trailing-return-type[opt].
798     ParsedType TrailingReturnType;
799     if (Tok.is(tok::arrow)) {
800       SourceRange Range;
801       TrailingReturnType = ParseTrailingReturnType(Range).get();
802       if (Range.getEnd().isValid())
803         DeclEndLoc = Range.getEnd();
804     }
805
806     PrototypeScope.Exit();
807
808     D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true,
809                                            /*isVariadic=*/EllipsisLoc.isValid(),
810                                            EllipsisLoc,
811                                            ParamInfo.data(), ParamInfo.size(),
812                                            DS.getTypeQualifiers(),
813                                            /*RefQualifierIsLValueRef=*/true,
814                                            /*RefQualifierLoc=*/SourceLocation(),
815                                          /*ConstQualifierLoc=*/SourceLocation(),
816                                       /*VolatileQualifierLoc=*/SourceLocation(),
817                                            MutableLoc,
818                                            ESpecType, ESpecRange.getBegin(),
819                                            DynamicExceptions.data(),
820                                            DynamicExceptionRanges.data(),
821                                            DynamicExceptions.size(),
822                                            NoexceptExpr.isUsable() ?
823                                              NoexceptExpr.get() : 0,
824                                            0,
825                                            DeclLoc, DeclEndLoc, D,
826                                            TrailingReturnType),
827                   Attr, DeclEndLoc);
828   } else if (Tok.is(tok::kw_mutable) || Tok.is(tok::arrow)) {
829     // It's common to forget that one needs '()' before 'mutable' or the 
830     // result type. Deal with this.
831     Diag(Tok, diag::err_lambda_missing_parens)
832       << Tok.is(tok::arrow)
833       << FixItHint::CreateInsertion(Tok.getLocation(), "() ");
834     SourceLocation DeclLoc = Tok.getLocation();
835     SourceLocation DeclEndLoc = DeclLoc;
836     
837     // Parse 'mutable', if it's there.
838     SourceLocation MutableLoc;
839     if (Tok.is(tok::kw_mutable)) {
840       MutableLoc = ConsumeToken();
841       DeclEndLoc = MutableLoc;
842     }
843     
844     // Parse the return type, if there is one.
845     ParsedType TrailingReturnType;
846     if (Tok.is(tok::arrow)) {
847       SourceRange Range;
848       TrailingReturnType = ParseTrailingReturnType(Range).get();
849       if (Range.getEnd().isValid())
850         DeclEndLoc = Range.getEnd();      
851     }
852
853     ParsedAttributes Attr(AttrFactory);
854     D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true,
855                      /*isVariadic=*/false,
856                      /*EllipsisLoc=*/SourceLocation(),
857                      /*Params=*/0, /*NumParams=*/0,
858                      /*TypeQuals=*/0,
859                      /*RefQualifierIsLValueRef=*/true,
860                      /*RefQualifierLoc=*/SourceLocation(),
861                      /*ConstQualifierLoc=*/SourceLocation(),
862                      /*VolatileQualifierLoc=*/SourceLocation(),
863                      MutableLoc,
864                      EST_None, 
865                      /*ESpecLoc=*/SourceLocation(),
866                      /*Exceptions=*/0,
867                      /*ExceptionRanges=*/0,
868                      /*NumExceptions=*/0,
869                      /*NoexceptExpr=*/0,
870                      /*ExceptionSpecTokens=*/0,
871                      DeclLoc, DeclEndLoc, D,
872                      TrailingReturnType),
873                   Attr, DeclEndLoc);
874   }
875   
876
877   // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using
878   // it.
879   unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope;
880   ParseScope BodyScope(this, ScopeFlags);
881
882   Actions.ActOnStartOfLambdaDefinition(Intro, D, getCurScope());
883
884   // Parse compound-statement.
885   if (!Tok.is(tok::l_brace)) {
886     Diag(Tok, diag::err_expected_lambda_body);
887     Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
888     return ExprError();
889   }
890
891   StmtResult Stmt(ParseCompoundStatementBody());
892   BodyScope.Exit();
893
894   if (!Stmt.isInvalid())
895     return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.take(), getCurScope());
896  
897   Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
898   return ExprError();
899 }
900
901 /// ParseCXXCasts - This handles the various ways to cast expressions to another
902 /// type.
903 ///
904 ///       postfix-expression: [C++ 5.2p1]
905 ///         'dynamic_cast' '<' type-name '>' '(' expression ')'
906 ///         'static_cast' '<' type-name '>' '(' expression ')'
907 ///         'reinterpret_cast' '<' type-name '>' '(' expression ')'
908 ///         'const_cast' '<' type-name '>' '(' expression ')'
909 ///
910 ExprResult Parser::ParseCXXCasts() {
911   tok::TokenKind Kind = Tok.getKind();
912   const char *CastName = 0;     // For error messages
913
914   switch (Kind) {
915   default: llvm_unreachable("Unknown C++ cast!");
916   case tok::kw_const_cast:       CastName = "const_cast";       break;
917   case tok::kw_dynamic_cast:     CastName = "dynamic_cast";     break;
918   case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
919   case tok::kw_static_cast:      CastName = "static_cast";      break;
920   }
921
922   SourceLocation OpLoc = ConsumeToken();
923   SourceLocation LAngleBracketLoc = Tok.getLocation();
924
925   // Check for "<::" which is parsed as "[:".  If found, fix token stream,
926   // diagnose error, suggest fix, and recover parsing.
927   Token Next = NextToken();
928   if (Tok.is(tok::l_square) && Tok.getLength() == 2 && Next.is(tok::colon) &&
929       AreTokensAdjacent(PP, Tok, Next))
930     FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true);
931
932   if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
933     return ExprError();
934
935   // Parse the common declaration-specifiers piece.
936   DeclSpec DS(AttrFactory);
937   ParseSpecifierQualifierList(DS);
938
939   // Parse the abstract-declarator, if present.
940   Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
941   ParseDeclarator(DeclaratorInfo);
942
943   SourceLocation RAngleBracketLoc = Tok.getLocation();
944
945   if (ExpectAndConsume(tok::greater, diag::err_expected_greater))
946     return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << "<");
947
948   SourceLocation LParenLoc, RParenLoc;
949   BalancedDelimiterTracker T(*this, tok::l_paren);
950
951   if (T.expectAndConsume(diag::err_expected_lparen_after, CastName))
952     return ExprError();
953
954   ExprResult Result = ParseExpression();
955
956   // Match the ')'.
957   T.consumeClose();
958
959   if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType())
960     Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
961                                        LAngleBracketLoc, DeclaratorInfo,
962                                        RAngleBracketLoc,
963                                        T.getOpenLocation(), Result.take(), 
964                                        T.getCloseLocation());
965
966   return move(Result);
967 }
968
969 /// ParseCXXTypeid - This handles the C++ typeid expression.
970 ///
971 ///       postfix-expression: [C++ 5.2p1]
972 ///         'typeid' '(' expression ')'
973 ///         'typeid' '(' type-id ')'
974 ///
975 ExprResult Parser::ParseCXXTypeid() {
976   assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
977
978   SourceLocation OpLoc = ConsumeToken();
979   SourceLocation LParenLoc, RParenLoc;
980   BalancedDelimiterTracker T(*this, tok::l_paren);
981
982   // typeid expressions are always parenthesized.
983   if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid"))
984     return ExprError();
985   LParenLoc = T.getOpenLocation();
986
987   ExprResult Result;
988
989   if (isTypeIdInParens()) {
990     TypeResult Ty = ParseTypeName();
991
992     // Match the ')'.
993     T.consumeClose();
994     RParenLoc = T.getCloseLocation();
995     if (Ty.isInvalid() || RParenLoc.isInvalid())
996       return ExprError();
997
998     Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
999                                     Ty.get().getAsOpaquePtr(), RParenLoc);
1000   } else {
1001     // C++0x [expr.typeid]p3:
1002     //   When typeid is applied to an expression other than an lvalue of a
1003     //   polymorphic class type [...] The expression is an unevaluated
1004     //   operand (Clause 5).
1005     //
1006     // Note that we can't tell whether the expression is an lvalue of a
1007     // polymorphic class type until after we've parsed the expression; we
1008     // speculatively assume the subexpression is unevaluated, and fix it up
1009     // later.
1010     EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
1011     Result = ParseExpression();
1012
1013     // Match the ')'.
1014     if (Result.isInvalid())
1015       SkipUntil(tok::r_paren);
1016     else {
1017       T.consumeClose();
1018       RParenLoc = T.getCloseLocation();
1019       if (RParenLoc.isInvalid())
1020         return ExprError();
1021
1022       Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
1023                                       Result.release(), RParenLoc);
1024     }
1025   }
1026
1027   return move(Result);
1028 }
1029
1030 /// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
1031 ///
1032 ///         '__uuidof' '(' expression ')'
1033 ///         '__uuidof' '(' type-id ')'
1034 ///
1035 ExprResult Parser::ParseCXXUuidof() {
1036   assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");
1037
1038   SourceLocation OpLoc = ConsumeToken();
1039   BalancedDelimiterTracker T(*this, tok::l_paren);
1040
1041   // __uuidof expressions are always parenthesized.
1042   if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof"))
1043     return ExprError();
1044
1045   ExprResult Result;
1046
1047   if (isTypeIdInParens()) {
1048     TypeResult Ty = ParseTypeName();
1049
1050     // Match the ')'.
1051     T.consumeClose();
1052
1053     if (Ty.isInvalid())
1054       return ExprError();
1055
1056     Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true,
1057                                     Ty.get().getAsOpaquePtr(), 
1058                                     T.getCloseLocation());
1059   } else {
1060     EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
1061     Result = ParseExpression();
1062
1063     // Match the ')'.
