]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c
MFC r237624, r237714, r237716, r237860:
[FreeBSD/stable/9.git] / sys / cddl / contrib / opensolaris / uts / common / dtrace / dtrace.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * $FreeBSD$
22  */
23
24 /*
25  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
26  * Use is subject to license terms.
27  */
28
29 #pragma ident   "%Z%%M% %I%     %E% SMI"
30
31 /*
32  * DTrace - Dynamic Tracing for Solaris
33  *
34  * This is the implementation of the Solaris Dynamic Tracing framework
35  * (DTrace).  The user-visible interface to DTrace is described at length in
36  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
37  * library, the in-kernel DTrace framework, and the DTrace providers are
38  * described in the block comments in the <sys/dtrace.h> header file.  The
39  * internal architecture of DTrace is described in the block comments in the
40  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
41  * implementation very much assume mastery of all of these sources; if one has
42  * an unanswered question about the implementation, one should consult them
43  * first.
44  *
45  * The functions here are ordered roughly as follows:
46  *
47  *   - Probe context functions
48  *   - Probe hashing functions
49  *   - Non-probe context utility functions
50  *   - Matching functions
51  *   - Provider-to-Framework API functions
52  *   - Probe management functions
53  *   - DIF object functions
54  *   - Format functions
55  *   - Predicate functions
56  *   - ECB functions
57  *   - Buffer functions
58  *   - Enabling functions
59  *   - DOF functions
60  *   - Anonymous enabling functions
61  *   - Consumer state functions
62  *   - Helper functions
63  *   - Hook functions
64  *   - Driver cookbook functions
65  *
66  * Each group of functions begins with a block comment labelled the "DTrace
67  * [Group] Functions", allowing one to find each block by searching forward
68  * on capital-f functions.
69  */
70 #include <sys/errno.h>
71 #if !defined(sun)
72 #include <sys/time.h>
73 #endif
74 #include <sys/stat.h>
75 #include <sys/modctl.h>
76 #include <sys/conf.h>
77 #include <sys/systm.h>
78 #if defined(sun)
79 #include <sys/ddi.h>
80 #include <sys/sunddi.h>
81 #endif
82 #include <sys/cpuvar.h>
83 #include <sys/kmem.h>
84 #if defined(sun)
85 #include <sys/strsubr.h>
86 #endif
87 #include <sys/sysmacros.h>
88 #include <sys/dtrace_impl.h>
89 #include <sys/atomic.h>
90 #include <sys/cmn_err.h>
91 #if defined(sun)
92 #include <sys/mutex_impl.h>
93 #include <sys/rwlock_impl.h>
94 #endif
95 #include <sys/ctf_api.h>
96 #if defined(sun)
97 #include <sys/panic.h>
98 #include <sys/priv_impl.h>
99 #endif
100 #include <sys/policy.h>
101 #if defined(sun)
102 #include <sys/cred_impl.h>
103 #include <sys/procfs_isa.h>
104 #endif
105 #include <sys/taskq.h>
106 #if defined(sun)
107 #include <sys/mkdev.h>
108 #include <sys/kdi.h>
109 #endif
110 #include <sys/zone.h>
111 #include <sys/socket.h>
112 #include <netinet/in.h>
113
114 /* FreeBSD includes: */
115 #if !defined(sun)
116 #include <sys/callout.h>
117 #include <sys/ctype.h>
118 #include <sys/limits.h>
119 #include <sys/kdb.h>
120 #include <sys/kernel.h>
121 #include <sys/malloc.h>
122 #include <sys/sysctl.h>
123 #include <sys/lock.h>
124 #include <sys/mutex.h>
125 #include <sys/rwlock.h>
126 #include <sys/sx.h>
127 #include <sys/dtrace_bsd.h>
128 #include <netinet/in.h>
129 #include "dtrace_cddl.h"
130 #include "dtrace_debug.c"
131 #endif
132
133 /*
134  * DTrace Tunable Variables
135  *
136  * The following variables may be tuned by adding a line to /etc/system that
137  * includes both the name of the DTrace module ("dtrace") and the name of the
138  * variable.  For example:
139  *
140  *   set dtrace:dtrace_destructive_disallow = 1
141  *
142  * In general, the only variables that one should be tuning this way are those
143  * that affect system-wide DTrace behavior, and for which the default behavior
144  * is undesirable.  Most of these variables are tunable on a per-consumer
145  * basis using DTrace options, and need not be tuned on a system-wide basis.
146  * When tuning these variables, avoid pathological values; while some attempt
147  * is made to verify the integrity of these variables, they are not considered
148  * part of the supported interface to DTrace, and they are therefore not
149  * checked comprehensively.  Further, these variables should not be tuned
150  * dynamically via "mdb -kw" or other means; they should only be tuned via
151  * /etc/system.
152  */
153 int             dtrace_destructive_disallow = 0;
154 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024);
155 size_t          dtrace_difo_maxsize = (256 * 1024);
156 dtrace_optval_t dtrace_dof_maxsize = (256 * 1024);
157 size_t          dtrace_global_maxsize = (16 * 1024);
158 size_t          dtrace_actions_max = (16 * 1024);
159 size_t          dtrace_retain_max = 1024;
160 dtrace_optval_t dtrace_helper_actions_max = 32;
161 dtrace_optval_t dtrace_helper_providers_max = 32;
162 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024);
163 size_t          dtrace_strsize_default = 256;
164 dtrace_optval_t dtrace_cleanrate_default = 9900990;             /* 101 hz */
165 dtrace_optval_t dtrace_cleanrate_min = 200000;                  /* 5000 hz */
166 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;  /* 1/minute */
167 dtrace_optval_t dtrace_aggrate_default = NANOSEC;               /* 1 hz */
168 dtrace_optval_t dtrace_statusrate_default = NANOSEC;            /* 1 hz */
169 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;  /* 6/minute */
170 dtrace_optval_t dtrace_switchrate_default = NANOSEC;            /* 1 hz */
171 dtrace_optval_t dtrace_nspec_default = 1;
172 dtrace_optval_t dtrace_specsize_default = 32 * 1024;
173 dtrace_optval_t dtrace_stackframes_default = 20;
174 dtrace_optval_t dtrace_ustackframes_default = 20;
175 dtrace_optval_t dtrace_jstackframes_default = 50;
176 dtrace_optval_t dtrace_jstackstrsize_default = 512;
177 int             dtrace_msgdsize_max = 128;
178 hrtime_t        dtrace_chill_max = 500 * (NANOSEC / MILLISEC);  /* 500 ms */
179 hrtime_t        dtrace_chill_interval = NANOSEC;                /* 1000 ms */
180 int             dtrace_devdepth_max = 32;
181 int             dtrace_err_verbose;
182 hrtime_t        dtrace_deadman_interval = NANOSEC;
183 hrtime_t        dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
184 hrtime_t        dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
185
186 /*
187  * DTrace External Variables
188  *
189  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
190  * available to DTrace consumers via the backtick (`) syntax.  One of these,
191  * dtrace_zero, is made deliberately so:  it is provided as a source of
192  * well-known, zero-filled memory.  While this variable is not documented,
193  * it is used by some translators as an implementation detail.
194  */
195 const char      dtrace_zero[256] = { 0 };       /* zero-filled memory */
196
197 /*
198  * DTrace Internal Variables
199  */
200 #if defined(sun)
201 static dev_info_t       *dtrace_devi;           /* device info */
202 #endif
203 #if defined(sun)
204 static vmem_t           *dtrace_arena;          /* probe ID arena */
205 static vmem_t           *dtrace_minor;          /* minor number arena */
206 static taskq_t          *dtrace_taskq;          /* task queue */
207 #else
208 static struct unrhdr    *dtrace_arena;          /* Probe ID number.     */
209 #endif
210 static dtrace_probe_t   **dtrace_probes;        /* array of all probes */
211 static int              dtrace_nprobes;         /* number of probes */
212 static dtrace_provider_t *dtrace_provider;      /* provider list */
213 static dtrace_meta_t    *dtrace_meta_pid;       /* user-land meta provider */
214 static int              dtrace_opens;           /* number of opens */
215 static int              dtrace_helpers;         /* number of helpers */
216 #if defined(sun)
217 static void             *dtrace_softstate;      /* softstate pointer */
218 #endif
219 static dtrace_hash_t    *dtrace_bymod;          /* probes hashed by module */
220 static dtrace_hash_t    *dtrace_byfunc;         /* probes hashed by function */
221 static dtrace_hash_t    *dtrace_byname;         /* probes hashed by name */
222 static dtrace_toxrange_t *dtrace_toxrange;      /* toxic range array */
223 static int              dtrace_toxranges;       /* number of toxic ranges */
224 static int              dtrace_toxranges_max;   /* size of toxic range array */
225 static dtrace_anon_t    dtrace_anon;            /* anonymous enabling */
226 static kmem_cache_t     *dtrace_state_cache;    /* cache for dynamic state */
227 static uint64_t         dtrace_vtime_references; /* number of vtimestamp refs */
228 static kthread_t        *dtrace_panicked;       /* panicking thread */
229 static dtrace_ecb_t     *dtrace_ecb_create_cache; /* cached created ECB */
230 static dtrace_genid_t   dtrace_probegen;        /* current probe generation */
231 static dtrace_helpers_t *dtrace_deferred_pid;   /* deferred helper list */
232 static dtrace_enabling_t *dtrace_retained;      /* list of retained enablings */
233 static dtrace_dynvar_t  dtrace_dynhash_sink;    /* end of dynamic hash chains */
234 #if !defined(sun)
235 static struct mtx       dtrace_unr_mtx;
236 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
237 int             dtrace_in_probe;        /* non-zero if executing a probe */
238 #if defined(__i386__) || defined(__amd64__)
239 uintptr_t       dtrace_in_probe_addr;   /* Address of invop when already in probe */
240 #endif
241 #endif
242
243 /*
244  * DTrace Locking
245  * DTrace is protected by three (relatively coarse-grained) locks:
246  *
247  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
248  *     including enabling state, probes, ECBs, consumer state, helper state,
249  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
250  *     probe context is lock-free -- synchronization is handled via the
251  *     dtrace_sync() cross call mechanism.
252  *
253  * (2) dtrace_provider_lock is required when manipulating provider state, or
254  *     when provider state must be held constant.
255  *
256  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
257  *     when meta provider state must be held constant.
258  *
259  * The lock ordering between these three locks is dtrace_meta_lock before
260  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
261  * several places where dtrace_provider_lock is held by the framework as it
262  * calls into the providers -- which then call back into the framework,
263  * grabbing dtrace_lock.)
264  *
265  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
266  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
267  * role as a coarse-grained lock; it is acquired before both of these locks.
268  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
269  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
270  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
271  * acquired _between_ dtrace_provider_lock and dtrace_lock.
272  */
273 static kmutex_t         dtrace_lock;            /* probe state lock */
274 static kmutex_t         dtrace_provider_lock;   /* provider state lock */
275 static kmutex_t         dtrace_meta_lock;       /* meta-provider state lock */
276
277 #if !defined(sun)
278 /* XXX FreeBSD hacks. */
279 static kmutex_t         mod_lock;
280
281 #define cr_suid         cr_svuid
282 #define cr_sgid         cr_svgid
283 #define ipaddr_t        in_addr_t
284 #define mod_modname     pathname
285 #define vuprintf        vprintf
286 #define ttoproc(_a)     ((_a)->td_proc)
287 #define crgetzoneid(_a) 0
288 #define NCPU            MAXCPU
289 #define SNOCD           0
290 #define CPU_ON_INTR(_a) 0
291
292 #define PRIV_EFFECTIVE          (1 << 0)
293 #define PRIV_DTRACE_KERNEL      (1 << 1)
294 #define PRIV_DTRACE_PROC        (1 << 2)
295 #define PRIV_DTRACE_USER        (1 << 3)
296 #define PRIV_PROC_OWNER         (1 << 4)
297 #define PRIV_PROC_ZONE          (1 << 5)
298 #define PRIV_ALL                ~0
299
300 SYSCTL_NODE(_debug, OID_AUTO, dtrace, CTLFLAG_RD, 0, "DTrace Information");
301 #endif
302
303 #if defined(sun)
304 #define curcpu  CPU->cpu_id
305 #endif
306
307
308 /*
309  * DTrace Provider Variables
310  *
311  * These are the variables relating to DTrace as a provider (that is, the
312  * provider of the BEGIN, END, and ERROR probes).
313  */
314 static dtrace_pattr_t   dtrace_provider_attr = {
315 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
316 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
317 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
318 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
319 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
320 };
321
322 static void
323 dtrace_nullop(void)
324 {}
325
326 static dtrace_pops_t    dtrace_provider_ops = {
327         (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
328         (void (*)(void *, modctl_t *))dtrace_nullop,
329         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
330         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
331         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
332         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
333         NULL,
334         NULL,
335         NULL,
336         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop
337 };
338
339 static dtrace_id_t      dtrace_probeid_begin;   /* special BEGIN probe */
340 static dtrace_id_t      dtrace_probeid_end;     /* special END probe */
341 dtrace_id_t             dtrace_probeid_error;   /* special ERROR probe */
342
343 /*
344  * DTrace Helper Tracing Variables
345  */
346 uint32_t dtrace_helptrace_next = 0;
347 uint32_t dtrace_helptrace_nlocals;
348 char    *dtrace_helptrace_buffer;
349 int     dtrace_helptrace_bufsize = 512 * 1024;
350
351 #ifdef DEBUG
352 int     dtrace_helptrace_enabled = 1;
353 #else
354 int     dtrace_helptrace_enabled = 0;
355 #endif
356
357 /*
358  * DTrace Error Hashing
359  *
360  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
361  * table.  This is very useful for checking coverage of tests that are
362  * expected to induce DIF or DOF processing errors, and may be useful for
363  * debugging problems in the DIF code generator or in DOF generation .  The
364  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
365  */
366 #ifdef DEBUG
367 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ];
368 static const char *dtrace_errlast;
369 static kthread_t *dtrace_errthread;
370 static kmutex_t dtrace_errlock;
371 #endif
372
373 /*
374  * DTrace Macros and Constants
375  *
376  * These are various macros that are useful in various spots in the
377  * implementation, along with a few random constants that have no meaning
378  * outside of the implementation.  There is no real structure to this cpp
379  * mishmash -- but is there ever?
380  */
381 #define DTRACE_HASHSTR(hash, probe)     \
382         dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
383
384 #define DTRACE_HASHNEXT(hash, probe)    \
385         (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
386
387 #define DTRACE_HASHPREV(hash, probe)    \
388         (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
389
390 #define DTRACE_HASHEQ(hash, lhs, rhs)   \
391         (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
392             *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
393
394 #define DTRACE_AGGHASHSIZE_SLEW         17
395
396 #define DTRACE_V4MAPPED_OFFSET          (sizeof (uint32_t) * 3)
397
398 /*
399  * The key for a thread-local variable consists of the lower 61 bits of the
400  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
401  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
402  * equal to a variable identifier.  This is necessary (but not sufficient) to
403  * assure that global associative arrays never collide with thread-local
404  * variables.  To guarantee that they cannot collide, we must also define the
405  * order for keying dynamic variables.  That order is:
406  *
407  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
408  *
409  * Because the variable-key and the tls-key are in orthogonal spaces, there is
410  * no way for a global variable key signature to match a thread-local key
411  * signature.
412  */
413 #if defined(sun)
414 #define DTRACE_TLS_THRKEY(where) { \
415         uint_t intr = 0; \
416         uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
417         for (; actv; actv >>= 1) \
418                 intr++; \
419         ASSERT(intr < (1 << 3)); \
420         (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
421             (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
422 }
423 #else
424 #define DTRACE_TLS_THRKEY(where) { \
425         solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
426         uint_t intr = 0; \
427         uint_t actv = _c->cpu_intr_actv; \
428         for (; actv; actv >>= 1) \
429                 intr++; \
430         ASSERT(intr < (1 << 3)); \
431         (where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
432             (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
433 }
434 #endif
435
436 #define DT_BSWAP_8(x)   ((x) & 0xff)
437 #define DT_BSWAP_16(x)  ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
438 #define DT_BSWAP_32(x)  ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
439 #define DT_BSWAP_64(x)  ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
440
441 #define DT_MASK_LO 0x00000000FFFFFFFFULL
442
443 #define DTRACE_STORE(type, tomax, offset, what) \
444         *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
445
446 #ifndef __i386
447 #define DTRACE_ALIGNCHECK(addr, size, flags)                            \
448         if (addr & (size - 1)) {                                        \
449                 *flags |= CPU_DTRACE_BADALIGN;                          \
450                 cpu_core[curcpu].cpuc_dtrace_illval = addr;     \
451                 return (0);                                             \
452         }
453 #else
454 #define DTRACE_ALIGNCHECK(addr, size, flags)
455 #endif
456
457 /*
458  * Test whether a range of memory starting at testaddr of size testsz falls
459  * within the range of memory described by addr, sz.  We take care to avoid
460  * problems with overflow and underflow of the unsigned quantities, and
461  * disallow all negative sizes.  Ranges of size 0 are allowed.
462  */
463 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
464         ((testaddr) - (baseaddr) < (basesz) && \
465         (testaddr) + (testsz) - (baseaddr) <= (basesz) && \
466         (testaddr) + (testsz) >= (testaddr))
467
468 /*
469  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
470  * alloc_sz on the righthand side of the comparison in order to avoid overflow
471  * or underflow in the comparison with it.  This is simpler than the INRANGE
472  * check above, because we know that the dtms_scratch_ptr is valid in the
473  * range.  Allocations of size zero are allowed.
474  */
475 #define DTRACE_INSCRATCH(mstate, alloc_sz) \
476         ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
477         (mstate)->dtms_scratch_ptr >= (alloc_sz))
478
479 #define DTRACE_LOADFUNC(bits)                                           \
480 /*CSTYLED*/                                                             \
481 uint##bits##_t                                                          \
482 dtrace_load##bits(uintptr_t addr)                                       \
483 {                                                                       \
484         size_t size = bits / NBBY;                                      \
485         /*CSTYLED*/                                                     \
486         uint##bits##_t rval;                                            \
487         int i;                                                          \
488         volatile uint16_t *flags = (volatile uint16_t *)                \
489             &cpu_core[curcpu].cpuc_dtrace_flags;                        \
490                                                                         \
491         DTRACE_ALIGNCHECK(addr, size, flags);                           \
492                                                                         \
493         for (i = 0; i < dtrace_toxranges; i++) {                        \
494                 if (addr >= dtrace_toxrange[i].dtt_limit)               \
495                         continue;                                       \
496                                                                         \
497                 if (addr + size <= dtrace_toxrange[i].dtt_base)         \
498                         continue;                                       \
499                                                                         \
500                 /*                                                      \
501                  * This address falls within a toxic region; return 0.  \
502                  */                                                     \
503                 *flags |= CPU_DTRACE_BADADDR;                           \
504                 cpu_core[curcpu].cpuc_dtrace_illval = addr;             \
505                 return (0);                                             \
506         }                                                               \
507                                                                         \
508         *flags |= CPU_DTRACE_NOFAULT;                                   \
509         /*CSTYLED*/                                                     \
510         rval = *((volatile uint##bits##_t *)addr);                      \
511         *flags &= ~CPU_DTRACE_NOFAULT;                                  \
512                                                                         \
513         return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);               \
514 }
515
516 #ifdef _LP64
517 #define dtrace_loadptr  dtrace_load64
518 #else
519 #define dtrace_loadptr  dtrace_load32
520 #endif
521
522 #define DTRACE_DYNHASH_FREE     0
523 #define DTRACE_DYNHASH_SINK     1
524 #define DTRACE_DYNHASH_VALID    2
525
526 #define DTRACE_MATCH_NEXT       0
527 #define DTRACE_MATCH_DONE       1
528 #define DTRACE_ANCHORED(probe)  ((probe)->dtpr_func[0] != '\0')
529 #define DTRACE_STATE_ALIGN      64
530
531 #define DTRACE_FLAGS2FLT(flags)                                         \
532         (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :           \
533         ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :                \
534         ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :            \
535         ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :                \
536         ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :                \
537         ((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :         \
538         ((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :         \
539         ((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :       \
540         ((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :         \
541         DTRACEFLT_UNKNOWN)
542
543 #define DTRACEACT_ISSTRING(act)                                         \
544         ((act)->dta_kind == DTRACEACT_DIFEXPR &&                        \
545         (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
546
547 /* Function prototype definitions: */
548 static size_t dtrace_strlen(const char *, size_t);
549 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
550 static void dtrace_enabling_provide(dtrace_provider_t *);
551 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
552 static void dtrace_enabling_matchall(void);
553 static dtrace_state_t *dtrace_anon_grab(void);
554 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
555     dtrace_state_t *, uint64_t, uint64_t);
556 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
557 static void dtrace_buffer_drop(dtrace_buffer_t *);
558 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
559     dtrace_state_t *, dtrace_mstate_t *);
560 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
561     dtrace_optval_t);
562 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
563 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
564 uint16_t dtrace_load16(uintptr_t);
565 uint32_t dtrace_load32(uintptr_t);
566 uint64_t dtrace_load64(uintptr_t);
567 uint8_t dtrace_load8(uintptr_t);
568 void dtrace_dynvar_clean(dtrace_dstate_t *);
569 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
570     size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
571 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
572
573 /*
574  * DTrace Probe Context Functions
575  *
576  * These functions are called from probe context.  Because probe context is
577  * any context in which C may be called, arbitrarily locks may be held,
578  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
579  * As a result, functions called from probe context may only call other DTrace
580  * support functions -- they may not interact at all with the system at large.
581  * (Note that the ASSERT macro is made probe-context safe by redefining it in
582  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
583  * loads are to be performed from probe context, they _must_ be in terms of
584  * the safe dtrace_load*() variants.
585  *
586  * Some functions in this block are not actually called from probe context;
587  * for these functions, there will be a comment above the function reading
588  * "Note:  not called from probe context."
589  */
590 void
591 dtrace_panic(const char *format, ...)
592 {
593         va_list alist;
594
595         va_start(alist, format);
596         dtrace_vpanic(format, alist);
597         va_end(alist);
598 }
599
600 int
601 dtrace_assfail(const char *a, const char *f, int l)
602 {
603         dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
604
605         /*
606          * We just need something here that even the most clever compiler
607          * cannot optimize away.
608          */
609         return (a[(uintptr_t)f]);
610 }
611
612 /*
613  * Atomically increment a specified error counter from probe context.
614  */
615 static void
616 dtrace_error(uint32_t *counter)
617 {
618         /*
619          * Most counters stored to in probe context are per-CPU counters.
620          * However, there are some error conditions that are sufficiently
621          * arcane that they don't merit per-CPU storage.  If these counters
622          * are incremented concurrently on different CPUs, scalability will be
623          * adversely affected -- but we don't expect them to be white-hot in a
624          * correctly constructed enabling...
625          */
626         uint32_t oval, nval;
627
628         do {
629                 oval = *counter;
630
631                 if ((nval = oval + 1) == 0) {
632                         /*
633                          * If the counter would wrap, set it to 1 -- assuring
634                          * that the counter is never zero when we have seen
635                          * errors.  (The counter must be 32-bits because we
636                          * aren't guaranteed a 64-bit compare&swap operation.)
637                          * To save this code both the infamy of being fingered
638                          * by a priggish news story and the indignity of being
639                          * the target of a neo-puritan witch trial, we're
640                          * carefully avoiding any colorful description of the
641                          * likelihood of this condition -- but suffice it to
642                          * say that it is only slightly more likely than the
643                          * overflow of predicate cache IDs, as discussed in
644                          * dtrace_predicate_create().
645                          */
646                         nval = 1;
647                 }
648         } while (dtrace_cas32(counter, oval, nval) != oval);
649 }
650
651 /*
652  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
653  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
654  */
655 DTRACE_LOADFUNC(8)
656 DTRACE_LOADFUNC(16)
657 DTRACE_LOADFUNC(32)
658 DTRACE_LOADFUNC(64)
659
660 static int
661 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
662 {
663         if (dest < mstate->dtms_scratch_base)
664                 return (0);
665
666         if (dest + size < dest)
667                 return (0);
668
669         if (dest + size > mstate->dtms_scratch_ptr)
670                 return (0);
671
672         return (1);
673 }
674
675 static int
676 dtrace_canstore_statvar(uint64_t addr, size_t sz,
677     dtrace_statvar_t **svars, int nsvars)
678 {
679         int i;
680
681         for (i = 0; i < nsvars; i++) {
682                 dtrace_statvar_t *svar = svars[i];
683
684                 if (svar == NULL || svar->dtsv_size == 0)
685                         continue;
686
687                 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
688                         return (1);
689         }
690
691         return (0);
692 }
693
694 /*
695  * Check to see if the address is within a memory region to which a store may
696  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
697  * region.  The caller of dtrace_canstore() is responsible for performing any
698  * alignment checks that are needed before stores are actually executed.
699  */
700 static int
701 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
702     dtrace_vstate_t *vstate)
703 {
704         /*
705          * First, check to see if the address is in scratch space...
706          */
707         if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
708             mstate->dtms_scratch_size))
709                 return (1);
710
711         /*
712          * Now check to see if it's a dynamic variable.  This check will pick
713          * up both thread-local variables and any global dynamically-allocated
714          * variables.
715          */
716         if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
717             vstate->dtvs_dynvars.dtds_size)) {
718                 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
719                 uintptr_t base = (uintptr_t)dstate->dtds_base +
720                     (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
721                 uintptr_t chunkoffs;
722
723                 /*
724                  * Before we assume that we can store here, we need to make
725                  * sure that it isn't in our metadata -- storing to our
726                  * dynamic variable metadata would corrupt our state.  For
727                  * the range to not include any dynamic variable metadata,
728                  * it must:
729                  *
730                  *      (1) Start above the hash table that is at the base of
731                  *      the dynamic variable space
732                  *
733                  *      (2) Have a starting chunk offset that is beyond the
734                  *      dtrace_dynvar_t that is at the base of every chunk
735                  *
736                  *      (3) Not span a chunk boundary
737                  *
738                  */
739                 if (addr < base)
740                         return (0);
741
742                 chunkoffs = (addr - base) % dstate->dtds_chunksize;
743
744                 if (chunkoffs < sizeof (dtrace_dynvar_t))
745                         return (0);
746
747                 if (chunkoffs + sz > dstate->dtds_chunksize)
748                         return (0);
749
750                 return (1);
751         }
752
753         /*
754          * Finally, check the static local and global variables.  These checks
755          * take the longest, so we perform them last.
756          */
757         if (dtrace_canstore_statvar(addr, sz,
758             vstate->dtvs_locals, vstate->dtvs_nlocals))
759                 return (1);
760
761         if (dtrace_canstore_statvar(addr, sz,
762             vstate->dtvs_globals, vstate->dtvs_nglobals))
763                 return (1);
764
765         return (0);
766 }
767
768
769 /*
770  * Convenience routine to check to see if the address is within a memory
771  * region in which a load may be issued given the user's privilege level;
772  * if not, it sets the appropriate error flags and loads 'addr' into the
773  * illegal value slot.
774  *
775  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
776  * appropriate memory access protection.
777  */
778 static int
779 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
780     dtrace_vstate_t *vstate)
781 {
782         volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
783
784         /*
785          * If we hold the privilege to read from kernel memory, then
786          * everything is readable.
787          */
788         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
789                 return (1);
790
791         /*
792          * You can obviously read that which you can store.
793          */
794         if (dtrace_canstore(addr, sz, mstate, vstate))
795                 return (1);
796
797         /*
798          * We're allowed to read from our own string table.
799          */
800         if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
801             mstate->dtms_difo->dtdo_strlen))
802                 return (1);
803
804         DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
805         *illval = addr;
806         return (0);
807 }
808
809 /*
810  * Convenience routine to check to see if a given string is within a memory
811  * region in which a load may be issued given the user's privilege level;
812  * this exists so that we don't need to issue unnecessary dtrace_strlen()
813  * calls in the event that the user has all privileges.
814  */
815 static int
816 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
817     dtrace_vstate_t *vstate)
818 {
819         size_t strsz;
820
821         /*
822          * If we hold the privilege to read from kernel memory, then
823          * everything is readable.
824          */
825         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
826                 return (1);
827
828         strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
829         if (dtrace_canload(addr, strsz, mstate, vstate))
830                 return (1);
831
832         return (0);
833 }
834
835 /*
836  * Convenience routine to check to see if a given variable is within a memory
837  * region in which a load may be issued given the user's privilege level.
838  */
839 static int
840 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
841     dtrace_vstate_t *vstate)
842 {
843         size_t sz;
844         ASSERT(type->dtdt_flags & DIF_TF_BYREF);
845
846         /*
847          * If we hold the privilege to read from kernel memory, then
848          * everything is readable.
849          */
850         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
851                 return (1);
852
853         if (type->dtdt_kind == DIF_TYPE_STRING)
854                 sz = dtrace_strlen(src,
855                     vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
856         else
857                 sz = type->dtdt_size;
858
859         return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
860 }
861
862 /*
863  * Compare two strings using safe loads.
864  */
865 static int
866 dtrace_strncmp(char *s1, char *s2, size_t limit)
867 {
868         uint8_t c1, c2;
869         volatile uint16_t *flags;
870
871         if (s1 == s2 || limit == 0)
872                 return (0);
873
874         flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
875
876         do {
877                 if (s1 == NULL) {
878                         c1 = '\0';
879                 } else {
880                         c1 = dtrace_load8((uintptr_t)s1++);
881                 }
882
883                 if (s2 == NULL) {
884                         c2 = '\0';
885                 } else {
886                         c2 = dtrace_load8((uintptr_t)s2++);
887                 }
888
889                 if (c1 != c2)
890                         return (c1 - c2);
891         } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
892
893         return (0);
894 }
895
896 /*
897  * Compute strlen(s) for a string using safe memory accesses.  The additional
898  * len parameter is used to specify a maximum length to ensure completion.
899  */
900 static size_t
901 dtrace_strlen(const char *s, size_t lim)
902 {
903         uint_t len;
904
905         for (len = 0; len != lim; len++) {
906                 if (dtrace_load8((uintptr_t)s++) == '\0')
907                         break;
908         }
909
910         return (len);
911 }
912
913 /*
914  * Check if an address falls within a toxic region.
915  */
916 static int
917 dtrace_istoxic(uintptr_t kaddr, size_t size)
918 {
919         uintptr_t taddr, tsize;
920         int i;
921
922         for (i = 0; i < dtrace_toxranges; i++) {
923                 taddr = dtrace_toxrange[i].dtt_base;
924                 tsize = dtrace_toxrange[i].dtt_limit - taddr;
925
926                 if (kaddr - taddr < tsize) {
927                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
928                         cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
929                         return (1);
930                 }
931
932                 if (taddr - kaddr < size) {
933                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
934                         cpu_core[curcpu].cpuc_dtrace_illval = taddr;
935                         return (1);
936                 }
937         }
938
939         return (0);
940 }
941
942 /*
943  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
944  * memory specified by the DIF program.  The dst is assumed to be safe memory
945  * that we can store to directly because it is managed by DTrace.  As with
946  * standard bcopy, overlapping copies are handled properly.
947  */
948 static void
949 dtrace_bcopy(const void *src, void *dst, size_t len)
950 {
951         if (len != 0) {
952                 uint8_t *s1 = dst;
953                 const uint8_t *s2 = src;
954
955                 if (s1 <= s2) {
956                         do {
957                                 *s1++ = dtrace_load8((uintptr_t)s2++);
958                         } while (--len != 0);
959                 } else {
960                         s2 += len;
961                         s1 += len;
962
963                         do {
964                                 *--s1 = dtrace_load8((uintptr_t)--s2);
965                         } while (--len != 0);
966                 }
967         }
968 }
969
970 /*
971  * Copy src to dst using safe memory accesses, up to either the specified
972  * length, or the point that a nul byte is encountered.  The src is assumed to
973  * be unsafe memory specified by the DIF program.  The dst is assumed to be
974  * safe memory that we can store to directly because it is managed by DTrace.
975  * Unlike dtrace_bcopy(), overlapping regions are not handled.
976  */
977 static void
978 dtrace_strcpy(const void *src, void *dst, size_t len)
979 {
980         if (len != 0) {
981                 uint8_t *s1 = dst, c;
982                 const uint8_t *s2 = src;
983
984                 do {
985                         *s1++ = c = dtrace_load8((uintptr_t)s2++);
986                 } while (--len != 0 && c != '\0');
987         }
988 }
989
990 /*
991  * Copy src to dst, deriving the size and type from the specified (BYREF)
992  * variable type.  The src is assumed to be unsafe memory specified by the DIF
993  * program.  The dst is assumed to be DTrace variable memory that is of the
994  * specified type; we assume that we can store to directly.
995  */
996 static void
997 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
998 {
999         ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1000
1001         if (type->dtdt_kind == DIF_TYPE_STRING) {
1002                 dtrace_strcpy(src, dst, type->dtdt_size);
1003         } else {
1004                 dtrace_bcopy(src, dst, type->dtdt_size);
1005         }
1006 }
1007
1008 /*
1009  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1010  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1011  * safe memory that we can access directly because it is managed by DTrace.
1012  */
1013 static int
1014 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1015 {
1016         volatile uint16_t *flags;
1017
1018         flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1019
1020         if (s1 == s2)
1021                 return (0);
1022
1023         if (s1 == NULL || s2 == NULL)
1024                 return (1);
1025
1026         if (s1 != s2 && len != 0) {
1027                 const uint8_t *ps1 = s1;
1028                 const uint8_t *ps2 = s2;
1029
1030                 do {
1031                         if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1032                                 return (1);
1033                 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1034         }
1035         return (0);
1036 }
1037
1038 /*
1039  * Zero the specified region using a simple byte-by-byte loop.  Note that this
1040  * is for safe DTrace-managed memory only.
1041  */
1042 static void
1043 dtrace_bzero(void *dst, size_t len)
1044 {
1045         uchar_t *cp;
1046
1047         for (cp = dst; len != 0; len--)
1048                 *cp++ = 0;
1049 }
1050
1051 static void
1052 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1053 {
1054         uint64_t result[2];
1055
1056         result[0] = addend1[0] + addend2[0];
1057         result[1] = addend1[1] + addend2[1] +
1058             (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1059
1060         sum[0] = result[0];
1061         sum[1] = result[1];
1062 }
1063
1064 /*
1065  * Shift the 128-bit value in a by b. If b is positive, shift left.
1066  * If b is negative, shift right.
1067  */
1068 static void
1069 dtrace_shift_128(uint64_t *a, int b)
1070 {
1071         uint64_t mask;
1072
1073         if (b == 0)
1074                 return;
1075
1076         if (b < 0) {
1077                 b = -b;
1078                 if (b >= 64) {
1079                         a[0] = a[1] >> (b - 64);
1080                         a[1] = 0;
1081                 } else {
1082                         a[0] >>= b;
1083                         mask = 1LL << (64 - b);
1084                         mask -= 1;
1085                         a[0] |= ((a[1] & mask) << (64 - b));
1086                         a[1] >>= b;
1087                 }
1088         } else {
1089                 if (b >= 64) {
1090                         a[1] = a[0] << (b - 64);
1091                         a[0] = 0;
1092                 } else {
1093                         a[1] <<= b;
1094                         mask = a[0] >> (64 - b);
1095                         a[1] |= mask;
1096                         a[0] <<= b;
1097                 }
1098         }
1099 }
1100
1101 /*
1102  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1103  * use native multiplication on those, and then re-combine into the
1104  * resulting 128-bit value.
1105  *
1106  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1107  *     hi1 * hi2 << 64 +
1108  *     hi1 * lo2 << 32 +
1109  *     hi2 * lo1 << 32 +
1110  *     lo1 * lo2
1111  */
1112 static void
1113 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1114 {
1115         uint64_t hi1, hi2, lo1, lo2;
1116         uint64_t tmp[2];
1117
1118         hi1 = factor1 >> 32;
1119         hi2 = factor2 >> 32;
1120
1121         lo1 = factor1 & DT_MASK_LO;
1122         lo2 = factor2 & DT_MASK_LO;
1123
1124         product[0] = lo1 * lo2;
1125         product[1] = hi1 * hi2;
1126
1127         tmp[0] = hi1 * lo2;
1128         tmp[1] = 0;
1129         dtrace_shift_128(tmp, 32);
1130         dtrace_add_128(product, tmp, product);
1131
1132         tmp[0] = hi2 * lo1;
1133         tmp[1] = 0;
1134         dtrace_shift_128(tmp, 32);
1135         dtrace_add_128(product, tmp, product);
1136 }
1137
1138 /*
1139  * This privilege check should be used by actions and subroutines to
1140  * verify that the user credentials of the process that enabled the
1141  * invoking ECB match the target credentials
1142  */
1143 static int
1144 dtrace_priv_proc_common_user(dtrace_state_t *state)
1145 {
1146         cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1147
1148         /*
1149          * We should always have a non-NULL state cred here, since if cred
1150          * is null (anonymous tracing), we fast-path bypass this routine.
1151          */
1152         ASSERT(s_cr != NULL);
1153
1154         if ((cr = CRED()) != NULL &&
1155             s_cr->cr_uid == cr->cr_uid &&
1156             s_cr->cr_uid == cr->cr_ruid &&
1157             s_cr->cr_uid == cr->cr_suid &&
1158             s_cr->cr_gid == cr->cr_gid &&
1159             s_cr->cr_gid == cr->cr_rgid &&
1160             s_cr->cr_gid == cr->cr_sgid)
1161                 return (1);
1162
1163         return (0);
1164 }
1165
1166 /*
1167  * This privilege check should be used by actions and subroutines to
1168  * verify that the zone of the process that enabled the invoking ECB
1169  * matches the target credentials
1170  */
1171 static int
1172 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1173 {
1174 #if defined(sun)
1175         cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1176
1177         /*
1178          * We should always have a non-NULL state cred here, since if cred
1179          * is null (anonymous tracing), we fast-path bypass this routine.
1180          */
1181         ASSERT(s_cr != NULL);
1182
1183         if ((cr = CRED()) != NULL &&
1184             s_cr->cr_zone == cr->cr_zone)
1185                 return (1);
1186
1187         return (0);
1188 #else
1189         return (1);
1190 #endif
1191 }
1192
1193 /*
1194  * This privilege check should be used by actions and subroutines to
1195  * verify that the process has not setuid or changed credentials.
1196  */
1197 static int
1198 dtrace_priv_proc_common_nocd(void)
1199 {
1200         proc_t *proc;
1201
1202         if ((proc = ttoproc(curthread)) != NULL &&
1203             !(proc->p_flag & SNOCD))
1204                 return (1);
1205
1206         return (0);
1207 }
1208
1209 static int
1210 dtrace_priv_proc_destructive(dtrace_state_t *state)
1211 {
1212         int action = state->dts_cred.dcr_action;
1213
1214         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1215             dtrace_priv_proc_common_zone(state) == 0)
1216                 goto bad;
1217
1218         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1219             dtrace_priv_proc_common_user(state) == 0)
1220                 goto bad;
1221
1222         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1223             dtrace_priv_proc_common_nocd() == 0)
1224                 goto bad;
1225
1226         return (1);
1227
1228 bad:
1229         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1230
1231         return (0);
1232 }
1233
1234 static int
1235 dtrace_priv_proc_control(dtrace_state_t *state)
1236 {
1237         if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1238                 return (1);
1239
1240         if (dtrace_priv_proc_common_zone(state) &&
1241             dtrace_priv_proc_common_user(state) &&
1242             dtrace_priv_proc_common_nocd())
1243                 return (1);
1244
1245         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1246
1247         return (0);
1248 }
1249
1250 static int
1251 dtrace_priv_proc(dtrace_state_t *state)
1252 {
1253         if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1254                 return (1);
1255
1256         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1257
1258         return (0);
1259 }
1260
1261 static int
1262 dtrace_priv_kernel(dtrace_state_t *state)
1263 {
1264         if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1265                 return (1);
1266
1267         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1268
1269         return (0);
1270 }
1271
1272 static int
1273 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1274 {
1275         if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1276                 return (1);
1277
1278         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1279
1280         return (0);
1281 }
1282
1283 /*
1284  * Note:  not called from probe context.  This function is called
1285  * asynchronously (and at a regular interval) from outside of probe context to
1286  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1287  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1288  */
1289 void
1290 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1291 {
1292         dtrace_dynvar_t *dirty;
1293         dtrace_dstate_percpu_t *dcpu;
1294         int i, work = 0;
1295
1296         for (i = 0; i < NCPU; i++) {
1297                 dcpu = &dstate->dtds_percpu[i];
1298
1299                 ASSERT(dcpu->dtdsc_rinsing == NULL);
1300
1301                 /*
1302                  * If the dirty list is NULL, there is no dirty work to do.
1303                  */
1304                 if (dcpu->dtdsc_dirty == NULL)
1305                         continue;
1306
1307                 /*
1308                  * If the clean list is non-NULL, then we're not going to do
1309                  * any work for this CPU -- it means that there has not been
1310                  * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1311                  * since the last time we cleaned house.
1312                  */
1313                 if (dcpu->dtdsc_clean != NULL)
1314                         continue;
1315
1316                 work = 1;
1317
1318                 /*
1319                  * Atomically move the dirty list aside.
1320                  */
1321                 do {
1322                         dirty = dcpu->dtdsc_dirty;
1323
1324                         /*
1325                          * Before we zap the dirty list, set the rinsing list.
1326                          * (This allows for a potential assertion in
1327                          * dtrace_dynvar():  if a free dynamic variable appears
1328                          * on a hash chain, either the dirty list or the
1329                          * rinsing list for some CPU must be non-NULL.)
1330                          */
1331                         dcpu->dtdsc_rinsing = dirty;
1332                         dtrace_membar_producer();
1333                 } while (dtrace_casptr(&dcpu->dtdsc_dirty,
1334                     dirty, NULL) != dirty);
1335         }
1336
1337         if (!work) {
1338                 /*
1339                  * We have no work to do; we can simply return.
1340                  */
1341                 return;
1342         }
1343
1344         dtrace_sync();
1345
1346         for (i = 0; i < NCPU; i++) {
1347                 dcpu = &dstate->dtds_percpu[i];
1348
1349                 if (dcpu->dtdsc_rinsing == NULL)
1350                         continue;
1351
1352                 /*
1353                  * We are now guaranteed that no hash chain contains a pointer
1354                  * into this dirty list; we can make it clean.
1355                  */
1356                 ASSERT(dcpu->dtdsc_clean == NULL);
1357                 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1358                 dcpu->dtdsc_rinsing = NULL;
1359         }
1360
1361         /*
1362          * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1363          * sure that all CPUs have seen all of the dtdsc_clean pointers.
1364          * This prevents a race whereby a CPU incorrectly decides that
1365          * the state should be something other than DTRACE_DSTATE_CLEAN
1366          * after dtrace_dynvar_clean() has completed.
1367          */
1368         dtrace_sync();
1369
1370         dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1371 }
1372
1373 /*
1374  * Depending on the value of the op parameter, this function looks-up,
1375  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1376  * allocation is requested, this function will return a pointer to a
1377  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1378  * variable can be allocated.  If NULL is returned, the appropriate counter
1379  * will be incremented.
1380  */
1381 dtrace_dynvar_t *
1382 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1383     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1384     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1385 {
1386         uint64_t hashval = DTRACE_DYNHASH_VALID;
1387         dtrace_dynhash_t *hash = dstate->dtds_hash;
1388         dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1389         processorid_t me = curcpu, cpu = me;
1390         dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1391         size_t bucket, ksize;
1392         size_t chunksize = dstate->dtds_chunksize;
1393         uintptr_t kdata, lock, nstate;
1394         uint_t i;
1395
1396         ASSERT(nkeys != 0);
1397
1398         /*
1399          * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1400          * algorithm.  For the by-value portions, we perform the algorithm in
1401          * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1402          * bit, and seems to have only a minute effect on distribution.  For
1403          * the by-reference data, we perform "One-at-a-time" iterating (safely)
1404          * over each referenced byte.  It's painful to do this, but it's much
1405          * better than pathological hash distribution.  The efficacy of the
1406          * hashing algorithm (and a comparison with other algorithms) may be
1407          * found by running the ::dtrace_dynstat MDB dcmd.
1408          */
1409         for (i = 0; i < nkeys; i++) {
1410                 if (key[i].dttk_size == 0) {
1411                         uint64_t val = key[i].dttk_value;
1412
1413                         hashval += (val >> 48) & 0xffff;
1414                         hashval += (hashval << 10);
1415                         hashval ^= (hashval >> 6);
1416
1417                         hashval += (val >> 32) & 0xffff;
1418                         hashval += (hashval << 10);
1419                         hashval ^= (hashval >> 6);
1420
1421                         hashval += (val >> 16) & 0xffff;
1422                         hashval += (hashval << 10);
1423                         hashval ^= (hashval >> 6);
1424
1425                         hashval += val & 0xffff;
1426                         hashval += (hashval << 10);
1427                         hashval ^= (hashval >> 6);
1428                 } else {
1429                         /*
1430                          * This is incredibly painful, but it beats the hell
1431                          * out of the alternative.
1432                          */
1433                         uint64_t j, size = key[i].dttk_size;
1434                         uintptr_t base = (uintptr_t)key[i].dttk_value;
1435
1436                         if (!dtrace_canload(base, size, mstate, vstate))
1437                                 break;
1438
1439                         for (j = 0; j < size; j++) {
1440                                 hashval += dtrace_load8(base + j);
1441                                 hashval += (hashval << 10);
1442                                 hashval ^= (hashval >> 6);
1443                         }
1444                 }
1445         }
1446
1447         if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1448                 return (NULL);
1449
1450         hashval += (hashval << 3);
1451         hashval ^= (hashval >> 11);
1452         hashval += (hashval << 15);
1453
1454         /*
1455          * There is a remote chance (ideally, 1 in 2^31) that our hashval
1456          * comes out to be one of our two sentinel hash values.  If this
1457          * actually happens, we set the hashval to be a value known to be a
1458          * non-sentinel value.
1459          */
1460         if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1461                 hashval = DTRACE_DYNHASH_VALID;
1462
1463         /*
1464          * Yes, it's painful to do a divide here.  If the cycle count becomes
1465          * important here, tricks can be pulled to reduce it.  (However, it's
1466          * critical that hash collisions be kept to an absolute minimum;
1467          * they're much more painful than a divide.)  It's better to have a
1468          * solution that generates few collisions and still keeps things
1469          * relatively simple.
1470          */
1471         bucket = hashval % dstate->dtds_hashsize;
1472
1473         if (op == DTRACE_DYNVAR_DEALLOC) {
1474                 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1475
1476                 for (;;) {
1477                         while ((lock = *lockp) & 1)
1478                                 continue;
1479
1480                         if (dtrace_casptr((volatile void *)lockp,
1481                             (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1482                                 break;
1483                 }
1484
1485                 dtrace_membar_producer();
1486         }
1487
1488 top:
1489         prev = NULL;
1490         lock = hash[bucket].dtdh_lock;
1491
1492         dtrace_membar_consumer();
1493
1494         start = hash[bucket].dtdh_chain;
1495         ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1496             start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1497             op != DTRACE_DYNVAR_DEALLOC));
1498
1499         for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1500                 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1501                 dtrace_key_t *dkey = &dtuple->dtt_key[0];
1502
1503                 if (dvar->dtdv_hashval != hashval) {
1504                         if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1505                                 /*
1506                                  * We've reached the sink, and therefore the
1507                                  * end of the hash chain; we can kick out of
1508                                  * the loop knowing that we have seen a valid
1509                                  * snapshot of state.
1510                                  */
1511                                 ASSERT(dvar->dtdv_next == NULL);
1512                                 ASSERT(dvar == &dtrace_dynhash_sink);
1513                                 break;
1514                         }
1515
1516                         if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1517                                 /*
1518                                  * We've gone off the rails:  somewhere along
1519                                  * the line, one of the members of this hash
1520                                  * chain was deleted.  Note that we could also
1521                                  * detect this by simply letting this loop run
1522                                  * to completion, as we would eventually hit
1523                                  * the end of the dirty list.  However, we
1524                                  * want to avoid running the length of the
1525                                  * dirty list unnecessarily (it might be quite
1526                                  * long), so we catch this as early as
1527                                  * possible by detecting the hash marker.  In
1528                                  * this case, we simply set dvar to NULL and
1529                                  * break; the conditional after the loop will
1530                                  * send us back to top.
1531                                  */
1532                                 dvar = NULL;
1533                                 break;
1534                         }
1535
1536                         goto next;
1537                 }
1538
1539                 if (dtuple->dtt_nkeys != nkeys)
1540                         goto next;
1541
1542                 for (i = 0; i < nkeys; i++, dkey++) {
1543                         if (dkey->dttk_size != key[i].dttk_size)
1544                                 goto next; /* size or type mismatch */
1545
1546                         if (dkey->dttk_size != 0) {
1547                                 if (dtrace_bcmp(
1548                                     (void *)(uintptr_t)key[i].dttk_value,
1549                                     (void *)(uintptr_t)dkey->dttk_value,
1550                                     dkey->dttk_size))
1551                                         goto next;
1552                         } else {
1553                                 if (dkey->dttk_value != key[i].dttk_value)
1554                                         goto next;
1555                         }
1556                 }
1557
1558                 if (op != DTRACE_DYNVAR_DEALLOC)
1559                         return (dvar);
1560
1561                 ASSERT(dvar->dtdv_next == NULL ||
1562                     dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1563
1564                 if (prev != NULL) {
1565                         ASSERT(hash[bucket].dtdh_chain != dvar);
1566                         ASSERT(start != dvar);
1567                         ASSERT(prev->dtdv_next == dvar);
1568                         prev->dtdv_next = dvar->dtdv_next;
1569                 } else {
1570                         if (dtrace_casptr(&hash[bucket].dtdh_chain,
1571                             start, dvar->dtdv_next) != start) {
1572                                 /*
1573                                  * We have failed to atomically swing the
1574                                  * hash table head pointer, presumably because
1575                                  * of a conflicting allocation on another CPU.
1576                                  * We need to reread the hash chain and try
1577                                  * again.
1578                                  */
1579                                 goto top;
1580                         }
1581                 }
1582
1583                 dtrace_membar_producer();
1584
1585                 /*
1586                  * Now set the hash value to indicate that it's free.
1587                  */
1588                 ASSERT(hash[bucket].dtdh_chain != dvar);
1589                 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1590
1591                 dtrace_membar_producer();
1592
1593                 /*
1594                  * Set the next pointer to point at the dirty list, and
1595                  * atomically swing the dirty pointer to the newly freed dvar.
1596                  */
1597                 do {
1598                         next = dcpu->dtdsc_dirty;
1599                         dvar->dtdv_next = next;
1600                 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1601
1602                 /*
1603                  * Finally, unlock this hash bucket.
1604                  */
1605                 ASSERT(hash[bucket].dtdh_lock == lock);
1606                 ASSERT(lock & 1);
1607                 hash[bucket].dtdh_lock++;
1608
1609                 return (NULL);
1610 next:
1611                 prev = dvar;
1612                 continue;
1613         }
1614
1615         if (dvar == NULL) {
1616                 /*
1617                  * If dvar is NULL, it is because we went off the rails:
1618                  * one of the elements that we traversed in the hash chain
1619                  * was deleted while we were traversing it.  In this case,
1620                  * we assert that we aren't doing a dealloc (deallocs lock
1621                  * the hash bucket to prevent themselves from racing with
1622                  * one another), and retry the hash chain traversal.
1623                  */
1624                 ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1625                 goto top;
1626         }
1627
1628         if (op != DTRACE_DYNVAR_ALLOC) {
1629                 /*
1630                  * If we are not to allocate a new variable, we want to
1631                  * return NULL now.  Before we return, check that the value
1632                  * of the lock word hasn't changed.  If it has, we may have
1633                  * seen an inconsistent snapshot.
1634                  */
1635                 if (op == DTRACE_DYNVAR_NOALLOC) {
1636                         if (hash[bucket].dtdh_lock != lock)
1637                                 goto top;
1638                 } else {
1639                         ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1640                         ASSERT(hash[bucket].dtdh_lock == lock);
1641                         ASSERT(lock & 1);
1642                         hash[bucket].dtdh_lock++;
1643                 }
1644
1645                 return (NULL);
1646         }
1647
1648         /*
1649          * We need to allocate a new dynamic variable.  The size we need is the
1650          * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1651          * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1652          * the size of any referred-to data (dsize).  We then round the final
1653          * size up to the chunksize for allocation.
1654          */
1655         for (ksize = 0, i = 0; i < nkeys; i++)
1656                 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1657
1658         /*
1659          * This should be pretty much impossible, but could happen if, say,
1660          * strange DIF specified the tuple.  Ideally, this should be an
1661          * assertion and not an error condition -- but that requires that the
1662          * chunksize calculation in dtrace_difo_chunksize() be absolutely
1663          * bullet-proof.  (That is, it must not be able to be fooled by
1664          * malicious DIF.)  Given the lack of backwards branches in DIF,
1665          * solving this would presumably not amount to solving the Halting
1666          * Problem -- but it still seems awfully hard.
1667          */
1668         if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1669             ksize + dsize > chunksize) {
1670                 dcpu->dtdsc_drops++;
1671                 return (NULL);
1672         }
1673
1674         nstate = DTRACE_DSTATE_EMPTY;
1675
1676         do {
1677 retry:
1678                 free = dcpu->dtdsc_free;
1679
1680                 if (free == NULL) {
1681                         dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1682                         void *rval;
1683
1684                         if (clean == NULL) {
1685                                 /*
1686                                  * We're out of dynamic variable space on
1687                                  * this CPU.  Unless we have tried all CPUs,
1688                                  * we'll try to allocate from a different
1689                                  * CPU.
1690                                  */
1691                                 switch (dstate->dtds_state) {
1692                                 case DTRACE_DSTATE_CLEAN: {
1693                                         void *sp = &dstate->dtds_state;
1694
1695                                         if (++cpu >= NCPU)
1696                                                 cpu = 0;
1697
1698                                         if (dcpu->dtdsc_dirty != NULL &&
1699                                             nstate == DTRACE_DSTATE_EMPTY)
1700                                                 nstate = DTRACE_DSTATE_DIRTY;
1701
1702                                         if (dcpu->dtdsc_rinsing != NULL)
1703                                                 nstate = DTRACE_DSTATE_RINSING;
1704
1705                                         dcpu = &dstate->dtds_percpu[cpu];
1706
1707                                         if (cpu != me)
1708                                                 goto retry;
1709
1710                                         (void) dtrace_cas32(sp,
1711                                             DTRACE_DSTATE_CLEAN, nstate);
1712
1713                                         /*
1714                                          * To increment the correct bean
1715                                          * counter, take another lap.
1716                                          */
1717                                         goto retry;
1718                                 }
1719
1720                                 case DTRACE_DSTATE_DIRTY:
1721                                         dcpu->dtdsc_dirty_drops++;
1722                                         break;
1723
1724                                 case DTRACE_DSTATE_RINSING:
1725                                         dcpu->dtdsc_rinsing_drops++;
1726                                         break;
1727
1728                                 case DTRACE_DSTATE_EMPTY:
1729                                         dcpu->dtdsc_drops++;
1730                                         break;
1731                                 }
1732
1733                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1734                                 return (NULL);
1735                         }
1736
1737                         /*
1738                          * The clean list appears to be non-empty.  We want to
1739                          * move the clean list to the free list; we start by
1740                          * moving the clean pointer aside.
1741                          */
1742                         if (dtrace_casptr(&dcpu->dtdsc_clean,
1743                             clean, NULL) != clean) {
1744                                 /*
1745                                  * We are in one of two situations:
1746                                  *
1747                                  *  (a) The clean list was switched to the
1748                                  *      free list by another CPU.
1749                                  *
1750                                  *  (b) The clean list was added to by the
1751                                  *      cleansing cyclic.
1752                                  *
1753                                  * In either of these situations, we can
1754                                  * just reattempt the free list allocation.
1755                                  */
1756                                 goto retry;
1757                         }
1758
1759                         ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1760
1761                         /*
1762                          * Now we'll move the clean list to the free list.
1763                          * It's impossible for this to fail:  the only way
1764                          * the free list can be updated is through this
1765                          * code path, and only one CPU can own the clean list.
1766                          * Thus, it would only be possible for this to fail if
1767                          * this code were racing with dtrace_dynvar_clean().
1768                          * (That is, if dtrace_dynvar_clean() updated the clean
1769                          * list, and we ended up racing to update the free
1770                          * list.)  This race is prevented by the dtrace_sync()
1771                          * in dtrace_dynvar_clean() -- which flushes the
1772                          * owners of the clean lists out before resetting
1773                          * the clean lists.
1774                          */
1775                         rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1776                         ASSERT(rval == NULL);
1777                         goto retry;
1778                 }
1779
1780                 dvar = free;
1781                 new_free = dvar->dtdv_next;
1782         } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1783
1784         /*
1785          * We have now allocated a new chunk.  We copy the tuple keys into the
1786          * tuple array and copy any referenced key data into the data space
1787          * following the tuple array.  As we do this, we relocate dttk_value
1788          * in the final tuple to point to the key data address in the chunk.
1789          */
1790         kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1791         dvar->dtdv_data = (void *)(kdata + ksize);
1792         dvar->dtdv_tuple.dtt_nkeys = nkeys;
1793
1794         for (i = 0; i < nkeys; i++) {
1795                 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1796                 size_t kesize = key[i].dttk_size;
1797
1798                 if (kesize != 0) {
1799                         dtrace_bcopy(
1800                             (const void *)(uintptr_t)key[i].dttk_value,
1801                             (void *)kdata, kesize);
1802                         dkey->dttk_value = kdata;
1803                         kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1804                 } else {
1805                         dkey->dttk_value = key[i].dttk_value;
1806                 }
1807
1808                 dkey->dttk_size = kesize;
1809         }
1810
1811         ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1812         dvar->dtdv_hashval = hashval;
1813         dvar->dtdv_next = start;
1814
1815         if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1816                 return (dvar);
1817
1818         /*
1819          * The cas has failed.  Either another CPU is adding an element to
1820          * this hash chain, or another CPU is deleting an element from this
1821          * hash chain.  The simplest way to deal with both of these cases
1822          * (though not necessarily the most efficient) is to free our
1823          * allocated block and tail-call ourselves.  Note that the free is
1824          * to the dirty list and _not_ to the free list.  This is to prevent
1825          * races with allocators, above.
1826          */
1827         dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1828
1829         dtrace_membar_producer();
1830
1831         do {
1832                 free = dcpu->dtdsc_dirty;
1833                 dvar->dtdv_next = free;
1834         } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1835
1836         return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1837 }
1838
1839 /*ARGSUSED*/
1840 static void
1841 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1842 {
1843         if ((int64_t)nval < (int64_t)*oval)
1844                 *oval = nval;
1845 }
1846
1847 /*ARGSUSED*/
1848 static void
1849 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1850 {
1851         if ((int64_t)nval > (int64_t)*oval)
1852                 *oval = nval;
1853 }
1854
1855 static void
1856 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1857 {
1858         int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1859         int64_t val = (int64_t)nval;
1860
1861         if (val < 0) {
1862                 for (i = 0; i < zero; i++) {
1863                         if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1864                                 quanta[i] += incr;
1865                                 return;
1866                         }
1867                 }
1868         } else {
1869                 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1870                         if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1871                                 quanta[i - 1] += incr;
1872                                 return;
1873                         }
1874                 }
1875
1876                 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1877                 return;
1878         }
1879
1880         ASSERT(0);
1881 }
1882
1883 static void
1884 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1885 {
1886         uint64_t arg = *lquanta++;
1887         int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1888         uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1889         uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1890         int32_t val = (int32_t)nval, level;
1891
1892         ASSERT(step != 0);
1893         ASSERT(levels != 0);
1894
1895         if (val < base) {
1896                 /*
1897                  * This is an underflow.
1898                  */
1899                 lquanta[0] += incr;
1900                 return;
1901         }
1902
1903         level = (val - base) / step;
1904
1905         if (level < levels) {
1906                 lquanta[level + 1] += incr;
1907                 return;
1908         }
1909
1910         /*
1911          * This is an overflow.
1912          */
1913         lquanta[levels + 1] += incr;
1914 }
1915
1916 static int
1917 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
1918     uint16_t high, uint16_t nsteps, int64_t value)
1919 {
1920         int64_t this = 1, last, next;
1921         int base = 1, order;
1922
1923         ASSERT(factor <= nsteps);
1924         ASSERT(nsteps % factor == 0);
1925
1926         for (order = 0; order < low; order++)
1927                 this *= factor;
1928
1929         /*
1930          * If our value is less than our factor taken to the power of the
1931          * low order of magnitude, it goes into the zeroth bucket.
1932          */
1933         if (value < (last = this))
1934                 return (0);
1935
1936         for (this *= factor; order <= high; order++) {
1937                 int nbuckets = this > nsteps ? nsteps : this;
1938
1939                 if ((next = this * factor) < this) {
1940                         /*
1941                          * We should not generally get log/linear quantizations
1942                          * with a high magnitude that allows 64-bits to
1943                          * overflow, but we nonetheless protect against this
1944                          * by explicitly checking for overflow, and clamping
1945                          * our value accordingly.
1946                          */
1947                         value = this - 1;
1948                 }
1949
1950                 if (value < this) {
1951                         /*
1952                          * If our value lies within this order of magnitude,
1953                          * determine its position by taking the offset within
1954                          * the order of magnitude, dividing by the bucket
1955                          * width, and adding to our (accumulated) base.
1956                          */
1957                         return (base + (value - last) / (this / nbuckets));
1958                 }
1959
1960                 base += nbuckets - (nbuckets / factor);
1961                 last = this;
1962                 this = next;
1963         }
1964
1965         /*
1966          * Our value is greater than or equal to our factor taken to the
1967          * power of one plus the high magnitude -- return the top bucket.
1968          */
1969         return (base);
1970 }
1971
1972 static void
1973 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
1974 {
1975         uint64_t arg = *llquanta++;
1976         uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
1977         uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
1978         uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
1979         uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
1980
1981         llquanta[dtrace_aggregate_llquantize_bucket(factor,
1982             low, high, nsteps, nval)] += incr;
1983 }
1984
1985 /*ARGSUSED*/
1986 static void
1987 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1988 {
1989         data[0]++;
1990         data[1] += nval;
1991 }
1992
1993 /*ARGSUSED*/
1994 static void
1995 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
1996 {
1997         int64_t snval = (int64_t)nval;
1998         uint64_t tmp[2];
1999
2000         data[0]++;
2001         data[1] += nval;
2002
2003         /*
2004          * What we want to say here is:
2005          *
2006          * data[2] += nval * nval;
2007          *
2008          * But given that nval is 64-bit, we could easily overflow, so
2009          * we do this as 128-bit arithmetic.
2010          */
2011         if (snval < 0)
2012                 snval = -snval;
2013
2014         dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2015         dtrace_add_128(data + 2, tmp, data + 2);
2016 }
2017
2018 /*ARGSUSED*/
2019 static void
2020 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2021 {
2022         *oval = *oval + 1;
2023 }
2024
2025 /*ARGSUSED*/
2026 static void
2027 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2028 {
2029         *oval += nval;
2030 }
2031
2032 /*
2033  * Aggregate given the tuple in the principal data buffer, and the aggregating
2034  * action denoted by the specified dtrace_aggregation_t.  The aggregation
2035  * buffer is specified as the buf parameter.  This routine does not return
2036  * failure; if there is no space in the aggregation buffer, the data will be
2037  * dropped, and a corresponding counter incremented.
2038  */
2039 static void
2040 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2041     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2042 {
2043         dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2044         uint32_t i, ndx, size, fsize;
2045         uint32_t align = sizeof (uint64_t) - 1;
2046         dtrace_aggbuffer_t *agb;
2047         dtrace_aggkey_t *key;
2048         uint32_t hashval = 0, limit, isstr;
2049         caddr_t tomax, data, kdata;
2050         dtrace_actkind_t action;
2051         dtrace_action_t *act;
2052         uintptr_t offs;
2053
2054         if (buf == NULL)
2055                 return;
2056
2057         if (!agg->dtag_hasarg) {
2058                 /*
2059                  * Currently, only quantize() and lquantize() take additional
2060                  * arguments, and they have the same semantics:  an increment
2061                  * value that defaults to 1 when not present.  If additional
2062                  * aggregating actions take arguments, the setting of the
2063                  * default argument value will presumably have to become more
2064                  * sophisticated...
2065                  */
2066                 arg = 1;
2067         }
2068
2069         action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2070         size = rec->dtrd_offset - agg->dtag_base;
2071         fsize = size + rec->dtrd_size;
2072
2073         ASSERT(dbuf->dtb_tomax != NULL);
2074         data = dbuf->dtb_tomax + offset + agg->dtag_base;
2075
2076         if ((tomax = buf->dtb_tomax) == NULL) {
2077                 dtrace_buffer_drop(buf);
2078                 return;
2079         }
2080
2081         /*
2082          * The metastructure is always at the bottom of the buffer.
