]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c
MFC r252894:
[FreeBSD/stable/9.git] / sys / cddl / contrib / opensolaris / uts / common / dtrace / dtrace.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * $FreeBSD$
22  */
23
24 /*
25  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
26  * Use is subject to license terms.
27  */
28
29 #pragma ident   "%Z%%M% %I%     %E% SMI"
30
31 /*
32  * DTrace - Dynamic Tracing for Solaris
33  *
34  * This is the implementation of the Solaris Dynamic Tracing framework
35  * (DTrace).  The user-visible interface to DTrace is described at length in
36  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
37  * library, the in-kernel DTrace framework, and the DTrace providers are
38  * described in the block comments in the <sys/dtrace.h> header file.  The
39  * internal architecture of DTrace is described in the block comments in the
40  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
41  * implementation very much assume mastery of all of these sources; if one has
42  * an unanswered question about the implementation, one should consult them
43  * first.
44  *
45  * The functions here are ordered roughly as follows:
46  *
47  *   - Probe context functions
48  *   - Probe hashing functions
49  *   - Non-probe context utility functions
50  *   - Matching functions
51  *   - Provider-to-Framework API functions
52  *   - Probe management functions
53  *   - DIF object functions
54  *   - Format functions
55  *   - Predicate functions
56  *   - ECB functions
57  *   - Buffer functions
58  *   - Enabling functions
59  *   - DOF functions
60  *   - Anonymous enabling functions
61  *   - Consumer state functions
62  *   - Helper functions
63  *   - Hook functions
64  *   - Driver cookbook functions
65  *
66  * Each group of functions begins with a block comment labelled the "DTrace
67  * [Group] Functions", allowing one to find each block by searching forward
68  * on capital-f functions.
69  */
70 #include <sys/errno.h>
71 #if !defined(sun)
72 #include <sys/time.h>
73 #endif
74 #include <sys/stat.h>
75 #include <sys/modctl.h>
76 #include <sys/conf.h>
77 #include <sys/systm.h>
78 #if defined(sun)
79 #include <sys/ddi.h>
80 #include <sys/sunddi.h>
81 #endif
82 #include <sys/cpuvar.h>
83 #include <sys/kmem.h>
84 #if defined(sun)
85 #include <sys/strsubr.h>
86 #endif
87 #include <sys/sysmacros.h>
88 #include <sys/dtrace_impl.h>
89 #include <sys/atomic.h>
90 #include <sys/cmn_err.h>
91 #if defined(sun)
92 #include <sys/mutex_impl.h>
93 #include <sys/rwlock_impl.h>
94 #endif
95 #include <sys/ctf_api.h>
96 #if defined(sun)
97 #include <sys/panic.h>
98 #include <sys/priv_impl.h>
99 #endif
100 #include <sys/policy.h>
101 #if defined(sun)
102 #include <sys/cred_impl.h>
103 #include <sys/procfs_isa.h>
104 #endif
105 #include <sys/taskq.h>
106 #if defined(sun)
107 #include <sys/mkdev.h>
108 #include <sys/kdi.h>
109 #endif
110 #include <sys/zone.h>
111 #include <sys/socket.h>
112 #include <netinet/in.h>
113
114 /* FreeBSD includes: */
115 #if !defined(sun)
116 #include <sys/callout.h>
117 #include <sys/ctype.h>
118 #include <sys/eventhandler.h>
119 #include <sys/limits.h>
120 #include <sys/kdb.h>
121 #include <sys/kernel.h>
122 #include <sys/malloc.h>
123 #include <sys/sysctl.h>
124 #include <sys/lock.h>
125 #include <sys/mutex.h>
126 #include <sys/rwlock.h>
127 #include <sys/sx.h>
128 #include <sys/dtrace_bsd.h>
129 #include <netinet/in.h>
130 #include "dtrace_cddl.h"
131 #include "dtrace_debug.c"
132 #endif
133
134 /*
135  * DTrace Tunable Variables
136  *
137  * The following variables may be tuned by adding a line to /etc/system that
138  * includes both the name of the DTrace module ("dtrace") and the name of the
139  * variable.  For example:
140  *
141  *   set dtrace:dtrace_destructive_disallow = 1
142  *
143  * In general, the only variables that one should be tuning this way are those
144  * that affect system-wide DTrace behavior, and for which the default behavior
145  * is undesirable.  Most of these variables are tunable on a per-consumer
146  * basis using DTrace options, and need not be tuned on a system-wide basis.
147  * When tuning these variables, avoid pathological values; while some attempt
148  * is made to verify the integrity of these variables, they are not considered
149  * part of the supported interface to DTrace, and they are therefore not
150  * checked comprehensively.  Further, these variables should not be tuned
151  * dynamically via "mdb -kw" or other means; they should only be tuned via
152  * /etc/system.
153  */
154 int             dtrace_destructive_disallow = 0;
155 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024);
156 size_t          dtrace_difo_maxsize = (256 * 1024);
157 dtrace_optval_t dtrace_dof_maxsize = (256 * 1024);
158 size_t          dtrace_global_maxsize = (16 * 1024);
159 size_t          dtrace_actions_max = (16 * 1024);
160 size_t          dtrace_retain_max = 1024;
161 dtrace_optval_t dtrace_helper_actions_max = 128;
162 dtrace_optval_t dtrace_helper_providers_max = 32;
163 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024);
164 size_t          dtrace_strsize_default = 256;
165 dtrace_optval_t dtrace_cleanrate_default = 9900990;             /* 101 hz */
166 dtrace_optval_t dtrace_cleanrate_min = 200000;                  /* 5000 hz */
167 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;  /* 1/minute */
168 dtrace_optval_t dtrace_aggrate_default = NANOSEC;               /* 1 hz */
169 dtrace_optval_t dtrace_statusrate_default = NANOSEC;            /* 1 hz */
170 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;  /* 6/minute */
171 dtrace_optval_t dtrace_switchrate_default = NANOSEC;            /* 1 hz */
172 dtrace_optval_t dtrace_nspec_default = 1;
173 dtrace_optval_t dtrace_specsize_default = 32 * 1024;
174 dtrace_optval_t dtrace_stackframes_default = 20;
175 dtrace_optval_t dtrace_ustackframes_default = 20;
176 dtrace_optval_t dtrace_jstackframes_default = 50;
177 dtrace_optval_t dtrace_jstackstrsize_default = 512;
178 int             dtrace_msgdsize_max = 128;
179 hrtime_t        dtrace_chill_max = 500 * (NANOSEC / MILLISEC);  /* 500 ms */
180 hrtime_t        dtrace_chill_interval = NANOSEC;                /* 1000 ms */
181 int             dtrace_devdepth_max = 32;
182 int             dtrace_err_verbose;
183 hrtime_t        dtrace_deadman_interval = NANOSEC;
184 hrtime_t        dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
185 hrtime_t        dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
186 hrtime_t        dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
187
188 /*
189  * DTrace External Variables
190  *
191  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
192  * available to DTrace consumers via the backtick (`) syntax.  One of these,
193  * dtrace_zero, is made deliberately so:  it is provided as a source of
194  * well-known, zero-filled memory.  While this variable is not documented,
195  * it is used by some translators as an implementation detail.
196  */
197 const char      dtrace_zero[256] = { 0 };       /* zero-filled memory */
198
199 /*
200  * DTrace Internal Variables
201  */
202 #if defined(sun)
203 static dev_info_t       *dtrace_devi;           /* device info */
204 #endif
205 #if defined(sun)
206 static vmem_t           *dtrace_arena;          /* probe ID arena */
207 static vmem_t           *dtrace_minor;          /* minor number arena */
208 #else
209 static taskq_t          *dtrace_taskq;          /* task queue */
210 static struct unrhdr    *dtrace_arena;          /* Probe ID number.     */
211 #endif
212 static dtrace_probe_t   **dtrace_probes;        /* array of all probes */
213 static int              dtrace_nprobes;         /* number of probes */
214 static dtrace_provider_t *dtrace_provider;      /* provider list */
215 static dtrace_meta_t    *dtrace_meta_pid;       /* user-land meta provider */
216 static int              dtrace_opens;           /* number of opens */
217 static int              dtrace_helpers;         /* number of helpers */
218 #if defined(sun)
219 static void             *dtrace_softstate;      /* softstate pointer */
220 #endif
221 static dtrace_hash_t    *dtrace_bymod;          /* probes hashed by module */
222 static dtrace_hash_t    *dtrace_byfunc;         /* probes hashed by function */
223 static dtrace_hash_t    *dtrace_byname;         /* probes hashed by name */
224 static dtrace_toxrange_t *dtrace_toxrange;      /* toxic range array */
225 static int              dtrace_toxranges;       /* number of toxic ranges */
226 static int              dtrace_toxranges_max;   /* size of toxic range array */
227 static dtrace_anon_t    dtrace_anon;            /* anonymous enabling */
228 static kmem_cache_t     *dtrace_state_cache;    /* cache for dynamic state */
229 static uint64_t         dtrace_vtime_references; /* number of vtimestamp refs */
230 static kthread_t        *dtrace_panicked;       /* panicking thread */
231 static dtrace_ecb_t     *dtrace_ecb_create_cache; /* cached created ECB */
232 static dtrace_genid_t   dtrace_probegen;        /* current probe generation */
233 static dtrace_helpers_t *dtrace_deferred_pid;   /* deferred helper list */
234 static dtrace_enabling_t *dtrace_retained;      /* list of retained enablings */
235 static dtrace_dynvar_t  dtrace_dynhash_sink;    /* end of dynamic hash chains */
236 #if !defined(sun)
237 static struct mtx       dtrace_unr_mtx;
238 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
239 int             dtrace_in_probe;        /* non-zero if executing a probe */
240 #if defined(__i386__) || defined(__amd64__)
241 uintptr_t       dtrace_in_probe_addr;   /* Address of invop when already in probe */
242 #endif
243 static eventhandler_tag dtrace_kld_load_tag;
244 static eventhandler_tag dtrace_kld_unload_tag;
245 #endif
246
247 /*
248  * DTrace Locking
249  * DTrace is protected by three (relatively coarse-grained) locks:
250  *
251  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
252  *     including enabling state, probes, ECBs, consumer state, helper state,
253  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
254  *     probe context is lock-free -- synchronization is handled via the
255  *     dtrace_sync() cross call mechanism.
256  *
257  * (2) dtrace_provider_lock is required when manipulating provider state, or
258  *     when provider state must be held constant.
259  *
260  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
261  *     when meta provider state must be held constant.
262  *
263  * The lock ordering between these three locks is dtrace_meta_lock before
264  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
265  * several places where dtrace_provider_lock is held by the framework as it
266  * calls into the providers -- which then call back into the framework,
267  * grabbing dtrace_lock.)
268  *
269  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
270  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
271  * role as a coarse-grained lock; it is acquired before both of these locks.
272  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
273  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
274  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
275  * acquired _between_ dtrace_provider_lock and dtrace_lock.