1064     if (Result.isInvalid())
1065       SkipUntil(tok::r_paren);
1066     else {
1067       T.consumeClose();
1068
1069       Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(),
1070                                       /*isType=*/false,
1071                                       Result.release(), T.getCloseLocation());
1072     }
1073   }
1074
1075   return move(Result);
1076 }
1077
1078 /// \brief Parse a C++ pseudo-destructor expression after the base,
1079 /// . or -> operator, and nested-name-specifier have already been
1080 /// parsed.
1081 ///
1082 ///       postfix-expression: [C++ 5.2]
1083 ///         postfix-expression . pseudo-destructor-name
1084 ///         postfix-expression -> pseudo-destructor-name
1085 ///
1086 ///       pseudo-destructor-name: 
1087 ///         ::[opt] nested-name-specifier[opt] type-name :: ~type-name 
1088 ///         ::[opt] nested-name-specifier template simple-template-id :: 
1089 ///                 ~type-name 
1090 ///         ::[opt] nested-name-specifier[opt] ~type-name
1091 ///       
1092 ExprResult 
1093 Parser::ParseCXXPseudoDestructor(ExprArg Base, SourceLocation OpLoc,
1094                                  tok::TokenKind OpKind,
1095                                  CXXScopeSpec &SS,
1096                                  ParsedType ObjectType) {
1097   // We're parsing either a pseudo-destructor-name or a dependent
1098   // member access that has the same form as a
1099   // pseudo-destructor-name. We parse both in the same way and let
1100   // the action model sort them out.
1101   //
1102   // Note that the ::[opt] nested-name-specifier[opt] has already
1103   // been parsed, and if there was a simple-template-id, it has
1104   // been coalesced into a template-id annotation token.
1105   UnqualifiedId FirstTypeName;
1106   SourceLocation CCLoc;
1107   if (Tok.is(tok::identifier)) {
1108     FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1109     ConsumeToken();
1110     assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1111     CCLoc = ConsumeToken();
1112   } else if (Tok.is(tok::annot_template_id)) {
1113     // FIXME: retrieve TemplateKWLoc from template-id annotation and
1114     // store it in the pseudo-dtor node (to be used when instantiating it).
1115     FirstTypeName.setTemplateId(
1116                               (TemplateIdAnnotation *)Tok.getAnnotationValue());
1117     ConsumeToken();
1118     assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1119     CCLoc = ConsumeToken();
1120   } else {
1121     FirstTypeName.setIdentifier(0, SourceLocation());
1122   }
1123
1124   // Parse the tilde.
1125   assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
1126   SourceLocation TildeLoc = ConsumeToken();
1127
1128   if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid() && SS.isEmpty()) {
1129     DeclSpec DS(AttrFactory);
1130     ParseDecltypeSpecifier(DS);
1131     if (DS.getTypeSpecType() == TST_error)
1132       return ExprError();
1133     return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, 
1134                                              OpKind, TildeLoc, DS, 
1135                                              Tok.is(tok::l_paren));
1136   }
1137
1138   if (!Tok.is(tok::identifier)) {
1139     Diag(Tok, diag::err_destructor_tilde_identifier);
1140     return ExprError();
1141   }
1142   
1143   // Parse the second type.
1144   UnqualifiedId SecondTypeName;
1145   IdentifierInfo *Name = Tok.getIdentifierInfo();
1146   SourceLocation NameLoc = ConsumeToken();
1147   SecondTypeName.setIdentifier(Name, NameLoc);
1148   
1149   // If there is a '<', the second type name is a template-id. Parse
1150   // it as such.
1151   if (Tok.is(tok::less) &&
1152       ParseUnqualifiedIdTemplateId(SS, SourceLocation(),
1153                                    Name, NameLoc,
1154                                    false, ObjectType, SecondTypeName,
1155                                    /*AssumeTemplateName=*/true))
1156     return ExprError();
1157
1158   return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base,
1159                                            OpLoc, OpKind,
1160                                            SS, FirstTypeName, CCLoc,
1161                                            TildeLoc, SecondTypeName,
1162                                            Tok.is(tok::l_paren));
1163 }
1164
1165 /// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
1166 ///
1167 ///       boolean-literal: [C++ 2.13.5]
1168 ///         'true'
1169 ///         'false'
1170 ExprResult Parser::ParseCXXBoolLiteral() {
1171   tok::TokenKind Kind = Tok.getKind();
1172   return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
1173 }
1174
1175 /// ParseThrowExpression - This handles the C++ throw expression.
1176 ///
1177 ///       throw-expression: [C++ 15]
1178 ///         'throw' assignment-expression[opt]
1179 ExprResult Parser::ParseThrowExpression() {
1180   assert(Tok.is(tok::kw_throw) && "Not throw!");
1181   SourceLocation ThrowLoc = ConsumeToken();           // Eat the throw token.
1182
1183   // If the current token isn't the start of an assignment-expression,
1184   // then the expression is not present.  This handles things like:
1185   //   "C ? throw : (void)42", which is crazy but legal.
1186   switch (Tok.getKind()) {  // FIXME: move this predicate somewhere common.
1187   case tok::semi:
1188   case tok::r_paren:
1189   case tok::r_square:
1190   case tok::r_brace:
1191   case tok::colon:
1192   case tok::comma:
1193     return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, 0);
1194
1195   default:
1196     ExprResult Expr(ParseAssignmentExpression());
1197     if (Expr.isInvalid()) return move(Expr);
1198     return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.take());
1199   }
1200 }
1201
1202 /// ParseCXXThis - This handles the C++ 'this' pointer.
1203 ///
1204 /// C++ 9.3.2: In the body of a non-static member function, the keyword this is
1205 /// a non-lvalue expression whose value is the address of the object for which
1206 /// the function is called.
1207 ExprResult Parser::ParseCXXThis() {
1208   assert(Tok.is(tok::kw_this) && "Not 'this'!");
1209   SourceLocation ThisLoc = ConsumeToken();
1210   return Actions.ActOnCXXThis(ThisLoc);
1211 }
1212
1213 /// ParseCXXTypeConstructExpression - Parse construction of a specified type.
1214 /// Can be interpreted either as function-style casting ("int(x)")
1215 /// or class type construction ("ClassType(x,y,z)")
1216 /// or creation of a value-initialized type ("int()").
1217 /// See [C++ 5.2.3].
1218 ///
1219 ///       postfix-expression: [C++ 5.2p1]
1220 ///         simple-type-specifier '(' expression-list[opt] ')'
1221 /// [C++0x] simple-type-specifier braced-init-list
1222 ///         typename-specifier '(' expression-list[opt] ')'
1223 /// [C++0x] typename-specifier braced-init-list
1224 ///
1225 ExprResult
1226 Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
1227   Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1228   ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
1229
1230   assert((Tok.is(tok::l_paren) ||
1231           (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)))
1232          && "Expected '(' or '{'!");
1233
1234   if (Tok.is(tok::l_brace)) {
1235     ExprResult Init = ParseBraceInitializer();
1236     if (Init.isInvalid())
1237       return Init;
1238     Expr *InitList = Init.take();
1239     return Actions.ActOnCXXTypeConstructExpr(TypeRep, SourceLocation(),
1240                                              MultiExprArg(&InitList, 1),
1241                                              SourceLocation());
1242   } else {
1243     GreaterThanIsOperatorScope G(GreaterThanIsOperator, true);
1244
1245     BalancedDelimiterTracker T(*this, tok::l_paren);
1246     T.consumeOpen();
1247
1248     ExprVector Exprs(Actions);
1249     CommaLocsTy CommaLocs;
1250
1251     if (Tok.isNot(tok::r_paren)) {
1252       if (ParseExpressionList(Exprs, CommaLocs)) {
1253         SkipUntil(tok::r_paren);
1254         return ExprError();
1255       }
1256     }
1257
1258     // Match the ')'.
1259     T.consumeClose();
1260
1261     // TypeRep could be null, if it references an invalid typedef.
1262     if (!TypeRep)
1263       return ExprError();
1264
1265     assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
1266            "Unexpected number of commas!");
1267     return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(), 
1268                                              move_arg(Exprs),
1269                                              T.getCloseLocation());
1270   }
1271 }
1272
1273 /// ParseCXXCondition - if/switch/while condition expression.
1274 ///
1275 ///       condition:
1276 ///         expression
1277 ///         type-specifier-seq declarator '=' assignment-expression
1278 /// [C++11] type-specifier-seq declarator '=' initializer-clause
1279 /// [C++11] type-specifier-seq declarator braced-init-list
1280 /// [GNU]   type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
1281 ///             '=' assignment-expression
1282 ///
1283 /// \param ExprResult if the condition was parsed as an expression, the
1284 /// parsed expression.
1285 ///
1286 /// \param DeclResult if the condition was parsed as a declaration, the
1287 /// parsed declaration.
1288 ///
1289 /// \param Loc The location of the start of the statement that requires this
1290 /// condition, e.g., the "for" in a for loop.
1291 ///
1292 /// \param ConvertToBoolean Whether the condition expression should be
1293 /// converted to a boolean value.
1294 ///
1295 /// \returns true if there was a parsing, false otherwise.
1296 bool Parser::ParseCXXCondition(ExprResult &ExprOut,
1297                                Decl *&DeclOut,
1298                                SourceLocation Loc,
1299                                bool ConvertToBoolean) {
1300   if (Tok.is(tok::code_completion)) {
1301     Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition);
1302     cutOffParsing();
1303     return true;
1304   }
1305
1306   if (!isCXXConditionDeclaration()) {
1307     // Parse the expression.
1308     ExprOut = ParseExpression(); // expression
1309     DeclOut = 0;
1310     if (ExprOut.isInvalid())
1311       return true;
1312
1313     // If required, convert to a boolean value.