2083          */
2084         agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2085             sizeof (dtrace_aggbuffer_t));
2086
2087         if (buf->dtb_offset == 0) {
2088                 /*
2089                  * We just kludge up approximately 1/8th of the size to be
2090                  * buckets.  If this guess ends up being routinely
2091                  * off-the-mark, we may need to dynamically readjust this
2092                  * based on past performance.
2093                  */
2094                 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2095
2096                 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2097                     (uintptr_t)tomax || hashsize == 0) {
2098                         /*
2099                          * We've been given a ludicrously small buffer;
2100                          * increment our drop count and leave.
2101                          */
2102                         dtrace_buffer_drop(buf);
2103                         return;
2104                 }
2105
2106                 /*
2107                  * And now, a pathetic attempt to try to get a an odd (or
2108                  * perchance, a prime) hash size for better hash distribution.
2109                  */
2110                 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2111                         hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2112
2113                 agb->dtagb_hashsize = hashsize;
2114                 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2115                     agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2116                 agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2117
2118                 for (i = 0; i < agb->dtagb_hashsize; i++)
2119                         agb->dtagb_hash[i] = NULL;
2120         }
2121
2122         ASSERT(agg->dtag_first != NULL);
2123         ASSERT(agg->dtag_first->dta_intuple);
2124
2125         /*
2126          * Calculate the hash value based on the key.  Note that we _don't_
2127          * include the aggid in the hashing (but we will store it as part of
2128          * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2129          * algorithm: a simple, quick algorithm that has no known funnels, and
2130          * gets good distribution in practice.  The efficacy of the hashing
2131          * algorithm (and a comparison with other algorithms) may be found by
2132          * running the ::dtrace_aggstat MDB dcmd.
2133          */
2134         for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2135                 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2136                 limit = i + act->dta_rec.dtrd_size;
2137                 ASSERT(limit <= size);
2138                 isstr = DTRACEACT_ISSTRING(act);
2139
2140                 for (; i < limit; i++) {
2141                         hashval += data[i];
2142                         hashval += (hashval << 10);
2143                         hashval ^= (hashval >> 6);
2144
2145                         if (isstr && data[i] == '\0')
2146                                 break;
2147                 }
2148         }
2149
2150         hashval += (hashval << 3);
2151         hashval ^= (hashval >> 11);
2152         hashval += (hashval << 15);
2153
2154         /*
2155          * Yes, the divide here is expensive -- but it's generally the least
2156          * of the performance issues given the amount of data that we iterate
2157          * over to compute hash values, compare data, etc.
2158          */
2159         ndx = hashval % agb->dtagb_hashsize;
2160
2161         for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2162                 ASSERT((caddr_t)key >= tomax);
2163                 ASSERT((caddr_t)key < tomax + buf->dtb_size);
2164
2165                 if (hashval != key->dtak_hashval || key->dtak_size != size)
2166                         continue;
2167
2168                 kdata = key->dtak_data;
2169                 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2170
2171                 for (act = agg->dtag_first; act->dta_intuple;
2172                     act = act->dta_next) {
2173                         i = act->dta_rec.dtrd_offset - agg->dtag_base;
2174                         limit = i + act->dta_rec.dtrd_size;
2175                         ASSERT(limit <= size);
2176                         isstr = DTRACEACT_ISSTRING(act);
2177
2178                         for (; i < limit; i++) {
2179                                 if (kdata[i] != data[i])
2180                                         goto next;
2181
2182                                 if (isstr && data[i] == '\0')
2183                                         break;
2184                         }
2185                 }
2186
2187                 if (action != key->dtak_action) {
2188                         /*
2189                          * We are aggregating on the same value in the same
2190                          * aggregation with two different aggregating actions.
2191                          * (This should have been picked up in the compiler,
2192                          * so we may be dealing with errant or devious DIF.)
2193                          * This is an error condition; we indicate as much,
2194                          * and return.
2195                          */
2196                         DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2197                         return;
2198                 }
2199
2200                 /*
2201                  * This is a hit:  we need to apply the aggregator to
2202                  * the value at this key.
2203                  */
2204                 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2205                 return;
2206 next:
2207                 continue;
2208         }
2209
2210         /*
2211          * We didn't find it.  We need to allocate some zero-filled space,
2212          * link it into the hash table appropriately, and apply the aggregator
2213          * to the (zero-filled) value.
2214          */
2215         offs = buf->dtb_offset;
2216         while (offs & (align - 1))
2217                 offs += sizeof (uint32_t);
2218
2219         /*
2220          * If we don't have enough room to both allocate a new key _and_
2221          * its associated data, increment the drop count and return.
2222          */
2223         if ((uintptr_t)tomax + offs + fsize >
2224             agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2225                 dtrace_buffer_drop(buf);
2226                 return;
2227         }
2228
2229         /*CONSTCOND*/
2230         ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2231         key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2232         agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2233
2234         key->dtak_data = kdata = tomax + offs;
2235         buf->dtb_offset = offs + fsize;
2236
2237         /*
2238          * Now copy the data across.
2239          */
2240         *((dtrace_aggid_t *)kdata) = agg->dtag_id;
2241
2242         for (i = sizeof (dtrace_aggid_t); i < size; i++)
2243                 kdata[i] = data[i];
2244
2245         /*
2246          * Because strings are not zeroed out by default, we need to iterate
2247          * looking for actions that store strings, and we need to explicitly
2248          * pad these strings out with zeroes.
2249          */
2250         for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2251                 int nul;
2252
2253                 if (!DTRACEACT_ISSTRING(act))
2254                         continue;
2255
2256                 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2257                 limit = i + act->dta_rec.dtrd_size;
2258                 ASSERT(limit <= size);
2259
2260                 for (nul = 0; i < limit; i++) {
2261                         if (nul) {
2262                                 kdata[i] = '\0';
2263                                 continue;
2264                         }
2265
2266                         if (data[i] != '\0')
2267                                 continue;
2268
2269                         nul = 1;
2270                 }
2271         }
2272
2273         for (i = size; i < fsize; i++)
2274                 kdata[i] = 0;
2275
2276         key->dtak_hashval = hashval;
2277         key->dtak_size = size;
2278         key->dtak_action = action;
2279         key->dtak_next = agb->dtagb_hash[ndx];
2280         agb->dtagb_hash[ndx] = key;
2281
2282         /*
2283          * Finally, apply the aggregator.
2284          */
2285         *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2286         agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2287 }
2288
2289 /*
2290  * Given consumer state, this routine finds a speculation in the INACTIVE
2291  * state and transitions it into the ACTIVE state.  If there is no speculation
2292  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2293  * incremented -- it is up to the caller to take appropriate action.
2294  */
2295 static int
2296 dtrace_speculation(dtrace_state_t *state)
2297 {
2298         int i = 0;
2299         dtrace_speculation_state_t current;
2300         uint32_t *stat = &state->dts_speculations_unavail, count;
2301
2302         while (i < state->dts_nspeculations) {
2303                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2304
2305                 current = spec->dtsp_state;
2306
2307                 if (current != DTRACESPEC_INACTIVE) {
2308                         if (current == DTRACESPEC_COMMITTINGMANY ||
2309                             current == DTRACESPEC_COMMITTING ||
2310                             current == DTRACESPEC_DISCARDING)
2311                                 stat = &state->dts_speculations_busy;
2312                         i++;
2313                         continue;
2314                 }
2315
2316                 if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2317                     current, DTRACESPEC_ACTIVE) == current)
2318                         return (i + 1);
2319         }
2320
2321         /*
2322          * We couldn't find a speculation.  If we found as much as a single
2323          * busy speculation buffer, we'll attribute this failure as "busy"
2324          * instead of "unavail".
2325          */
2326         do {
2327                 count = *stat;
2328         } while (dtrace_cas32(stat, count, count + 1) != count);
2329
2330         return (0);
2331 }
2332
2333 /*
2334  * This routine commits an active speculation.  If the specified speculation
2335  * is not in a valid state to perform a commit(), this routine will silently do
2336  * nothing.  The state of the specified speculation is transitioned according
2337  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2338  */
2339 static void
2340 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2341     dtrace_specid_t which)
2342 {
2343         dtrace_speculation_t *spec;
2344         dtrace_buffer_t *src, *dest;
2345         uintptr_t daddr, saddr, dlimit;
2346         dtrace_speculation_state_t current, new = 0;
2347         intptr_t offs;
2348
2349         if (which == 0)
2350                 return;
2351
2352         if (which > state->dts_nspeculations) {
2353                 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2354                 return;
2355         }
2356
2357         spec = &state->dts_speculations[which - 1];
2358         src = &spec->dtsp_buffer[cpu];
2359         dest = &state->dts_buffer[cpu];
2360
2361         do {
2362                 current = spec->dtsp_state;
2363
2364                 if (current == DTRACESPEC_COMMITTINGMANY)
2365                         break;
2366
2367                 switch (current) {
2368                 case DTRACESPEC_INACTIVE:
2369                 case DTRACESPEC_DISCARDING:
2370                         return;
2371
2372                 case DTRACESPEC_COMMITTING:
2373                         /*
2374                          * This is only possible if we are (a) commit()'ing
2375                          * without having done a prior speculate() on this CPU
2376                          * and (b) racing with another commit() on a different
2377                          * CPU.  There's nothing to do -- we just assert that
2378                          * our offset is 0.
2379                          */
2380                         ASSERT(src->dtb_offset == 0);
2381                         return;
2382
2383                 case DTRACESPEC_ACTIVE:
2384                         new = DTRACESPEC_COMMITTING;
2385                         break;
2386
2387                 case DTRACESPEC_ACTIVEONE:
2388                         /*
2389                          * This speculation is active on one CPU.  If our
2390                          * buffer offset is non-zero, we know that the one CPU
2391                          * must be us.  Otherwise, we are committing on a
2392                          * different CPU from the speculate(), and we must
2393                          * rely on being asynchronously cleaned.
2394                          */
2395                         if (src->dtb_offset != 0) {
2396                                 new = DTRACESPEC_COMMITTING;
2397                                 break;
2398                         }
2399                         /*FALLTHROUGH*/
2400
2401                 case DTRACESPEC_ACTIVEMANY:
2402                         new = DTRACESPEC_COMMITTINGMANY;
2403                         break;
2404
2405                 default:
2406                         ASSERT(0);
2407                 }
2408         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2409             current, new) != current);
2410
2411         /*
2412          * We have set the state to indicate that we are committing this
2413          * speculation.  Now reserve the necessary space in the destination
2414          * buffer.
2415          */
2416         if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2417             sizeof (uint64_t), state, NULL)) < 0) {
2418                 dtrace_buffer_drop(dest);
2419                 goto out;
2420         }
2421
2422         /*
2423          * We have the space; copy the buffer across.  (Note that this is a
2424          * highly subobtimal bcopy(); in the unlikely event that this becomes
2425          * a serious performance issue, a high-performance DTrace-specific
2426          * bcopy() should obviously be invented.)
2427          */
2428         daddr = (uintptr_t)dest->dtb_tomax + offs;
2429         dlimit = daddr + src->dtb_offset;
2430         saddr = (uintptr_t)src->dtb_tomax;
2431
2432         /*
2433          * First, the aligned portion.
2434          */
2435         while (dlimit - daddr >= sizeof (uint64_t)) {
2436                 *((uint64_t *)daddr) = *((uint64_t *)saddr);
2437
2438                 daddr += sizeof (uint64_t);
2439                 saddr += sizeof (uint64_t);
2440         }
2441
2442         /*
2443          * Now any left-over bit...
2444          */
2445         while (dlimit - daddr)
2446                 *((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2447
2448         /*
2449          * Finally, commit the reserved space in the destination buffer.
2450          */
2451         dest->dtb_offset = offs + src->dtb_offset;
2452
2453 out:
2454         /*
2455          * If we're lucky enough to be the only active CPU on this speculation
2456          * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2457          */
2458         if (current == DTRACESPEC_ACTIVE ||
2459             (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2460                 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2461                     DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2462
2463                 ASSERT(rval == DTRACESPEC_COMMITTING);
2464         }
2465
2466         src->dtb_offset = 0;
2467         src->dtb_xamot_drops += src->dtb_drops;
2468         src->dtb_drops = 0;
2469 }
2470
2471 /*
2472  * This routine discards an active speculation.  If the specified speculation
2473  * is not in a valid state to perform a discard(), this routine will silently
2474  * do nothing.  The state of the specified speculation is transitioned
2475  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2476  */
2477 static void
2478 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2479     dtrace_specid_t which)
2480 {
2481         dtrace_speculation_t *spec;
2482         dtrace_speculation_state_t current, new = 0;
2483         dtrace_buffer_t *buf;
2484
2485         if (which == 0)
2486                 return;
2487
2488         if (which > state->dts_nspeculations) {
2489                 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2490                 return;
2491         }
2492
2493         spec = &state->dts_speculations[which - 1];
2494         buf = &spec->dtsp_buffer[cpu];
2495
2496         do {
2497                 current = spec->dtsp_state;
2498
2499                 switch (current) {
2500                 case DTRACESPEC_INACTIVE:
2501                 case DTRACESPEC_COMMITTINGMANY:
2502                 case DTRACESPEC_COMMITTING:
2503                 case DTRACESPEC_DISCARDING:
2504                         return;
2505
2506                 case DTRACESPEC_ACTIVE:
2507                 case DTRACESPEC_ACTIVEMANY:
2508                         new = DTRACESPEC_DISCARDING;
2509                         break;
2510
2511                 case DTRACESPEC_ACTIVEONE:
2512                         if (buf->dtb_offset != 0) {
2513                                 new = DTRACESPEC_INACTIVE;
2514                         } else {
2515                                 new = DTRACESPEC_DISCARDING;
2516                         }
2517                         break;
2518
2519                 default:
2520                         ASSERT(0);
2521                 }
2522         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2523             current, new) != current);
2524
2525         buf->dtb_offset = 0;
2526         buf->dtb_drops = 0;
2527 }
2528
2529 /*
2530  * Note:  not called from probe context.  This function is called
2531  * asynchronously from cross call context to clean any speculations that are
2532  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2533  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2534  * speculation.
2535  */
2536 static void
2537 dtrace_speculation_clean_here(dtrace_state_t *state)
2538 {
2539         dtrace_icookie_t cookie;
2540         processorid_t cpu = curcpu;
2541         dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2542         dtrace_specid_t i;
2543
2544         cookie = dtrace_interrupt_disable();
2545
2546         if (dest->dtb_tomax == NULL) {
2547                 dtrace_interrupt_enable(cookie);
2548                 return;
2549         }
2550
2551         for (i = 0; i < state->dts_nspeculations; i++) {
2552                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2553                 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2554
2555                 if (src->dtb_tomax == NULL)
2556                         continue;
2557
2558                 if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2559                         src->dtb_offset = 0;
2560                         continue;
2561                 }
2562
2563                 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2564                         continue;
2565
2566                 if (src->dtb_offset == 0)
2567                         continue;
2568
2569                 dtrace_speculation_commit(state, cpu, i + 1);
2570         }
2571
2572         dtrace_interrupt_enable(cookie);
2573 }
2574
2575 /*
2576  * Note:  not called from probe context.  This function is called
2577  * asynchronously (and at a regular interval) to clean any speculations that
2578  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2579  * is work to be done, it cross calls all CPUs to perform that work;
2580  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2581  * INACTIVE state until they have been cleaned by all CPUs.
2582  */
2583 static void
2584 dtrace_speculation_clean(dtrace_state_t *state)
2585 {
2586         int work = 0, rv;
2587         dtrace_specid_t i;
2588
2589         for (i = 0; i < state->dts_nspeculations; i++) {
2590                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2591
2592                 ASSERT(!spec->dtsp_cleaning);
2593
2594                 if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2595                     spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2596                         continue;
2597
2598                 work++;
2599                 spec->dtsp_cleaning = 1;
2600         }
2601
2602         if (!work)
2603                 return;
2604
2605         dtrace_xcall(DTRACE_CPUALL,
2606             (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2607
2608         /*
2609          * We now know that all CPUs have committed or discarded their
2610          * speculation buffers, as appropriate.  We can now set the state
2611          * to inactive.
2612          */
2613         for (i = 0; i < state->dts_nspeculations; i++) {
2614                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2615                 dtrace_speculation_state_t current, new;
2616
2617                 if (!spec->dtsp_cleaning)
2618                         continue;
2619
2620                 current = spec->dtsp_state;
2621                 ASSERT(current == DTRACESPEC_DISCARDING ||
2622                     current == DTRACESPEC_COMMITTINGMANY);
2623
2624                 new = DTRACESPEC_INACTIVE;
2625
2626                 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2627                 ASSERT(rv == current);
2628                 spec->dtsp_cleaning = 0;
2629         }
2630 }
2631
2632 /*
2633  * Called as part of a speculate() to get the speculative buffer associated
2634  * with a given speculation.  Returns NULL if the specified speculation is not
2635  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2636  * the active CPU is not the specified CPU -- the speculation will be
2637  * atomically transitioned into the ACTIVEMANY state.
2638  */
2639 static dtrace_buffer_t *
2640 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2641     dtrace_specid_t which)
2642 {
2643         dtrace_speculation_t *spec;
2644         dtrace_speculation_state_t current, new = 0;
2645         dtrace_buffer_t *buf;
2646
2647         if (which == 0)
2648                 return (NULL);
2649
2650         if (which > state->dts_nspeculations) {
2651                 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2652                 return (NULL);
2653         }
2654
2655         spec = &state->dts_speculations[which - 1];
2656         buf = &spec->dtsp_buffer[cpuid];
2657
2658         do {
2659                 current = spec->dtsp_state;
2660
2661                 switch (current) {
2662                 case DTRACESPEC_INACTIVE:
2663                 case DTRACESPEC_COMMITTINGMANY:
2664                 case DTRACESPEC_DISCARDING:
2665                         return (NULL);
2666
2667                 case DTRACESPEC_COMMITTING:
2668                         ASSERT(buf->dtb_offset == 0);
2669                         return (NULL);
2670
2671                 case DTRACESPEC_ACTIVEONE:
2672                         /*
2673                          * This speculation is currently active on one CPU.
2674                          * Check the offset in the buffer; if it's non-zero,
2675                          * that CPU must be us (and we leave the state alone).
2676                          * If it's zero, assume that we're starting on a new
2677                          * CPU -- and change the state to indicate that the
2678                          * speculation is active on more than one CPU.
2679                          */
2680                         if (buf->dtb_offset != 0)
2681                                 return (buf);
2682
2683                         new = DTRACESPEC_ACTIVEMANY;
2684                         break;
2685
2686                 case DTRACESPEC_ACTIVEMANY:
2687                         return (buf);
2688
2689                 case DTRACESPEC_ACTIVE:
2690                         new = DTRACESPEC_ACTIVEONE;
2691                         break;
2692
2693                 default:
2694                         ASSERT(0);
2695                 }
2696         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2697             current, new) != current);
2698
2699         ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2700         return (buf);
2701 }
2702
2703 /*
2704  * Return a string.  In the event that the user lacks the privilege to access
2705  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2706  * don't fail access checking.
2707  *
2708  * dtrace_dif_variable() uses this routine as a helper for various
2709  * builtin values such as 'execname' and 'probefunc.'
2710  */
2711 uintptr_t
2712 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2713     dtrace_mstate_t *mstate)
2714 {
2715         uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2716         uintptr_t ret;
2717         size_t strsz;
2718
2719         /*
2720          * The easy case: this probe is allowed to read all of memory, so
2721          * we can just return this as a vanilla pointer.
2722          */
2723         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2724                 return (addr);
2725
2726         /*
2727          * This is the tougher case: we copy the string in question from
2728          * kernel memory into scratch memory and return it that way: this
2729          * ensures that we won't trip up when access checking tests the
2730          * BYREF return value.
2731          */
2732         strsz = dtrace_strlen((char *)addr, size) + 1;
2733
2734         if (mstate->dtms_scratch_ptr + strsz >
2735             mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2736                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2737                 return (0);
2738         }
2739
2740         dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2741             strsz);
2742         ret = mstate->dtms_scratch_ptr;
2743         mstate->dtms_scratch_ptr += strsz;
2744         return (ret);
2745 }
2746
2747 /*
2748  * Return a string from a memoy address which is known to have one or
2749  * more concatenated, individually zero terminated, sub-strings.
2750  * In the event that the user lacks the privilege to access
2751  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2752  * don't fail access checking.
2753  *
2754  * dtrace_dif_variable() uses this routine as a helper for various
2755  * builtin values such as 'execargs'.
2756  */
2757 static uintptr_t
2758 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
2759     dtrace_mstate_t *mstate)
2760 {
2761         char *p;
2762         size_t i;
2763         uintptr_t ret;
2764
2765         if (mstate->dtms_scratch_ptr + strsz >
2766             mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2767                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2768                 return (0);
2769         }
2770
2771         dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2772             strsz);
2773
2774         /* Replace sub-string termination characters with a space. */
2775         for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
2776             p++, i++)
2777                 if (*p == '\0')
2778                         *p = ' ';
2779
2780         ret = mstate->dtms_scratch_ptr;
2781         mstate->dtms_scratch_ptr += strsz;
2782         return (ret);
2783 }
2784
2785 /*
2786  * This function implements the DIF emulator's variable lookups.  The emulator
2787  * passes a reserved variable identifier and optional built-in array index.
2788  */
2789 static uint64_t
2790 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2791     uint64_t ndx)
2792 {
2793         /*
2794          * If we're accessing one of the uncached arguments, we'll turn this
2795          * into a reference in the args array.
2796          */
2797         if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2798                 ndx = v - DIF_VAR_ARG0;
2799                 v = DIF_VAR_ARGS;
2800         }
2801
2802         switch (v) {
2803         case DIF_VAR_ARGS:
2804                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2805                 if (ndx >= sizeof (mstate->dtms_arg) /
2806                     sizeof (mstate->dtms_arg[0])) {
2807                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2808                         dtrace_provider_t *pv;
2809                         uint64_t val;
2810
2811                         pv = mstate->dtms_probe->dtpr_provider;
2812                         if (pv->dtpv_pops.dtps_getargval != NULL)
2813                                 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2814                                     mstate->dtms_probe->dtpr_id,
2815                                     mstate->dtms_probe->dtpr_arg, ndx, aframes);
2816                         else
2817                                 val = dtrace_getarg(ndx, aframes);
2818
2819                         /*
2820                          * This is regrettably required to keep the compiler
2821                          * from tail-optimizing the call to dtrace_getarg().
2822                          * The condition always evaluates to true, but the
2823                          * compiler has no way of figuring that out a priori.
2824                          * (None of this would be necessary if the compiler
2825                          * could be relied upon to _always_ tail-optimize
2826                          * the call to dtrace_getarg() -- but it can't.)
2827                          */
2828                         if (mstate->dtms_probe != NULL)
2829                                 return (val);
2830
2831                         ASSERT(0);
2832                 }
2833
2834                 return (mstate->dtms_arg[ndx]);
2835
2836 #if defined(sun)
2837         case DIF_VAR_UREGS: {
2838                 klwp_t *lwp;
2839
2840                 if (!dtrace_priv_proc(state))
2841                         return (0);
2842
2843                 if ((lwp = curthread->t_lwp) == NULL) {
2844                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2845                         cpu_core[curcpu].cpuc_dtrace_illval = NULL;
2846                         return (0);
2847                 }
2848
2849                 return (dtrace_getreg(lwp->lwp_regs, ndx));
2850                 return (0);
2851         }
2852 #else
2853         case DIF_VAR_UREGS: {
2854                 struct trapframe *tframe;
2855
2856                 if (!dtrace_priv_proc(state))
2857                         return (0);
2858
2859                 if ((tframe = curthread->td_frame) == NULL) {
2860                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2861                         cpu_core[curcpu].cpuc_dtrace_illval = 0;
2862                         return (0);
2863                 }
2864
2865                 return (dtrace_getreg(tframe, ndx));
2866         }
2867 #endif
2868
2869         case DIF_VAR_CURTHREAD:
2870                 if (!dtrace_priv_kernel(state))
2871                         return (0);
2872                 return ((uint64_t)(uintptr_t)curthread);
2873
2874         case DIF_VAR_TIMESTAMP:
2875                 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2876                         mstate->dtms_timestamp = dtrace_gethrtime();
2877                         mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2878                 }
2879                 return (mstate->dtms_timestamp);
2880
2881         case DIF_VAR_VTIMESTAMP:
2882                 ASSERT(dtrace_vtime_references != 0);
2883                 return (curthread->t_dtrace_vtime);
2884
2885         case DIF_VAR_WALLTIMESTAMP:
2886                 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2887                         mstate->dtms_walltimestamp = dtrace_gethrestime();
2888                         mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2889                 }
2890                 return (mstate->dtms_walltimestamp);
2891
2892 #if defined(sun)
2893         case DIF_VAR_IPL:
2894                 if (!dtrace_priv_kernel(state))
2895                         return (0);
2896                 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2897                         mstate->dtms_ipl = dtrace_getipl();
2898                         mstate->dtms_present |= DTRACE_MSTATE_IPL;
2899                 }
2900                 return (mstate->dtms_ipl);
2901 #endif
2902
2903         case DIF_VAR_EPID:
2904                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2905                 return (mstate->dtms_epid);
2906
2907         case DIF_VAR_ID:
2908                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2909                 return (mstate->dtms_probe->dtpr_id);
2910
2911         case DIF_VAR_STACKDEPTH:
2912                 if (!dtrace_priv_kernel(state))
2913                         return (0);
2914                 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2915                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2916
2917                         mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2918                         mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2919                 }
2920                 return (mstate->dtms_stackdepth);
2921
2922         case DIF_VAR_USTACKDEPTH:
2923                 if (!dtrace_priv_proc(state))
2924                         return (0);
2925                 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2926                         /*
2927                          * See comment in DIF_VAR_PID.
2928                          */
2929                         if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2930                             CPU_ON_INTR(CPU)) {
2931                                 mstate->dtms_ustackdepth = 0;
2932                         } else {
2933                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2934                                 mstate->dtms_ustackdepth =
2935                                     dtrace_getustackdepth();
2936                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2937                         }
2938                         mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2939                 }
2940                 return (mstate->dtms_ustackdepth);
2941
2942         case DIF_VAR_CALLER:
2943                 if (!dtrace_priv_kernel(state))
2944                         return (0);
2945                 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2946                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2947
2948                         if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2949                                 /*
2950                                  * If this is an unanchored probe, we are
2951                                  * required to go through the slow path:
2952                                  * dtrace_caller() only guarantees correct
2953                                  * results for anchored probes.
2954                                  */
2955                                 pc_t caller[2] = {0, 0};
2956
2957                                 dtrace_getpcstack(caller, 2, aframes,
2958                                     (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2959                                 mstate->dtms_caller = caller[1];
2960                         } else if ((mstate->dtms_caller =
2961                             dtrace_caller(aframes)) == -1) {
2962                                 /*
2963                                  * We have failed to do this the quick way;
2964                                  * we must resort to the slower approach of
2965                                  * calling dtrace_getpcstack().
2966                                  */
2967                                 pc_t caller = 0;
2968
2969                                 dtrace_getpcstack(&caller, 1, aframes, NULL);
2970                                 mstate->dtms_caller = caller;
2971                         }
2972
2973                         mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2974                 }
2975                 return (mstate->dtms_caller);
2976
2977         case DIF_VAR_UCALLER:
2978                 if (!dtrace_priv_proc(state))
2979                         return (0);
2980
2981                 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
2982                         uint64_t ustack[3];
2983
2984                         /*
2985                          * dtrace_getupcstack() fills in the first uint64_t
2986                          * with the current PID.  The second uint64_t will
2987                          * be the program counter at user-level.  The third
2988                          * uint64_t will contain the caller, which is what
2989                          * we're after.
2990                          */
2991                         ustack[2] = 0;
2992                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2993                         dtrace_getupcstack(ustack, 3);
2994                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2995                         mstate->dtms_ucaller = ustack[2];
2996                         mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
2997                 }
2998
2999                 return (mstate->dtms_ucaller);
3000
3001         case DIF_VAR_PROBEPROV:
3002                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3003                 return (dtrace_dif_varstr(
3004                     (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3005                     state, mstate));
3006
3007         case DIF_VAR_PROBEMOD:
3008                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3009                 return (dtrace_dif_varstr(
3010                     (uintptr_t)mstate->dtms_probe->dtpr_mod,
3011                     state, mstate));
3012
3013         case DIF_VAR_PROBEFUNC:
3014                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3015                 return (dtrace_dif_varstr(
3016                     (uintptr_t)mstate->dtms_probe->dtpr_func,
3017                     state, mstate));
3018
3019         case DIF_VAR_PROBENAME:
3020                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3021                 return (dtrace_dif_varstr(
3022                     (uintptr_t)mstate->dtms_probe->dtpr_name,
3023                     state, mstate));
3024
3025         case DIF_VAR_PID:
3026                 if (!dtrace_priv_proc(state))
3027                         return (0);
3028
3029 #if defined(sun)
3030                 /*
3031                  * Note that we are assuming that an unanchored probe is
3032                  * always due to a high-level interrupt.  (And we're assuming
3033                  * that there is only a single high level interrupt.)
3034                  */
3035                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3036                         return (pid0.pid_id);
3037
3038                 /*
3039                  * It is always safe to dereference one's own t_procp pointer:
3040                  * it always points to a valid, allocated proc structure.
3041                  * Further, it is always safe to dereference the p_pidp member
3042                  * of one's own proc structure.  (These are truisms becuase
3043                  * threads and processes don't clean up their own state --
3044                  * they leave that task to whomever reaps them.)
3045                  */
3046                 return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3047 #else
3048                 return ((uint64_t)curproc->p_pid);
3049 #endif
3050
3051         case DIF_VAR_PPID:
3052                 if (!dtrace_priv_proc(state))
3053                         return (0);
3054
3055 #if defined(sun)
3056                 /*
3057                  * See comment in DIF_VAR_PID.
3058                  */
3059                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3060                         return (pid0.pid_id);
3061
3062                 /*
3063                  * It is always safe to dereference one's own t_procp pointer:
3064                  * it always points to a valid, allocated proc structure.
3065                  * (This is true because threads don't clean up their own
3066                  * state -- they leave that task to whomever reaps them.)
3067                  */
3068                 return ((uint64_t)curthread->t_procp->p_ppid);
3069 #else
3070                 return ((uint64_t)curproc->p_pptr->p_pid);
3071 #endif
3072
3073         case DIF_VAR_TID:
3074 #if defined(sun)
3075                 /*
3076                  * See comment in DIF_VAR_PID.
3077                  */
3078                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3079                         return (0);
3080 #endif
3081
3082                 return ((uint64_t)curthread->t_tid);
3083
3084         case DIF_VAR_EXECARGS: {
3085                 struct pargs *p_args = curthread->td_proc->p_args;
3086
3087                 if (p_args == NULL)
3088                         return(0);
3089
3090                 return (dtrace_dif_varstrz(
3091                     (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3092         }
3093
3094         case DIF_VAR_EXECNAME:
3095 #if defined(sun)
3096                 if (!dtrace_priv_proc(state))
3097                         return (0);
3098
3099                 /*
3100                  * See comment in DIF_VAR_PID.
3101                  */
3102                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3103                         return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3104
3105                 /*
3106                  * It is always safe to dereference one's own t_procp pointer:
3107                  * it always points to a valid, allocated proc structure.
3108                  * (This is true because threads don't clean up their own
3109                  * state -- they leave that task to whomever reaps them.)
3110                  */
3111                 return (dtrace_dif_varstr(
3112                     (uintptr_t)curthread->t_procp->p_user.u_comm,
3113                     state, mstate));
3114 #else
3115                 return (dtrace_dif_varstr(
3116                     (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3117 #endif
3118
3119         case DIF_VAR_ZONENAME:
3120 #if defined(sun)
3121                 if (!dtrace_priv_proc(state))
3122                         return (0);
3123
3124                 /*
3125                  * See comment in DIF_VAR_PID.
3126                  */
3127                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3128                         return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3129
3130                 /*
3131                  * It is always safe to dereference one's own t_procp pointer:
3132                  * it always points to a valid, allocated proc structure.
3133                  * (This is true because threads don't clean up their own
3134                  * state -- they leave that task to whomever reaps them.)
3135                  */
3136                 return (dtrace_dif_varstr(
3137                     (uintptr_t)curthread->t_procp->p_zone->zone_name,
3138                     state, mstate));
3139 #else
3140                 return (0);
3141 #endif
3142
3143         case DIF_VAR_UID:
3144                 if (!dtrace_priv_proc(state))
3145                         return (0);
3146
3147 #if defined(sun)
3148                 /*
3149                  * See comment in DIF_VAR_PID.
3150                  */
3151                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3152                         return ((uint64_t)p0.p_cred->cr_uid);
3153 #endif
3154
3155                 /*
3156                  * It is always safe to dereference one's own t_procp pointer:
3157                  * it always points to a valid, allocated proc structure.
3158                  * (This is true because threads don't clean up their own
3159                  * state -- they leave that task to whomever reaps them.)
3160                  *
3161                  * Additionally, it is safe to dereference one's own process
3162                  * credential, since this is never NULL after process birth.
3163                  */
3164                 return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3165
3166         case DIF_VAR_GID:
3167                 if (!dtrace_priv_proc(state))
3168                         return (0);
3169
3170 #if defined(sun)
3171                 /*
3172                  * See comment in DIF_VAR_PID.
3173                  */
3174                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3175                         return ((uint64_t)p0.p_cred->cr_gid);
3176 #endif
3177
3178                 /*
3179                  * It is always safe to dereference one's own t_procp pointer:
3180                  * it always points to a valid, allocated proc structure.
3181                  * (This is true because threads don't clean up their own
3182                  * state -- they leave that task to whomever reaps them.)
3183                  *
3184                  * Additionally, it is safe to dereference one's own process
3185                  * credential, since this is never NULL after process birth.
3186                  */
3187                 return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3188
3189         case DIF_VAR_ERRNO: {
3190 #if defined(sun)
3191                 klwp_t *lwp;
3192                 if (!dtrace_priv_proc(state))
3193                         return (0);
3194
3195                 /*
3196                  * See comment in DIF_VAR_PID.
3197                  */
3198                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3199                         return (0);
3200
3201                 /*
3202                  * It is always safe to dereference one's own t_lwp pointer in
3203                  * the event that this pointer is non-NULL.  (This is true
3204                  * because threads and lwps don't clean up their own state --
3205                  * they leave that task to whomever reaps them.)
3206                  */
3207                 if ((lwp = curthread->t_lwp) == NULL)
3208                         return (0);
3209
3210                 return ((uint64_t)lwp->lwp_errno);
3211 #else
3212                 return (curthread->td_errno);
3213 #endif
3214         }
3215 #if !defined(sun)
3216         case DIF_VAR_CPU: {
3217                 return curcpu;
3218         }
3219 #endif
3220         default:
3221                 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3222                 return (0);
3223         }
3224 }
3225
3226 /*
3227  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3228  * Notice that we don't bother validating the proper number of arguments or
3229  * their types in the tuple stack.  This isn't needed because all argument
3230  * interpretation is safe because of our load safety -- the worst that can
3231  * happen is that a bogus program can obtain bogus results.
3232  */
3233 static void
3234 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3235     dtrace_key_t *tupregs, int nargs,
3236     dtrace_mstate_t *mstate, dtrace_state_t *state)
3237 {
3238         volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
3239         volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
3240         dtrace_vstate_t *vstate = &state->dts_vstate;
3241
3242 #if defined(sun)
3243         union {
3244                 mutex_impl_t mi;
3245                 uint64_t mx;
3246         } m;
3247
3248         union {
3249                 krwlock_t ri;
3250                 uintptr_t rw;
3251         } r;
3252 #else
3253         struct thread *lowner;
3254         union {
3255                 struct lock_object *li;
3256                 uintptr_t lx;
3257         } l;
3258 #endif
3259
3260         switch (subr) {
3261         case DIF_SUBR_RAND:
3262                 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3263                 break;
3264
3265 #if defined(sun)
3266         case DIF_SUBR_MUTEX_OWNED:
3267                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3268                     mstate, vstate)) {
3269                         regs[rd] = 0;
3270                         break;
3271                 }
3272
3273                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3274                 if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3275                         regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3276                 else
3277                         regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3278                 break;
3279
3280         case DIF_SUBR_MUTEX_OWNER:
3281                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3282                     mstate, vstate)) {
3283                         regs[rd] = 0;
3284                         break;
3285                 }
3286
3287                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3288                 if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3289                     MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3290                         regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3291                 else
3292                         regs[rd] = 0;
3293                 break;
3294
3295         case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3296                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3297                     mstate, vstate)) {
3298                         regs[rd] = 0;
3299                         break;
3300                 }
3301
3302                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3303                 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3304                 break;
3305
3306         case DIF_SUBR_MUTEX_TYPE_SPIN:
3307                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3308                     mstate, vstate)) {
3309                         regs[rd] = 0;
3310                         break;
3311                 }
3312
3313                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3314                 regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3315                 break;
3316
3317         case DIF_SUBR_RW_READ_HELD: {
3318                 uintptr_t tmp;
3319
3320                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3321                     mstate, vstate)) {
3322                         regs[rd] = 0;
3323                         break;
3324                 }
3325
3326                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3327                 regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3328                 break;
3329         }
3330
3331         case DIF_SUBR_RW_WRITE_HELD:
3332                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3333                     mstate, vstate)) {
3334                         regs[rd] = 0;
3335                         break;
3336                 }
3337
3338                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3339                 regs[rd] = _RW_WRITE_HELD(&r.ri);
3340                 break;
3341
3342         case DIF_SUBR_RW_ISWRITER:
3343                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3344                     mstate, vstate)) {
3345                         regs[rd] = 0;
3346                         break;
3347                 }
3348
3349                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3350                 regs[rd] = _RW_ISWRITER(&r.ri);
3351                 break;
3352
3353 #else
3354         case DIF_SUBR_MUTEX_OWNED:
3355                 if (!dtrace_canload(tupregs[0].dttk_value,
3356                         sizeof (struct lock_object), mstate, vstate)) {
3357                         regs[rd] = 0;
3358                         break;
3359                 }
3360                 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3361                 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3362                 break;
3363
3364         case DIF_SUBR_MUTEX_OWNER:
3365                 if (!dtrace_canload(tupregs[0].dttk_value,
3366                         sizeof (struct lock_object), mstate, vstate)) {
3367                         regs[rd] = 0;
3368                         break;
3369                 }
3370                 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3371                 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3372                 regs[rd] = (uintptr_t)lowner;
3373                 break;
3374
3375         case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3376                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3377                     mstate, vstate)) {
3378                         regs[rd] = 0;
3379                         break;
3380                 }
3381                 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3382                 /* XXX - should be only LC_SLEEPABLE? */
3383                 regs[rd] = (LOCK_CLASS(l.li)->lc_flags &
3384                     (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0;
3385                 break;
3386
3387         case DIF_SUBR_MUTEX_TYPE_SPIN:
3388                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3389                     mstate, vstate)) {
3390                         regs[rd] = 0;
3391                         break;
3392                 }
3393                 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3394                 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
3395                 break;
3396
3397         case DIF_SUBR_RW_READ_HELD: 
3398         case DIF_SUBR_SX_SHARED_HELD: 
3399                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3400                     mstate, vstate)) {
3401                         regs[rd] = 0;
3402                         break;
3403                 }
3404                 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3405                 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3406                     lowner == NULL;
3407                 break;
3408
3409         case DIF_SUBR_RW_WRITE_HELD:
3410         case DIF_SUBR_SX_EXCLUSIVE_HELD:
3411                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3412                     mstate, vstate)) {
3413                         regs[rd] = 0;
3414                         break;
3415                 }
3416                 l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3417                 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3418                 regs[rd] = (lowner == curthread);
3419                 break;
3420
3421         case DIF_SUBR_RW_ISWRITER:
3422         case DIF_SUBR_SX_ISEXCLUSIVE:
3423                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3424                     mstate, vstate)) {
3425                         regs[rd] = 0;
3426                         break;
3427                 }
3428                 l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3429                 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3430                     lowner != NULL;
3431                 break;
3432 #endif /* ! defined(sun) */
3433
3434         case DIF_SUBR_BCOPY: {
3435                 /*
3436                  * We need to be sure that the destination is in the scratch
3437                  * region -- no other region is allowed.
3438                  */
3439                 uintptr_t src = tupregs[0].dttk_value;
3440                 uintptr_t dest = tupregs[1].dttk_value;
3441                 size_t size = tupregs[2].dttk_value;
3442
3443                 if (!dtrace_inscratch(dest, size, mstate)) {
3444                         *flags |= CPU_DTRACE_BADADDR;
3445                         *illval = regs[rd];
3446                         break;
3447                 }
3448
3449                 if (!dtrace_canload(src, size, mstate, vstate)) {
3450                         regs[rd] = 0;
3451                         break;
3452                 }
3453
3454                 dtrace_bcopy((void *)src, (void *)dest, size);
3455                 break;
3456         }
3457
3458         case DIF_SUBR_ALLOCA:
3459         case DIF_SUBR_COPYIN: {
3460                 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3461                 uint64_t size =
3462                     tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3463                 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3464
3465                 /*
3466                  * This action doesn't require any credential checks since
3467                  * probes will not activate in user contexts to which the
3468                  * enabling user does not have permissions.
3469                  */
3470
3471                 /*
3472                  * Rounding up the user allocation size could have overflowed
3473                  * a large, bogus allocation (like -1ULL) to 0.
3474                  */
3475                 if (scratch_size < size ||
3476                     !DTRACE_INSCRATCH(mstate, scratch_size)) {
3477                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3478                         regs[rd] = 0;
3479                         break;
3480                 }
3481
3482                 if (subr == DIF_SUBR_COPYIN) {
3483                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3484                         dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3485                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3486                 }
3487
3488                 mstate->dtms_scratch_ptr += scratch_size;
3489                 regs[rd] = dest;
3490                 break;
3491         }
3492
3493         case DIF_SUBR_COPYINTO: {
3494                 uint64_t size = tupregs[1].dttk_value;
3495                 uintptr_t dest = tupregs[2].dttk_value;
3496
3497                 /*
3498                  * This action doesn't require any credential checks since
3499                  * probes will not activate in user contexts to which the
3500                  * enabling user does not have permissions.
3501                  */
3502                 if (!dtrace_inscratch(dest, size, mstate)) {
3503                         *flags |= CPU_DTRACE_BADADDR;
3504                         *illval = regs[rd];
3505                         break;
3506                 }
3507
3508                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3509                 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3510                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3511                 break;
3512         }
3513
3514         case DIF_SUBR_COPYINSTR: {
3515                 uintptr_t dest = mstate->dtms_scratch_ptr;
3516                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3517
3518                 if (nargs > 1 && tupregs[1].dttk_value < size)
3519                         size = tupregs[1].dttk_value + 1;
3520
3521                 /*
3522                  * This action doesn't require any credential checks since
3523                  * probes will not activate in user contexts to which the
3524                  * enabling user does not have permissions.
3525                  */
3526                 if (!DTRACE_INSCRATCH(mstate, size)) {
3527                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3528                         regs[rd] = 0;
3529                         break;
3530                 }
3531
3532                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3533                 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3534                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3535
3536                 ((char *)dest)[size - 1] = '\0';
3537                 mstate->dtms_scratch_ptr += size;
3538                 regs[rd] = dest;
3539                 break;
3540         }
3541
3542 #if defined(sun)
3543         case DIF_SUBR_MSGSIZE:
3544         case DIF_SUBR_MSGDSIZE: {
3545                 uintptr_t baddr = tupregs[0].dttk_value, daddr;
3546                 uintptr_t wptr, rptr;
3547                 size_t count = 0;
3548                 int cont = 0;
3549
3550                 while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
3551
3552                         if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3553                             vstate)) {
3554                                 regs[rd] = 0;
3555                                 break;
3556                         }
3557
3558                         wptr = dtrace_loadptr(baddr +
3559                             offsetof(mblk_t, b_wptr));
3560
3561                         rptr = dtrace_loadptr(baddr +
3562                             offsetof(mblk_t, b_rptr));
3563
3564                         if (wptr < rptr) {
3565                                 *flags |= CPU_DTRACE_BADADDR;
3566                                 *illval = tupregs[0].dttk_value;
3567                                 break;
3568                         }
3569
3570                         daddr = dtrace_loadptr(baddr +
3571                             offsetof(mblk_t, b_datap));
3572
3573                         baddr = dtrace_loadptr(baddr +
3574                             offsetof(mblk_t, b_cont));
3575
3576                         /*
3577                          * We want to prevent against denial-of-service here,
3578                          * so we're only going to search the list for
3579                          * dtrace_msgdsize_max mblks.
3580                          */
3581                         if (cont++ > dtrace_msgdsize_max) {
3582                                 *flags |= CPU_DTRACE_ILLOP;
3583                                 break;
3584                         }
3585
3586                         if (subr == DIF_SUBR_MSGDSIZE) {
3587                                 if (dtrace_load8(daddr +
3588                                     offsetof(dblk_t, db_type)) != M_DATA)
3589                                         continue;
3590                         }
3591
3592                         count += wptr - rptr;
3593                 }
3594
3595                 if (!(*flags & CPU_DTRACE_FAULT))
3596                         regs[rd] = count;
3597
3598                 break;
3599         }
3600 #endif
3601
3602         case DIF_SUBR_PROGENYOF: {
3603                 pid_t pid = tupregs[0].dttk_value;
3604                 proc_t *p;
3605                 int rval = 0;
3606
3607                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3608
3609                 for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3610 #if defined(sun)
3611                         if (p->p_pidp->pid_id == pid) {
3612 #else
3613                         if (p->p_pid == pid) {
3614 #endif
3615                                 rval = 1;
3616                                 break;
3617                         }
3618                 }
3619
3620                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3621
3622                 regs[rd] = rval;
3623                 break;
3624         }
3625
3626         case DIF_SUBR_SPECULATION:
3627                 regs[rd] = dtrace_speculation(state);
3628                 break;
3629
3630         case DIF_SUBR_COPYOUT: {
3631                 uintptr_t kaddr = tupregs[0].dttk_value;
3632                 uintptr_t uaddr = tupregs[1].dttk_value;
3633                 uint64_t size = tupregs[2].dttk_value;
3634
3635                 if (!dtrace_destructive_disallow &&
3636                     dtrace_priv_proc_control(state) &&
3637                     !dtrace_istoxic(kaddr, size)) {
3638                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3639                         dtrace_copyout(kaddr, uaddr, size, flags);
3640                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3641                 }
3642                 break;
3643         }
3644
3645         case DIF_SUBR_COPYOUTSTR: {
3646                 uintptr_t kaddr = tupregs[0].dttk_value;
3647                 uintptr_t uaddr = tupregs[1].dttk_value;
3648                 uint64_t size = tupregs[2].dttk_value;
3649
3650                 if (!dtrace_destructive_disallow &&
3651                     dtrace_priv_proc_control(state) &&
3652                     !dtrace_istoxic(kaddr, size)) {
3653                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3654                         dtrace_copyoutstr(kaddr, uaddr, size, flags);
3655                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3656                 }
3657                 break;
3658         }
3659
3660         case DIF_SUBR_STRLEN: {
3661                 size_t sz;
3662                 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3663                 sz = dtrace_strlen((char *)addr,
3664                     state->dts_options[DTRACEOPT_STRSIZE]);
3665
3666                 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3667                         regs[rd] = 0;
3668                         break;
3669                 }
3670
3671                 regs[rd] = sz;
3672
3673                 break;
3674         }
3675
3676         case DIF_SUBR_STRCHR:
3677         case DIF_SUBR_STRRCHR: {
3678                 /*
3679                  * We're going to iterate over the string looking for the
3680                  * specified character.  We will iterate until we have reached
3681                  * the string length or we have found the character.  If this
3682                  * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3683                  * of the specified character instead of the first.
3684                  */
3685                 uintptr_t saddr = tupregs[0].dttk_value;
3686                 uintptr_t addr = tupregs[0].dttk_value;
3687                 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3688                 char c, target = (char)tupregs[1].dttk_value;
3689
3690                 for (regs[rd] = 0; addr < limit; addr++) {
3691                         if ((c = dtrace_load8(addr)) == target) {
3692                                 regs[rd] = addr;
3693
3694                                 if (subr == DIF_SUBR_STRCHR)
3695                                         break;
3696                         }
3697
3698                         if (c == '\0')
3699                                 break;
3700                 }
3701
3702                 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3703                         regs[rd] = 0;
3704                         break;
3705                 }
3706
3707                 break;
3708         }
3709
3710         case DIF_SUBR_STRSTR:
3711         case DIF_SUBR_INDEX:
3712         case DIF_SUBR_RINDEX: {
3713                 /*
3714                  * We're going to iterate over the string looking for the
3715                  * specified string.  We will iterate until we have reached
3716                  * the string length or we have found the string.  (Yes, this
3717                  * is done in the most naive way possible -- but considering
3718                  * that the string we're searching for is likely to be
3719                  * relatively short, the complexity of Rabin-Karp or similar
3720                  * hardly seems merited.)
3721                  */
3722                 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3723                 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3724                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3725                 size_t len = dtrace_strlen(addr, size);
3726                 size_t sublen = dtrace_strlen(substr, size);
3727                 char *limit = addr + len, *orig = addr;
3728                 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3729                 int inc = 1;
3730
3731                 regs[rd] = notfound;
3732
3733                 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3734                         regs[rd] = 0;
3735                         break;
3736                 }
3737
3738                 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3739                     vstate)) {
3740                         regs[rd] = 0;
3741                         break;
3742                 }
3743
3744                 /*
3745                  * strstr() and index()/rindex() have similar semantics if
3746                  * both strings are the empty string: strstr() returns a
3747                  * pointer to the (empty) string, and index() and rindex()
3748                  * both return index 0 (regardless of any position argument).
3749                  */
3750                 if (sublen == 0 && len == 0) {
3751                         if (subr == DIF_SUBR_STRSTR)
3752                                 regs[rd] = (uintptr_t)addr;
3753                         else
3754                                 regs[rd] = 0;
3755                         break;
3756                 }
3757
3758                 if (subr != DIF_SUBR_STRSTR) {
3759                         if (subr == DIF_SUBR_RINDEX) {
3760                                 limit = orig - 1;
3761                                 addr += len;
3762                                 inc = -1;
3763                         }
3764
3765                         /*
3766                          * Both index() and rindex() take an optional position
3767                          * argument that denotes the starting position.
3768                          */
3769                         if (nargs == 3) {
3770                                 int64_t pos = (int64_t)tupregs[2].dttk_value;
3771
3772                                 /*
3773                                  * If the position argument to index() is
3774                                  * negative, Perl implicitly clamps it at
3775                                  * zero.  This semantic is a little surprising
3776                                  * given the special meaning of negative
3777                                  * positions to similar Perl functions like
3778                                  * substr(), but it appears to reflect a
3779                                  * notion that index() can start from a
3780                                  * negative index and increment its way up to
3781                                  * the string.  Given this notion, Perl's
3782                                  * rindex() is at least self-consistent in
3783                                  * that it implicitly clamps positions greater
3784                                  * than the string length to be the string
3785                                  * length.  Where Perl completely loses
3786                                  * coherence, however, is when the specified
3787                                  * substring is the empty string ("").  In
3788                                  * this case, even if the position is
3789                                  * negative, rindex() returns 0 -- and even if
3790                                  * the position is greater than the length,
3791                                  * index() returns the string length.  These
3792                                  * semantics violate the notion that index()
3793                                  * should never return a value less than the
3794                                  * specified position and that rindex() should
3795                                  * never return a value greater than the
3796                                  * specified position.  (One assumes that
3797                                  * these semantics are artifacts of Perl's
3798                                  * implementation and not the results of
3799                                  * deliberate design -- it beggars belief that
3800                                  * even Larry Wall could desire such oddness.)
3801                                  * While in the abstract one would wish for
3802                                  * consistent position semantics across
3803                                  * substr(), index() and rindex() -- or at the
3804                                  * very least self-consistent position
3805                                  * semantics for index() and rindex() -- we
3806                                  * instead opt to keep with the extant Perl
3807                                  * semantics, in all their broken glory.  (Do
3808                                  * we have more desire to maintain Perl's
3809                                  * semantics than Perl does?  Probably.)
3810                                  */
3811                                 if (subr == DIF_SUBR_RINDEX) {
3812                                         if (pos < 0) {
3813                                                 if (sublen == 0)
3814                                                         regs[rd] = 0;
3815                                                 break;
3816                                         }
3817
3818                                         if (pos > len)
3819                                                 pos = len;
3820                                 } else {
3821                                         if (pos < 0)
3822                                                 pos = 0;
3823
3824                                         if (pos >= len) {
3825                                                 if (sublen == 0)
3826                                                         regs[rd] = len;
3827                                                 break;
3828                                         }
3829                                 }
3830
3831                                 addr = orig + pos;
3832                         }
3833                 }
3834
3835                 for (regs[rd] = notfound; addr != limit; addr += inc) {
3836                         if (dtrace_strncmp(addr, substr, sublen) == 0) {
3837                                 if (subr != DIF_SUBR_STRSTR) {
3838                                         /*
3839                                          * As D index() and rindex() are
3840                                          * modeled on Perl (and not on awk),
3841                                          * we return a zero-based (and not a
3842                                          * one-based) index.  (For you Perl
3843                                          * weenies: no, we're not going to add
3844                                          * $[ -- and shouldn't you be at a con
3845                                          * or something?)
3846                                          */
3847                                         regs[rd] = (uintptr_t)(addr - orig);
3848                                         break;
3849                                 }
3850
3851                                 ASSERT(subr == DIF_SUBR_STRSTR);
3852                                 regs[rd] = (uintptr_t)addr;
3853                                 break;
3854                         }
3855                 }
3856
3857                 break;
3858         }
3859
3860         case DIF_SUBR_STRTOK: {
3861                 uintptr_t addr = tupregs[0].dttk_value;
3862                 uintptr_t tokaddr = tupregs[1].dttk_value;
3863                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3864                 uintptr_t limit, toklimit = tokaddr + size;
3865                 uint8_t c = 0, tokmap[32];       /* 256 / 8 */
3866                 char *dest = (char *)mstate->dtms_scratch_ptr;
3867                 int i;
3868
3869                 /*
3870                  * Check both the token buffer and (later) the input buffer,
3871                  * since both could be non-scratch addresses.
3872                  */
3873                 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3874                         regs[rd] = 0;
3875                         break;
3876                 }
3877
3878                 if (!DTRACE_INSCRATCH(mstate, size)) {
3879                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3880                         regs[rd] = 0;
3881                         break;
3882                 }
3883
3884                 if (addr == 0) {
3885                         /*
3886                          * If the address specified is NULL, we use our saved
3887                          * strtok pointer from the mstate.  Note that this
3888                          * means that the saved strtok pointer is _only_
3889                          * valid within multiple enablings of the same probe --
3890                          * it behaves like an implicit clause-local variable.
3891                          */
3892                         addr = mstate->dtms_strtok;
3893                 } else {
3894                         /*
3895                          * If the user-specified address is non-NULL we must
3896                          * access check it.  This is the only time we have
3897                          * a chance to do so, since this address may reside
3898                          * in the string table of this clause-- future calls
3899                          * (when we fetch addr from mstate->dtms_strtok)
3900                          * would fail this access check.
3901                          */
3902                         if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3903                                 regs[rd] = 0;
3904                                 break;
3905                         }
3906                 }
3907
3908                 /*
3909                  * First, zero the token map, and then process the token
3910                  * string -- setting a bit in the map for every character
3911                  * found in the token string.
3912                  */
3913                 for (i = 0; i < sizeof (tokmap); i++)
3914                         tokmap[i] = 0;
3915
3916                 for (; tokaddr < toklimit; tokaddr++) {
3917                         if ((c = dtrace_load8(tokaddr)) == '\0')
3918                                 break;
3919
3920                         ASSERT((c >> 3) < sizeof (tokmap));
3921                         tokmap[c >> 3] |= (1 << (c & 0x7));
3922                 }
3923
3924                 for (limit = addr + size; addr < limit; addr++) {
3925                         /*
3926                          * We're looking for a character that is _not_ contained
3927                          * in the token string.
3928                          */
3929                         if ((c = dtrace_load8(addr)) == '\0')
3930                                 break;
3931
3932                         if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3933                                 break;
3934                 }
3935
3936                 if (c == '\0') {
3937                         /*
3938                          * We reached the end of the string without finding
3939                          * any character that was not in the token string.
3940                          * We return NULL in this case, and we set the saved
3941                          * address to NULL as well.
3942                          */
3943                         regs[rd] = 0;
3944                         mstate->dtms_strtok = 0;
3945                         break;
3946                 }
3947
3948                 /*
3949                  * From here on, we're copying into the destination string.
3950                  */
3951                 for (i = 0; addr < limit && i < size - 1; addr++) {
3952                         if ((c = dtrace_load8(addr)) == '\0')
3953                                 break;
3954
3955                         if (tokmap[c >> 3] & (1 << (c & 0x7)))
3956                                 break;
3957
3958                         ASSERT(i < size);
3959                         dest[i++] = c;
3960                 }
3961
3962                 ASSERT(i < size);
3963                 dest[i] = '\0';
3964                 regs[rd] = (uintptr_t)dest;
3965                 mstate->dtms_scratch_ptr += size;
3966                 mstate->dtms_strtok = addr;
3967                 break;
3968         }
3969
3970         case DIF_SUBR_SUBSTR: {
3971                 uintptr_t s = tupregs[0].dttk_value;
3972                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3973                 char *d = (char *)mstate->dtms_scratch_ptr;
3974                 int64_t index = (int64_t)tupregs[1].dttk_value;
3975                 int64_t remaining = (int64_t)tupregs[2].dttk_value;
3976                 size_t len = dtrace_strlen((char *)s, size);
3977                 int64_t i = 0;
3978
3979                 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
3980                         regs[rd] = 0;
3981                         break;
3982                 }
3983
3984                 if (!DTRACE_INSCRATCH(mstate, size)) {
3985                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3986                         regs[rd] = 0;
3987                         break;
3988                 }
3989
3990                 if (nargs <= 2)
3991                         remaining = (int64_t)size;
3992
3993                 if (index < 0) {
3994                         index += len;
3995
3996                         if (index < 0 && index + remaining > 0) {
3997                                 remaining += index;
3998                                 index = 0;
3999                         }
4000                 }
4001
4002                 if (index >= len || index < 0) {
4003                         remaining = 0;
4004                 } else if (remaining < 0) {
4005                         remaining += len - index;
4006                 } else if (index + remaining > size) {
4007                         remaining = size - index;
4008                 }
4009
4010                 for (i = 0; i < remaining; i++) {
4011                         if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4012                                 break;
4013                 }
4014
4015                 d[i] = '\0';
4016
4017                 mstate->dtms_scratch_ptr += size;
4018                 regs[rd] = (uintptr_t)d;
4019                 break;
4020         }
4021
4022 #if defined(sun)
4023         case DIF_SUBR_GETMAJOR:
4024 #ifdef _LP64
4025                 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4026 #else
4027                 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4028 #endif
4029                 break;
4030
4031         case DIF_SUBR_GETMINOR:
4032 #ifdef _LP64
4033                 regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4034 #else
4035                 regs[rd] = tupregs[0].dttk_value & MAXMIN;
4036 #endif
4037                 break;
4038
4039         case DIF_SUBR_DDI_PATHNAME: {
4040                 /*
4041                  * This one is a galactic mess.  We are going to roughly
4042                  * emulate ddi_pathname(), but it's made more complicated
4043                  * by the fact that we (a) want to include the minor name and
4044                  * (b) must proceed iteratively instead of recursively.
4045                  */
4046                 uintptr_t dest = mstate->dtms_scratch_ptr;
4047                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4048                 char *start = (char *)dest, *end = start + size - 1;
4049                 uintptr_t daddr = tupregs[0].dttk_value;
4050                 int64_t minor = (int64_t)tupregs[1].dttk_value;
4051                 char *s;
4052                 int i, len, depth = 0;
4053
4054                 /*
4055                  * Due to all the pointer jumping we do and context we must
4056                  * rely upon, we just mandate that the user must have kernel
4057                  * read privileges to use this routine.
4058                  */
4059                 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4060                         *flags |= CPU_DTRACE_KPRIV;
4061                         *illval = daddr;
4062                         regs[rd] = 0;
4063                 }
4064
4065                 if (!DTRACE_INSCRATCH(mstate, size)) {
4066                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4067                         regs[rd] = 0;
4068                         break;
4069                 }
4070
4071                 *end = '\0';
4072
4073                 /*
4074                  * We want to have a name for the minor.  In order to do this,
4075                  * we need to walk the minor list from the devinfo.  We want
4076                  * to be sure that we don't infinitely walk a circular list,
4077                  * so we check for circularity by sending a scout pointer
4078                  * ahead two elements for every element that we iterate over;
4079                  * if the list is circular, these will ultimately point to the
4080                  * same element.  You may recognize this little trick as the
4081                  * answer to a stupid interview question -- one that always
4082                  * seems to be asked by those who had to have it laboriously
4083                  * explained to them, and who can't even concisely describe
4084                  * the conditions under which one would be forced to resort to
4085                  * this technique.  Needless to say, those conditions are
4086                  * found here -- and probably only here.  Is this the only use
4087                  * of this infamous trick in shipping, production code?  If it
4088                  * isn't, it probably should be...
4089                  */
4090                 if (minor != -1) {
4091                         uintptr_t maddr = dtrace_loadptr(daddr +
4092                             offsetof(struct dev_info, devi_minor));
4093
4094                         uintptr_t next = offsetof(struct ddi_minor_data, next);
4095                         uintptr_t name = offsetof(struct ddi_minor_data,
4096                             d_minor) + offsetof(struct ddi_minor, name);
4097                         uintptr_t dev = offsetof(struct ddi_minor_data,
4098                             d_minor) + offsetof(struct ddi_minor, dev);
4099                         uintptr_t scout;
4100
4101                         if (maddr != NULL)
4102                                 scout = dtrace_loadptr(maddr + next);
4103
4104                         while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4105                                 uint64_t m;
4106 #ifdef _LP64
4107                                 m = dtrace_load64(maddr + dev) & MAXMIN64;
4108 #else
4109                                 m = dtrace_load32(maddr + dev) & MAXMIN;
4110 #endif
4111                                 if (m != minor) {
4112                                         maddr = dtrace_loadptr(maddr + next);
4113
4114                                         if (scout == NULL)
4115                                                 continue;
4116
4117                                         scout = dtrace_loadptr(scout + next);
4118
4119                                         if (scout == NULL)
4120                                                 continue;
4121
4122                                         scout = dtrace_loadptr(scout + next);
4123
4124                                         if (scout == NULL)
4125                                                 continue;
4126
4127                                         if (scout == maddr) {
4128                                                 *flags |= CPU_DTRACE_ILLOP;
4129                                                 break;
4130                                         }
4131
4132                                         continue;
4133                                 }
4134
4135                                 /*
4136                                  * We have the minor data.  Now we need to
4137                                  * copy the minor's name into the end of the
4138                                  * pathname.
4139                                  */
4140                                 s = (char *)dtrace_loadptr(maddr + name);
4141                                 len = dtrace_strlen(s, size);
4142
4143                                 if (*flags & CPU_DTRACE_FAULT)
4144                                         break;
4145
4146                                 if (len != 0) {
4147                                         if ((end -= (len + 1)) < start)
4148                                                 break;
4149
4150                                         *end = ':';
4151                                 }
4152
4153                                 for (i = 1; i <= len; i++)
4154                                         end[i] = dtrace_load8((uintptr_t)s++);
4155                                 break;
4156                         }
4157                 }
4158
4159                 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4160                         ddi_node_state_t devi_state;
4161
4162                         devi_state = dtrace_load32(daddr +
4163                             offsetof(struct dev_info, devi_node_state));
4164
4165                         if (*flags & CPU_DTRACE_FAULT)
4166                                 break;
4167
4168                         if (devi_state >= DS_INITIALIZED) {
4169                                 s = (char *)dtrace_loadptr(daddr +
4170                                     offsetof(struct dev_info, devi_addr));
4171                                 len = dtrace_strlen(s, size);
4172
4173                                 if (*flags & CPU_DTRACE_FAULT)
4174                                         break;
4175
4176                                 if (len != 0) {
4177                                         if ((end -= (len + 1)) < start)
4178                                                 break;
4179
4180                                         *end = '@';
4181                                 }
4182
4183                                 for (i = 1; i <= len; i++)
4184                                         end[i] = dtrace_load8((uintptr_t)s++);
4185                         }
4186
4187                         /*
4188                          * Now for the node name...