276  */
277 static kmutex_t         dtrace_lock;            /* probe state lock */
278 static kmutex_t         dtrace_provider_lock;   /* provider state lock */
279 static kmutex_t         dtrace_meta_lock;       /* meta-provider state lock */
280
281 #if !defined(sun)
282 /* XXX FreeBSD hacks. */
283 static kmutex_t         mod_lock;
284
285 #define cr_suid         cr_svuid
286 #define cr_sgid         cr_svgid
287 #define ipaddr_t        in_addr_t
288 #define mod_modname     pathname
289 #define vuprintf        vprintf
290 #define ttoproc(_a)     ((_a)->td_proc)
291 #define crgetzoneid(_a) 0
292 #define NCPU            MAXCPU
293 #define SNOCD           0
294 #define CPU_ON_INTR(_a) 0
295
296 #define PRIV_EFFECTIVE          (1 << 0)
297 #define PRIV_DTRACE_KERNEL      (1 << 1)
298 #define PRIV_DTRACE_PROC        (1 << 2)
299 #define PRIV_DTRACE_USER        (1 << 3)
300 #define PRIV_PROC_OWNER         (1 << 4)
301 #define PRIV_PROC_ZONE          (1 << 5)
302 #define PRIV_ALL                ~0
303
304 SYSCTL_NODE(_debug, OID_AUTO, dtrace, CTLFLAG_RD, 0, "DTrace Information");
305 #endif
306
307 #if defined(sun)
308 #define curcpu  CPU->cpu_id
309 #endif
310
311
312 /*
313  * DTrace Provider Variables
314  *
315  * These are the variables relating to DTrace as a provider (that is, the
316  * provider of the BEGIN, END, and ERROR probes).
317  */
318 static dtrace_pattr_t   dtrace_provider_attr = {
319 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
320 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
321 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
322 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
323 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
324 };
325
326 static void
327 dtrace_nullop(void)
328 {}
329
330 static dtrace_pops_t    dtrace_provider_ops = {
331         (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
332         (void (*)(void *, modctl_t *))dtrace_nullop,
333         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
334         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
335         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
336         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
337         NULL,
338         NULL,
339         NULL,
340         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop
341 };
342
343 static dtrace_id_t      dtrace_probeid_begin;   /* special BEGIN probe */
344 static dtrace_id_t      dtrace_probeid_end;     /* special END probe */
345 dtrace_id_t             dtrace_probeid_error;   /* special ERROR probe */
346
347 /*
348  * DTrace Helper Tracing Variables
349  */
350 uint32_t dtrace_helptrace_next = 0;
351 uint32_t dtrace_helptrace_nlocals;
352 char    *dtrace_helptrace_buffer;
353 int     dtrace_helptrace_bufsize = 512 * 1024;
354
355 #ifdef DEBUG
356 int     dtrace_helptrace_enabled = 1;
357 #else
358 int     dtrace_helptrace_enabled = 0;
359 #endif
360
361 /*
362  * DTrace Error Hashing
363  *
364  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
365  * table.  This is very useful for checking coverage of tests that are
366  * expected to induce DIF or DOF processing errors, and may be useful for
367  * debugging problems in the DIF code generator or in DOF generation .  The
368  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
369  */
370 #ifdef DEBUG
371 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ];
372 static const char *dtrace_errlast;
373 static kthread_t *dtrace_errthread;
374 static kmutex_t dtrace_errlock;
375 #endif
376
377 /*
378  * DTrace Macros and Constants
379  *
380  * These are various macros that are useful in various spots in the
381  * implementation, along with a few random constants that have no meaning
382  * outside of the implementation.  There is no real structure to this cpp
383  * mishmash -- but is there ever?
384  */
385 #define DTRACE_HASHSTR(hash, probe)     \
386         dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
387
388 #define DTRACE_HASHNEXT(hash, probe)    \
389         (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
390
391 #define DTRACE_HASHPREV(hash, probe)    \
392         (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
393
394 #define DTRACE_HASHEQ(hash, lhs, rhs)   \
395         (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
396             *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
397
398 #define DTRACE_AGGHASHSIZE_SLEW         17
399
400 #define DTRACE_V4MAPPED_OFFSET          (sizeof (uint32_t) * 3)
401
402 /*
403  * The key for a thread-local variable consists of the lower 61 bits of the
404  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
405  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
406  * equal to a variable identifier.  This is necessary (but not sufficient) to
407  * assure that global associative arrays never collide with thread-local
408  * variables.  To guarantee that they cannot collide, we must also define the
409  * order for keying dynamic variables.  That order is:
410  *
411  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
412  *
413  * Because the variable-key and the tls-key are in orthogonal spaces, there is
414  * no way for a global variable key signature to match a thread-local key
415  * signature.
416  */
417 #if defined(sun)
418 #define DTRACE_TLS_THRKEY(where) { \
419         uint_t intr = 0; \
420         uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
421         for (; actv; actv >>= 1) \
422                 intr++; \
423         ASSERT(intr < (1 << 3)); \
424         (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
425             (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
426 }
427 #else
428 #define DTRACE_TLS_THRKEY(where) { \
429         solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
430         uint_t intr = 0; \
431         uint_t actv = _c->cpu_intr_actv; \
432         for (; actv; actv >>= 1) \
433                 intr++; \
434         ASSERT(intr < (1 << 3)); \
435         (where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
436             (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
437 }
438 #endif
439
440 #define DT_BSWAP_8(x)   ((x) & 0xff)
441 #define DT_BSWAP_16(x)  ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
442 #define DT_BSWAP_32(x)  ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
443 #define DT_BSWAP_64(x)  ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
444
445 #define DT_MASK_LO 0x00000000FFFFFFFFULL
446
447 #define DTRACE_STORE(type, tomax, offset, what) \
448         *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
449
450 #ifndef __x86
451 #define DTRACE_ALIGNCHECK(addr, size, flags)                            \
452         if (addr & (size - 1)) {                                        \
453                 *flags |= CPU_DTRACE_BADALIGN;                          \
454                 cpu_core[curcpu].cpuc_dtrace_illval = addr;     \
455                 return (0);                                             \
456         }
457 #else
458 #define DTRACE_ALIGNCHECK(addr, size, flags)
459 #endif
460
461 /*
462  * Test whether a range of memory starting at testaddr of size testsz falls
463  * within the range of memory described by addr, sz.  We take care to avoid
464  * problems with overflow and underflow of the unsigned quantities, and
465  * disallow all negative sizes.  Ranges of size 0 are allowed.
466  */
467 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
468         ((testaddr) - (baseaddr) < (basesz) && \
469         (testaddr) + (testsz) - (baseaddr) <= (basesz) && \
470         (testaddr) + (testsz) >= (testaddr))
471
472 /*
473  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
474  * alloc_sz on the righthand side of the comparison in order to avoid overflow
475  * or underflow in the comparison with it.  This is simpler than the INRANGE
476  * check above, because we know that the dtms_scratch_ptr is valid in the
477  * range.  Allocations of size zero are allowed.
478  */
479 #define DTRACE_INSCRATCH(mstate, alloc_sz) \
480         ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
481         (mstate)->dtms_scratch_ptr >= (alloc_sz))
482
483 #define DTRACE_LOADFUNC(bits)                                           \
484 /*CSTYLED*/                                                             \
485 uint##bits##_t                                                          \
486 dtrace_load##bits(uintptr_t addr)                                       \
487 {                                                                       \
488         size_t size = bits / NBBY;                                      \
489         /*CSTYLED*/                                                     \
490         uint##bits##_t rval;                                            \
491         int i;                                                          \
492         volatile uint16_t *flags = (volatile uint16_t *)                \
493             &cpu_core[curcpu].cpuc_dtrace_flags;                        \
494                                                                         \
495         DTRACE_ALIGNCHECK(addr, size, flags);                           \
496                                                                         \
497         for (i = 0; i < dtrace_toxranges; i++) {                        \
498                 if (addr >= dtrace_toxrange[i].dtt_limit)               \
499                         continue;                                       \
500                                                                         \
501                 if (addr + size <= dtrace_toxrange[i].dtt_base)         \
502                         continue;                                       \
503                                                                         \
504                 /*                                                      \
505                  * This address falls within a toxic region; return 0.  \
506                  */                                                     \
507                 *flags |= CPU_DTRACE_BADADDR;                           \
508                 cpu_core[curcpu].cpuc_dtrace_illval = addr;             \
509                 return (0);                                             \
510         }                                                               \
511                                                                         \
512         *flags |= CPU_DTRACE_NOFAULT;                                   \
513         /*CSTYLED*/                                                     \
514         rval = *((volatile uint##bits##_t *)addr);                      \
515         *flags &= ~CPU_DTRACE_NOFAULT;                                  \
516                                                                         \
517         return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);               \
518 }
519
520 #ifdef _LP64
521 #define dtrace_loadptr  dtrace_load64
522 #else
523 #define dtrace_loadptr  dtrace_load32
524 #endif
525
526 #define DTRACE_DYNHASH_FREE     0
527 #define DTRACE_DYNHASH_SINK     1
528 #define DTRACE_DYNHASH_VALID    2
529
530 #define DTRACE_MATCH_NEXT       0
531 #define DTRACE_MATCH_DONE       1
532 #define DTRACE_ANCHORED(probe)  ((probe)->dtpr_func[0] != '\0')
533 #define DTRACE_STATE_ALIGN      64
534
535 #define DTRACE_FLAGS2FLT(flags)                                         \
536         (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :           \
537         ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :                \
538         ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :            \
539         ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :                \
540         ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :                \
541         ((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :         \
542         ((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :         \
543         ((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :       \
544         ((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :         \
545         DTRACEFLT_UNKNOWN)
546
547 #define DTRACEACT_ISSTRING(act)                                         \
548         ((act)->dta_kind == DTRACEACT_DIFEXPR &&                        \
549         (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
550
551 /* Function prototype definitions: */
552 static size_t dtrace_strlen(const char *, size_t);
553 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
554 static void dtrace_enabling_provide(dtrace_provider_t *);
555 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
556 static void dtrace_enabling_matchall(void);
557 static void dtrace_enabling_reap(void);
558 static dtrace_state_t *dtrace_anon_grab(void);
559 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
560     dtrace_state_t *, uint64_t, uint64_t);
561 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
562 static void dtrace_buffer_drop(dtrace_buffer_t *);
563 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
564 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
565     dtrace_state_t *, dtrace_mstate_t *);
566 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
567     dtrace_optval_t);
568 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
569 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
570 uint16_t dtrace_load16(uintptr_t);
571 uint32_t dtrace_load32(uintptr_t);
572 uint64_t dtrace_load64(uintptr_t);
573 uint8_t dtrace_load8(uintptr_t);
574 void dtrace_dynvar_clean(dtrace_dstate_t *);
575 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
576     size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
577 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
578
579 /*
580  * DTrace Probe Context Functions
581  *
582  * These functions are called from probe context.  Because probe context is
583  * any context in which C may be called, arbitrarily locks may be held,
584  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
585  * As a result, functions called from probe context may only call other DTrace
586  * support functions -- they may not interact at all with the system at large.
587  * (Note that the ASSERT macro is made probe-context safe by redefining it in
588  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
589  * loads are to be performed from probe context, they _must_ be in terms of
590  * the safe dtrace_load*() variants.
591  *
592  * Some functions in this block are not actually called from probe context;
593  * for these functions, there will be a comment above the function reading
594  * "Note:  not called from probe context."
595  */
596 void
597 dtrace_panic(const char *format, ...)
598 {
599         va_list alist;
600
601         va_start(alist, format);
602         dtrace_vpanic(format, alist);
603         va_end(alist);
604 }
605
606 int
607 dtrace_assfail(const char *a, const char *f, int l)
608 {
609         dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
610
611         /*
612          * We just need something here that even the most clever compiler
613          * cannot optimize away.
614          */
615         return (a[(uintptr_t)f]);
616 }
617
618 /*
619  * Atomically increment a specified error counter from probe context.