1314     if (ConvertToBoolean)
1315       ExprOut
1316         = Actions.ActOnBooleanCondition(getCurScope(), Loc, ExprOut.get());
1317     return ExprOut.isInvalid();
1318   }
1319
1320   // type-specifier-seq
1321   DeclSpec DS(AttrFactory);
1322   ParseSpecifierQualifierList(DS);
1323
1324   // declarator
1325   Declarator DeclaratorInfo(DS, Declarator::ConditionContext);
1326   ParseDeclarator(DeclaratorInfo);
1327
1328   // simple-asm-expr[opt]
1329   if (Tok.is(tok::kw_asm)) {
1330     SourceLocation Loc;
1331     ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1332     if (AsmLabel.isInvalid()) {
1333       SkipUntil(tok::semi);
1334       return true;
1335     }
1336     DeclaratorInfo.setAsmLabel(AsmLabel.release());
1337     DeclaratorInfo.SetRangeEnd(Loc);
1338   }
1339
1340   // If attributes are present, parse them.
1341   MaybeParseGNUAttributes(DeclaratorInfo);
1342
1343   // Type-check the declaration itself.
1344   DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(), 
1345                                                         DeclaratorInfo);
1346   DeclOut = Dcl.get();
1347   ExprOut = ExprError();
1348
1349   // '=' assignment-expression
1350   // If a '==' or '+=' is found, suggest a fixit to '='.
1351   bool CopyInitialization = isTokenEqualOrEqualTypo();
1352   if (CopyInitialization)
1353     ConsumeToken();
1354
1355   ExprResult InitExpr = ExprError();
1356   if (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)) {
1357     Diag(Tok.getLocation(),
1358          diag::warn_cxx98_compat_generalized_initializer_lists);
1359     InitExpr = ParseBraceInitializer();
1360   } else if (CopyInitialization) {
1361     InitExpr = ParseAssignmentExpression();
1362   } else if (Tok.is(tok::l_paren)) {
1363     // This was probably an attempt to initialize the variable.
1364     SourceLocation LParen = ConsumeParen(), RParen = LParen;
1365     if (SkipUntil(tok::r_paren, true, /*DontConsume=*/true))
1366       RParen = ConsumeParen();
1367     Diag(DeclOut ? DeclOut->getLocation() : LParen,
1368          diag::err_expected_init_in_condition_lparen)
1369       << SourceRange(LParen, RParen);
1370   } else {
1371     Diag(DeclOut ? DeclOut->getLocation() : Tok.getLocation(),
1372          diag::err_expected_init_in_condition);
1373   }
1374
1375   if (!InitExpr.isInvalid())
1376     Actions.AddInitializerToDecl(DeclOut, InitExpr.take(), !CopyInitialization,
1377                                  DS.getTypeSpecType() == DeclSpec::TST_auto);
1378
1379   // FIXME: Build a reference to this declaration? Convert it to bool?
1380   // (This is currently handled by Sema).
1381
1382   Actions.FinalizeDeclaration(DeclOut);
1383   
1384   return false;
1385 }
1386
1387 /// \brief Determine whether the current token starts a C++
1388 /// simple-type-specifier.
1389 bool Parser::isCXXSimpleTypeSpecifier() const {
1390   switch (Tok.getKind()) {
1391   case tok::annot_typename:
1392   case tok::kw_short:
1393   case tok::kw_long:
1394   case tok::kw___int64:
1395   case tok::kw___int128:
1396   case tok::kw_signed:
1397   case tok::kw_unsigned:
1398   case tok::kw_void:
1399   case tok::kw_char:
1400   case tok::kw_int:
1401   case tok::kw_half:
1402   case tok::kw_float:
1403   case tok::kw_double:
1404   case tok::kw_wchar_t:
1405   case tok::kw_char16_t:
1406   case tok::kw_char32_t:
1407   case tok::kw_bool:
1408   case tok::kw_decltype:
1409   case tok::kw_typeof:
1410   case tok::kw___underlying_type:
1411     return true;
1412
1413   default:
1414     break;
1415   }
1416
1417   return false;
1418 }
1419
1420 /// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
1421 /// This should only be called when the current token is known to be part of
1422 /// simple-type-specifier.
1423 ///
1424 ///       simple-type-specifier:
1425 ///         '::'[opt] nested-name-specifier[opt] type-name
1426 ///         '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
1427 ///         char
1428 ///         wchar_t
1429 ///         bool
1430 ///         short
1431 ///         int
1432 ///         long
1433 ///         signed
1434 ///         unsigned
1435 ///         float
1436 ///         double
1437 ///         void
1438 /// [GNU]   typeof-specifier
1439 /// [C++0x] auto               [TODO]
1440 ///
1441 ///       type-name:
1442 ///         class-name
1443 ///         enum-name
1444 ///         typedef-name
1445 ///
1446 void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
1447   DS.SetRangeStart(Tok.getLocation());
1448   const char *PrevSpec;
1449   unsigned DiagID;
1450   SourceLocation Loc = Tok.getLocation();
1451
1452   switch (Tok.getKind()) {
1453   case tok::identifier:   // foo::bar
1454   case tok::coloncolon:   // ::foo::bar
1455     llvm_unreachable("Annotation token should already be formed!");
1456   default:
1457     llvm_unreachable("Not a simple-type-specifier token!");
1458
1459   // type-name
1460   case tok::annot_typename: {
1461     if (getTypeAnnotation(Tok))
1462       DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
1463                          getTypeAnnotation(Tok));
1464     else
1465       DS.SetTypeSpecError();
1466     
1467     DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1468     ConsumeToken();
1469     
1470     // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1471     // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1472     // Objective-C interface.  If we don't have Objective-C or a '<', this is
1473     // just a normal reference to a typedef name.
1474     if (Tok.is(tok::less) && getLangOpts().ObjC1)
1475       ParseObjCProtocolQualifiers(DS);
1476     
1477     DS.Finish(Diags, PP);
1478     return;
1479   }
1480
1481   // builtin types
1482   case tok::kw_short:
1483     DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
1484     break;
1485   case tok::kw_long:
1486     DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID);
1487     break;
1488   case tok::kw___int64:
1489     DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec, DiagID);
1490     break;
1491   case tok::kw_signed:
1492     DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
1493     break;
1494   case tok::kw_unsigned:
1495     DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID);
1496     break;
1497   case tok::kw_void:
1498     DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
1499     break;
1500   case tok::kw_char:
1501     DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
1502     break;
1503   case tok::kw_int:
1504     DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
1505     break;
1506   case tok::kw___int128:
1507     DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID);
1508     break;
1509   case tok::kw_half:
1510     DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID);
1511     break;
1512   case tok::kw_float:
1513     DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
1514     break;
1515   case tok::kw_double:
1516     DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
1517     break;
1518   case tok::kw_wchar_t:
1519     DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
1520     break;
1521   case tok::kw_char16_t:
1522     DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
1523     break;
1524   case tok::kw_char32_t:
1525     DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
1526     break;
1527   case tok::kw_bool:
1528     DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
1529     break;
1530   case tok::annot_decltype:
1531   case tok::kw_decltype:
1532     DS.SetRangeEnd(ParseDecltypeSpecifier(DS));
1533     return DS.Finish(Diags, PP);
1534
1535   // GNU typeof support.
1536   case tok::kw_typeof:
1537     ParseTypeofSpecifier(DS);
1538     DS.Finish(Diags, PP);
1539     return;
1540   }
1541   if (Tok.is(tok::annot_typename))
1542     DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1543   else
1544     DS.SetRangeEnd(Tok.getLocation());
1545   ConsumeToken();
1546   DS.Finish(Diags, PP);
1547 }
1548
1549 /// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
1550 /// [dcl.name]), which is a non-empty sequence of type-specifiers,
1551 /// e.g., "const short int". Note that the DeclSpec is *not* finished
1552 /// by parsing the type-specifier-seq, because these sequences are
1553 /// typically followed by some form of declarator. Returns true and
1554 /// emits diagnostics if this is not a type-specifier-seq, false
1555 /// otherwise.
1556 ///
1557 ///   type-specifier-seq: [C++ 8.1]
1558 ///     type-specifier type-specifier-seq[opt]
1559 ///
1560 bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
1561   ParseSpecifierQualifierList(DS, AS_none, DSC_type_specifier);
1562   DS.Finish(Diags, PP);
1563   return false;
1564 }
1565
1566 /// \brief Finish parsing a C++ unqualified-id that is a template-id of
1567 /// some form. 
1568 ///
1569 /// This routine is invoked when a '<' is encountered after an identifier or
1570 /// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
1571 /// whether the unqualified-id is actually a template-id. This routine will
1572 /// then parse the template arguments and form the appropriate template-id to
1573 /// return to the caller.
1574 ///
1575 /// \param SS the nested-name-specifier that precedes this template-id, if
1576 /// we're actually parsing a qualified-id.
1577 ///
1578 /// \param Name for constructor and destructor names, this is the actual
1579 /// identifier that may be a template-name.
1580 ///
1581 /// \param NameLoc the location of the class-name in a constructor or 
1582 /// destructor.
1583 ///
1584 /// \param EnteringContext whether we're entering the scope of the 
1585 /// nested-name-specifier.
1586 ///
1587 /// \param ObjectType if this unqualified-id occurs within a member access
1588 /// expression, the type of the base object whose member is being accessed.
1589 ///
1590 /// \param Id as input, describes the template-name or operator-function-id
1591 /// that precedes the '<'. If template arguments were parsed successfully,
1592 /// will be updated with the template-id.
1593 /// 
1594 /// \param AssumeTemplateId When true, this routine will assume that the name
1595 /// refers to a template without performing name lookup to verify. 
1596 ///
1597 /// \returns true if a parse error occurred, false otherwise.