4189                          */
4190                         s = (char *)dtrace_loadptr(daddr +
4191                             offsetof(struct dev_info, devi_node_name));
4192
4193                         daddr = dtrace_loadptr(daddr +
4194                             offsetof(struct dev_info, devi_parent));
4195
4196                         /*
4197                          * If our parent is NULL (that is, if we're the root
4198                          * node), we're going to use the special path
4199                          * "devices".
4200                          */
4201                         if (daddr == 0)
4202                                 s = "devices";
4203
4204                         len = dtrace_strlen(s, size);
4205                         if (*flags & CPU_DTRACE_FAULT)
4206                                 break;
4207
4208                         if ((end -= (len + 1)) < start)
4209                                 break;
4210
4211                         for (i = 1; i <= len; i++)
4212                                 end[i] = dtrace_load8((uintptr_t)s++);
4213                         *end = '/';
4214
4215                         if (depth++ > dtrace_devdepth_max) {
4216                                 *flags |= CPU_DTRACE_ILLOP;
4217                                 break;
4218                         }
4219                 }
4220
4221                 if (end < start)
4222                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4223
4224                 if (daddr == 0) {
4225                         regs[rd] = (uintptr_t)end;
4226                         mstate->dtms_scratch_ptr += size;
4227                 }
4228
4229                 break;
4230         }
4231 #endif
4232
4233         case DIF_SUBR_STRJOIN: {
4234                 char *d = (char *)mstate->dtms_scratch_ptr;
4235                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4236                 uintptr_t s1 = tupregs[0].dttk_value;
4237                 uintptr_t s2 = tupregs[1].dttk_value;
4238                 int i = 0;
4239
4240                 if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4241                     !dtrace_strcanload(s2, size, mstate, vstate)) {
4242                         regs[rd] = 0;
4243                         break;
4244                 }
4245
4246                 if (!DTRACE_INSCRATCH(mstate, size)) {
4247                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4248                         regs[rd] = 0;
4249                         break;
4250                 }
4251
4252                 for (;;) {
4253                         if (i >= size) {
4254                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4255                                 regs[rd] = 0;
4256                                 break;
4257                         }
4258
4259                         if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4260                                 i--;
4261                                 break;
4262                         }
4263                 }
4264
4265                 for (;;) {
4266                         if (i >= size) {
4267                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4268                                 regs[rd] = 0;
4269                                 break;
4270                         }
4271
4272                         if ((d[i++] = dtrace_load8(s2++)) == '\0')
4273                                 break;
4274                 }
4275
4276                 if (i < size) {
4277                         mstate->dtms_scratch_ptr += i;
4278                         regs[rd] = (uintptr_t)d;
4279                 }
4280
4281                 break;
4282         }
4283
4284         case DIF_SUBR_LLTOSTR: {
4285                 int64_t i = (int64_t)tupregs[0].dttk_value;
4286                 int64_t val = i < 0 ? i * -1 : i;
4287                 uint64_t size = 22;     /* enough room for 2^64 in decimal */
4288                 char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4289
4290                 if (!DTRACE_INSCRATCH(mstate, size)) {
4291                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4292                         regs[rd] = 0;
4293                         break;
4294                 }
4295
4296                 for (*end-- = '\0'; val; val /= 10)
4297                         *end-- = '0' + (val % 10);
4298
4299                 if (i == 0)
4300                         *end-- = '0';
4301
4302                 if (i < 0)
4303                         *end-- = '-';
4304
4305                 regs[rd] = (uintptr_t)end + 1;
4306                 mstate->dtms_scratch_ptr += size;
4307                 break;
4308         }
4309
4310         case DIF_SUBR_HTONS:
4311         case DIF_SUBR_NTOHS:
4312 #if BYTE_ORDER == BIG_ENDIAN
4313                 regs[rd] = (uint16_t)tupregs[0].dttk_value;
4314 #else
4315                 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4316 #endif
4317                 break;
4318
4319
4320         case DIF_SUBR_HTONL:
4321         case DIF_SUBR_NTOHL:
4322 #if BYTE_ORDER == BIG_ENDIAN
4323                 regs[rd] = (uint32_t)tupregs[0].dttk_value;
4324 #else
4325                 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4326 #endif
4327                 break;
4328
4329
4330         case DIF_SUBR_HTONLL:
4331         case DIF_SUBR_NTOHLL:
4332 #if BYTE_ORDER == BIG_ENDIAN
4333                 regs[rd] = (uint64_t)tupregs[0].dttk_value;
4334 #else
4335                 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4336 #endif
4337                 break;
4338
4339
4340         case DIF_SUBR_DIRNAME:
4341         case DIF_SUBR_BASENAME: {
4342                 char *dest = (char *)mstate->dtms_scratch_ptr;
4343                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4344                 uintptr_t src = tupregs[0].dttk_value;
4345                 int i, j, len = dtrace_strlen((char *)src, size);
4346                 int lastbase = -1, firstbase = -1, lastdir = -1;
4347                 int start, end;
4348
4349                 if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4350                         regs[rd] = 0;
4351                         break;
4352                 }
4353
4354                 if (!DTRACE_INSCRATCH(mstate, size)) {
4355                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4356                         regs[rd] = 0;
4357                         break;
4358                 }
4359
4360                 /*
4361                  * The basename and dirname for a zero-length string is
4362                  * defined to be "."
4363                  */
4364                 if (len == 0) {
4365                         len = 1;
4366                         src = (uintptr_t)".";
4367                 }
4368
4369                 /*
4370                  * Start from the back of the string, moving back toward the
4371                  * front until we see a character that isn't a slash.  That
4372                  * character is the last character in the basename.
4373                  */
4374                 for (i = len - 1; i >= 0; i--) {
4375                         if (dtrace_load8(src + i) != '/')
4376                                 break;
4377                 }
4378
4379                 if (i >= 0)
4380                         lastbase = i;
4381
4382                 /*
4383                  * Starting from the last character in the basename, move
4384                  * towards the front until we find a slash.  The character
4385                  * that we processed immediately before that is the first
4386                  * character in the basename.
4387                  */
4388                 for (; i >= 0; i--) {
4389                         if (dtrace_load8(src + i) == '/')
4390                                 break;
4391                 }
4392
4393                 if (i >= 0)
4394                         firstbase = i + 1;
4395
4396                 /*
4397                  * Now keep going until we find a non-slash character.  That
4398                  * character is the last character in the dirname.
4399                  */
4400                 for (; i >= 0; i--) {
4401                         if (dtrace_load8(src + i) != '/')
4402                                 break;
4403                 }
4404
4405                 if (i >= 0)
4406                         lastdir = i;
4407
4408                 ASSERT(!(lastbase == -1 && firstbase != -1));
4409                 ASSERT(!(firstbase == -1 && lastdir != -1));
4410
4411                 if (lastbase == -1) {
4412                         /*
4413                          * We didn't find a non-slash character.  We know that
4414                          * the length is non-zero, so the whole string must be
4415                          * slashes.  In either the dirname or the basename
4416                          * case, we return '/'.
4417                          */
4418                         ASSERT(firstbase == -1);
4419                         firstbase = lastbase = lastdir = 0;
4420                 }
4421
4422                 if (firstbase == -1) {
4423                         /*
4424                          * The entire string consists only of a basename
4425                          * component.  If we're looking for dirname, we need
4426                          * to change our string to be just "."; if we're
4427                          * looking for a basename, we'll just set the first
4428                          * character of the basename to be 0.
4429                          */
4430                         if (subr == DIF_SUBR_DIRNAME) {
4431                                 ASSERT(lastdir == -1);
4432                                 src = (uintptr_t)".";
4433                                 lastdir = 0;
4434                         } else {
4435                                 firstbase = 0;
4436                         }
4437                 }
4438
4439                 if (subr == DIF_SUBR_DIRNAME) {
4440                         if (lastdir == -1) {
4441                                 /*
4442                                  * We know that we have a slash in the name --
4443                                  * or lastdir would be set to 0, above.  And
4444                                  * because lastdir is -1, we know that this
4445                                  * slash must be the first character.  (That
4446                                  * is, the full string must be of the form
4447                                  * "/basename".)  In this case, the last
4448                                  * character of the directory name is 0.
4449                                  */
4450                                 lastdir = 0;
4451                         }
4452
4453                         start = 0;
4454                         end = lastdir;
4455                 } else {
4456                         ASSERT(subr == DIF_SUBR_BASENAME);
4457                         ASSERT(firstbase != -1 && lastbase != -1);
4458                         start = firstbase;
4459                         end = lastbase;
4460                 }
4461
4462                 for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4463                         dest[j] = dtrace_load8(src + i);
4464
4465                 dest[j] = '\0';
4466                 regs[rd] = (uintptr_t)dest;
4467                 mstate->dtms_scratch_ptr += size;
4468                 break;
4469         }
4470
4471         case DIF_SUBR_CLEANPATH: {
4472                 char *dest = (char *)mstate->dtms_scratch_ptr, c;
4473                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4474                 uintptr_t src = tupregs[0].dttk_value;
4475                 int i = 0, j = 0;
4476
4477                 if (!dtrace_strcanload(src, size, mstate, vstate)) {
4478                         regs[rd] = 0;
4479                         break;
4480                 }
4481
4482                 if (!DTRACE_INSCRATCH(mstate, size)) {
4483                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4484                         regs[rd] = 0;
4485                         break;
4486                 }
4487
4488                 /*
4489                  * Move forward, loading each character.
4490                  */
4491                 do {
4492                         c = dtrace_load8(src + i++);
4493 next:
4494                         if (j + 5 >= size)      /* 5 = strlen("/..c\0") */
4495                                 break;
4496
4497                         if (c != '/') {
4498                                 dest[j++] = c;
4499                                 continue;
4500                         }
4501
4502                         c = dtrace_load8(src + i++);
4503
4504                         if (c == '/') {
4505                                 /*
4506                                  * We have two slashes -- we can just advance
4507                                  * to the next character.
4508                                  */
4509                                 goto next;
4510                         }
4511
4512                         if (c != '.') {
4513                                 /*
4514                                  * This is not "." and it's not ".." -- we can
4515                                  * just store the "/" and this character and
4516                                  * drive on.
4517                                  */
4518                                 dest[j++] = '/';
4519                                 dest[j++] = c;
4520                                 continue;
4521                         }
4522
4523                         c = dtrace_load8(src + i++);
4524
4525                         if (c == '/') {
4526                                 /*
4527                                  * This is a "/./" component.  We're not going
4528                                  * to store anything in the destination buffer;
4529                                  * we're just going to go to the next component.
4530                                  */
4531                                 goto next;
4532                         }
4533
4534                         if (c != '.') {
4535                                 /*
4536                                  * This is not ".." -- we can just store the
4537                                  * "/." and this character and continue
4538                                  * processing.
4539                                  */
4540                                 dest[j++] = '/';
4541                                 dest[j++] = '.';
4542                                 dest[j++] = c;
4543                                 continue;
4544                         }
4545
4546                         c = dtrace_load8(src + i++);
4547
4548                         if (c != '/' && c != '\0') {
4549                                 /*
4550                                  * This is not ".." -- it's "..[mumble]".
4551                                  * We'll store the "/.." and this character
4552                                  * and continue processing.
4553                                  */
4554                                 dest[j++] = '/';
4555                                 dest[j++] = '.';
4556                                 dest[j++] = '.';
4557                                 dest[j++] = c;
4558                                 continue;
4559                         }
4560
4561                         /*
4562                          * This is "/../" or "/..\0".  We need to back up
4563                          * our destination pointer until we find a "/".
4564                          */
4565                         i--;
4566                         while (j != 0 && dest[--j] != '/')
4567                                 continue;
4568
4569                         if (c == '\0')
4570                                 dest[++j] = '/';
4571                 } while (c != '\0');
4572
4573                 dest[j] = '\0';
4574                 regs[rd] = (uintptr_t)dest;
4575                 mstate->dtms_scratch_ptr += size;
4576                 break;
4577         }
4578
4579         case DIF_SUBR_INET_NTOA:
4580         case DIF_SUBR_INET_NTOA6:
4581         case DIF_SUBR_INET_NTOP: {
4582                 size_t size;
4583                 int af, argi, i;
4584                 char *base, *end;
4585
4586                 if (subr == DIF_SUBR_INET_NTOP) {
4587                         af = (int)tupregs[0].dttk_value;
4588                         argi = 1;
4589                 } else {
4590                         af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4591                         argi = 0;
4592                 }
4593
4594                 if (af == AF_INET) {
4595                         ipaddr_t ip4;
4596                         uint8_t *ptr8, val;
4597
4598                         /*
4599                          * Safely load the IPv4 address.
4600                          */
4601                         ip4 = dtrace_load32(tupregs[argi].dttk_value);
4602
4603                         /*
4604                          * Check an IPv4 string will fit in scratch.
4605                          */
4606                         size = INET_ADDRSTRLEN;
4607                         if (!DTRACE_INSCRATCH(mstate, size)) {
4608                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4609                                 regs[rd] = 0;
4610                                 break;
4611                         }
4612                         base = (char *)mstate->dtms_scratch_ptr;
4613                         end = (char *)mstate->dtms_scratch_ptr + size - 1;
4614
4615                         /*
4616                          * Stringify as a dotted decimal quad.
4617                          */
4618                         *end-- = '\0';
4619                         ptr8 = (uint8_t *)&ip4;
4620                         for (i = 3; i >= 0; i--) {
4621                                 val = ptr8[i];
4622
4623                                 if (val == 0) {
4624                                         *end-- = '0';
4625                                 } else {
4626                                         for (; val; val /= 10) {
4627                                                 *end-- = '0' + (val % 10);
4628                                         }
4629                                 }
4630
4631                                 if (i > 0)
4632                                         *end-- = '.';
4633                         }
4634                         ASSERT(end + 1 >= base);
4635
4636                 } else if (af == AF_INET6) {
4637                         struct in6_addr ip6;
4638                         int firstzero, tryzero, numzero, v6end;
4639                         uint16_t val;
4640                         const char digits[] = "0123456789abcdef";
4641
4642                         /*
4643                          * Stringify using RFC 1884 convention 2 - 16 bit
4644                          * hexadecimal values with a zero-run compression.
4645                          * Lower case hexadecimal digits are used.
4646                          *      eg, fe80::214:4fff:fe0b:76c8.
4647                          * The IPv4 embedded form is returned for inet_ntop,
4648                          * just the IPv4 string is returned for inet_ntoa6.
4649                          */
4650
4651                         /*
4652                          * Safely load the IPv6 address.
4653                          */
4654                         dtrace_bcopy(
4655                             (void *)(uintptr_t)tupregs[argi].dttk_value,
4656                             (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4657
4658                         /*
4659                          * Check an IPv6 string will fit in scratch.
4660                          */
4661                         size = INET6_ADDRSTRLEN;
4662                         if (!DTRACE_INSCRATCH(mstate, size)) {
4663                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4664                                 regs[rd] = 0;
4665                                 break;
4666                         }
4667                         base = (char *)mstate->dtms_scratch_ptr;
4668                         end = (char *)mstate->dtms_scratch_ptr + size - 1;
4669                         *end-- = '\0';
4670
4671                         /*
4672                          * Find the longest run of 16 bit zero values
4673                          * for the single allowed zero compression - "::".
4674                          */
4675                         firstzero = -1;
4676                         tryzero = -1;
4677                         numzero = 1;
4678                         for (i = 0; i < sizeof (struct in6_addr); i++) {
4679 #if defined(sun)
4680                                 if (ip6._S6_un._S6_u8[i] == 0 &&
4681 #else
4682                                 if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4683 #endif
4684                                     tryzero == -1 && i % 2 == 0) {
4685                                         tryzero = i;
4686                                         continue;
4687                                 }
4688
4689                                 if (tryzero != -1 &&
4690 #if defined(sun)
4691                                     (ip6._S6_un._S6_u8[i] != 0 ||
4692 #else
4693                                     (ip6.__u6_addr.__u6_addr8[i] != 0 ||
4694 #endif
4695                                     i == sizeof (struct in6_addr) - 1)) {
4696
4697                                         if (i - tryzero <= numzero) {
4698                                                 tryzero = -1;
4699                                                 continue;
4700                                         }
4701
4702                                         firstzero = tryzero;
4703                                         numzero = i - i % 2 - tryzero;
4704                                         tryzero = -1;
4705
4706 #if defined(sun)
4707                                         if (ip6._S6_un._S6_u8[i] == 0 &&
4708 #else
4709                                         if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4710 #endif
4711                                             i == sizeof (struct in6_addr) - 1)
4712                                                 numzero += 2;
4713                                 }
4714                         }
4715                         ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4716
4717                         /*
4718                          * Check for an IPv4 embedded address.
4719                          */
4720                         v6end = sizeof (struct in6_addr) - 2;
4721                         if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4722                             IN6_IS_ADDR_V4COMPAT(&ip6)) {
4723                                 for (i = sizeof (struct in6_addr) - 1;
4724                                     i >= DTRACE_V4MAPPED_OFFSET; i--) {
4725                                         ASSERT(end >= base);
4726
4727 #if defined(sun)
4728                                         val = ip6._S6_un._S6_u8[i];
4729 #else
4730                                         val = ip6.__u6_addr.__u6_addr8[i];
4731 #endif
4732
4733                                         if (val == 0) {
4734                                                 *end-- = '0';
4735                                         } else {
4736                                                 for (; val; val /= 10) {
4737                                                         *end-- = '0' + val % 10;
4738                                                 }
4739                                         }
4740
4741                                         if (i > DTRACE_V4MAPPED_OFFSET)
4742                                                 *end-- = '.';
4743                                 }
4744
4745                                 if (subr == DIF_SUBR_INET_NTOA6)
4746                                         goto inetout;
4747
4748                                 /*
4749                                  * Set v6end to skip the IPv4 address that
4750                                  * we have already stringified.
4751                                  */
4752                                 v6end = 10;
4753                         }
4754
4755                         /*
4756                          * Build the IPv6 string by working through the
4757                          * address in reverse.
4758                          */
4759                         for (i = v6end; i >= 0; i -= 2) {
4760                                 ASSERT(end >= base);
4761
4762                                 if (i == firstzero + numzero - 2) {
4763                                         *end-- = ':';
4764                                         *end-- = ':';
4765                                         i -= numzero - 2;
4766                                         continue;
4767                                 }
4768
4769                                 if (i < 14 && i != firstzero - 2)
4770                                         *end-- = ':';
4771
4772 #if defined(sun)
4773                                 val = (ip6._S6_un._S6_u8[i] << 8) +
4774                                     ip6._S6_un._S6_u8[i + 1];
4775 #else
4776                                 val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
4777                                     ip6.__u6_addr.__u6_addr8[i + 1];
4778 #endif
4779
4780                                 if (val == 0) {
4781                                         *end-- = '0';
4782                                 } else {
4783                                         for (; val; val /= 16) {
4784                                                 *end-- = digits[val % 16];
4785                                         }
4786                                 }
4787                         }
4788                         ASSERT(end + 1 >= base);
4789
4790                 } else {
4791                         /*
4792                          * The user didn't use AH_INET or AH_INET6.
4793                          */
4794                         DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4795                         regs[rd] = 0;
4796                         break;
4797                 }
4798
4799 inetout:        regs[rd] = (uintptr_t)end + 1;
4800                 mstate->dtms_scratch_ptr += size;
4801                 break;
4802         }
4803
4804         case DIF_SUBR_MEMREF: {
4805                 uintptr_t size = 2 * sizeof(uintptr_t);
4806                 uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4807                 size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
4808
4809                 /* address and length */
4810                 memref[0] = tupregs[0].dttk_value;
4811                 memref[1] = tupregs[1].dttk_value;
4812
4813                 regs[rd] = (uintptr_t) memref;
4814                 mstate->dtms_scratch_ptr += scratch_size;
4815                 break;
4816         }
4817
4818         case DIF_SUBR_TYPEREF: {
4819                 uintptr_t size = 4 * sizeof(uintptr_t);
4820                 uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4821                 size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
4822
4823                 /* address, num_elements, type_str, type_len */
4824                 typeref[0] = tupregs[0].dttk_value;
4825                 typeref[1] = tupregs[1].dttk_value;
4826                 typeref[2] = tupregs[2].dttk_value;
4827                 typeref[3] = tupregs[3].dttk_value;
4828
4829                 regs[rd] = (uintptr_t) typeref;
4830                 mstate->dtms_scratch_ptr += scratch_size;
4831                 break;
4832         }
4833         }
4834 }
4835
4836 /*
4837  * Emulate the execution of DTrace IR instructions specified by the given
4838  * DIF object.  This function is deliberately void of assertions as all of
4839  * the necessary checks are handled by a call to dtrace_difo_validate().
4840  */
4841 static uint64_t
4842 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4843     dtrace_vstate_t *vstate, dtrace_state_t *state)
4844 {
4845         const dif_instr_t *text = difo->dtdo_buf;
4846         const uint_t textlen = difo->dtdo_len;
4847         const char *strtab = difo->dtdo_strtab;
4848         const uint64_t *inttab = difo->dtdo_inttab;
4849
4850         uint64_t rval = 0;
4851         dtrace_statvar_t *svar;
4852         dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4853         dtrace_difv_t *v;
4854         volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4855         volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4856
4857         dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4858         uint64_t regs[DIF_DIR_NREGS];
4859         uint64_t *tmp;
4860
4861         uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4862         int64_t cc_r;
4863         uint_t pc = 0, id, opc = 0;
4864         uint8_t ttop = 0;
4865         dif_instr_t instr;
4866         uint_t r1, r2, rd;
4867
4868         /*
4869          * We stash the current DIF object into the machine state: we need it
4870          * for subsequent access checking.
4871          */
4872         mstate->dtms_difo = difo;
4873
4874         regs[DIF_REG_R0] = 0;           /* %r0 is fixed at zero */
4875
4876         while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4877                 opc = pc;
4878
4879                 instr = text[pc++];
4880                 r1 = DIF_INSTR_R1(instr);
4881                 r2 = DIF_INSTR_R2(instr);
4882                 rd = DIF_INSTR_RD(instr);
4883
4884                 switch (DIF_INSTR_OP(instr)) {
4885                 case DIF_OP_OR:
4886                         regs[rd] = regs[r1] | regs[r2];
4887                         break;
4888                 case DIF_OP_XOR:
4889                         regs[rd] = regs[r1] ^ regs[r2];
4890                         break;
4891                 case DIF_OP_AND:
4892                         regs[rd] = regs[r1] & regs[r2];
4893                         break;
4894                 case DIF_OP_SLL:
4895                         regs[rd] = regs[r1] << regs[r2];
4896                         break;
4897                 case DIF_OP_SRL:
4898                         regs[rd] = regs[r1] >> regs[r2];
4899                         break;
4900                 case DIF_OP_SUB:
4901                         regs[rd] = regs[r1] - regs[r2];
4902                         break;
4903                 case DIF_OP_ADD:
4904                         regs[rd] = regs[r1] + regs[r2];
4905                         break;
4906                 case DIF_OP_MUL:
4907                         regs[rd] = regs[r1] * regs[r2];
4908                         break;
4909                 case DIF_OP_SDIV:
4910                         if (regs[r2] == 0) {
4911                                 regs[rd] = 0;
4912                                 *flags |= CPU_DTRACE_DIVZERO;
4913                         } else {
4914                                 regs[rd] = (int64_t)regs[r1] /
4915                                     (int64_t)regs[r2];
4916                         }
4917                         break;
4918
4919                 case DIF_OP_UDIV:
4920                         if (regs[r2] == 0) {
4921                                 regs[rd] = 0;
4922                                 *flags |= CPU_DTRACE_DIVZERO;
4923                         } else {
4924                                 regs[rd] = regs[r1] / regs[r2];
4925                         }
4926                         break;
4927
4928                 case DIF_OP_SREM:
4929                         if (regs[r2] == 0) {
4930                                 regs[rd] = 0;
4931                                 *flags |= CPU_DTRACE_DIVZERO;
4932                         } else {
4933                                 regs[rd] = (int64_t)regs[r1] %
4934                                     (int64_t)regs[r2];
4935                         }
4936                         break;
4937
4938                 case DIF_OP_UREM:
4939                         if (regs[r2] == 0) {
4940                                 regs[rd] = 0;
4941                                 *flags |= CPU_DTRACE_DIVZERO;
4942                         } else {
4943                                 regs[rd] = regs[r1] % regs[r2];
4944                         }
4945                         break;
4946
4947                 case DIF_OP_NOT:
4948                         regs[rd] = ~regs[r1];
4949                         break;
4950                 case DIF_OP_MOV:
4951                         regs[rd] = regs[r1];
4952                         break;
4953                 case DIF_OP_CMP:
4954                         cc_r = regs[r1] - regs[r2];
4955                         cc_n = cc_r < 0;
4956                         cc_z = cc_r == 0;
4957                         cc_v = 0;
4958                         cc_c = regs[r1] < regs[r2];
4959                         break;
4960                 case DIF_OP_TST:
4961                         cc_n = cc_v = cc_c = 0;
4962                         cc_z = regs[r1] == 0;
4963                         break;
4964                 case DIF_OP_BA:
4965                         pc = DIF_INSTR_LABEL(instr);
4966                         break;
4967                 case DIF_OP_BE:
4968                         if (cc_z)
4969                                 pc = DIF_INSTR_LABEL(instr);
4970                         break;
4971                 case DIF_OP_BNE:
4972                         if (cc_z == 0)
4973                                 pc = DIF_INSTR_LABEL(instr);
4974                         break;
4975                 case DIF_OP_BG:
4976                         if ((cc_z | (cc_n ^ cc_v)) == 0)
4977                                 pc = DIF_INSTR_LABEL(instr);
4978                         break;
4979                 case DIF_OP_BGU:
4980                         if ((cc_c | cc_z) == 0)
4981                                 pc = DIF_INSTR_LABEL(instr);
4982                         break;
4983                 case DIF_OP_BGE:
4984                         if ((cc_n ^ cc_v) == 0)
4985                                 pc = DIF_INSTR_LABEL(instr);
4986                         break;
4987                 case DIF_OP_BGEU:
4988                         if (cc_c == 0)
4989                                 pc = DIF_INSTR_LABEL(instr);
4990                         break;
4991                 case DIF_OP_BL:
4992                         if (cc_n ^ cc_v)
4993                                 pc = DIF_INSTR_LABEL(instr);
4994                         break;
4995                 case DIF_OP_BLU:
4996                         if (cc_c)
4997                                 pc = DIF_INSTR_LABEL(instr);
4998                         break;
4999                 case DIF_OP_BLE:
5000                         if (cc_z | (cc_n ^ cc_v))
5001                                 pc = DIF_INSTR_LABEL(instr);
5002                         break;
5003                 case DIF_OP_BLEU:
5004                         if (cc_c | cc_z)
5005                                 pc = DIF_INSTR_LABEL(instr);
5006                         break;
5007                 case DIF_OP_RLDSB:
5008                         if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5009                                 *flags |= CPU_DTRACE_KPRIV;
5010                                 *illval = regs[r1];
5011                                 break;
5012                         }
5013                         /*FALLTHROUGH*/
5014                 case DIF_OP_LDSB:
5015                         regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5016                         break;
5017                 case DIF_OP_RLDSH:
5018                         if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5019                                 *flags |= CPU_DTRACE_KPRIV;
5020                                 *illval = regs[r1];
5021                                 break;
5022                         }
5023                         /*FALLTHROUGH*/
5024                 case DIF_OP_LDSH:
5025                         regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5026                         break;
5027                 case DIF_OP_RLDSW:
5028                         if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5029                                 *flags |= CPU_DTRACE_KPRIV;
5030                                 *illval = regs[r1];
5031                                 break;
5032                         }
5033                         /*FALLTHROUGH*/
5034                 case DIF_OP_LDSW:
5035                         regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5036                         break;
5037                 case DIF_OP_RLDUB:
5038                         if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5039                                 *flags |= CPU_DTRACE_KPRIV;
5040                                 *illval = regs[r1];
5041                                 break;
5042                         }
5043                         /*FALLTHROUGH*/
5044                 case DIF_OP_LDUB:
5045                         regs[rd] = dtrace_load8(regs[r1]);
5046                         break;
5047                 case DIF_OP_RLDUH:
5048                         if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5049                                 *flags |= CPU_DTRACE_KPRIV;
5050                                 *illval = regs[r1];
5051                                 break;
5052                         }
5053                         /*FALLTHROUGH*/
5054                 case DIF_OP_LDUH:
5055                         regs[rd] = dtrace_load16(regs[r1]);
5056                         break;
5057                 case DIF_OP_RLDUW:
5058                         if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5059                                 *flags |= CPU_DTRACE_KPRIV;
5060                                 *illval = regs[r1];
5061                                 break;
5062                         }
5063                         /*FALLTHROUGH*/
5064                 case DIF_OP_LDUW:
5065                         regs[rd] = dtrace_load32(regs[r1]);
5066                         break;
5067                 case DIF_OP_RLDX:
5068                         if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
5069                                 *flags |= CPU_DTRACE_KPRIV;
5070                                 *illval = regs[r1];
5071                                 break;
5072                         }
5073                         /*FALLTHROUGH*/
5074                 case DIF_OP_LDX:
5075                         regs[rd] = dtrace_load64(regs[r1]);
5076                         break;
5077                 case DIF_OP_ULDSB:
5078                         regs[rd] = (int8_t)
5079                             dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5080                         break;
5081                 case DIF_OP_ULDSH:
5082                         regs[rd] = (int16_t)
5083                             dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5084                         break;
5085                 case DIF_OP_ULDSW:
5086                         regs[rd] = (int32_t)
5087                             dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5088                         break;
5089                 case DIF_OP_ULDUB:
5090                         regs[rd] =
5091                             dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5092                         break;
5093                 case DIF_OP_ULDUH:
5094                         regs[rd] =
5095                             dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5096                         break;
5097                 case DIF_OP_ULDUW:
5098                         regs[rd] =
5099                             dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5100                         break;
5101                 case DIF_OP_ULDX:
5102                         regs[rd] =
5103                             dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5104                         break;
5105                 case DIF_OP_RET:
5106                         rval = regs[rd];
5107                         pc = textlen;
5108                         break;
5109                 case DIF_OP_NOP:
5110                         break;
5111                 case DIF_OP_SETX:
5112                         regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5113                         break;
5114                 case DIF_OP_SETS:
5115                         regs[rd] = (uint64_t)(uintptr_t)
5116                             (strtab + DIF_INSTR_STRING(instr));
5117                         break;
5118                 case DIF_OP_SCMP: {
5119                         size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5120                         uintptr_t s1 = regs[r1];
5121                         uintptr_t s2 = regs[r2];
5122
5123                         if (s1 != 0 &&
5124                             !dtrace_strcanload(s1, sz, mstate, vstate))
5125                                 break;
5126                         if (s2 != 0 &&
5127                             !dtrace_strcanload(s2, sz, mstate, vstate))
5128                                 break;
5129
5130                         cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5131
5132                         cc_n = cc_r < 0;
5133                         cc_z = cc_r == 0;
5134                         cc_v = cc_c = 0;
5135                         break;
5136                 }
5137                 case DIF_OP_LDGA:
5138                         regs[rd] = dtrace_dif_variable(mstate, state,
5139                             r1, regs[r2]);
5140                         break;
5141                 case DIF_OP_LDGS:
5142                         id = DIF_INSTR_VAR(instr);
5143
5144                         if (id >= DIF_VAR_OTHER_UBASE) {
5145                                 uintptr_t a;
5146
5147                                 id -= DIF_VAR_OTHER_UBASE;
5148                                 svar = vstate->dtvs_globals[id];
5149                                 ASSERT(svar != NULL);
5150                                 v = &svar->dtsv_var;
5151
5152                                 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5153                                         regs[rd] = svar->dtsv_data;
5154                                         break;
5155                                 }
5156
5157                                 a = (uintptr_t)svar->dtsv_data;
5158
5159                                 if (*(uint8_t *)a == UINT8_MAX) {
5160                                         /*
5161                                          * If the 0th byte is set to UINT8_MAX
5162                                          * then this is to be treated as a
5163                                          * reference to a NULL variable.
5164                                          */
5165                                         regs[rd] = 0;
5166                                 } else {
5167                                         regs[rd] = a + sizeof (uint64_t);
5168                                 }
5169
5170                                 break;
5171                         }
5172
5173                         regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5174                         break;
5175
5176                 case DIF_OP_STGS:
5177                         id = DIF_INSTR_VAR(instr);
5178
5179                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5180                         id -= DIF_VAR_OTHER_UBASE;
5181
5182                         svar = vstate->dtvs_globals[id];
5183                         ASSERT(svar != NULL);
5184                         v = &svar->dtsv_var;
5185
5186                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5187                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
5188
5189                                 ASSERT(a != 0);
5190                                 ASSERT(svar->dtsv_size != 0);
5191
5192                                 if (regs[rd] == 0) {
5193                                         *(uint8_t *)a = UINT8_MAX;
5194                                         break;
5195                                 } else {
5196                                         *(uint8_t *)a = 0;
5197                                         a += sizeof (uint64_t);
5198                                 }
5199                                 if (!dtrace_vcanload(
5200                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5201                                     mstate, vstate))
5202                                         break;
5203
5204                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5205                                     (void *)a, &v->dtdv_type);
5206                                 break;
5207                         }
5208
5209                         svar->dtsv_data = regs[rd];
5210                         break;
5211
5212                 case DIF_OP_LDTA:
5213                         /*
5214                          * There are no DTrace built-in thread-local arrays at
5215                          * present.  This opcode is saved for future work.
5216                          */
5217                         *flags |= CPU_DTRACE_ILLOP;
5218                         regs[rd] = 0;
5219                         break;
5220
5221                 case DIF_OP_LDLS:
5222                         id = DIF_INSTR_VAR(instr);
5223
5224                         if (id < DIF_VAR_OTHER_UBASE) {
5225                                 /*
5226                                  * For now, this has no meaning.
5227                                  */
5228                                 regs[rd] = 0;
5229                                 break;
5230                         }
5231
5232                         id -= DIF_VAR_OTHER_UBASE;
5233
5234                         ASSERT(id < vstate->dtvs_nlocals);
5235                         ASSERT(vstate->dtvs_locals != NULL);
5236
5237                         svar = vstate->dtvs_locals[id];
5238                         ASSERT(svar != NULL);
5239                         v = &svar->dtsv_var;
5240
5241                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5242                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
5243                                 size_t sz = v->dtdv_type.dtdt_size;
5244
5245                                 sz += sizeof (uint64_t);
5246                                 ASSERT(svar->dtsv_size == NCPU * sz);
5247                                 a += curcpu * sz;
5248
5249                                 if (*(uint8_t *)a == UINT8_MAX) {
5250                                         /*
5251                                          * If the 0th byte is set to UINT8_MAX
5252                                          * then this is to be treated as a
5253                                          * reference to a NULL variable.
5254                                          */
5255                                         regs[rd] = 0;
5256                                 } else {
5257                                         regs[rd] = a + sizeof (uint64_t);
5258                                 }
5259
5260                                 break;
5261                         }
5262
5263                         ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5264                         tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5265                         regs[rd] = tmp[curcpu];
5266                         break;
5267
5268                 case DIF_OP_STLS:
5269                         id = DIF_INSTR_VAR(instr);
5270
5271                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5272                         id -= DIF_VAR_OTHER_UBASE;
5273                         ASSERT(id < vstate->dtvs_nlocals);
5274
5275                         ASSERT(vstate->dtvs_locals != NULL);
5276                         svar = vstate->dtvs_locals[id];
5277                         ASSERT(svar != NULL);
5278                         v = &svar->dtsv_var;
5279
5280                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5281                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
5282                                 size_t sz = v->dtdv_type.dtdt_size;
5283
5284                                 sz += sizeof (uint64_t);
5285                                 ASSERT(svar->dtsv_size == NCPU * sz);
5286                                 a += curcpu * sz;
5287
5288                                 if (regs[rd] == 0) {
5289                                         *(uint8_t *)a = UINT8_MAX;
5290                                         break;
5291                                 } else {
5292                                         *(uint8_t *)a = 0;
5293                                         a += sizeof (uint64_t);
5294                                 }
5295
5296                                 if (!dtrace_vcanload(
5297                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5298                                     mstate, vstate))
5299                                         break;
5300
5301                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5302                                     (void *)a, &v->dtdv_type);
5303                                 break;
5304                         }
5305
5306                         ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5307                         tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5308                         tmp[curcpu] = regs[rd];
5309                         break;
5310
5311                 case DIF_OP_LDTS: {
5312                         dtrace_dynvar_t *dvar;
5313                         dtrace_key_t *key;
5314
5315                         id = DIF_INSTR_VAR(instr);
5316                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5317                         id -= DIF_VAR_OTHER_UBASE;
5318                         v = &vstate->dtvs_tlocals[id];
5319
5320                         key = &tupregs[DIF_DTR_NREGS];
5321                         key[0].dttk_value = (uint64_t)id;
5322                         key[0].dttk_size = 0;
5323                         DTRACE_TLS_THRKEY(key[1].dttk_value);
5324                         key[1].dttk_size = 0;
5325
5326                         dvar = dtrace_dynvar(dstate, 2, key,
5327                             sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5328                             mstate, vstate);
5329
5330                         if (dvar == NULL) {
5331                                 regs[rd] = 0;
5332                                 break;
5333                         }
5334
5335                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5336                                 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5337                         } else {
5338                                 regs[rd] = *((uint64_t *)dvar->dtdv_data);
5339                         }
5340
5341                         break;
5342                 }
5343
5344                 case DIF_OP_STTS: {
5345                         dtrace_dynvar_t *dvar;
5346                         dtrace_key_t *key;
5347
5348                         id = DIF_INSTR_VAR(instr);
5349                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5350                         id -= DIF_VAR_OTHER_UBASE;
5351
5352                         key = &tupregs[DIF_DTR_NREGS];
5353                         key[0].dttk_value = (uint64_t)id;
5354                         key[0].dttk_size = 0;
5355                         DTRACE_TLS_THRKEY(key[1].dttk_value);
5356                         key[1].dttk_size = 0;
5357                         v = &vstate->dtvs_tlocals[id];
5358
5359                         dvar = dtrace_dynvar(dstate, 2, key,
5360                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5361                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
5362                             regs[rd] ? DTRACE_DYNVAR_ALLOC :
5363                             DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5364
5365                         /*
5366                          * Given that we're storing to thread-local data,
5367                          * we need to flush our predicate cache.
5368                          */
5369                         curthread->t_predcache = 0;
5370
5371                         if (dvar == NULL)
5372                                 break;
5373
5374                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5375                                 if (!dtrace_vcanload(
5376                                     (void *)(uintptr_t)regs[rd],
5377                                     &v->dtdv_type, mstate, vstate))
5378                                         break;
5379
5380                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5381                                     dvar->dtdv_data, &v->dtdv_type);
5382                         } else {
5383                                 *((uint64_t *)dvar->dtdv_data) = regs[rd];
5384                         }
5385
5386                         break;
5387                 }
5388
5389                 case DIF_OP_SRA:
5390                         regs[rd] = (int64_t)regs[r1] >> regs[r2];
5391                         break;
5392
5393                 case DIF_OP_CALL:
5394                         dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5395                             regs, tupregs, ttop, mstate, state);
5396                         break;
5397
5398                 case DIF_OP_PUSHTR:
5399                         if (ttop == DIF_DTR_NREGS) {
5400                                 *flags |= CPU_DTRACE_TUPOFLOW;
5401                                 break;
5402                         }
5403
5404                         if (r1 == DIF_TYPE_STRING) {
5405                                 /*
5406                                  * If this is a string type and the size is 0,
5407                                  * we'll use the system-wide default string
5408                                  * size.  Note that we are _not_ looking at
5409                                  * the value of the DTRACEOPT_STRSIZE option;
5410                                  * had this been set, we would expect to have
5411                                  * a non-zero size value in the "pushtr".
5412                                  */
5413                                 tupregs[ttop].dttk_size =
5414                                     dtrace_strlen((char *)(uintptr_t)regs[rd],
5415                                     regs[r2] ? regs[r2] :
5416                                     dtrace_strsize_default) + 1;
5417                         } else {
5418                                 tupregs[ttop].dttk_size = regs[r2];
5419                         }
5420
5421                         tupregs[ttop++].dttk_value = regs[rd];
5422                         break;
5423
5424                 case DIF_OP_PUSHTV:
5425                         if (ttop == DIF_DTR_NREGS) {
5426                                 *flags |= CPU_DTRACE_TUPOFLOW;
5427                                 break;
5428                         }
5429
5430                         tupregs[ttop].dttk_value = regs[rd];
5431                         tupregs[ttop++].dttk_size = 0;
5432                         break;
5433
5434                 case DIF_OP_POPTS:
5435                         if (ttop != 0)
5436                                 ttop--;
5437                         break;
5438
5439                 case DIF_OP_FLUSHTS:
5440                         ttop = 0;
5441                         break;
5442
5443                 case DIF_OP_LDGAA:
5444                 case DIF_OP_LDTAA: {
5445                         dtrace_dynvar_t *dvar;
5446                         dtrace_key_t *key = tupregs;
5447                         uint_t nkeys = ttop;
5448
5449                         id = DIF_INSTR_VAR(instr);
5450                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5451                         id -= DIF_VAR_OTHER_UBASE;
5452
5453                         key[nkeys].dttk_value = (uint64_t)id;
5454                         key[nkeys++].dttk_size = 0;
5455
5456                         if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5457                                 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5458                                 key[nkeys++].dttk_size = 0;
5459                                 v = &vstate->dtvs_tlocals[id];
5460                         } else {
5461                                 v = &vstate->dtvs_globals[id]->dtsv_var;
5462                         }
5463
5464                         dvar = dtrace_dynvar(dstate, nkeys, key,
5465                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5466                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
5467                             DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5468
5469                         if (dvar == NULL) {
5470                                 regs[rd] = 0;
5471                                 break;
5472                         }
5473
5474                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5475                                 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5476                         } else {
5477                                 regs[rd] = *((uint64_t *)dvar->dtdv_data);
5478                         }
5479
5480                         break;
5481                 }
5482
5483                 case DIF_OP_STGAA:
5484                 case DIF_OP_STTAA: {
5485                         dtrace_dynvar_t *dvar;
5486                         dtrace_key_t *key = tupregs;
5487                         uint_t nkeys = ttop;
5488
5489                         id = DIF_INSTR_VAR(instr);
5490                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5491                         id -= DIF_VAR_OTHER_UBASE;
5492
5493                         key[nkeys].dttk_value = (uint64_t)id;
5494                         key[nkeys++].dttk_size = 0;
5495
5496                         if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5497                                 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5498                                 key[nkeys++].dttk_size = 0;
5499                                 v = &vstate->dtvs_tlocals[id];
5500                         } else {
5501                                 v = &vstate->dtvs_globals[id]->dtsv_var;
5502                         }
5503
5504                         dvar = dtrace_dynvar(dstate, nkeys, key,
5505                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5506                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
5507                             regs[rd] ? DTRACE_DYNVAR_ALLOC :
5508                             DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5509
5510                         if (dvar == NULL)
5511                                 break;
5512
5513                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5514                                 if (!dtrace_vcanload(
5515                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5516                                     mstate, vstate))
5517                                         break;
5518
5519                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5520                                     dvar->dtdv_data, &v->dtdv_type);
5521                         } else {
5522                                 *((uint64_t *)dvar->dtdv_data) = regs[rd];
5523                         }
5524
5525                         break;
5526                 }
5527
5528                 case DIF_OP_ALLOCS: {
5529                         uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5530                         size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5531
5532                         /*
5533                          * Rounding up the user allocation size could have
5534                          * overflowed large, bogus allocations (like -1ULL) to
5535                          * 0.
5536                          */
5537                         if (size < regs[r1] ||
5538                             !DTRACE_INSCRATCH(mstate, size)) {
5539                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5540                                 regs[rd] = 0;
5541                                 break;
5542                         }
5543
5544                         dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5545                         mstate->dtms_scratch_ptr += size;
5546                         regs[rd] = ptr;
5547                         break;
5548                 }
5549
5550                 case DIF_OP_COPYS:
5551                         if (!dtrace_canstore(regs[rd], regs[r2],
5552                             mstate, vstate)) {
5553                                 *flags |= CPU_DTRACE_BADADDR;
5554                                 *illval = regs[rd];
5555                                 break;
5556                         }
5557
5558                         if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5559                                 break;
5560
5561                         dtrace_bcopy((void *)(uintptr_t)regs[r1],
5562                             (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5563                         break;
5564
5565                 case DIF_OP_STB:
5566                         if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5567                                 *flags |= CPU_DTRACE_BADADDR;
5568                                 *illval = regs[rd];
5569                                 break;
5570                         }
5571                         *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5572                         break;
5573
5574                 case DIF_OP_STH:
5575                         if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5576                                 *flags |= CPU_DTRACE_BADADDR;
5577                                 *illval = regs[rd];
5578                                 break;
5579                         }
5580                         if (regs[rd] & 1) {
5581                                 *flags |= CPU_DTRACE_BADALIGN;
5582                                 *illval = regs[rd];
5583                                 break;
5584                         }
5585                         *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5586                         break;
5587
5588                 case DIF_OP_STW:
5589                         if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5590                                 *flags |= CPU_DTRACE_BADADDR;
5591                                 *illval = regs[rd];
5592                                 break;
5593                         }
5594                         if (regs[rd] & 3) {
5595                                 *flags |= CPU_DTRACE_BADALIGN;
5596                                 *illval = regs[rd];
5597                                 break;
5598                         }
5599                         *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5600                         break;
5601
5602                 case DIF_OP_STX:
5603                         if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5604                                 *flags |= CPU_DTRACE_BADADDR;
5605                                 *illval = regs[rd];
5606                                 break;
5607                         }
5608                         if (regs[rd] & 7) {
5609                                 *flags |= CPU_DTRACE_BADALIGN;
5610                                 *illval = regs[rd];
5611                                 break;
5612                         }
5613                         *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5614                         break;
5615                 }
5616         }
5617
5618         if (!(*flags & CPU_DTRACE_FAULT))
5619                 return (rval);
5620
5621         mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5622         mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5623
5624         return (0);
5625 }
5626
5627 static void
5628 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5629 {
5630         dtrace_probe_t *probe = ecb->dte_probe;
5631         dtrace_provider_t *prov = probe->dtpr_provider;
5632         char c[DTRACE_FULLNAMELEN + 80], *str;
5633         char *msg = "dtrace: breakpoint action at probe ";
5634         char *ecbmsg = " (ecb ";
5635         uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5636         uintptr_t val = (uintptr_t)ecb;
5637         int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5638
5639         if (dtrace_destructive_disallow)
5640                 return;
5641
5642         /*
5643          * It's impossible to be taking action on the NULL probe.
5644          */
5645         ASSERT(probe != NULL);
5646
5647         /*
5648          * This is a poor man's (destitute man's?) sprintf():  we want to
5649          * print the provider name, module name, function name and name of
5650          * the probe, along with the hex address of the ECB with the breakpoint
5651          * action -- all of which we must place in the character buffer by
5652          * hand.
5653          */
5654         while (*msg != '\0')
5655                 c[i++] = *msg++;
5656
5657         for (str = prov->dtpv_name; *str != '\0'; str++)
5658                 c[i++] = *str;
5659         c[i++] = ':';
5660
5661         for (str = probe->dtpr_mod; *str != '\0'; str++)
5662                 c[i++] = *str;
5663         c[i++] = ':';
5664
5665         for (str = probe->dtpr_func; *str != '\0'; str++)
5666                 c[i++] = *str;
5667         c[i++] = ':';
5668
5669         for (str = probe->dtpr_name; *str != '\0'; str++)
5670                 c[i++] = *str;
5671
5672         while (*ecbmsg != '\0')
5673                 c[i++] = *ecbmsg++;
5674
5675         while (shift >= 0) {
5676                 mask = (uintptr_t)0xf << shift;
5677
5678                 if (val >= ((uintptr_t)1 << shift))
5679                         c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5680                 shift -= 4;
5681         }
5682
5683         c[i++] = ')';
5684         c[i] = '\0';
5685
5686 #if defined(sun)
5687         debug_enter(c);
5688 #else
5689         kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
5690 #endif
5691 }
5692
5693 static void
5694 dtrace_action_panic(dtrace_ecb_t *ecb)
5695 {
5696         dtrace_probe_t *probe = ecb->dte_probe;
5697
5698         /*
5699          * It's impossible to be taking action on the NULL probe.
5700          */
5701         ASSERT(probe != NULL);
5702
5703         if (dtrace_destructive_disallow)
5704                 return;
5705
5706         if (dtrace_panicked != NULL)
5707                 return;
5708
5709         if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5710                 return;
5711
5712         /*
5713          * We won the right to panic.  (We want to be sure that only one
5714          * thread calls panic() from dtrace_probe(), and that panic() is
5715          * called exactly once.)
5716          */
5717         dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5718             probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5719             probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5720 }
5721
5722 static void
5723 dtrace_action_raise(uint64_t sig)
5724 {
5725         if (dtrace_destructive_disallow)
5726                 return;
5727
5728         if (sig >= NSIG) {
5729                 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5730                 return;
5731         }
5732
5733 #if defined(sun)
5734         /*
5735          * raise() has a queue depth of 1 -- we ignore all subsequent
5736          * invocations of the raise() action.
5737          */
5738         if (curthread->t_dtrace_sig == 0)
5739                 curthread->t_dtrace_sig = (uint8_t)sig;
5740
5741         curthread->t_sig_check = 1;
5742         aston(curthread);
5743 #else
5744         struct proc *p = curproc;
5745         PROC_LOCK(p);
5746         kern_psignal(p, sig);
5747         PROC_UNLOCK(p);
5748 #endif
5749 }
5750
5751 static void
5752 dtrace_action_stop(void)
5753 {
5754         if (dtrace_destructive_disallow)
5755                 return;
5756
5757 #if defined(sun)
5758         if (!curthread->t_dtrace_stop) {
5759                 curthread->t_dtrace_stop = 1;
5760                 curthread->t_sig_check = 1;
5761                 aston(curthread);
5762         }
5763 #else
5764         struct proc *p = curproc;
5765         PROC_LOCK(p);
5766         kern_psignal(p, SIGSTOP);
5767         PROC_UNLOCK(p);
5768 #endif
5769 }
5770
5771 static void
5772 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5773 {
5774         hrtime_t now;
5775         volatile uint16_t *flags;
5776 #if defined(sun)
5777         cpu_t *cpu = CPU;
5778 #else
5779         cpu_t *cpu = &solaris_cpu[curcpu];
5780 #endif
5781
5782         if (dtrace_destructive_disallow)
5783                 return;
5784
5785         flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5786
5787         now = dtrace_gethrtime();
5788
5789         if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5790                 /*
5791                  * We need to advance the mark to the current time.
5792                  */
5793                 cpu->cpu_dtrace_chillmark = now;
5794                 cpu->cpu_dtrace_chilled = 0;
5795         }
5796
5797         /*
5798          * Now check to see if the requested chill time would take us over
5799          * the maximum amount of time allowed in the chill interval.  (Or
5800          * worse, if the calculation itself induces overflow.)
5801          */
5802         if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5803             cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5804                 *flags |= CPU_DTRACE_ILLOP;
5805                 return;
5806         }
5807
5808         while (dtrace_gethrtime() - now < val)
5809                 continue;
5810
5811         /*
5812          * Normally, we assure that the value of the variable "timestamp" does
5813          * not change within an ECB.  The presence of chill() represents an
5814          * exception to this rule, however.
5815          */
5816         mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5817         cpu->cpu_dtrace_chilled += val;
5818 }
5819
5820 static void
5821 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5822     uint64_t *buf, uint64_t arg)
5823 {
5824         int nframes = DTRACE_USTACK_NFRAMES(arg);
5825         int strsize = DTRACE_USTACK_STRSIZE(arg);
5826         uint64_t *pcs = &buf[1], *fps;
5827         char *str = (char *)&pcs[nframes];
5828         int size, offs = 0, i, j;
5829         uintptr_t old = mstate->dtms_scratch_ptr, saved;
5830         uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5831         char *sym;
5832
5833         /*
5834          * Should be taking a faster path if string space has not been
5835          * allocated.
5836          */
5837         ASSERT(strsize != 0);
5838
5839         /*
5840          * We will first allocate some temporary space for the frame pointers.
5841          */
5842         fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5843         size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5844             (nframes * sizeof (uint64_t));
5845
5846         if (!DTRACE_INSCRATCH(mstate, size)) {
5847                 /*
5848                  * Not enough room for our frame pointers -- need to indicate
5849                  * that we ran out of scratch space.
5850                  */
5851                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5852                 return;
5853         }
5854
5855         mstate->dtms_scratch_ptr += size;
5856         saved = mstate->dtms_scratch_ptr;
5857
5858         /*
5859          * Now get a stack with both program counters and frame pointers.
5860          */
5861         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5862         dtrace_getufpstack(buf, fps, nframes + 1);
5863         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5864
5865         /*
5866          * If that faulted, we're cooked.
5867          */
5868         if (*flags & CPU_DTRACE_FAULT)
5869                 goto out;
5870
5871         /*
5872          * Now we want to walk up the stack, calling the USTACK helper.  For
5873          * each iteration, we restore the scratch pointer.
5874          */
5875         for (i = 0; i < nframes; i++) {
5876                 mstate->dtms_scratch_ptr = saved;
5877
5878                 if (offs >= strsize)
5879                         break;
5880
5881                 sym = (char *)(uintptr_t)dtrace_helper(
5882                     DTRACE_HELPER_ACTION_USTACK,
5883                     mstate, state, pcs[i], fps[i]);
5884
5885                 /*
5886                  * If we faulted while running the helper, we're going to
5887                  * clear the fault and null out the corresponding string.
5888                  */
5889                 if (*flags & CPU_DTRACE_FAULT) {
5890                         *flags &= ~CPU_DTRACE_FAULT;
5891                         str[offs++] = '\0';
5892                         continue;
5893                 }
5894
5895                 if (sym == NULL) {
5896                         str[offs++] = '\0';
5897                         continue;
5898                 }
5899
5900                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5901
5902                 /*
5903                  * Now copy in the string that the helper returned to us.
5904                  */
5905                 for (j = 0; offs + j < strsize; j++) {
5906                         if ((str[offs + j] = sym[j]) == '\0')
5907                                 break;
5908                 }
5909
5910                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5911
5912                 offs += j + 1;
5913         }
5914
5915         if (offs >= strsize) {
5916                 /*
5917                  * If we didn't have room for all of the strings, we don't
5918                  * abort processing -- this needn't be a fatal error -- but we
5919                  * still want to increment a counter (dts_stkstroverflows) to
5920                  * allow this condition to be warned about.  (If this is from
5921                  * a jstack() action, it is easily tuned via jstackstrsize.)
5922                  */
5923                 dtrace_error(&state->dts_stkstroverflows);
5924         }
5925
5926         while (offs < strsize)
5927                 str[offs++] = '\0';
5928
5929 out:
5930         mstate->dtms_scratch_ptr = old;
5931 }
5932
5933 /*
5934  * If you're looking for the epicenter of DTrace, you just found it.  This
5935  * is the function called by the provider to fire a probe -- from which all
5936  * subsequent probe-context DTrace activity emanates.
5937  */
5938 void
5939 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
5940     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
5941 {
5942         processorid_t cpuid;
5943         dtrace_icookie_t cookie;
5944         dtrace_probe_t *probe;
5945         dtrace_mstate_t mstate;
5946         dtrace_ecb_t *ecb;
5947         dtrace_action_t *act;
5948         intptr_t offs;
5949         size_t size;
5950         int vtime, onintr;
5951         volatile uint16_t *flags;
5952         hrtime_t now;
5953
5954         if (panicstr != NULL)
5955                 return;
5956
5957 #if defined(sun)
5958         /*
5959          * Kick out immediately if this CPU is still being born (in which case
5960          * curthread will be set to -1) or the current thread can't allow
5961          * probes in its current context.
5962          */
5963         if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
5964                 return;
5965 #endif
5966
5967         cookie = dtrace_interrupt_disable();
5968         probe = dtrace_probes[id - 1];
5969         cpuid = curcpu;
5970         onintr = CPU_ON_INTR(CPU);
5971
5972         if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
5973             probe->dtpr_predcache == curthread->t_predcache) {
5974                 /*
5975                  * We have hit in the predicate cache; we know that
5976                  * this predicate would evaluate to be false.
5977                  */
5978                 dtrace_interrupt_enable(cookie);
5979                 return;
5980         }
5981
5982 #if defined(sun)
5983         if (panic_quiesce) {
5984 #else
5985         if (panicstr != NULL) {
5986 #endif
5987                 /*
5988                  * We don't trace anything if we're panicking.
5989                  */
5990                 dtrace_interrupt_enable(cookie);
5991                 return;
5992         }
5993
5994         now = dtrace_gethrtime();
5995         vtime = dtrace_vtime_references != 0;
5996
5997         if (vtime && curthread->t_dtrace_start)
5998                 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
5999
6000         mstate.dtms_difo = NULL;
6001         mstate.dtms_probe = probe;
6002         mstate.dtms_strtok = 0;
6003         mstate.dtms_arg[0] = arg0;
6004         mstate.dtms_arg[1] = arg1;
6005         mstate.dtms_arg[2] = arg2;
6006         mstate.dtms_arg[3] = arg3;
6007         mstate.dtms_arg[4] = arg4;
6008
6009         flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6010
6011         for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6012                 dtrace_predicate_t *pred = ecb->dte_predicate;
6013                 dtrace_state_t *state = ecb->dte_state;
6014                 dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6015                 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6016                 dtrace_vstate_t *vstate = &state->dts_vstate;
6017                 dtrace_provider_t *prov = probe->dtpr_provider;
6018                 int committed = 0;
6019                 caddr_t tomax;
6020
6021                 /*
6022                  * A little subtlety with the following (seemingly innocuous)
6023                  * declaration of the automatic 'val':  by looking at the
6024                  * code, you might think that it could be declared in the
6025                  * action processing loop, below.  (That is, it's only used in
6026                  * the action processing loop.)  However, it must be declared
6027                  * out of that scope because in the case of DIF expression
6028                  * arguments to aggregating actions, one iteration of the
6029                  * action loop will use the last iteration's value.
6030                  */
6031                 uint64_t val = 0;
6032
6033                 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6034                 *flags &= ~CPU_DTRACE_ERROR;
6035
6036                 if (prov == dtrace_provider) {
6037                         /*
6038                          * If dtrace itself is the provider of this probe,
6039                          * we're only going to continue processing the ECB if
6040                          * arg0 (the dtrace_state_t) is equal to the ECB's
6041                          * creating state.  (This prevents disjoint consumers
6042                          * from seeing one another's metaprobes.)
6043                          */
6044                         if (arg0 != (uint64_t)(uintptr_t)state)
6045                                 continue;
6046                 }
6047
6048                 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6049                         /*
6050                          * We're not currently active.  If our provider isn't
6051                          * the dtrace pseudo provider, we're not interested.
6052                          */
6053                         if (prov != dtrace_provider)
6054                                 continue;
6055
6056                         /*
6057                          * Now we must further check if we are in the BEGIN
6058                          * probe.  If we are, we will only continue processing
6059                          * if we're still in WARMUP -- if one BEGIN enabling
6060                          * has invoked the exit() action, we don't want to
6061                          * evaluate subsequent BEGIN enablings.
6062                          */
6063                         if (probe->dtpr_id == dtrace_probeid_begin &&
6064                             state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6065                                 ASSERT(state->dts_activity ==
6066                                     DTRACE_ACTIVITY_DRAINING);
6067                                 continue;
6068                         }
6069                 }
6070
6071                 if (ecb->dte_cond) {
6072                         /*
6073                          * If the dte_cond bits indicate that this
6074                          * consumer is only allowed to see user-mode firings
6075                          * of this probe, call the provider's dtps_usermode()
6076                          * entry point to check that the probe was fired
6077                          * while in a user context. Skip this ECB if that's
6078                          * not the case.
6079                          */
6080                         if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
6081                             prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
6082                             probe->dtpr_id, probe->dtpr_arg) == 0)
6083                                 continue;
6084
6085 #if defined(sun)
6086                         /*
6087                          * This is more subtle than it looks. We have to be
6088                          * absolutely certain that CRED() isn't going to
6089                          * change out from under us so it's only legit to
6090                          * examine that structure if we're in constrained
6091                          * situations. Currently, the only times we'll this
6092                          * check is if a non-super-user has enabled the
6093                          * profile or syscall providers -- providers that
6094                          * allow visibility of all processes. For the
6095                          * profile case, the check above will ensure that
6096                          * we're examining a user context.
6097                          */
6098                         if (ecb->dte_cond & DTRACE_COND_OWNER) {
6099                                 cred_t *cr;
6100                                 cred_t *s_cr =
6101                                     ecb->dte_state->dts_cred.dcr_cred;
6102                                 proc_t *proc;
6103
6104                                 ASSERT(s_cr != NULL);
6105
6106                                 if ((cr = CRED()) == NULL ||
6107                                     s_cr->cr_uid != cr->cr_uid ||
6108                                     s_cr->cr_uid != cr->cr_ruid ||
6109                                     s_cr->cr_uid != cr->cr_suid ||
6110                                     s_cr->cr_gid != cr->cr_gid ||
6111                                     s_cr->cr_gid != cr->cr_rgid ||
6112                                     s_cr->cr_gid != cr->cr_sgid ||
6113                                     (proc = ttoproc(curthread)) == NULL ||
6114                                     (proc->p_flag & SNOCD))
6115                                         continue;
6116                         }
6117
6118                         if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
6119                                 cred_t *cr;
6120                                 cred_t *s_cr =
6121                                     ecb->dte_state->dts_cred.dcr_cred;
6122
6123                                 ASSERT(s_cr != NULL);
6124
6125                                 if ((cr = CRED()) == NULL ||
6126                                     s_cr->cr_zone->zone_id !=
6127                                     cr->cr_zone->zone_id)
6128                                         continue;
6129                         }
6130 #endif
6131                 }
6132
6133                 if (now - state->dts_alive > dtrace_deadman_timeout) {
6134                         /*
6135                          * We seem to be dead.  Unless we (a) have kernel
6136                          * destructive permissions (b) have expicitly enabled
6137                          * destructive actions and (c) destructive actions have
6138                          * not been disabled, we're going to transition into
6139                          * the KILLED state, from which no further processing
6140                          * on this state will be performed.
6141                          */
6142                         if (!dtrace_priv_kernel_destructive(state) ||
6143                             !state->dts_cred.dcr_destructive ||
6144                             dtrace_destructive_disallow) {
6145                                 void *activity = &state->dts_activity;
6146                                 dtrace_activity_t current;
6147
6148                                 do {
6149                                         current = state->dts_activity;
6150                                 } while (dtrace_cas32(activity, current,
6151                                     DTRACE_ACTIVITY_KILLED) != current);
6152
6153                                 continue;
6154                         }
6155                 }
6156
6157                 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6158                     ecb->dte_alignment, state, &mstate)) < 0)
6159                         continue;
6160
6161                 tomax = buf->dtb_tomax;
6162                 ASSERT(tomax != NULL);
6163
6164                 if (ecb->dte_size != 0)
6165                         DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
6166
6167                 mstate.dtms_epid = ecb->dte_epid;
6168                 mstate.dtms_present |= DTRACE_MSTATE_EPID;
6169
6170                 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6171                         mstate.dtms_access = DTRACE_ACCESS_KERNEL;
6172                 else
6173                         mstate.dtms_access = 0;
6174
6175                 if (pred != NULL) {
6176                         dtrace_difo_t *dp = pred->dtp_difo;
6177                         int rval;
6178
6179                         rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6180
6181                         if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6182                                 dtrace_cacheid_t cid = probe->dtpr_predcache;
6183
6184                                 if (cid != DTRACE_CACHEIDNONE && !onintr) {
6185                                         /*
6186                                          * Update the predicate cache...
6187                                          */
6188                                         ASSERT(cid == pred->dtp_cacheid);
6189                                         curthread->t_predcache = cid;
6190                                 }
6191
6192                                 continue;
6193                         }
6194                 }
6195
6196                 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6197                     act != NULL; act = act->dta_next) {
6198                         size_t valoffs;
6199                         dtrace_difo_t *dp;
6200                         dtrace_recdesc_t *rec = &act->dta_rec;
6201
6202                         size = rec->dtrd_size;
6203                         valoffs = offs + rec->dtrd_offset;
6204
6205                         if (DTRACEACT_ISAGG(act->dta_kind)) {
6206                                 uint64_t v = 0xbad;
6207                                 dtrace_aggregation_t *agg;
6208
6209                                 agg = (dtrace_aggregation_t *)act;
6210
6211                                 if ((dp = act->dta_difo) != NULL)
6212                                         v = dtrace_dif_emulate(dp,
6213                                             &mstate, vstate, state);
6214
6215                                 if (*flags & CPU_DTRACE_ERROR)
6216                                         continue;
6217
6218                                 /*
6219                                  * Note that we always pass the expression
6220                                  * value from the previous iteration of the
6221                                  * action loop.  This value will only be used
6222                                  * if there is an expression argument to the
6223                                  * aggregating action, denoted by the
6224                                  * dtag_hasarg field.