620  */
621 static void
622 dtrace_error(uint32_t *counter)
623 {
624         /*
625          * Most counters stored to in probe context are per-CPU counters.
626          * However, there are some error conditions that are sufficiently
627          * arcane that they don't merit per-CPU storage.  If these counters
628          * are incremented concurrently on different CPUs, scalability will be
629          * adversely affected -- but we don't expect them to be white-hot in a
630          * correctly constructed enabling...
631          */
632         uint32_t oval, nval;
633
634         do {
635                 oval = *counter;
636
637                 if ((nval = oval + 1) == 0) {
638                         /*
639                          * If the counter would wrap, set it to 1 -- assuring
640                          * that the counter is never zero when we have seen
641                          * errors.  (The counter must be 32-bits because we
642                          * aren't guaranteed a 64-bit compare&swap operation.)
643                          * To save this code both the infamy of being fingered
644                          * by a priggish news story and the indignity of being
645                          * the target of a neo-puritan witch trial, we're
646                          * carefully avoiding any colorful description of the
647                          * likelihood of this condition -- but suffice it to
648                          * say that it is only slightly more likely than the
649                          * overflow of predicate cache IDs, as discussed in
650                          * dtrace_predicate_create().
651                          */
652                         nval = 1;
653                 }
654         } while (dtrace_cas32(counter, oval, nval) != oval);
655 }
656
657 /*
658  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
659  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
660  */
661 DTRACE_LOADFUNC(8)
662 DTRACE_LOADFUNC(16)
663 DTRACE_LOADFUNC(32)
664 DTRACE_LOADFUNC(64)
665
666 static int
667 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
668 {
669         if (dest < mstate->dtms_scratch_base)
670                 return (0);
671
672         if (dest + size < dest)
673                 return (0);
674
675         if (dest + size > mstate->dtms_scratch_ptr)
676                 return (0);
677
678         return (1);
679 }
680
681 static int
682 dtrace_canstore_statvar(uint64_t addr, size_t sz,
683     dtrace_statvar_t **svars, int nsvars)
684 {
685         int i;
686
687         for (i = 0; i < nsvars; i++) {
688                 dtrace_statvar_t *svar = svars[i];
689
690                 if (svar == NULL || svar->dtsv_size == 0)
691                         continue;
692
693                 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
694                         return (1);
695         }
696
697         return (0);
698 }
699
700 /*
701  * Check to see if the address is within a memory region to which a store may
702  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
703  * region.  The caller of dtrace_canstore() is responsible for performing any
704  * alignment checks that are needed before stores are actually executed.
705  */
706 static int
707 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
708     dtrace_vstate_t *vstate)
709 {
710         /*
711          * First, check to see if the address is in scratch space...
712          */
713         if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
714             mstate->dtms_scratch_size))
715                 return (1);
716
717         /*
718          * Now check to see if it's a dynamic variable.  This check will pick
719          * up both thread-local variables and any global dynamically-allocated
720          * variables.
721          */
722         if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
723             vstate->dtvs_dynvars.dtds_size)) {
724                 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
725                 uintptr_t base = (uintptr_t)dstate->dtds_base +
726                     (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
727                 uintptr_t chunkoffs;
728
729                 /*
730                  * Before we assume that we can store here, we need to make
731                  * sure that it isn't in our metadata -- storing to our
732                  * dynamic variable metadata would corrupt our state.  For
733                  * the range to not include any dynamic variable metadata,
734                  * it must:
735                  *
736                  *      (1) Start above the hash table that is at the base of
737                  *      the dynamic variable space
738                  *
739                  *      (2) Have a starting chunk offset that is beyond the
740                  *      dtrace_dynvar_t that is at the base of every chunk
741                  *
742                  *      (3) Not span a chunk boundary
743                  *
744                  */
745                 if (addr < base)
746                         return (0);
747
748                 chunkoffs = (addr - base) % dstate->dtds_chunksize;
749
750                 if (chunkoffs < sizeof (dtrace_dynvar_t))
751                         return (0);
752
753                 if (chunkoffs + sz > dstate->dtds_chunksize)
754                         return (0);
755
756                 return (1);
757         }
758
759         /*
760          * Finally, check the static local and global variables.  These checks
761          * take the longest, so we perform them last.
762          */
763         if (dtrace_canstore_statvar(addr, sz,
764             vstate->dtvs_locals, vstate->dtvs_nlocals))
765                 return (1);
766
767         if (dtrace_canstore_statvar(addr, sz,
768             vstate->dtvs_globals, vstate->dtvs_nglobals))
769                 return (1);
770
771         return (0);
772 }
773
774
775 /*
776  * Convenience routine to check to see if the address is within a memory
777  * region in which a load may be issued given the user's privilege level;
778  * if not, it sets the appropriate error flags and loads 'addr' into the
779  * illegal value slot.
780  *
781  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
782  * appropriate memory access protection.
783  */
784 static int
785 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
786     dtrace_vstate_t *vstate)
787 {
788         volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
789
790         /*
791          * If we hold the privilege to read from kernel memory, then
792          * everything is readable.
793          */
794         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
795                 return (1);
796
797         /*
798          * You can obviously read that which you can store.
799          */
800         if (dtrace_canstore(addr, sz, mstate, vstate))
801                 return (1);
802
803         /*
804          * We're allowed to read from our own string table.
805          */
806         if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
807             mstate->dtms_difo->dtdo_strlen))
808                 return (1);
809
810         DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
811         *illval = addr;
812         return (0);
813 }
814
815 /*
816  * Convenience routine to check to see if a given string is within a memory
817  * region in which a load may be issued given the user's privilege level;
818  * this exists so that we don't need to issue unnecessary dtrace_strlen()
819  * calls in the event that the user has all privileges.
820  */
821 static int
822 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
823     dtrace_vstate_t *vstate)
824 {
825         size_t strsz;
826
827         /*
828          * If we hold the privilege to read from kernel memory, then
829          * everything is readable.
830          */
831         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
832                 return (1);
833
834         strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
835         if (dtrace_canload(addr, strsz, mstate, vstate))
836                 return (1);
837
838         return (0);
839 }
840
841 /*
842  * Convenience routine to check to see if a given variable is within a memory
843  * region in which a load may be issued given the user's privilege level.
844  */
845 static int
846 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
847     dtrace_vstate_t *vstate)
848 {
849         size_t sz;
850         ASSERT(type->dtdt_flags & DIF_TF_BYREF);
851
852         /*
853          * If we hold the privilege to read from kernel memory, then
854          * everything is readable.
855          */
856         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
857                 return (1);
858
859         if (type->dtdt_kind == DIF_TYPE_STRING)
860                 sz = dtrace_strlen(src,
861                     vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
862         else
863                 sz = type->dtdt_size;
864
865         return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
866 }
867
868 /*
869  * Compare two strings using safe loads.
870  */
871 static int
872 dtrace_strncmp(char *s1, char *s2, size_t limit)
873 {
874         uint8_t c1, c2;
875         volatile uint16_t *flags;
876
877         if (s1 == s2 || limit == 0)
878                 return (0);
879
880         flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
881
882         do {
883                 if (s1 == NULL) {
884                         c1 = '\0';
885                 } else {
886                         c1 = dtrace_load8((uintptr_t)s1++);
887                 }
888
889                 if (s2 == NULL) {
890                         c2 = '\0';
891                 } else {
892                         c2 = dtrace_load8((uintptr_t)s2++);
893                 }
894
895                 if (c1 != c2)
896                         return (c1 - c2);
897         } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
898
899         return (0);
900 }
901
902 /*
903  * Compute strlen(s) for a string using safe memory accesses.  The additional
904  * len parameter is used to specify a maximum length to ensure completion.
905  */
906 static size_t
907 dtrace_strlen(const char *s, size_t lim)
908 {
909         uint_t len;
910
911         for (len = 0; len != lim; len++) {
912                 if (dtrace_load8((uintptr_t)s++) == '\0')
913                         break;
914         }
915
916         return (len);
917 }
918
919 /*
920  * Check if an address falls within a toxic region.
921  */
922 static int
923 dtrace_istoxic(uintptr_t kaddr, size_t size)
924 {
925         uintptr_t taddr, tsize;
926         int i;
927
928         for (i = 0; i < dtrace_toxranges; i++) {
929                 taddr = dtrace_toxrange[i].dtt_base;
930                 tsize = dtrace_toxrange[i].dtt_limit - taddr;
931
932                 if (kaddr - taddr < tsize) {
933                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
934                         cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
935                         return (1);
936                 }
937
938                 if (taddr - kaddr < size) {
939                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
940                         cpu_core[curcpu].cpuc_dtrace_illval = taddr;
941                         return (1);
942                 }
943         }
944
945         return (0);
946 }
947
948 /*
949  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
950  * memory specified by the DIF program.  The dst is assumed to be safe memory
951  * that we can store to directly because it is managed by DTrace.  As with
952  * standard bcopy, overlapping copies are handled properly.
953  */
954 static void
955 dtrace_bcopy(const void *src, void *dst, size_t len)
956 {
957         if (len != 0) {
958                 uint8_t *s1 = dst;
959                 const uint8_t *s2 = src;
960
961                 if (s1 <= s2) {
962                         do {
963                                 *s1++ = dtrace_load8((uintptr_t)s2++);
964                         } while (--len != 0);
965                 } else {
966                         s2 += len;
967                         s1 += len;
968
969                         do {
970                                 *--s1 = dtrace_load8((uintptr_t)--s2);
971                         } while (--len != 0);
972                 }
973         }
974 }
975
976 /*
977  * Copy src to dst using safe memory accesses, up to either the specified
978  * length, or the point that a nul byte is encountered.  The src is assumed to
979  * be unsafe memory specified by the DIF program.  The dst is assumed to be
980  * safe memory that we can store to directly because it is managed by DTrace.
981  * Unlike dtrace_bcopy(), overlapping regions are not handled.
982  */
983 static void
984 dtrace_strcpy(const void *src, void *dst, size_t len)
985 {
986         if (len != 0) {
987                 uint8_t *s1 = dst, c;
988                 const uint8_t *s2 = src;
989
990                 do {
991                         *s1++ = c = dtrace_load8((uintptr_t)s2++);
992                 } while (--len != 0 && c != '\0');
993         }
994 }
995
996 /*
997  * Copy src to dst, deriving the size and type from the specified (BYREF)
998  * variable type.  The src is assumed to be unsafe memory specified by the DIF
999  * program.  The dst is assumed to be DTrace variable memory that is of the
1000  * specified type; we assume that we can store to directly.
1001  */
1002 static void
1003 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1004 {
1005         ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1006
1007         if (type->dtdt_kind == DIF_TYPE_STRING) {
1008                 dtrace_strcpy(src, dst, type->dtdt_size);
1009         } else {
1010                 dtrace_bcopy(src, dst, type->dtdt_size);
1011         }
1012 }
1013
1014 /*
1015  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1016  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1017  * safe memory that we can access directly because it is managed by DTrace.
1018  */
1019 static int
1020 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1021 {
1022         volatile uint16_t *flags;
1023
1024         flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1025
1026         if (s1 == s2)
1027                 return (0);
1028
1029         if (s1 == NULL || s2 == NULL)
1030                 return (1);
1031
1032         if (s1 != s2 && len != 0) {
1033                 const uint8_t *ps1 = s1;
1034                 const uint8_t *ps2 = s2;
1035
1036                 do {
1037                         if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1038                                 return (1);
1039                 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1040         }
1041         return (0);
1042 }
1043
1044 /*
1045  * Zero the specified region using a simple byte-by-byte loop.  Note that this
1046  * is for safe DTrace-managed memory only.