1598 bool Parser::ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS,
1599                                           SourceLocation TemplateKWLoc,
1600                                           IdentifierInfo *Name,
1601                                           SourceLocation NameLoc,
1602                                           bool EnteringContext,
1603                                           ParsedType ObjectType,
1604                                           UnqualifiedId &Id,
1605                                           bool AssumeTemplateId) {
1606   assert((AssumeTemplateId || Tok.is(tok::less)) &&
1607          "Expected '<' to finish parsing a template-id");
1608   
1609   TemplateTy Template;
1610   TemplateNameKind TNK = TNK_Non_template;
1611   switch (Id.getKind()) {
1612   case UnqualifiedId::IK_Identifier:
1613   case UnqualifiedId::IK_OperatorFunctionId:
1614   case UnqualifiedId::IK_LiteralOperatorId:
1615     if (AssumeTemplateId) {
1616       TNK = Actions.ActOnDependentTemplateName(getCurScope(), SS, TemplateKWLoc,
1617                                                Id, ObjectType, EnteringContext,
1618                                                Template);
1619       if (TNK == TNK_Non_template)
1620         return true;
1621     } else {
1622       bool MemberOfUnknownSpecialization;
1623       TNK = Actions.isTemplateName(getCurScope(), SS,
1624                                    TemplateKWLoc.isValid(), Id,
1625                                    ObjectType, EnteringContext, Template,
1626                                    MemberOfUnknownSpecialization);
1627       
1628       if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
1629           ObjectType && IsTemplateArgumentList()) {
1630         // We have something like t->getAs<T>(), where getAs is a 
1631         // member of an unknown specialization. However, this will only
1632         // parse correctly as a template, so suggest the keyword 'template'
1633         // before 'getAs' and treat this as a dependent template name.
1634         std::string Name;
1635         if (Id.getKind() == UnqualifiedId::IK_Identifier)
1636           Name = Id.Identifier->getName();
1637         else {
1638           Name = "operator ";
1639           if (Id.getKind() == UnqualifiedId::IK_OperatorFunctionId)
1640             Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
1641           else
1642             Name += Id.Identifier->getName();
1643         }
1644         Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
1645           << Name
1646           << FixItHint::CreateInsertion(Id.StartLocation, "template ");
1647         TNK = Actions.ActOnDependentTemplateName(getCurScope(),
1648                                                  SS, TemplateKWLoc, Id,
1649                                                  ObjectType, EnteringContext,
1650                                                  Template);
1651         if (TNK == TNK_Non_template)
1652           return true;              
1653       }
1654     }
1655     break;
1656       
1657   case UnqualifiedId::IK_ConstructorName: {
1658     UnqualifiedId TemplateName;
1659     bool MemberOfUnknownSpecialization;
1660     TemplateName.setIdentifier(Name, NameLoc);
1661     TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
1662                                  TemplateName, ObjectType, 
1663                                  EnteringContext, Template,
1664                                  MemberOfUnknownSpecialization);
1665     break;
1666   }
1667       
1668   case UnqualifiedId::IK_DestructorName: {
1669     UnqualifiedId TemplateName;
1670     bool MemberOfUnknownSpecialization;
1671     TemplateName.setIdentifier(Name, NameLoc);
1672     if (ObjectType) {
1673       TNK = Actions.ActOnDependentTemplateName(getCurScope(),
1674                                                SS, TemplateKWLoc, TemplateName,
1675                                                ObjectType, EnteringContext,
1676                                                Template);
1677       if (TNK == TNK_Non_template)
1678         return true;
1679     } else {
1680       TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
1681                                    TemplateName, ObjectType, 
1682                                    EnteringContext, Template,
1683                                    MemberOfUnknownSpecialization);
1684       
1685       if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
1686         Diag(NameLoc, diag::err_destructor_template_id)
1687           << Name << SS.getRange();
1688         return true;        
1689       }
1690     }
1691     break;
1692   }
1693       
1694   default:
1695     return false;
1696   }
1697   
1698   if (TNK == TNK_Non_template)
1699     return false;
1700   
1701   // Parse the enclosed template argument list.
1702   SourceLocation LAngleLoc, RAngleLoc;
1703   TemplateArgList TemplateArgs;
1704   if (Tok.is(tok::less) &&
1705       ParseTemplateIdAfterTemplateName(Template, Id.StartLocation,
1706                                        SS, true, LAngleLoc,
1707                                        TemplateArgs,
1708                                        RAngleLoc))
1709     return true;
1710   
1711   if (Id.getKind() == UnqualifiedId::IK_Identifier ||
1712       Id.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
1713       Id.getKind() == UnqualifiedId::IK_LiteralOperatorId) {
1714     // Form a parsed representation of the template-id to be stored in the
1715     // UnqualifiedId.
1716     TemplateIdAnnotation *TemplateId
1717       = TemplateIdAnnotation::Allocate(TemplateArgs.size(), TemplateIds);
1718
1719     if (Id.getKind() == UnqualifiedId::IK_Identifier) {
1720       TemplateId->Name = Id.Identifier;
1721       TemplateId->Operator = OO_None;
1722       TemplateId->TemplateNameLoc = Id.StartLocation;
1723     } else {
1724       TemplateId->Name = 0;
1725       TemplateId->Operator = Id.OperatorFunctionId.Operator;
1726       TemplateId->TemplateNameLoc = Id.StartLocation;
1727     }
1728
1729     TemplateId->SS = SS;
1730     TemplateId->TemplateKWLoc = TemplateKWLoc;
1731     TemplateId->Template = Template;
1732     TemplateId->Kind = TNK;
1733     TemplateId->LAngleLoc = LAngleLoc;
1734     TemplateId->RAngleLoc = RAngleLoc;
1735     ParsedTemplateArgument *Args = TemplateId->getTemplateArgs();
1736     for (unsigned Arg = 0, ArgEnd = TemplateArgs.size(); 
1737          Arg != ArgEnd; ++Arg)
1738       Args[Arg] = TemplateArgs[Arg];
1739     
1740     Id.setTemplateId(TemplateId);
1741     return false;
1742   }
1743
1744   // Bundle the template arguments together.
1745   ASTTemplateArgsPtr TemplateArgsPtr(Actions, TemplateArgs.data(),
1746                                      TemplateArgs.size());
1747
1748   // Constructor and destructor names.
1749   TypeResult Type
1750     = Actions.ActOnTemplateIdType(SS, TemplateKWLoc,
1751                                   Template, NameLoc,
1752                                   LAngleLoc, TemplateArgsPtr, RAngleLoc,
1753                                   /*IsCtorOrDtorName=*/true);
1754   if (Type.isInvalid())
1755     return true;
1756   
1757   if (Id.getKind() == UnqualifiedId::IK_ConstructorName)
1758     Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
1759   else
1760     Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
1761   
1762   return false;
1763 }
1764
1765 /// \brief Parse an operator-function-id or conversion-function-id as part
1766 /// of a C++ unqualified-id.
1767 ///
1768 /// This routine is responsible only for parsing the operator-function-id or
1769 /// conversion-function-id; it does not handle template arguments in any way.
1770 ///
1771 /// \code
1772 ///       operator-function-id: [C++ 13.5]
1773 ///         'operator' operator
1774 ///
1775 ///       operator: one of
1776 ///            new   delete  new[]   delete[]
1777 ///            +     -    *  /    %  ^    &   |   ~
1778 ///            !     =    <  >    += -=   *=  /=  %=
1779 ///            ^=    &=   |= <<   >> >>= <<=  ==  !=
1780 ///            <=    >=   && ||   ++ --   ,   ->* ->
1781 ///            ()    []
1782 ///
1783 ///       conversion-function-id: [C++ 12.3.2]
1784 ///         operator conversion-type-id
1785 ///
1786 ///       conversion-type-id:
1787 ///         type-specifier-seq conversion-declarator[opt]
1788 ///
1789 ///       conversion-declarator:
1790 ///         ptr-operator conversion-declarator[opt]
1791 /// \endcode
1792 ///
1793 /// \param The nested-name-specifier that preceded this unqualified-id. If
1794 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
1795 ///
1796 /// \param EnteringContext whether we are entering the scope of the 
1797 /// nested-name-specifier.
1798 ///
1799 /// \param ObjectType if this unqualified-id occurs within a member access
1800 /// expression, the type of the base object whose member is being accessed.
1801 ///
1802 /// \param Result on a successful parse, contains the parsed unqualified-id.
1803 ///
1804 /// \returns true if parsing fails, false otherwise.
1805 bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
1806                                         ParsedType ObjectType,
1807                                         UnqualifiedId &Result) {
1808   assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
1809   
1810   // Consume the 'operator' keyword.
1811   SourceLocation KeywordLoc = ConsumeToken();
1812   
1813   // Determine what kind of operator name we have.
1814   unsigned SymbolIdx = 0;
1815   SourceLocation SymbolLocations[3];
1816   OverloadedOperatorKind Op = OO_None;
1817   switch (Tok.getKind()) {
1818     case tok::kw_new:
1819     case tok::kw_delete: {
1820       bool isNew = Tok.getKind() == tok::kw_new;
1821       // Consume the 'new' or 'delete'.
1822       SymbolLocations[SymbolIdx++] = ConsumeToken();
1823       // Check for array new/delete.
1824       if (Tok.is(tok::l_square) &&
1825           (!getLangOpts().CPlusPlus0x || NextToken().isNot(tok::l_square))) {
1826         // Consume the '[' and ']'.
1827         BalancedDelimiterTracker T(*this, tok::l_square);
1828         T.consumeOpen();
1829         T.consumeClose();
1830         if (T.getCloseLocation().isInvalid())
1831           return true;
1832         
1833         SymbolLocations[SymbolIdx++] = T.getOpenLocation();
1834         SymbolLocations[SymbolIdx++] = T.getCloseLocation();
1835         Op = isNew? OO_Array_New : OO_Array_Delete;
1836       } else {
1837         Op = isNew? OO_New : OO_Delete;
1838       }
1839       break;
1840     }
1841       
1842 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
1843     case tok::Token:                                                     \
1844       SymbolLocations[SymbolIdx++] = ConsumeToken();                     \
1845       Op = OO_##Name;                                                    \
1846       break;
1847 #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
1848 #include "clang/Basic/OperatorKinds.def"
1849       
1850     case tok::l_paren: {
1851       // Consume the '(' and ')'.