6225                                  */
6226                                 dtrace_aggregate(agg, buf,
6227                                     offs, aggbuf, v, val);
6228                                 continue;
6229                         }
6230
6231                         switch (act->dta_kind) {
6232                         case DTRACEACT_STOP:
6233                                 if (dtrace_priv_proc_destructive(state))
6234                                         dtrace_action_stop();
6235                                 continue;
6236
6237                         case DTRACEACT_BREAKPOINT:
6238                                 if (dtrace_priv_kernel_destructive(state))
6239                                         dtrace_action_breakpoint(ecb);
6240                                 continue;
6241
6242                         case DTRACEACT_PANIC:
6243                                 if (dtrace_priv_kernel_destructive(state))
6244                                         dtrace_action_panic(ecb);
6245                                 continue;
6246
6247                         case DTRACEACT_STACK:
6248                                 if (!dtrace_priv_kernel(state))
6249                                         continue;
6250
6251                                 dtrace_getpcstack((pc_t *)(tomax + valoffs),
6252                                     size / sizeof (pc_t), probe->dtpr_aframes,
6253                                     DTRACE_ANCHORED(probe) ? NULL :
6254                                     (uint32_t *)arg0);
6255                                 continue;
6256
6257                         case DTRACEACT_JSTACK:
6258                         case DTRACEACT_USTACK:
6259                                 if (!dtrace_priv_proc(state))
6260                                         continue;
6261
6262                                 /*
6263                                  * See comment in DIF_VAR_PID.
6264                                  */
6265                                 if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6266                                     CPU_ON_INTR(CPU)) {
6267                                         int depth = DTRACE_USTACK_NFRAMES(
6268                                             rec->dtrd_arg) + 1;
6269
6270                                         dtrace_bzero((void *)(tomax + valoffs),
6271                                             DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6272                                             + depth * sizeof (uint64_t));
6273
6274                                         continue;
6275                                 }
6276
6277                                 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6278                                     curproc->p_dtrace_helpers != NULL) {
6279                                         /*
6280                                          * This is the slow path -- we have
6281                                          * allocated string space, and we're
6282                                          * getting the stack of a process that
6283                                          * has helpers.  Call into a separate
6284                                          * routine to perform this processing.
6285                                          */
6286                                         dtrace_action_ustack(&mstate, state,
6287                                             (uint64_t *)(tomax + valoffs),
6288                                             rec->dtrd_arg);
6289                                         continue;
6290                                 }
6291
6292                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6293                                 dtrace_getupcstack((uint64_t *)
6294                                     (tomax + valoffs),
6295                                     DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6296                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6297                                 continue;
6298
6299                         default:
6300                                 break;
6301                         }
6302
6303                         dp = act->dta_difo;
6304                         ASSERT(dp != NULL);
6305
6306                         val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6307
6308                         if (*flags & CPU_DTRACE_ERROR)
6309                                 continue;
6310
6311                         switch (act->dta_kind) {
6312                         case DTRACEACT_SPECULATE:
6313                                 ASSERT(buf == &state->dts_buffer[cpuid]);
6314                                 buf = dtrace_speculation_buffer(state,
6315                                     cpuid, val);
6316
6317                                 if (buf == NULL) {
6318                                         *flags |= CPU_DTRACE_DROP;
6319                                         continue;
6320                                 }
6321
6322                                 offs = dtrace_buffer_reserve(buf,
6323                                     ecb->dte_needed, ecb->dte_alignment,
6324                                     state, NULL);
6325
6326                                 if (offs < 0) {
6327                                         *flags |= CPU_DTRACE_DROP;
6328                                         continue;
6329                                 }
6330
6331                                 tomax = buf->dtb_tomax;
6332                                 ASSERT(tomax != NULL);
6333
6334                                 if (ecb->dte_size != 0)
6335                                         DTRACE_STORE(uint32_t, tomax, offs,
6336                                             ecb->dte_epid);
6337                                 continue;
6338
6339                         case DTRACEACT_PRINTM: {
6340                                 /* The DIF returns a 'memref'. */
6341                                 uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
6342
6343                                 /* Get the size from the memref. */
6344                                 size = memref[1];
6345
6346                                 /*
6347                                  * Check if the size exceeds the allocated
6348                                  * buffer size.
6349                                  */
6350                                 if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6351                                         /* Flag a drop! */
6352                                         *flags |= CPU_DTRACE_DROP;
6353                                         continue;
6354                                 }
6355
6356                                 /* Store the size in the buffer first. */
6357                                 DTRACE_STORE(uintptr_t, tomax,
6358                                     valoffs, size);
6359
6360                                 /*
6361                                  * Offset the buffer address to the start
6362                                  * of the data.
6363                                  */
6364                                 valoffs += sizeof(uintptr_t);
6365
6366                                 /*
6367                                  * Reset to the memory address rather than
6368                                  * the memref array, then let the BYREF
6369                                  * code below do the work to store the 
6370                                  * memory data in the buffer.
6371                                  */
6372                                 val = memref[0];
6373                                 break;
6374                         }
6375
6376                         case DTRACEACT_PRINTT: {
6377                                 /* The DIF returns a 'typeref'. */
6378                                 uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
6379                                 char c = '\0' + 1;
6380                                 size_t s;
6381
6382                                 /*
6383                                  * Get the type string length and round it
6384                                  * up so that the data that follows is
6385                                  * aligned for easy access.
6386                                  */
6387                                 size_t typs = strlen((char *) typeref[2]) + 1;
6388                                 typs = roundup(typs,  sizeof(uintptr_t));
6389
6390                                 /*
6391                                  *Get the size from the typeref using the
6392                                  * number of elements and the type size.
6393                                  */
6394                                 size = typeref[1] * typeref[3];
6395
6396                                 /*
6397                                  * Check if the size exceeds the allocated
6398                                  * buffer size.
6399                                  */
6400                                 if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6401                                         /* Flag a drop! */
6402                                         *flags |= CPU_DTRACE_DROP;
6403                                 
6404                                 }
6405
6406                                 /* Store the size in the buffer first. */
6407                                 DTRACE_STORE(uintptr_t, tomax,
6408                                     valoffs, size);
6409                                 valoffs += sizeof(uintptr_t);
6410
6411                                 /* Store the type size in the buffer. */
6412                                 DTRACE_STORE(uintptr_t, tomax,
6413                                     valoffs, typeref[3]);
6414                                 valoffs += sizeof(uintptr_t);
6415
6416                                 val = typeref[2];
6417
6418                                 for (s = 0; s < typs; s++) {
6419                                         if (c != '\0')
6420                                                 c = dtrace_load8(val++);
6421
6422                                         DTRACE_STORE(uint8_t, tomax,
6423                                             valoffs++, c);
6424                                 }
6425
6426                                 /*
6427                                  * Reset to the memory address rather than
6428                                  * the typeref array, then let the BYREF
6429                                  * code below do the work to store the 
6430                                  * memory data in the buffer.
6431                                  */
6432                                 val = typeref[0];
6433                                 break;
6434                         }
6435
6436                         case DTRACEACT_CHILL:
6437                                 if (dtrace_priv_kernel_destructive(state))
6438                                         dtrace_action_chill(&mstate, val);
6439                                 continue;
6440
6441                         case DTRACEACT_RAISE:
6442                                 if (dtrace_priv_proc_destructive(state))
6443                                         dtrace_action_raise(val);
6444                                 continue;
6445
6446                         case DTRACEACT_COMMIT:
6447                                 ASSERT(!committed);
6448
6449                                 /*
6450                                  * We need to commit our buffer state.
6451                                  */
6452                                 if (ecb->dte_size)
6453                                         buf->dtb_offset = offs + ecb->dte_size;
6454                                 buf = &state->dts_buffer[cpuid];
6455                                 dtrace_speculation_commit(state, cpuid, val);
6456                                 committed = 1;
6457                                 continue;
6458
6459                         case DTRACEACT_DISCARD:
6460                                 dtrace_speculation_discard(state, cpuid, val);
6461                                 continue;
6462
6463                         case DTRACEACT_DIFEXPR:
6464                         case DTRACEACT_LIBACT:
6465                         case DTRACEACT_PRINTF:
6466                         case DTRACEACT_PRINTA:
6467                         case DTRACEACT_SYSTEM:
6468                         case DTRACEACT_FREOPEN:
6469                                 break;
6470
6471                         case DTRACEACT_SYM:
6472                         case DTRACEACT_MOD:
6473                                 if (!dtrace_priv_kernel(state))
6474                                         continue;
6475                                 break;
6476
6477                         case DTRACEACT_USYM:
6478                         case DTRACEACT_UMOD:
6479                         case DTRACEACT_UADDR: {
6480 #if defined(sun)
6481                                 struct pid *pid = curthread->t_procp->p_pidp;
6482 #endif
6483
6484                                 if (!dtrace_priv_proc(state))
6485                                         continue;
6486
6487                                 DTRACE_STORE(uint64_t, tomax,
6488 #if defined(sun)
6489                                     valoffs, (uint64_t)pid->pid_id);
6490 #else
6491                                     valoffs, (uint64_t) curproc->p_pid);
6492 #endif
6493                                 DTRACE_STORE(uint64_t, tomax,
6494                                     valoffs + sizeof (uint64_t), val);
6495
6496                                 continue;
6497                         }
6498
6499                         case DTRACEACT_EXIT: {
6500                                 /*
6501                                  * For the exit action, we are going to attempt
6502                                  * to atomically set our activity to be
6503                                  * draining.  If this fails (either because
6504                                  * another CPU has beat us to the exit action,
6505                                  * or because our current activity is something
6506                                  * other than ACTIVE or WARMUP), we will
6507                                  * continue.  This assures that the exit action
6508                                  * can be successfully recorded at most once
6509                                  * when we're in the ACTIVE state.  If we're
6510                                  * encountering the exit() action while in
6511                                  * COOLDOWN, however, we want to honor the new
6512                                  * status code.  (We know that we're the only
6513                                  * thread in COOLDOWN, so there is no race.)
6514                                  */
6515                                 void *activity = &state->dts_activity;
6516                                 dtrace_activity_t current = state->dts_activity;
6517
6518                                 if (current == DTRACE_ACTIVITY_COOLDOWN)
6519                                         break;
6520
6521                                 if (current != DTRACE_ACTIVITY_WARMUP)
6522                                         current = DTRACE_ACTIVITY_ACTIVE;
6523
6524                                 if (dtrace_cas32(activity, current,
6525                                     DTRACE_ACTIVITY_DRAINING) != current) {
6526                                         *flags |= CPU_DTRACE_DROP;
6527                                         continue;
6528                                 }
6529
6530                                 break;
6531                         }
6532
6533                         default:
6534                                 ASSERT(0);
6535                         }
6536
6537                         if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6538                                 uintptr_t end = valoffs + size;
6539
6540                                 if (!dtrace_vcanload((void *)(uintptr_t)val,
6541                                     &dp->dtdo_rtype, &mstate, vstate))
6542                                         continue;
6543
6544                                 /*
6545                                  * If this is a string, we're going to only
6546                                  * load until we find the zero byte -- after
6547                                  * which we'll store zero bytes.
6548                                  */
6549                                 if (dp->dtdo_rtype.dtdt_kind ==
6550                                     DIF_TYPE_STRING) {
6551                                         char c = '\0' + 1;
6552                                         int intuple = act->dta_intuple;
6553                                         size_t s;
6554
6555                                         for (s = 0; s < size; s++) {
6556                                                 if (c != '\0')
6557                                                         c = dtrace_load8(val++);
6558
6559                                                 DTRACE_STORE(uint8_t, tomax,
6560                                                     valoffs++, c);
6561
6562                                                 if (c == '\0' && intuple)
6563                                                         break;
6564                                         }
6565
6566                                         continue;
6567                                 }
6568
6569                                 while (valoffs < end) {
6570                                         DTRACE_STORE(uint8_t, tomax, valoffs++,
6571                                             dtrace_load8(val++));
6572                                 }
6573
6574                                 continue;
6575                         }
6576
6577                         switch (size) {
6578                         case 0:
6579                                 break;
6580
6581                         case sizeof (uint8_t):
6582                                 DTRACE_STORE(uint8_t, tomax, valoffs, val);
6583                                 break;
6584                         case sizeof (uint16_t):
6585                                 DTRACE_STORE(uint16_t, tomax, valoffs, val);
6586                                 break;
6587                         case sizeof (uint32_t):
6588                                 DTRACE_STORE(uint32_t, tomax, valoffs, val);
6589                                 break;
6590                         case sizeof (uint64_t):
6591                                 DTRACE_STORE(uint64_t, tomax, valoffs, val);
6592                                 break;
6593                         default:
6594                                 /*
6595                                  * Any other size should have been returned by
6596                                  * reference, not by value.
6597                                  */
6598                                 ASSERT(0);
6599                                 break;
6600                         }
6601                 }
6602
6603                 if (*flags & CPU_DTRACE_DROP)
6604                         continue;
6605
6606                 if (*flags & CPU_DTRACE_FAULT) {
6607                         int ndx;
6608                         dtrace_action_t *err;
6609
6610                         buf->dtb_errors++;
6611
6612                         if (probe->dtpr_id == dtrace_probeid_error) {
6613                                 /*
6614                                  * There's nothing we can do -- we had an
6615                                  * error on the error probe.  We bump an
6616                                  * error counter to at least indicate that
6617                                  * this condition happened.
6618                                  */
6619                                 dtrace_error(&state->dts_dblerrors);
6620                                 continue;
6621                         }
6622
6623                         if (vtime) {
6624                                 /*
6625                                  * Before recursing on dtrace_probe(), we
6626                                  * need to explicitly clear out our start
6627                                  * time to prevent it from being accumulated
6628                                  * into t_dtrace_vtime.
6629                                  */
6630                                 curthread->t_dtrace_start = 0;
6631                         }
6632
6633                         /*
6634                          * Iterate over the actions to figure out which action
6635                          * we were processing when we experienced the error.
6636                          * Note that act points _past_ the faulting action; if
6637                          * act is ecb->dte_action, the fault was in the
6638                          * predicate, if it's ecb->dte_action->dta_next it's
6639                          * in action #1, and so on.
6640                          */
6641                         for (err = ecb->dte_action, ndx = 0;
6642                             err != act; err = err->dta_next, ndx++)
6643                                 continue;
6644
6645                         dtrace_probe_error(state, ecb->dte_epid, ndx,
6646                             (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6647                             mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6648                             cpu_core[cpuid].cpuc_dtrace_illval);
6649
6650                         continue;
6651                 }
6652
6653                 if (!committed)
6654                         buf->dtb_offset = offs + ecb->dte_size;
6655         }
6656
6657         if (vtime)
6658                 curthread->t_dtrace_start = dtrace_gethrtime();
6659
6660         dtrace_interrupt_enable(cookie);
6661 }
6662
6663 /*
6664  * DTrace Probe Hashing Functions
6665  *
6666  * The functions in this section (and indeed, the functions in remaining
6667  * sections) are not _called_ from probe context.  (Any exceptions to this are
6668  * marked with a "Note:".)  Rather, they are called from elsewhere in the
6669  * DTrace framework to look-up probes in, add probes to and remove probes from
6670  * the DTrace probe hashes.  (Each probe is hashed by each element of the
6671  * probe tuple -- allowing for fast lookups, regardless of what was
6672  * specified.)
6673  */
6674 static uint_t
6675 dtrace_hash_str(const char *p)
6676 {
6677         unsigned int g;
6678         uint_t hval = 0;
6679
6680         while (*p) {
6681                 hval = (hval << 4) + *p++;
6682                 if ((g = (hval & 0xf0000000)) != 0)
6683                         hval ^= g >> 24;
6684                 hval &= ~g;
6685         }
6686         return (hval);
6687 }
6688
6689 static dtrace_hash_t *
6690 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6691 {
6692         dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6693
6694         hash->dth_stroffs = stroffs;
6695         hash->dth_nextoffs = nextoffs;
6696         hash->dth_prevoffs = prevoffs;
6697
6698         hash->dth_size = 1;
6699         hash->dth_mask = hash->dth_size - 1;
6700
6701         hash->dth_tab = kmem_zalloc(hash->dth_size *
6702             sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6703
6704         return (hash);
6705 }
6706
6707 static void
6708 dtrace_hash_destroy(dtrace_hash_t *hash)
6709 {
6710 #ifdef DEBUG
6711         int i;
6712
6713         for (i = 0; i < hash->dth_size; i++)
6714                 ASSERT(hash->dth_tab[i] == NULL);
6715 #endif
6716
6717         kmem_free(hash->dth_tab,
6718             hash->dth_size * sizeof (dtrace_hashbucket_t *));
6719         kmem_free(hash, sizeof (dtrace_hash_t));
6720 }
6721
6722 static void
6723 dtrace_hash_resize(dtrace_hash_t *hash)
6724 {
6725         int size = hash->dth_size, i, ndx;
6726         int new_size = hash->dth_size << 1;
6727         int new_mask = new_size - 1;
6728         dtrace_hashbucket_t **new_tab, *bucket, *next;
6729
6730         ASSERT((new_size & new_mask) == 0);
6731
6732         new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6733
6734         for (i = 0; i < size; i++) {
6735                 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6736                         dtrace_probe_t *probe = bucket->dthb_chain;
6737
6738                         ASSERT(probe != NULL);
6739                         ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6740
6741                         next = bucket->dthb_next;
6742                         bucket->dthb_next = new_tab[ndx];
6743                         new_tab[ndx] = bucket;
6744                 }
6745         }
6746
6747         kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6748         hash->dth_tab = new_tab;
6749         hash->dth_size = new_size;
6750         hash->dth_mask = new_mask;
6751 }
6752
6753 static void
6754 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6755 {
6756         int hashval = DTRACE_HASHSTR(hash, new);
6757         int ndx = hashval & hash->dth_mask;
6758         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6759         dtrace_probe_t **nextp, **prevp;
6760
6761         for (; bucket != NULL; bucket = bucket->dthb_next) {
6762                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6763                         goto add;
6764         }
6765
6766         if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6767                 dtrace_hash_resize(hash);
6768                 dtrace_hash_add(hash, new);
6769                 return;
6770         }
6771
6772         bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6773         bucket->dthb_next = hash->dth_tab[ndx];
6774         hash->dth_tab[ndx] = bucket;
6775         hash->dth_nbuckets++;
6776
6777 add:
6778         nextp = DTRACE_HASHNEXT(hash, new);
6779         ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6780         *nextp = bucket->dthb_chain;
6781
6782         if (bucket->dthb_chain != NULL) {
6783                 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6784                 ASSERT(*prevp == NULL);
6785                 *prevp = new;
6786         }
6787
6788         bucket->dthb_chain = new;
6789         bucket->dthb_len++;
6790 }
6791
6792 static dtrace_probe_t *
6793 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6794 {
6795         int hashval = DTRACE_HASHSTR(hash, template);
6796         int ndx = hashval & hash->dth_mask;
6797         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6798
6799         for (; bucket != NULL; bucket = bucket->dthb_next) {
6800                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6801                         return (bucket->dthb_chain);
6802         }
6803
6804         return (NULL);
6805 }
6806
6807 static int
6808 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6809 {
6810         int hashval = DTRACE_HASHSTR(hash, template);
6811         int ndx = hashval & hash->dth_mask;
6812         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6813
6814         for (; bucket != NULL; bucket = bucket->dthb_next) {
6815                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6816                         return (bucket->dthb_len);
6817         }
6818
6819         return (0);
6820 }
6821
6822 static void
6823 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6824 {
6825         int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6826         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6827
6828         dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6829         dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6830
6831         /*
6832          * Find the bucket that we're removing this probe from.
6833          */
6834         for (; bucket != NULL; bucket = bucket->dthb_next) {
6835                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6836                         break;
6837         }
6838
6839         ASSERT(bucket != NULL);
6840
6841         if (*prevp == NULL) {
6842                 if (*nextp == NULL) {
6843                         /*
6844                          * The removed probe was the only probe on this
6845                          * bucket; we need to remove the bucket.
6846                          */
6847                         dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6848
6849                         ASSERT(bucket->dthb_chain == probe);
6850                         ASSERT(b != NULL);
6851
6852                         if (b == bucket) {
6853                                 hash->dth_tab[ndx] = bucket->dthb_next;
6854                         } else {
6855                                 while (b->dthb_next != bucket)
6856                                         b = b->dthb_next;
6857                                 b->dthb_next = bucket->dthb_next;
6858                         }
6859
6860                         ASSERT(hash->dth_nbuckets > 0);
6861                         hash->dth_nbuckets--;
6862                         kmem_free(bucket, sizeof (dtrace_hashbucket_t));
6863                         return;
6864                 }
6865
6866                 bucket->dthb_chain = *nextp;
6867         } else {
6868                 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
6869         }
6870
6871         if (*nextp != NULL)
6872                 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
6873 }
6874
6875 /*
6876  * DTrace Utility Functions
6877  *
6878  * These are random utility functions that are _not_ called from probe context.
6879  */
6880 static int
6881 dtrace_badattr(const dtrace_attribute_t *a)
6882 {
6883         return (a->dtat_name > DTRACE_STABILITY_MAX ||
6884             a->dtat_data > DTRACE_STABILITY_MAX ||
6885             a->dtat_class > DTRACE_CLASS_MAX);
6886 }
6887
6888 /*
6889  * Return a duplicate copy of a string.  If the specified string is NULL,
6890  * this function returns a zero-length string.
6891  */
6892 static char *
6893 dtrace_strdup(const char *str)
6894 {
6895         char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
6896
6897         if (str != NULL)
6898                 (void) strcpy(new, str);
6899
6900         return (new);
6901 }
6902
6903 #define DTRACE_ISALPHA(c)       \
6904         (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
6905
6906 static int
6907 dtrace_badname(const char *s)
6908 {
6909         char c;
6910
6911         if (s == NULL || (c = *s++) == '\0')
6912                 return (0);
6913
6914         if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
6915                 return (1);
6916
6917         while ((c = *s++) != '\0') {
6918                 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
6919                     c != '-' && c != '_' && c != '.' && c != '`')
6920                         return (1);
6921         }
6922
6923         return (0);
6924 }
6925
6926 static void
6927 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
6928 {
6929         uint32_t priv;
6930
6931 #if defined(sun)
6932         if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
6933                 /*
6934                  * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
6935                  */
6936                 priv = DTRACE_PRIV_ALL;
6937         } else {
6938                 *uidp = crgetuid(cr);
6939                 *zoneidp = crgetzoneid(cr);
6940
6941                 priv = 0;
6942                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
6943                         priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
6944                 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
6945                         priv |= DTRACE_PRIV_USER;
6946                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
6947                         priv |= DTRACE_PRIV_PROC;
6948                 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
6949                         priv |= DTRACE_PRIV_OWNER;
6950                 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
6951                         priv |= DTRACE_PRIV_ZONEOWNER;
6952         }
6953 #else
6954         priv = DTRACE_PRIV_ALL;
6955 #endif
6956
6957         *privp = priv;
6958 }
6959
6960 #ifdef DTRACE_ERRDEBUG
6961 static void
6962 dtrace_errdebug(const char *str)
6963 {
6964         int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
6965         int occupied = 0;
6966
6967         mutex_enter(&dtrace_errlock);
6968         dtrace_errlast = str;
6969         dtrace_errthread = curthread;
6970
6971         while (occupied++ < DTRACE_ERRHASHSZ) {
6972                 if (dtrace_errhash[hval].dter_msg == str) {
6973                         dtrace_errhash[hval].dter_count++;
6974                         goto out;
6975                 }
6976
6977                 if (dtrace_errhash[hval].dter_msg != NULL) {
6978                         hval = (hval + 1) % DTRACE_ERRHASHSZ;
6979                         continue;
6980                 }
6981
6982                 dtrace_errhash[hval].dter_msg = str;
6983                 dtrace_errhash[hval].dter_count = 1;
6984                 goto out;
6985         }
6986
6987         panic("dtrace: undersized error hash");
6988 out:
6989         mutex_exit(&dtrace_errlock);
6990 }
6991 #endif
6992
6993 /*
6994  * DTrace Matching Functions
6995  *
6996  * These functions are used to match groups of probes, given some elements of
6997  * a probe tuple, or some globbed expressions for elements of a probe tuple.
6998  */
6999 static int
7000 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
7001     zoneid_t zoneid)
7002 {
7003         if (priv != DTRACE_PRIV_ALL) {
7004                 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7005                 uint32_t match = priv & ppriv;
7006
7007                 /*
7008                  * No PRIV_DTRACE_* privileges...
7009                  */
7010                 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
7011                     DTRACE_PRIV_KERNEL)) == 0)
7012                         return (0);
7013
7014                 /*
7015                  * No matching bits, but there were bits to match...
7016                  */
7017                 if (match == 0 && ppriv != 0)
7018                         return (0);
7019
7020                 /*
7021                  * Need to have permissions to the process, but don't...
7022                  */
7023                 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
7024                     uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
7025                         return (0);
7026                 }
7027
7028                 /*
7029                  * Need to be in the same zone unless we possess the
7030                  * privilege to examine all zones.
7031                  */
7032                 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
7033                     zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
7034                         return (0);
7035                 }
7036         }
7037
7038         return (1);
7039 }
7040
7041 /*
7042  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7043  * consists of input pattern strings and an ops-vector to evaluate them.
7044  * This function returns >0 for match, 0 for no match, and <0 for error.
7045  */
7046 static int
7047 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7048     uint32_t priv, uid_t uid, zoneid_t zoneid)
7049 {
7050         dtrace_provider_t *pvp = prp->dtpr_provider;
7051         int rv;
7052
7053         if (pvp->dtpv_defunct)
7054                 return (0);
7055
7056         if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
7057                 return (rv);
7058
7059         if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
7060                 return (rv);
7061
7062         if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7063                 return (rv);
7064
7065         if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
7066                 return (rv);
7067
7068         if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7069                 return (0);
7070
7071         return (rv);
7072 }
7073
7074 /*
7075  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7076  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
7077  * libc's version, the kernel version only applies to 8-bit ASCII strings.
7078  * In addition, all of the recursion cases except for '*' matching have been
7079  * unwound.  For '*', we still implement recursive evaluation, but a depth
7080  * counter is maintained and matching is aborted if we recurse too deep.
7081  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7082  */
7083 static int
7084 dtrace_match_glob(const char *s, const char *p, int depth)
7085 {
7086         const char *olds;
7087         char s1, c;
7088         int gs;
7089
7090         if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7091                 return (-1);
7092
7093         if (s == NULL)
7094                 s = ""; /* treat NULL as empty string */
7095
7096 top:
7097         olds = s;
7098         s1 = *s++;
7099
7100         if (p == NULL)
7101                 return (0);
7102
7103         if ((c = *p++) == '\0')
7104                 return (s1 == '\0');
7105
7106         switch (c) {
7107         case '[': {
7108                 int ok = 0, notflag = 0;
7109                 char lc = '\0';
7110
7111                 if (s1 == '\0')
7112                         return (0);
7113
7114                 if (*p == '!') {
7115                         notflag = 1;
7116                         p++;
7117                 }
7118
7119                 if ((c = *p++) == '\0')
7120                         return (0);
7121
7122                 do {
7123                         if (c == '-' && lc != '\0' && *p != ']') {
7124                                 if ((c = *p++) == '\0')
7125                                         return (0);
7126                                 if (c == '\\' && (c = *p++) == '\0')
7127                                         return (0);
7128
7129                                 if (notflag) {
7130                                         if (s1 < lc || s1 > c)
7131                                                 ok++;
7132                                         else
7133                                                 return (0);
7134                                 } else if (lc <= s1 && s1 <= c)
7135                                         ok++;
7136
7137                         } else if (c == '\\' && (c = *p++) == '\0')
7138                                 return (0);
7139
7140                         lc = c; /* save left-hand 'c' for next iteration */
7141
7142                         if (notflag) {
7143                                 if (s1 != c)
7144                                         ok++;
7145                                 else
7146                                         return (0);
7147                         } else if (s1 == c)
7148                                 ok++;
7149
7150                         if ((c = *p++) == '\0')
7151                                 return (0);
7152
7153                 } while (c != ']');
7154
7155                 if (ok)
7156                         goto top;
7157
7158                 return (0);
7159         }
7160
7161         case '\\':
7162                 if ((c = *p++) == '\0')
7163                         return (0);
7164                 /*FALLTHRU*/
7165
7166         default:
7167                 if (c != s1)
7168                         return (0);
7169                 /*FALLTHRU*/
7170
7171         case '?':
7172                 if (s1 != '\0')
7173                         goto top;
7174                 return (0);
7175
7176         case '*':
7177                 while (*p == '*')
7178                         p++; /* consecutive *'s are identical to a single one */
7179
7180                 if (*p == '\0')
7181                         return (1);
7182
7183                 for (s = olds; *s != '\0'; s++) {
7184                         if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7185                                 return (gs);
7186                 }
7187
7188                 return (0);
7189         }
7190 }
7191
7192 /*ARGSUSED*/
7193 static int
7194 dtrace_match_string(const char *s, const char *p, int depth)
7195 {
7196         return (s != NULL && strcmp(s, p) == 0);
7197 }
7198
7199 /*ARGSUSED*/
7200 static int
7201 dtrace_match_nul(const char *s, const char *p, int depth)
7202 {
7203         return (1); /* always match the empty pattern */
7204 }
7205
7206 /*ARGSUSED*/
7207 static int
7208 dtrace_match_nonzero(const char *s, const char *p, int depth)
7209 {
7210         return (s != NULL && s[0] != '\0');
7211 }
7212
7213 static int
7214 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7215     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7216 {
7217         dtrace_probe_t template, *probe;
7218         dtrace_hash_t *hash = NULL;
7219         int len, best = INT_MAX, nmatched = 0;
7220         dtrace_id_t i;
7221
7222         ASSERT(MUTEX_HELD(&dtrace_lock));
7223
7224         /*
7225          * If the probe ID is specified in the key, just lookup by ID and
7226          * invoke the match callback once if a matching probe is found.
7227          */
7228         if (pkp->dtpk_id != DTRACE_IDNONE) {
7229                 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7230                     dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7231                         (void) (*matched)(probe, arg);
7232                         nmatched++;
7233                 }
7234                 return (nmatched);
7235         }
7236
7237         template.dtpr_mod = (char *)pkp->dtpk_mod;
7238         template.dtpr_func = (char *)pkp->dtpk_func;
7239         template.dtpr_name = (char *)pkp->dtpk_name;
7240
7241         /*
7242          * We want to find the most distinct of the module name, function
7243          * name, and name.  So for each one that is not a glob pattern or
7244          * empty string, we perform a lookup in the corresponding hash and
7245          * use the hash table with the fewest collisions to do our search.
7246          */
7247         if (pkp->dtpk_mmatch == &dtrace_match_string &&
7248             (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7249                 best = len;
7250                 hash = dtrace_bymod;
7251         }
7252
7253         if (pkp->dtpk_fmatch == &dtrace_match_string &&
7254             (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7255                 best = len;
7256                 hash = dtrace_byfunc;
7257         }
7258
7259         if (pkp->dtpk_nmatch == &dtrace_match_string &&
7260             (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7261                 best = len;
7262                 hash = dtrace_byname;
7263         }
7264
7265         /*
7266          * If we did not select a hash table, iterate over every probe and
7267          * invoke our callback for each one that matches our input probe key.
7268          */
7269         if (hash == NULL) {
7270                 for (i = 0; i < dtrace_nprobes; i++) {
7271                         if ((probe = dtrace_probes[i]) == NULL ||
7272                             dtrace_match_probe(probe, pkp, priv, uid,
7273                             zoneid) <= 0)
7274                                 continue;
7275
7276                         nmatched++;
7277
7278                         if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7279                                 break;
7280                 }
7281
7282                 return (nmatched);
7283         }
7284
7285         /*
7286          * If we selected a hash table, iterate over each probe of the same key
7287          * name and invoke the callback for every probe that matches the other
7288          * attributes of our input probe key.
7289          */
7290         for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7291             probe = *(DTRACE_HASHNEXT(hash, probe))) {
7292
7293                 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7294                         continue;
7295
7296                 nmatched++;
7297
7298                 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7299                         break;
7300         }
7301
7302         return (nmatched);
7303 }
7304
7305 /*
7306  * Return the function pointer dtrace_probecmp() should use to compare the
7307  * specified pattern with a string.  For NULL or empty patterns, we select
7308  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7309  * For non-empty non-glob strings, we use dtrace_match_string().
7310  */
7311 static dtrace_probekey_f *
7312 dtrace_probekey_func(const char *p)
7313 {
7314         char c;
7315
7316         if (p == NULL || *p == '\0')
7317                 return (&dtrace_match_nul);
7318
7319         while ((c = *p++) != '\0') {
7320                 if (c == '[' || c == '?' || c == '*' || c == '\\')
7321                         return (&dtrace_match_glob);
7322         }
7323
7324         return (&dtrace_match_string);
7325 }
7326
7327 /*
7328  * Build a probe comparison key for use with dtrace_match_probe() from the
7329  * given probe description.  By convention, a null key only matches anchored
7330  * probes: if each field is the empty string, reset dtpk_fmatch to
7331  * dtrace_match_nonzero().
7332  */
7333 static void
7334 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7335 {
7336         pkp->dtpk_prov = pdp->dtpd_provider;
7337         pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7338
7339         pkp->dtpk_mod = pdp->dtpd_mod;
7340         pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7341
7342         pkp->dtpk_func = pdp->dtpd_func;
7343         pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7344
7345         pkp->dtpk_name = pdp->dtpd_name;
7346         pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7347
7348         pkp->dtpk_id = pdp->dtpd_id;
7349
7350         if (pkp->dtpk_id == DTRACE_IDNONE &&
7351             pkp->dtpk_pmatch == &dtrace_match_nul &&
7352             pkp->dtpk_mmatch == &dtrace_match_nul &&
7353             pkp->dtpk_fmatch == &dtrace_match_nul &&
7354             pkp->dtpk_nmatch == &dtrace_match_nul)
7355                 pkp->dtpk_fmatch = &dtrace_match_nonzero;
7356 }
7357
7358 /*
7359  * DTrace Provider-to-Framework API Functions
7360  *
7361  * These functions implement much of the Provider-to-Framework API, as
7362  * described in <sys/dtrace.h>.  The parts of the API not in this section are
7363  * the functions in the API for probe management (found below), and
7364  * dtrace_probe() itself (found above).
7365  */
7366
7367 /*
7368  * Register the calling provider with the DTrace framework.  This should
7369  * generally be called by DTrace providers in their attach(9E) entry point.
7370  */
7371 int
7372 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7373     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7374 {
7375         dtrace_provider_t *provider;
7376
7377         if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7378                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7379                     "arguments", name ? name : "<NULL>");
7380                 return (EINVAL);
7381         }
7382
7383         if (name[0] == '\0' || dtrace_badname(name)) {
7384                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7385                     "provider name", name);
7386                 return (EINVAL);
7387         }
7388
7389         if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7390             pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7391             pops->dtps_destroy == NULL ||
7392             ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7393                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7394                     "provider ops", name);
7395                 return (EINVAL);
7396         }
7397
7398         if (dtrace_badattr(&pap->dtpa_provider) ||
7399             dtrace_badattr(&pap->dtpa_mod) ||
7400             dtrace_badattr(&pap->dtpa_func) ||
7401             dtrace_badattr(&pap->dtpa_name) ||
7402             dtrace_badattr(&pap->dtpa_args)) {
7403                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7404                     "provider attributes", name);
7405                 return (EINVAL);
7406         }
7407
7408         if (priv & ~DTRACE_PRIV_ALL) {
7409                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7410                     "privilege attributes", name);
7411                 return (EINVAL);
7412         }
7413
7414         if ((priv & DTRACE_PRIV_KERNEL) &&
7415             (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7416             pops->dtps_usermode == NULL) {
7417                 cmn_err(CE_WARN, "failed to register provider '%s': need "
7418                     "dtps_usermode() op for given privilege attributes", name);
7419                 return (EINVAL);
7420         }
7421
7422         provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7423         provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7424         (void) strcpy(provider->dtpv_name, name);
7425
7426         provider->dtpv_attr = *pap;
7427         provider->dtpv_priv.dtpp_flags = priv;
7428         if (cr != NULL) {
7429                 provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7430                 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7431         }
7432         provider->dtpv_pops = *pops;
7433
7434         if (pops->dtps_provide == NULL) {
7435                 ASSERT(pops->dtps_provide_module != NULL);
7436                 provider->dtpv_pops.dtps_provide =
7437                     (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
7438         }
7439
7440         if (pops->dtps_provide_module == NULL) {
7441                 ASSERT(pops->dtps_provide != NULL);
7442                 provider->dtpv_pops.dtps_provide_module =
7443                     (void (*)(void *, modctl_t *))dtrace_nullop;
7444         }
7445
7446         if (pops->dtps_suspend == NULL) {
7447                 ASSERT(pops->dtps_resume == NULL);
7448                 provider->dtpv_pops.dtps_suspend =
7449                     (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7450                 provider->dtpv_pops.dtps_resume =
7451                     (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7452         }
7453
7454         provider->dtpv_arg = arg;
7455         *idp = (dtrace_provider_id_t)provider;
7456
7457         if (pops == &dtrace_provider_ops) {
7458                 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7459                 ASSERT(MUTEX_HELD(&dtrace_lock));
7460                 ASSERT(dtrace_anon.dta_enabling == NULL);
7461
7462                 /*
7463                  * We make sure that the DTrace provider is at the head of
7464                  * the provider chain.
7465                  */
7466                 provider->dtpv_next = dtrace_provider;
7467                 dtrace_provider = provider;
7468                 return (0);
7469         }
7470
7471         mutex_enter(&dtrace_provider_lock);
7472         mutex_enter(&dtrace_lock);
7473
7474         /*
7475          * If there is at least one provider registered, we'll add this
7476          * provider after the first provider.
7477          */
7478         if (dtrace_provider != NULL) {
7479                 provider->dtpv_next = dtrace_provider->dtpv_next;
7480                 dtrace_provider->dtpv_next = provider;
7481         } else {
7482                 dtrace_provider = provider;
7483         }
7484
7485         if (dtrace_retained != NULL) {
7486                 dtrace_enabling_provide(provider);
7487
7488                 /*
7489                  * Now we need to call dtrace_enabling_matchall() -- which
7490                  * will acquire cpu_lock and dtrace_lock.  We therefore need
7491                  * to drop all of our locks before calling into it...
7492                  */
7493                 mutex_exit(&dtrace_lock);
7494                 mutex_exit(&dtrace_provider_lock);
7495                 dtrace_enabling_matchall();
7496
7497                 return (0);
7498         }
7499
7500         mutex_exit(&dtrace_lock);
7501         mutex_exit(&dtrace_provider_lock);
7502
7503         return (0);
7504 }
7505
7506 /*
7507  * Unregister the specified provider from the DTrace framework.  This should
7508  * generally be called by DTrace providers in their detach(9E) entry point.
7509  */
7510 int
7511 dtrace_unregister(dtrace_provider_id_t id)
7512 {
7513         dtrace_provider_t *old = (dtrace_provider_t *)id;
7514         dtrace_provider_t *prev = NULL;
7515         int i, self = 0;
7516         dtrace_probe_t *probe, *first = NULL;
7517
7518         if (old->dtpv_pops.dtps_enable ==
7519             (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
7520                 /*
7521                  * If DTrace itself is the provider, we're called with locks
7522                  * already held.
7523                  */
7524                 ASSERT(old == dtrace_provider);
7525 #if defined(sun)
7526                 ASSERT(dtrace_devi != NULL);
7527 #endif
7528                 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7529                 ASSERT(MUTEX_HELD(&dtrace_lock));
7530                 self = 1;
7531
7532                 if (dtrace_provider->dtpv_next != NULL) {
7533                         /*
7534                          * There's another provider here; return failure.
7535                          */
7536                         return (EBUSY);
7537                 }
7538         } else {
7539                 mutex_enter(&dtrace_provider_lock);
7540                 mutex_enter(&mod_lock);
7541                 mutex_enter(&dtrace_lock);
7542         }
7543
7544         /*
7545          * If anyone has /dev/dtrace open, or if there are anonymous enabled
7546          * probes, we refuse to let providers slither away, unless this
7547          * provider has already been explicitly invalidated.
7548          */
7549         if (!old->dtpv_defunct &&
7550             (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7551             dtrace_anon.dta_state->dts_necbs > 0))) {
7552                 if (!self) {
7553                         mutex_exit(&dtrace_lock);
7554                         mutex_exit(&mod_lock);
7555                         mutex_exit(&dtrace_provider_lock);
7556                 }
7557                 return (EBUSY);
7558         }
7559
7560         /*
7561          * Attempt to destroy the probes associated with this provider.
7562          */
7563         for (i = 0; i < dtrace_nprobes; i++) {
7564                 if ((probe = dtrace_probes[i]) == NULL)
7565                         continue;
7566
7567                 if (probe->dtpr_provider != old)
7568                         continue;
7569
7570                 if (probe->dtpr_ecb == NULL)
7571                         continue;
7572
7573                 /*
7574                  * We have at least one ECB; we can't remove this provider.
7575                  */
7576                 if (!self) {
7577                         mutex_exit(&dtrace_lock);
7578                         mutex_exit(&mod_lock);
7579                         mutex_exit(&dtrace_provider_lock);
7580                 }
7581                 return (EBUSY);
7582         }
7583
7584         /*
7585          * All of the probes for this provider are disabled; we can safely
7586          * remove all of them from their hash chains and from the probe array.
7587          */
7588         for (i = 0; i < dtrace_nprobes; i++) {
7589                 if ((probe = dtrace_probes[i]) == NULL)
7590                         continue;
7591
7592                 if (probe->dtpr_provider != old)
7593                         continue;
7594
7595                 dtrace_probes[i] = NULL;
7596
7597                 dtrace_hash_remove(dtrace_bymod, probe);
7598                 dtrace_hash_remove(dtrace_byfunc, probe);
7599                 dtrace_hash_remove(dtrace_byname, probe);
7600
7601                 if (first == NULL) {
7602                         first = probe;
7603                         probe->dtpr_nextmod = NULL;
7604                 } else {
7605                         probe->dtpr_nextmod = first;
7606                         first = probe;
7607                 }
7608         }
7609
7610         /*
7611          * The provider's probes have been removed from the hash chains and
7612          * from the probe array.  Now issue a dtrace_sync() to be sure that
7613          * everyone has cleared out from any probe array processing.
7614          */
7615         dtrace_sync();
7616
7617         for (probe = first; probe != NULL; probe = first) {
7618                 first = probe->dtpr_nextmod;
7619
7620                 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7621                     probe->dtpr_arg);
7622                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7623                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7624                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7625 #if defined(sun)
7626                 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7627 #else
7628                 free_unr(dtrace_arena, probe->dtpr_id);
7629 #endif
7630                 kmem_free(probe, sizeof (dtrace_probe_t));
7631         }
7632
7633         if ((prev = dtrace_provider) == old) {
7634 #if defined(sun)
7635                 ASSERT(self || dtrace_devi == NULL);
7636                 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7637 #endif
7638                 dtrace_provider = old->dtpv_next;
7639         } else {
7640                 while (prev != NULL && prev->dtpv_next != old)
7641                         prev = prev->dtpv_next;
7642
7643                 if (prev == NULL) {
7644                         panic("attempt to unregister non-existent "
7645                             "dtrace provider %p\n", (void *)id);
7646                 }
7647
7648                 prev->dtpv_next = old->dtpv_next;
7649         }
7650
7651         if (!self) {
7652                 mutex_exit(&dtrace_lock);
7653                 mutex_exit(&mod_lock);
7654                 mutex_exit(&dtrace_provider_lock);
7655         }
7656
7657         kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7658         kmem_free(old, sizeof (dtrace_provider_t));
7659
7660         return (0);
7661 }
7662
7663 /*
7664  * Invalidate the specified provider.  All subsequent probe lookups for the
7665  * specified provider will fail, but its probes will not be removed.
7666  */
7667 void
7668 dtrace_invalidate(dtrace_provider_id_t id)
7669 {
7670         dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7671
7672         ASSERT(pvp->dtpv_pops.dtps_enable !=
7673             (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7674
7675         mutex_enter(&dtrace_provider_lock);
7676         mutex_enter(&dtrace_lock);
7677
7678         pvp->dtpv_defunct = 1;
7679
7680         mutex_exit(&dtrace_lock);
7681         mutex_exit(&dtrace_provider_lock);
7682 }
7683
7684 /*
7685  * Indicate whether or not DTrace has attached.
7686  */
7687 int
7688 dtrace_attached(void)
7689 {
7690         /*
7691          * dtrace_provider will be non-NULL iff the DTrace driver has
7692          * attached.  (It's non-NULL because DTrace is always itself a
7693          * provider.)
7694          */
7695         return (dtrace_provider != NULL);
7696 }
7697
7698 /*
7699  * Remove all the unenabled probes for the given provider.  This function is
7700  * not unlike dtrace_unregister(), except that it doesn't remove the provider
7701  * -- just as many of its associated probes as it can.
7702  */
7703 int
7704 dtrace_condense(dtrace_provider_id_t id)
7705 {
7706         dtrace_provider_t *prov = (dtrace_provider_t *)id;
7707         int i;
7708         dtrace_probe_t *probe;
7709
7710         /*
7711          * Make sure this isn't the dtrace provider itself.
7712          */
7713         ASSERT(prov->dtpv_pops.dtps_enable !=
7714             (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7715
7716         mutex_enter(&dtrace_provider_lock);
7717         mutex_enter(&dtrace_lock);
7718
7719         /*
7720          * Attempt to destroy the probes associated with this provider.
7721          */
7722         for (i = 0; i < dtrace_nprobes; i++) {
7723                 if ((probe = dtrace_probes[i]) == NULL)
7724                         continue;
7725
7726                 if (probe->dtpr_provider != prov)
7727                         continue;
7728
7729                 if (probe->dtpr_ecb != NULL)
7730                         continue;
7731
7732                 dtrace_probes[i] = NULL;
7733
7734                 dtrace_hash_remove(dtrace_bymod, probe);
7735                 dtrace_hash_remove(dtrace_byfunc, probe);
7736                 dtrace_hash_remove(dtrace_byname, probe);
7737
7738                 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7739                     probe->dtpr_arg);
7740                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7741                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7742                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7743                 kmem_free(probe, sizeof (dtrace_probe_t));
7744 #if defined(sun)
7745                 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7746 #else
7747                 free_unr(dtrace_arena, i + 1);
7748 #endif
7749         }
7750
7751         mutex_exit(&dtrace_lock);
7752         mutex_exit(&dtrace_provider_lock);
7753
7754         return (0);
7755 }
7756
7757 /*
7758  * DTrace Probe Management Functions
7759  *
7760  * The functions in this section perform the DTrace probe management,
7761  * including functions to create probes, look-up probes, and call into the
7762  * providers to request that probes be provided.  Some of these functions are
7763  * in the Provider-to-Framework API; these functions can be identified by the
7764  * fact that they are not declared "static".
7765  */
7766
7767 /*
7768  * Create a probe with the specified module name, function name, and name.
7769  */
7770 dtrace_id_t
7771 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7772     const char *func, const char *name, int aframes, void *arg)
7773 {
7774         dtrace_probe_t *probe, **probes;
7775         dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7776         dtrace_id_t id;
7777
7778         if (provider == dtrace_provider) {
7779                 ASSERT(MUTEX_HELD(&dtrace_lock));
7780         } else {
7781                 mutex_enter(&dtrace_lock);
7782         }
7783
7784 #if defined(sun)
7785         id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7786             VM_BESTFIT | VM_SLEEP);
7787 #else
7788         id = alloc_unr(dtrace_arena);
7789 #endif
7790         probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7791
7792         probe->dtpr_id = id;
7793         probe->dtpr_gen = dtrace_probegen++;
7794         probe->dtpr_mod = dtrace_strdup(mod);
7795         probe->dtpr_func = dtrace_strdup(func);
7796         probe->dtpr_name = dtrace_strdup(name);
7797         probe->dtpr_arg = arg;
7798         probe->dtpr_aframes = aframes;
7799         probe->dtpr_provider = provider;
7800
7801         dtrace_hash_add(dtrace_bymod, probe);
7802         dtrace_hash_add(dtrace_byfunc, probe);
7803         dtrace_hash_add(dtrace_byname, probe);
7804
7805         if (id - 1 >= dtrace_nprobes) {
7806                 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7807                 size_t nsize = osize << 1;
7808
7809                 if (nsize == 0) {
7810                         ASSERT(osize == 0);
7811                         ASSERT(dtrace_probes == NULL);
7812                         nsize = sizeof (dtrace_probe_t *);
7813                 }
7814
7815                 probes = kmem_zalloc(nsize, KM_SLEEP);
7816
7817                 if (dtrace_probes == NULL) {
7818                         ASSERT(osize == 0);
7819                         dtrace_probes = probes;
7820                         dtrace_nprobes = 1;
7821                 } else {
7822                         dtrace_probe_t **oprobes = dtrace_probes;
7823
7824                         bcopy(oprobes, probes, osize);
7825                         dtrace_membar_producer();
7826                         dtrace_probes = probes;
7827
7828                         dtrace_sync();
7829
7830                         /*
7831                          * All CPUs are now seeing the new probes array; we can
7832                          * safely free the old array.
7833                          */
7834                         kmem_free(oprobes, osize);
7835                         dtrace_nprobes <<= 1;
7836                 }
7837
7838                 ASSERT(id - 1 < dtrace_nprobes);
7839         }
7840
7841         ASSERT(dtrace_probes[id - 1] == NULL);
7842         dtrace_probes[id - 1] = probe;
7843
7844         if (provider != dtrace_provider)
7845                 mutex_exit(&dtrace_lock);
7846
7847         return (id);
7848 }
7849
7850 static dtrace_probe_t *
7851 dtrace_probe_lookup_id(dtrace_id_t id)
7852 {
7853         ASSERT(MUTEX_HELD(&dtrace_lock));
7854
7855         if (id == 0 || id > dtrace_nprobes)
7856                 return (NULL);
7857
7858         return (dtrace_probes[id - 1]);
7859 }
7860
7861 static int
7862 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
7863 {
7864         *((dtrace_id_t *)arg) = probe->dtpr_id;
7865
7866         return (DTRACE_MATCH_DONE);
7867 }
7868
7869 /*
7870  * Look up a probe based on provider and one or more of module name, function
7871  * name and probe name.
7872  */
7873 dtrace_id_t
7874 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
7875     char *func, char *name)
7876 {
7877         dtrace_probekey_t pkey;
7878         dtrace_id_t id;
7879         int match;
7880
7881         pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
7882         pkey.dtpk_pmatch = &dtrace_match_string;
7883         pkey.dtpk_mod = mod;
7884         pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
7885         pkey.dtpk_func = func;
7886         pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
7887         pkey.dtpk_name = name;
7888         pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
7889         pkey.dtpk_id = DTRACE_IDNONE;
7890
7891         mutex_enter(&dtrace_lock);
7892         match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
7893             dtrace_probe_lookup_match, &id);
7894         mutex_exit(&dtrace_lock);
7895
7896         ASSERT(match == 1 || match == 0);
7897         return (match ? id : 0);
7898 }
7899
7900 /*
7901  * Returns the probe argument associated with the specified probe.
7902  */
7903 void *
7904 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
7905 {
7906         dtrace_probe_t *probe;
7907         void *rval = NULL;
7908
7909         mutex_enter(&dtrace_lock);
7910
7911         if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
7912             probe->dtpr_provider == (dtrace_provider_t *)id)
7913                 rval = probe->dtpr_arg;
7914
7915         mutex_exit(&dtrace_lock);
7916
7917         return (rval);
7918 }
7919
7920 /*
7921  * Copy a probe into a probe description.
7922  */
7923 static void
7924 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
7925 {
7926         bzero(pdp, sizeof (dtrace_probedesc_t));
7927         pdp->dtpd_id = prp->dtpr_id;
7928
7929         (void) strncpy(pdp->dtpd_provider,
7930             prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
7931
7932         (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
7933         (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
7934         (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
7935 }
7936
7937 #if !defined(sun)
7938 static int
7939 dtrace_probe_provide_cb(linker_file_t lf, void *arg)
7940 {
7941         dtrace_provider_t *prv = (dtrace_provider_t *) arg;
7942
7943         prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, lf);
7944
7945         return(0);
7946 }
7947 #endif
7948
7949
7950 /*
7951  * Called to indicate that a probe -- or probes -- should be provided by a
7952  * specfied provider.  If the specified description is NULL, the provider will
7953  * be told to provide all of its probes.  (This is done whenever a new
7954  * consumer comes along, or whenever a retained enabling is to be matched.) If
7955  * the specified description is non-NULL, the provider is given the
7956  * opportunity to dynamically provide the specified probe, allowing providers
7957  * to support the creation of probes on-the-fly.  (So-called _autocreated_
7958  * probes.)  If the provider is NULL, the operations will be applied to all
7959  * providers; if the provider is non-NULL the operations will only be applied
7960  * to the specified provider.  The dtrace_provider_lock must be held, and the
7961  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
7962  * will need to grab the dtrace_lock when it reenters the framework through
7963  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
7964  */
7965 static void
7966 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
7967 {
7968 #if defined(sun)
7969         modctl_t *ctl;
7970 #endif
7971         int all = 0;
7972
7973         ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7974
7975         if (prv == NULL) {
7976                 all = 1;
7977                 prv = dtrace_provider;
7978         }
7979
7980         do {
7981                 /*
7982                  * First, call the blanket provide operation.
7983                  */
7984                 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
7985
7986                 /*
7987                  * Now call the per-module provide operation.  We will grab
7988                  * mod_lock to prevent the list from being modified.  Note
7989                  * that this also prevents the mod_busy bits from changing.
7990                  * (mod_busy can only be changed with mod_lock held.)
7991                  */
7992                 mutex_enter(&mod_lock);
7993
7994 #if defined(sun)
7995                 ctl = &modules;
7996                 do {
7997                         if (ctl->mod_busy || ctl->mod_mp == NULL)
7998                                 continue;
7999
8000                         prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
8001
8002                 } while ((ctl = ctl->mod_next) != &modules);
8003 #else
8004                 (void) linker_file_foreach(dtrace_probe_provide_cb, prv);
8005 #endif
8006
8007                 mutex_exit(&mod_lock);
8008         } while (all && (prv = prv->dtpv_next) != NULL);
8009 }
8010
8011 #if defined(sun)
8012 /*
8013  * Iterate over each probe, and call the Framework-to-Provider API function
8014  * denoted by offs.
8015  */
8016 static void
8017 dtrace_probe_foreach(uintptr_t offs)
8018 {
8019         dtrace_provider_t *prov;
8020         void (*func)(void *, dtrace_id_t, void *);
8021         dtrace_probe_t *probe;
8022         dtrace_icookie_t cookie;
8023         int i;
8024
8025         /*
8026          * We disable interrupts to walk through the probe array.  This is
8027          * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8028          * won't see stale data.
8029          */
8030         cookie = dtrace_interrupt_disable();
8031
8032         for (i = 0; i < dtrace_nprobes; i++) {
8033                 if ((probe = dtrace_probes[i]) == NULL)
8034                         continue;
8035
8036                 if (probe->dtpr_ecb == NULL) {
8037                         /*
8038                          * This probe isn't enabled -- don't call the function.
8039                          */
8040                         continue;
8041                 }
8042
8043                 prov = probe->dtpr_provider;
8044                 func = *((void(**)(void *, dtrace_id_t, void *))
8045                     ((uintptr_t)&prov->dtpv_pops + offs));
8046
8047                 func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8048         }
8049
8050         dtrace_interrupt_enable(cookie);
8051 }
8052 #endif
8053
8054 static int
8055 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8056 {
8057         dtrace_probekey_t pkey;
8058         uint32_t priv;
8059         uid_t uid;
8060         zoneid_t zoneid;
8061
8062         ASSERT(MUTEX_HELD(&dtrace_lock));
8063         dtrace_ecb_create_cache = NULL;
8064
8065         if (desc == NULL) {
8066                 /*
8067                  * If we're passed a NULL description, we're being asked to
8068                  * create an ECB with a NULL probe.
8069                  */
8070                 (void) dtrace_ecb_create_enable(NULL, enab);
8071                 return (0);
8072         }
8073
8074         dtrace_probekey(desc, &pkey);
8075         dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8076             &priv, &uid, &zoneid);
8077
8078         return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8079             enab));
8080 }
8081
8082 /*
8083  * DTrace Helper Provider Functions
8084  */
8085 static void
8086 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8087 {
8088         attr->dtat_name = DOF_ATTR_NAME(dofattr);
8089         attr->dtat_data = DOF_ATTR_DATA(dofattr);
8090         attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8091 }
8092
8093 static void
8094 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8095     const dof_provider_t *dofprov, char *strtab)
8096 {
8097         hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8098         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8099             dofprov->dofpv_provattr);
8100         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8101             dofprov->dofpv_modattr);
8102         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8103             dofprov->dofpv_funcattr);
8104         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8105             dofprov->dofpv_nameattr);
8106         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8107             dofprov->dofpv_argsattr);
8108 }
8109
8110 static void
8111 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8112 {
8113         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8114         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8115         dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8116         dof_provider_t *provider;
8117         dof_probe_t *probe;
8118         uint32_t *off, *enoff;
8119         uint8_t *arg;
8120         char *strtab;
8121         uint_t i, nprobes;
8122         dtrace_helper_provdesc_t dhpv;
8123         dtrace_helper_probedesc_t dhpb;
8124         dtrace_meta_t *meta = dtrace_meta_pid;
8125         dtrace_mops_t *mops = &meta->dtm_mops;
8126         void *parg;
8127
8128         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8129         str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8130             provider->dofpv_strtab * dof->dofh_secsize);
8131         prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8132             provider->dofpv_probes * dof->dofh_secsize);
8133         arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8134             provider->dofpv_prargs * dof->dofh_secsize);
8135         off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8136             provider->dofpv_proffs * dof->dofh_secsize);
8137
8138         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8139         off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8140         arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8141         enoff = NULL;
8142
8143         /*
8144          * See dtrace_helper_provider_validate().
8145          */
8146         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8147             provider->dofpv_prenoffs != DOF_SECT_NONE) {
8148                 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8149                     provider->dofpv_prenoffs * dof->dofh_secsize);
8150                 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8151         }
8152
8153         nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8154
8155         /*
8156          * Create the provider.
8157          */
8158         dtrace_dofprov2hprov(&dhpv, provider, strtab);
8159
8160         if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8161                 return;
8162
8163         meta->dtm_count++;
8164
8165         /*
8166          * Create the probes.
8167          */
8168         for (i = 0; i < nprobes; i++) {
8169                 probe = (dof_probe_t *)(uintptr_t)(daddr +
8170                     prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8171
8172                 dhpb.dthpb_mod = dhp->dofhp_mod;
8173                 dhpb.dthpb_func = strtab + probe->dofpr_func;
8174                 dhpb.dthpb_name = strtab + probe->dofpr_name;
8175                 dhpb.dthpb_base = probe->dofpr_addr;
8176                 dhpb.dthpb_offs = off + probe->dofpr_offidx;
8177                 dhpb.dthpb_noffs = probe->dofpr_noffs;
8178                 if (enoff != NULL) {
8179                         dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8180                         dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8181                 } else {
8182                         dhpb.dthpb_enoffs = NULL;
8183                         dhpb.dthpb_nenoffs = 0;
8184                 }
8185                 dhpb.dthpb_args = arg + probe->dofpr_argidx;
8186                 dhpb.dthpb_nargc = probe->dofpr_nargc;
8187                 dhpb.dthpb_xargc = probe->dofpr_xargc;
8188                 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8189                 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8190
8191                 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8192         }
8193 }
8194
8195 static void
8196 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8197 {
8198         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8199         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8200         int i;
8201
8202         ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8203
8204         for (i = 0; i < dof->dofh_secnum; i++) {
8205                 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8206                     dof->dofh_secoff + i * dof->dofh_secsize);
8207
8208                 if (sec->dofs_type != DOF_SECT_PROVIDER)
8209                         continue;
8210
8211                 dtrace_helper_provide_one(dhp, sec, pid);
8212         }
8213
8214         /*
8215          * We may have just created probes, so we must now rematch against
8216          * any retained enablings.  Note that this call will acquire both
8217          * cpu_lock and dtrace_lock; the fact that we are holding
8218          * dtrace_meta_lock now is what defines the ordering with respect to
8219          * these three locks.
8220          */
8221         dtrace_enabling_matchall();
8222 }
8223
8224 static void
8225 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8226 {
8227         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8228         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8229         dof_sec_t *str_sec;
8230         dof_provider_t *provider;
8231         char *strtab;
8232         dtrace_helper_provdesc_t dhpv;
8233         dtrace_meta_t *meta = dtrace_meta_pid;
8234         dtrace_mops_t *mops = &meta->dtm_mops;
8235
8236         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8237         str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8238             provider->dofpv_strtab * dof->dofh_secsize);
8239
8240         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8241
8242         /*
8243          * Create the provider.
8244          */
8245         dtrace_dofprov2hprov(&dhpv, provider, strtab);
8246
8247         mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8248
8249         meta->dtm_count--;
8250 }
8251
8252 static void
8253 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8254 {
8255         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8256         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8257         int i;
8258
8259         ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8260
8261         for (i = 0; i < dof->dofh_secnum; i++) {
8262                 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8263                     dof->dofh_secoff + i * dof->dofh_secsize);
8264
8265                 if (sec->dofs_type != DOF_SECT_PROVIDER)
8266                         continue;
8267
8268                 dtrace_helper_provider_remove_one(dhp, sec, pid);
8269         }
8270 }
8271
8272 /*
8273  * DTrace Meta Provider-to-Framework API Functions
8274  *
8275  * These functions implement the Meta Provider-to-Framework API, as described
8276  * in <sys/dtrace.h>.
8277  */
8278 int
8279 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8280     dtrace_meta_provider_id_t *idp)
8281 {
8282         dtrace_meta_t *meta;
8283         dtrace_helpers_t *help, *next;
8284         int i;
8285
8286         *idp = DTRACE_METAPROVNONE;
8287
8288         /*
8289          * We strictly don't need the name, but we hold onto it for
8290          * debuggability. All hail error queues!
8291          */
8292         if (name == NULL) {
8293                 cmn_err(CE_WARN, "failed to register meta-provider: "
8294                     "invalid name");
8295                 return (EINVAL);
8296         }
8297
8298         if (mops == NULL ||
8299             mops->dtms_create_probe == NULL ||
8300             mops->dtms_provide_pid == NULL ||
8301             mops->dtms_remove_pid == NULL) {
8302                 cmn_err(CE_WARN, "failed to register meta-register %s: "
8303                     "invalid ops", name);
8304                 return (EINVAL);
8305         }
8306
8307         meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8308         meta->dtm_mops = *mops;
8309         meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8310         (void) strcpy(meta->dtm_name, name);
8311         meta->dtm_arg = arg;
8312
8313         mutex_enter(&dtrace_meta_lock);
8314         mutex_enter(&dtrace_lock);
8315
8316         if (dtrace_meta_pid != NULL) {
8317                 mutex_exit(&dtrace_lock);
8318                 mutex_exit(&dtrace_meta_lock);
8319                 cmn_err(CE_WARN, "failed to register meta-register %s: "
8320                     "user-land meta-provider exists", name);
8321                 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8322                 kmem_free(meta, sizeof (dtrace_meta_t));
8323                 return (EINVAL);
8324         }
8325
8326         dtrace_meta_pid = meta;
8327         *idp = (dtrace_meta_provider_id_t)meta;
8328
8329         /*
8330          * If there are providers and probes ready to go, pass them
8331          * off to the new meta provider now.