1047  */
1048 static void
1049 dtrace_bzero(void *dst, size_t len)
1050 {
1051         uchar_t *cp;
1052
1053         for (cp = dst; len != 0; len--)
1054                 *cp++ = 0;
1055 }
1056
1057 static void
1058 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1059 {
1060         uint64_t result[2];
1061
1062         result[0] = addend1[0] + addend2[0];
1063         result[1] = addend1[1] + addend2[1] +
1064             (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1065
1066         sum[0] = result[0];
1067         sum[1] = result[1];
1068 }
1069
1070 /*
1071  * Shift the 128-bit value in a by b. If b is positive, shift left.
1072  * If b is negative, shift right.
1073  */
1074 static void
1075 dtrace_shift_128(uint64_t *a, int b)
1076 {
1077         uint64_t mask;
1078
1079         if (b == 0)
1080                 return;
1081
1082         if (b < 0) {
1083                 b = -b;
1084                 if (b >= 64) {
1085                         a[0] = a[1] >> (b - 64);
1086                         a[1] = 0;
1087                 } else {
1088                         a[0] >>= b;
1089                         mask = 1LL << (64 - b);
1090                         mask -= 1;
1091                         a[0] |= ((a[1] & mask) << (64 - b));
1092                         a[1] >>= b;
1093                 }
1094         } else {
1095                 if (b >= 64) {
1096                         a[1] = a[0] << (b - 64);
1097                         a[0] = 0;
1098                 } else {
1099                         a[1] <<= b;
1100                         mask = a[0] >> (64 - b);
1101                         a[1] |= mask;
1102                         a[0] <<= b;
1103                 }
1104         }
1105 }
1106
1107 /*
1108  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1109  * use native multiplication on those, and then re-combine into the
1110  * resulting 128-bit value.
1111  *
1112  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1113  *     hi1 * hi2 << 64 +
1114  *     hi1 * lo2 << 32 +
1115  *     hi2 * lo1 << 32 +
1116  *     lo1 * lo2
1117  */
1118 static void
1119 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1120 {
1121         uint64_t hi1, hi2, lo1, lo2;
1122         uint64_t tmp[2];
1123
1124         hi1 = factor1 >> 32;
1125         hi2 = factor2 >> 32;
1126
1127         lo1 = factor1 & DT_MASK_LO;
1128         lo2 = factor2 & DT_MASK_LO;
1129
1130         product[0] = lo1 * lo2;
1131         product[1] = hi1 * hi2;
1132
1133         tmp[0] = hi1 * lo2;
1134         tmp[1] = 0;
1135         dtrace_shift_128(tmp, 32);
1136         dtrace_add_128(product, tmp, product);
1137
1138         tmp[0] = hi2 * lo1;
1139         tmp[1] = 0;
1140         dtrace_shift_128(tmp, 32);
1141         dtrace_add_128(product, tmp, product);
1142 }
1143
1144 /*
1145  * This privilege check should be used by actions and subroutines to
1146  * verify that the user credentials of the process that enabled the
1147  * invoking ECB match the target credentials
1148  */
1149 static int
1150 dtrace_priv_proc_common_user(dtrace_state_t *state)
1151 {
1152         cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1153
1154         /*
1155          * We should always have a non-NULL state cred here, since if cred
1156          * is null (anonymous tracing), we fast-path bypass this routine.
1157          */
1158         ASSERT(s_cr != NULL);
1159
1160         if ((cr = CRED()) != NULL &&
1161             s_cr->cr_uid == cr->cr_uid &&
1162             s_cr->cr_uid == cr->cr_ruid &&
1163             s_cr->cr_uid == cr->cr_suid &&
1164             s_cr->cr_gid == cr->cr_gid &&
1165             s_cr->cr_gid == cr->cr_rgid &&
1166             s_cr->cr_gid == cr->cr_sgid)
1167                 return (1);
1168
1169         return (0);
1170 }
1171
1172 /*
1173  * This privilege check should be used by actions and subroutines to
1174  * verify that the zone of the process that enabled the invoking ECB
1175  * matches the target credentials
1176  */
1177 static int
1178 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1179 {
1180 #if defined(sun)
1181         cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1182
1183         /*
1184          * We should always have a non-NULL state cred here, since if cred
1185          * is null (anonymous tracing), we fast-path bypass this routine.
1186          */
1187         ASSERT(s_cr != NULL);
1188
1189         if ((cr = CRED()) != NULL &&
1190             s_cr->cr_zone == cr->cr_zone)
1191                 return (1);
1192
1193         return (0);
1194 #else
1195         return (1);
1196 #endif
1197 }
1198
1199 /*
1200  * This privilege check should be used by actions and subroutines to
1201  * verify that the process has not setuid or changed credentials.
1202  */
1203 static int
1204 dtrace_priv_proc_common_nocd(void)
1205 {
1206         proc_t *proc;
1207
1208         if ((proc = ttoproc(curthread)) != NULL &&
1209             !(proc->p_flag & SNOCD))
1210                 return (1);
1211
1212         return (0);
1213 }
1214
1215 static int
1216 dtrace_priv_proc_destructive(dtrace_state_t *state)
1217 {
1218         int action = state->dts_cred.dcr_action;
1219
1220         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1221             dtrace_priv_proc_common_zone(state) == 0)
1222                 goto bad;
1223
1224         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1225             dtrace_priv_proc_common_user(state) == 0)
1226                 goto bad;
1227
1228         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1229             dtrace_priv_proc_common_nocd() == 0)
1230                 goto bad;
1231
1232         return (1);
1233
1234 bad:
1235         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1236
1237         return (0);
1238 }
1239
1240 static int
1241 dtrace_priv_proc_control(dtrace_state_t *state)
1242 {
1243         if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1244                 return (1);
1245
1246         if (dtrace_priv_proc_common_zone(state) &&
1247             dtrace_priv_proc_common_user(state) &&
1248             dtrace_priv_proc_common_nocd())
1249                 return (1);
1250
1251         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1252
1253         return (0);
1254 }
1255
1256 static int
1257 dtrace_priv_proc(dtrace_state_t *state)
1258 {
1259         if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1260                 return (1);
1261
1262         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1263
1264         return (0);
1265 }
1266
1267 static int
1268 dtrace_priv_kernel(dtrace_state_t *state)
1269 {
1270         if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1271                 return (1);
1272
1273         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1274
1275         return (0);
1276 }
1277
1278 static int
1279 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1280 {
1281         if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1282                 return (1);
1283
1284         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1285
1286         return (0);
1287 }
1288
1289 /*
1290  * Note:  not called from probe context.  This function is called
1291  * asynchronously (and at a regular interval) from outside of probe context to
1292  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1293  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1294  */
1295 void
1296 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1297 {
1298         dtrace_dynvar_t *dirty;
1299         dtrace_dstate_percpu_t *dcpu;
1300         int i, work = 0;
1301
1302         for (i = 0; i < NCPU; i++) {
1303                 dcpu = &dstate->dtds_percpu[i];
1304
1305                 ASSERT(dcpu->dtdsc_rinsing == NULL);
1306
1307                 /*
1308                  * If the dirty list is NULL, there is no dirty work to do.
1309                  */
1310                 if (dcpu->dtdsc_dirty == NULL)
1311                         continue;
1312
1313                 /*
1314                  * If the clean list is non-NULL, then we're not going to do
1315                  * any work for this CPU -- it means that there has not been
1316                  * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1317                  * since the last time we cleaned house.
1318                  */
1319                 if (dcpu->dtdsc_clean != NULL)
1320                         continue;
1321
1322                 work = 1;
1323
1324                 /*
1325                  * Atomically move the dirty list aside.
1326                  */
1327                 do {
1328                         dirty = dcpu->dtdsc_dirty;
1329
1330                         /*
1331                          * Before we zap the dirty list, set the rinsing list.
1332                          * (This allows for a potential assertion in
1333                          * dtrace_dynvar():  if a free dynamic variable appears
1334                          * on a hash chain, either the dirty list or the
1335                          * rinsing list for some CPU must be non-NULL.)
1336                          */
1337                         dcpu->dtdsc_rinsing = dirty;
1338                         dtrace_membar_producer();
1339                 } while (dtrace_casptr(&dcpu->dtdsc_dirty,
1340                     dirty, NULL) != dirty);
1341         }
1342
1343         if (!work) {
1344                 /*
1345                  * We have no work to do; we can simply return.
1346                  */
1347                 return;
1348         }
1349
1350         dtrace_sync();
1351
1352         for (i = 0; i < NCPU; i++) {
1353                 dcpu = &dstate->dtds_percpu[i];
1354
1355                 if (dcpu->dtdsc_rinsing == NULL)
1356                         continue;
1357
1358                 /*
1359                  * We are now guaranteed that no hash chain contains a pointer
1360                  * into this dirty list; we can make it clean.
1361                  */
1362                 ASSERT(dcpu->dtdsc_clean == NULL);
1363                 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1364                 dcpu->dtdsc_rinsing = NULL;
1365         }
1366
1367         /*
1368          * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1369          * sure that all CPUs have seen all of the dtdsc_clean pointers.
1370          * This prevents a race whereby a CPU incorrectly decides that
1371          * the state should be something other than DTRACE_DSTATE_CLEAN
1372          * after dtrace_dynvar_clean() has completed.
1373          */
1374         dtrace_sync();
1375
1376         dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1377 }
1378
1379 /*
1380  * Depending on the value of the op parameter, this function looks-up,
1381  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1382  * allocation is requested, this function will return a pointer to a
1383  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1384  * variable can be allocated.  If NULL is returned, the appropriate counter
1385  * will be incremented.
1386  */
1387 dtrace_dynvar_t *
1388 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1389     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1390     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1391 {
1392         uint64_t hashval = DTRACE_DYNHASH_VALID;
1393         dtrace_dynhash_t *hash = dstate->dtds_hash;
1394         dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1395         processorid_t me = curcpu, cpu = me;
1396         dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1397         size_t bucket, ksize;
1398         size_t chunksize = dstate->dtds_chunksize;
1399         uintptr_t kdata, lock, nstate;
1400         uint_t i;
1401
1402         ASSERT(nkeys != 0);
1403
1404         /*
1405          * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1406          * algorithm.  For the by-value portions, we perform the algorithm in
1407          * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1408          * bit, and seems to have only a minute effect on distribution.  For
1409          * the by-reference data, we perform "One-at-a-time" iterating (safely)
1410          * over each referenced byte.  It's painful to do this, but it's much
1411          * better than pathological hash distribution.  The efficacy of the
1412          * hashing algorithm (and a comparison with other algorithms) may be
1413          * found by running the ::dtrace_dynstat MDB dcmd.
1414          */
1415         for (i = 0; i < nkeys; i++) {
1416                 if (key[i].dttk_size == 0) {
1417                         uint64_t val = key[i].dttk_value;
1418
1419                         hashval += (val >> 48) & 0xffff;
1420                         hashval += (hashval << 10);
1421                         hashval ^= (hashval >> 6);
1422
1423                         hashval += (val >> 32) & 0xffff;
1424                         hashval += (hashval << 10);
1425                         hashval ^= (hashval >> 6);
1426
1427                         hashval += (val >> 16) & 0xffff;
1428                         hashval += (hashval << 10);
1429                         hashval ^= (hashval >> 6);
1430
1431                         hashval += val & 0xffff;
1432                         hashval += (hashval << 10);
1433                         hashval ^= (hashval >> 6);
1434                 } else {
1435                         /*
1436                          * This is incredibly painful, but it beats the hell
1437                          * out of the alternative.