1852       BalancedDelimiterTracker T(*this, tok::l_paren);
1853       T.consumeOpen();
1854       T.consumeClose();
1855       if (T.getCloseLocation().isInvalid())
1856         return true;
1857       
1858       SymbolLocations[SymbolIdx++] = T.getOpenLocation();
1859       SymbolLocations[SymbolIdx++] = T.getCloseLocation();
1860       Op = OO_Call;
1861       break;
1862     }
1863       
1864     case tok::l_square: {
1865       // Consume the '[' and ']'.
1866       BalancedDelimiterTracker T(*this, tok::l_square);
1867       T.consumeOpen();
1868       T.consumeClose();
1869       if (T.getCloseLocation().isInvalid())
1870         return true;
1871       
1872       SymbolLocations[SymbolIdx++] = T.getOpenLocation();
1873       SymbolLocations[SymbolIdx++] = T.getCloseLocation();
1874       Op = OO_Subscript;
1875       break;
1876     }
1877       
1878     case tok::code_completion: {
1879       // Code completion for the operator name.
1880       Actions.CodeCompleteOperatorName(getCurScope());
1881       cutOffParsing();      
1882       // Don't try to parse any further.
1883       return true;
1884     }
1885       
1886     default:
1887       break;
1888   }
1889   
1890   if (Op != OO_None) {
1891     // We have parsed an operator-function-id.
1892     Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
1893     return false;
1894   }
1895
1896   // Parse a literal-operator-id.
1897   //
1898   //   literal-operator-id: [C++0x 13.5.8]
1899   //     operator "" identifier
1900
1901   if (getLangOpts().CPlusPlus0x && isTokenStringLiteral()) {
1902     Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator);
1903
1904     SourceLocation DiagLoc;
1905     unsigned DiagId = 0;
1906
1907     // We're past translation phase 6, so perform string literal concatenation
1908     // before checking for "".
1909     llvm::SmallVector<Token, 4> Toks;
1910     llvm::SmallVector<SourceLocation, 4> TokLocs;
1911     while (isTokenStringLiteral()) {
1912       if (!Tok.is(tok::string_literal) && !DiagId) {
1913         DiagLoc = Tok.getLocation();
1914         DiagId = diag::err_literal_operator_string_prefix;
1915       }
1916       Toks.push_back(Tok);
1917       TokLocs.push_back(ConsumeStringToken());
1918     }
1919
1920     StringLiteralParser Literal(Toks.data(), Toks.size(), PP);
1921     if (Literal.hadError)
1922       return true;
1923
1924     // Grab the literal operator's suffix, which will be either the next token
1925     // or a ud-suffix from the string literal.
1926     IdentifierInfo *II = 0;
1927     SourceLocation SuffixLoc;
1928     if (!Literal.getUDSuffix().empty()) {
1929       II = &PP.getIdentifierTable().get(Literal.getUDSuffix());
1930       SuffixLoc =
1931         Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()],
1932                                        Literal.getUDSuffixOffset(),
1933                                        PP.getSourceManager(), getLangOpts());
1934       // This form is not permitted by the standard (yet).
1935       DiagLoc = SuffixLoc;
1936       DiagId = diag::err_literal_operator_missing_space;
1937     } else if (Tok.is(tok::identifier)) {
1938       II = Tok.getIdentifierInfo();
1939       SuffixLoc = ConsumeToken();
1940       TokLocs.push_back(SuffixLoc);
1941     } else {
1942       Diag(Tok.getLocation(), diag::err_expected_ident);
1943       return true;
1944     }
1945
1946     // The string literal must be empty.
1947     if (!Literal.GetString().empty() || Literal.Pascal) {
1948       DiagLoc = TokLocs.front();
1949       DiagId = diag::err_literal_operator_string_not_empty;
1950     }
1951
1952     if (DiagId) {
1953       // This isn't a valid literal-operator-id, but we think we know
1954       // what the user meant. Tell them what they should have written.
1955       llvm::SmallString<32> Str;
1956       Str += "\"\" ";
1957       Str += II->getName();
1958       Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement(
1959           SourceRange(TokLocs.front(), TokLocs.back()), Str);
1960     }
1961
1962     Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc);
1963     return false;
1964   }
1965   
1966   // Parse a conversion-function-id.
1967   //
1968   //   conversion-function-id: [C++ 12.3.2]
1969   //     operator conversion-type-id
1970   //
1971   //   conversion-type-id:
1972   //     type-specifier-seq conversion-declarator[opt]
1973   //
1974   //   conversion-declarator:
1975   //     ptr-operator conversion-declarator[opt]
1976   
1977   // Parse the type-specifier-seq.
1978   DeclSpec DS(AttrFactory);
1979   if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
1980     return true;
1981   
1982   // Parse the conversion-declarator, which is merely a sequence of
1983   // ptr-operators.
1984   Declarator D(DS, Declarator::TypeNameContext);
1985   ParseDeclaratorInternal(D, /*DirectDeclParser=*/0);
1986   
1987   // Finish up the type.
1988   TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
1989   if (Ty.isInvalid())
1990     return true;
1991   
1992   // Note that this is a conversion-function-id.
1993   Result.setConversionFunctionId(KeywordLoc, Ty.get(), 
1994                                  D.getSourceRange().getEnd());
1995   return false;  
1996 }
1997
1998 /// \brief Parse a C++ unqualified-id (or a C identifier), which describes the
1999 /// name of an entity.
2000 ///
2001 /// \code
2002 ///       unqualified-id: [C++ expr.prim.general]
2003 ///         identifier
2004 ///         operator-function-id
2005 ///         conversion-function-id
2006 /// [C++0x] literal-operator-id [TODO]
2007 ///         ~ class-name
2008 ///         template-id
2009 ///
2010 /// \endcode
2011 ///
2012 /// \param The nested-name-specifier that preceded this unqualified-id. If
2013 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
2014 ///
2015 /// \param EnteringContext whether we are entering the scope of the 
2016 /// nested-name-specifier.
2017 ///
2018 /// \param AllowDestructorName whether we allow parsing of a destructor name.
2019 ///
2020 /// \param AllowConstructorName whether we allow parsing a constructor name.
2021 ///
2022 /// \param ObjectType if this unqualified-id occurs within a member access
2023 /// expression, the type of the base object whose member is being accessed.
2024 ///
2025 /// \param Result on a successful parse, contains the parsed unqualified-id.
2026 ///
2027 /// \returns true if parsing fails, false otherwise.
2028 bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext,
2029                                 bool AllowDestructorName,
2030                                 bool AllowConstructorName,
2031                                 ParsedType ObjectType,
2032                                 SourceLocation& TemplateKWLoc,
2033                                 UnqualifiedId &Result) {
2034
2035   // Handle 'A::template B'. This is for template-ids which have not
2036   // already been annotated by ParseOptionalCXXScopeSpecifier().
2037   bool TemplateSpecified = false;
2038   if (getLangOpts().CPlusPlus && Tok.is(tok::kw_template) &&
2039       (ObjectType || SS.isSet())) {
2040     TemplateSpecified = true;
2041     TemplateKWLoc = ConsumeToken();
2042   }
2043
2044   // unqualified-id:
2045   //   identifier
2046   //   template-id (when it hasn't already been annotated)
2047   if (Tok.is(tok::identifier)) {
2048     // Consume the identifier.
2049     IdentifierInfo *Id = Tok.getIdentifierInfo();
2050     SourceLocation IdLoc = ConsumeToken();
2051
2052     if (!getLangOpts().CPlusPlus) {
2053       // If we're not in C++, only identifiers matter. Record the
2054       // identifier and return.
2055       Result.setIdentifier(Id, IdLoc);
2056       return false;
2057     }
2058
2059     if (AllowConstructorName && 
2060         Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
2061       // We have parsed a constructor name.
2062       ParsedType Ty = Actions.getTypeName(*Id, IdLoc, getCurScope(),
2063                                           &SS, false, false,
2064                                           ParsedType(),
2065                                           /*IsCtorOrDtorName=*/true,
2066                                           /*NonTrivialTypeSourceInfo=*/true);
2067       Result.setConstructorName(Ty, IdLoc, IdLoc);
2068     } else {
2069       // We have parsed an identifier.
2070       Result.setIdentifier(Id, IdLoc);      
2071     }
2072
2073     // If the next token is a '<', we may have a template.
2074     if (TemplateSpecified || Tok.is(tok::less))
2075       return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc, Id, IdLoc,
2076                                           EnteringContext, ObjectType,
2077                                           Result, TemplateSpecified);
2078     
2079     return false;
2080   }
2081   
2082   // unqualified-id:
2083   //   template-id (already parsed and annotated)
2084   if (Tok.is(tok::annot_template_id)) {
2085     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2086
2087     // If the template-name names the current class, then this is a constructor 
2088     if (AllowConstructorName && TemplateId->Name &&
2089         Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
2090       if (SS.isSet()) {
2091         // C++ [class.qual]p2 specifies that a qualified template-name
2092         // is taken as the constructor name where a constructor can be
2093         // declared. Thus, the template arguments are extraneous, so
2094         // complain about them and remove them entirely.
2095         Diag(TemplateId->TemplateNameLoc, 
2096              diag::err_out_of_line_constructor_template_id)
2097           << TemplateId->Name
2098           << FixItHint::CreateRemoval(
2099                     SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
2100         ParsedType Ty = Actions.getTypeName(*TemplateId->Name,
2101                                             TemplateId->TemplateNameLoc,
2102                                             getCurScope(),
2103                                             &SS, false, false,
2104                                             ParsedType(),
2105                                             /*IsCtorOrDtorName=*/true,
2106                                             /*NontrivialTypeSourceInfo=*/true);
2107         Result.setConstructorName(Ty, TemplateId->TemplateNameLoc,
2108                                   TemplateId->RAngleLoc);
2109         ConsumeToken();
2110         return false;
2111       }
2112
2113       Result.setConstructorTemplateId(TemplateId);
2114       ConsumeToken();
2115       return false;
2116     }
2117
2118     // We have already parsed a template-id; consume the annotation token as
2119     // our unqualified-id.