8332          */
8333
8334         help = dtrace_deferred_pid;
8335         dtrace_deferred_pid = NULL;
8336
8337         mutex_exit(&dtrace_lock);
8338
8339         while (help != NULL) {
8340                 for (i = 0; i < help->dthps_nprovs; i++) {
8341                         dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8342                             help->dthps_pid);
8343                 }
8344
8345                 next = help->dthps_next;
8346                 help->dthps_next = NULL;
8347                 help->dthps_prev = NULL;
8348                 help->dthps_deferred = 0;
8349                 help = next;
8350         }
8351
8352         mutex_exit(&dtrace_meta_lock);
8353
8354         return (0);
8355 }
8356
8357 int
8358 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8359 {
8360         dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8361
8362         mutex_enter(&dtrace_meta_lock);
8363         mutex_enter(&dtrace_lock);
8364
8365         if (old == dtrace_meta_pid) {
8366                 pp = &dtrace_meta_pid;
8367         } else {
8368                 panic("attempt to unregister non-existent "
8369                     "dtrace meta-provider %p\n", (void *)old);
8370         }
8371
8372         if (old->dtm_count != 0) {
8373                 mutex_exit(&dtrace_lock);
8374                 mutex_exit(&dtrace_meta_lock);
8375                 return (EBUSY);
8376         }
8377
8378         *pp = NULL;
8379
8380         mutex_exit(&dtrace_lock);
8381         mutex_exit(&dtrace_meta_lock);
8382
8383         kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8384         kmem_free(old, sizeof (dtrace_meta_t));
8385
8386         return (0);
8387 }
8388
8389
8390 /*
8391  * DTrace DIF Object Functions
8392  */
8393 static int
8394 dtrace_difo_err(uint_t pc, const char *format, ...)
8395 {
8396         if (dtrace_err_verbose) {
8397                 va_list alist;
8398
8399                 (void) uprintf("dtrace DIF object error: [%u]: ", pc);
8400                 va_start(alist, format);
8401                 (void) vuprintf(format, alist);
8402                 va_end(alist);
8403         }
8404
8405 #ifdef DTRACE_ERRDEBUG
8406         dtrace_errdebug(format);
8407 #endif
8408         return (1);
8409 }
8410
8411 /*
8412  * Validate a DTrace DIF object by checking the IR instructions.  The following
8413  * rules are currently enforced by dtrace_difo_validate():
8414  *
8415  * 1. Each instruction must have a valid opcode
8416  * 2. Each register, string, variable, or subroutine reference must be valid
8417  * 3. No instruction can modify register %r0 (must be zero)
8418  * 4. All instruction reserved bits must be set to zero
8419  * 5. The last instruction must be a "ret" instruction
8420  * 6. All branch targets must reference a valid instruction _after_ the branch
8421  */
8422 static int
8423 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8424     cred_t *cr)
8425 {
8426         int err = 0, i;
8427         int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8428         int kcheckload;
8429         uint_t pc;
8430
8431         kcheckload = cr == NULL ||
8432             (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8433
8434         dp->dtdo_destructive = 0;
8435
8436         for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8437                 dif_instr_t instr = dp->dtdo_buf[pc];
8438
8439                 uint_t r1 = DIF_INSTR_R1(instr);
8440                 uint_t r2 = DIF_INSTR_R2(instr);
8441                 uint_t rd = DIF_INSTR_RD(instr);
8442                 uint_t rs = DIF_INSTR_RS(instr);
8443                 uint_t label = DIF_INSTR_LABEL(instr);
8444                 uint_t v = DIF_INSTR_VAR(instr);
8445                 uint_t subr = DIF_INSTR_SUBR(instr);
8446                 uint_t type = DIF_INSTR_TYPE(instr);
8447                 uint_t op = DIF_INSTR_OP(instr);
8448
8449                 switch (op) {
8450                 case DIF_OP_OR:
8451                 case DIF_OP_XOR:
8452                 case DIF_OP_AND:
8453                 case DIF_OP_SLL:
8454                 case DIF_OP_SRL:
8455                 case DIF_OP_SRA:
8456                 case DIF_OP_SUB:
8457                 case DIF_OP_ADD:
8458                 case DIF_OP_MUL:
8459                 case DIF_OP_SDIV:
8460                 case DIF_OP_UDIV:
8461                 case DIF_OP_SREM:
8462                 case DIF_OP_UREM:
8463                 case DIF_OP_COPYS:
8464                         if (r1 >= nregs)
8465                                 err += efunc(pc, "invalid register %u\n", r1);
8466                         if (r2 >= nregs)
8467                                 err += efunc(pc, "invalid register %u\n", r2);
8468                         if (rd >= nregs)
8469                                 err += efunc(pc, "invalid register %u\n", rd);
8470                         if (rd == 0)
8471                                 err += efunc(pc, "cannot write to %r0\n");
8472                         break;
8473                 case DIF_OP_NOT:
8474                 case DIF_OP_MOV:
8475                 case DIF_OP_ALLOCS:
8476                         if (r1 >= nregs)
8477                                 err += efunc(pc, "invalid register %u\n", r1);
8478                         if (r2 != 0)
8479                                 err += efunc(pc, "non-zero reserved bits\n");
8480                         if (rd >= nregs)
8481                                 err += efunc(pc, "invalid register %u\n", rd);
8482                         if (rd == 0)
8483                                 err += efunc(pc, "cannot write to %r0\n");
8484                         break;
8485                 case DIF_OP_LDSB:
8486                 case DIF_OP_LDSH:
8487                 case DIF_OP_LDSW:
8488                 case DIF_OP_LDUB:
8489                 case DIF_OP_LDUH:
8490                 case DIF_OP_LDUW:
8491                 case DIF_OP_LDX:
8492                         if (r1 >= nregs)
8493                                 err += efunc(pc, "invalid register %u\n", r1);
8494                         if (r2 != 0)
8495                                 err += efunc(pc, "non-zero reserved bits\n");
8496                         if (rd >= nregs)
8497                                 err += efunc(pc, "invalid register %u\n", rd);
8498                         if (rd == 0)
8499                                 err += efunc(pc, "cannot write to %r0\n");
8500                         if (kcheckload)
8501                                 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8502                                     DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8503                         break;
8504                 case DIF_OP_RLDSB:
8505                 case DIF_OP_RLDSH:
8506                 case DIF_OP_RLDSW:
8507                 case DIF_OP_RLDUB:
8508                 case DIF_OP_RLDUH:
8509                 case DIF_OP_RLDUW:
8510                 case DIF_OP_RLDX:
8511                         if (r1 >= nregs)
8512                                 err += efunc(pc, "invalid register %u\n", r1);
8513                         if (r2 != 0)
8514                                 err += efunc(pc, "non-zero reserved bits\n");
8515                         if (rd >= nregs)
8516                                 err += efunc(pc, "invalid register %u\n", rd);
8517                         if (rd == 0)
8518                                 err += efunc(pc, "cannot write to %r0\n");
8519                         break;
8520                 case DIF_OP_ULDSB:
8521                 case DIF_OP_ULDSH:
8522                 case DIF_OP_ULDSW:
8523                 case DIF_OP_ULDUB:
8524                 case DIF_OP_ULDUH:
8525                 case DIF_OP_ULDUW:
8526                 case DIF_OP_ULDX:
8527                         if (r1 >= nregs)
8528                                 err += efunc(pc, "invalid register %u\n", r1);
8529                         if (r2 != 0)
8530                                 err += efunc(pc, "non-zero reserved bits\n");
8531                         if (rd >= nregs)
8532                                 err += efunc(pc, "invalid register %u\n", rd);
8533                         if (rd == 0)
8534                                 err += efunc(pc, "cannot write to %r0\n");
8535                         break;
8536                 case DIF_OP_STB:
8537                 case DIF_OP_STH:
8538                 case DIF_OP_STW:
8539                 case DIF_OP_STX:
8540                         if (r1 >= nregs)
8541                                 err += efunc(pc, "invalid register %u\n", r1);
8542                         if (r2 != 0)
8543                                 err += efunc(pc, "non-zero reserved bits\n");
8544                         if (rd >= nregs)
8545                                 err += efunc(pc, "invalid register %u\n", rd);
8546                         if (rd == 0)
8547                                 err += efunc(pc, "cannot write to 0 address\n");
8548                         break;
8549                 case DIF_OP_CMP:
8550                 case DIF_OP_SCMP:
8551                         if (r1 >= nregs)
8552                                 err += efunc(pc, "invalid register %u\n", r1);
8553                         if (r2 >= nregs)
8554                                 err += efunc(pc, "invalid register %u\n", r2);
8555                         if (rd != 0)
8556                                 err += efunc(pc, "non-zero reserved bits\n");
8557                         break;
8558                 case DIF_OP_TST:
8559                         if (r1 >= nregs)
8560                                 err += efunc(pc, "invalid register %u\n", r1);
8561                         if (r2 != 0 || rd != 0)
8562                                 err += efunc(pc, "non-zero reserved bits\n");
8563                         break;
8564                 case DIF_OP_BA:
8565                 case DIF_OP_BE:
8566                 case DIF_OP_BNE:
8567                 case DIF_OP_BG:
8568                 case DIF_OP_BGU:
8569                 case DIF_OP_BGE:
8570                 case DIF_OP_BGEU:
8571                 case DIF_OP_BL:
8572                 case DIF_OP_BLU:
8573                 case DIF_OP_BLE:
8574                 case DIF_OP_BLEU:
8575                         if (label >= dp->dtdo_len) {
8576                                 err += efunc(pc, "invalid branch target %u\n",
8577                                     label);
8578                         }
8579                         if (label <= pc) {
8580                                 err += efunc(pc, "backward branch to %u\n",
8581                                     label);
8582                         }
8583                         break;
8584                 case DIF_OP_RET:
8585                         if (r1 != 0 || r2 != 0)
8586                                 err += efunc(pc, "non-zero reserved bits\n");
8587                         if (rd >= nregs)
8588                                 err += efunc(pc, "invalid register %u\n", rd);
8589                         break;
8590                 case DIF_OP_NOP:
8591                 case DIF_OP_POPTS:
8592                 case DIF_OP_FLUSHTS:
8593                         if (r1 != 0 || r2 != 0 || rd != 0)
8594                                 err += efunc(pc, "non-zero reserved bits\n");
8595                         break;
8596                 case DIF_OP_SETX:
8597                         if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8598                                 err += efunc(pc, "invalid integer ref %u\n",
8599                                     DIF_INSTR_INTEGER(instr));
8600                         }
8601                         if (rd >= nregs)
8602                                 err += efunc(pc, "invalid register %u\n", rd);
8603                         if (rd == 0)
8604                                 err += efunc(pc, "cannot write to %r0\n");
8605                         break;
8606                 case DIF_OP_SETS:
8607                         if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8608                                 err += efunc(pc, "invalid string ref %u\n",
8609                                     DIF_INSTR_STRING(instr));
8610                         }
8611                         if (rd >= nregs)
8612                                 err += efunc(pc, "invalid register %u\n", rd);
8613                         if (rd == 0)
8614                                 err += efunc(pc, "cannot write to %r0\n");
8615                         break;
8616                 case DIF_OP_LDGA:
8617                 case DIF_OP_LDTA:
8618                         if (r1 > DIF_VAR_ARRAY_MAX)
8619                                 err += efunc(pc, "invalid array %u\n", r1);
8620                         if (r2 >= nregs)
8621                                 err += efunc(pc, "invalid register %u\n", r2);
8622                         if (rd >= nregs)
8623                                 err += efunc(pc, "invalid register %u\n", rd);
8624                         if (rd == 0)
8625                                 err += efunc(pc, "cannot write to %r0\n");
8626                         break;
8627                 case DIF_OP_LDGS:
8628                 case DIF_OP_LDTS:
8629                 case DIF_OP_LDLS:
8630                 case DIF_OP_LDGAA:
8631                 case DIF_OP_LDTAA:
8632                         if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8633                                 err += efunc(pc, "invalid variable %u\n", v);
8634                         if (rd >= nregs)
8635                                 err += efunc(pc, "invalid register %u\n", rd);
8636                         if (rd == 0)
8637                                 err += efunc(pc, "cannot write to %r0\n");
8638                         break;
8639                 case DIF_OP_STGS:
8640                 case DIF_OP_STTS:
8641                 case DIF_OP_STLS:
8642                 case DIF_OP_STGAA:
8643                 case DIF_OP_STTAA:
8644                         if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8645                                 err += efunc(pc, "invalid variable %u\n", v);
8646                         if (rs >= nregs)
8647                                 err += efunc(pc, "invalid register %u\n", rd);
8648                         break;
8649                 case DIF_OP_CALL:
8650                         if (subr > DIF_SUBR_MAX)
8651                                 err += efunc(pc, "invalid subr %u\n", subr);
8652                         if (rd >= nregs)
8653                                 err += efunc(pc, "invalid register %u\n", rd);
8654                         if (rd == 0)
8655                                 err += efunc(pc, "cannot write to %r0\n");
8656
8657                         if (subr == DIF_SUBR_COPYOUT ||
8658                             subr == DIF_SUBR_COPYOUTSTR) {
8659                                 dp->dtdo_destructive = 1;
8660                         }
8661                         break;
8662                 case DIF_OP_PUSHTR:
8663                         if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8664                                 err += efunc(pc, "invalid ref type %u\n", type);
8665                         if (r2 >= nregs)
8666                                 err += efunc(pc, "invalid register %u\n", r2);
8667                         if (rs >= nregs)
8668                                 err += efunc(pc, "invalid register %u\n", rs);
8669                         break;
8670                 case DIF_OP_PUSHTV:
8671                         if (type != DIF_TYPE_CTF)
8672                                 err += efunc(pc, "invalid val type %u\n", type);
8673                         if (r2 >= nregs)
8674                                 err += efunc(pc, "invalid register %u\n", r2);
8675                         if (rs >= nregs)
8676                                 err += efunc(pc, "invalid register %u\n", rs);
8677                         break;
8678                 default:
8679                         err += efunc(pc, "invalid opcode %u\n",
8680                             DIF_INSTR_OP(instr));
8681                 }
8682         }
8683
8684         if (dp->dtdo_len != 0 &&
8685             DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8686                 err += efunc(dp->dtdo_len - 1,
8687                     "expected 'ret' as last DIF instruction\n");
8688         }
8689
8690         if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8691                 /*
8692                  * If we're not returning by reference, the size must be either
8693                  * 0 or the size of one of the base types.
8694                  */
8695                 switch (dp->dtdo_rtype.dtdt_size) {
8696                 case 0:
8697                 case sizeof (uint8_t):
8698                 case sizeof (uint16_t):
8699                 case sizeof (uint32_t):
8700                 case sizeof (uint64_t):
8701                         break;
8702
8703                 default:
8704                         err += efunc(dp->dtdo_len - 1, "bad return size");
8705                 }
8706         }
8707
8708         for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8709                 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8710                 dtrace_diftype_t *vt, *et;
8711                 uint_t id, ndx;
8712
8713                 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8714                     v->dtdv_scope != DIFV_SCOPE_THREAD &&
8715                     v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8716                         err += efunc(i, "unrecognized variable scope %d\n",
8717                             v->dtdv_scope);
8718                         break;
8719                 }
8720
8721                 if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8722                     v->dtdv_kind != DIFV_KIND_SCALAR) {
8723                         err += efunc(i, "unrecognized variable type %d\n",
8724                             v->dtdv_kind);
8725                         break;
8726                 }
8727
8728                 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8729                         err += efunc(i, "%d exceeds variable id limit\n", id);
8730                         break;
8731                 }
8732
8733                 if (id < DIF_VAR_OTHER_UBASE)
8734                         continue;
8735
8736                 /*
8737                  * For user-defined variables, we need to check that this
8738                  * definition is identical to any previous definition that we
8739                  * encountered.
8740                  */
8741                 ndx = id - DIF_VAR_OTHER_UBASE;
8742
8743                 switch (v->dtdv_scope) {
8744                 case DIFV_SCOPE_GLOBAL:
8745                         if (ndx < vstate->dtvs_nglobals) {
8746                                 dtrace_statvar_t *svar;
8747
8748                                 if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8749                                         existing = &svar->dtsv_var;
8750                         }
8751
8752                         break;
8753
8754                 case DIFV_SCOPE_THREAD:
8755                         if (ndx < vstate->dtvs_ntlocals)
8756                                 existing = &vstate->dtvs_tlocals[ndx];
8757                         break;
8758
8759                 case DIFV_SCOPE_LOCAL:
8760                         if (ndx < vstate->dtvs_nlocals) {
8761                                 dtrace_statvar_t *svar;
8762
8763                                 if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8764                                         existing = &svar->dtsv_var;
8765                         }
8766
8767                         break;
8768                 }
8769
8770                 vt = &v->dtdv_type;
8771
8772                 if (vt->dtdt_flags & DIF_TF_BYREF) {
8773                         if (vt->dtdt_size == 0) {
8774                                 err += efunc(i, "zero-sized variable\n");
8775                                 break;
8776                         }
8777
8778                         if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8779                             vt->dtdt_size > dtrace_global_maxsize) {
8780                                 err += efunc(i, "oversized by-ref global\n");
8781                                 break;
8782                         }
8783                 }
8784
8785                 if (existing == NULL || existing->dtdv_id == 0)
8786                         continue;
8787
8788                 ASSERT(existing->dtdv_id == v->dtdv_id);
8789                 ASSERT(existing->dtdv_scope == v->dtdv_scope);
8790
8791                 if (existing->dtdv_kind != v->dtdv_kind)
8792                         err += efunc(i, "%d changed variable kind\n", id);
8793
8794                 et = &existing->dtdv_type;
8795
8796                 if (vt->dtdt_flags != et->dtdt_flags) {
8797                         err += efunc(i, "%d changed variable type flags\n", id);
8798                         break;
8799                 }
8800
8801                 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8802                         err += efunc(i, "%d changed variable type size\n", id);
8803                         break;
8804                 }
8805         }
8806
8807         return (err);
8808 }
8809
8810 /*
8811  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8812  * are much more constrained than normal DIFOs.  Specifically, they may
8813  * not:
8814  *
8815  * 1. Make calls to subroutines other than copyin(), copyinstr() or
8816  *    miscellaneous string routines
8817  * 2. Access DTrace variables other than the args[] array, and the
8818  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8819  * 3. Have thread-local variables.
8820  * 4. Have dynamic variables.
8821  */
8822 static int
8823 dtrace_difo_validate_helper(dtrace_difo_t *dp)
8824 {
8825         int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8826         int err = 0;
8827         uint_t pc;
8828
8829         for (pc = 0; pc < dp->dtdo_len; pc++) {
8830                 dif_instr_t instr = dp->dtdo_buf[pc];
8831
8832                 uint_t v = DIF_INSTR_VAR(instr);
8833                 uint_t subr = DIF_INSTR_SUBR(instr);
8834                 uint_t op = DIF_INSTR_OP(instr);
8835
8836                 switch (op) {
8837                 case DIF_OP_OR:
8838                 case DIF_OP_XOR:
8839                 case DIF_OP_AND:
8840                 case DIF_OP_SLL:
8841                 case DIF_OP_SRL:
8842                 case DIF_OP_SRA:
8843                 case DIF_OP_SUB:
8844                 case DIF_OP_ADD:
8845                 case DIF_OP_MUL:
8846                 case DIF_OP_SDIV:
8847                 case DIF_OP_UDIV:
8848                 case DIF_OP_SREM:
8849                 case DIF_OP_UREM:
8850                 case DIF_OP_COPYS:
8851                 case DIF_OP_NOT:
8852                 case DIF_OP_MOV:
8853                 case DIF_OP_RLDSB:
8854                 case DIF_OP_RLDSH:
8855                 case DIF_OP_RLDSW:
8856                 case DIF_OP_RLDUB:
8857                 case DIF_OP_RLDUH:
8858                 case DIF_OP_RLDUW:
8859                 case DIF_OP_RLDX:
8860                 case DIF_OP_ULDSB:
8861                 case DIF_OP_ULDSH:
8862                 case DIF_OP_ULDSW:
8863                 case DIF_OP_ULDUB:
8864                 case DIF_OP_ULDUH:
8865                 case DIF_OP_ULDUW:
8866                 case DIF_OP_ULDX:
8867                 case DIF_OP_STB:
8868                 case DIF_OP_STH:
8869                 case DIF_OP_STW:
8870                 case DIF_OP_STX:
8871                 case DIF_OP_ALLOCS:
8872                 case DIF_OP_CMP:
8873                 case DIF_OP_SCMP:
8874                 case DIF_OP_TST:
8875                 case DIF_OP_BA:
8876                 case DIF_OP_BE:
8877                 case DIF_OP_BNE:
8878                 case DIF_OP_BG:
8879                 case DIF_OP_BGU:
8880                 case DIF_OP_BGE:
8881                 case DIF_OP_BGEU:
8882                 case DIF_OP_BL:
8883                 case DIF_OP_BLU:
8884                 case DIF_OP_BLE:
8885                 case DIF_OP_BLEU:
8886                 case DIF_OP_RET:
8887                 case DIF_OP_NOP:
8888                 case DIF_OP_POPTS:
8889                 case DIF_OP_FLUSHTS:
8890                 case DIF_OP_SETX:
8891                 case DIF_OP_SETS:
8892                 case DIF_OP_LDGA:
8893                 case DIF_OP_LDLS:
8894                 case DIF_OP_STGS:
8895                 case DIF_OP_STLS:
8896                 case DIF_OP_PUSHTR:
8897                 case DIF_OP_PUSHTV:
8898                         break;
8899
8900                 case DIF_OP_LDGS:
8901                         if (v >= DIF_VAR_OTHER_UBASE)
8902                                 break;
8903
8904                         if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
8905                                 break;
8906
8907                         if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
8908                             v == DIF_VAR_PPID || v == DIF_VAR_TID ||
8909                             v == DIF_VAR_EXECARGS ||
8910                             v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
8911                             v == DIF_VAR_UID || v == DIF_VAR_GID)
8912                                 break;
8913
8914                         err += efunc(pc, "illegal variable %u\n", v);
8915                         break;
8916
8917                 case DIF_OP_LDTA:
8918                 case DIF_OP_LDTS:
8919                 case DIF_OP_LDGAA:
8920                 case DIF_OP_LDTAA:
8921                         err += efunc(pc, "illegal dynamic variable load\n");
8922                         break;
8923
8924                 case DIF_OP_STTS:
8925                 case DIF_OP_STGAA:
8926                 case DIF_OP_STTAA:
8927                         err += efunc(pc, "illegal dynamic variable store\n");
8928                         break;
8929
8930                 case DIF_OP_CALL:
8931                         if (subr == DIF_SUBR_ALLOCA ||
8932                             subr == DIF_SUBR_BCOPY ||
8933                             subr == DIF_SUBR_COPYIN ||
8934                             subr == DIF_SUBR_COPYINTO ||
8935                             subr == DIF_SUBR_COPYINSTR ||
8936                             subr == DIF_SUBR_INDEX ||
8937                             subr == DIF_SUBR_INET_NTOA ||
8938                             subr == DIF_SUBR_INET_NTOA6 ||
8939                             subr == DIF_SUBR_INET_NTOP ||
8940                             subr == DIF_SUBR_LLTOSTR ||
8941                             subr == DIF_SUBR_RINDEX ||
8942                             subr == DIF_SUBR_STRCHR ||
8943                             subr == DIF_SUBR_STRJOIN ||
8944                             subr == DIF_SUBR_STRRCHR ||
8945                             subr == DIF_SUBR_STRSTR ||
8946                             subr == DIF_SUBR_HTONS ||
8947                             subr == DIF_SUBR_HTONL ||
8948                             subr == DIF_SUBR_HTONLL ||
8949                             subr == DIF_SUBR_NTOHS ||
8950                             subr == DIF_SUBR_NTOHL ||
8951                             subr == DIF_SUBR_NTOHLL ||
8952                             subr == DIF_SUBR_MEMREF ||
8953                             subr == DIF_SUBR_TYPEREF)
8954                                 break;
8955
8956                         err += efunc(pc, "invalid subr %u\n", subr);
8957                         break;
8958
8959                 default:
8960                         err += efunc(pc, "invalid opcode %u\n",
8961                             DIF_INSTR_OP(instr));
8962                 }
8963         }
8964
8965         return (err);
8966 }
8967
8968 /*
8969  * Returns 1 if the expression in the DIF object can be cached on a per-thread
8970  * basis; 0 if not.
8971  */
8972 static int
8973 dtrace_difo_cacheable(dtrace_difo_t *dp)
8974 {
8975         int i;
8976
8977         if (dp == NULL)
8978                 return (0);
8979
8980         for (i = 0; i < dp->dtdo_varlen; i++) {
8981                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
8982
8983                 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
8984                         continue;
8985
8986                 switch (v->dtdv_id) {
8987                 case DIF_VAR_CURTHREAD:
8988                 case DIF_VAR_PID:
8989                 case DIF_VAR_TID:
8990                 case DIF_VAR_EXECARGS:
8991                 case DIF_VAR_EXECNAME:
8992                 case DIF_VAR_ZONENAME:
8993                         break;
8994
8995                 default:
8996                         return (0);
8997                 }
8998         }
8999
9000         /*
9001          * This DIF object may be cacheable.  Now we need to look for any
9002          * array loading instructions, any memory loading instructions, or
9003          * any stores to thread-local variables.
9004          */
9005         for (i = 0; i < dp->dtdo_len; i++) {
9006                 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
9007
9008                 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
9009                     (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
9010                     (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9011                     op == DIF_OP_LDGA || op == DIF_OP_STTS)
9012                         return (0);
9013         }
9014
9015         return (1);
9016 }
9017
9018 static void
9019 dtrace_difo_hold(dtrace_difo_t *dp)
9020 {
9021         int i;
9022
9023         ASSERT(MUTEX_HELD(&dtrace_lock));
9024
9025         dp->dtdo_refcnt++;
9026         ASSERT(dp->dtdo_refcnt != 0);
9027
9028         /*
9029          * We need to check this DIF object for references to the variable
9030          * DIF_VAR_VTIMESTAMP.
9031          */
9032         for (i = 0; i < dp->dtdo_varlen; i++) {
9033                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9034
9035                 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9036                         continue;
9037
9038                 if (dtrace_vtime_references++ == 0)
9039                         dtrace_vtime_enable();
9040         }
9041 }
9042
9043 /*
9044  * This routine calculates the dynamic variable chunksize for a given DIF
9045  * object.  The calculation is not fool-proof, and can probably be tricked by
9046  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
9047  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9048  * if a dynamic variable size exceeds the chunksize.
9049  */
9050 static void
9051 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9052 {
9053         uint64_t sval = 0;
9054         dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9055         const dif_instr_t *text = dp->dtdo_buf;
9056         uint_t pc, srd = 0;
9057         uint_t ttop = 0;
9058         size_t size, ksize;
9059         uint_t id, i;
9060
9061         for (pc = 0; pc < dp->dtdo_len; pc++) {
9062                 dif_instr_t instr = text[pc];
9063                 uint_t op = DIF_INSTR_OP(instr);
9064                 uint_t rd = DIF_INSTR_RD(instr);
9065                 uint_t r1 = DIF_INSTR_R1(instr);
9066                 uint_t nkeys = 0;
9067                 uchar_t scope = 0;
9068
9069                 dtrace_key_t *key = tupregs;
9070
9071                 switch (op) {
9072                 case DIF_OP_SETX:
9073                         sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9074                         srd = rd;
9075                         continue;
9076
9077                 case DIF_OP_STTS:
9078                         key = &tupregs[DIF_DTR_NREGS];
9079                         key[0].dttk_size = 0;
9080                         key[1].dttk_size = 0;
9081                         nkeys = 2;
9082                         scope = DIFV_SCOPE_THREAD;
9083                         break;
9084
9085                 case DIF_OP_STGAA:
9086                 case DIF_OP_STTAA:
9087                         nkeys = ttop;
9088
9089                         if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9090                                 key[nkeys++].dttk_size = 0;
9091
9092                         key[nkeys++].dttk_size = 0;
9093
9094                         if (op == DIF_OP_STTAA) {
9095                                 scope = DIFV_SCOPE_THREAD;
9096                         } else {
9097                                 scope = DIFV_SCOPE_GLOBAL;
9098                         }
9099
9100                         break;
9101
9102                 case DIF_OP_PUSHTR:
9103                         if (ttop == DIF_DTR_NREGS)
9104                                 return;
9105
9106                         if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9107                                 /*
9108                                  * If the register for the size of the "pushtr"
9109                                  * is %r0 (or the value is 0) and the type is
9110                                  * a string, we'll use the system-wide default
9111                                  * string size.
9112                                  */
9113                                 tupregs[ttop++].dttk_size =
9114                                     dtrace_strsize_default;
9115                         } else {
9116                                 if (srd == 0)
9117                                         return;
9118
9119                                 tupregs[ttop++].dttk_size = sval;
9120                         }
9121
9122                         break;
9123
9124                 case DIF_OP_PUSHTV:
9125                         if (ttop == DIF_DTR_NREGS)
9126                                 return;
9127
9128                         tupregs[ttop++].dttk_size = 0;
9129                         break;
9130
9131                 case DIF_OP_FLUSHTS:
9132                         ttop = 0;
9133                         break;
9134
9135                 case DIF_OP_POPTS:
9136                         if (ttop != 0)
9137                                 ttop--;
9138                         break;
9139                 }
9140
9141                 sval = 0;
9142                 srd = 0;
9143
9144                 if (nkeys == 0)
9145                         continue;
9146
9147                 /*
9148                  * We have a dynamic variable allocation; calculate its size.
9149                  */
9150                 for (ksize = 0, i = 0; i < nkeys; i++)
9151                         ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9152
9153                 size = sizeof (dtrace_dynvar_t);
9154                 size += sizeof (dtrace_key_t) * (nkeys - 1);
9155                 size += ksize;
9156
9157                 /*
9158                  * Now we need to determine the size of the stored data.
9159                  */
9160                 id = DIF_INSTR_VAR(instr);
9161
9162                 for (i = 0; i < dp->dtdo_varlen; i++) {
9163                         dtrace_difv_t *v = &dp->dtdo_vartab[i];
9164
9165                         if (v->dtdv_id == id && v->dtdv_scope == scope) {
9166                                 size += v->dtdv_type.dtdt_size;
9167                                 break;
9168                         }
9169                 }
9170
9171                 if (i == dp->dtdo_varlen)
9172                         return;
9173
9174                 /*
9175                  * We have the size.  If this is larger than the chunk size
9176                  * for our dynamic variable state, reset the chunk size.
9177                  */
9178                 size = P2ROUNDUP(size, sizeof (uint64_t));
9179
9180                 if (size > vstate->dtvs_dynvars.dtds_chunksize)
9181                         vstate->dtvs_dynvars.dtds_chunksize = size;
9182         }
9183 }
9184
9185 static void
9186 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9187 {
9188         int i, oldsvars, osz, nsz, otlocals, ntlocals;
9189         uint_t id;
9190
9191         ASSERT(MUTEX_HELD(&dtrace_lock));
9192         ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9193
9194         for (i = 0; i < dp->dtdo_varlen; i++) {
9195                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9196                 dtrace_statvar_t *svar, ***svarp = NULL;
9197                 size_t dsize = 0;
9198                 uint8_t scope = v->dtdv_scope;
9199                 int *np = NULL;
9200
9201                 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9202                         continue;
9203
9204                 id -= DIF_VAR_OTHER_UBASE;
9205
9206                 switch (scope) {
9207                 case DIFV_SCOPE_THREAD:
9208                         while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9209                                 dtrace_difv_t *tlocals;
9210
9211                                 if ((ntlocals = (otlocals << 1)) == 0)
9212                                         ntlocals = 1;
9213
9214                                 osz = otlocals * sizeof (dtrace_difv_t);
9215                                 nsz = ntlocals * sizeof (dtrace_difv_t);
9216
9217                                 tlocals = kmem_zalloc(nsz, KM_SLEEP);
9218
9219                                 if (osz != 0) {
9220                                         bcopy(vstate->dtvs_tlocals,
9221                                             tlocals, osz);
9222                                         kmem_free(vstate->dtvs_tlocals, osz);
9223                                 }
9224
9225                                 vstate->dtvs_tlocals = tlocals;
9226                                 vstate->dtvs_ntlocals = ntlocals;
9227                         }
9228
9229                         vstate->dtvs_tlocals[id] = *v;
9230                         continue;
9231
9232                 case DIFV_SCOPE_LOCAL:
9233                         np = &vstate->dtvs_nlocals;
9234                         svarp = &vstate->dtvs_locals;
9235
9236                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9237                                 dsize = NCPU * (v->dtdv_type.dtdt_size +
9238                                     sizeof (uint64_t));
9239                         else
9240                                 dsize = NCPU * sizeof (uint64_t);
9241
9242                         break;
9243
9244                 case DIFV_SCOPE_GLOBAL:
9245                         np = &vstate->dtvs_nglobals;
9246                         svarp = &vstate->dtvs_globals;
9247
9248                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9249                                 dsize = v->dtdv_type.dtdt_size +
9250                                     sizeof (uint64_t);
9251
9252                         break;
9253
9254                 default:
9255                         ASSERT(0);
9256                 }
9257
9258                 while (id >= (oldsvars = *np)) {
9259                         dtrace_statvar_t **statics;
9260                         int newsvars, oldsize, newsize;
9261
9262                         if ((newsvars = (oldsvars << 1)) == 0)
9263                                 newsvars = 1;
9264
9265                         oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9266                         newsize = newsvars * sizeof (dtrace_statvar_t *);
9267
9268                         statics = kmem_zalloc(newsize, KM_SLEEP);
9269
9270                         if (oldsize != 0) {
9271                                 bcopy(*svarp, statics, oldsize);
9272                                 kmem_free(*svarp, oldsize);
9273                         }
9274
9275                         *svarp = statics;
9276                         *np = newsvars;
9277                 }
9278
9279                 if ((svar = (*svarp)[id]) == NULL) {
9280                         svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9281                         svar->dtsv_var = *v;
9282
9283                         if ((svar->dtsv_size = dsize) != 0) {
9284                                 svar->dtsv_data = (uint64_t)(uintptr_t)
9285                                     kmem_zalloc(dsize, KM_SLEEP);
9286                         }
9287
9288                         (*svarp)[id] = svar;
9289                 }
9290
9291                 svar->dtsv_refcnt++;
9292         }
9293
9294         dtrace_difo_chunksize(dp, vstate);
9295         dtrace_difo_hold(dp);
9296 }
9297
9298 static dtrace_difo_t *
9299 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9300 {
9301         dtrace_difo_t *new;
9302         size_t sz;
9303
9304         ASSERT(dp->dtdo_buf != NULL);
9305         ASSERT(dp->dtdo_refcnt != 0);
9306
9307         new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9308
9309         ASSERT(dp->dtdo_buf != NULL);
9310         sz = dp->dtdo_len * sizeof (dif_instr_t);
9311         new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9312         bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9313         new->dtdo_len = dp->dtdo_len;
9314
9315         if (dp->dtdo_strtab != NULL) {
9316                 ASSERT(dp->dtdo_strlen != 0);
9317                 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9318                 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9319                 new->dtdo_strlen = dp->dtdo_strlen;
9320         }
9321
9322         if (dp->dtdo_inttab != NULL) {
9323                 ASSERT(dp->dtdo_intlen != 0);
9324                 sz = dp->dtdo_intlen * sizeof (uint64_t);
9325                 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9326                 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9327                 new->dtdo_intlen = dp->dtdo_intlen;
9328         }
9329
9330         if (dp->dtdo_vartab != NULL) {
9331                 ASSERT(dp->dtdo_varlen != 0);
9332                 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9333                 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9334                 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9335                 new->dtdo_varlen = dp->dtdo_varlen;
9336         }
9337
9338         dtrace_difo_init(new, vstate);
9339         return (new);
9340 }
9341
9342 static void
9343 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9344 {
9345         int i;
9346
9347         ASSERT(dp->dtdo_refcnt == 0);
9348
9349         for (i = 0; i < dp->dtdo_varlen; i++) {
9350                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9351                 dtrace_statvar_t *svar, **svarp = NULL;
9352                 uint_t id;
9353                 uint8_t scope = v->dtdv_scope;
9354                 int *np = NULL;
9355
9356                 switch (scope) {
9357                 case DIFV_SCOPE_THREAD:
9358                         continue;
9359
9360                 case DIFV_SCOPE_LOCAL:
9361                         np = &vstate->dtvs_nlocals;
9362                         svarp = vstate->dtvs_locals;
9363                         break;
9364
9365                 case DIFV_SCOPE_GLOBAL:
9366                         np = &vstate->dtvs_nglobals;
9367                         svarp = vstate->dtvs_globals;
9368                         break;
9369
9370                 default:
9371                         ASSERT(0);
9372                 }
9373
9374                 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9375                         continue;
9376
9377                 id -= DIF_VAR_OTHER_UBASE;
9378                 ASSERT(id < *np);
9379
9380                 svar = svarp[id];
9381                 ASSERT(svar != NULL);
9382                 ASSERT(svar->dtsv_refcnt > 0);
9383
9384                 if (--svar->dtsv_refcnt > 0)
9385                         continue;
9386
9387                 if (svar->dtsv_size != 0) {
9388                         ASSERT(svar->dtsv_data != 0);
9389                         kmem_free((void *)(uintptr_t)svar->dtsv_data,
9390                             svar->dtsv_size);
9391                 }
9392
9393                 kmem_free(svar, sizeof (dtrace_statvar_t));
9394                 svarp[id] = NULL;
9395         }
9396
9397         if (dp->dtdo_buf != NULL)
9398                 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9399         if (dp->dtdo_inttab != NULL)
9400                 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9401         if (dp->dtdo_strtab != NULL)
9402                 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9403         if (dp->dtdo_vartab != NULL)
9404                 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9405
9406         kmem_free(dp, sizeof (dtrace_difo_t));
9407 }
9408
9409 static void
9410 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9411 {
9412         int i;
9413
9414         ASSERT(MUTEX_HELD(&dtrace_lock));
9415         ASSERT(dp->dtdo_refcnt != 0);
9416
9417         for (i = 0; i < dp->dtdo_varlen; i++) {
9418                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9419
9420                 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9421                         continue;
9422
9423                 ASSERT(dtrace_vtime_references > 0);
9424                 if (--dtrace_vtime_references == 0)
9425                         dtrace_vtime_disable();
9426         }
9427
9428         if (--dp->dtdo_refcnt == 0)
9429                 dtrace_difo_destroy(dp, vstate);
9430 }
9431
9432 /*
9433  * DTrace Format Functions
9434  */
9435 static uint16_t
9436 dtrace_format_add(dtrace_state_t *state, char *str)
9437 {
9438         char *fmt, **new;
9439         uint16_t ndx, len = strlen(str) + 1;
9440
9441         fmt = kmem_zalloc(len, KM_SLEEP);
9442         bcopy(str, fmt, len);
9443
9444         for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9445                 if (state->dts_formats[ndx] == NULL) {
9446                         state->dts_formats[ndx] = fmt;
9447                         return (ndx + 1);
9448                 }
9449         }
9450
9451         if (state->dts_nformats == USHRT_MAX) {
9452                 /*
9453                  * This is only likely if a denial-of-service attack is being
9454                  * attempted.  As such, it's okay to fail silently here.
9455                  */
9456                 kmem_free(fmt, len);
9457                 return (0);
9458         }
9459
9460         /*
9461          * For simplicity, we always resize the formats array to be exactly the
9462          * number of formats.
9463          */
9464         ndx = state->dts_nformats++;
9465         new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9466
9467         if (state->dts_formats != NULL) {
9468                 ASSERT(ndx != 0);
9469                 bcopy(state->dts_formats, new, ndx * sizeof (char *));
9470                 kmem_free(state->dts_formats, ndx * sizeof (char *));
9471         }
9472
9473         state->dts_formats = new;
9474         state->dts_formats[ndx] = fmt;
9475
9476         return (ndx + 1);
9477 }
9478
9479 static void
9480 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9481 {
9482         char *fmt;
9483
9484         ASSERT(state->dts_formats != NULL);
9485         ASSERT(format <= state->dts_nformats);
9486         ASSERT(state->dts_formats[format - 1] != NULL);
9487
9488         fmt = state->dts_formats[format - 1];
9489         kmem_free(fmt, strlen(fmt) + 1);
9490         state->dts_formats[format - 1] = NULL;
9491 }
9492
9493 static void
9494 dtrace_format_destroy(dtrace_state_t *state)
9495 {
9496         int i;
9497
9498         if (state->dts_nformats == 0) {
9499                 ASSERT(state->dts_formats == NULL);
9500                 return;
9501         }
9502
9503         ASSERT(state->dts_formats != NULL);
9504
9505         for (i = 0; i < state->dts_nformats; i++) {
9506                 char *fmt = state->dts_formats[i];
9507
9508                 if (fmt == NULL)
9509                         continue;
9510
9511                 kmem_free(fmt, strlen(fmt) + 1);
9512         }
9513
9514         kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9515         state->dts_nformats = 0;
9516         state->dts_formats = NULL;
9517 }
9518
9519 /*
9520  * DTrace Predicate Functions
9521  */
9522 static dtrace_predicate_t *
9523 dtrace_predicate_create(dtrace_difo_t *dp)
9524 {
9525         dtrace_predicate_t *pred;
9526
9527         ASSERT(MUTEX_HELD(&dtrace_lock));
9528         ASSERT(dp->dtdo_refcnt != 0);
9529
9530         pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9531         pred->dtp_difo = dp;
9532         pred->dtp_refcnt = 1;
9533
9534         if (!dtrace_difo_cacheable(dp))
9535                 return (pred);
9536
9537         if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9538                 /*
9539                  * This is only theoretically possible -- we have had 2^32
9540                  * cacheable predicates on this machine.  We cannot allow any
9541                  * more predicates to become cacheable:  as unlikely as it is,
9542                  * there may be a thread caching a (now stale) predicate cache
9543                  * ID. (N.B.: the temptation is being successfully resisted to
9544                  * have this cmn_err() "Holy shit -- we executed this code!")
9545                  */
9546                 return (pred);
9547         }
9548
9549         pred->dtp_cacheid = dtrace_predcache_id++;
9550
9551         return (pred);
9552 }
9553
9554 static void
9555 dtrace_predicate_hold(dtrace_predicate_t *pred)
9556 {
9557         ASSERT(MUTEX_HELD(&dtrace_lock));
9558         ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9559         ASSERT(pred->dtp_refcnt > 0);
9560
9561         pred->dtp_refcnt++;
9562 }
9563
9564 static void
9565 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9566 {
9567         dtrace_difo_t *dp = pred->dtp_difo;
9568
9569         ASSERT(MUTEX_HELD(&dtrace_lock));
9570         ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9571         ASSERT(pred->dtp_refcnt > 0);
9572
9573         if (--pred->dtp_refcnt == 0) {
9574                 dtrace_difo_release(pred->dtp_difo, vstate);
9575                 kmem_free(pred, sizeof (dtrace_predicate_t));
9576         }
9577 }
9578
9579 /*
9580  * DTrace Action Description Functions
9581  */
9582 static dtrace_actdesc_t *
9583 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9584     uint64_t uarg, uint64_t arg)
9585 {
9586         dtrace_actdesc_t *act;
9587
9588 #if defined(sun)
9589         ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9590             arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9591 #endif
9592
9593         act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9594         act->dtad_kind = kind;
9595         act->dtad_ntuple = ntuple;
9596         act->dtad_uarg = uarg;
9597         act->dtad_arg = arg;
9598         act->dtad_refcnt = 1;
9599
9600         return (act);
9601 }
9602
9603 static void
9604 dtrace_actdesc_hold(dtrace_actdesc_t *act)
9605 {
9606         ASSERT(act->dtad_refcnt >= 1);
9607         act->dtad_refcnt++;
9608 }
9609
9610 static void
9611 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9612 {
9613         dtrace_actkind_t kind = act->dtad_kind;
9614         dtrace_difo_t *dp;
9615
9616         ASSERT(act->dtad_refcnt >= 1);
9617
9618         if (--act->dtad_refcnt != 0)
9619                 return;
9620
9621         if ((dp = act->dtad_difo) != NULL)
9622                 dtrace_difo_release(dp, vstate);
9623
9624         if (DTRACEACT_ISPRINTFLIKE(kind)) {
9625                 char *str = (char *)(uintptr_t)act->dtad_arg;
9626
9627 #if defined(sun)
9628                 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9629                     (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9630 #endif
9631
9632                 if (str != NULL)
9633                         kmem_free(str, strlen(str) + 1);
9634         }
9635
9636         kmem_free(act, sizeof (dtrace_actdesc_t));
9637 }
9638
9639 /*
9640  * DTrace ECB Functions
9641  */
9642 static dtrace_ecb_t *
9643 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9644 {
9645         dtrace_ecb_t *ecb;
9646         dtrace_epid_t epid;
9647
9648         ASSERT(MUTEX_HELD(&dtrace_lock));
9649
9650         ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9651         ecb->dte_predicate = NULL;
9652         ecb->dte_probe = probe;
9653
9654         /*
9655          * The default size is the size of the default action: recording
9656          * the epid.
9657          */
9658         ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9659         ecb->dte_alignment = sizeof (dtrace_epid_t);
9660
9661         epid = state->dts_epid++;
9662
9663         if (epid - 1 >= state->dts_necbs) {
9664                 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9665                 int necbs = state->dts_necbs << 1;
9666
9667                 ASSERT(epid == state->dts_necbs + 1);
9668
9669                 if (necbs == 0) {
9670                         ASSERT(oecbs == NULL);
9671                         necbs = 1;
9672                 }
9673
9674                 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9675
9676                 if (oecbs != NULL)
9677                         bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9678
9679                 dtrace_membar_producer();
9680                 state->dts_ecbs = ecbs;
9681
9682                 if (oecbs != NULL) {
9683                         /*
9684                          * If this state is active, we must dtrace_sync()
9685                          * before we can free the old dts_ecbs array:  we're
9686                          * coming in hot, and there may be active ring
9687                          * buffer processing (which indexes into the dts_ecbs
9688                          * array) on another CPU.
9689                          */
9690                         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9691                                 dtrace_sync();
9692
9693                         kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9694                 }
9695
9696                 dtrace_membar_producer();
9697                 state->dts_necbs = necbs;
9698         }
9699
9700         ecb->dte_state = state;
9701
9702         ASSERT(state->dts_ecbs[epid - 1] == NULL);
9703         dtrace_membar_producer();
9704         state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9705
9706         return (ecb);
9707 }
9708
9709 static void
9710 dtrace_ecb_enable(dtrace_ecb_t *ecb)
9711 {
9712         dtrace_probe_t *probe = ecb->dte_probe;
9713
9714         ASSERT(MUTEX_HELD(&cpu_lock));
9715         ASSERT(MUTEX_HELD(&dtrace_lock));
9716         ASSERT(ecb->dte_next == NULL);
9717
9718         if (probe == NULL) {
9719                 /*
9720                  * This is the NULL probe -- there's nothing to do.
9721                  */
9722                 return;
9723         }
9724
9725         if (probe->dtpr_ecb == NULL) {
9726                 dtrace_provider_t *prov = probe->dtpr_provider;
9727
9728                 /*
9729                  * We're the first ECB on this probe.
9730                  */
9731                 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9732
9733                 if (ecb->dte_predicate != NULL)
9734                         probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9735
9736                 prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9737                     probe->dtpr_id, probe->dtpr_arg);
9738         } else {
9739                 /*
9740                  * This probe is already active.  Swing the last pointer to
9741                  * point to the new ECB, and issue a dtrace_sync() to assure
9742                  * that all CPUs have seen the change.
9743                  */
9744                 ASSERT(probe->dtpr_ecb_last != NULL);
9745                 probe->dtpr_ecb_last->dte_next = ecb;
9746                 probe->dtpr_ecb_last = ecb;
9747                 probe->dtpr_predcache = 0;
9748
9749                 dtrace_sync();
9750         }
9751 }
9752
9753 static void
9754 dtrace_ecb_resize(dtrace_ecb_t *ecb)
9755 {
9756         uint32_t maxalign = sizeof (dtrace_epid_t);
9757         uint32_t align = sizeof (uint8_t), offs, diff;
9758         dtrace_action_t *act;
9759         int wastuple = 0;
9760         uint32_t aggbase = UINT32_MAX;
9761         dtrace_state_t *state = ecb->dte_state;
9762
9763         /*
9764          * If we record anything, we always record the epid.  (And we always
9765          * record it first.)
9766          */
9767         offs = sizeof (dtrace_epid_t);
9768         ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9769
9770         for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9771                 dtrace_recdesc_t *rec = &act->dta_rec;
9772
9773                 if ((align = rec->dtrd_alignment) > maxalign)
9774                         maxalign = align;
9775
9776                 if (!wastuple && act->dta_intuple) {
9777                         /*
9778                          * This is the first record in a tuple.  Align the
9779                          * offset to be at offset 4 in an 8-byte aligned
9780                          * block.
9781                          */
9782                         diff = offs + sizeof (dtrace_aggid_t);
9783
9784                         if ((diff = (diff & (sizeof (uint64_t) - 1))))
9785                                 offs += sizeof (uint64_t) - diff;
9786
9787                         aggbase = offs - sizeof (dtrace_aggid_t);
9788                         ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
9789                 }
9790
9791                 /*LINTED*/
9792                 if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
9793                         /*
9794                          * The current offset is not properly aligned; align it.
9795                          */
9796                         offs += align - diff;
9797                 }
9798
9799                 rec->dtrd_offset = offs;
9800
9801                 if (offs + rec->dtrd_size > ecb->dte_needed) {
9802                         ecb->dte_needed = offs + rec->dtrd_size;
9803
9804                         if (ecb->dte_needed > state->dts_needed)
9805                                 state->dts_needed = ecb->dte_needed;
9806                 }
9807
9808                 if (DTRACEACT_ISAGG(act->dta_kind)) {
9809                         dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9810                         dtrace_action_t *first = agg->dtag_first, *prev;
9811
9812                         ASSERT(rec->dtrd_size != 0 && first != NULL);
9813                         ASSERT(wastuple);
9814                         ASSERT(aggbase != UINT32_MAX);
9815
9816                         agg->dtag_base = aggbase;
9817
9818                         while ((prev = first->dta_prev) != NULL &&
9819                             DTRACEACT_ISAGG(prev->dta_kind)) {
9820                                 agg = (dtrace_aggregation_t *)prev;
9821                                 first = agg->dtag_first;
9822                         }
9823
9824                         if (prev != NULL) {
9825                                 offs = prev->dta_rec.dtrd_offset +
9826                                     prev->dta_rec.dtrd_size;
9827                         } else {
9828                                 offs = sizeof (dtrace_epid_t);
9829                         }
9830                         wastuple = 0;
9831                 } else {
9832                         if (!act->dta_intuple)
9833                                 ecb->dte_size = offs + rec->dtrd_size;
9834
9835                         offs += rec->dtrd_size;
9836                 }
9837
9838                 wastuple = act->dta_intuple;
9839         }
9840
9841         if ((act = ecb->dte_action) != NULL &&
9842             !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9843             ecb->dte_size == sizeof (dtrace_epid_t)) {
9844                 /*
9845                  * If the size is still sizeof (dtrace_epid_t), then all
9846                  * actions store no data; set the size to 0.
9847                  */
9848                 ecb->dte_alignment = maxalign;
9849                 ecb->dte_size = 0;
9850
9851                 /*
9852                  * If the needed space is still sizeof (dtrace_epid_t), then
9853                  * all actions need no additional space; set the needed
9854                  * size to 0.
9855                  */
9856                 if (ecb->dte_needed == sizeof (dtrace_epid_t))
9857                         ecb->dte_needed = 0;
9858
9859                 return;
9860         }
9861
9862         /*
9863          * Set our alignment, and make sure that the dte_size and dte_needed
9864          * are aligned to the size of an EPID.
9865          */
9866         ecb->dte_alignment = maxalign;
9867         ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
9868             ~(sizeof (dtrace_epid_t) - 1);
9869         ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
9870             ~(sizeof (dtrace_epid_t) - 1);
9871         ASSERT(ecb->dte_size <= ecb->dte_needed);
9872 }
9873
9874 static dtrace_action_t *
9875 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9876 {
9877         dtrace_aggregation_t *agg;
9878         size_t size = sizeof (uint64_t);
9879         int ntuple = desc->dtad_ntuple;
9880         dtrace_action_t *act;
9881         dtrace_recdesc_t *frec;
9882         dtrace_aggid_t aggid;
9883         dtrace_state_t *state = ecb->dte_state;
9884
9885         agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
9886         agg->dtag_ecb = ecb;
9887
9888         ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
9889
9890         switch (desc->dtad_kind) {
9891         case DTRACEAGG_MIN:
9892                 agg->dtag_initial = INT64_MAX;
9893                 agg->dtag_aggregate = dtrace_aggregate_min;
9894                 break;
9895
9896         case DTRACEAGG_MAX:
9897                 agg->dtag_initial = INT64_MIN;
9898                 agg->dtag_aggregate = dtrace_aggregate_max;
9899                 break;
9900
9901         case DTRACEAGG_COUNT:
9902                 agg->dtag_aggregate = dtrace_aggregate_count;
9903                 break;
9904
9905         case DTRACEAGG_QUANTIZE:
9906                 agg->dtag_aggregate = dtrace_aggregate_quantize;
9907                 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
9908                     sizeof (uint64_t);
9909                 break;
9910
9911         case DTRACEAGG_LQUANTIZE: {
9912                 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
9913                 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
9914
9915                 agg->dtag_initial = desc->dtad_arg;
9916                 agg->dtag_aggregate = dtrace_aggregate_lquantize;
9917
9918                 if (step == 0 || levels == 0)
9919                         goto err;
9920
9921                 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
9922                 break;
9923         }
9924
9925         case DTRACEAGG_LLQUANTIZE: {
9926                 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
9927                 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
9928                 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
9929                 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
9930                 int64_t v;
9931
9932                 agg->dtag_initial = desc->dtad_arg;
9933                 agg->dtag_aggregate = dtrace_aggregate_llquantize;
9934
9935                 if (factor < 2 || low >= high || nsteps < factor)
9936                         goto err;
9937
9938                 /*
9939                  * Now check that the number of steps evenly divides a power
9940                  * of the factor.  (This assures both integer bucket size and
9941                  * linearity within each magnitude.)
9942                  */
9943                 for (v = factor; v < nsteps; v *= factor)
9944                         continue;
9945
9946                 if ((v % nsteps) || (nsteps % factor))
9947                         goto err;
9948
9949                 size = (dtrace_aggregate_llquantize_bucket(factor,
9950                     low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
9951                 break;
9952         }
9953
9954         case DTRACEAGG_AVG:
9955                 agg->dtag_aggregate = dtrace_aggregate_avg;
9956                 size = sizeof (uint64_t) * 2;
9957                 break;
9958
9959         case DTRACEAGG_STDDEV:
9960                 agg->dtag_aggregate = dtrace_aggregate_stddev;
9961                 size = sizeof (uint64_t) * 4;
9962                 break;
9963
9964         case DTRACEAGG_SUM:
9965                 agg->dtag_aggregate = dtrace_aggregate_sum;
9966                 break;
9967
9968         default:
9969                 goto err;
9970         }
9971
9972         agg->dtag_action.dta_rec.dtrd_size = size;
9973
9974         if (ntuple == 0)
9975                 goto err;
9976
9977         /*
9978          * We must make sure that we have enough actions for the n-tuple.
9979          */
9980         for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
9981                 if (DTRACEACT_ISAGG(act->dta_kind))
9982                         break;
9983
9984                 if (--ntuple == 0) {
9985                         /*
9986                          * This is the action with which our n-tuple begins.
9987                          */
9988                         agg->dtag_first = act;
9989                         goto success;
9990                 }
9991         }
9992
9993         /*
9994          * This n-tuple is short by ntuple elements.  Return failure.
9995          */
9996         ASSERT(ntuple != 0);
9997 err:
9998         kmem_free(agg, sizeof (dtrace_aggregation_t));
9999         return (NULL);
10000
10001 success:
10002         /*
10003          * If the last action in the tuple has a size of zero, it's actually
10004          * an expression argument for the aggregating action.
10005          */
10006         ASSERT(ecb->dte_action_last != NULL);
10007         act = ecb->dte_action_last;
10008
10009         if (act->dta_kind == DTRACEACT_DIFEXPR) {
10010                 ASSERT(act->dta_difo != NULL);
10011
10012                 if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
10013                         agg->dtag_hasarg = 1;
10014         }
10015
10016         /*
10017          * We need to allocate an id for this aggregation.
10018          */
10019 #if defined(sun)
10020         aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
10021             VM_BESTFIT | VM_SLEEP);
10022 #else
10023         aggid = alloc_unr(state->dts_aggid_arena);
10024 #endif
10025
10026         if (aggid - 1 >= state->dts_naggregations) {
10027                 dtrace_aggregation_t **oaggs = state->dts_aggregations;
10028                 dtrace_aggregation_t **aggs;
10029                 int naggs = state->dts_naggregations << 1;
10030                 int onaggs = state->dts_naggregations;
10031
10032                 ASSERT(aggid == state->dts_naggregations + 1);
10033
10034                 if (naggs == 0) {
10035                         ASSERT(oaggs == NULL);
10036                         naggs = 1;
10037                 }
10038
10039                 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
10040
10041                 if (oaggs != NULL) {
10042                         bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
10043                         kmem_free(oaggs, onaggs * sizeof (*aggs));
10044                 }
10045
10046                 state->dts_aggregations = aggs;
10047                 state->dts_naggregations = naggs;
10048         }
10049
10050         ASSERT(state->dts_aggregations[aggid - 1] == NULL);
10051         state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
10052
10053         frec = &agg->dtag_first->dta_rec;
10054         if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
10055                 frec->dtrd_alignment = sizeof (dtrace_aggid_t);
10056
10057         for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
10058                 ASSERT(!act->dta_intuple);
10059                 act->dta_intuple = 1;
10060         }
10061
10062         return (&agg->dtag_action);
10063 }
10064
10065 static void
10066 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
10067 {
10068         dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10069         dtrace_state_t *state = ecb->dte_state;
10070         dtrace_aggid_t aggid = agg->dtag_id;
10071
10072         ASSERT(DTRACEACT_ISAGG(act->dta_kind));
10073 #if defined(sun)
10074         vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
10075 #else
10076         free_unr(state->dts_aggid_arena, aggid);
10077 #endif
10078
10079         ASSERT(state->dts_aggregations[aggid - 1] == agg);
10080         state->dts_aggregations[aggid - 1] = NULL;
10081
10082         kmem_free(agg, sizeof (dtrace_aggregation_t));
10083 }
10084
10085 static int
10086 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10087 {
10088         dtrace_action_t *action, *last;
10089         dtrace_difo_t *dp = desc->dtad_difo;
10090         uint32_t size = 0, align = sizeof (uint8_t), mask;
10091         uint16_t format = 0;
10092         dtrace_recdesc_t *rec;
10093         dtrace_state_t *state = ecb->dte_state;
10094         dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
10095         uint64_t arg = desc->dtad_arg;
10096
10097         ASSERT(MUTEX_HELD(&dtrace_lock));
10098         ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
10099
10100         if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10101                 /*
10102                  * If this is an aggregating action, there must be neither
10103                  * a speculate nor a commit on the action chain.
10104                  */
10105                 dtrace_action_t *act;
10106
10107                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10108                         if (act->dta_kind == DTRACEACT_COMMIT)
10109                                 return (EINVAL);
10110
10111                         if (act->dta_kind == DTRACEACT_SPECULATE)
10112                                 return (EINVAL);
10113                 }
10114
10115                 action = dtrace_ecb_aggregation_create(ecb, desc);
10116
10117                 if (action == NULL)
10118                         return (EINVAL);
10119         } else {
10120                 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10121                     (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10122                     dp != NULL && dp->dtdo_destructive)) {
10123                         state->dts_destructive = 1;
10124                 }
10125
10126                 switch (desc->dtad_kind) {
10127                 case DTRACEACT_PRINTF:
10128                 case DTRACEACT_PRINTA:
10129                 case DTRACEACT_SYSTEM:
10130                 case DTRACEACT_FREOPEN:
10131                         /*
10132                          * We know that our arg is a string -- turn it into a
10133                          * format.
10134                          */
10135                         if (arg == 0) {
10136                                 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA);
10137                                 format = 0;
10138                         } else {
10139                                 ASSERT(arg != 0);
10140 #if defined(sun)
10141                                 ASSERT(arg > KERNELBASE);
10142 #endif
10143                                 format = dtrace_format_add(state,
10144                                     (char *)(uintptr_t)arg);
10145                         }
10146
10147                         /*FALLTHROUGH*/
10148                 case DTRACEACT_LIBACT:
10149                 case DTRACEACT_DIFEXPR:
10150                         if (dp == NULL)
10151                                 return (EINVAL);
10152
10153                         if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10154                                 break;
10155
10156                         if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10157                                 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10158                                         return (EINVAL);
10159
10160                                 size = opt[DTRACEOPT_STRSIZE];
10161                         }
10162
10163                         break;
10164
10165                 case DTRACEACT_STACK:
10166                         if ((nframes = arg) == 0) {
10167                                 nframes = opt[DTRACEOPT_STACKFRAMES];
10168                                 ASSERT(nframes > 0);
10169                                 arg = nframes;
10170                         }
10171
10172                         size = nframes * sizeof (pc_t);
10173                         break;
10174
10175                 case DTRACEACT_JSTACK:
10176                         if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10177                                 strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10178
10179                         if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10180                                 nframes = opt[DTRACEOPT_JSTACKFRAMES];
10181
10182                         arg = DTRACE_USTACK_ARG(nframes, strsize);
10183
10184                         /*FALLTHROUGH*/
10185                 case DTRACEACT_USTACK:
10186                         if (desc->dtad_kind != DTRACEACT_JSTACK &&
10187                             (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10188                                 strsize = DTRACE_USTACK_STRSIZE(arg);
10189                                 nframes = opt[DTRACEOPT_USTACKFRAMES];
10190                                 ASSERT(nframes > 0);
10191                                 arg = DTRACE_USTACK_ARG(nframes, strsize);
10192                         }
10193
10194                         /*
10195                          * Save a slot for the pid.
10196                          */
10197                         size = (nframes + 1) * sizeof (uint64_t);
10198                         size += DTRACE_USTACK_STRSIZE(arg);
10199                         size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10200
10201                         break;
10202
10203                 case DTRACEACT_SYM:
10204                 case DTRACEACT_MOD:
10205                         if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10206                             sizeof (uint64_t)) ||
10207                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10208                                 return (EINVAL);
10209                         break;
10210
10211                 case DTRACEACT_USYM:
10212                 case DTRACEACT_UMOD:
10213                 case DTRACEACT_UADDR:
10214                         if (dp == NULL ||
10215                             (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10216                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10217                                 return (EINVAL);
10218
10219                         /*
10220                          * We have a slot for the pid, plus a slot for the
10221                          * argument.  To keep things simple (aligned with
10222                          * bitness-neutral sizing), we store each as a 64-bit
10223                          * quantity.
10224                          */
10225                         size = 2 * sizeof (uint64_t);
10226                         break;
10227
10228                 case DTRACEACT_STOP:
10229                 case DTRACEACT_BREAKPOINT:
10230                 case DTRACEACT_PANIC:
10231                         break;
10232
10233                 case DTRACEACT_CHILL:
10234                 case DTRACEACT_DISCARD:
10235                 case DTRACEACT_RAISE:
10236                         if (dp == NULL)
10237                                 return (EINVAL);
10238                         break;
10239
10240                 case DTRACEACT_EXIT:
10241                         if (dp == NULL ||
10242                             (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10243                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10244                                 return (EINVAL);
10245                         break;
10246
10247                 case DTRACEACT_SPECULATE:
10248                         if (ecb->dte_size > sizeof (dtrace_epid_t))
10249                                 return (EINVAL);
10250
10251                         if (dp == NULL)
10252                                 return (EINVAL);
10253
10254                         state->dts_speculates = 1;
10255                         break;
10256
10257                 case DTRACEACT_PRINTM:
10258                         size = dp->dtdo_rtype.dtdt_size;
10259                         break;
10260
10261                 case DTRACEACT_PRINTT:
10262                         size = dp->dtdo_rtype.dtdt_size;
10263                         break;
10264
10265                 case DTRACEACT_COMMIT: {
10266                         dtrace_action_t *act = ecb->dte_action;
10267
10268                         for (; act != NULL; act = act->dta_next) {
10269                                 if (act->dta_kind == DTRACEACT_COMMIT)
10270                                         return (EINVAL);
10271                         }
10272
10273                         if (dp == NULL)
10274                                 return (EINVAL);
10275                         break;
10276                 }
10277
10278                 default:
10279                         return (EINVAL);
10280                 }
10281
10282                 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10283                         /*
10284                          * If this is a data-storing action or a speculate,
10285                          * we must be sure that there isn't a commit on the
10286                          * action chain.