1438                          */
1439                         uint64_t j, size = key[i].dttk_size;
1440                         uintptr_t base = (uintptr_t)key[i].dttk_value;
1441
1442                         if (!dtrace_canload(base, size, mstate, vstate))
1443                                 break;
1444
1445                         for (j = 0; j < size; j++) {
1446                                 hashval += dtrace_load8(base + j);
1447                                 hashval += (hashval << 10);
1448                                 hashval ^= (hashval >> 6);
1449                         }
1450                 }
1451         }
1452
1453         if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1454                 return (NULL);
1455
1456         hashval += (hashval << 3);
1457         hashval ^= (hashval >> 11);
1458         hashval += (hashval << 15);
1459
1460         /*
1461          * There is a remote chance (ideally, 1 in 2^31) that our hashval
1462          * comes out to be one of our two sentinel hash values.  If this
1463          * actually happens, we set the hashval to be a value known to be a
1464          * non-sentinel value.
1465          */
1466         if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1467                 hashval = DTRACE_DYNHASH_VALID;
1468
1469         /*
1470          * Yes, it's painful to do a divide here.  If the cycle count becomes
1471          * important here, tricks can be pulled to reduce it.  (However, it's
1472          * critical that hash collisions be kept to an absolute minimum;
1473          * they're much more painful than a divide.)  It's better to have a
1474          * solution that generates few collisions and still keeps things
1475          * relatively simple.
1476          */
1477         bucket = hashval % dstate->dtds_hashsize;
1478
1479         if (op == DTRACE_DYNVAR_DEALLOC) {
1480                 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1481
1482                 for (;;) {
1483                         while ((lock = *lockp) & 1)
1484                                 continue;
1485
1486                         if (dtrace_casptr((volatile void *)lockp,
1487                             (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1488                                 break;
1489                 }
1490
1491                 dtrace_membar_producer();
1492         }
1493
1494 top:
1495         prev = NULL;
1496         lock = hash[bucket].dtdh_lock;
1497
1498         dtrace_membar_consumer();
1499
1500         start = hash[bucket].dtdh_chain;
1501         ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1502             start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1503             op != DTRACE_DYNVAR_DEALLOC));
1504
1505         for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1506                 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1507                 dtrace_key_t *dkey = &dtuple->dtt_key[0];
1508
1509                 if (dvar->dtdv_hashval != hashval) {
1510                         if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1511                                 /*
1512                                  * We've reached the sink, and therefore the
1513                                  * end of the hash chain; we can kick out of
1514                                  * the loop knowing that we have seen a valid
1515                                  * snapshot of state.
1516                                  */
1517                                 ASSERT(dvar->dtdv_next == NULL);
1518                                 ASSERT(dvar == &dtrace_dynhash_sink);
1519                                 break;
1520                         }
1521
1522                         if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1523                                 /*
1524                                  * We've gone off the rails:  somewhere along
1525                                  * the line, one of the members of this hash
1526                                  * chain was deleted.  Note that we could also
1527                                  * detect this by simply letting this loop run
1528                                  * to completion, as we would eventually hit
1529                                  * the end of the dirty list.  However, we
1530                                  * want to avoid running the length of the
1531                                  * dirty list unnecessarily (it might be quite
1532                                  * long), so we catch this as early as
1533                                  * possible by detecting the hash marker.  In
1534                                  * this case, we simply set dvar to NULL and
1535                                  * break; the conditional after the loop will
1536                                  * send us back to top.
1537                                  */
1538                                 dvar = NULL;
1539                                 break;
1540                         }
1541
1542                         goto next;
1543                 }
1544
1545                 if (dtuple->dtt_nkeys != nkeys)
1546                         goto next;
1547
1548                 for (i = 0; i < nkeys; i++, dkey++) {
1549                         if (dkey->dttk_size != key[i].dttk_size)
1550                                 goto next; /* size or type mismatch */
1551
1552                         if (dkey->dttk_size != 0) {
1553                                 if (dtrace_bcmp(
1554                                     (void *)(uintptr_t)key[i].dttk_value,
1555                                     (void *)(uintptr_t)dkey->dttk_value,
1556                                     dkey->dttk_size))
1557                                         goto next;
1558                         } else {
1559                                 if (dkey->dttk_value != key[i].dttk_value)
1560                                         goto next;
1561                         }
1562                 }
1563
1564                 if (op != DTRACE_DYNVAR_DEALLOC)
1565                         return (dvar);
1566
1567                 ASSERT(dvar->dtdv_next == NULL ||
1568                     dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1569
1570                 if (prev != NULL) {
1571                         ASSERT(hash[bucket].dtdh_chain != dvar);
1572                         ASSERT(start != dvar);
1573                         ASSERT(prev->dtdv_next == dvar);
1574                         prev->dtdv_next = dvar->dtdv_next;
1575                 } else {
1576                         if (dtrace_casptr(&hash[bucket].dtdh_chain,
1577                             start, dvar->dtdv_next) != start) {
1578                                 /*
1579                                  * We have failed to atomically swing the
1580                                  * hash table head pointer, presumably because
1581                                  * of a conflicting allocation on another CPU.
1582                                  * We need to reread the hash chain and try
1583                                  * again.
1584                                  */
1585                                 goto top;
1586                         }
1587                 }
1588
1589                 dtrace_membar_producer();
1590
1591                 /*
1592                  * Now set the hash value to indicate that it's free.
1593                  */
1594                 ASSERT(hash[bucket].dtdh_chain != dvar);
1595                 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1596
1597                 dtrace_membar_producer();
1598
1599                 /*
1600                  * Set the next pointer to point at the dirty list, and
1601                  * atomically swing the dirty pointer to the newly freed dvar.
1602                  */
1603                 do {
1604                         next = dcpu->dtdsc_dirty;
1605                         dvar->dtdv_next = next;
1606                 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1607
1608                 /*
1609                  * Finally, unlock this hash bucket.
1610                  */
1611                 ASSERT(hash[bucket].dtdh_lock == lock);
1612                 ASSERT(lock & 1);
1613                 hash[bucket].dtdh_lock++;
1614
1615                 return (NULL);
1616 next:
1617                 prev = dvar;
1618                 continue;
1619         }
1620
1621         if (dvar == NULL) {
1622                 /*
1623                  * If dvar is NULL, it is because we went off the rails:
1624                  * one of the elements that we traversed in the hash chain
1625                  * was deleted while we were traversing it.  In this case,
1626                  * we assert that we aren't doing a dealloc (deallocs lock
1627                  * the hash bucket to prevent themselves from racing with
1628                  * one another), and retry the hash chain traversal.
1629                  */
1630                 ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1631                 goto top;
1632         }
1633
1634         if (op != DTRACE_DYNVAR_ALLOC) {
1635                 /*
1636                  * If we are not to allocate a new variable, we want to
1637                  * return NULL now.  Before we return, check that the value
1638                  * of the lock word hasn't changed.  If it has, we may have
1639                  * seen an inconsistent snapshot.
1640                  */
1641                 if (op == DTRACE_DYNVAR_NOALLOC) {
1642                         if (hash[bucket].dtdh_lock != lock)
1643                                 goto top;
1644                 } else {
1645                         ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1646                         ASSERT(hash[bucket].dtdh_lock == lock);
1647                         ASSERT(lock & 1);
1648                         hash[bucket].dtdh_lock++;
1649                 }
1650
1651                 return (NULL);
1652         }
1653
1654         /*
1655          * We need to allocate a new dynamic variable.  The size we need is the
1656          * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1657          * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1658          * the size of any referred-to data (dsize).  We then round the final
1659          * size up to the chunksize for allocation.
1660          */
1661         for (ksize = 0, i = 0; i < nkeys; i++)
1662                 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1663
1664         /*
1665          * This should be pretty much impossible, but could happen if, say,
1666          * strange DIF specified the tuple.  Ideally, this should be an
1667          * assertion and not an error condition -- but that requires that the
1668          * chunksize calculation in dtrace_difo_chunksize() be absolutely
1669          * bullet-proof.  (That is, it must not be able to be fooled by
1670          * malicious DIF.)  Given the lack of backwards branches in DIF,
1671          * solving this would presumably not amount to solving the Halting
1672          * Problem -- but it still seems awfully hard.
1673          */
1674         if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1675             ksize + dsize > chunksize) {
1676                 dcpu->dtdsc_drops++;
1677                 return (NULL);
1678         }
1679
1680         nstate = DTRACE_DSTATE_EMPTY;
1681
1682         do {
1683 retry:
1684                 free = dcpu->dtdsc_free;
1685
1686                 if (free == NULL) {
1687                         dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1688                         void *rval;
1689
1690                         if (clean == NULL) {
1691                                 /*
1692                                  * We're out of dynamic variable space on
1693                                  * this CPU.  Unless we have tried all CPUs,
1694                                  * we'll try to allocate from a different
1695                                  * CPU.
1696                                  */
1697                                 switch (dstate->dtds_state) {
1698                                 case DTRACE_DSTATE_CLEAN: {
1699                                         void *sp = &dstate->dtds_state;
1700
1701                                         if (++cpu >= NCPU)
1702                                                 cpu = 0;
1703
1704                                         if (dcpu->dtdsc_dirty != NULL &&
1705                                             nstate == DTRACE_DSTATE_EMPTY)
1706                                                 nstate = DTRACE_DSTATE_DIRTY;
1707
1708                                         if (dcpu->dtdsc_rinsing != NULL)
1709                                                 nstate = DTRACE_DSTATE_RINSING;
1710
1711                                         dcpu = &dstate->dtds_percpu[cpu];
1712
1713                                         if (cpu != me)
1714                                                 goto retry;
1715
1716                                         (void) dtrace_cas32(sp,
1717                                             DTRACE_DSTATE_CLEAN, nstate);
1718
1719                                         /*
1720                                          * To increment the correct bean
1721                                          * counter, take another lap.
1722                                          */
1723                                         goto retry;
1724                                 }
1725
1726                                 case DTRACE_DSTATE_DIRTY:
1727                                         dcpu->dtdsc_dirty_drops++;
1728                                         break;
1729
1730                                 case DTRACE_DSTATE_RINSING:
1731                                         dcpu->dtdsc_rinsing_drops++;
1732                                         break;
1733
1734                                 case DTRACE_DSTATE_EMPTY:
1735                                         dcpu->dtdsc_drops++;
1736                                         break;
1737                                 }
1738
1739                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1740                                 return (NULL);
1741                         }
1742
1743                         /*
1744                          * The clean list appears to be non-empty.  We want to
1745                          * move the clean list to the free list; we start by
1746                          * moving the clean pointer aside.
1747                          */
1748                         if (dtrace_casptr(&dcpu->dtdsc_clean,
1749                             clean, NULL) != clean) {
1750                                 /*
1751                                  * We are in one of two situations:
1752                                  *
1753                                  *  (a) The clean list was switched to the
1754                                  *      free list by another CPU.
1755                                  *
1756                                  *  (b) The clean list was added to by the
1757                                  *      cleansing cyclic.