2120     Result.setTemplateId(TemplateId);
2121     TemplateKWLoc = TemplateId->TemplateKWLoc;
2122     ConsumeToken();
2123     return false;
2124   }
2125   
2126   // unqualified-id:
2127   //   operator-function-id
2128   //   conversion-function-id
2129   if (Tok.is(tok::kw_operator)) {
2130     if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
2131       return true;
2132     
2133     // If we have an operator-function-id or a literal-operator-id and the next
2134     // token is a '<', we may have a
2135     // 
2136     //   template-id:
2137     //     operator-function-id < template-argument-list[opt] >
2138     if ((Result.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
2139          Result.getKind() == UnqualifiedId::IK_LiteralOperatorId) &&
2140         (TemplateSpecified || Tok.is(tok::less)))
2141       return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc,
2142                                           0, SourceLocation(),
2143                                           EnteringContext, ObjectType,
2144                                           Result, TemplateSpecified);
2145     
2146     return false;
2147   }
2148   
2149   if (getLangOpts().CPlusPlus && 
2150       (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
2151     // C++ [expr.unary.op]p10:
2152     //   There is an ambiguity in the unary-expression ~X(), where X is a 
2153     //   class-name. The ambiguity is resolved in favor of treating ~ as a 
2154     //    unary complement rather than treating ~X as referring to a destructor.
2155     
2156     // Parse the '~'.
2157     SourceLocation TildeLoc = ConsumeToken();
2158
2159     if (SS.isEmpty() && Tok.is(tok::kw_decltype)) {
2160       DeclSpec DS(AttrFactory);
2161       SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
2162       if (ParsedType Type = Actions.getDestructorType(DS, ObjectType)) {
2163         Result.setDestructorName(TildeLoc, Type, EndLoc);
2164         return false;
2165       }
2166       return true;
2167     }
2168     
2169     // Parse the class-name.
2170     if (Tok.isNot(tok::identifier)) {
2171       Diag(Tok, diag::err_destructor_tilde_identifier);
2172       return true;
2173     }
2174
2175     // Parse the class-name (or template-name in a simple-template-id).
2176     IdentifierInfo *ClassName = Tok.getIdentifierInfo();
2177     SourceLocation ClassNameLoc = ConsumeToken();
2178     
2179     if (TemplateSpecified || Tok.is(tok::less)) {
2180       Result.setDestructorName(TildeLoc, ParsedType(), ClassNameLoc);
2181       return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc,
2182                                           ClassName, ClassNameLoc,
2183                                           EnteringContext, ObjectType,
2184                                           Result, TemplateSpecified);
2185     }
2186     
2187     // Note that this is a destructor name.
2188     ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName, 
2189                                               ClassNameLoc, getCurScope(),
2190                                               SS, ObjectType,
2191                                               EnteringContext);
2192     if (!Ty)
2193       return true;
2194
2195     Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
2196     return false;
2197   }
2198   
2199   Diag(Tok, diag::err_expected_unqualified_id)
2200     << getLangOpts().CPlusPlus;
2201   return true;
2202 }
2203
2204 /// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
2205 /// memory in a typesafe manner and call constructors.
2206 ///
2207 /// This method is called to parse the new expression after the optional :: has
2208 /// been already parsed.  If the :: was present, "UseGlobal" is true and "Start"
2209 /// is its location.  Otherwise, "Start" is the location of the 'new' token.
2210 ///
2211 ///        new-expression:
2212 ///                   '::'[opt] 'new' new-placement[opt] new-type-id
2213 ///                                     new-initializer[opt]
2214 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
2215 ///                                     new-initializer[opt]
2216 ///
2217 ///        new-placement:
2218 ///                   '(' expression-list ')'
2219 ///
2220 ///        new-type-id:
2221 ///                   type-specifier-seq new-declarator[opt]
2222 /// [GNU]             attributes type-specifier-seq new-declarator[opt]
2223 ///
2224 ///        new-declarator:
2225 ///                   ptr-operator new-declarator[opt]
2226 ///                   direct-new-declarator
2227 ///
2228 ///        new-initializer:
2229 ///                   '(' expression-list[opt] ')'
2230 /// [C++0x]           braced-init-list
2231 ///
2232 ExprResult
2233 Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
2234   assert(Tok.is(tok::kw_new) && "expected 'new' token");
2235   ConsumeToken();   // Consume 'new'
2236
2237   // A '(' now can be a new-placement or the '(' wrapping the type-id in the
2238   // second form of new-expression. It can't be a new-type-id.
2239
2240   ExprVector PlacementArgs(Actions);
2241   SourceLocation PlacementLParen, PlacementRParen;
2242
2243   SourceRange TypeIdParens;
2244   DeclSpec DS(AttrFactory);
2245   Declarator DeclaratorInfo(DS, Declarator::CXXNewContext);
2246   if (Tok.is(tok::l_paren)) {
2247     // If it turns out to be a placement, we change the type location.
2248     BalancedDelimiterTracker T(*this, tok::l_paren);
2249     T.consumeOpen();
2250     PlacementLParen = T.getOpenLocation();
2251     if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
2252       SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2253       return ExprError();
2254     }
2255
2256     T.consumeClose();
2257     PlacementRParen = T.getCloseLocation();
2258     if (PlacementRParen.isInvalid()) {
2259       SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2260       return ExprError();
2261     }
2262
2263     if (PlacementArgs.empty()) {
2264       // Reset the placement locations. There was no placement.
2265       TypeIdParens = T.getRange();
2266       PlacementLParen = PlacementRParen = SourceLocation();
2267     } else {
2268       // We still need the type.
2269       if (Tok.is(tok::l_paren)) {
2270         BalancedDelimiterTracker T(*this, tok::l_paren);
2271         T.consumeOpen();
2272         MaybeParseGNUAttributes(DeclaratorInfo);
2273         ParseSpecifierQualifierList(DS);
2274         DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2275         ParseDeclarator(DeclaratorInfo);
2276         T.consumeClose();
2277         TypeIdParens = T.getRange();
2278       } else {
2279         MaybeParseGNUAttributes(DeclaratorInfo);
2280         if (ParseCXXTypeSpecifierSeq(DS))
2281           DeclaratorInfo.setInvalidType(true);
2282         else {
2283           DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2284           ParseDeclaratorInternal(DeclaratorInfo,
2285                                   &Parser::ParseDirectNewDeclarator);
2286         }
2287       }
2288     }
2289   } else {
2290     // A new-type-id is a simplified type-id, where essentially the
2291     // direct-declarator is replaced by a direct-new-declarator.
2292     MaybeParseGNUAttributes(DeclaratorInfo);
2293     if (ParseCXXTypeSpecifierSeq(DS))
2294       DeclaratorInfo.setInvalidType(true);
2295     else {
2296       DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2297       ParseDeclaratorInternal(DeclaratorInfo,
2298                               &Parser::ParseDirectNewDeclarator);
2299     }
2300   }
2301   if (DeclaratorInfo.isInvalidType()) {
2302     SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2303     return ExprError();
2304   }
2305
2306   ExprResult Initializer;
2307
2308   if (Tok.is(tok::l_paren)) {
2309     SourceLocation ConstructorLParen, ConstructorRParen;
2310     ExprVector ConstructorArgs(Actions);
2311     BalancedDelimiterTracker T(*this, tok::l_paren);
2312     T.consumeOpen();
2313     ConstructorLParen = T.getOpenLocation();
2314     if (Tok.isNot(tok::r_paren)) {
2315       CommaLocsTy CommaLocs;
2316       if (ParseExpressionList(ConstructorArgs, CommaLocs)) {
2317         SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2318         return ExprError();
2319       }
2320     }
2321     T.consumeClose();
2322     ConstructorRParen = T.getCloseLocation();
2323     if (ConstructorRParen.isInvalid()) {
2324       SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2325       return ExprError();
2326     }
2327     Initializer = Actions.ActOnParenListExpr(ConstructorLParen,
2328                                              ConstructorRParen,
2329                                              move_arg(ConstructorArgs));
2330   } else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus0x) {
2331     Diag(Tok.getLocation(),
2332          diag::warn_cxx98_compat_generalized_initializer_lists);
2333     Initializer = ParseBraceInitializer();
2334   }
2335   if (Initializer.isInvalid())
2336     return Initializer;
2337
2338   return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
2339                              move_arg(PlacementArgs), PlacementRParen,
2340                              TypeIdParens, DeclaratorInfo, Initializer.take());
2341 }
2342
2343 /// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
2344 /// passed to ParseDeclaratorInternal.
2345 ///
2346 ///        direct-new-declarator:
2347 ///                   '[' expression ']'
2348 ///                   direct-new-declarator '[' constant-expression ']'
2349 ///
2350 void Parser::ParseDirectNewDeclarator(Declarator &D) {
2351   // Parse the array dimensions.
2352   bool first = true;
2353   while (Tok.is(tok::l_square)) {
2354     // An array-size expression can't start with a lambda.
2355     if (CheckProhibitedCXX11Attribute())
2356       continue;
2357
2358     BalancedDelimiterTracker T(*this, tok::l_square);
2359     T.consumeOpen();
2360
2361     ExprResult Size(first ? ParseExpression()
2362                                 : ParseConstantExpression());
2363     if (Size.isInvalid()) {
2364       // Recover
2365       SkipUntil(tok::r_square);
2366       return;
2367     }
2368     first = false;
2369
2370     T.consumeClose();
2371
2372     // Attributes here appertain to the array type. C++11 [expr.new]p5.