10287                          */
10288                         dtrace_action_t *act = ecb->dte_action;
10289
10290                         for (; act != NULL; act = act->dta_next) {
10291                                 if (act->dta_kind == DTRACEACT_COMMIT)
10292                                         return (EINVAL);
10293                         }
10294                 }
10295
10296                 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10297                 action->dta_rec.dtrd_size = size;
10298         }
10299
10300         action->dta_refcnt = 1;
10301         rec = &action->dta_rec;
10302         size = rec->dtrd_size;
10303
10304         for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10305                 if (!(size & mask)) {
10306                         align = mask + 1;
10307                         break;
10308                 }
10309         }
10310
10311         action->dta_kind = desc->dtad_kind;
10312
10313         if ((action->dta_difo = dp) != NULL)
10314                 dtrace_difo_hold(dp);
10315
10316         rec->dtrd_action = action->dta_kind;
10317         rec->dtrd_arg = arg;
10318         rec->dtrd_uarg = desc->dtad_uarg;
10319         rec->dtrd_alignment = (uint16_t)align;
10320         rec->dtrd_format = format;
10321
10322         if ((last = ecb->dte_action_last) != NULL) {
10323                 ASSERT(ecb->dte_action != NULL);
10324                 action->dta_prev = last;
10325                 last->dta_next = action;
10326         } else {
10327                 ASSERT(ecb->dte_action == NULL);
10328                 ecb->dte_action = action;
10329         }
10330
10331         ecb->dte_action_last = action;
10332
10333         return (0);
10334 }
10335
10336 static void
10337 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10338 {
10339         dtrace_action_t *act = ecb->dte_action, *next;
10340         dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10341         dtrace_difo_t *dp;
10342         uint16_t format;
10343
10344         if (act != NULL && act->dta_refcnt > 1) {
10345                 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10346                 act->dta_refcnt--;
10347         } else {
10348                 for (; act != NULL; act = next) {
10349                         next = act->dta_next;
10350                         ASSERT(next != NULL || act == ecb->dte_action_last);
10351                         ASSERT(act->dta_refcnt == 1);
10352
10353                         if ((format = act->dta_rec.dtrd_format) != 0)
10354                                 dtrace_format_remove(ecb->dte_state, format);
10355
10356                         if ((dp = act->dta_difo) != NULL)
10357                                 dtrace_difo_release(dp, vstate);
10358
10359                         if (DTRACEACT_ISAGG(act->dta_kind)) {
10360                                 dtrace_ecb_aggregation_destroy(ecb, act);
10361                         } else {
10362                                 kmem_free(act, sizeof (dtrace_action_t));
10363                         }
10364                 }
10365         }
10366
10367         ecb->dte_action = NULL;
10368         ecb->dte_action_last = NULL;
10369         ecb->dte_size = sizeof (dtrace_epid_t);
10370 }
10371
10372 static void
10373 dtrace_ecb_disable(dtrace_ecb_t *ecb)
10374 {
10375         /*
10376          * We disable the ECB by removing it from its probe.
10377          */
10378         dtrace_ecb_t *pecb, *prev = NULL;
10379         dtrace_probe_t *probe = ecb->dte_probe;
10380
10381         ASSERT(MUTEX_HELD(&dtrace_lock));
10382
10383         if (probe == NULL) {
10384                 /*
10385                  * This is the NULL probe; there is nothing to disable.
10386                  */
10387                 return;
10388         }
10389
10390         for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10391                 if (pecb == ecb)
10392                         break;
10393                 prev = pecb;
10394         }
10395
10396         ASSERT(pecb != NULL);
10397
10398         if (prev == NULL) {
10399                 probe->dtpr_ecb = ecb->dte_next;
10400         } else {
10401                 prev->dte_next = ecb->dte_next;
10402         }
10403
10404         if (ecb == probe->dtpr_ecb_last) {
10405                 ASSERT(ecb->dte_next == NULL);
10406                 probe->dtpr_ecb_last = prev;
10407         }
10408
10409         /*
10410          * The ECB has been disconnected from the probe; now sync to assure
10411          * that all CPUs have seen the change before returning.
10412          */
10413         dtrace_sync();
10414
10415         if (probe->dtpr_ecb == NULL) {
10416                 /*
10417                  * That was the last ECB on the probe; clear the predicate
10418                  * cache ID for the probe, disable it and sync one more time
10419                  * to assure that we'll never hit it again.
10420                  */
10421                 dtrace_provider_t *prov = probe->dtpr_provider;
10422
10423                 ASSERT(ecb->dte_next == NULL);
10424                 ASSERT(probe->dtpr_ecb_last == NULL);
10425                 probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10426                 prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10427                     probe->dtpr_id, probe->dtpr_arg);
10428                 dtrace_sync();
10429         } else {
10430                 /*
10431                  * There is at least one ECB remaining on the probe.  If there
10432                  * is _exactly_ one, set the probe's predicate cache ID to be
10433                  * the predicate cache ID of the remaining ECB.
10434                  */
10435                 ASSERT(probe->dtpr_ecb_last != NULL);
10436                 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10437
10438                 if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10439                         dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10440
10441                         ASSERT(probe->dtpr_ecb->dte_next == NULL);
10442
10443                         if (p != NULL)
10444                                 probe->dtpr_predcache = p->dtp_cacheid;
10445                 }
10446
10447                 ecb->dte_next = NULL;
10448         }
10449 }
10450
10451 static void
10452 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10453 {
10454         dtrace_state_t *state = ecb->dte_state;
10455         dtrace_vstate_t *vstate = &state->dts_vstate;
10456         dtrace_predicate_t *pred;
10457         dtrace_epid_t epid = ecb->dte_epid;
10458
10459         ASSERT(MUTEX_HELD(&dtrace_lock));
10460         ASSERT(ecb->dte_next == NULL);
10461         ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10462
10463         if ((pred = ecb->dte_predicate) != NULL)
10464                 dtrace_predicate_release(pred, vstate);
10465
10466         dtrace_ecb_action_remove(ecb);
10467
10468         ASSERT(state->dts_ecbs[epid - 1] == ecb);
10469         state->dts_ecbs[epid - 1] = NULL;
10470
10471         kmem_free(ecb, sizeof (dtrace_ecb_t));
10472 }
10473
10474 static dtrace_ecb_t *
10475 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10476     dtrace_enabling_t *enab)
10477 {
10478         dtrace_ecb_t *ecb;
10479         dtrace_predicate_t *pred;
10480         dtrace_actdesc_t *act;
10481         dtrace_provider_t *prov;
10482         dtrace_ecbdesc_t *desc = enab->dten_current;
10483
10484         ASSERT(MUTEX_HELD(&dtrace_lock));
10485         ASSERT(state != NULL);
10486
10487         ecb = dtrace_ecb_add(state, probe);
10488         ecb->dte_uarg = desc->dted_uarg;
10489
10490         if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10491                 dtrace_predicate_hold(pred);
10492                 ecb->dte_predicate = pred;
10493         }
10494
10495         if (probe != NULL) {
10496                 /*
10497                  * If the provider shows more leg than the consumer is old
10498                  * enough to see, we need to enable the appropriate implicit
10499                  * predicate bits to prevent the ecb from activating at
10500                  * revealing times.
10501                  *
10502                  * Providers specifying DTRACE_PRIV_USER at register time
10503                  * are stating that they need the /proc-style privilege
10504                  * model to be enforced, and this is what DTRACE_COND_OWNER
10505                  * and DTRACE_COND_ZONEOWNER will then do at probe time.
10506                  */
10507                 prov = probe->dtpr_provider;
10508                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10509                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10510                         ecb->dte_cond |= DTRACE_COND_OWNER;
10511
10512                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10513                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10514                         ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10515
10516                 /*
10517                  * If the provider shows us kernel innards and the user
10518                  * is lacking sufficient privilege, enable the
10519                  * DTRACE_COND_USERMODE implicit predicate.
10520                  */
10521                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10522                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10523                         ecb->dte_cond |= DTRACE_COND_USERMODE;
10524         }
10525
10526         if (dtrace_ecb_create_cache != NULL) {
10527                 /*
10528                  * If we have a cached ecb, we'll use its action list instead
10529                  * of creating our own (saving both time and space).
10530                  */
10531                 dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10532                 dtrace_action_t *act = cached->dte_action;
10533
10534                 if (act != NULL) {
10535                         ASSERT(act->dta_refcnt > 0);
10536                         act->dta_refcnt++;
10537                         ecb->dte_action = act;
10538                         ecb->dte_action_last = cached->dte_action_last;
10539                         ecb->dte_needed = cached->dte_needed;
10540                         ecb->dte_size = cached->dte_size;
10541                         ecb->dte_alignment = cached->dte_alignment;
10542                 }
10543
10544                 return (ecb);
10545         }
10546
10547         for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10548                 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10549                         dtrace_ecb_destroy(ecb);
10550                         return (NULL);
10551                 }
10552         }
10553
10554         dtrace_ecb_resize(ecb);
10555
10556         return (dtrace_ecb_create_cache = ecb);
10557 }
10558
10559 static int
10560 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10561 {
10562         dtrace_ecb_t *ecb;
10563         dtrace_enabling_t *enab = arg;
10564         dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10565
10566         ASSERT(state != NULL);
10567
10568         if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10569                 /*
10570                  * This probe was created in a generation for which this
10571                  * enabling has previously created ECBs; we don't want to
10572                  * enable it again, so just kick out.
10573                  */
10574                 return (DTRACE_MATCH_NEXT);
10575         }
10576
10577         if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10578                 return (DTRACE_MATCH_DONE);
10579
10580         dtrace_ecb_enable(ecb);
10581         return (DTRACE_MATCH_NEXT);
10582 }
10583
10584 static dtrace_ecb_t *
10585 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10586 {
10587         dtrace_ecb_t *ecb;
10588
10589         ASSERT(MUTEX_HELD(&dtrace_lock));
10590
10591         if (id == 0 || id > state->dts_necbs)
10592                 return (NULL);
10593
10594         ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10595         ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10596
10597         return (state->dts_ecbs[id - 1]);
10598 }
10599
10600 static dtrace_aggregation_t *
10601 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10602 {
10603         dtrace_aggregation_t *agg;
10604
10605         ASSERT(MUTEX_HELD(&dtrace_lock));
10606
10607         if (id == 0 || id > state->dts_naggregations)
10608                 return (NULL);
10609
10610         ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10611         ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10612             agg->dtag_id == id);
10613
10614         return (state->dts_aggregations[id - 1]);
10615 }
10616
10617 /*
10618  * DTrace Buffer Functions
10619  *
10620  * The following functions manipulate DTrace buffers.  Most of these functions
10621  * are called in the context of establishing or processing consumer state;
10622  * exceptions are explicitly noted.
10623  */
10624
10625 /*
10626  * Note:  called from cross call context.  This function switches the two
10627  * buffers on a given CPU.  The atomicity of this operation is assured by
10628  * disabling interrupts while the actual switch takes place; the disabling of
10629  * interrupts serializes the execution with any execution of dtrace_probe() on
10630  * the same CPU.
10631  */
10632 static void
10633 dtrace_buffer_switch(dtrace_buffer_t *buf)
10634 {
10635         caddr_t tomax = buf->dtb_tomax;
10636         caddr_t xamot = buf->dtb_xamot;
10637         dtrace_icookie_t cookie;
10638
10639         ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10640         ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10641
10642         cookie = dtrace_interrupt_disable();
10643         buf->dtb_tomax = xamot;
10644         buf->dtb_xamot = tomax;
10645         buf->dtb_xamot_drops = buf->dtb_drops;
10646         buf->dtb_xamot_offset = buf->dtb_offset;
10647         buf->dtb_xamot_errors = buf->dtb_errors;
10648         buf->dtb_xamot_flags = buf->dtb_flags;
10649         buf->dtb_offset = 0;
10650         buf->dtb_drops = 0;
10651         buf->dtb_errors = 0;
10652         buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10653         dtrace_interrupt_enable(cookie);
10654 }
10655
10656 /*
10657  * Note:  called from cross call context.  This function activates a buffer
10658  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10659  * is guaranteed by the disabling of interrupts.
10660  */
10661 static void
10662 dtrace_buffer_activate(dtrace_state_t *state)
10663 {
10664         dtrace_buffer_t *buf;
10665         dtrace_icookie_t cookie = dtrace_interrupt_disable();
10666
10667         buf = &state->dts_buffer[curcpu];
10668
10669         if (buf->dtb_tomax != NULL) {
10670                 /*
10671                  * We might like to assert that the buffer is marked inactive,
10672                  * but this isn't necessarily true:  the buffer for the CPU
10673                  * that processes the BEGIN probe has its buffer activated
10674                  * manually.  In this case, we take the (harmless) action
10675                  * re-clearing the bit INACTIVE bit.
10676                  */
10677                 buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10678         }
10679
10680         dtrace_interrupt_enable(cookie);
10681 }
10682
10683 static int
10684 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10685     processorid_t cpu)
10686 {
10687 #if defined(sun)
10688         cpu_t *cp;
10689 #endif
10690         dtrace_buffer_t *buf;
10691
10692 #if defined(sun)
10693         ASSERT(MUTEX_HELD(&cpu_lock));
10694         ASSERT(MUTEX_HELD(&dtrace_lock));
10695
10696         if (size > dtrace_nonroot_maxsize &&
10697             !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10698                 return (EFBIG);
10699
10700         cp = cpu_list;
10701
10702         do {
10703                 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10704                         continue;
10705
10706                 buf = &bufs[cp->cpu_id];
10707
10708                 /*
10709                  * If there is already a buffer allocated for this CPU, it
10710                  * is only possible that this is a DR event.  In this case,
10711                  */
10712                 if (buf->dtb_tomax != NULL) {
10713                         ASSERT(buf->dtb_size == size);
10714                         continue;
10715                 }
10716
10717                 ASSERT(buf->dtb_xamot == NULL);
10718
10719                 if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10720                         goto err;
10721
10722                 buf->dtb_size = size;
10723                 buf->dtb_flags = flags;
10724                 buf->dtb_offset = 0;
10725                 buf->dtb_drops = 0;
10726
10727                 if (flags & DTRACEBUF_NOSWITCH)
10728                         continue;
10729
10730                 if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10731                         goto err;
10732         } while ((cp = cp->cpu_next) != cpu_list);
10733
10734         return (0);
10735
10736 err:
10737         cp = cpu_list;
10738
10739         do {
10740                 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10741                         continue;
10742
10743                 buf = &bufs[cp->cpu_id];
10744
10745                 if (buf->dtb_xamot != NULL) {
10746                         ASSERT(buf->dtb_tomax != NULL);
10747                         ASSERT(buf->dtb_size == size);
10748                         kmem_free(buf->dtb_xamot, size);
10749                 }
10750
10751                 if (buf->dtb_tomax != NULL) {
10752                         ASSERT(buf->dtb_size == size);
10753                         kmem_free(buf->dtb_tomax, size);
10754                 }
10755
10756                 buf->dtb_tomax = NULL;
10757                 buf->dtb_xamot = NULL;
10758                 buf->dtb_size = 0;
10759         } while ((cp = cp->cpu_next) != cpu_list);
10760
10761         return (ENOMEM);
10762 #else
10763         int i;
10764
10765 #if defined(__amd64__)
10766         /*
10767          * FreeBSD isn't good at limiting the amount of memory we
10768          * ask to malloc, so let's place a limit here before trying
10769          * to do something that might well end in tears at bedtime.
10770          */
10771         if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
10772                 return(ENOMEM);
10773 #endif
10774
10775         ASSERT(MUTEX_HELD(&dtrace_lock));
10776         CPU_FOREACH(i) {
10777                 if (cpu != DTRACE_CPUALL && cpu != i)
10778                         continue;
10779
10780                 buf = &bufs[i];
10781
10782                 /*
10783                  * If there is already a buffer allocated for this CPU, it
10784                  * is only possible that this is a DR event.  In this case,
10785                  * the buffer size must match our specified size.
10786                  */
10787                 if (buf->dtb_tomax != NULL) {
10788                         ASSERT(buf->dtb_size == size);
10789                         continue;
10790                 }
10791
10792                 ASSERT(buf->dtb_xamot == NULL);
10793
10794                 if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10795                         goto err;
10796
10797                 buf->dtb_size = size;
10798                 buf->dtb_flags = flags;
10799                 buf->dtb_offset = 0;
10800                 buf->dtb_drops = 0;
10801
10802                 if (flags & DTRACEBUF_NOSWITCH)
10803                         continue;
10804
10805                 if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10806                         goto err;
10807         }
10808
10809         return (0);
10810
10811 err:
10812         /*
10813          * Error allocating memory, so free the buffers that were
10814          * allocated before the failed allocation.
10815          */
10816         CPU_FOREACH(i) {
10817                 if (cpu != DTRACE_CPUALL && cpu != i)
10818                         continue;
10819
10820                 buf = &bufs[i];
10821
10822                 if (buf->dtb_xamot != NULL) {
10823                         ASSERT(buf->dtb_tomax != NULL);
10824                         ASSERT(buf->dtb_size == size);
10825                         kmem_free(buf->dtb_xamot, size);
10826                 }
10827
10828                 if (buf->dtb_tomax != NULL) {
10829                         ASSERT(buf->dtb_size == size);
10830                         kmem_free(buf->dtb_tomax, size);
10831                 }
10832
10833                 buf->dtb_tomax = NULL;
10834                 buf->dtb_xamot = NULL;
10835                 buf->dtb_size = 0;
10836
10837         }
10838
10839         return (ENOMEM);
10840 #endif
10841 }
10842
10843 /*
10844  * Note:  called from probe context.  This function just increments the drop
10845  * count on a buffer.  It has been made a function to allow for the
10846  * possibility of understanding the source of mysterious drop counts.  (A
10847  * problem for which one may be particularly disappointed that DTrace cannot
10848  * be used to understand DTrace.)
10849  */
10850 static void
10851 dtrace_buffer_drop(dtrace_buffer_t *buf)
10852 {
10853         buf->dtb_drops++;
10854 }
10855
10856 /*
10857  * Note:  called from probe context.  This function is called to reserve space
10858  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10859  * mstate.  Returns the new offset in the buffer, or a negative value if an
10860  * error has occurred.
10861  */
10862 static intptr_t
10863 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10864     dtrace_state_t *state, dtrace_mstate_t *mstate)
10865 {
10866         intptr_t offs = buf->dtb_offset, soffs;
10867         intptr_t woffs;
10868         caddr_t tomax;
10869         size_t total;
10870
10871         if (buf->dtb_flags & DTRACEBUF_INACTIVE)
10872                 return (-1);
10873
10874         if ((tomax = buf->dtb_tomax) == NULL) {
10875                 dtrace_buffer_drop(buf);
10876                 return (-1);
10877         }
10878
10879         if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
10880                 while (offs & (align - 1)) {
10881                         /*
10882                          * Assert that our alignment is off by a number which
10883                          * is itself sizeof (uint32_t) aligned.
10884                          */
10885                         ASSERT(!((align - (offs & (align - 1))) &
10886                             (sizeof (uint32_t) - 1)));
10887                         DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10888                         offs += sizeof (uint32_t);
10889                 }
10890
10891                 if ((soffs = offs + needed) > buf->dtb_size) {
10892                         dtrace_buffer_drop(buf);
10893                         return (-1);
10894                 }
10895
10896                 if (mstate == NULL)
10897                         return (offs);
10898
10899                 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
10900                 mstate->dtms_scratch_size = buf->dtb_size - soffs;
10901                 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10902
10903                 return (offs);
10904         }
10905
10906         if (buf->dtb_flags & DTRACEBUF_FILL) {
10907                 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
10908                     (buf->dtb_flags & DTRACEBUF_FULL))
10909                         return (-1);
10910                 goto out;
10911         }
10912
10913         total = needed + (offs & (align - 1));
10914
10915         /*
10916          * For a ring buffer, life is quite a bit more complicated.  Before
10917          * we can store any padding, we need to adjust our wrapping offset.
10918          * (If we've never before wrapped or we're not about to, no adjustment
10919          * is required.)
10920          */
10921         if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
10922             offs + total > buf->dtb_size) {
10923                 woffs = buf->dtb_xamot_offset;
10924
10925                 if (offs + total > buf->dtb_size) {
10926                         /*
10927                          * We can't fit in the end of the buffer.  First, a
10928                          * sanity check that we can fit in the buffer at all.
10929                          */
10930                         if (total > buf->dtb_size) {
10931                                 dtrace_buffer_drop(buf);
10932                                 return (-1);
10933                         }
10934
10935                         /*
10936                          * We're going to be storing at the top of the buffer,
10937                          * so now we need to deal with the wrapped offset.  We
10938                          * only reset our wrapped offset to 0 if it is
10939                          * currently greater than the current offset.  If it
10940                          * is less than the current offset, it is because a
10941                          * previous allocation induced a wrap -- but the
10942                          * allocation didn't subsequently take the space due
10943                          * to an error or false predicate evaluation.  In this
10944                          * case, we'll just leave the wrapped offset alone: if
10945                          * the wrapped offset hasn't been advanced far enough
10946                          * for this allocation, it will be adjusted in the
10947                          * lower loop.
10948                          */
10949                         if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
10950                                 if (woffs >= offs)
10951                                         woffs = 0;
10952                         } else {
10953                                 woffs = 0;
10954                         }
10955
10956                         /*
10957                          * Now we know that we're going to be storing to the
10958                          * top of the buffer and that there is room for us
10959                          * there.  We need to clear the buffer from the current
10960                          * offset to the end (there may be old gunk there).
10961                          */
10962                         while (offs < buf->dtb_size)
10963                                 tomax[offs++] = 0;
10964
10965                         /*
10966                          * We need to set our offset to zero.  And because we
10967                          * are wrapping, we need to set the bit indicating as
10968                          * much.  We can also adjust our needed space back
10969                          * down to the space required by the ECB -- we know
10970                          * that the top of the buffer is aligned.
10971                          */
10972                         offs = 0;
10973                         total = needed;
10974                         buf->dtb_flags |= DTRACEBUF_WRAPPED;
10975                 } else {
10976                         /*
10977                          * There is room for us in the buffer, so we simply
10978                          * need to check the wrapped offset.
10979                          */
10980                         if (woffs < offs) {
10981                                 /*
10982                                  * The wrapped offset is less than the offset.
10983                                  * This can happen if we allocated buffer space
10984                                  * that induced a wrap, but then we didn't
10985                                  * subsequently take the space due to an error
10986                                  * or false predicate evaluation.  This is
10987                                  * okay; we know that _this_ allocation isn't
10988                                  * going to induce a wrap.  We still can't
10989                                  * reset the wrapped offset to be zero,
10990                                  * however: the space may have been trashed in
10991                                  * the previous failed probe attempt.  But at
10992                                  * least the wrapped offset doesn't need to
10993                                  * be adjusted at all...
10994                                  */
10995                                 goto out;
10996                         }
10997                 }
10998
10999                 while (offs + total > woffs) {
11000                         dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
11001                         size_t size;
11002
11003                         if (epid == DTRACE_EPIDNONE) {
11004                                 size = sizeof (uint32_t);
11005                         } else {
11006                                 ASSERT(epid <= state->dts_necbs);
11007                                 ASSERT(state->dts_ecbs[epid - 1] != NULL);
11008
11009                                 size = state->dts_ecbs[epid - 1]->dte_size;
11010                         }
11011
11012                         ASSERT(woffs + size <= buf->dtb_size);
11013                         ASSERT(size != 0);
11014
11015                         if (woffs + size == buf->dtb_size) {
11016                                 /*
11017                                  * We've reached the end of the buffer; we want
11018                                  * to set the wrapped offset to 0 and break
11019                                  * out.  However, if the offs is 0, then we're
11020                                  * in a strange edge-condition:  the amount of
11021                                  * space that we want to reserve plus the size
11022                                  * of the record that we're overwriting is
11023                                  * greater than the size of the buffer.  This
11024                                  * is problematic because if we reserve the
11025                                  * space but subsequently don't consume it (due
11026                                  * to a failed predicate or error) the wrapped
11027                                  * offset will be 0 -- yet the EPID at offset 0
11028                                  * will not be committed.  This situation is
11029                                  * relatively easy to deal with:  if we're in
11030                                  * this case, the buffer is indistinguishable
11031                                  * from one that hasn't wrapped; we need only
11032                                  * finish the job by clearing the wrapped bit,
11033                                  * explicitly setting the offset to be 0, and
11034                                  * zero'ing out the old data in the buffer.
11035                                  */
11036                                 if (offs == 0) {
11037                                         buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
11038                                         buf->dtb_offset = 0;
11039                                         woffs = total;
11040
11041                                         while (woffs < buf->dtb_size)
11042                                                 tomax[woffs++] = 0;
11043                                 }
11044
11045                                 woffs = 0;
11046                                 break;
11047                         }
11048
11049                         woffs += size;
11050                 }
11051
11052                 /*
11053                  * We have a wrapped offset.  It may be that the wrapped offset
11054                  * has become zero -- that's okay.
11055                  */
11056                 buf->dtb_xamot_offset = woffs;
11057         }
11058
11059 out:
11060         /*
11061          * Now we can plow the buffer with any necessary padding.
11062          */
11063         while (offs & (align - 1)) {
11064                 /*
11065                  * Assert that our alignment is off by a number which
11066                  * is itself sizeof (uint32_t) aligned.
11067                  */
11068                 ASSERT(!((align - (offs & (align - 1))) &
11069                     (sizeof (uint32_t) - 1)));
11070                 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11071                 offs += sizeof (uint32_t);
11072         }
11073
11074         if (buf->dtb_flags & DTRACEBUF_FILL) {
11075                 if (offs + needed > buf->dtb_size - state->dts_reserve) {
11076                         buf->dtb_flags |= DTRACEBUF_FULL;
11077                         return (-1);
11078                 }
11079         }
11080
11081         if (mstate == NULL)
11082                 return (offs);
11083
11084         /*
11085          * For ring buffers and fill buffers, the scratch space is always
11086          * the inactive buffer.
11087          */
11088         mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
11089         mstate->dtms_scratch_size = buf->dtb_size;
11090         mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11091
11092         return (offs);
11093 }
11094
11095 static void
11096 dtrace_buffer_polish(dtrace_buffer_t *buf)
11097 {
11098         ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11099         ASSERT(MUTEX_HELD(&dtrace_lock));
11100
11101         if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11102                 return;
11103
11104         /*
11105          * We need to polish the ring buffer.  There are three cases:
11106          *
11107          * - The first (and presumably most common) is that there is no gap
11108          *   between the buffer offset and the wrapped offset.  In this case,
11109          *   there is nothing in the buffer that isn't valid data; we can
11110          *   mark the buffer as polished and return.
11111          *
11112          * - The second (less common than the first but still more common
11113          *   than the third) is that there is a gap between the buffer offset
11114          *   and the wrapped offset, and the wrapped offset is larger than the
11115          *   buffer offset.  This can happen because of an alignment issue, or
11116          *   can happen because of a call to dtrace_buffer_reserve() that
11117          *   didn't subsequently consume the buffer space.  In this case,
11118          *   we need to zero the data from the buffer offset to the wrapped
11119          *   offset.
11120          *
11121          * - The third (and least common) is that there is a gap between the
11122          *   buffer offset and the wrapped offset, but the wrapped offset is
11123          *   _less_ than the buffer offset.  This can only happen because a
11124          *   call to dtrace_buffer_reserve() induced a wrap, but the space
11125          *   was not subsequently consumed.  In this case, we need to zero the
11126          *   space from the offset to the end of the buffer _and_ from the
11127          *   top of the buffer to the wrapped offset.
11128          */
11129         if (buf->dtb_offset < buf->dtb_xamot_offset) {
11130                 bzero(buf->dtb_tomax + buf->dtb_offset,
11131                     buf->dtb_xamot_offset - buf->dtb_offset);
11132         }
11133
11134         if (buf->dtb_offset > buf->dtb_xamot_offset) {
11135                 bzero(buf->dtb_tomax + buf->dtb_offset,
11136                     buf->dtb_size - buf->dtb_offset);
11137                 bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11138         }
11139 }
11140
11141 static void
11142 dtrace_buffer_free(dtrace_buffer_t *bufs)
11143 {
11144         int i;
11145
11146         for (i = 0; i < NCPU; i++) {
11147                 dtrace_buffer_t *buf = &bufs[i];
11148
11149                 if (buf->dtb_tomax == NULL) {
11150                         ASSERT(buf->dtb_xamot == NULL);
11151                         ASSERT(buf->dtb_size == 0);
11152                         continue;
11153                 }
11154
11155                 if (buf->dtb_xamot != NULL) {
11156                         ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11157                         kmem_free(buf->dtb_xamot, buf->dtb_size);
11158                 }
11159
11160                 kmem_free(buf->dtb_tomax, buf->dtb_size);
11161                 buf->dtb_size = 0;
11162                 buf->dtb_tomax = NULL;
11163                 buf->dtb_xamot = NULL;
11164         }
11165 }
11166
11167 /*
11168  * DTrace Enabling Functions
11169  */
11170 static dtrace_enabling_t *
11171 dtrace_enabling_create(dtrace_vstate_t *vstate)
11172 {
11173         dtrace_enabling_t *enab;
11174
11175         enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11176         enab->dten_vstate = vstate;
11177
11178         return (enab);
11179 }
11180
11181 static void
11182 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11183 {
11184         dtrace_ecbdesc_t **ndesc;
11185         size_t osize, nsize;
11186
11187         /*
11188          * We can't add to enablings after we've enabled them, or after we've
11189          * retained them.
11190          */
11191         ASSERT(enab->dten_probegen == 0);
11192         ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11193
11194         if (enab->dten_ndesc < enab->dten_maxdesc) {
11195                 enab->dten_desc[enab->dten_ndesc++] = ecb;
11196                 return;
11197         }
11198
11199         osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11200
11201         if (enab->dten_maxdesc == 0) {
11202                 enab->dten_maxdesc = 1;
11203         } else {
11204                 enab->dten_maxdesc <<= 1;
11205         }
11206
11207         ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11208
11209         nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11210         ndesc = kmem_zalloc(nsize, KM_SLEEP);
11211         bcopy(enab->dten_desc, ndesc, osize);
11212         if (enab->dten_desc != NULL)
11213                 kmem_free(enab->dten_desc, osize);
11214
11215         enab->dten_desc = ndesc;
11216         enab->dten_desc[enab->dten_ndesc++] = ecb;
11217 }
11218
11219 static void
11220 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11221     dtrace_probedesc_t *pd)
11222 {
11223         dtrace_ecbdesc_t *new;
11224         dtrace_predicate_t *pred;
11225         dtrace_actdesc_t *act;
11226
11227         /*
11228          * We're going to create a new ECB description that matches the
11229          * specified ECB in every way, but has the specified probe description.
11230          */
11231         new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11232
11233         if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11234                 dtrace_predicate_hold(pred);
11235
11236         for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11237                 dtrace_actdesc_hold(act);
11238
11239         new->dted_action = ecb->dted_action;
11240         new->dted_pred = ecb->dted_pred;
11241         new->dted_probe = *pd;
11242         new->dted_uarg = ecb->dted_uarg;
11243
11244         dtrace_enabling_add(enab, new);
11245 }
11246
11247 static void
11248 dtrace_enabling_dump(dtrace_enabling_t *enab)
11249 {
11250         int i;
11251
11252         for (i = 0; i < enab->dten_ndesc; i++) {
11253                 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11254
11255                 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11256                     desc->dtpd_provider, desc->dtpd_mod,
11257                     desc->dtpd_func, desc->dtpd_name);
11258         }
11259 }
11260
11261 static void
11262 dtrace_enabling_destroy(dtrace_enabling_t *enab)
11263 {
11264         int i;
11265         dtrace_ecbdesc_t *ep;
11266         dtrace_vstate_t *vstate = enab->dten_vstate;
11267
11268         ASSERT(MUTEX_HELD(&dtrace_lock));
11269
11270         for (i = 0; i < enab->dten_ndesc; i++) {
11271                 dtrace_actdesc_t *act, *next;
11272                 dtrace_predicate_t *pred;
11273
11274                 ep = enab->dten_desc[i];
11275
11276                 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11277                         dtrace_predicate_release(pred, vstate);
11278
11279                 for (act = ep->dted_action; act != NULL; act = next) {
11280                         next = act->dtad_next;
11281                         dtrace_actdesc_release(act, vstate);
11282                 }
11283
11284                 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11285         }
11286
11287         if (enab->dten_desc != NULL)
11288                 kmem_free(enab->dten_desc,
11289                     enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11290
11291         /*
11292          * If this was a retained enabling, decrement the dts_nretained count
11293          * and take it off of the dtrace_retained list.
11294          */
11295         if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11296             dtrace_retained == enab) {
11297                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11298                 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11299                 enab->dten_vstate->dtvs_state->dts_nretained--;
11300         }
11301
11302         if (enab->dten_prev == NULL) {
11303                 if (dtrace_retained == enab) {
11304                         dtrace_retained = enab->dten_next;
11305
11306                         if (dtrace_retained != NULL)
11307                                 dtrace_retained->dten_prev = NULL;
11308                 }
11309         } else {
11310                 ASSERT(enab != dtrace_retained);
11311                 ASSERT(dtrace_retained != NULL);
11312                 enab->dten_prev->dten_next = enab->dten_next;
11313         }
11314
11315         if (enab->dten_next != NULL) {
11316                 ASSERT(dtrace_retained != NULL);
11317                 enab->dten_next->dten_prev = enab->dten_prev;
11318         }
11319
11320         kmem_free(enab, sizeof (dtrace_enabling_t));
11321 }
11322
11323 static int
11324 dtrace_enabling_retain(dtrace_enabling_t *enab)
11325 {
11326         dtrace_state_t *state;
11327
11328         ASSERT(MUTEX_HELD(&dtrace_lock));
11329         ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11330         ASSERT(enab->dten_vstate != NULL);
11331
11332         state = enab->dten_vstate->dtvs_state;
11333         ASSERT(state != NULL);
11334
11335         /*
11336          * We only allow each state to retain dtrace_retain_max enablings.
11337          */
11338         if (state->dts_nretained >= dtrace_retain_max)
11339                 return (ENOSPC);
11340
11341         state->dts_nretained++;
11342
11343         if (dtrace_retained == NULL) {
11344                 dtrace_retained = enab;
11345                 return (0);
11346         }
11347
11348         enab->dten_next = dtrace_retained;
11349         dtrace_retained->dten_prev = enab;
11350         dtrace_retained = enab;
11351
11352         return (0);
11353 }
11354
11355 static int
11356 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11357     dtrace_probedesc_t *create)
11358 {
11359         dtrace_enabling_t *new, *enab;
11360         int found = 0, err = ENOENT;
11361
11362         ASSERT(MUTEX_HELD(&dtrace_lock));
11363         ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11364         ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11365         ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11366         ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11367
11368         new = dtrace_enabling_create(&state->dts_vstate);
11369
11370         /*
11371          * Iterate over all retained enablings, looking for enablings that
11372          * match the specified state.
11373          */
11374         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11375                 int i;
11376
11377                 /*
11378                  * dtvs_state can only be NULL for helper enablings -- and
11379                  * helper enablings can't be retained.
11380                  */
11381                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11382
11383                 if (enab->dten_vstate->dtvs_state != state)
11384                         continue;
11385
11386                 /*
11387                  * Now iterate over each probe description; we're looking for
11388                  * an exact match to the specified probe description.
11389                  */
11390                 for (i = 0; i < enab->dten_ndesc; i++) {
11391                         dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11392                         dtrace_probedesc_t *pd = &ep->dted_probe;
11393
11394                         if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11395                                 continue;
11396
11397                         if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11398                                 continue;
11399
11400                         if (strcmp(pd->dtpd_func, match->dtpd_func))
11401                                 continue;
11402
11403                         if (strcmp(pd->dtpd_name, match->dtpd_name))
11404                                 continue;
11405
11406                         /*
11407                          * We have a winning probe!  Add it to our growing
11408                          * enabling.
11409                          */
11410                         found = 1;
11411                         dtrace_enabling_addlike(new, ep, create);
11412                 }
11413         }
11414
11415         if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11416                 dtrace_enabling_destroy(new);
11417                 return (err);
11418         }
11419
11420         return (0);
11421 }
11422
11423 static void
11424 dtrace_enabling_retract(dtrace_state_t *state)
11425 {
11426         dtrace_enabling_t *enab, *next;
11427
11428         ASSERT(MUTEX_HELD(&dtrace_lock));
11429
11430         /*
11431          * Iterate over all retained enablings, destroy the enablings retained
11432          * for the specified state.
11433          */
11434         for (enab = dtrace_retained; enab != NULL; enab = next) {
11435                 next = enab->dten_next;
11436
11437                 /*
11438                  * dtvs_state can only be NULL for helper enablings -- and
11439                  * helper enablings can't be retained.
11440                  */
11441                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11442
11443                 if (enab->dten_vstate->dtvs_state == state) {
11444                         ASSERT(state->dts_nretained > 0);
11445                         dtrace_enabling_destroy(enab);
11446                 }
11447         }
11448
11449         ASSERT(state->dts_nretained == 0);
11450 }
11451
11452 static int
11453 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11454 {
11455         int i = 0;
11456         int matched = 0;
11457
11458         ASSERT(MUTEX_HELD(&cpu_lock));
11459         ASSERT(MUTEX_HELD(&dtrace_lock));
11460
11461         for (i = 0; i < enab->dten_ndesc; i++) {
11462                 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11463
11464                 enab->dten_current = ep;
11465                 enab->dten_error = 0;
11466
11467                 matched += dtrace_probe_enable(&ep->dted_probe, enab);
11468
11469                 if (enab->dten_error != 0) {
11470                         /*
11471                          * If we get an error half-way through enabling the
11472                          * probes, we kick out -- perhaps with some number of
11473                          * them enabled.  Leaving enabled probes enabled may
11474                          * be slightly confusing for user-level, but we expect
11475                          * that no one will attempt to actually drive on in
11476                          * the face of such errors.  If this is an anonymous
11477                          * enabling (indicated with a NULL nmatched pointer),
11478                          * we cmn_err() a message.  We aren't expecting to
11479                          * get such an error -- such as it can exist at all,
11480                          * it would be a result of corrupted DOF in the driver
11481                          * properties.
11482                          */
11483                         if (nmatched == NULL) {
11484                                 cmn_err(CE_WARN, "dtrace_enabling_match() "
11485                                     "error on %p: %d", (void *)ep,
11486                                     enab->dten_error);
11487                         }
11488
11489                         return (enab->dten_error);
11490                 }
11491         }
11492
11493         enab->dten_probegen = dtrace_probegen;
11494         if (nmatched != NULL)
11495                 *nmatched = matched;
11496
11497         return (0);
11498 }
11499
11500 static void
11501 dtrace_enabling_matchall(void)
11502 {
11503         dtrace_enabling_t *enab;
11504
11505         mutex_enter(&cpu_lock);
11506         mutex_enter(&dtrace_lock);
11507
11508         /*
11509          * Iterate over all retained enablings to see if any probes match
11510          * against them.  We only perform this operation on enablings for which
11511          * we have sufficient permissions by virtue of being in the global zone
11512          * or in the same zone as the DTrace client.  Because we can be called
11513          * after dtrace_detach() has been called, we cannot assert that there
11514          * are retained enablings.  We can safely load from dtrace_retained,
11515          * however:  the taskq_destroy() at the end of dtrace_detach() will
11516          * block pending our completion.
11517          */
11518         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11519 #if defined(sun)
11520                 cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
11521
11522                 if (INGLOBALZONE(curproc) || getzoneid() == crgetzoneid(cr))
11523 #endif
11524                         (void) dtrace_enabling_match(enab, NULL);
11525         }
11526
11527         mutex_exit(&dtrace_lock);
11528         mutex_exit(&cpu_lock);
11529 }
11530
11531 /*
11532  * If an enabling is to be enabled without having matched probes (that is, if
11533  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11534  * enabling must be _primed_ by creating an ECB for every ECB description.
11535  * This must be done to assure that we know the number of speculations, the
11536  * number of aggregations, the minimum buffer size needed, etc. before we
11537  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11538  * enabling any probes, we create ECBs for every ECB decription, but with a
11539  * NULL probe -- which is exactly what this function does.
11540  */
11541 static void
11542 dtrace_enabling_prime(dtrace_state_t *state)
11543 {
11544         dtrace_enabling_t *enab;
11545         int i;
11546
11547         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11548                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11549
11550                 if (enab->dten_vstate->dtvs_state != state)
11551                         continue;
11552
11553                 /*
11554                  * We don't want to prime an enabling more than once, lest
11555                  * we allow a malicious user to induce resource exhaustion.
11556                  * (The ECBs that result from priming an enabling aren't
11557                  * leaked -- but they also aren't deallocated until the
11558                  * consumer state is destroyed.)
11559                  */
11560                 if (enab->dten_primed)
11561                         continue;
11562
11563                 for (i = 0; i < enab->dten_ndesc; i++) {
11564                         enab->dten_current = enab->dten_desc[i];
11565                         (void) dtrace_probe_enable(NULL, enab);
11566                 }
11567
11568                 enab->dten_primed = 1;
11569         }
11570 }
11571
11572 /*
11573  * Called to indicate that probes should be provided due to retained
11574  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11575  * must take an initial lap through the enabling calling the dtps_provide()
11576  * entry point explicitly to allow for autocreated probes.
11577  */
11578 static void
11579 dtrace_enabling_provide(dtrace_provider_t *prv)
11580 {
11581         int i, all = 0;
11582         dtrace_probedesc_t desc;
11583
11584         ASSERT(MUTEX_HELD(&dtrace_lock));
11585         ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11586
11587         if (prv == NULL) {
11588                 all = 1;
11589                 prv = dtrace_provider;
11590         }
11591
11592         do {
11593                 dtrace_enabling_t *enab = dtrace_retained;
11594                 void *parg = prv->dtpv_arg;
11595
11596                 for (; enab != NULL; enab = enab->dten_next) {
11597                         for (i = 0; i < enab->dten_ndesc; i++) {
11598                                 desc = enab->dten_desc[i]->dted_probe;
11599                                 mutex_exit(&dtrace_lock);
11600                                 prv->dtpv_pops.dtps_provide(parg, &desc);
11601                                 mutex_enter(&dtrace_lock);
11602                         }
11603                 }
11604         } while (all && (prv = prv->dtpv_next) != NULL);
11605
11606         mutex_exit(&dtrace_lock);
11607         dtrace_probe_provide(NULL, all ? NULL : prv);
11608         mutex_enter(&dtrace_lock);
11609 }
11610
11611 /*
11612  * DTrace DOF Functions
11613  */
11614 /*ARGSUSED*/
11615 static void
11616 dtrace_dof_error(dof_hdr_t *dof, const char *str)
11617 {
11618         if (dtrace_err_verbose)
11619                 cmn_err(CE_WARN, "failed to process DOF: %s", str);
11620
11621 #ifdef DTRACE_ERRDEBUG
11622         dtrace_errdebug(str);
11623 #endif
11624 }
11625
11626 /*
11627  * Create DOF out of a currently enabled state.  Right now, we only create
11628  * DOF containing the run-time options -- but this could be expanded to create
11629  * complete DOF representing the enabled state.
11630  */
11631 static dof_hdr_t *
11632 dtrace_dof_create(dtrace_state_t *state)
11633 {
11634         dof_hdr_t *dof;
11635         dof_sec_t *sec;
11636         dof_optdesc_t *opt;
11637         int i, len = sizeof (dof_hdr_t) +
11638             roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11639             sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11640
11641         ASSERT(MUTEX_HELD(&dtrace_lock));
11642
11643         dof = kmem_zalloc(len, KM_SLEEP);
11644         dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11645         dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11646         dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11647         dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11648
11649         dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11650         dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11651         dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11652         dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11653         dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11654         dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11655
11656         dof->dofh_flags = 0;
11657         dof->dofh_hdrsize = sizeof (dof_hdr_t);
11658         dof->dofh_secsize = sizeof (dof_sec_t);
11659         dof->dofh_secnum = 1;   /* only DOF_SECT_OPTDESC */
11660         dof->dofh_secoff = sizeof (dof_hdr_t);
11661         dof->dofh_loadsz = len;
11662         dof->dofh_filesz = len;
11663         dof->dofh_pad = 0;
11664
11665         /*
11666          * Fill in the option section header...
11667          */
11668         sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11669         sec->dofs_type = DOF_SECT_OPTDESC;
11670         sec->dofs_align = sizeof (uint64_t);
11671         sec->dofs_flags = DOF_SECF_LOAD;
11672         sec->dofs_entsize = sizeof (dof_optdesc_t);
11673
11674         opt = (dof_optdesc_t *)((uintptr_t)sec +
11675             roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11676
11677         sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11678         sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11679
11680         for (i = 0; i < DTRACEOPT_MAX; i++) {
11681                 opt[i].dofo_option = i;
11682                 opt[i].dofo_strtab = DOF_SECIDX_NONE;
11683                 opt[i].dofo_value = state->dts_options[i];
11684         }
11685
11686         return (dof);
11687 }
11688
11689 static dof_hdr_t *
11690 dtrace_dof_copyin(uintptr_t uarg, int *errp)
11691 {
11692         dof_hdr_t hdr, *dof;
11693
11694         ASSERT(!MUTEX_HELD(&dtrace_lock));
11695
11696         /*
11697          * First, we're going to copyin() the sizeof (dof_hdr_t).
11698          */
11699         if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11700                 dtrace_dof_error(NULL, "failed to copyin DOF header");
11701                 *errp = EFAULT;
11702                 return (NULL);
11703         }
11704
11705         /*
11706          * Now we'll allocate the entire DOF and copy it in -- provided
11707          * that the length isn't outrageous.
11708          */
11709         if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11710                 dtrace_dof_error(&hdr, "load size exceeds maximum");
11711                 *errp = E2BIG;
11712                 return (NULL);
11713         }
11714
11715         if (hdr.dofh_loadsz < sizeof (hdr)) {
11716                 dtrace_dof_error(&hdr, "invalid load size");
11717                 *errp = EINVAL;
11718                 return (NULL);
11719         }
11720
11721         dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
11722
11723         if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
11724                 kmem_free(dof, hdr.dofh_loadsz);
11725                 *errp = EFAULT;
11726                 return (NULL);
11727         }
11728
11729         return (dof);
11730 }
11731
11732 #if !defined(sun)
11733 static __inline uchar_t
11734 dtrace_dof_char(char c) {
11735         switch (c) {
11736         case '0':
11737         case '1':
11738         case '2':
11739         case '3':
11740         case '4':
11741         case '5':
11742         case '6':
11743         case '7':
11744         case '8':
11745         case '9':
11746                 return (c - '0');
11747         case 'A':
11748         case 'B':
11749         case 'C':
11750         case 'D':
11751         case 'E':
11752         case 'F':
11753                 return (c - 'A' + 10);
11754         case 'a':
11755         case 'b':
11756         case 'c':
11757         case 'd':
11758         case 'e':
11759         case 'f':
11760                 return (c - 'a' + 10);
11761         }
11762         /* Should not reach here. */
11763         return (0);
11764 }
11765 #endif
11766
11767 static dof_hdr_t *
11768 dtrace_dof_property(const char *name)
11769 {
11770         uchar_t *buf;
11771         uint64_t loadsz;
11772         unsigned int len, i;
11773         dof_hdr_t *dof;
11774
11775 #if defined(sun)
11776         /*
11777          * Unfortunately, array of values in .conf files are always (and
11778          * only) interpreted to be integer arrays.  We must read our DOF
11779          * as an integer array, and then squeeze it into a byte array.
11780          */
11781         if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
11782             (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
11783                 return (NULL);
11784
11785         for (i = 0; i < len; i++)
11786                 buf[i] = (uchar_t)(((int *)buf)[i]);
11787
11788         if (len < sizeof (dof_hdr_t)) {
11789                 ddi_prop_free(buf);
11790                 dtrace_dof_error(NULL, "truncated header");
11791                 return (NULL);
11792         }
11793
11794         if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
11795                 ddi_prop_free(buf);
11796                 dtrace_dof_error(NULL, "truncated DOF");
11797                 return (NULL);
11798         }
11799
11800         if (loadsz >= dtrace_dof_maxsize) {
11801                 ddi_prop_free(buf);
11802                 dtrace_dof_error(NULL, "oversized DOF");
11803                 return (NULL);
11804         }
11805
11806         dof = kmem_alloc(loadsz, KM_SLEEP);
11807         bcopy(buf, dof, loadsz);
11808         ddi_prop_free(buf);
11809 #else
11810         char *p;
11811         char *p_env;
11812
11813         if ((p_env = getenv(name)) == NULL)
11814                 return (NULL);
11815
11816         len = strlen(p_env) / 2;
11817
11818         buf = kmem_alloc(len, KM_SLEEP);
11819
11820         dof = (dof_hdr_t *) buf;
11821
11822         p = p_env;
11823
11824         for (i = 0; i < len; i++) {
11825                 buf[i] = (dtrace_dof_char(p[0]) << 4) |
11826                      dtrace_dof_char(p[1]);
11827                 p += 2;
11828         }
11829
11830         freeenv(p_env);
11831
11832         if (len < sizeof (dof_hdr_t)) {
11833                 kmem_free(buf, 0);
11834                 dtrace_dof_error(NULL, "truncated header");
11835                 return (NULL);
11836         }
11837
11838         if (len < (loadsz = dof->dofh_loadsz)) {
11839                 kmem_free(buf, 0);
11840                 dtrace_dof_error(NULL, "truncated DOF");
11841                 return (NULL);
11842         }
11843
11844         if (loadsz >= dtrace_dof_maxsize) {
11845                 kmem_free(buf, 0);
11846                 dtrace_dof_error(NULL, "oversized DOF");
11847                 return (NULL);
11848         }
11849 #endif
11850
11851         return (dof);
11852 }
11853
11854 static void
11855 dtrace_dof_destroy(dof_hdr_t *dof)
11856 {
11857         kmem_free(dof, dof->dofh_loadsz);
11858 }
11859
11860 /*
11861  * Return the dof_sec_t pointer corresponding to a given section index.  If the
11862  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
11863  * a type other than DOF_SECT_NONE is specified, the header is checked against
11864  * this type and NULL is returned if the types do not match.
11865  */
11866 static dof_sec_t *
11867 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
11868 {
11869         dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
11870             ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
11871
11872         if (i >= dof->dofh_secnum) {
11873                 dtrace_dof_error(dof, "referenced section index is invalid");
11874                 return (NULL);
11875         }
11876
11877         if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
11878                 dtrace_dof_error(dof, "referenced section is not loadable");
11879                 return (NULL);
11880         }
11881
11882         if (type != DOF_SECT_NONE && type != sec->dofs_type) {
11883                 dtrace_dof_error(dof, "referenced section is the wrong type");
11884                 return (NULL);
11885         }
11886
11887         return (sec);
11888 }
11889
11890 static dtrace_probedesc_t *
11891 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
11892 {
11893         dof_probedesc_t *probe;
11894         dof_sec_t *strtab;
11895         uintptr_t daddr = (uintptr_t)dof;
11896         uintptr_t str;
11897         size_t size;
11898
11899         if (sec->dofs_type != DOF_SECT_PROBEDESC) {
11900                 dtrace_dof_error(dof, "invalid probe section");
11901                 return (NULL);
11902         }
11903
11904         if (sec->dofs_align != sizeof (dof_secidx_t)) {
11905                 dtrace_dof_error(dof, "bad alignment in probe description");
11906                 return (NULL);
11907         }
11908
11909         if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
11910                 dtrace_dof_error(dof, "truncated probe description");
11911                 return (NULL);
11912         }
11913
11914         probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
11915         strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
11916
11917         if (strtab == NULL)
11918                 return (NULL);
11919
11920         str = daddr + strtab->dofs_offset;
11921         size = strtab->dofs_size;
11922
11923         if (probe->dofp_provider >= strtab->dofs_size) {
11924                 dtrace_dof_error(dof, "corrupt probe provider");
11925                 return (NULL);
11926         }
11927
11928         (void) strncpy(desc->dtpd_provider,
11929             (char *)(str + probe->dofp_provider),
11930             MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
11931
11932         if (probe->dofp_mod >= strtab->dofs_size) {
11933                 dtrace_dof_error(dof, "corrupt probe module");
11934                 return (NULL);
11935         }
11936
11937         (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
11938             MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
11939
11940         if (probe->dofp_func >= strtab->dofs_size) {
11941                 dtrace_dof_error(dof, "corrupt probe function");
11942                 return (NULL);
11943         }
11944
11945         (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
11946             MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
11947
11948         if (probe->dofp_name >= strtab->dofs_size) {
11949                 dtrace_dof_error(dof, "corrupt probe name");
11950                 return (NULL);
11951         }
11952
11953         (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
11954             MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
11955
11956         return (desc);
11957 }
11958
11959 static dtrace_difo_t *
11960 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11961     cred_t *cr)
11962 {
11963         dtrace_difo_t *dp;
11964         size_t ttl = 0;
11965         dof_difohdr_t *dofd;
11966         uintptr_t daddr = (uintptr_t)dof;
11967         size_t max = dtrace_difo_maxsize;
11968         int i, l, n;
11969
11970         static const struct {
11971                 int section;
11972                 int bufoffs;
11973                 int lenoffs;
11974                 int entsize;
11975                 int align;
11976                 const char *msg;
11977         } difo[] = {
11978                 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
11979                 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
11980                 sizeof (dif_instr_t), "multiple DIF sections" },
11981
11982                 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
11983                 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
11984                 sizeof (uint64_t), "multiple integer tables" },
11985
11986                 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
11987                 offsetof(dtrace_difo_t, dtdo_strlen), 0,
11988                 sizeof (char), "multiple string tables" },
11989
11990                 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
11991                 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
11992                 sizeof (uint_t), "multiple variable tables" },
11993
11994                 { DOF_SECT_NONE, 0, 0, 0, 0, NULL }
11995         };
11996
11997         if (sec->dofs_type != DOF_SECT_DIFOHDR) {
11998                 dtrace_dof_error(dof, "invalid DIFO header section");
11999                 return (NULL);
12000         }
12001
12002         if (sec->dofs_align != sizeof (dof_secidx_t)) {
12003                 dtrace_dof_error(dof, "bad alignment in DIFO header");
12004                 return (NULL);
12005         }
12006
12007         if (sec->dofs_size < sizeof (dof_difohdr_t) ||
12008             sec->dofs_size % sizeof (dof_secidx_t)) {
12009                 dtrace_dof_error(dof, "bad size in DIFO header");
12010                 return (NULL);
12011         }
12012
12013         dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12014         n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
12015
12016         dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
12017         dp->dtdo_rtype = dofd->dofd_rtype;
12018
12019         for (l = 0; l < n; l++) {
12020                 dof_sec_t *subsec;
12021                 void **bufp;
12022                 uint32_t *lenp;
12023
12024                 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
12025                     dofd->dofd_links[l])) == NULL)
12026                         goto err; /* invalid section link */
12027
12028                 if (ttl + subsec->dofs_size > max) {
12029                         dtrace_dof_error(dof, "exceeds maximum size");
12030                         goto err;
12031                 }
12032
12033                 ttl += subsec->dofs_size;
12034
12035                 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
12036                         if (subsec->dofs_type != difo[i].section)
12037                                 continue;
12038
12039                         if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
12040                                 dtrace_dof_error(dof, "section not loaded");
12041                                 goto err;
12042                         }
12043
12044                         if (subsec->dofs_align != difo[i].align) {
12045                                 dtrace_dof_error(dof, "bad alignment");
12046                                 goto err;
12047                         }
12048
12049                         bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
12050                         lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
12051
12052                         if (*bufp != NULL) {
12053                                 dtrace_dof_error(dof, difo[i].msg);
12054                                 goto err;
12055                         }
12056
12057                         if (difo[i].entsize != subsec->dofs_entsize) {
12058                                 dtrace_dof_error(dof, "entry size mismatch");
12059                                 goto err;
12060                         }
12061
12062                         if (subsec->dofs_entsize != 0 &&
12063                             (subsec->dofs_size % subsec->dofs_entsize) != 0) {
12064                                 dtrace_dof_error(dof, "corrupt entry size");
12065                                 goto err;
12066                         }
12067
12068                         *lenp = subsec->dofs_size;
12069                         *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
12070                         bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12071                             *bufp, subsec->dofs_size);
12072
12073                         if (subsec->dofs_entsize != 0)
12074                                 *lenp /= subsec->dofs_entsize;
12075
12076                         break;
12077                 }
12078
12079                 /*
12080                  * If we encounter a loadable DIFO sub-section that is not
12081                  * known to us, assume this is a broken program and fail.
12082                  */
12083                 if (difo[i].section == DOF_SECT_NONE &&
12084                     (subsec->dofs_flags & DOF_SECF_LOAD)) {
12085                         dtrace_dof_error(dof, "unrecognized DIFO subsection");
12086                         goto err;
12087                 }
12088         }
12089
12090         if (dp->dtdo_buf == NULL) {
12091                 /*
12092                  * We can't have a DIF object without DIF text.
12093                  */
12094                 dtrace_dof_error(dof, "missing DIF text");
12095                 goto err;
12096         }
12097
12098         /*
12099          * Before we validate the DIF object, run through the variable table
12100          * looking for the strings -- if any of their size are under, we'll set
12101          * their size to be the system-wide default string size.  Note that
12102          * this should _not_ happen if the "strsize" option has been set --
12103          * in this case, the compiler should have set the size to reflect the
12104          * setting of the option.
12105          */
12106         for (i = 0; i < dp->dtdo_varlen; i++) {
12107                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
12108                 dtrace_diftype_t *t = &v->dtdv_type;
12109
12110                 if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12111                         continue;
12112
12113                 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12114                         t->dtdt_size = dtrace_strsize_default;
12115         }
12116
12117         if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12118                 goto err;
12119
12120         dtrace_difo_init(dp, vstate);
12121         return (dp);
12122
12123 err:
12124         kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12125         kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12126         kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12127         kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12128
12129         kmem_free(dp, sizeof (dtrace_difo_t));
12130         return (NULL);
12131 }
12132
12133 static dtrace_predicate_t *
12134 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12135     cred_t *cr)
12136 {
12137         dtrace_difo_t *dp;
12138
12139         if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12140                 return (NULL);
12141
12142         return (dtrace_predicate_create(dp));
12143 }
12144
12145 static dtrace_actdesc_t *
12146 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12147     cred_t *cr)
12148 {
12149         dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12150         dof_actdesc_t *desc;
12151         dof_sec_t *difosec;
12152         size_t offs;
12153         uintptr_t daddr = (uintptr_t)dof;
12154         uint64_t arg;
12155         dtrace_actkind_t kind;
12156
12157         if (sec->dofs_type != DOF_SECT_ACTDESC) {
12158                 dtrace_dof_error(dof, "invalid action section");
12159                 return (NULL);
12160         }
12161
12162         if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12163                 dtrace_dof_error(dof, "truncated action description");
12164                 return (NULL);
12165         }
12166
12167         if (sec->dofs_align != sizeof (uint64_t)) {
12168                 dtrace_dof_error(dof, "bad alignment in action description");
12169                 return (NULL);
12170         }
12171
12172         if (sec->dofs_size < sec->dofs_entsize) {
12173                 dtrace_dof_error(dof, "section entry size exceeds total size");
12174                 return (NULL);
12175         }
12176
12177         if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12178                 dtrace_dof_error(dof, "bad entry size in action description");
12179                 return (NULL);
12180         }
12181
12182         if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12183                 dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12184                 return (NULL);
12185         }
12186
12187         for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12188                 desc = (dof_actdesc_t *)(daddr +
12189                     (uintptr_t)sec->dofs_offset + offs);
12190                 kind = (dtrace_actkind_t)desc->dofa_kind;
12191
12192                 if (DTRACEACT_ISPRINTFLIKE(kind) &&
12193                     (kind != DTRACEACT_PRINTA ||
12194                     desc->dofa_strtab != DOF_SECIDX_NONE)) {
12195                         dof_sec_t *strtab;
12196                         char *str, *fmt;
12197                         uint64_t i;
12198
12199                         /*
12200                          * printf()-like actions must have a format string.
12201                          */
12202                         if ((strtab = dtrace_dof_sect(dof,
12203                             DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12204                                 goto err;
12205
12206                         str = (char *)((uintptr_t)dof +
12207                             (uintptr_t)strtab->dofs_offset);
12208
12209                         for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12210                                 if (str[i] == '\0')
12211                                         break;
12212                         }
12213
12214                         if (i >= strtab->dofs_size) {
12215                                 dtrace_dof_error(dof, "bogus format string");
12216                                 goto err;
12217                         }
12218
12219                         if (i == desc->dofa_arg) {
12220                                 dtrace_dof_error(dof, "empty format string");
12221                                 goto err;
12222                         }
12223
12224                         i -= desc->dofa_arg;
12225                         fmt = kmem_alloc(i + 1, KM_SLEEP);
12226                         bcopy(&str[desc->dofa_arg], fmt, i + 1);
12227                         arg = (uint64_t)(uintptr_t)fmt;
12228                 } else {
12229                         if (kind == DTRACEACT_PRINTA) {
12230                                 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12231                                 arg = 0;
12232                         } else {
12233                                 arg = desc->dofa_arg;
12234                         }
12235                 }
12236
12237                 act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12238                     desc->dofa_uarg, arg);
12239
12240                 if (last != NULL) {
12241                         last->dtad_next = act;
12242                 } else {
12243                         first = act;
12244                 }
12245
12246                 last = act;
12247
12248                 if (desc->dofa_difo == DOF_SECIDX_NONE)
12249                         continue;
12250
12251                 if ((difosec = dtrace_dof_sect(dof,
12252                     DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12253                         goto err;
12254
12255                 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12256
12257                 if (act->dtad_difo == NULL)
12258                         goto err;
12259         }
12260
12261         ASSERT(first != NULL);
12262         return (first);
12263
12264 err:
12265         for (act = first; act != NULL; act = next) {
12266                 next = act->dtad_next;
12267                 dtrace_actdesc_release(act, vstate);
12268         }
12269
12270         return (NULL);
12271 }
12272
12273 static dtrace_ecbdesc_t *
12274 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12275     cred_t *cr)
12276 {
12277         dtrace_ecbdesc_t *ep;
12278         dof_ecbdesc_t *ecb;
12279         dtrace_probedesc_t *desc;
12280         dtrace_predicate_t *pred = NULL;
12281
12282         if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12283                 dtrace_dof_error(dof, "truncated ECB description");
12284                 return (NULL);
12285         }
12286
12287         if (sec->dofs_align != sizeof (uint64_t)) {
12288                 dtrace_dof_error(dof, "bad alignment in ECB description");
12289                 return (NULL);
12290         }
12291
12292         ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12293         sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12294
12295         if (sec == NULL)
12296                 return (NULL);
12297
12298         ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12299         ep->dted_uarg = ecb->dofe_uarg;
12300         desc = &ep->dted_probe;
12301
12302         if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12303                 goto err;
12304
12305         if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12306                 if ((sec = dtrace_dof_sect(dof,
12307                     DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12308                         goto err;
12309
12310                 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12311                         goto err;
12312
12313                 ep->dted_pred.dtpdd_predicate = pred;
12314         }
12315
12316         if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12317                 if ((sec = dtrace_dof_sect(dof,
12318                     DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12319                         goto err;
12320
12321                 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12322
12323                 if (ep->dted_action == NULL)
12324                         goto err;
12325         }
12326
12327         return (ep);
12328
12329 err:
12330         if (pred != NULL)
12331                 dtrace_predicate_release(pred, vstate);
12332         kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12333         return (NULL);
12334 }
12335
12336 /*
12337  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12338  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12339  * site of any user SETX relocations to account for load object base address.
12340  * In the future, if we need other relocations, this function can be extended.
12341  */
12342 static int
12343 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12344 {
12345         uintptr_t daddr = (uintptr_t)dof;
12346         dof_relohdr_t *dofr =
12347             (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12348         dof_sec_t *ss, *rs, *ts;
12349         dof_relodesc_t *r;
12350         uint_t i, n;
12351
12352         if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12353             sec->dofs_align != sizeof (dof_secidx_t)) {
12354                 dtrace_dof_error(dof, "invalid relocation header");
12355                 return (-1);
12356         }
12357
12358         ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12359         rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12360         ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12361
12362         if (ss == NULL || rs == NULL || ts == NULL)
12363                 return (-1); /* dtrace_dof_error() has been called already */
12364
12365         if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12366             rs->dofs_align != sizeof (uint64_t)) {
12367                 dtrace_dof_error(dof, "invalid relocation section");
12368                 return (-1);
12369         }
12370
12371         r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12372         n = rs->dofs_size / rs->dofs_entsize;
12373
12374         for (i = 0; i < n; i++) {
12375                 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12376
12377                 switch (r->dofr_type) {
12378                 case DOF_RELO_NONE:
12379                         break;
12380                 case DOF_RELO_SETX:
12381                         if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12382                             sizeof (uint64_t) > ts->dofs_size) {
12383                                 dtrace_dof_error(dof, "bad relocation offset");
12384                                 return (-1);
12385                         }
12386
12387                         if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12388                                 dtrace_dof_error(dof, "misaligned setx relo");
12389                                 return (-1);
12390                         }
12391
12392                         *(uint64_t *)taddr += ubase;
12393                         break;
12394                 default:
12395                         dtrace_dof_error(dof, "invalid relocation type");
12396                         return (-1);
12397                 }
12398
12399                 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12400         }
12401
12402         return (0);
12403 }
12404
12405 /*
12406  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12407  * header:  it should be at the front of a memory region that is at least
12408  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12409  * size.  It need not be validated in any other way.