1758                                  *
1759                                  * In either of these situations, we can
1760                                  * just reattempt the free list allocation.
1761                                  */
1762                                 goto retry;
1763                         }
1764
1765                         ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1766
1767                         /*
1768                          * Now we'll move the clean list to the free list.
1769                          * It's impossible for this to fail:  the only way
1770                          * the free list can be updated is through this
1771                          * code path, and only one CPU can own the clean list.
1772                          * Thus, it would only be possible for this to fail if
1773                          * this code were racing with dtrace_dynvar_clean().
1774                          * (That is, if dtrace_dynvar_clean() updated the clean
1775                          * list, and we ended up racing to update the free
1776                          * list.)  This race is prevented by the dtrace_sync()
1777                          * in dtrace_dynvar_clean() -- which flushes the
1778                          * owners of the clean lists out before resetting
1779                          * the clean lists.
1780                          */
1781                         rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1782                         ASSERT(rval == NULL);
1783                         goto retry;
1784                 }
1785
1786                 dvar = free;
1787                 new_free = dvar->dtdv_next;
1788         } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1789
1790         /*
1791          * We have now allocated a new chunk.  We copy the tuple keys into the
1792          * tuple array and copy any referenced key data into the data space
1793          * following the tuple array.  As we do this, we relocate dttk_value
1794          * in the final tuple to point to the key data address in the chunk.
1795          */
1796         kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1797         dvar->dtdv_data = (void *)(kdata + ksize);
1798         dvar->dtdv_tuple.dtt_nkeys = nkeys;
1799
1800         for (i = 0; i < nkeys; i++) {
1801                 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1802                 size_t kesize = key[i].dttk_size;
1803
1804                 if (kesize != 0) {
1805                         dtrace_bcopy(
1806                             (const void *)(uintptr_t)key[i].dttk_value,
1807                             (void *)kdata, kesize);
1808                         dkey->dttk_value = kdata;
1809                         kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1810                 } else {
1811                         dkey->dttk_value = key[i].dttk_value;
1812                 }
1813
1814                 dkey->dttk_size = kesize;
1815         }
1816
1817         ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1818         dvar->dtdv_hashval = hashval;
1819         dvar->dtdv_next = start;
1820
1821         if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1822                 return (dvar);
1823
1824         /*
1825          * The cas has failed.  Either another CPU is adding an element to
1826          * this hash chain, or another CPU is deleting an element from this
1827          * hash chain.  The simplest way to deal with both of these cases
1828          * (though not necessarily the most efficient) is to free our
1829          * allocated block and tail-call ourselves.  Note that the free is
1830          * to the dirty list and _not_ to the free list.  This is to prevent
1831          * races with allocators, above.
1832          */
1833         dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1834
1835         dtrace_membar_producer();
1836
1837         do {
1838                 free = dcpu->dtdsc_dirty;
1839                 dvar->dtdv_next = free;
1840         } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1841
1842         return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1843 }
1844
1845 /*ARGSUSED*/
1846 static void
1847 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1848 {
1849         if ((int64_t)nval < (int64_t)*oval)
1850                 *oval = nval;
1851 }
1852
1853 /*ARGSUSED*/
1854 static void
1855 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1856 {
1857         if ((int64_t)nval > (int64_t)*oval)
1858                 *oval = nval;
1859 }
1860
1861 static void
1862 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1863 {
1864         int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1865         int64_t val = (int64_t)nval;
1866
1867         if (val < 0) {
1868                 for (i = 0; i < zero; i++) {
1869                         if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1870                                 quanta[i] += incr;
1871                                 return;
1872                         }
1873                 }
1874         } else {
1875                 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1876                         if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1877                                 quanta[i - 1] += incr;
1878                                 return;
1879                         }
1880                 }
1881
1882                 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1883                 return;
1884         }
1885
1886         ASSERT(0);
1887 }
1888
1889 static void
1890 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1891 {
1892         uint64_t arg = *lquanta++;
1893         int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1894         uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1895         uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1896         int32_t val = (int32_t)nval, level;
1897
1898         ASSERT(step != 0);
1899         ASSERT(levels != 0);
1900
1901         if (val < base) {
1902                 /*
1903                  * This is an underflow.
1904                  */
1905                 lquanta[0] += incr;
1906                 return;
1907         }
1908
1909         level = (val - base) / step;
1910
1911         if (level < levels) {
1912                 lquanta[level + 1] += incr;
1913                 return;
1914         }
1915
1916         /*
1917          * This is an overflow.
1918          */
1919         lquanta[levels + 1] += incr;
1920 }
1921
1922 static int
1923 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
1924     uint16_t high, uint16_t nsteps, int64_t value)
1925 {
1926         int64_t this = 1, last, next;
1927         int base = 1, order;
1928
1929         ASSERT(factor <= nsteps);
1930         ASSERT(nsteps % factor == 0);
1931
1932         for (order = 0; order < low; order++)
1933                 this *= factor;
1934
1935         /*
1936          * If our value is less than our factor taken to the power of the
1937          * low order of magnitude, it goes into the zeroth bucket.
1938          */
1939         if (value < (last = this))
1940                 return (0);
1941
1942         for (this *= factor; order <= high; order++) {
1943                 int nbuckets = this > nsteps ? nsteps : this;
1944
1945                 if ((next = this * factor) < this) {
1946                         /*
1947                          * We should not generally get log/linear quantizations
1948                          * with a high magnitude that allows 64-bits to
1949                          * overflow, but we nonetheless protect against this
1950                          * by explicitly checking for overflow, and clamping
1951                          * our value accordingly.
1952                          */
1953                         value = this - 1;
1954                 }
1955
1956                 if (value < this) {
1957                         /*
1958                          * If our value lies within this order of magnitude,
1959                          * determine its position by taking the offset within
1960                          * the order of magnitude, dividing by the bucket
1961                          * width, and adding to our (accumulated) base.
1962                          */
1963                         return (base + (value - last) / (this / nbuckets));
1964                 }
1965
1966                 base += nbuckets - (nbuckets / factor);
1967                 last = this;
1968                 this = next;
1969         }
1970
1971         /*
1972          * Our value is greater than or equal to our factor taken to the
1973          * power of one plus the high magnitude -- return the top bucket.
1974          */
1975         return (base);
1976 }
1977
1978 static void
1979 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
1980 {
1981         uint64_t arg = *llquanta++;
1982         uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
1983         uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
1984         uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
1985         uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
1986
1987         llquanta[dtrace_aggregate_llquantize_bucket(factor,
1988             low, high, nsteps, nval)] += incr;
1989 }
1990
1991 /*ARGSUSED*/
1992 static void
1993 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1994 {
1995         data[0]++;
1996         data[1] += nval;
1997 }
1998
1999 /*ARGSUSED*/
2000 static void
2001 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2002 {
2003         int64_t snval = (int64_t)nval;
2004         uint64_t tmp[2];
2005
2006         data[0]++;
2007         data[1] += nval;
2008
2009         /*
2010          * What we want to say here is:
2011          *
2012          * data[2] += nval * nval;
2013          *
2014          * But given that nval is 64-bit, we could easily overflow, so
2015          * we do this as 128-bit arithmetic.
2016          */
2017         if (snval < 0)
2018                 snval = -snval;
2019
2020         dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2021         dtrace_add_128(data + 2, tmp, data + 2);
2022 }
2023
2024 /*ARGSUSED*/
2025 static void
2026 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2027 {
2028         *oval = *oval + 1;
2029 }
2030
2031 /*ARGSUSED*/
2032 static void
2033 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2034 {
2035         *oval += nval;
2036 }
2037
2038 /*
2039  * Aggregate given the tuple in the principal data buffer, and the aggregating
2040  * action denoted by the specified dtrace_aggregation_t.  The aggregation
2041  * buffer is specified as the buf parameter.  This routine does not return
2042  * failure; if there is no space in the aggregation buffer, the data will be
2043  * dropped, and a corresponding counter incremented.
2044  */
2045 static void
2046 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2047     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2048 {
2049         dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2050         uint32_t i, ndx, size, fsize;
2051         uint32_t align = sizeof (uint64_t) - 1;
2052         dtrace_aggbuffer_t *agb;
2053         dtrace_aggkey_t *key;
2054         uint32_t hashval = 0, limit, isstr;
2055         caddr_t tomax, data, kdata;
2056         dtrace_actkind_t action;
2057         dtrace_action_t *act;
2058         uintptr_t offs;
2059
2060         if (buf == NULL)
2061                 return;
2062
2063         if (!agg->dtag_hasarg) {
2064                 /*
2065                  * Currently, only quantize() and lquantize() take additional
2066                  * arguments, and they have the same semantics:  an increment
2067                  * value that defaults to 1 when not present.  If additional
2068                  * aggregating actions take arguments, the setting of the
2069                  * default argument value will presumably have to become more
2070                  * sophisticated...
2071                  */
2072                 arg = 1;
2073         }
2074
2075         action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2076         size = rec->dtrd_offset - agg->dtag_base;
2077         fsize = size + rec->dtrd_size;
2078
2079         ASSERT(dbuf->dtb_tomax != NULL);
2080         data = dbuf->dtb_tomax + offset + agg->dtag_base;
2081
2082         if ((tomax = buf->dtb_tomax) == NULL) {
2083                 dtrace_buffer_drop(buf);
2084                 return;
2085         }
2086
2087         /*
2088          * The metastructure is always at the bottom of the buffer.
2089          */
2090         agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2091             sizeof (dtrace_aggbuffer_t));
2092
2093         if (buf->dtb_offset == 0) {
2094                 /*
2095                  * We just kludge up approximately 1/8th of the size to be
2096                  * buckets.  If this guess ends up being routinely
2097                  * off-the-mark, we may need to dynamically readjust this
2098                  * based on past performance.
2099                  */
2100                 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2101
2102                 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2103                     (uintptr_t)tomax || hashsize == 0) {
2104                         /*
2105                          * We've been given a ludicrously small buffer;
2106                          * increment our drop count and leave.
2107                          */
2108                         dtrace_buffer_drop(buf);
2109                         return;
2110                 }
2111
2112                 /*
2113                  * And now, a pathetic attempt to try to get a an odd (or
2114                  * perchance, a prime) hash size for better hash distribution.
2115                  */
2116                 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2117                         hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2118
2119                 agb->dtagb_hashsize = hashsize;
2120                 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2121                     agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2122                 agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2123
2124                 for (i = 0; i < agb->dtagb_hashsize; i++)
2125                         agb->dtagb_hash[i] = NULL;
2126         }
2127
2128         ASSERT(agg->dtag_first != NULL);
2129         ASSERT(agg->dtag_first->dta_intuple);
2130
2131         /*
2132          * Calculate the hash value based on the key.  Note that we _don't_
2133          * include the aggid in the hashing (but we will store it as part of
2134          * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2135          * algorithm: a simple, quick algorithm that has no known funnels, and
2136          * gets good distribution in practice.  The efficacy of the hashing
2137          * algorithm (and a comparison with other algorithms) may be found by
2138          * running the ::dtrace_aggstat MDB dcmd.