2373     ParsedAttributes Attrs(AttrFactory);
2374     MaybeParseCXX0XAttributes(Attrs);
2375
2376     D.AddTypeInfo(DeclaratorChunk::getArray(0,
2377                                             /*static=*/false, /*star=*/false,
2378                                             Size.release(),
2379                                             T.getOpenLocation(),
2380                                             T.getCloseLocation()),
2381                   Attrs, T.getCloseLocation());
2382
2383     if (T.getCloseLocation().isInvalid())
2384       return;
2385   }
2386 }
2387
2388 /// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
2389 /// This ambiguity appears in the syntax of the C++ new operator.
2390 ///
2391 ///        new-expression:
2392 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
2393 ///                                     new-initializer[opt]
2394 ///
2395 ///        new-placement:
2396 ///                   '(' expression-list ')'
2397 ///
2398 bool Parser::ParseExpressionListOrTypeId(
2399                                    SmallVectorImpl<Expr*> &PlacementArgs,
2400                                          Declarator &D) {
2401   // The '(' was already consumed.
2402   if (isTypeIdInParens()) {
2403     ParseSpecifierQualifierList(D.getMutableDeclSpec());
2404     D.SetSourceRange(D.getDeclSpec().getSourceRange());
2405     ParseDeclarator(D);
2406     return D.isInvalidType();
2407   }
2408
2409   // It's not a type, it has to be an expression list.
2410   // Discard the comma locations - ActOnCXXNew has enough parameters.
2411   CommaLocsTy CommaLocs;
2412   return ParseExpressionList(PlacementArgs, CommaLocs);
2413 }
2414
2415 /// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
2416 /// to free memory allocated by new.
2417 ///
2418 /// This method is called to parse the 'delete' expression after the optional
2419 /// '::' has been already parsed.  If the '::' was present, "UseGlobal" is true
2420 /// and "Start" is its location.  Otherwise, "Start" is the location of the
2421 /// 'delete' token.
2422 ///
2423 ///        delete-expression:
2424 ///                   '::'[opt] 'delete' cast-expression
2425 ///                   '::'[opt] 'delete' '[' ']' cast-expression
2426 ExprResult
2427 Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
2428   assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
2429   ConsumeToken(); // Consume 'delete'
2430
2431   // Array delete?
2432   bool ArrayDelete = false;
2433   if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) {
2434     // FIXME: This could be the start of a lambda-expression. We should
2435     // disambiguate this, but that will require arbitrary lookahead if
2436     // the next token is '(':
2437     //   delete [](int*){ /* ... */
2438     ArrayDelete = true;
2439     BalancedDelimiterTracker T(*this, tok::l_square);
2440
2441     T.consumeOpen();
2442     T.consumeClose();
2443     if (T.getCloseLocation().isInvalid())
2444       return ExprError();
2445   }
2446
2447   ExprResult Operand(ParseCastExpression(false));
2448   if (Operand.isInvalid())
2449     return move(Operand);
2450
2451   return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.take());
2452 }
2453
2454 static UnaryTypeTrait UnaryTypeTraitFromTokKind(tok::TokenKind kind) {
2455   switch(kind) {
2456   default: llvm_unreachable("Not a known unary type trait.");
2457   case tok::kw___has_nothrow_assign:      return UTT_HasNothrowAssign;
2458   case tok::kw___has_nothrow_constructor: return UTT_HasNothrowConstructor;
2459   case tok::kw___has_nothrow_copy:           return UTT_HasNothrowCopy;
2460   case tok::kw___has_trivial_assign:      return UTT_HasTrivialAssign;
2461   case tok::kw___has_trivial_constructor:
2462                                     return UTT_HasTrivialDefaultConstructor;
2463   case tok::kw___has_trivial_copy:           return UTT_HasTrivialCopy;
2464   case tok::kw___has_trivial_destructor:  return UTT_HasTrivialDestructor;
2465   case tok::kw___has_virtual_destructor:  return UTT_HasVirtualDestructor;
2466   case tok::kw___is_abstract:             return UTT_IsAbstract;
2467   case tok::kw___is_arithmetic:              return UTT_IsArithmetic;
2468   case tok::kw___is_array:                   return UTT_IsArray;
2469   case tok::kw___is_class:                return UTT_IsClass;
2470   case tok::kw___is_complete_type:           return UTT_IsCompleteType;
2471   case tok::kw___is_compound:                return UTT_IsCompound;
2472   case tok::kw___is_const:                   return UTT_IsConst;
2473   case tok::kw___is_empty:                return UTT_IsEmpty;
2474   case tok::kw___is_enum:                 return UTT_IsEnum;
2475   case tok::kw___is_final:                 return UTT_IsFinal;
2476   case tok::kw___is_floating_point:          return UTT_IsFloatingPoint;
2477   case tok::kw___is_function:                return UTT_IsFunction;
2478   case tok::kw___is_fundamental:             return UTT_IsFundamental;
2479   case tok::kw___is_integral:                return UTT_IsIntegral;
2480   case tok::kw___is_lvalue_reference:        return UTT_IsLvalueReference;
2481   case tok::kw___is_member_function_pointer: return UTT_IsMemberFunctionPointer;
2482   case tok::kw___is_member_object_pointer:   return UTT_IsMemberObjectPointer;
2483   case tok::kw___is_member_pointer:          return UTT_IsMemberPointer;
2484   case tok::kw___is_object:                  return UTT_IsObject;
2485   case tok::kw___is_literal:              return UTT_IsLiteral;
2486   case tok::kw___is_literal_type:         return UTT_IsLiteral;
2487   case tok::kw___is_pod:                  return UTT_IsPOD;
2488   case tok::kw___is_pointer:                 return UTT_IsPointer;
2489   case tok::kw___is_polymorphic:          return UTT_IsPolymorphic;
2490   case tok::kw___is_reference:               return UTT_IsReference;
2491   case tok::kw___is_rvalue_reference:        return UTT_IsRvalueReference;
2492   case tok::kw___is_scalar:                  return UTT_IsScalar;
2493   case tok::kw___is_signed:                  return UTT_IsSigned;
2494   case tok::kw___is_standard_layout:         return UTT_IsStandardLayout;
2495   case tok::kw___is_trivial:                 return UTT_IsTrivial;
2496   case tok::kw___is_trivially_copyable:      return UTT_IsTriviallyCopyable;
2497   case tok::kw___is_union:                return UTT_IsUnion;
2498   case tok::kw___is_unsigned:                return UTT_IsUnsigned;
2499   case tok::kw___is_void:                    return UTT_IsVoid;
2500   case tok::kw___is_volatile:                return UTT_IsVolatile;
2501   }
2502 }
2503
2504 static BinaryTypeTrait BinaryTypeTraitFromTokKind(tok::TokenKind kind) {
2505   switch(kind) {
2506   default: llvm_unreachable("Not a known binary type trait");
2507   case tok::kw___is_base_of:                 return BTT_IsBaseOf;
2508   case tok::kw___is_convertible:             return BTT_IsConvertible;
2509   case tok::kw___is_same:                    return BTT_IsSame;
2510   case tok::kw___builtin_types_compatible_p: return BTT_TypeCompatible;
2511   case tok::kw___is_convertible_to:          return BTT_IsConvertibleTo;
2512   case tok::kw___is_trivially_assignable:    return BTT_IsTriviallyAssignable;
2513   }
2514 }
2515
2516 static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) {
2517   switch (kind) {
2518   default: llvm_unreachable("Not a known type trait");
2519   case tok::kw___is_trivially_constructible: 
2520     return TT_IsTriviallyConstructible;
2521   }
2522 }
2523
2524 static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) {
2525   switch(kind) {
2526   default: llvm_unreachable("Not a known binary type trait");
2527   case tok::kw___array_rank:                 return ATT_ArrayRank;
2528   case tok::kw___array_extent:               return ATT_ArrayExtent;
2529   }
2530 }
2531
2532 static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) {
2533   switch(kind) {
2534   default: llvm_unreachable("Not a known unary expression trait.");
2535   case tok::kw___is_lvalue_expr:             return ET_IsLValueExpr;
2536   case tok::kw___is_rvalue_expr:             return ET_IsRValueExpr;
2537   }
2538 }
2539
2540 /// ParseUnaryTypeTrait - Parse the built-in unary type-trait
2541 /// pseudo-functions that allow implementation of the TR1/C++0x type traits
2542 /// templates.
2543 ///
2544 ///       primary-expression:
2545 /// [GNU]             unary-type-trait '(' type-id ')'
2546 ///
2547 ExprResult Parser::ParseUnaryTypeTrait() {
2548   UnaryTypeTrait UTT = UnaryTypeTraitFromTokKind(Tok.getKind());
2549   SourceLocation Loc = ConsumeToken();
2550
2551   BalancedDelimiterTracker T(*this, tok::l_paren);
2552   if (T.expectAndConsume(diag::err_expected_lparen))
2553     return ExprError();
2554
2555   // FIXME: Error reporting absolutely sucks! If the this fails to parse a type
2556   // there will be cryptic errors about mismatched parentheses and missing
2557   // specifiers.
2558   TypeResult Ty = ParseTypeName();
2559
2560   T.consumeClose();
2561
2562   if (Ty.isInvalid())
2563     return ExprError();
2564
2565   return Actions.ActOnUnaryTypeTrait(UTT, Loc, Ty.get(), T.getCloseLocation());
2566 }
2567
2568 /// ParseBinaryTypeTrait - Parse the built-in binary type-trait
2569 /// pseudo-functions that allow implementation of the TR1/C++0x type traits
2570 /// templates.