12410  */
12411 static int
12412 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12413     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12414 {
12415         uint64_t len = dof->dofh_loadsz, seclen;
12416         uintptr_t daddr = (uintptr_t)dof;
12417         dtrace_ecbdesc_t *ep;
12418         dtrace_enabling_t *enab;
12419         uint_t i;
12420
12421         ASSERT(MUTEX_HELD(&dtrace_lock));
12422         ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12423
12424         /*
12425          * Check the DOF header identification bytes.  In addition to checking
12426          * valid settings, we also verify that unused bits/bytes are zeroed so
12427          * we can use them later without fear of regressing existing binaries.
12428          */
12429         if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12430             DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12431                 dtrace_dof_error(dof, "DOF magic string mismatch");
12432                 return (-1);
12433         }
12434
12435         if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12436             dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12437                 dtrace_dof_error(dof, "DOF has invalid data model");
12438                 return (-1);
12439         }
12440
12441         if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12442                 dtrace_dof_error(dof, "DOF encoding mismatch");
12443                 return (-1);
12444         }
12445
12446         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12447             dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12448                 dtrace_dof_error(dof, "DOF version mismatch");
12449                 return (-1);
12450         }
12451
12452         if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12453                 dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12454                 return (-1);
12455         }
12456
12457         if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12458                 dtrace_dof_error(dof, "DOF uses too many integer registers");
12459                 return (-1);
12460         }
12461
12462         if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12463                 dtrace_dof_error(dof, "DOF uses too many tuple registers");
12464                 return (-1);
12465         }
12466
12467         for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12468                 if (dof->dofh_ident[i] != 0) {
12469                         dtrace_dof_error(dof, "DOF has invalid ident byte set");
12470                         return (-1);
12471                 }
12472         }
12473
12474         if (dof->dofh_flags & ~DOF_FL_VALID) {
12475                 dtrace_dof_error(dof, "DOF has invalid flag bits set");
12476                 return (-1);
12477         }
12478
12479         if (dof->dofh_secsize == 0) {
12480                 dtrace_dof_error(dof, "zero section header size");
12481                 return (-1);
12482         }
12483
12484         /*
12485          * Check that the section headers don't exceed the amount of DOF
12486          * data.  Note that we cast the section size and number of sections
12487          * to uint64_t's to prevent possible overflow in the multiplication.
12488          */
12489         seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12490
12491         if (dof->dofh_secoff > len || seclen > len ||
12492             dof->dofh_secoff + seclen > len) {
12493                 dtrace_dof_error(dof, "truncated section headers");
12494                 return (-1);
12495         }
12496
12497         if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12498                 dtrace_dof_error(dof, "misaligned section headers");
12499                 return (-1);
12500         }
12501
12502         if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12503                 dtrace_dof_error(dof, "misaligned section size");
12504                 return (-1);
12505         }
12506
12507         /*
12508          * Take an initial pass through the section headers to be sure that
12509          * the headers don't have stray offsets.  If the 'noprobes' flag is
12510          * set, do not permit sections relating to providers, probes, or args.
12511          */
12512         for (i = 0; i < dof->dofh_secnum; i++) {
12513                 dof_sec_t *sec = (dof_sec_t *)(daddr +
12514                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12515
12516                 if (noprobes) {
12517                         switch (sec->dofs_type) {
12518                         case DOF_SECT_PROVIDER:
12519                         case DOF_SECT_PROBES:
12520                         case DOF_SECT_PRARGS:
12521                         case DOF_SECT_PROFFS:
12522                                 dtrace_dof_error(dof, "illegal sections "
12523                                     "for enabling");
12524                                 return (-1);
12525                         }
12526                 }
12527
12528                 if (!(sec->dofs_flags & DOF_SECF_LOAD))
12529                         continue; /* just ignore non-loadable sections */
12530
12531                 if (sec->dofs_align & (sec->dofs_align - 1)) {
12532                         dtrace_dof_error(dof, "bad section alignment");
12533                         return (-1);
12534                 }
12535
12536                 if (sec->dofs_offset & (sec->dofs_align - 1)) {
12537                         dtrace_dof_error(dof, "misaligned section");
12538                         return (-1);
12539                 }
12540
12541                 if (sec->dofs_offset > len || sec->dofs_size > len ||
12542                     sec->dofs_offset + sec->dofs_size > len) {
12543                         dtrace_dof_error(dof, "corrupt section header");
12544                         return (-1);
12545                 }
12546
12547                 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12548                     sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12549                         dtrace_dof_error(dof, "non-terminating string table");
12550                         return (-1);
12551                 }
12552         }
12553
12554         /*
12555          * Take a second pass through the sections and locate and perform any
12556          * relocations that are present.  We do this after the first pass to
12557          * be sure that all sections have had their headers validated.
12558          */
12559         for (i = 0; i < dof->dofh_secnum; i++) {
12560                 dof_sec_t *sec = (dof_sec_t *)(daddr +
12561                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12562
12563                 if (!(sec->dofs_flags & DOF_SECF_LOAD))
12564                         continue; /* skip sections that are not loadable */
12565
12566                 switch (sec->dofs_type) {
12567                 case DOF_SECT_URELHDR:
12568                         if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12569                                 return (-1);
12570                         break;
12571                 }
12572         }
12573
12574         if ((enab = *enabp) == NULL)
12575                 enab = *enabp = dtrace_enabling_create(vstate);
12576
12577         for (i = 0; i < dof->dofh_secnum; i++) {
12578                 dof_sec_t *sec = (dof_sec_t *)(daddr +
12579                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12580
12581                 if (sec->dofs_type != DOF_SECT_ECBDESC)
12582                         continue;
12583
12584                 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12585                         dtrace_enabling_destroy(enab);
12586                         *enabp = NULL;
12587                         return (-1);
12588                 }
12589
12590                 dtrace_enabling_add(enab, ep);
12591         }
12592
12593         return (0);
12594 }
12595
12596 /*
12597  * Process DOF for any options.  This routine assumes that the DOF has been
12598  * at least processed by dtrace_dof_slurp().
12599  */
12600 static int
12601 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12602 {
12603         int i, rval;
12604         uint32_t entsize;
12605         size_t offs;
12606         dof_optdesc_t *desc;
12607
12608         for (i = 0; i < dof->dofh_secnum; i++) {
12609                 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12610                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12611
12612                 if (sec->dofs_type != DOF_SECT_OPTDESC)
12613                         continue;
12614
12615                 if (sec->dofs_align != sizeof (uint64_t)) {
12616                         dtrace_dof_error(dof, "bad alignment in "
12617                             "option description");
12618                         return (EINVAL);
12619                 }
12620
12621                 if ((entsize = sec->dofs_entsize) == 0) {
12622                         dtrace_dof_error(dof, "zeroed option entry size");
12623                         return (EINVAL);
12624                 }
12625
12626                 if (entsize < sizeof (dof_optdesc_t)) {
12627                         dtrace_dof_error(dof, "bad option entry size");
12628                         return (EINVAL);
12629                 }
12630
12631                 for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12632                         desc = (dof_optdesc_t *)((uintptr_t)dof +
12633                             (uintptr_t)sec->dofs_offset + offs);
12634
12635                         if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12636                                 dtrace_dof_error(dof, "non-zero option string");
12637                                 return (EINVAL);
12638                         }
12639
12640                         if (desc->dofo_value == DTRACEOPT_UNSET) {
12641                                 dtrace_dof_error(dof, "unset option");
12642                                 return (EINVAL);
12643                         }
12644
12645                         if ((rval = dtrace_state_option(state,
12646                             desc->dofo_option, desc->dofo_value)) != 0) {
12647                                 dtrace_dof_error(dof, "rejected option");
12648                                 return (rval);
12649                         }
12650                 }
12651         }
12652
12653         return (0);
12654 }
12655
12656 /*
12657  * DTrace Consumer State Functions
12658  */
12659 static int
12660 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12661 {
12662         size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
12663         void *base;
12664         uintptr_t limit;
12665         dtrace_dynvar_t *dvar, *next, *start;
12666         int i;
12667
12668         ASSERT(MUTEX_HELD(&dtrace_lock));
12669         ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12670
12671         bzero(dstate, sizeof (dtrace_dstate_t));
12672
12673         if ((dstate->dtds_chunksize = chunksize) == 0)
12674                 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12675
12676         if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12677                 size = min;
12678
12679         if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
12680                 return (ENOMEM);
12681
12682         dstate->dtds_size = size;
12683         dstate->dtds_base = base;
12684         dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12685         bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12686
12687         hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12688
12689         if (hashsize != 1 && (hashsize & 1))
12690                 hashsize--;
12691
12692         dstate->dtds_hashsize = hashsize;
12693         dstate->dtds_hash = dstate->dtds_base;
12694
12695         /*
12696          * Set all of our hash buckets to point to the single sink, and (if
12697          * it hasn't already been set), set the sink's hash value to be the
12698          * sink sentinel value.  The sink is needed for dynamic variable
12699          * lookups to know that they have iterated over an entire, valid hash
12700          * chain.
12701          */
12702         for (i = 0; i < hashsize; i++)
12703                 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12704
12705         if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12706                 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12707
12708         /*
12709          * Determine number of active CPUs.  Divide free list evenly among
12710          * active CPUs.
12711          */
12712         start = (dtrace_dynvar_t *)
12713             ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12714         limit = (uintptr_t)base + size;
12715
12716         maxper = (limit - (uintptr_t)start) / NCPU;
12717         maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12718
12719 #if !defined(sun)
12720         CPU_FOREACH(i) {
12721 #else
12722         for (i = 0; i < NCPU; i++) {
12723 #endif
12724                 dstate->dtds_percpu[i].dtdsc_free = dvar = start;
12725
12726                 /*
12727                  * If we don't even have enough chunks to make it once through
12728                  * NCPUs, we're just going to allocate everything to the first
12729                  * CPU.  And if we're on the last CPU, we're going to allocate
12730                  * whatever is left over.  In either case, we set the limit to
12731                  * be the limit of the dynamic variable space.
12732                  */
12733                 if (maxper == 0 || i == NCPU - 1) {
12734                         limit = (uintptr_t)base + size;
12735                         start = NULL;
12736                 } else {
12737                         limit = (uintptr_t)start + maxper;
12738                         start = (dtrace_dynvar_t *)limit;
12739                 }
12740
12741                 ASSERT(limit <= (uintptr_t)base + size);
12742
12743                 for (;;) {
12744                         next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12745                             dstate->dtds_chunksize);
12746
12747                         if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
12748                                 break;
12749
12750                         dvar->dtdv_next = next;
12751                         dvar = next;
12752                 }
12753
12754                 if (maxper == 0)
12755                         break;
12756         }
12757
12758         return (0);
12759 }
12760
12761 static void
12762 dtrace_dstate_fini(dtrace_dstate_t *dstate)
12763 {
12764         ASSERT(MUTEX_HELD(&cpu_lock));
12765
12766         if (dstate->dtds_base == NULL)
12767                 return;
12768
12769         kmem_free(dstate->dtds_base, dstate->dtds_size);
12770         kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
12771 }
12772
12773 static void
12774 dtrace_vstate_fini(dtrace_vstate_t *vstate)
12775 {
12776         /*
12777          * Logical XOR, where are you?
12778          */
12779         ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
12780
12781         if (vstate->dtvs_nglobals > 0) {
12782                 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
12783                     sizeof (dtrace_statvar_t *));
12784         }
12785
12786         if (vstate->dtvs_ntlocals > 0) {
12787                 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
12788                     sizeof (dtrace_difv_t));
12789         }
12790
12791         ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
12792
12793         if (vstate->dtvs_nlocals > 0) {
12794                 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
12795                     sizeof (dtrace_statvar_t *));
12796         }
12797 }
12798
12799 #if defined(sun)
12800 static void
12801 dtrace_state_clean(dtrace_state_t *state)
12802 {
12803         if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12804                 return;
12805
12806         dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12807         dtrace_speculation_clean(state);
12808 }
12809
12810 static void
12811 dtrace_state_deadman(dtrace_state_t *state)
12812 {
12813         hrtime_t now;
12814
12815         dtrace_sync();
12816
12817         now = dtrace_gethrtime();
12818
12819         if (state != dtrace_anon.dta_state &&
12820             now - state->dts_laststatus >= dtrace_deadman_user)
12821                 return;
12822
12823         /*
12824          * We must be sure that dts_alive never appears to be less than the
12825          * value upon entry to dtrace_state_deadman(), and because we lack a
12826          * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12827          * store INT64_MAX to it, followed by a memory barrier, followed by
12828          * the new value.  This assures that dts_alive never appears to be
12829          * less than its true value, regardless of the order in which the
12830          * stores to the underlying storage are issued.
12831          */
12832         state->dts_alive = INT64_MAX;
12833         dtrace_membar_producer();
12834         state->dts_alive = now;
12835 }
12836 #else
12837 static void
12838 dtrace_state_clean(void *arg)
12839 {
12840         dtrace_state_t *state = arg;
12841         dtrace_optval_t *opt = state->dts_options;
12842
12843         if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12844                 return;
12845
12846         dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12847         dtrace_speculation_clean(state);
12848
12849         callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
12850             dtrace_state_clean, state);
12851 }
12852
12853 static void
12854 dtrace_state_deadman(void *arg)
12855 {
12856         dtrace_state_t *state = arg;
12857         hrtime_t now;
12858
12859         dtrace_sync();
12860
12861         dtrace_debug_output();
12862
12863         now = dtrace_gethrtime();
12864
12865         if (state != dtrace_anon.dta_state &&
12866             now - state->dts_laststatus >= dtrace_deadman_user)
12867                 return;
12868
12869         /*
12870          * We must be sure that dts_alive never appears to be less than the
12871          * value upon entry to dtrace_state_deadman(), and because we lack a
12872          * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12873          * store INT64_MAX to it, followed by a memory barrier, followed by
12874          * the new value.  This assures that dts_alive never appears to be
12875          * less than its true value, regardless of the order in which the
12876          * stores to the underlying storage are issued.
12877          */
12878         state->dts_alive = INT64_MAX;
12879         dtrace_membar_producer();
12880         state->dts_alive = now;
12881
12882         callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
12883             dtrace_state_deadman, state);
12884 }
12885 #endif
12886
12887 static dtrace_state_t *
12888 #if defined(sun)
12889 dtrace_state_create(dev_t *devp, cred_t *cr)
12890 #else
12891 dtrace_state_create(struct cdev *dev)
12892 #endif
12893 {
12894 #if defined(sun)
12895         minor_t minor;
12896         major_t major;
12897 #else
12898         cred_t *cr = NULL;
12899         int m = 0;
12900 #endif
12901         char c[30];
12902         dtrace_state_t *state;
12903         dtrace_optval_t *opt;
12904         int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
12905
12906         ASSERT(MUTEX_HELD(&dtrace_lock));
12907         ASSERT(MUTEX_HELD(&cpu_lock));
12908
12909 #if defined(sun)
12910         minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
12911             VM_BESTFIT | VM_SLEEP);
12912
12913         if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
12914                 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12915                 return (NULL);
12916         }
12917
12918         state = ddi_get_soft_state(dtrace_softstate, minor);
12919 #else
12920         if (dev != NULL) {
12921                 cr = dev->si_cred;
12922                 m = dev2unit(dev);
12923                 }
12924
12925         /* Allocate memory for the state. */
12926         state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
12927 #endif
12928
12929         state->dts_epid = DTRACE_EPIDNONE + 1;
12930
12931         (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
12932 #if defined(sun)
12933         state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
12934             NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
12935
12936         if (devp != NULL) {
12937                 major = getemajor(*devp);
12938         } else {
12939                 major = ddi_driver_major(dtrace_devi);
12940         }
12941
12942         state->dts_dev = makedevice(major, minor);
12943
12944         if (devp != NULL)
12945                 *devp = state->dts_dev;
12946 #else
12947         state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
12948         state->dts_dev = dev;
12949 #endif
12950
12951         /*
12952          * We allocate NCPU buffers.  On the one hand, this can be quite
12953          * a bit of memory per instance (nearly 36K on a Starcat).  On the
12954          * other hand, it saves an additional memory reference in the probe
12955          * path.
12956          */
12957         state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
12958         state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
12959
12960 #if defined(sun)
12961         state->dts_cleaner = CYCLIC_NONE;
12962         state->dts_deadman = CYCLIC_NONE;
12963 #else
12964         callout_init(&state->dts_cleaner, CALLOUT_MPSAFE);
12965         callout_init(&state->dts_deadman, CALLOUT_MPSAFE);
12966 #endif
12967         state->dts_vstate.dtvs_state = state;
12968
12969         for (i = 0; i < DTRACEOPT_MAX; i++)
12970                 state->dts_options[i] = DTRACEOPT_UNSET;
12971
12972         /*
12973          * Set the default options.
12974          */
12975         opt = state->dts_options;
12976         opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
12977         opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
12978         opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
12979         opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
12980         opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
12981         opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
12982         opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
12983         opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
12984         opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
12985         opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
12986         opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
12987         opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
12988         opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
12989         opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
12990
12991         state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
12992
12993         /*
12994          * Depending on the user credentials, we set flag bits which alter probe
12995          * visibility or the amount of destructiveness allowed.  In the case of
12996          * actual anonymous tracing, or the possession of all privileges, all of
12997          * the normal checks are bypassed.
12998          */
12999         if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
13000                 state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
13001                 state->dts_cred.dcr_action = DTRACE_CRA_ALL;
13002         } else {
13003                 /*
13004                  * Set up the credentials for this instantiation.  We take a
13005                  * hold on the credential to prevent it from disappearing on
13006                  * us; this in turn prevents the zone_t referenced by this
13007                  * credential from disappearing.  This means that we can
13008                  * examine the credential and the zone from probe context.
13009                  */
13010                 crhold(cr);
13011                 state->dts_cred.dcr_cred = cr;
13012
13013                 /*
13014                  * CRA_PROC means "we have *some* privilege for dtrace" and
13015                  * unlocks the use of variables like pid, zonename, etc.
13016                  */
13017                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
13018                     PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13019                         state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
13020                 }
13021
13022                 /*
13023                  * dtrace_user allows use of syscall and profile providers.
13024                  * If the user also has proc_owner and/or proc_zone, we
13025                  * extend the scope to include additional visibility and
13026                  * destructive power.
13027                  */
13028                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
13029                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
13030                                 state->dts_cred.dcr_visible |=
13031                                     DTRACE_CRV_ALLPROC;
13032
13033                                 state->dts_cred.dcr_action |=
13034                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13035                         }
13036
13037                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
13038                                 state->dts_cred.dcr_visible |=
13039                                     DTRACE_CRV_ALLZONE;
13040
13041                                 state->dts_cred.dcr_action |=
13042                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13043                         }
13044
13045                         /*
13046                          * If we have all privs in whatever zone this is,
13047                          * we can do destructive things to processes which
13048                          * have altered credentials.
13049                          */
13050 #if defined(sun)
13051                         if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13052                             cr->cr_zone->zone_privset)) {
13053                                 state->dts_cred.dcr_action |=
13054                                     DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13055                         }
13056 #endif
13057                 }
13058
13059                 /*
13060                  * Holding the dtrace_kernel privilege also implies that
13061                  * the user has the dtrace_user privilege from a visibility
13062                  * perspective.  But without further privileges, some
13063                  * destructive actions are not available.
13064                  */
13065                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
13066                         /*
13067                          * Make all probes in all zones visible.  However,
13068                          * this doesn't mean that all actions become available
13069                          * to all zones.
13070                          */
13071                         state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
13072                             DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
13073
13074                         state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
13075                             DTRACE_CRA_PROC;
13076                         /*
13077                          * Holding proc_owner means that destructive actions
13078                          * for *this* zone are allowed.
13079                          */
13080                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13081                                 state->dts_cred.dcr_action |=
13082                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13083
13084                         /*
13085                          * Holding proc_zone means that destructive actions
13086                          * for this user/group ID in all zones is allowed.
13087                          */
13088                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13089                                 state->dts_cred.dcr_action |=
13090                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13091
13092 #if defined(sun)
13093                         /*
13094                          * If we have all privs in whatever zone this is,
13095                          * we can do destructive things to processes which
13096                          * have altered credentials.
13097                          */
13098                         if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13099                             cr->cr_zone->zone_privset)) {
13100                                 state->dts_cred.dcr_action |=
13101                                     DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13102                         }
13103 #endif
13104                 }
13105
13106                 /*
13107                  * Holding the dtrace_proc privilege gives control over fasttrap
13108                  * and pid providers.  We need to grant wider destructive
13109                  * privileges in the event that the user has proc_owner and/or
13110                  * proc_zone.
13111                  */
13112                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13113                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13114                                 state->dts_cred.dcr_action |=
13115                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13116
13117                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13118                                 state->dts_cred.dcr_action |=
13119                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13120                 }
13121         }
13122
13123         return (state);
13124 }
13125
13126 static int
13127 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13128 {
13129         dtrace_optval_t *opt = state->dts_options, size;
13130         processorid_t cpu = 0;;
13131         int flags = 0, rval;
13132
13133         ASSERT(MUTEX_HELD(&dtrace_lock));
13134         ASSERT(MUTEX_HELD(&cpu_lock));
13135         ASSERT(which < DTRACEOPT_MAX);
13136         ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13137             (state == dtrace_anon.dta_state &&
13138             state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13139
13140         if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13141                 return (0);
13142
13143         if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13144                 cpu = opt[DTRACEOPT_CPU];
13145
13146         if (which == DTRACEOPT_SPECSIZE)
13147                 flags |= DTRACEBUF_NOSWITCH;
13148
13149         if (which == DTRACEOPT_BUFSIZE) {
13150                 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13151                         flags |= DTRACEBUF_RING;
13152
13153                 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13154                         flags |= DTRACEBUF_FILL;
13155
13156                 if (state != dtrace_anon.dta_state ||
13157                     state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13158                         flags |= DTRACEBUF_INACTIVE;
13159         }
13160
13161         for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
13162                 /*
13163                  * The size must be 8-byte aligned.  If the size is not 8-byte
13164                  * aligned, drop it down by the difference.
13165                  */
13166                 if (size & (sizeof (uint64_t) - 1))
13167                         size -= size & (sizeof (uint64_t) - 1);
13168
13169                 if (size < state->dts_reserve) {
13170                         /*
13171                          * Buffers always must be large enough to accommodate
13172                          * their prereserved space.  We return E2BIG instead
13173                          * of ENOMEM in this case to allow for user-level
13174                          * software to differentiate the cases.
13175                          */
13176                         return (E2BIG);
13177                 }
13178
13179                 rval = dtrace_buffer_alloc(buf, size, flags, cpu);
13180
13181                 if (rval != ENOMEM) {
13182                         opt[which] = size;
13183                         return (rval);
13184                 }
13185
13186                 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13187                         return (rval);
13188         }
13189
13190         return (ENOMEM);
13191 }
13192
13193 static int
13194 dtrace_state_buffers(dtrace_state_t *state)
13195 {
13196         dtrace_speculation_t *spec = state->dts_speculations;
13197         int rval, i;
13198
13199         if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13200             DTRACEOPT_BUFSIZE)) != 0)
13201                 return (rval);
13202
13203         if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13204             DTRACEOPT_AGGSIZE)) != 0)
13205                 return (rval);
13206
13207         for (i = 0; i < state->dts_nspeculations; i++) {
13208                 if ((rval = dtrace_state_buffer(state,
13209                     spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13210                         return (rval);
13211         }
13212
13213         return (0);
13214 }
13215
13216 static void
13217 dtrace_state_prereserve(dtrace_state_t *state)
13218 {
13219         dtrace_ecb_t *ecb;
13220         dtrace_probe_t *probe;
13221
13222         state->dts_reserve = 0;
13223
13224         if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13225                 return;
13226
13227         /*
13228          * If our buffer policy is a "fill" buffer policy, we need to set the
13229          * prereserved space to be the space required by the END probes.
13230          */
13231         probe = dtrace_probes[dtrace_probeid_end - 1];
13232         ASSERT(probe != NULL);
13233
13234         for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13235                 if (ecb->dte_state != state)
13236                         continue;
13237
13238                 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13239         }
13240 }
13241
13242 static int
13243 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13244 {
13245         dtrace_optval_t *opt = state->dts_options, sz, nspec;
13246         dtrace_speculation_t *spec;
13247         dtrace_buffer_t *buf;
13248 #if defined(sun)
13249         cyc_handler_t hdlr;
13250         cyc_time_t when;
13251 #endif
13252         int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13253         dtrace_icookie_t cookie;
13254
13255         mutex_enter(&cpu_lock);
13256         mutex_enter(&dtrace_lock);
13257
13258         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13259                 rval = EBUSY;
13260                 goto out;
13261         }
13262
13263         /*
13264          * Before we can perform any checks, we must prime all of the
13265          * retained enablings that correspond to this state.
13266          */
13267         dtrace_enabling_prime(state);
13268
13269         if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13270                 rval = EACCES;
13271                 goto out;
13272         }
13273
13274         dtrace_state_prereserve(state);
13275
13276         /*
13277          * Now we want to do is try to allocate our speculations.
13278          * We do not automatically resize the number of speculations; if
13279          * this fails, we will fail the operation.
13280          */
13281         nspec = opt[DTRACEOPT_NSPEC];
13282         ASSERT(nspec != DTRACEOPT_UNSET);
13283
13284         if (nspec > INT_MAX) {
13285                 rval = ENOMEM;
13286                 goto out;
13287         }
13288
13289         spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
13290
13291         if (spec == NULL) {
13292                 rval = ENOMEM;
13293                 goto out;
13294         }
13295
13296         state->dts_speculations = spec;
13297         state->dts_nspeculations = (int)nspec;
13298
13299         for (i = 0; i < nspec; i++) {
13300                 if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
13301                         rval = ENOMEM;
13302                         goto err;
13303                 }
13304
13305                 spec[i].dtsp_buffer = buf;
13306         }
13307
13308         if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13309                 if (dtrace_anon.dta_state == NULL) {
13310                         rval = ENOENT;
13311                         goto out;
13312                 }
13313
13314                 if (state->dts_necbs != 0) {
13315                         rval = EALREADY;
13316                         goto out;
13317                 }
13318
13319                 state->dts_anon = dtrace_anon_grab();
13320                 ASSERT(state->dts_anon != NULL);
13321                 state = state->dts_anon;
13322
13323                 /*
13324                  * We want "grabanon" to be set in the grabbed state, so we'll
13325                  * copy that option value from the grabbing state into the
13326                  * grabbed state.
13327                  */
13328                 state->dts_options[DTRACEOPT_GRABANON] =
13329                     opt[DTRACEOPT_GRABANON];
13330
13331                 *cpu = dtrace_anon.dta_beganon;
13332
13333                 /*
13334                  * If the anonymous state is active (as it almost certainly
13335                  * is if the anonymous enabling ultimately matched anything),
13336                  * we don't allow any further option processing -- but we
13337                  * don't return failure.
13338                  */
13339                 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13340                         goto out;
13341         }
13342
13343         if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13344             opt[DTRACEOPT_AGGSIZE] != 0) {
13345                 if (state->dts_aggregations == NULL) {
13346                         /*
13347                          * We're not going to create an aggregation buffer
13348                          * because we don't have any ECBs that contain
13349                          * aggregations -- set this option to 0.
13350                          */
13351                         opt[DTRACEOPT_AGGSIZE] = 0;
13352                 } else {
13353                         /*
13354                          * If we have an aggregation buffer, we must also have
13355                          * a buffer to use as scratch.
13356                          */
13357                         if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13358                             opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13359                                 opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13360                         }
13361                 }
13362         }
13363
13364         if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13365             opt[DTRACEOPT_SPECSIZE] != 0) {
13366                 if (!state->dts_speculates) {
13367                         /*
13368                          * We're not going to create speculation buffers
13369                          * because we don't have any ECBs that actually
13370                          * speculate -- set the speculation size to 0.
13371                          */
13372                         opt[DTRACEOPT_SPECSIZE] = 0;
13373                 }
13374         }
13375
13376         /*
13377          * The bare minimum size for any buffer that we're actually going to
13378          * do anything to is sizeof (uint64_t).
13379          */
13380         sz = sizeof (uint64_t);
13381
13382         if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13383             (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13384             (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13385                 /*
13386                  * A buffer size has been explicitly set to 0 (or to a size
13387                  * that will be adjusted to 0) and we need the space -- we
13388                  * need to return failure.  We return ENOSPC to differentiate
13389                  * it from failing to allocate a buffer due to failure to meet
13390                  * the reserve (for which we return E2BIG).
13391                  */
13392                 rval = ENOSPC;
13393                 goto out;
13394         }
13395
13396         if ((rval = dtrace_state_buffers(state)) != 0)
13397                 goto err;
13398
13399         if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13400                 sz = dtrace_dstate_defsize;
13401
13402         do {
13403                 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13404
13405                 if (rval == 0)
13406                         break;
13407
13408                 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13409                         goto err;
13410         } while (sz >>= 1);
13411
13412         opt[DTRACEOPT_DYNVARSIZE] = sz;
13413
13414         if (rval != 0)
13415                 goto err;
13416
13417         if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13418                 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13419
13420         if (opt[DTRACEOPT_CLEANRATE] == 0)
13421                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13422
13423         if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13424                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13425
13426         if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13427                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13428
13429         state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13430 #if defined(sun)
13431         hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13432         hdlr.cyh_arg = state;
13433         hdlr.cyh_level = CY_LOW_LEVEL;
13434
13435         when.cyt_when = 0;
13436         when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13437
13438         state->dts_cleaner = cyclic_add(&hdlr, &when);
13439
13440         hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13441         hdlr.cyh_arg = state;
13442         hdlr.cyh_level = CY_LOW_LEVEL;
13443
13444         when.cyt_when = 0;
13445         when.cyt_interval = dtrace_deadman_interval;
13446
13447         state->dts_deadman = cyclic_add(&hdlr, &when);
13448 #else
13449         callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13450             dtrace_state_clean, state);
13451         callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13452             dtrace_state_deadman, state);
13453 #endif
13454
13455         state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13456
13457         /*
13458          * Now it's time to actually fire the BEGIN probe.  We need to disable
13459          * interrupts here both to record the CPU on which we fired the BEGIN
13460          * probe (the data from this CPU will be processed first at user
13461          * level) and to manually activate the buffer for this CPU.
13462          */
13463         cookie = dtrace_interrupt_disable();
13464         *cpu = curcpu;
13465         ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13466         state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13467
13468         dtrace_probe(dtrace_probeid_begin,
13469             (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13470         dtrace_interrupt_enable(cookie);
13471         /*
13472          * We may have had an exit action from a BEGIN probe; only change our
13473          * state to ACTIVE if we're still in WARMUP.
13474          */
13475         ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13476             state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13477
13478         if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13479                 state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13480
13481         /*
13482          * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13483          * want each CPU to transition its principal buffer out of the
13484          * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13485          * processing an ECB halfway down a probe's ECB chain; all CPUs will
13486          * atomically transition from processing none of a state's ECBs to
13487          * processing all of them.
13488          */
13489         dtrace_xcall(DTRACE_CPUALL,
13490             (dtrace_xcall_t)dtrace_buffer_activate, state);
13491         goto out;
13492
13493 err:
13494         dtrace_buffer_free(state->dts_buffer);
13495         dtrace_buffer_free(state->dts_aggbuffer);
13496
13497         if ((nspec = state->dts_nspeculations) == 0) {
13498                 ASSERT(state->dts_speculations == NULL);
13499                 goto out;
13500         }
13501
13502         spec = state->dts_speculations;
13503         ASSERT(spec != NULL);
13504
13505         for (i = 0; i < state->dts_nspeculations; i++) {
13506                 if ((buf = spec[i].dtsp_buffer) == NULL)
13507                         break;
13508
13509                 dtrace_buffer_free(buf);
13510                 kmem_free(buf, bufsize);
13511         }
13512
13513         kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13514         state->dts_nspeculations = 0;
13515         state->dts_speculations = NULL;
13516
13517 out:
13518         mutex_exit(&dtrace_lock);
13519         mutex_exit(&cpu_lock);
13520
13521         return (rval);
13522 }
13523
13524 static int
13525 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13526 {
13527         dtrace_icookie_t cookie;
13528
13529         ASSERT(MUTEX_HELD(&dtrace_lock));
13530
13531         if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13532             state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13533                 return (EINVAL);
13534
13535         /*
13536          * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13537          * to be sure that every CPU has seen it.  See below for the details
13538          * on why this is done.
13539          */
13540         state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13541         dtrace_sync();
13542
13543         /*
13544          * By this point, it is impossible for any CPU to be still processing
13545          * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13546          * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13547          * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13548          * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13549          * iff we're in the END probe.
13550          */
13551         state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13552         dtrace_sync();
13553         ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13554
13555         /*
13556          * Finally, we can release the reserve and call the END probe.  We
13557          * disable interrupts across calling the END probe to allow us to
13558          * return the CPU on which we actually called the END probe.  This
13559          * allows user-land to be sure that this CPU's principal buffer is
13560          * processed last.
13561          */
13562         state->dts_reserve = 0;
13563
13564         cookie = dtrace_interrupt_disable();
13565         *cpu = curcpu;
13566         dtrace_probe(dtrace_probeid_end,
13567             (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13568         dtrace_interrupt_enable(cookie);
13569
13570         state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13571         dtrace_sync();
13572
13573         return (0);
13574 }
13575
13576 static int
13577 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13578     dtrace_optval_t val)
13579 {
13580         ASSERT(MUTEX_HELD(&dtrace_lock));
13581
13582         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13583                 return (EBUSY);
13584
13585         if (option >= DTRACEOPT_MAX)
13586                 return (EINVAL);
13587
13588         if (option != DTRACEOPT_CPU && val < 0)
13589                 return (EINVAL);
13590
13591         switch (option) {
13592         case DTRACEOPT_DESTRUCTIVE:
13593                 if (dtrace_destructive_disallow)
13594                         return (EACCES);
13595
13596                 state->dts_cred.dcr_destructive = 1;
13597                 break;
13598
13599         case DTRACEOPT_BUFSIZE:
13600         case DTRACEOPT_DYNVARSIZE:
13601         case DTRACEOPT_AGGSIZE:
13602         case DTRACEOPT_SPECSIZE:
13603         case DTRACEOPT_STRSIZE:
13604                 if (val < 0)
13605                         return (EINVAL);
13606
13607                 if (val >= LONG_MAX) {
13608                         /*
13609                          * If this is an otherwise negative value, set it to
13610                          * the highest multiple of 128m less than LONG_MAX.
13611                          * Technically, we're adjusting the size without
13612                          * regard to the buffer resizing policy, but in fact,
13613                          * this has no effect -- if we set the buffer size to
13614                          * ~LONG_MAX and the buffer policy is ultimately set to
13615                          * be "manual", the buffer allocation is guaranteed to
13616                          * fail, if only because the allocation requires two
13617                          * buffers.  (We set the the size to the highest
13618                          * multiple of 128m because it ensures that the size
13619                          * will remain a multiple of a megabyte when
13620                          * repeatedly halved -- all the way down to 15m.)
13621                          */
13622                         val = LONG_MAX - (1 << 27) + 1;
13623                 }
13624         }
13625
13626         state->dts_options[option] = val;
13627
13628         return (0);
13629 }
13630
13631 static void
13632 dtrace_state_destroy(dtrace_state_t *state)
13633 {
13634         dtrace_ecb_t *ecb;
13635         dtrace_vstate_t *vstate = &state->dts_vstate;
13636 #if defined(sun)
13637         minor_t minor = getminor(state->dts_dev);
13638 #endif
13639         int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13640         dtrace_speculation_t *spec = state->dts_speculations;
13641         int nspec = state->dts_nspeculations;
13642         uint32_t match;
13643
13644         ASSERT(MUTEX_HELD(&dtrace_lock));
13645         ASSERT(MUTEX_HELD(&cpu_lock));
13646
13647         /*
13648          * First, retract any retained enablings for this state.
13649          */
13650         dtrace_enabling_retract(state);
13651         ASSERT(state->dts_nretained == 0);
13652
13653         if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13654             state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13655                 /*
13656                  * We have managed to come into dtrace_state_destroy() on a
13657                  * hot enabling -- almost certainly because of a disorderly
13658                  * shutdown of a consumer.  (That is, a consumer that is
13659                  * exiting without having called dtrace_stop().) In this case,
13660                  * we're going to set our activity to be KILLED, and then
13661                  * issue a sync to be sure that everyone is out of probe
13662                  * context before we start blowing away ECBs.
13663                  */
13664                 state->dts_activity = DTRACE_ACTIVITY_KILLED;
13665                 dtrace_sync();
13666         }
13667
13668         /*
13669          * Release the credential hold we took in dtrace_state_create().
13670          */
13671         if (state->dts_cred.dcr_cred != NULL)
13672                 crfree(state->dts_cred.dcr_cred);
13673
13674         /*
13675          * Now we can safely disable and destroy any enabled probes.  Because
13676          * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13677          * (especially if they're all enabled), we take two passes through the
13678          * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13679          * in the second we disable whatever is left over.
13680          */
13681         for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13682                 for (i = 0; i < state->dts_necbs; i++) {
13683                         if ((ecb = state->dts_ecbs[i]) == NULL)
13684                                 continue;
13685
13686                         if (match && ecb->dte_probe != NULL) {
13687                                 dtrace_probe_t *probe = ecb->dte_probe;
13688                                 dtrace_provider_t *prov = probe->dtpr_provider;
13689
13690                                 if (!(prov->dtpv_priv.dtpp_flags & match))
13691                                         continue;
13692                         }
13693
13694                         dtrace_ecb_disable(ecb);
13695                         dtrace_ecb_destroy(ecb);
13696                 }
13697
13698                 if (!match)
13699                         break;
13700         }
13701
13702         /*
13703          * Before we free the buffers, perform one more sync to assure that
13704          * every CPU is out of probe context.
13705          */
13706         dtrace_sync();
13707
13708         dtrace_buffer_free(state->dts_buffer);
13709         dtrace_buffer_free(state->dts_aggbuffer);
13710
13711         for (i = 0; i < nspec; i++)
13712                 dtrace_buffer_free(spec[i].dtsp_buffer);
13713
13714 #if defined(sun)
13715         if (state->dts_cleaner != CYCLIC_NONE)
13716                 cyclic_remove(state->dts_cleaner);
13717
13718         if (state->dts_deadman != CYCLIC_NONE)
13719                 cyclic_remove(state->dts_deadman);
13720 #else
13721         callout_stop(&state->dts_cleaner);
13722         callout_drain(&state->dts_cleaner);
13723         callout_stop(&state->dts_deadman);
13724         callout_drain(&state->dts_deadman);
13725 #endif
13726
13727         dtrace_dstate_fini(&vstate->dtvs_dynvars);
13728         dtrace_vstate_fini(vstate);
13729         if (state->dts_ecbs != NULL)
13730                 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
13731
13732         if (state->dts_aggregations != NULL) {
13733 #ifdef DEBUG
13734                 for (i = 0; i < state->dts_naggregations; i++)
13735                         ASSERT(state->dts_aggregations[i] == NULL);
13736 #endif
13737                 ASSERT(state->dts_naggregations > 0);
13738                 kmem_free(state->dts_aggregations,
13739                     state->dts_naggregations * sizeof (dtrace_aggregation_t *));
13740         }
13741
13742         kmem_free(state->dts_buffer, bufsize);
13743         kmem_free(state->dts_aggbuffer, bufsize);
13744
13745         for (i = 0; i < nspec; i++)
13746                 kmem_free(spec[i].dtsp_buffer, bufsize);
13747
13748         if (spec != NULL)
13749                 kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13750
13751         dtrace_format_destroy(state);
13752
13753         if (state->dts_aggid_arena != NULL) {
13754 #if defined(sun)
13755                 vmem_destroy(state->dts_aggid_arena);
13756 #else
13757                 delete_unrhdr(state->dts_aggid_arena);
13758 #endif
13759                 state->dts_aggid_arena = NULL;
13760         }
13761 #if defined(sun)
13762         ddi_soft_state_free(dtrace_softstate, minor);
13763         vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13764 #endif
13765 }
13766
13767 /*
13768  * DTrace Anonymous Enabling Functions
13769  */
13770 static dtrace_state_t *
13771 dtrace_anon_grab(void)
13772 {
13773         dtrace_state_t *state;
13774
13775         ASSERT(MUTEX_HELD(&dtrace_lock));
13776
13777         if ((state = dtrace_anon.dta_state) == NULL) {
13778                 ASSERT(dtrace_anon.dta_enabling == NULL);
13779                 return (NULL);
13780         }
13781
13782         ASSERT(dtrace_anon.dta_enabling != NULL);
13783         ASSERT(dtrace_retained != NULL);
13784
13785         dtrace_enabling_destroy(dtrace_anon.dta_enabling);
13786         dtrace_anon.dta_enabling = NULL;
13787         dtrace_anon.dta_state = NULL;
13788
13789         return (state);
13790 }
13791
13792 static void
13793 dtrace_anon_property(void)
13794 {
13795         int i, rv;
13796         dtrace_state_t *state;
13797         dof_hdr_t *dof;
13798         char c[32];             /* enough for "dof-data-" + digits */
13799
13800         ASSERT(MUTEX_HELD(&dtrace_lock));
13801         ASSERT(MUTEX_HELD(&cpu_lock));
13802
13803         for (i = 0; ; i++) {
13804                 (void) snprintf(c, sizeof (c), "dof-data-%d", i);
13805
13806                 dtrace_err_verbose = 1;
13807
13808                 if ((dof = dtrace_dof_property(c)) == NULL) {
13809                         dtrace_err_verbose = 0;
13810                         break;
13811                 }
13812
13813 #if defined(sun)
13814                 /*
13815                  * We want to create anonymous state, so we need to transition
13816                  * the kernel debugger to indicate that DTrace is active.  If
13817                  * this fails (e.g. because the debugger has modified text in
13818                  * some way), we won't continue with the processing.
13819                  */
13820                 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
13821                         cmn_err(CE_NOTE, "kernel debugger active; anonymous "
13822                             "enabling ignored.");
13823                         dtrace_dof_destroy(dof);
13824                         break;
13825                 }
13826 #endif
13827
13828                 /*
13829                  * If we haven't allocated an anonymous state, we'll do so now.
13830                  */
13831                 if ((state = dtrace_anon.dta_state) == NULL) {
13832 #if defined(sun)
13833                         state = dtrace_state_create(NULL, NULL);
13834 #else
13835                         state = dtrace_state_create(NULL);
13836 #endif
13837                         dtrace_anon.dta_state = state;
13838
13839                         if (state == NULL) {
13840                                 /*
13841                                  * This basically shouldn't happen:  the only
13842                                  * failure mode from dtrace_state_create() is a
13843                                  * failure of ddi_soft_state_zalloc() that
13844                                  * itself should never happen.  Still, the
13845                                  * interface allows for a failure mode, and
13846                                  * we want to fail as gracefully as possible:
13847                                  * we'll emit an error message and cease
13848                                  * processing anonymous state in this case.
13849                                  */
13850                                 cmn_err(CE_WARN, "failed to create "
13851                                     "anonymous state");
13852                                 dtrace_dof_destroy(dof);
13853                                 break;
13854                         }
13855                 }
13856
13857                 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
13858                     &dtrace_anon.dta_enabling, 0, B_TRUE);
13859
13860                 if (rv == 0)
13861                         rv = dtrace_dof_options(dof, state);
13862
13863                 dtrace_err_verbose = 0;
13864                 dtrace_dof_destroy(dof);
13865
13866                 if (rv != 0) {
13867                         /*
13868                          * This is malformed DOF; chuck any anonymous state
13869                          * that we created.
13870                          */
13871                         ASSERT(dtrace_anon.dta_enabling == NULL);
13872                         dtrace_state_destroy(state);
13873                         dtrace_anon.dta_state = NULL;
13874                         break;
13875                 }
13876
13877                 ASSERT(dtrace_anon.dta_enabling != NULL);
13878         }
13879
13880         if (dtrace_anon.dta_enabling != NULL) {
13881                 int rval;
13882
13883                 /*
13884                  * dtrace_enabling_retain() can only fail because we are
13885                  * trying to retain more enablings than are allowed -- but
13886                  * we only have one anonymous enabling, and we are guaranteed
13887                  * to be allowed at least one retained enabling; we assert
13888                  * that dtrace_enabling_retain() returns success.
13889                  */
13890                 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
13891                 ASSERT(rval == 0);
13892
13893                 dtrace_enabling_dump(dtrace_anon.dta_enabling);
13894         }
13895 }
13896
13897 /*
13898  * DTrace Helper Functions
13899  */
13900 static void
13901 dtrace_helper_trace(dtrace_helper_action_t *helper,
13902     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
13903 {
13904         uint32_t size, next, nnext, i;
13905         dtrace_helptrace_t *ent;
13906         uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
13907
13908         if (!dtrace_helptrace_enabled)
13909                 return;
13910
13911         ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
13912
13913         /*
13914          * What would a tracing framework be without its own tracing
13915          * framework?  (Well, a hell of a lot simpler, for starters...)
13916          */
13917         size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
13918             sizeof (uint64_t) - sizeof (uint64_t);
13919
13920         /*
13921          * Iterate until we can allocate a slot in the trace buffer.
13922          */
13923         do {
13924                 next = dtrace_helptrace_next;
13925
13926                 if (next + size < dtrace_helptrace_bufsize) {
13927                         nnext = next + size;
13928                 } else {
13929                         nnext = size;
13930                 }
13931         } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
13932
13933         /*
13934          * We have our slot; fill it in.
13935          */
13936         if (nnext == size)
13937                 next = 0;
13938
13939         ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
13940         ent->dtht_helper = helper;
13941         ent->dtht_where = where;
13942         ent->dtht_nlocals = vstate->dtvs_nlocals;
13943
13944         ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
13945             mstate->dtms_fltoffs : -1;
13946         ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
13947         ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
13948
13949         for (i = 0; i < vstate->dtvs_nlocals; i++) {
13950                 dtrace_statvar_t *svar;
13951
13952                 if ((svar = vstate->dtvs_locals[i]) == NULL)
13953                         continue;
13954
13955                 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
13956                 ent->dtht_locals[i] =
13957                     ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
13958         }
13959 }
13960
13961 static uint64_t
13962 dtrace_helper(int which, dtrace_mstate_t *mstate,
13963     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
13964 {
13965         uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
13966         uint64_t sarg0 = mstate->dtms_arg[0];
13967         uint64_t sarg1 = mstate->dtms_arg[1];
13968         uint64_t rval = 0;
13969         dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
13970         dtrace_helper_action_t *helper;
13971         dtrace_vstate_t *vstate;
13972         dtrace_difo_t *pred;
13973         int i, trace = dtrace_helptrace_enabled;
13974
13975         ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
13976
13977         if (helpers == NULL)
13978                 return (0);
13979
13980         if ((helper = helpers->dthps_actions[which]) == NULL)
13981                 return (0);
13982
13983         vstate = &helpers->dthps_vstate;
13984         mstate->dtms_arg[0] = arg0;
13985         mstate->dtms_arg[1] = arg1;
13986
13987         /*
13988          * Now iterate over each helper.  If its predicate evaluates to 'true',
13989          * we'll call the corresponding actions.  Note that the below calls
13990          * to dtrace_dif_emulate() may set faults in machine state.  This is
13991          * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
13992          * the stored DIF offset with its own (which is the desired behavior).
13993          * Also, note the calls to dtrace_dif_emulate() may allocate scratch
13994          * from machine state; this is okay, too.
13995          */
13996         for (; helper != NULL; helper = helper->dtha_next) {
13997                 if ((pred = helper->dtha_predicate) != NULL) {
13998                         if (trace)
13999                                 dtrace_helper_trace(helper, mstate, vstate, 0);
14000
14001                         if (!dtrace_dif_emulate(pred, mstate, vstate, state))
14002                                 goto next;
14003
14004                         if (*flags & CPU_DTRACE_FAULT)
14005                                 goto err;
14006                 }
14007
14008                 for (i = 0; i < helper->dtha_nactions; i++) {
14009                         if (trace)
14010                                 dtrace_helper_trace(helper,
14011                                     mstate, vstate, i + 1);
14012
14013                         rval = dtrace_dif_emulate(helper->dtha_actions[i],
14014                             mstate, vstate, state);
14015
14016                         if (*flags & CPU_DTRACE_FAULT)
14017                                 goto err;
14018                 }
14019
14020 next:
14021                 if (trace)
14022                         dtrace_helper_trace(helper, mstate, vstate,
14023                             DTRACE_HELPTRACE_NEXT);
14024         }
14025
14026         if (trace)
14027                 dtrace_helper_trace(helper, mstate, vstate,
14028                     DTRACE_HELPTRACE_DONE);
14029
14030         /*
14031          * Restore the arg0 that we saved upon entry.
14032          */
14033         mstate->dtms_arg[0] = sarg0;
14034         mstate->dtms_arg[1] = sarg1;
14035
14036         return (rval);
14037
14038 err:
14039         if (trace)
14040                 dtrace_helper_trace(helper, mstate, vstate,
14041                     DTRACE_HELPTRACE_ERR);
14042
14043         /*
14044          * Restore the arg0 that we saved upon entry.
14045          */
14046         mstate->dtms_arg[0] = sarg0;
14047         mstate->dtms_arg[1] = sarg1;
14048
14049         return (0);
14050 }
14051
14052 static void
14053 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
14054     dtrace_vstate_t *vstate)
14055 {
14056         int i;
14057
14058         if (helper->dtha_predicate != NULL)
14059                 dtrace_difo_release(helper->dtha_predicate, vstate);
14060
14061         for (i = 0; i < helper->dtha_nactions; i++) {
14062                 ASSERT(helper->dtha_actions[i] != NULL);
14063                 dtrace_difo_release(helper->dtha_actions[i], vstate);
14064         }
14065
14066         kmem_free(helper->dtha_actions,
14067             helper->dtha_nactions * sizeof (dtrace_difo_t *));
14068         kmem_free(helper, sizeof (dtrace_helper_action_t));
14069 }
14070
14071 static int
14072 dtrace_helper_destroygen(int gen)
14073 {
14074         proc_t *p = curproc;
14075         dtrace_helpers_t *help = p->p_dtrace_helpers;
14076         dtrace_vstate_t *vstate;
14077         int i;
14078
14079         ASSERT(MUTEX_HELD(&dtrace_lock));
14080
14081         if (help == NULL || gen > help->dthps_generation)
14082                 return (EINVAL);
14083
14084         vstate = &help->dthps_vstate;
14085
14086         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14087                 dtrace_helper_action_t *last = NULL, *h, *next;
14088
14089                 for (h = help->dthps_actions[i]; h != NULL; h = next) {
14090                         next = h->dtha_next;
14091
14092                         if (h->dtha_generation == gen) {
14093                                 if (last != NULL) {
14094                                         last->dtha_next = next;
14095                                 } else {
14096                                         help->dthps_actions[i] = next;
14097                                 }
14098
14099                                 dtrace_helper_action_destroy(h, vstate);
14100                         } else {
14101                                 last = h;
14102                         }
14103                 }
14104         }
14105
14106         /*
14107          * Interate until we've cleared out all helper providers with the
14108          * given generation number.
14109          */
14110         for (;;) {
14111                 dtrace_helper_provider_t *prov;
14112
14113                 /*
14114                  * Look for a helper provider with the right generation. We
14115                  * have to start back at the beginning of the list each time
14116                  * because we drop dtrace_lock. It's unlikely that we'll make
14117                  * more than two passes.
14118                  */
14119                 for (i = 0; i < help->dthps_nprovs; i++) {
14120                         prov = help->dthps_provs[i];
14121
14122                         if (prov->dthp_generation == gen)
14123                                 break;
14124                 }
14125
14126                 /*
14127                  * If there were no matches, we're done.
14128                  */
14129                 if (i == help->dthps_nprovs)
14130                         break;
14131
14132                 /*
14133                  * Move the last helper provider into this slot.
14134                  */
14135                 help->dthps_nprovs--;
14136                 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14137                 help->dthps_provs[help->dthps_nprovs] = NULL;
14138
14139                 mutex_exit(&dtrace_lock);
14140
14141                 /*
14142                  * If we have a meta provider, remove this helper provider.
14143                  */
14144                 mutex_enter(&dtrace_meta_lock);
14145                 if (dtrace_meta_pid != NULL) {
14146                         ASSERT(dtrace_deferred_pid == NULL);
14147                         dtrace_helper_provider_remove(&prov->dthp_prov,
14148                             p->p_pid);
14149                 }
14150                 mutex_exit(&dtrace_meta_lock);
14151
14152                 dtrace_helper_provider_destroy(prov);
14153
14154                 mutex_enter(&dtrace_lock);
14155         }
14156
14157         return (0);
14158 }
14159
14160 static int
14161 dtrace_helper_validate(dtrace_helper_action_t *helper)
14162 {
14163         int err = 0, i;
14164         dtrace_difo_t *dp;
14165
14166         if ((dp = helper->dtha_predicate) != NULL)
14167                 err += dtrace_difo_validate_helper(dp);
14168
14169         for (i = 0; i < helper->dtha_nactions; i++)
14170                 err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14171
14172         return (err == 0);
14173 }
14174
14175 static int
14176 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14177 {
14178         dtrace_helpers_t *help;
14179         dtrace_helper_action_t *helper, *last;
14180         dtrace_actdesc_t *act;
14181         dtrace_vstate_t *vstate;
14182         dtrace_predicate_t *pred;
14183         int count = 0, nactions = 0, i;
14184
14185         if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14186                 return (EINVAL);
14187
14188         help = curproc->p_dtrace_helpers;
14189         last = help->dthps_actions[which];
14190         vstate = &help->dthps_vstate;
14191
14192         for (count = 0; last != NULL; last = last->dtha_next) {
14193                 count++;
14194                 if (last->dtha_next == NULL)
14195                         break;
14196         }
14197
14198         /*
14199          * If we already have dtrace_helper_actions_max helper actions for this
14200          * helper action type, we'll refuse to add a new one.
14201          */
14202         if (count >= dtrace_helper_actions_max)
14203                 return (ENOSPC);
14204
14205         helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14206         helper->dtha_generation = help->dthps_generation;
14207
14208         if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14209                 ASSERT(pred->dtp_difo != NULL);
14210                 dtrace_difo_hold(pred->dtp_difo);
14211                 helper->dtha_predicate = pred->dtp_difo;
14212         }
14213
14214         for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14215                 if (act->dtad_kind != DTRACEACT_DIFEXPR)
14216                         goto err;
14217
14218                 if (act->dtad_difo == NULL)
14219                         goto err;
14220
14221                 nactions++;
14222         }
14223
14224         helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14225             (helper->dtha_nactions = nactions), KM_SLEEP);
14226
14227         for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14228                 dtrace_difo_hold(act->dtad_difo);
14229                 helper->dtha_actions[i++] = act->dtad_difo;
14230         }
14231
14232         if (!dtrace_helper_validate(helper))
14233                 goto err;
14234
14235         if (last == NULL) {
14236                 help->dthps_actions[which] = helper;
14237         } else {
14238                 last->dtha_next = helper;
14239         }
14240
14241         if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14242                 dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14243                 dtrace_helptrace_next = 0;
14244         }
14245
14246         return (0);
14247 err:
14248         dtrace_helper_action_destroy(helper, vstate);
14249         return (EINVAL);
14250 }
14251
14252 static void
14253 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14254     dof_helper_t *dofhp)
14255 {
14256         ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14257
14258         mutex_enter(&dtrace_meta_lock);
14259         mutex_enter(&dtrace_lock);
14260
14261         if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14262                 /*
14263                  * If the dtrace module is loaded but not attached, or if
14264                  * there aren't isn't a meta provider registered to deal with
14265                  * these provider descriptions, we need to postpone creating
14266                  * the actual providers until later.
14267                  */
14268
14269                 if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14270                     dtrace_deferred_pid != help) {
14271                         help->dthps_deferred = 1;
14272                         help->dthps_pid = p->p_pid;
14273                         help->dthps_next = dtrace_deferred_pid;
14274                         help->dthps_prev = NULL;
14275                         if (dtrace_deferred_pid != NULL)
14276                                 dtrace_deferred_pid->dthps_prev = help;
14277                         dtrace_deferred_pid = help;
14278                 }
14279
14280                 mutex_exit(&dtrace_lock);
14281
14282         } else if (dofhp != NULL) {
14283                 /*
14284                  * If the dtrace module is loaded and we have a particular
14285                  * helper provider description, pass that off to the
14286                  * meta provider.
14287                  */
14288
14289                 mutex_exit(&dtrace_lock);
14290
14291                 dtrace_helper_provide(dofhp, p->p_pid);
14292
14293         } else {
14294                 /*
14295                  * Otherwise, just pass all the helper provider descriptions
14296                  * off to the meta provider.
14297                  */
14298
14299                 int i;
14300                 mutex_exit(&dtrace_lock);
14301
14302                 for (i = 0; i < help->dthps_nprovs; i++) {
14303                         dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14304                             p->p_pid);
14305                 }
14306         }
14307
14308         mutex_exit(&dtrace_meta_lock);
14309 }
14310
14311 static int
14312 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14313 {
14314         dtrace_helpers_t *help;
14315         dtrace_helper_provider_t *hprov, **tmp_provs;
14316         uint_t tmp_maxprovs, i;
14317
14318         ASSERT(MUTEX_HELD(&dtrace_lock));
14319
14320         help = curproc->p_dtrace_helpers;
14321         ASSERT(help != NULL);
14322
14323         /*
14324          * If we already have dtrace_helper_providers_max helper providers,
14325          * we're refuse to add a new one.
14326          */
14327         if (help->dthps_nprovs >= dtrace_helper_providers_max)
14328                 return (ENOSPC);
14329
14330         /*
14331          * Check to make sure this isn't a duplicate.
14332          */
14333         for (i = 0; i < help->dthps_nprovs; i++) {
14334                 if (dofhp->dofhp_addr ==
14335                     help->dthps_provs[i]->dthp_prov.dofhp_addr)
14336                         return (EALREADY);
14337         }
14338
14339         hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14340         hprov->dthp_prov = *dofhp;
14341         hprov->dthp_ref = 1;
14342         hprov->dthp_generation = gen;
14343
14344         /*
14345          * Allocate a bigger table for helper providers if it's already full.
14346          */
14347         if (help->dthps_maxprovs == help->dthps_nprovs) {
14348                 tmp_maxprovs = help->dthps_maxprovs;
14349                 tmp_provs = help->dthps_provs;
14350
14351                 if (help->dthps_maxprovs == 0)
14352                         help->dthps_maxprovs = 2;
14353                 else
14354                         help->dthps_maxprovs *= 2;
14355                 if (help->dthps_maxprovs > dtrace_helper_providers_max)
14356                         help->dthps_maxprovs = dtrace_helper_providers_max;
14357
14358                 ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14359
14360                 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14361                     sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14362
14363                 if (tmp_provs != NULL) {
14364                         bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14365                             sizeof (dtrace_helper_provider_t *));
14366                         kmem_free(tmp_provs, tmp_maxprovs *
14367                             sizeof (dtrace_helper_provider_t *));
14368                 }
14369         }
14370
14371         help->dthps_provs[help->dthps_nprovs] = hprov;
14372         help->dthps_nprovs++;
14373
14374         return (0);
14375 }
14376
14377 static void
14378 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14379 {
14380         mutex_enter(&dtrace_lock);
14381
14382         if (--hprov->dthp_ref == 0) {
14383                 dof_hdr_t *dof;
14384                 mutex_exit(&dtrace_lock);
14385                 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14386                 dtrace_dof_destroy(dof);
14387                 kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14388         } else {
14389                 mutex_exit(&dtrace_lock);
14390         }
14391 }
14392
14393 static int
14394 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14395 {
14396         uintptr_t daddr = (uintptr_t)dof;
14397         dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14398         dof_provider_t *provider;
14399         dof_probe_t *probe;
14400         uint8_t *arg;
14401         char *strtab, *typestr;
14402         dof_stridx_t typeidx;
14403         size_t typesz;
14404         uint_t nprobes, j, k;
14405
14406         ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14407
14408         if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14409                 dtrace_dof_error(dof, "misaligned section offset");
14410                 return (-1);
14411         }
14412
14413         /*
14414          * The section needs to be large enough to contain the DOF provider
14415          * structure appropriate for the given version.
14416          */
14417         if (sec->dofs_size <
14418             ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14419             offsetof(dof_provider_t, dofpv_prenoffs) :
14420             sizeof (dof_provider_t))) {
14421                 dtrace_dof_error(dof, "provider section too small");
14422                 return (-1);
14423         }
14424
14425         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14426         str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14427         prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14428         arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14429         off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14430
14431         if (str_sec == NULL || prb_sec == NULL ||
14432             arg_sec == NULL || off_sec == NULL)
14433                 return (-1);
14434
14435         enoff_sec = NULL;
14436
14437         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14438             provider->dofpv_prenoffs != DOF_SECT_NONE &&
14439             (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14440             provider->dofpv_prenoffs)) == NULL)
14441                 return (-1);
14442
14443         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14444
14445         if (provider->dofpv_name >= str_sec->dofs_size ||
14446             strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14447                 dtrace_dof_error(dof, "invalid provider name");
14448                 return (-1);
14449         }
14450
14451         if (prb_sec->dofs_entsize == 0 ||
14452             prb_sec->dofs_entsize > prb_sec->dofs_size) {
14453                 dtrace_dof_error(dof, "invalid entry size");
14454                 return (-1);
14455         }
14456
14457         if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14458                 dtrace_dof_error(dof, "misaligned entry size");
14459                 return (-1);
14460         }
14461
14462         if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14463                 dtrace_dof_error(dof, "invalid entry size");
14464                 return (-1);
14465         }
14466
14467         if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14468                 dtrace_dof_error(dof, "misaligned section offset");
14469                 return (-1);
14470         }
14471
14472         if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14473                 dtrace_dof_error(dof, "invalid entry size");
14474                 return (-1);
14475         }
14476
14477         arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14478
14479         nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14480
14481         /*
14482          * Take a pass through the probes to check for errors.
14483          */
14484         for (j = 0; j < nprobes; j++) {
14485                 probe = (dof_probe_t *)(uintptr_t)(daddr +
14486                     prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14487
14488                 if (probe->dofpr_func >= str_sec->dofs_size) {
14489                         dtrace_dof_error(dof, "invalid function name");
14490                         return (-1);
14491                 }
14492
14493                 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14494                         dtrace_dof_error(dof, "function name too long");
14495                         return (-1);
14496                 }
14497
14498                 if (probe->dofpr_name >= str_sec->dofs_size ||
14499                     strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14500                         dtrace_dof_error(dof, "invalid probe name");
14501                         return (-1);
14502                 }
14503
14504                 /*
14505                  * The offset count must not wrap the index, and the offsets
14506                  * must also not overflow the section's data.
14507                  */
14508                 if (probe->dofpr_offidx + probe->dofpr_noffs <
14509                     probe->dofpr_offidx ||
14510                     (probe->dofpr_offidx + probe->dofpr_noffs) *
14511                     off_sec->dofs_entsize > off_sec->dofs_size) {
14512                         dtrace_dof_error(dof, "invalid probe offset");
14513                         return (-1);
14514                 }
14515
14516                 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14517                         /*
14518                          * If there's no is-enabled offset section, make sure
14519                          * there aren't any is-enabled offsets. Otherwise
14520                          * perform the same checks as for probe offsets
14521                          * (immediately above).