2139          */
2140         for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2141                 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2142                 limit = i + act->dta_rec.dtrd_size;
2143                 ASSERT(limit <= size);
2144                 isstr = DTRACEACT_ISSTRING(act);
2145
2146                 for (; i < limit; i++) {
2147                         hashval += data[i];
2148                         hashval += (hashval << 10);
2149                         hashval ^= (hashval >> 6);
2150
2151                         if (isstr && data[i] == '\0')
2152                                 break;
2153                 }
2154         }
2155
2156         hashval += (hashval << 3);
2157         hashval ^= (hashval >> 11);
2158         hashval += (hashval << 15);
2159
2160         /*
2161          * Yes, the divide here is expensive -- but it's generally the least
2162          * of the performance issues given the amount of data that we iterate
2163          * over to compute hash values, compare data, etc.
2164          */
2165         ndx = hashval % agb->dtagb_hashsize;
2166
2167         for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2168                 ASSERT((caddr_t)key >= tomax);
2169                 ASSERT((caddr_t)key < tomax + buf->dtb_size);
2170
2171                 if (hashval != key->dtak_hashval || key->dtak_size != size)
2172                         continue;
2173
2174                 kdata = key->dtak_data;
2175                 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2176
2177                 for (act = agg->dtag_first; act->dta_intuple;
2178                     act = act->dta_next) {
2179                         i = act->dta_rec.dtrd_offset - agg->dtag_base;
2180                         limit = i + act->dta_rec.dtrd_size;
2181                         ASSERT(limit <= size);
2182                         isstr = DTRACEACT_ISSTRING(act);
2183
2184                         for (; i < limit; i++) {
2185                                 if (kdata[i] != data[i])
2186                                         goto next;
2187
2188                                 if (isstr && data[i] == '\0')
2189                                         break;
2190                         }
2191                 }
2192
2193                 if (action != key->dtak_action) {
2194                         /*
2195                          * We are aggregating on the same value in the same
2196                          * aggregation with two different aggregating actions.
2197                          * (This should have been picked up in the compiler,
2198                          * so we may be dealing with errant or devious DIF.)
2199                          * This is an error condition; we indicate as much,
2200                          * and return.
2201                          */
2202                         DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2203                         return;
2204                 }
2205
2206                 /*
2207                  * This is a hit:  we need to apply the aggregator to
2208                  * the value at this key.
2209                  */
2210                 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2211                 return;
2212 next:
2213                 continue;
2214         }
2215
2216         /*
2217          * We didn't find it.  We need to allocate some zero-filled space,
2218          * link it into the hash table appropriately, and apply the aggregator
2219          * to the (zero-filled) value.
2220          */
2221         offs = buf->dtb_offset;
2222         while (offs & (align - 1))
2223                 offs += sizeof (uint32_t);
2224
2225         /*
2226          * If we don't have enough room to both allocate a new key _and_
2227          * its associated data, increment the drop count and return.
2228          */
2229         if ((uintptr_t)tomax + offs + fsize >
2230             agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2231                 dtrace_buffer_drop(buf);
2232                 return;
2233         }
2234
2235         /*CONSTCOND*/
2236         ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2237         key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2238         agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2239
2240         key->dtak_data = kdata = tomax + offs;
2241         buf->dtb_offset = offs + fsize;
2242
2243         /*
2244          * Now copy the data across.
2245          */
2246         *((dtrace_aggid_t *)kdata) = agg->dtag_id;
2247
2248         for (i = sizeof (dtrace_aggid_t); i < size; i++)
2249                 kdata[i] = data[i];
2250
2251         /*
2252          * Because strings are not zeroed out by default, we need to iterate
2253          * looking for actions that store strings, and we need to explicitly
2254          * pad these strings out with zeroes.
2255          */
2256         for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2257                 int nul;
2258
2259                 if (!DTRACEACT_ISSTRING(act))
2260                         continue;
2261
2262                 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2263                 limit = i + act->dta_rec.dtrd_size;
2264                 ASSERT(limit <= size);
2265
2266                 for (nul = 0; i < limit; i++) {
2267                         if (nul) {
2268                                 kdata[i] = '\0';
2269                                 continue;
2270                         }
2271
2272                         if (data[i] != '\0')
2273                                 continue;
2274
2275                         nul = 1;
2276                 }
2277         }
2278
2279         for (i = size; i < fsize; i++)
2280                 kdata[i] = 0;
2281
2282         key->dtak_hashval = hashval;
2283         key->dtak_size = size;
2284         key->dtak_action = action;
2285         key->dtak_next = agb->dtagb_hash[ndx];
2286         agb->dtagb_hash[ndx] = key;
2287
2288         /*
2289          * Finally, apply the aggregator.
2290          */
2291         *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2292         agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2293 }
2294
2295 /*
2296  * Given consumer state, this routine finds a speculation in the INACTIVE
2297  * state and transitions it into the ACTIVE state.  If there is no speculation
2298  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2299  * incremented -- it is up to the caller to take appropriate action.
2300  */
2301 static int
2302 dtrace_speculation(dtrace_state_t *state)
2303 {
2304         int i = 0;
2305         dtrace_speculation_state_t current;
2306         uint32_t *stat = &state->dts_speculations_unavail, count;
2307
2308         while (i < state->dts_nspeculations) {
2309                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2310
2311                 current = spec->dtsp_state;
2312
2313                 if (current != DTRACESPEC_INACTIVE) {
2314                         if (current == DTRACESPEC_COMMITTINGMANY ||
2315                             current == DTRACESPEC_COMMITTING ||
2316                             current == DTRACESPEC_DISCARDING)
2317                                 stat = &state->dts_speculations_busy;
2318                         i++;
2319                         continue;
2320                 }
2321
2322                 if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2323                     current, DTRACESPEC_ACTIVE) == current)
2324                         return (i + 1);
2325         }
2326
2327         /*
2328          * We couldn't find a speculation.  If we found as much as a single
2329          * busy speculation buffer, we'll attribute this failure as "busy"
2330          * instead of "unavail".
2331          */
2332         do {
2333                 count = *stat;
2334         } while (dtrace_cas32(stat, count, count + 1) != count);
2335
2336         return (0);
2337 }
2338
2339 /*
2340  * This routine commits an active speculation.  If the specified speculation
2341  * is not in a valid state to perform a commit(), this routine will silently do
2342  * nothing.  The state of the specified speculation is transitioned according
2343  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2344  */
2345 static void
2346 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2347     dtrace_specid_t which)
2348 {
2349         dtrace_speculation_t *spec;
2350         dtrace_buffer_t *src, *dest;
2351         uintptr_t daddr, saddr, dlimit;
2352         dtrace_speculation_state_t current, new = 0;
2353         intptr_t offs;
2354
2355         if (which == 0)
2356                 return;
2357
2358         if (which > state->dts_nspeculations) {
2359                 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2360                 return;
2361         }
2362
2363         spec = &state->dts_speculations[which - 1];
2364         src = &spec->dtsp_buffer[cpu];
2365         dest = &state->dts_buffer[cpu];
2366
2367         do {
2368                 current = spec->dtsp_state;
2369
2370                 if (current == DTRACESPEC_COMMITTINGMANY)
2371                         break;
2372
2373                 switch (current) {
2374                 case DTRACESPEC_INACTIVE:
2375                 case DTRACESPEC_DISCARDING:
2376                         return;
2377
2378                 case DTRACESPEC_COMMITTING:
2379                         /*
2380                          * This is only possible if we are (a) commit()'ing
2381                          * without having done a prior speculate() on this CPU
2382                          * and (b) racing with another commit() on a different
2383                          * CPU.  There's nothing to do -- we just assert that
2384                          * our offset is 0.
2385                          */
2386                         ASSERT(src->dtb_offset == 0);
2387                         return;
2388
2389                 case DTRACESPEC_ACTIVE:
2390                         new = DTRACESPEC_COMMITTING;
2391                         break;
2392
2393                 case DTRACESPEC_ACTIVEONE:
2394                         /*
2395                          * This speculation is active on one CPU.  If our
2396                          * buffer offset is non-zero, we know that the one CPU
2397                          * must be us.  Otherwise, we are committing on a
2398                          * different CPU from the speculate(), and we must
2399                          * rely on being asynchronously cleaned.
2400                          */
2401                         if (src->dtb_offset != 0) {
2402                                 new = DTRACESPEC_COMMITTING;
2403                                 break;
2404                         }
2405                         /*FALLTHROUGH*/
2406
2407                 case DTRACESPEC_ACTIVEMANY:
2408                         new = DTRACESPEC_COMMITTINGMANY;
2409                         break;
2410
2411                 default:
2412                         ASSERT(0);
2413                 }
2414         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2415             current, new) != current);
2416
2417         /*
2418          * We have set the state to indicate that we are committing this
2419          * speculation.  Now reserve the necessary space in the destination
2420          * buffer.
2421          */
2422         if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2423             sizeof (uint64_t), state, NULL)) < 0) {
2424                 dtrace_buffer_drop(dest);
2425                 goto out;
2426         }
2427
2428         /*
2429          * We have the space; copy the buffer across.  (Note that this is a
2430          * highly subobtimal bcopy(); in the unlikely event that this becomes
2431          * a serious performance issue, a high-performance DTrace-specific
2432          * bcopy() should obviously be invented.)
2433          */
2434         daddr = (uintptr_t)dest->dtb_tomax + offs;
2435         dlimit = daddr + src->dtb_offset;
2436         saddr = (uintptr_t)src->dtb_tomax;
2437
2438         /*
2439          * First, the aligned portion.
2440          */
2441         while (dlimit - daddr >= sizeof (uint64_t)) {
2442                 *((uint64_t *)daddr) = *((uint64_t *)saddr);
2443
2444                 daddr += sizeof (uint64_t);
2445                 saddr += sizeof (uint64_t);
2446         }
2447
2448         /*
2449          * Now any left-over bit...
2450          */
2451         while (dlimit - daddr)
2452                 *((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2453
2454         /*
2455          * Finally, commit the reserved space in the destination buffer.
2456          */
2457         dest->dtb_offset = offs + src->dtb_offset;
2458
2459 out:
2460         /*
2461          * If we're lucky enough to be the only active CPU on this speculation
2462          * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2463          */
2464         if (current == DTRACESPEC_ACTIVE ||
2465             (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2466                 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2467                     DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2468
2469                 ASSERT(rval == DTRACESPEC_COMMITTING);
2470         }
2471
2472         src->dtb_offset = 0;
2473         src->dtb_xamot_drops += src->dtb_drops;
2474         src->dtb_drops = 0;
2475 }
2476
2477 /*
2478  * This routine discards an active speculation.  If the specified speculation
2479  * is not in a valid state to perform a discard(), this routine will silently
2480  * do nothing.  The state of the specified speculation is transitioned
2481  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2482  */
2483 static void
2484 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2485     dtrace_specid_t which)
2486 {
2487         dtrace_speculation_t *spec;
2488         dtrace_speculation_state_t current, new = 0;
2489         dtrace_buffer_t *buf;
2490
2491         if (which == 0)
2492                 return;
2493
2494         if (which > state->dts_nspeculations) {
2495                 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2496                 return;
2497         }
2498
2499         spec = &state->dts_speculations[which - 1];
2500         buf = &spec->dtsp_buffer[cpu];
2501
2502         do {
2503                 current = spec->dtsp_state;
2504
2505                 switch (current) {
2506                 case DTRACESPEC_INACTIVE:
2507                 case DTRACESPEC_COMMITTINGMANY:
2508                 case DTRACESPEC_COMMITTING:
2509                 case DTRACESPEC_DISCARDING:
2510                         return;
2511
2512                 case DTRACESPEC_ACTIVE:
2513                 case DTRACESPEC_ACTIVEMANY:
2514                         new = DTRACESPEC_DISCARDING;
2515                         break;
2516
2517                 case DTRACESPEC_ACTIVEONE:
2518                         if (buf->dtb_offset != 0) {
2519                                 new = DTRACESPEC_INACTIVE;
2520                         } else {
2521                                 new = DTRACESPEC_DISCARDING;
2522                         }
2523                         break;
2524
2525                 default:
2526                         ASSERT(0);
2527                 }
2528         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2529             current, new) != current);
2530
2531         buf->dtb_offset = 0;
2532         buf->dtb_drops = 0;
2533 }
2534
2535 /*
2536  * Note:  not called from probe context.  This function is called
2537  * asynchronously from cross call context to clean any speculations that are
2538  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2539  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2540  * speculation.