2571 ///
2572 ///       primary-expression:
2573 /// [GNU]             binary-type-trait '(' type-id ',' type-id ')'
2574 ///
2575 ExprResult Parser::ParseBinaryTypeTrait() {
2576   BinaryTypeTrait BTT = BinaryTypeTraitFromTokKind(Tok.getKind());
2577   SourceLocation Loc = ConsumeToken();
2578
2579   BalancedDelimiterTracker T(*this, tok::l_paren);
2580   if (T.expectAndConsume(diag::err_expected_lparen))
2581     return ExprError();
2582
2583   TypeResult LhsTy = ParseTypeName();
2584   if (LhsTy.isInvalid()) {
2585     SkipUntil(tok::r_paren);
2586     return ExprError();
2587   }
2588
2589   if (ExpectAndConsume(tok::comma, diag::err_expected_comma)) {
2590     SkipUntil(tok::r_paren);
2591     return ExprError();
2592   }
2593
2594   TypeResult RhsTy = ParseTypeName();
2595   if (RhsTy.isInvalid()) {
2596     SkipUntil(tok::r_paren);
2597     return ExprError();
2598   }
2599
2600   T.consumeClose();
2601
2602   return Actions.ActOnBinaryTypeTrait(BTT, Loc, LhsTy.get(), RhsTy.get(),
2603                                       T.getCloseLocation());
2604 }
2605
2606 /// \brief Parse the built-in type-trait pseudo-functions that allow 
2607 /// implementation of the TR1/C++11 type traits templates.
2608 ///
2609 ///       primary-expression:
2610 ///          type-trait '(' type-id-seq ')'
2611 ///
2612 ///       type-id-seq:
2613 ///          type-id ...[opt] type-id-seq[opt]
2614 ///
2615 ExprResult Parser::ParseTypeTrait() {
2616   TypeTrait Kind = TypeTraitFromTokKind(Tok.getKind());
2617   SourceLocation Loc = ConsumeToken();
2618   
2619   BalancedDelimiterTracker Parens(*this, tok::l_paren);
2620   if (Parens.expectAndConsume(diag::err_expected_lparen))
2621     return ExprError();
2622
2623   llvm::SmallVector<ParsedType, 2> Args;
2624   do {
2625     // Parse the next type.
2626     TypeResult Ty = ParseTypeName();
2627     if (Ty.isInvalid()) {
2628       Parens.skipToEnd();
2629       return ExprError();
2630     }
2631
2632     // Parse the ellipsis, if present.
2633     if (Tok.is(tok::ellipsis)) {
2634       Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken());
2635       if (Ty.isInvalid()) {
2636         Parens.skipToEnd();
2637         return ExprError();
2638       }
2639     }
2640     
2641     // Add this type to the list of arguments.
2642     Args.push_back(Ty.get());
2643     
2644     if (Tok.is(tok::comma)) {
2645       ConsumeToken();
2646       continue;
2647     }
2648     
2649     break;
2650   } while (true);
2651   
2652   if (Parens.consumeClose())
2653     return ExprError();
2654   
2655   return Actions.ActOnTypeTrait(Kind, Loc, Args, Parens.getCloseLocation());
2656 }
2657
2658 /// ParseArrayTypeTrait - Parse the built-in array type-trait
2659 /// pseudo-functions.
2660 ///
2661 ///       primary-expression:
2662 /// [Embarcadero]     '__array_rank' '(' type-id ')'
2663 /// [Embarcadero]     '__array_extent' '(' type-id ',' expression ')'
2664 ///
2665 ExprResult Parser::ParseArrayTypeTrait() {
2666   ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind());
2667   SourceLocation Loc = ConsumeToken();
2668
2669   BalancedDelimiterTracker T(*this, tok::l_paren);
2670   if (T.expectAndConsume(diag::err_expected_lparen))
2671     return ExprError();
2672
2673   TypeResult Ty = ParseTypeName();
2674   if (Ty.isInvalid()) {
2675     SkipUntil(tok::comma);
2676     SkipUntil(tok::r_paren);
2677     return ExprError();
2678   }
2679
2680   switch (ATT) {
2681   case ATT_ArrayRank: {
2682     T.consumeClose();
2683     return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), NULL,
2684                                        T.getCloseLocation());
2685   }
2686   case ATT_ArrayExtent: {
2687     if (ExpectAndConsume(tok::comma, diag::err_expected_comma)) {
2688       SkipUntil(tok::r_paren);
2689       return ExprError();
2690     }
2691
2692     ExprResult DimExpr = ParseExpression();
2693     T.consumeClose();
2694
2695     return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(),
2696                                        T.getCloseLocation());
2697   }
2698   }
2699   llvm_unreachable("Invalid ArrayTypeTrait!");
2700 }
2701
2702 /// ParseExpressionTrait - Parse built-in expression-trait
2703 /// pseudo-functions like __is_lvalue_expr( xxx ).
2704 ///
2705 ///       primary-expression:
2706 /// [Embarcadero]     expression-trait '(' expression ')'
2707 ///
2708 ExprResult Parser::ParseExpressionTrait() {
2709   ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind());
2710   SourceLocation Loc = ConsumeToken();
2711
2712   BalancedDelimiterTracker T(*this, tok::l_paren);
2713   if (T.expectAndConsume(diag::err_expected_lparen))
2714     return ExprError();
2715
2716   ExprResult Expr = ParseExpression();
2717
2718   T.consumeClose();
2719
2720   return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(),
2721                                       T.getCloseLocation());
2722 }
2723
2724
2725 /// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
2726 /// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
2727 /// based on the context past the parens.
2728 ExprResult
2729 Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
2730                                          ParsedType &CastTy,
2731                                          BalancedDelimiterTracker &Tracker) {
2732   assert(getLangOpts().CPlusPlus && "Should only be called for C++!");
2733   assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
2734   assert(isTypeIdInParens() && "Not a type-id!");
2735
2736   ExprResult Result(true);
2737   CastTy = ParsedType();
2738
2739   // We need to disambiguate a very ugly part of the C++ syntax:
2740   //
2741   // (T())x;  - type-id
2742   // (T())*x; - type-id
2743   // (T())/x; - expression
2744   // (T());   - expression
2745   //
2746   // The bad news is that we cannot use the specialized tentative parser, since
2747   // it can only verify that the thing inside the parens can be parsed as
2748   // type-id, it is not useful for determining the context past the parens.
2749   //
2750   // The good news is that the parser can disambiguate this part without
2751   // making any unnecessary Action calls.
2752   //
2753   // It uses a scheme similar to parsing inline methods. The parenthesized
2754   // tokens are cached, the context that follows is determined (possibly by
2755   // parsing a cast-expression), and then we re-introduce the cached tokens
2756   // into the token stream and parse them appropriately.
2757
2758   ParenParseOption ParseAs;
2759   CachedTokens Toks;
2760
2761   // Store the tokens of the parentheses. We will parse them after we determine
2762   // the context that follows them.
2763   if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
2764     // We didn't find the ')' we expected.
2765     Tracker.consumeClose();
2766     return ExprError();
2767   }
2768
2769   if (Tok.is(tok::l_brace)) {
2770     ParseAs = CompoundLiteral;
2771   } else {
2772     bool NotCastExpr;
2773     // FIXME: Special-case ++ and --: "(S())++;" is not a cast-expression
2774     if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
2775       NotCastExpr = true;
2776     } else {
2777       // Try parsing the cast-expression that may follow.
2778       // If it is not a cast-expression, NotCastExpr will be true and no token
2779       // will be consumed.
2780       Result = ParseCastExpression(false/*isUnaryExpression*/,
2781                                    false/*isAddressofOperand*/,
2782                                    NotCastExpr,
2783                                    // type-id has priority.
2784                                    IsTypeCast);
2785     }
2786
2787     // If we parsed a cast-expression, it's really a type-id, otherwise it's
2788     // an expression.
2789     ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
2790   }
2791
2792   // The current token should go after the cached tokens.
2793   Toks.push_back(Tok);
2794   // Re-enter the stored parenthesized tokens into the token stream, so we may
2795   // parse them now.
2796   PP.EnterTokenStream(Toks.data(), Toks.size(),
2797                       true/*DisableMacroExpansion*/, false/*OwnsTokens*/);
2798   // Drop the current token and bring the first cached one. It's the same token
2799   // as when we entered this function.
2800   ConsumeAnyToken();
2801
2802   if (ParseAs >= CompoundLiteral) {
2803     // Parse the type declarator.
2804     DeclSpec DS(AttrFactory);
2805     ParseSpecifierQualifierList(DS);
2806     Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
2807     ParseDeclarator(DeclaratorInfo);
2808
2809     // Match the ')'.
2810     Tracker.consumeClose();
2811
2812     if (ParseAs == CompoundLiteral) {
2813       ExprType = CompoundLiteral;
2814       TypeResult Ty = ParseTypeName();
2815        return ParseCompoundLiteralExpression(Ty.get(),
2816                                             Tracker.getOpenLocation(),
2817                                             Tracker.getCloseLocation());
2818     }
2819
2820     // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
2821     assert(ParseAs == CastExpr);
2822
2823     if (DeclaratorInfo.isInvalidType())
2824       return ExprError();
2825
2826     // Result is what ParseCastExpression returned earlier.
2827     if (!Result.isInvalid())
2828       Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(),
2829                                     DeclaratorInfo, CastTy,
2830                                     Tracker.getCloseLocation(), Result.take());
2831     return move(Result);
2832   }
2833
2834   // Not a compound literal, and not followed by a cast-expression.
2835   assert(ParseAs == SimpleExpr);
2836
2837   ExprType = SimpleExpr;
2838   Result = ParseExpression();
2839   if (!Result.isInvalid() && Tok.is(tok::r_paren))
2840     Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(), 
2841                                     Tok.getLocation(), Result.take());
2842
2843   // Match the ')'.
2844   if (Result.isInvalid()) {
2845     SkipUntil(tok::r_paren);
2846     return ExprError();
2847   }
2848
2849   Tracker.consumeClose();
2850   return move(Result);
2851 }