14522                          */
14523                         if (enoff_sec == NULL) {
14524                                 if (probe->dofpr_enoffidx != 0 ||
14525                                     probe->dofpr_nenoffs != 0) {
14526                                         dtrace_dof_error(dof, "is-enabled "
14527                                             "offsets with null section");
14528                                         return (-1);
14529                                 }
14530                         } else if (probe->dofpr_enoffidx +
14531                             probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14532                             (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14533                             enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14534                                 dtrace_dof_error(dof, "invalid is-enabled "
14535                                     "offset");
14536                                 return (-1);
14537                         }
14538
14539                         if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14540                                 dtrace_dof_error(dof, "zero probe and "
14541                                     "is-enabled offsets");
14542                                 return (-1);
14543                         }
14544                 } else if (probe->dofpr_noffs == 0) {
14545                         dtrace_dof_error(dof, "zero probe offsets");
14546                         return (-1);
14547                 }
14548
14549                 if (probe->dofpr_argidx + probe->dofpr_xargc <
14550                     probe->dofpr_argidx ||
14551                     (probe->dofpr_argidx + probe->dofpr_xargc) *
14552                     arg_sec->dofs_entsize > arg_sec->dofs_size) {
14553                         dtrace_dof_error(dof, "invalid args");
14554                         return (-1);
14555                 }
14556
14557                 typeidx = probe->dofpr_nargv;
14558                 typestr = strtab + probe->dofpr_nargv;
14559                 for (k = 0; k < probe->dofpr_nargc; k++) {
14560                         if (typeidx >= str_sec->dofs_size) {
14561                                 dtrace_dof_error(dof, "bad "
14562                                     "native argument type");
14563                                 return (-1);
14564                         }
14565
14566                         typesz = strlen(typestr) + 1;
14567                         if (typesz > DTRACE_ARGTYPELEN) {
14568                                 dtrace_dof_error(dof, "native "
14569                                     "argument type too long");
14570                                 return (-1);
14571                         }
14572                         typeidx += typesz;
14573                         typestr += typesz;
14574                 }
14575
14576                 typeidx = probe->dofpr_xargv;
14577                 typestr = strtab + probe->dofpr_xargv;
14578                 for (k = 0; k < probe->dofpr_xargc; k++) {
14579                         if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14580                                 dtrace_dof_error(dof, "bad "
14581                                     "native argument index");
14582                                 return (-1);
14583                         }
14584
14585                         if (typeidx >= str_sec->dofs_size) {
14586                                 dtrace_dof_error(dof, "bad "
14587                                     "translated argument type");
14588                                 return (-1);
14589                         }
14590
14591                         typesz = strlen(typestr) + 1;
14592                         if (typesz > DTRACE_ARGTYPELEN) {
14593                                 dtrace_dof_error(dof, "translated argument "
14594                                     "type too long");
14595                                 return (-1);
14596                         }
14597
14598                         typeidx += typesz;
14599                         typestr += typesz;
14600                 }
14601         }
14602
14603         return (0);
14604 }
14605
14606 static int
14607 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14608 {
14609         dtrace_helpers_t *help;
14610         dtrace_vstate_t *vstate;
14611         dtrace_enabling_t *enab = NULL;
14612         int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14613         uintptr_t daddr = (uintptr_t)dof;
14614
14615         ASSERT(MUTEX_HELD(&dtrace_lock));
14616
14617         if ((help = curproc->p_dtrace_helpers) == NULL)
14618                 help = dtrace_helpers_create(curproc);
14619
14620         vstate = &help->dthps_vstate;
14621
14622         if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14623             dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14624                 dtrace_dof_destroy(dof);
14625                 return (rv);
14626         }
14627
14628         /*
14629          * Look for helper providers and validate their descriptions.
14630          */
14631         if (dhp != NULL) {
14632                 for (i = 0; i < dof->dofh_secnum; i++) {
14633                         dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14634                             dof->dofh_secoff + i * dof->dofh_secsize);
14635
14636                         if (sec->dofs_type != DOF_SECT_PROVIDER)
14637                                 continue;
14638
14639                         if (dtrace_helper_provider_validate(dof, sec) != 0) {
14640                                 dtrace_enabling_destroy(enab);
14641                                 dtrace_dof_destroy(dof);
14642                                 return (-1);
14643                         }
14644
14645                         nprovs++;
14646                 }
14647         }
14648
14649         /*
14650          * Now we need to walk through the ECB descriptions in the enabling.
14651          */
14652         for (i = 0; i < enab->dten_ndesc; i++) {
14653                 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14654                 dtrace_probedesc_t *desc = &ep->dted_probe;
14655
14656                 if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14657                         continue;
14658
14659                 if (strcmp(desc->dtpd_mod, "helper") != 0)
14660                         continue;
14661
14662                 if (strcmp(desc->dtpd_func, "ustack") != 0)
14663                         continue;
14664
14665                 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14666                     ep)) != 0) {
14667                         /*
14668                          * Adding this helper action failed -- we are now going
14669                          * to rip out the entire generation and return failure.
14670                          */
14671                         (void) dtrace_helper_destroygen(help->dthps_generation);
14672                         dtrace_enabling_destroy(enab);
14673                         dtrace_dof_destroy(dof);
14674                         return (-1);
14675                 }
14676
14677                 nhelpers++;
14678         }
14679
14680         if (nhelpers < enab->dten_ndesc)
14681                 dtrace_dof_error(dof, "unmatched helpers");
14682
14683         gen = help->dthps_generation++;
14684         dtrace_enabling_destroy(enab);
14685
14686         if (dhp != NULL && nprovs > 0) {
14687                 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14688                 if (dtrace_helper_provider_add(dhp, gen) == 0) {
14689                         mutex_exit(&dtrace_lock);
14690                         dtrace_helper_provider_register(curproc, help, dhp);
14691                         mutex_enter(&dtrace_lock);
14692
14693                         destroy = 0;
14694                 }
14695         }
14696
14697         if (destroy)
14698                 dtrace_dof_destroy(dof);
14699
14700         return (gen);
14701 }
14702
14703 static dtrace_helpers_t *
14704 dtrace_helpers_create(proc_t *p)
14705 {
14706         dtrace_helpers_t *help;
14707
14708         ASSERT(MUTEX_HELD(&dtrace_lock));
14709         ASSERT(p->p_dtrace_helpers == NULL);
14710
14711         help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14712         help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14713             DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14714
14715         p->p_dtrace_helpers = help;
14716         dtrace_helpers++;
14717
14718         return (help);
14719 }
14720
14721 #if defined(sun)
14722 static
14723 #endif
14724 void
14725 dtrace_helpers_destroy(proc_t *p)
14726 {
14727         dtrace_helpers_t *help;
14728         dtrace_vstate_t *vstate;
14729 #if defined(sun)
14730         proc_t *p = curproc;
14731 #endif
14732         int i;
14733
14734         mutex_enter(&dtrace_lock);
14735
14736         ASSERT(p->p_dtrace_helpers != NULL);
14737         ASSERT(dtrace_helpers > 0);
14738
14739         help = p->p_dtrace_helpers;
14740         vstate = &help->dthps_vstate;
14741
14742         /*
14743          * We're now going to lose the help from this process.
14744          */
14745         p->p_dtrace_helpers = NULL;
14746         dtrace_sync();
14747
14748         /*
14749          * Destory the helper actions.
14750          */
14751         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14752                 dtrace_helper_action_t *h, *next;
14753
14754                 for (h = help->dthps_actions[i]; h != NULL; h = next) {
14755                         next = h->dtha_next;
14756                         dtrace_helper_action_destroy(h, vstate);
14757                         h = next;
14758                 }
14759         }
14760
14761         mutex_exit(&dtrace_lock);
14762
14763         /*
14764          * Destroy the helper providers.
14765          */
14766         if (help->dthps_maxprovs > 0) {
14767                 mutex_enter(&dtrace_meta_lock);
14768                 if (dtrace_meta_pid != NULL) {
14769                         ASSERT(dtrace_deferred_pid == NULL);
14770
14771                         for (i = 0; i < help->dthps_nprovs; i++) {
14772                                 dtrace_helper_provider_remove(
14773                                     &help->dthps_provs[i]->dthp_prov, p->p_pid);
14774                         }
14775                 } else {
14776                         mutex_enter(&dtrace_lock);
14777                         ASSERT(help->dthps_deferred == 0 ||
14778                             help->dthps_next != NULL ||
14779                             help->dthps_prev != NULL ||
14780                             help == dtrace_deferred_pid);
14781
14782                         /*
14783                          * Remove the helper from the deferred list.
14784                          */
14785                         if (help->dthps_next != NULL)
14786                                 help->dthps_next->dthps_prev = help->dthps_prev;
14787                         if (help->dthps_prev != NULL)
14788                                 help->dthps_prev->dthps_next = help->dthps_next;
14789                         if (dtrace_deferred_pid == help) {
14790                                 dtrace_deferred_pid = help->dthps_next;
14791                                 ASSERT(help->dthps_prev == NULL);
14792                         }
14793
14794                         mutex_exit(&dtrace_lock);
14795                 }
14796
14797                 mutex_exit(&dtrace_meta_lock);
14798
14799                 for (i = 0; i < help->dthps_nprovs; i++) {
14800                         dtrace_helper_provider_destroy(help->dthps_provs[i]);
14801                 }
14802
14803                 kmem_free(help->dthps_provs, help->dthps_maxprovs *
14804                     sizeof (dtrace_helper_provider_t *));
14805         }
14806
14807         mutex_enter(&dtrace_lock);
14808
14809         dtrace_vstate_fini(&help->dthps_vstate);
14810         kmem_free(help->dthps_actions,
14811             sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
14812         kmem_free(help, sizeof (dtrace_helpers_t));
14813
14814         --dtrace_helpers;
14815         mutex_exit(&dtrace_lock);
14816 }
14817
14818 #if defined(sun)
14819 static
14820 #endif
14821 void
14822 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
14823 {
14824         dtrace_helpers_t *help, *newhelp;
14825         dtrace_helper_action_t *helper, *new, *last;
14826         dtrace_difo_t *dp;
14827         dtrace_vstate_t *vstate;
14828         int i, j, sz, hasprovs = 0;
14829
14830         mutex_enter(&dtrace_lock);
14831         ASSERT(from->p_dtrace_helpers != NULL);
14832         ASSERT(dtrace_helpers > 0);
14833
14834         help = from->p_dtrace_helpers;
14835         newhelp = dtrace_helpers_create(to);
14836         ASSERT(to->p_dtrace_helpers != NULL);
14837
14838         newhelp->dthps_generation = help->dthps_generation;
14839         vstate = &newhelp->dthps_vstate;
14840
14841         /*
14842          * Duplicate the helper actions.
14843          */
14844         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14845                 if ((helper = help->dthps_actions[i]) == NULL)
14846                         continue;
14847
14848                 for (last = NULL; helper != NULL; helper = helper->dtha_next) {
14849                         new = kmem_zalloc(sizeof (dtrace_helper_action_t),
14850                             KM_SLEEP);
14851                         new->dtha_generation = helper->dtha_generation;
14852
14853                         if ((dp = helper->dtha_predicate) != NULL) {
14854                                 dp = dtrace_difo_duplicate(dp, vstate);
14855                                 new->dtha_predicate = dp;
14856                         }
14857
14858                         new->dtha_nactions = helper->dtha_nactions;
14859                         sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
14860                         new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
14861
14862                         for (j = 0; j < new->dtha_nactions; j++) {
14863                                 dtrace_difo_t *dp = helper->dtha_actions[j];
14864
14865                                 ASSERT(dp != NULL);
14866                                 dp = dtrace_difo_duplicate(dp, vstate);
14867                                 new->dtha_actions[j] = dp;
14868                         }
14869
14870                         if (last != NULL) {
14871                                 last->dtha_next = new;
14872                         } else {
14873                                 newhelp->dthps_actions[i] = new;
14874                         }
14875
14876                         last = new;
14877                 }
14878         }
14879
14880         /*
14881          * Duplicate the helper providers and register them with the
14882          * DTrace framework.
14883          */
14884         if (help->dthps_nprovs > 0) {
14885                 newhelp->dthps_nprovs = help->dthps_nprovs;
14886                 newhelp->dthps_maxprovs = help->dthps_nprovs;
14887                 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
14888                     sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14889                 for (i = 0; i < newhelp->dthps_nprovs; i++) {
14890                         newhelp->dthps_provs[i] = help->dthps_provs[i];
14891                         newhelp->dthps_provs[i]->dthp_ref++;
14892                 }
14893
14894                 hasprovs = 1;
14895         }
14896
14897         mutex_exit(&dtrace_lock);
14898
14899         if (hasprovs)
14900                 dtrace_helper_provider_register(to, newhelp, NULL);
14901 }
14902
14903 #if defined(sun)
14904 /*
14905  * DTrace Hook Functions
14906  */
14907 static void
14908 dtrace_module_loaded(modctl_t *ctl)
14909 {
14910         dtrace_provider_t *prv;
14911
14912         mutex_enter(&dtrace_provider_lock);
14913         mutex_enter(&mod_lock);
14914
14915         ASSERT(ctl->mod_busy);
14916
14917         /*
14918          * We're going to call each providers per-module provide operation
14919          * specifying only this module.
14920          */
14921         for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
14922                 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
14923
14924         mutex_exit(&mod_lock);
14925         mutex_exit(&dtrace_provider_lock);
14926
14927         /*
14928          * If we have any retained enablings, we need to match against them.
14929          * Enabling probes requires that cpu_lock be held, and we cannot hold
14930          * cpu_lock here -- it is legal for cpu_lock to be held when loading a
14931          * module.  (In particular, this happens when loading scheduling
14932          * classes.)  So if we have any retained enablings, we need to dispatch
14933          * our task queue to do the match for us.
14934          */
14935         mutex_enter(&dtrace_lock);
14936
14937         if (dtrace_retained == NULL) {
14938                 mutex_exit(&dtrace_lock);
14939                 return;
14940         }
14941
14942         (void) taskq_dispatch(dtrace_taskq,
14943             (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
14944
14945         mutex_exit(&dtrace_lock);
14946
14947         /*
14948          * And now, for a little heuristic sleaze:  in general, we want to
14949          * match modules as soon as they load.  However, we cannot guarantee
14950          * this, because it would lead us to the lock ordering violation
14951          * outlined above.  The common case, of course, is that cpu_lock is
14952          * _not_ held -- so we delay here for a clock tick, hoping that that's
14953          * long enough for the task queue to do its work.  If it's not, it's
14954          * not a serious problem -- it just means that the module that we
14955          * just loaded may not be immediately instrumentable.
14956          */
14957         delay(1);
14958 }
14959
14960 static void
14961 dtrace_module_unloaded(modctl_t *ctl)
14962 {
14963         dtrace_probe_t template, *probe, *first, *next;
14964         dtrace_provider_t *prov;
14965
14966         template.dtpr_mod = ctl->mod_modname;
14967
14968         mutex_enter(&dtrace_provider_lock);
14969         mutex_enter(&mod_lock);
14970         mutex_enter(&dtrace_lock);
14971
14972         if (dtrace_bymod == NULL) {
14973                 /*
14974                  * The DTrace module is loaded (obviously) but not attached;
14975                  * we don't have any work to do.
14976                  */
14977                 mutex_exit(&dtrace_provider_lock);
14978                 mutex_exit(&mod_lock);
14979                 mutex_exit(&dtrace_lock);
14980                 return;
14981         }
14982
14983         for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
14984             probe != NULL; probe = probe->dtpr_nextmod) {
14985                 if (probe->dtpr_ecb != NULL) {
14986                         mutex_exit(&dtrace_provider_lock);
14987                         mutex_exit(&mod_lock);
14988                         mutex_exit(&dtrace_lock);
14989
14990                         /*
14991                          * This shouldn't _actually_ be possible -- we're
14992                          * unloading a module that has an enabled probe in it.
14993                          * (It's normally up to the provider to make sure that
14994                          * this can't happen.)  However, because dtps_enable()
14995                          * doesn't have a failure mode, there can be an
14996                          * enable/unload race.  Upshot:  we don't want to
14997                          * assert, but we're not going to disable the
14998                          * probe, either.
14999                          */
15000                         if (dtrace_err_verbose) {
15001                                 cmn_err(CE_WARN, "unloaded module '%s' had "
15002                                     "enabled probes", ctl->mod_modname);
15003                         }
15004
15005                         return;
15006                 }
15007         }
15008
15009         probe = first;
15010
15011         for (first = NULL; probe != NULL; probe = next) {
15012                 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
15013
15014                 dtrace_probes[probe->dtpr_id - 1] = NULL;
15015
15016                 next = probe->dtpr_nextmod;
15017                 dtrace_hash_remove(dtrace_bymod, probe);
15018                 dtrace_hash_remove(dtrace_byfunc, probe);
15019                 dtrace_hash_remove(dtrace_byname, probe);
15020
15021                 if (first == NULL) {
15022                         first = probe;
15023                         probe->dtpr_nextmod = NULL;
15024                 } else {
15025                         probe->dtpr_nextmod = first;
15026                         first = probe;
15027                 }
15028         }
15029
15030         /*
15031          * We've removed all of the module's probes from the hash chains and
15032          * from the probe array.  Now issue a dtrace_sync() to be sure that
15033          * everyone has cleared out from any probe array processing.
15034          */
15035         dtrace_sync();
15036
15037         for (probe = first; probe != NULL; probe = first) {
15038                 first = probe->dtpr_nextmod;
15039                 prov = probe->dtpr_provider;
15040                 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15041                     probe->dtpr_arg);
15042                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15043                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15044                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15045                 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15046                 kmem_free(probe, sizeof (dtrace_probe_t));
15047         }
15048
15049         mutex_exit(&dtrace_lock);
15050         mutex_exit(&mod_lock);
15051         mutex_exit(&dtrace_provider_lock);
15052 }
15053
15054 static void
15055 dtrace_suspend(void)
15056 {
15057         dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15058 }
15059
15060 static void
15061 dtrace_resume(void)
15062 {
15063         dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
15064 }
15065 #endif
15066
15067 static int
15068 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
15069 {
15070         ASSERT(MUTEX_HELD(&cpu_lock));
15071         mutex_enter(&dtrace_lock);
15072
15073         switch (what) {
15074         case CPU_CONFIG: {
15075                 dtrace_state_t *state;
15076                 dtrace_optval_t *opt, rs, c;
15077
15078                 /*
15079                  * For now, we only allocate a new buffer for anonymous state.
15080                  */
15081                 if ((state = dtrace_anon.dta_state) == NULL)
15082                         break;
15083
15084                 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
15085                         break;
15086
15087                 opt = state->dts_options;
15088                 c = opt[DTRACEOPT_CPU];
15089
15090                 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
15091                         break;
15092
15093                 /*
15094                  * Regardless of what the actual policy is, we're going to
15095                  * temporarily set our resize policy to be manual.  We're
15096                  * also going to temporarily set our CPU option to denote
15097                  * the newly configured CPU.
15098                  */
15099                 rs = opt[DTRACEOPT_BUFRESIZE];
15100                 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15101                 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15102
15103                 (void) dtrace_state_buffers(state);
15104
15105                 opt[DTRACEOPT_BUFRESIZE] = rs;
15106                 opt[DTRACEOPT_CPU] = c;
15107
15108                 break;
15109         }
15110
15111         case CPU_UNCONFIG:
15112                 /*
15113                  * We don't free the buffer in the CPU_UNCONFIG case.  (The
15114                  * buffer will be freed when the consumer exits.)
15115                  */
15116                 break;
15117
15118         default:
15119                 break;
15120         }
15121
15122         mutex_exit(&dtrace_lock);
15123         return (0);
15124 }
15125
15126 #if defined(sun)
15127 static void
15128 dtrace_cpu_setup_initial(processorid_t cpu)
15129 {
15130         (void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15131 }
15132 #endif
15133
15134 static void
15135 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15136 {
15137         if (dtrace_toxranges >= dtrace_toxranges_max) {
15138                 int osize, nsize;
15139                 dtrace_toxrange_t *range;
15140
15141                 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15142
15143                 if (osize == 0) {
15144                         ASSERT(dtrace_toxrange == NULL);
15145                         ASSERT(dtrace_toxranges_max == 0);
15146                         dtrace_toxranges_max = 1;
15147                 } else {
15148                         dtrace_toxranges_max <<= 1;
15149                 }
15150
15151                 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15152                 range = kmem_zalloc(nsize, KM_SLEEP);
15153
15154                 if (dtrace_toxrange != NULL) {
15155                         ASSERT(osize != 0);
15156                         bcopy(dtrace_toxrange, range, osize);
15157                         kmem_free(dtrace_toxrange, osize);
15158                 }
15159
15160                 dtrace_toxrange = range;
15161         }
15162
15163         ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
15164         ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
15165
15166         dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15167         dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15168         dtrace_toxranges++;
15169 }
15170
15171 /*
15172  * DTrace Driver Cookbook Functions
15173  */
15174 #if defined(sun)
15175 /*ARGSUSED*/
15176 static int
15177 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15178 {
15179         dtrace_provider_id_t id;
15180         dtrace_state_t *state = NULL;
15181         dtrace_enabling_t *enab;
15182
15183         mutex_enter(&cpu_lock);
15184         mutex_enter(&dtrace_provider_lock);
15185         mutex_enter(&dtrace_lock);
15186
15187         if (ddi_soft_state_init(&dtrace_softstate,
15188             sizeof (dtrace_state_t), 0) != 0) {
15189                 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15190                 mutex_exit(&cpu_lock);
15191                 mutex_exit(&dtrace_provider_lock);
15192                 mutex_exit(&dtrace_lock);
15193                 return (DDI_FAILURE);
15194         }
15195
15196         if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15197             DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15198             ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15199             DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15200                 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15201                 ddi_remove_minor_node(devi, NULL);
15202                 ddi_soft_state_fini(&dtrace_softstate);
15203                 mutex_exit(&cpu_lock);
15204                 mutex_exit(&dtrace_provider_lock);
15205                 mutex_exit(&dtrace_lock);
15206                 return (DDI_FAILURE);
15207         }
15208
15209         ddi_report_dev(devi);
15210         dtrace_devi = devi;
15211
15212         dtrace_modload = dtrace_module_loaded;
15213         dtrace_modunload = dtrace_module_unloaded;
15214         dtrace_cpu_init = dtrace_cpu_setup_initial;
15215         dtrace_helpers_cleanup = dtrace_helpers_destroy;
15216         dtrace_helpers_fork = dtrace_helpers_duplicate;
15217         dtrace_cpustart_init = dtrace_suspend;
15218         dtrace_cpustart_fini = dtrace_resume;
15219         dtrace_debugger_init = dtrace_suspend;
15220         dtrace_debugger_fini = dtrace_resume;
15221
15222         register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15223
15224         ASSERT(MUTEX_HELD(&cpu_lock));
15225
15226         dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15227             NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15228         dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15229             UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15230             VM_SLEEP | VMC_IDENTIFIER);
15231         dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15232             1, INT_MAX, 0);
15233
15234         dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15235             sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15236             NULL, NULL, NULL, NULL, NULL, 0);
15237
15238         ASSERT(MUTEX_HELD(&cpu_lock));
15239         dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15240             offsetof(dtrace_probe_t, dtpr_nextmod),
15241             offsetof(dtrace_probe_t, dtpr_prevmod));
15242
15243         dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15244             offsetof(dtrace_probe_t, dtpr_nextfunc),
15245             offsetof(dtrace_probe_t, dtpr_prevfunc));
15246
15247         dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15248             offsetof(dtrace_probe_t, dtpr_nextname),
15249             offsetof(dtrace_probe_t, dtpr_prevname));
15250
15251         if (dtrace_retain_max < 1) {
15252                 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15253                     "setting to 1", dtrace_retain_max);
15254                 dtrace_retain_max = 1;
15255         }
15256
15257         /*
15258          * Now discover our toxic ranges.
15259          */
15260         dtrace_toxic_ranges(dtrace_toxrange_add);
15261
15262         /*
15263          * Before we register ourselves as a provider to our own framework,
15264          * we would like to assert that dtrace_provider is NULL -- but that's
15265          * not true if we were loaded as a dependency of a DTrace provider.
15266          * Once we've registered, we can assert that dtrace_provider is our
15267          * pseudo provider.
15268          */
15269         (void) dtrace_register("dtrace", &dtrace_provider_attr,
15270             DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15271
15272         ASSERT(dtrace_provider != NULL);
15273         ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15274
15275         dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15276             dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15277         dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15278             dtrace_provider, NULL, NULL, "END", 0, NULL);
15279         dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15280             dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15281
15282         dtrace_anon_property();
15283         mutex_exit(&cpu_lock);
15284
15285         /*
15286          * If DTrace helper tracing is enabled, we need to allocate the
15287          * trace buffer and initialize the values.
15288          */
15289         if (dtrace_helptrace_enabled) {
15290                 ASSERT(dtrace_helptrace_buffer == NULL);
15291                 dtrace_helptrace_buffer =
15292                     kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15293                 dtrace_helptrace_next = 0;
15294         }
15295
15296         /*
15297          * If there are already providers, we must ask them to provide their
15298          * probes, and then match any anonymous enabling against them.  Note
15299          * that there should be no other retained enablings at this time:
15300          * the only retained enablings at this time should be the anonymous
15301          * enabling.
15302          */
15303         if (dtrace_anon.dta_enabling != NULL) {
15304                 ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15305
15306                 dtrace_enabling_provide(NULL);
15307                 state = dtrace_anon.dta_state;
15308
15309                 /*
15310                  * We couldn't hold cpu_lock across the above call to
15311                  * dtrace_enabling_provide(), but we must hold it to actually
15312                  * enable the probes.  We have to drop all of our locks, pick
15313                  * up cpu_lock, and regain our locks before matching the
15314                  * retained anonymous enabling.
15315                  */
15316                 mutex_exit(&dtrace_lock);
15317                 mutex_exit(&dtrace_provider_lock);
15318
15319                 mutex_enter(&cpu_lock);
15320                 mutex_enter(&dtrace_provider_lock);
15321                 mutex_enter(&dtrace_lock);
15322
15323                 if ((enab = dtrace_anon.dta_enabling) != NULL)
15324                         (void) dtrace_enabling_match(enab, NULL);
15325
15326                 mutex_exit(&cpu_lock);
15327         }
15328
15329         mutex_exit(&dtrace_lock);
15330         mutex_exit(&dtrace_provider_lock);
15331
15332         if (state != NULL) {
15333                 /*
15334                  * If we created any anonymous state, set it going now.
15335                  */
15336                 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15337         }
15338
15339         return (DDI_SUCCESS);
15340 }
15341 #endif
15342
15343 #if !defined(sun)
15344 #if __FreeBSD_version >= 800039
15345 static void
15346 dtrace_dtr(void *data __unused)
15347 {
15348 }
15349 #endif
15350 #endif
15351
15352 /*ARGSUSED*/
15353 static int
15354 #if defined(sun)
15355 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15356 #else
15357 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
15358 #endif
15359 {
15360         dtrace_state_t *state;
15361         uint32_t priv;
15362         uid_t uid;
15363         zoneid_t zoneid;
15364
15365 #if defined(sun)
15366         if (getminor(*devp) == DTRACEMNRN_HELPER)
15367                 return (0);
15368
15369         /*
15370          * If this wasn't an open with the "helper" minor, then it must be
15371          * the "dtrace" minor.
15372          */
15373         ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
15374 #else
15375         cred_t *cred_p = NULL;
15376
15377 #if __FreeBSD_version < 800039
15378         /*
15379          * The first minor device is the one that is cloned so there is
15380          * nothing more to do here.
15381          */
15382         if (dev2unit(dev) == 0)
15383                 return 0;
15384
15385         /*
15386          * Devices are cloned, so if the DTrace state has already
15387          * been allocated, that means this device belongs to a
15388          * different client. Each client should open '/dev/dtrace'
15389          * to get a cloned device.
15390          */
15391         if (dev->si_drv1 != NULL)
15392                 return (EBUSY);
15393 #endif
15394
15395         cred_p = dev->si_cred;
15396 #endif
15397
15398         /*
15399          * If no DTRACE_PRIV_* bits are set in the credential, then the
15400          * caller lacks sufficient permission to do anything with DTrace.
15401          */
15402         dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15403         if (priv == DTRACE_PRIV_NONE) {
15404 #if !defined(sun)
15405 #if __FreeBSD_version < 800039
15406                 /* Destroy the cloned device. */
15407                 destroy_dev(dev);
15408 #endif
15409 #endif
15410
15411                 return (EACCES);
15412         }
15413
15414         /*
15415          * Ask all providers to provide all their probes.
15416          */
15417         mutex_enter(&dtrace_provider_lock);
15418         dtrace_probe_provide(NULL, NULL);
15419         mutex_exit(&dtrace_provider_lock);
15420
15421         mutex_enter(&cpu_lock);
15422         mutex_enter(&dtrace_lock);
15423         dtrace_opens++;
15424         dtrace_membar_producer();
15425
15426 #if defined(sun)
15427         /*
15428          * If the kernel debugger is active (that is, if the kernel debugger
15429          * modified text in some way), we won't allow the open.
15430          */
15431         if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15432                 dtrace_opens--;
15433                 mutex_exit(&cpu_lock);
15434                 mutex_exit(&dtrace_lock);
15435                 return (EBUSY);
15436         }
15437
15438         state = dtrace_state_create(devp, cred_p);
15439 #else
15440         state = dtrace_state_create(dev);
15441 #if __FreeBSD_version < 800039
15442         dev->si_drv1 = state;
15443 #else
15444         devfs_set_cdevpriv(state, dtrace_dtr);
15445 #endif
15446 #endif
15447
15448         mutex_exit(&cpu_lock);
15449
15450         if (state == NULL) {
15451 #if defined(sun)
15452                 if (--dtrace_opens == 0)
15453                         (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15454 #else
15455                 --dtrace_opens;
15456 #endif
15457                 mutex_exit(&dtrace_lock);
15458 #if !defined(sun)
15459 #if __FreeBSD_version < 800039
15460                 /* Destroy the cloned device. */
15461                 destroy_dev(dev);
15462 #endif
15463 #endif
15464                 return (EAGAIN);
15465         }
15466
15467         mutex_exit(&dtrace_lock);
15468
15469         return (0);
15470 }
15471
15472 /*ARGSUSED*/
15473 static int
15474 #if defined(sun)
15475 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15476 #else
15477 dtrace_close(struct cdev *dev, int flags, int fmt __unused, struct thread *td)
15478 #endif
15479 {
15480 #if defined(sun)
15481         minor_t minor = getminor(dev);
15482         dtrace_state_t *state;
15483
15484         if (minor == DTRACEMNRN_HELPER)
15485                 return (0);
15486
15487         state = ddi_get_soft_state(dtrace_softstate, minor);
15488 #else
15489 #if __FreeBSD_version < 800039
15490         dtrace_state_t *state = dev->si_drv1;
15491
15492         /* Check if this is not a cloned device. */
15493         if (dev2unit(dev) == 0)
15494                 return (0);
15495 #else
15496         dtrace_state_t *state;
15497         devfs_get_cdevpriv((void **) &state);
15498 #endif
15499
15500 #endif
15501
15502         mutex_enter(&cpu_lock);
15503         mutex_enter(&dtrace_lock);
15504
15505         if (state != NULL) {
15506                 if (state->dts_anon) {
15507                         /*
15508                          * There is anonymous state. Destroy that first.
15509                          */
15510                         ASSERT(dtrace_anon.dta_state == NULL);
15511                         dtrace_state_destroy(state->dts_anon);
15512                 }
15513
15514                 dtrace_state_destroy(state);
15515
15516 #if !defined(sun)
15517                 kmem_free(state, 0);
15518 #if __FreeBSD_version < 800039
15519                 dev->si_drv1 = NULL;
15520 #else
15521                 devfs_clear_cdevpriv();
15522 #endif
15523 #endif
15524         }
15525
15526         ASSERT(dtrace_opens > 0);
15527 #if defined(sun)
15528         if (--dtrace_opens == 0)
15529                 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15530 #else
15531         --dtrace_opens;
15532 #endif
15533
15534         mutex_exit(&dtrace_lock);
15535         mutex_exit(&cpu_lock);
15536
15537 #if __FreeBSD_version < 800039
15538         /* Schedule this cloned device to be destroyed. */
15539         destroy_dev_sched(dev);
15540 #endif
15541
15542         return (0);
15543 }
15544
15545 #if defined(sun)
15546 /*ARGSUSED*/
15547 static int
15548 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15549 {
15550         int rval;
15551         dof_helper_t help, *dhp = NULL;
15552
15553         switch (cmd) {
15554         case DTRACEHIOC_ADDDOF:
15555                 if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15556                         dtrace_dof_error(NULL, "failed to copyin DOF helper");
15557                         return (EFAULT);
15558                 }
15559
15560                 dhp = &help;
15561                 arg = (intptr_t)help.dofhp_dof;
15562                 /*FALLTHROUGH*/
15563
15564         case DTRACEHIOC_ADD: {
15565                 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15566
15567                 if (dof == NULL)
15568                         return (rval);
15569
15570                 mutex_enter(&dtrace_lock);
15571
15572                 /*
15573                  * dtrace_helper_slurp() takes responsibility for the dof --
15574                  * it may free it now or it may save it and free it later.
15575                  */
15576                 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15577                         *rv = rval;
15578                         rval = 0;
15579                 } else {
15580                         rval = EINVAL;
15581                 }
15582
15583                 mutex_exit(&dtrace_lock);
15584                 return (rval);
15585         }
15586
15587         case DTRACEHIOC_REMOVE: {
15588                 mutex_enter(&dtrace_lock);
15589                 rval = dtrace_helper_destroygen(arg);
15590                 mutex_exit(&dtrace_lock);
15591
15592                 return (rval);
15593         }
15594
15595         default:
15596                 break;
15597         }
15598
15599         return (ENOTTY);
15600 }
15601
15602 /*ARGSUSED*/
15603 static int
15604 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15605 {
15606         minor_t minor = getminor(dev);
15607         dtrace_state_t *state;
15608         int rval;
15609
15610         if (minor == DTRACEMNRN_HELPER)
15611                 return (dtrace_ioctl_helper(cmd, arg, rv));
15612
15613         state = ddi_get_soft_state(dtrace_softstate, minor);
15614
15615         if (state->dts_anon) {
15616                 ASSERT(dtrace_anon.dta_state == NULL);
15617                 state = state->dts_anon;
15618         }
15619
15620         switch (cmd) {
15621         case DTRACEIOC_PROVIDER: {
15622                 dtrace_providerdesc_t pvd;
15623                 dtrace_provider_t *pvp;
15624
15625                 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15626                         return (EFAULT);
15627
15628                 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15629                 mutex_enter(&dtrace_provider_lock);
15630
15631                 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15632                         if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15633                                 break;
15634                 }
15635
15636                 mutex_exit(&dtrace_provider_lock);
15637
15638                 if (pvp == NULL)
15639                         return (ESRCH);
15640
15641                 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15642                 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15643
15644                 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15645                         return (EFAULT);
15646
15647                 return (0);
15648         }
15649
15650         case DTRACEIOC_EPROBE: {
15651                 dtrace_eprobedesc_t epdesc;
15652                 dtrace_ecb_t *ecb;
15653                 dtrace_action_t *act;
15654                 void *buf;
15655                 size_t size;
15656                 uintptr_t dest;
15657                 int nrecs;
15658
15659                 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15660                         return (EFAULT);
15661
15662                 mutex_enter(&dtrace_lock);
15663
15664                 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15665                         mutex_exit(&dtrace_lock);
15666                         return (EINVAL);
15667                 }
15668
15669                 if (ecb->dte_probe == NULL) {
15670                         mutex_exit(&dtrace_lock);
15671                         return (EINVAL);
15672                 }
15673
15674                 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
15675                 epdesc.dtepd_uarg = ecb->dte_uarg;
15676                 epdesc.dtepd_size = ecb->dte_size;
15677
15678                 nrecs = epdesc.dtepd_nrecs;
15679                 epdesc.dtepd_nrecs = 0;
15680                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15681                         if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15682                                 continue;
15683
15684                         epdesc.dtepd_nrecs++;
15685                 }
15686
15687                 /*
15688                  * Now that we have the size, we need to allocate a temporary
15689                  * buffer in which to store the complete description.  We need
15690                  * the temporary buffer to be able to drop dtrace_lock()
15691                  * across the copyout(), below.
15692                  */
15693                 size = sizeof (dtrace_eprobedesc_t) +
15694                     (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
15695
15696                 buf = kmem_alloc(size, KM_SLEEP);
15697                 dest = (uintptr_t)buf;
15698
15699                 bcopy(&epdesc, (void *)dest, sizeof (epdesc));
15700                 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
15701
15702                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15703                         if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15704                                 continue;
15705
15706                         if (nrecs-- == 0)
15707                                 break;
15708
15709                         bcopy(&act->dta_rec, (void *)dest,
15710                             sizeof (dtrace_recdesc_t));
15711                         dest += sizeof (dtrace_recdesc_t);
15712                 }
15713
15714                 mutex_exit(&dtrace_lock);
15715
15716                 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15717                         kmem_free(buf, size);
15718                         return (EFAULT);
15719                 }
15720
15721                 kmem_free(buf, size);
15722                 return (0);
15723         }
15724
15725         case DTRACEIOC_AGGDESC: {
15726                 dtrace_aggdesc_t aggdesc;
15727                 dtrace_action_t *act;
15728                 dtrace_aggregation_t *agg;
15729                 int nrecs;
15730                 uint32_t offs;
15731                 dtrace_recdesc_t *lrec;
15732                 void *buf;
15733                 size_t size;
15734                 uintptr_t dest;
15735
15736                 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
15737                         return (EFAULT);
15738
15739                 mutex_enter(&dtrace_lock);
15740
15741                 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
15742                         mutex_exit(&dtrace_lock);
15743                         return (EINVAL);
15744                 }
15745
15746                 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
15747
15748                 nrecs = aggdesc.dtagd_nrecs;
15749                 aggdesc.dtagd_nrecs = 0;
15750
15751                 offs = agg->dtag_base;
15752                 lrec = &agg->dtag_action.dta_rec;
15753                 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
15754
15755                 for (act = agg->dtag_first; ; act = act->dta_next) {
15756                         ASSERT(act->dta_intuple ||
15757                             DTRACEACT_ISAGG(act->dta_kind));
15758
15759                         /*
15760                          * If this action has a record size of zero, it
15761                          * denotes an argument to the aggregating action.
15762                          * Because the presence of this record doesn't (or
15763                          * shouldn't) affect the way the data is interpreted,
15764                          * we don't copy it out to save user-level the
15765                          * confusion of dealing with a zero-length record.
15766                          */
15767                         if (act->dta_rec.dtrd_size == 0) {
15768                                 ASSERT(agg->dtag_hasarg);
15769                                 continue;
15770                         }
15771
15772                         aggdesc.dtagd_nrecs++;
15773
15774                         if (act == &agg->dtag_action)
15775                                 break;
15776                 }
15777
15778                 /*
15779                  * Now that we have the size, we need to allocate a temporary
15780                  * buffer in which to store the complete description.  We need
15781                  * the temporary buffer to be able to drop dtrace_lock()
15782                  * across the copyout(), below.
15783                  */
15784                 size = sizeof (dtrace_aggdesc_t) +
15785                     (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
15786
15787                 buf = kmem_alloc(size, KM_SLEEP);
15788                 dest = (uintptr_t)buf;
15789
15790                 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
15791                 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
15792
15793                 for (act = agg->dtag_first; ; act = act->dta_next) {
15794                         dtrace_recdesc_t rec = act->dta_rec;
15795
15796                         /*
15797                          * See the comment in the above loop for why we pass
15798                          * over zero-length records.
15799                          */
15800                         if (rec.dtrd_size == 0) {
15801                                 ASSERT(agg->dtag_hasarg);
15802                                 continue;
15803                         }
15804
15805                         if (nrecs-- == 0)
15806                                 break;
15807
15808                         rec.dtrd_offset -= offs;
15809                         bcopy(&rec, (void *)dest, sizeof (rec));
15810                         dest += sizeof (dtrace_recdesc_t);
15811
15812                         if (act == &agg->dtag_action)
15813                                 break;
15814                 }
15815
15816                 mutex_exit(&dtrace_lock);
15817
15818                 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15819                         kmem_free(buf, size);
15820                         return (EFAULT);
15821                 }
15822
15823                 kmem_free(buf, size);
15824                 return (0);
15825         }
15826
15827         case DTRACEIOC_ENABLE: {
15828                 dof_hdr_t *dof;
15829                 dtrace_enabling_t *enab = NULL;
15830                 dtrace_vstate_t *vstate;
15831                 int err = 0;
15832
15833                 *rv = 0;
15834
15835                 /*
15836                  * If a NULL argument has been passed, we take this as our
15837                  * cue to reevaluate our enablings.
15838                  */
15839                 if (arg == NULL) {
15840                         dtrace_enabling_matchall();
15841
15842                         return (0);
15843                 }
15844
15845                 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
15846                         return (rval);
15847
15848                 mutex_enter(&cpu_lock);
15849                 mutex_enter(&dtrace_lock);
15850                 vstate = &state->dts_vstate;
15851
15852                 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
15853                         mutex_exit(&dtrace_lock);
15854                         mutex_exit(&cpu_lock);
15855                         dtrace_dof_destroy(dof);
15856                         return (EBUSY);
15857                 }
15858
15859                 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
15860                         mutex_exit(&dtrace_lock);
15861                         mutex_exit(&cpu_lock);
15862                         dtrace_dof_destroy(dof);
15863                         return (EINVAL);
15864                 }
15865
15866                 if ((rval = dtrace_dof_options(dof, state)) != 0) {
15867                         dtrace_enabling_destroy(enab);
15868                         mutex_exit(&dtrace_lock);
15869                         mutex_exit(&cpu_lock);
15870                         dtrace_dof_destroy(dof);
15871                         return (rval);
15872                 }
15873
15874                 if ((err = dtrace_enabling_match(enab, rv)) == 0) {
15875                         err = dtrace_enabling_retain(enab);
15876                 } else {
15877                         dtrace_enabling_destroy(enab);
15878                 }
15879
15880                 mutex_exit(&cpu_lock);
15881                 mutex_exit(&dtrace_lock);
15882                 dtrace_dof_destroy(dof);
15883
15884                 return (err);
15885         }
15886
15887         case DTRACEIOC_REPLICATE: {
15888                 dtrace_repldesc_t desc;
15889                 dtrace_probedesc_t *match = &desc.dtrpd_match;
15890                 dtrace_probedesc_t *create = &desc.dtrpd_create;
15891                 int err;
15892
15893                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15894                         return (EFAULT);
15895
15896                 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15897                 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15898                 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15899                 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15900
15901                 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15902                 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15903                 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15904                 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15905
15906                 mutex_enter(&dtrace_lock);
15907                 err = dtrace_enabling_replicate(state, match, create);
15908                 mutex_exit(&dtrace_lock);
15909
15910                 return (err);
15911         }
15912
15913         case DTRACEIOC_PROBEMATCH:
15914         case DTRACEIOC_PROBES: {
15915                 dtrace_probe_t *probe = NULL;
15916                 dtrace_probedesc_t desc;
15917                 dtrace_probekey_t pkey;
15918                 dtrace_id_t i;
15919                 int m = 0;
15920                 uint32_t priv;
15921                 uid_t uid;
15922                 zoneid_t zoneid;
15923
15924                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15925                         return (EFAULT);
15926
15927                 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15928                 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15929                 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15930                 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15931
15932                 /*
15933                  * Before we attempt to match this probe, we want to give
15934                  * all providers the opportunity to provide it.
15935                  */
15936                 if (desc.dtpd_id == DTRACE_IDNONE) {
15937                         mutex_enter(&dtrace_provider_lock);
15938                         dtrace_probe_provide(&desc, NULL);
15939                         mutex_exit(&dtrace_provider_lock);
15940                         desc.dtpd_id++;
15941                 }
15942
15943                 if (cmd == DTRACEIOC_PROBEMATCH)  {
15944                         dtrace_probekey(&desc, &pkey);
15945                         pkey.dtpk_id = DTRACE_IDNONE;
15946                 }
15947
15948                 dtrace_cred2priv(cr, &priv, &uid, &zoneid);
15949
15950                 mutex_enter(&dtrace_lock);
15951
15952                 if (cmd == DTRACEIOC_PROBEMATCH) {
15953                         for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15954                                 if ((probe = dtrace_probes[i - 1]) != NULL &&
15955                                     (m = dtrace_match_probe(probe, &pkey,
15956                                     priv, uid, zoneid)) != 0)
15957                                         break;
15958                         }
15959
15960                         if (m < 0) {
15961                                 mutex_exit(&dtrace_lock);
15962                                 return (EINVAL);
15963                         }
15964
15965                 } else {
15966                         for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15967                                 if ((probe = dtrace_probes[i - 1]) != NULL &&
15968                                     dtrace_match_priv(probe, priv, uid, zoneid))
15969                                         break;
15970                         }
15971                 }
15972
15973                 if (probe == NULL) {
15974                         mutex_exit(&dtrace_lock);
15975                         return (ESRCH);
15976                 }
15977
15978                 dtrace_probe_description(probe, &desc);
15979                 mutex_exit(&dtrace_lock);
15980
15981                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15982                         return (EFAULT);
15983
15984                 return (0);
15985         }
15986
15987         case DTRACEIOC_PROBEARG: {
15988                 dtrace_argdesc_t desc;
15989                 dtrace_probe_t *probe;
15990                 dtrace_provider_t *prov;
15991
15992                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15993                         return (EFAULT);
15994
15995                 if (desc.dtargd_id == DTRACE_IDNONE)
15996                         return (EINVAL);
15997
15998                 if (desc.dtargd_ndx == DTRACE_ARGNONE)
15999                         return (EINVAL);
16000
16001                 mutex_enter(&dtrace_provider_lock);
16002                 mutex_enter(&mod_lock);
16003                 mutex_enter(&dtrace_lock);
16004
16005                 if (desc.dtargd_id > dtrace_nprobes) {
16006                         mutex_exit(&dtrace_lock);
16007                         mutex_exit(&mod_lock);
16008                         mutex_exit(&dtrace_provider_lock);
16009                         return (EINVAL);
16010                 }
16011
16012                 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16013                         mutex_exit(&dtrace_lock);
16014                         mutex_exit(&mod_lock);
16015                         mutex_exit(&dtrace_provider_lock);
16016                         return (EINVAL);
16017                 }
16018
16019                 mutex_exit(&dtrace_lock);
16020
16021                 prov = probe->dtpr_provider;
16022
16023                 if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16024                         /*
16025                          * There isn't any typed information for this probe.
16026                          * Set the argument number to DTRACE_ARGNONE.
16027                          */
16028                         desc.dtargd_ndx = DTRACE_ARGNONE;
16029                 } else {
16030                         desc.dtargd_native[0] = '\0';
16031                         desc.dtargd_xlate[0] = '\0';
16032                         desc.dtargd_mapping = desc.dtargd_ndx;
16033
16034                         prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16035                             probe->dtpr_id, probe->dtpr_arg, &desc);
16036                 }
16037
16038                 mutex_exit(&mod_lock);
16039                 mutex_exit(&dtrace_provider_lock);
16040
16041                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16042                         return (EFAULT);
16043
16044                 return (0);
16045         }
16046
16047         case DTRACEIOC_GO: {
16048                 processorid_t cpuid;
16049                 rval = dtrace_state_go(state, &cpuid);
16050
16051                 if (rval != 0)
16052                         return (rval);
16053
16054                 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16055                         return (EFAULT);
16056
16057                 return (0);
16058         }
16059
16060         case DTRACEIOC_STOP: {
16061                 processorid_t cpuid;
16062
16063                 mutex_enter(&dtrace_lock);
16064                 rval = dtrace_state_stop(state, &cpuid);
16065                 mutex_exit(&dtrace_lock);
16066
16067                 if (rval != 0)
16068                         return (rval);
16069
16070                 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16071                         return (EFAULT);
16072
16073                 return (0);
16074         }
16075
16076         case DTRACEIOC_DOFGET: {
16077                 dof_hdr_t hdr, *dof;
16078                 uint64_t len;
16079
16080                 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
16081                         return (EFAULT);
16082
16083                 mutex_enter(&dtrace_lock);
16084                 dof = dtrace_dof_create(state);
16085                 mutex_exit(&dtrace_lock);
16086
16087                 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16088                 rval = copyout(dof, (void *)arg, len);
16089                 dtrace_dof_destroy(dof);
16090
16091                 return (rval == 0 ? 0 : EFAULT);
16092         }
16093
16094         case DTRACEIOC_AGGSNAP:
16095         case DTRACEIOC_BUFSNAP: {
16096                 dtrace_bufdesc_t desc;
16097                 caddr_t cached;
16098                 dtrace_buffer_t *buf;
16099
16100                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16101                         return (EFAULT);
16102
16103                 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16104                         return (EINVAL);
16105
16106                 mutex_enter(&dtrace_lock);
16107
16108                 if (cmd == DTRACEIOC_BUFSNAP) {
16109                         buf = &state->dts_buffer[desc.dtbd_cpu];
16110                 } else {
16111                         buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16112                 }
16113
16114                 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16115                         size_t sz = buf->dtb_offset;
16116
16117                         if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16118                                 mutex_exit(&dtrace_lock);
16119                                 return (EBUSY);
16120                         }
16121
16122                         /*
16123                          * If this buffer has already been consumed, we're
16124                          * going to indicate that there's nothing left here
16125                          * to consume.
16126                          */
16127                         if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16128                                 mutex_exit(&dtrace_lock);
16129
16130                                 desc.dtbd_size = 0;
16131                                 desc.dtbd_drops = 0;
16132                                 desc.dtbd_errors = 0;
16133                                 desc.dtbd_oldest = 0;
16134                                 sz = sizeof (desc);
16135
16136                                 if (copyout(&desc, (void *)arg, sz) != 0)
16137                                         return (EFAULT);
16138
16139                                 return (0);
16140                         }
16141
16142                         /*
16143                          * If this is a ring buffer that has wrapped, we want
16144                          * to copy the whole thing out.
16145                          */
16146                         if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16147                                 dtrace_buffer_polish(buf);
16148                                 sz = buf->dtb_size;
16149                         }
16150
16151                         if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16152                                 mutex_exit(&dtrace_lock);
16153                                 return (EFAULT);
16154                         }
16155
16156                         desc.dtbd_size = sz;
16157                         desc.dtbd_drops = buf->dtb_drops;
16158                         desc.dtbd_errors = buf->dtb_errors;
16159                         desc.dtbd_oldest = buf->dtb_xamot_offset;
16160
16161                         mutex_exit(&dtrace_lock);
16162
16163                         if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16164                                 return (EFAULT);
16165
16166                         buf->dtb_flags |= DTRACEBUF_CONSUMED;
16167
16168                         return (0);
16169                 }
16170
16171                 if (buf->dtb_tomax == NULL) {
16172                         ASSERT(buf->dtb_xamot == NULL);
16173                         mutex_exit(&dtrace_lock);
16174                         return (ENOENT);
16175                 }
16176
16177                 cached = buf->dtb_tomax;
16178                 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16179
16180                 dtrace_xcall(desc.dtbd_cpu,
16181                     (dtrace_xcall_t)dtrace_buffer_switch, buf);
16182
16183                 state->dts_errors += buf->dtb_xamot_errors;
16184
16185                 /*
16186                  * If the buffers did not actually switch, then the cross call
16187                  * did not take place -- presumably because the given CPU is
16188                  * not in the ready set.  If this is the case, we'll return
16189                  * ENOENT.
16190                  */
16191                 if (buf->dtb_tomax == cached) {
16192                         ASSERT(buf->dtb_xamot != cached);
16193                         mutex_exit(&dtrace_lock);
16194                         return (ENOENT);
16195                 }
16196
16197                 ASSERT(cached == buf->dtb_xamot);
16198
16199                 /*
16200                  * We have our snapshot; now copy it out.
16201                  */
16202                 if (copyout(buf->dtb_xamot, desc.dtbd_data,
16203                     buf->dtb_xamot_offset) != 0) {
16204                         mutex_exit(&dtrace_lock);
16205                         return (EFAULT);
16206                 }
16207
16208                 desc.dtbd_size = buf->dtb_xamot_offset;
16209                 desc.dtbd_drops = buf->dtb_xamot_drops;
16210                 desc.dtbd_errors = buf->dtb_xamot_errors;
16211                 desc.dtbd_oldest = 0;
16212
16213                 mutex_exit(&dtrace_lock);
16214
16215                 /*
16216                  * Finally, copy out the buffer description.
16217                  */
16218                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16219                         return (EFAULT);
16220
16221                 return (0);
16222         }
16223
16224         case DTRACEIOC_CONF: {
16225                 dtrace_conf_t conf;
16226
16227                 bzero(&conf, sizeof (conf));
16228                 conf.dtc_difversion = DIF_VERSION;
16229                 conf.dtc_difintregs = DIF_DIR_NREGS;
16230                 conf.dtc_diftupregs = DIF_DTR_NREGS;
16231                 conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16232
16233                 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16234                         return (EFAULT);
16235
16236                 return (0);
16237         }
16238
16239         case DTRACEIOC_STATUS: {
16240                 dtrace_status_t stat;
16241                 dtrace_dstate_t *dstate;
16242                 int i, j;
16243                 uint64_t nerrs;
16244
16245                 /*
16246                  * See the comment in dtrace_state_deadman() for the reason
16247                  * for setting dts_laststatus to INT64_MAX before setting
16248                  * it to the correct value.
16249                  */
16250                 state->dts_laststatus = INT64_MAX;
16251                 dtrace_membar_producer();
16252                 state->dts_laststatus = dtrace_gethrtime();
16253
16254                 bzero(&stat, sizeof (stat));
16255
16256                 mutex_enter(&dtrace_lock);
16257
16258                 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16259                         mutex_exit(&dtrace_lock);
16260                         return (ENOENT);
16261                 }
16262
16263                 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16264                         stat.dtst_exiting = 1;
16265
16266                 nerrs = state->dts_errors;
16267                 dstate = &state->dts_vstate.dtvs_dynvars;
16268
16269                 for (i = 0; i < NCPU; i++) {
16270                         dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16271
16272                         stat.dtst_dyndrops += dcpu->dtdsc_drops;
16273                         stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16274                         stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16275
16276                         if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16277                                 stat.dtst_filled++;
16278
16279                         nerrs += state->dts_buffer[i].dtb_errors;
16280
16281                         for (j = 0; j < state->dts_nspeculations; j++) {
16282                                 dtrace_speculation_t *spec;
16283                                 dtrace_buffer_t *buf;
16284
16285                                 spec = &state->dts_speculations[j];
16286                                 buf = &spec->dtsp_buffer[i];
16287                                 stat.dtst_specdrops += buf->dtb_xamot_drops;
16288                         }
16289                 }
16290
16291                 stat.dtst_specdrops_busy = state->dts_speculations_busy;
16292                 stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16293                 stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16294                 stat.dtst_dblerrors = state->dts_dblerrors;
16295                 stat.dtst_killed =
16296                     (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16297                 stat.dtst_errors = nerrs;
16298
16299                 mutex_exit(&dtrace_lock);
16300
16301                 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16302                         return (EFAULT);
16303
16304                 return (0);
16305         }
16306
16307         case DTRACEIOC_FORMAT: {
16308                 dtrace_fmtdesc_t fmt;
16309                 char *str;
16310                 int len;
16311
16312                 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16313                         return (EFAULT);
16314
16315                 mutex_enter(&dtrace_lock);
16316
16317                 if (fmt.dtfd_format == 0 ||
16318                     fmt.dtfd_format > state->dts_nformats) {
16319                         mutex_exit(&dtrace_lock);
16320                         return (EINVAL);
16321                 }
16322
16323                 /*
16324                  * Format strings are allocated contiguously and they are
16325                  * never freed; if a format index is less than the number
16326                  * of formats, we can assert that the format map is non-NULL
16327                  * and that the format for the specified index is non-NULL.
16328                  */
16329                 ASSERT(state->dts_formats != NULL);
16330                 str = state->dts_formats[fmt.dtfd_format - 1];
16331                 ASSERT(str != NULL);
16332
16333                 len = strlen(str) + 1;
16334
16335                 if (len > fmt.dtfd_length) {
16336                         fmt.dtfd_length = len;
16337
16338                         if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16339                                 mutex_exit(&dtrace_lock);
16340                                 return (EINVAL);
16341                         }
16342                 } else {
16343                         if (copyout(str, fmt.dtfd_string, len) != 0) {
16344                                 mutex_exit(&dtrace_lock);
16345                                 return (EINVAL);
16346                         }
16347                 }
16348
16349                 mutex_exit(&dtrace_lock);
16350                 return (0);
16351         }
16352
16353         default:
16354                 break;
16355         }
16356
16357         return (ENOTTY);
16358 }
16359
16360 /*ARGSUSED*/
16361 static int
16362 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16363 {
16364         dtrace_state_t *state;
16365
16366         switch (cmd) {
16367         case DDI_DETACH:
16368                 break;
16369
16370         case DDI_SUSPEND:
16371                 return (DDI_SUCCESS);
16372
16373         default:
16374                 return (DDI_FAILURE);
16375         }
16376
16377         mutex_enter(&cpu_lock);
16378         mutex_enter(&dtrace_provider_lock);
16379         mutex_enter(&dtrace_lock);
16380
16381         ASSERT(dtrace_opens == 0);
16382
16383         if (dtrace_helpers > 0) {
16384                 mutex_exit(&dtrace_provider_lock);
16385                 mutex_exit(&dtrace_lock);
16386                 mutex_exit(&cpu_lock);
16387                 return (DDI_FAILURE);
16388         }
16389
16390         if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16391                 mutex_exit(&dtrace_provider_lock);
16392                 mutex_exit(&dtrace_lock);
16393                 mutex_exit(&cpu_lock);
16394                 return (DDI_FAILURE);
16395         }
16396
16397         dtrace_provider = NULL;
16398
16399         if ((state = dtrace_anon_grab()) != NULL) {
16400                 /*
16401                  * If there were ECBs on this state, the provider should
16402                  * have not been allowed to detach; assert that there is
16403                  * none.
16404                  */
16405                 ASSERT(state->dts_necbs == 0);
16406                 dtrace_state_destroy(state);
16407
16408                 /*
16409                  * If we're being detached with anonymous state, we need to
16410                  * indicate to the kernel debugger that DTrace is now inactive.
16411                  */
16412                 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16413         }
16414
16415         bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16416         unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16417         dtrace_cpu_init = NULL;
16418         dtrace_helpers_cleanup = NULL;
16419         dtrace_helpers_fork = NULL;
16420         dtrace_cpustart_init = NULL;
16421         dtrace_cpustart_fini = NULL;
16422         dtrace_debugger_init = NULL;
16423         dtrace_debugger_fini = NULL;
16424         dtrace_modload = NULL;
16425         dtrace_modunload = NULL;
16426
16427         mutex_exit(&cpu_lock);
16428
16429         if (dtrace_helptrace_enabled) {
16430                 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16431                 dtrace_helptrace_buffer = NULL;
16432         }
16433
16434         kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16435         dtrace_probes = NULL;
16436         dtrace_nprobes = 0;
16437
16438         dtrace_hash_destroy(dtrace_bymod);
16439         dtrace_hash_destroy(dtrace_byfunc);
16440         dtrace_hash_destroy(dtrace_byname);
16441         dtrace_bymod = NULL;
16442         dtrace_byfunc = NULL;
16443         dtrace_byname = NULL;
16444
16445         kmem_cache_destroy(dtrace_state_cache);
16446         vmem_destroy(dtrace_minor);
16447         vmem_destroy(dtrace_arena);
16448
16449         if (dtrace_toxrange != NULL) {
16450                 kmem_free(dtrace_toxrange,
16451                     dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16452                 dtrace_toxrange = NULL;
16453                 dtrace_toxranges = 0;
16454                 dtrace_toxranges_max = 0;
16455         }
16456
16457         ddi_remove_minor_node(dtrace_devi, NULL);
16458         dtrace_devi = NULL;
16459
16460         ddi_soft_state_fini(&dtrace_softstate);
16461
16462         ASSERT(dtrace_vtime_references == 0);
16463         ASSERT(dtrace_opens == 0);
16464         ASSERT(dtrace_retained == NULL);
16465
16466         mutex_exit(&dtrace_lock);
16467         mutex_exit(&dtrace_provider_lock);
16468
16469         /*
16470          * We don't destroy the task queue until after we have dropped our
16471          * locks (taskq_destroy() may block on running tasks).  To prevent
16472          * attempting to do work after we have effectively detached but before
16473          * the task queue has been destroyed, all tasks dispatched via the
16474          * task queue must check that DTrace is still attached before
16475          * performing any operation.
16476          */
16477         taskq_destroy(dtrace_taskq);
16478         dtrace_taskq = NULL;
16479
16480         return (DDI_SUCCESS);
16481 }
16482 #endif
16483
16484 #if defined(sun)
16485 /*ARGSUSED*/
16486 static int
16487 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16488 {
16489         int error;
16490
16491         switch (infocmd) {
16492         case DDI_INFO_DEVT2DEVINFO:
16493                 *result = (void *)dtrace_devi;
16494                 error = DDI_SUCCESS;
16495                 break;
16496         case DDI_INFO_DEVT2INSTANCE:
16497                 *result = (void *)0;
16498                 error = DDI_SUCCESS;
16499                 break;
16500         default:
16501                 error = DDI_FAILURE;
16502         }
16503         return (error);
16504 }
16505 #endif
16506
16507 #if defined(sun)
16508 static struct cb_ops dtrace_cb_ops = {
16509         dtrace_open,            /* open */
16510         dtrace_close,           /* close */
16511         nulldev,                /* strategy */
16512         nulldev,                /* print */
16513         nodev,                  /* dump */
16514         nodev,                  /* read */
16515         nodev,                  /* write */
16516         dtrace_ioctl,           /* ioctl */
16517         nodev,                  /* devmap */
16518         nodev,                  /* mmap */
16519         nodev,                  /* segmap */
16520         nochpoll,               /* poll */
16521         ddi_prop_op,            /* cb_prop_op */
16522         0,                      /* streamtab  */
16523         D_NEW | D_MP            /* Driver compatibility flag */
16524 };
16525
16526 static struct dev_ops dtrace_ops = {
16527         DEVO_REV,               /* devo_rev */
16528         0,                      /* refcnt */
16529         dtrace_info,            /* get_dev_info */
16530         nulldev,                /* identify */
16531         nulldev,                /* probe */
16532         dtrace_attach,          /* attach */
16533         dtrace_detach,          /* detach */
16534         nodev,                  /* reset */
16535         &dtrace_cb_ops,         /* driver operations */
16536         NULL,                   /* bus operations */
16537         nodev                   /* dev power */
16538 };
16539
16540 static struct modldrv modldrv = {
16541         &mod_driverops,         /* module type (this is a pseudo driver) */
16542         "Dynamic Tracing",      /* name of module */
16543         &dtrace_ops,            /* driver ops */
16544 };
16545
16546 static struct modlinkage modlinkage = {
16547         MODREV_1,
16548         (void *)&modldrv,
16549         NULL
16550 };
16551
16552 int
16553 _init(void)
16554 {
16555         return (mod_install(&modlinkage));
16556 }
16557
16558 int
16559 _info(struct modinfo *modinfop)
16560 {
16561         return (mod_info(&modlinkage, modinfop));
16562 }
16563
16564 int
16565 _fini(void)
16566 {
16567         return (mod_remove(&modlinkage));
16568 }
16569 #else
16570
16571 static d_ioctl_t        dtrace_ioctl;
16572 static d_ioctl_t        dtrace_ioctl_helper;
16573 static void             dtrace_load(void *);
16574 static int              dtrace_unload(void);
16575 #if __FreeBSD_version < 800039
16576 static void             dtrace_clone(void *, struct ucred *, char *, int , struct cdev **);
16577 static struct clonedevs *dtrace_clones;         /* Ptr to the array of cloned devices. */
16578 static eventhandler_tag eh_tag;                 /* Event handler tag. */
16579 #else
16580 static struct cdev      *dtrace_dev;
16581 static struct cdev      *helper_dev;
16582 #endif
16583
16584 void dtrace_invop_init(void);
16585 void dtrace_invop_uninit(void);
16586
16587 static struct cdevsw dtrace_cdevsw = {
16588         .d_version      = D_VERSION,
16589         .d_flags        = D_TRACKCLOSE | D_NEEDMINOR,
16590         .d_close        = dtrace_close,
16591         .d_ioctl        = dtrace_ioctl,
16592         .d_open         = dtrace_open,
16593         .d_name         = "dtrace",
16594 };
16595
16596 static struct cdevsw helper_cdevsw = {
16597         .d_version      = D_VERSION,
16598         .d_flags        = D_TRACKCLOSE | D_NEEDMINOR,
16599         .d_ioctl        = dtrace_ioctl_helper,
16600         .d_name         = "helper",
16601 };
16602
16603 #include <dtrace_anon.c>
16604 #if __FreeBSD_version < 800039
16605 #include <dtrace_clone.c>
16606 #endif
16607 #include <dtrace_ioctl.c>
16608 #include <dtrace_load.c>
16609 #include <dtrace_modevent.c>
16610 #include <dtrace_sysctl.c>
16611 #include <dtrace_unload.c>
16612 #include <dtrace_vtime.c>
16613 #include <dtrace_hacks.c>
16614 #include <dtrace_isa.c>
16615
16616 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
16617 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
16618 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
16619
16620 DEV_MODULE(dtrace, dtrace_modevent, NULL);
16621 MODULE_VERSION(dtrace, 1);
16622 MODULE_DEPEND(dtrace, cyclic, 1, 1, 1);
16623 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
16624 #endif