2541  */
2542 static void
2543 dtrace_speculation_clean_here(dtrace_state_t *state)
2544 {
2545         dtrace_icookie_t cookie;
2546         processorid_t cpu = curcpu;
2547         dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2548         dtrace_specid_t i;
2549
2550         cookie = dtrace_interrupt_disable();
2551
2552         if (dest->dtb_tomax == NULL) {
2553                 dtrace_interrupt_enable(cookie);
2554                 return;
2555         }
2556
2557         for (i = 0; i < state->dts_nspeculations; i++) {
2558                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2559                 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2560
2561                 if (src->dtb_tomax == NULL)
2562                         continue;
2563
2564                 if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2565                         src->dtb_offset = 0;
2566                         continue;
2567                 }
2568
2569                 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2570                         continue;
2571
2572                 if (src->dtb_offset == 0)
2573                         continue;
2574
2575                 dtrace_speculation_commit(state, cpu, i + 1);
2576         }
2577
2578         dtrace_interrupt_enable(cookie);
2579 }
2580
2581 /*
2582  * Note:  not called from probe context.  This function is called
2583  * asynchronously (and at a regular interval) to clean any speculations that
2584  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2585  * is work to be done, it cross calls all CPUs to perform that work;
2586  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2587  * INACTIVE state until they have been cleaned by all CPUs.
2588  */
2589 static void
2590 dtrace_speculation_clean(dtrace_state_t *state)
2591 {
2592         int work = 0, rv;
2593         dtrace_specid_t i;
2594
2595         for (i = 0; i < state->dts_nspeculations; i++) {
2596                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2597
2598                 ASSERT(!spec->dtsp_cleaning);
2599
2600                 if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2601                     spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2602                         continue;
2603
2604                 work++;
2605                 spec->dtsp_cleaning = 1;
2606         }
2607
2608         if (!work)
2609                 return;
2610
2611         dtrace_xcall(DTRACE_CPUALL,
2612             (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2613
2614         /*
2615          * We now know that all CPUs have committed or discarded their
2616          * speculation buffers, as appropriate.  We can now set the state
2617          * to inactive.
2618          */
2619         for (i = 0; i < state->dts_nspeculations; i++) {
2620                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2621                 dtrace_speculation_state_t current, new;
2622
2623                 if (!spec->dtsp_cleaning)
2624                         continue;
2625
2626                 current = spec->dtsp_state;
2627                 ASSERT(current == DTRACESPEC_DISCARDING ||
2628                     current == DTRACESPEC_COMMITTINGMANY);
2629
2630                 new = DTRACESPEC_INACTIVE;
2631
2632                 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2633                 ASSERT(rv == current);
2634                 spec->dtsp_cleaning = 0;
2635         }
2636 }
2637
2638 /*
2639  * Called as part of a speculate() to get the speculative buffer associated
2640  * with a given speculation.  Returns NULL if the specified speculation is not
2641  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2642  * the active CPU is not the specified CPU -- the speculation will be
2643  * atomically transitioned into the ACTIVEMANY state.
2644  */
2645 static dtrace_buffer_t *
2646 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2647     dtrace_specid_t which)
2648 {
2649         dtrace_speculation_t *spec;
2650         dtrace_speculation_state_t current, new = 0;
2651         dtrace_buffer_t *buf;
2652
2653         if (which == 0)
2654                 return (NULL);
2655
2656         if (which > state->dts_nspeculations) {
2657                 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2658                 return (NULL);
2659         }
2660
2661         spec = &state->dts_speculations[which - 1];
2662         buf = &spec->dtsp_buffer[cpuid];
2663
2664         do {
2665                 current = spec->dtsp_state;
2666
2667                 switch (current) {
2668                 case DTRACESPEC_INACTIVE:
2669                 case DTRACESPEC_COMMITTINGMANY:
2670                 case DTRACESPEC_DISCARDING:
2671                         return (NULL);
2672
2673                 case DTRACESPEC_COMMITTING:
2674                         ASSERT(buf->dtb_offset == 0);
2675                         return (NULL);
2676
2677                 case DTRACESPEC_ACTIVEONE:
2678                         /*
2679                          * This speculation is currently active on one CPU.
2680                          * Check the offset in the buffer; if it's non-zero,
2681                          * that CPU must be us (and we leave the state alone).
2682                          * If it's zero, assume that we're starting on a new
2683                          * CPU -- and change the state to indicate that the
2684                          * speculation is active on more than one CPU.
2685                          */
2686                         if (buf->dtb_offset != 0)
2687                                 return (buf);
2688
2689                         new = DTRACESPEC_ACTIVEMANY;
2690                         break;
2691
2692                 case DTRACESPEC_ACTIVEMANY:
2693                         return (buf);
2694
2695                 case DTRACESPEC_ACTIVE:
2696                         new = DTRACESPEC_ACTIVEONE;
2697                         break;
2698
2699                 default:
2700                         ASSERT(0);
2701                 }
2702         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2703             current, new) != current);
2704
2705         ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2706         return (buf);
2707 }
2708
2709 /*
2710  * Return a string.  In the event that the user lacks the privilege to access
2711  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2712  * don't fail access checking.
2713  *
2714  * dtrace_dif_variable() uses this routine as a helper for various
2715  * builtin values such as 'execname' and 'probefunc.'
2716  */
2717 uintptr_t
2718 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2719     dtrace_mstate_t *mstate)
2720 {
2721         uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2722         uintptr_t ret;
2723         size_t strsz;
2724
2725         /*
2726          * The easy case: this probe is allowed to read all of memory, so
2727          * we can just return this as a vanilla pointer.
2728          */
2729         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2730                 return (addr);
2731
2732         /*
2733          * This is the tougher case: we copy the string in question from
2734          * kernel memory into scratch memory and return it that way: this
2735          * ensures that we won't trip up when access checking tests the
2736          * BYREF return value.
2737          */
2738         strsz = dtrace_strlen((char *)addr, size) + 1;
2739
2740         if (mstate->dtms_scratch_ptr + strsz >
2741             mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2742                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2743                 return (0);
2744         }
2745
2746         dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2747             strsz);
2748         ret = mstate->dtms_scratch_ptr;
2749         mstate->dtms_scratch_ptr += strsz;
2750         return (ret);
2751 }
2752
2753 /*
2754  * Return a string from a memoy address which is known to have one or
2755  * more concatenated, individually zero terminated, sub-strings.
2756  * In the event that the user lacks the privilege to access
2757  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2758  * don't fail access checking.
2759  *
2760  * dtrace_dif_variable() uses this routine as a helper for various
2761  * builtin values such as 'execargs'.
2762  */
2763 static uintptr_t
2764 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
2765     dtrace_mstate_t *mstate)
2766 {
2767         char *p;
2768         size_t i;
2769         uintptr_t ret;
2770
2771         if (mstate->dtms_scratch_ptr + strsz >
2772             mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2773                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2774                 return (0);
2775         }
2776
2777         dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2778             strsz);
2779
2780         /* Replace sub-string termination characters with a space. */
2781         for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
2782             p++, i++)
2783                 if (*p == '\0')
2784                         *p = ' ';
2785
2786         ret = mstate->dtms_scratch_ptr;
2787         mstate->dtms_scratch_ptr += strsz;
2788         return (ret);
2789 }
2790
2791 /*
2792  * This function implements the DIF emulator's variable lookups.  The emulator
2793  * passes a reserved variable identifier and optional built-in array index.
2794  */
2795 static uint64_t
2796 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2797     uint64_t ndx)
2798 {
2799         /*
2800          * If we're accessing one of the uncached arguments, we'll turn this
2801          * into a reference in the args array.
2802          */
2803         if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2804                 ndx = v - DIF_VAR_ARG0;
2805                 v = DIF_VAR_ARGS;
2806         }
2807
2808         switch (v) {
2809         case DIF_VAR_ARGS:
2810                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2811                 if (ndx >= sizeof (mstate->dtms_arg) /
2812                     sizeof (mstate->dtms_arg[0])) {
2813                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2814                         dtrace_provider_t *pv;
2815                         uint64_t val;
2816
2817                         pv = mstate->dtms_probe->dtpr_provider;
2818                         if (pv->dtpv_pops.dtps_getargval != NULL)
2819                                 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2820                                     mstate->dtms_probe->dtpr_id,
2821                                     mstate->dtms_probe->dtpr_arg, ndx, aframes);
2822                         else
2823                                 val = dtrace_getarg(ndx, aframes);
2824
2825                         /*
2826                          * This is regrettably required to keep the compiler
2827                          * from tail-optimizing the call to dtrace_getarg().
2828                          * The condition always evaluates to true, but the
2829                          * compiler has no way of figuring that out a priori.
2830                          * (None of this would be necessary if the compiler
2831                          * could be relied upon to _always_ tail-optimize
2832                          * the call to dtrace_getarg() -- but it can't.)
2833                          */
2834                         if (mstate->dtms_probe != NULL)
2835                                 return (val);
2836
2837                         ASSERT(0);
2838                 }
2839
2840                 return (mstate->dtms_arg[ndx]);
2841
2842 #if defined(sun)
2843         case DIF_VAR_UREGS: {
2844                 klwp_t *lwp;
2845
2846                 if (!dtrace_priv_proc(state))
2847                         return (0);
2848
2849                 if ((lwp = curthread->t_lwp) == NULL) {
2850                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2851                         cpu_core[curcpu].cpuc_dtrace_illval = NULL;
2852                         return (0);
2853                 }
2854
2855                 return (dtrace_getreg(lwp->lwp_regs, ndx));
2856                 return (0);
2857         }
2858 #else
2859         case DIF_VAR_UREGS: {
2860                 struct trapframe *tframe;
2861
2862                 if (!dtrace_priv_proc(state))
2863                         return (0);
2864
2865                 if ((tframe = curthread->td_frame) == NULL) {
2866                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2867                         cpu_core[curcpu].cpuc_dtrace_illval = 0;
2868                         return (0);
2869                 }
2870
2871                 return (dtrace_getreg(tframe, ndx));
2872         }
2873 #endif
2874
2875         case DIF_VAR_CURTHREAD:
2876                 if (!dtrace_priv_kernel(state))
2877                         return (0);
2878                 return ((uint64_t)(uintptr_t)curthread);
2879
2880         case DIF_VAR_TIMESTAMP:
2881                 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2882                         mstate->dtms_timestamp = dtrace_gethrtime();
2883                         mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2884                 }
2885                 return (mstate->dtms_timestamp);
2886
2887         case DIF_VAR_VTIMESTAMP:
2888                 ASSERT(dtrace_vtime_references != 0);
2889                 return (curthread->t_dtrace_vtime);
2890
2891         case DIF_VAR_WALLTIMESTAMP:
2892                 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2893                         mstate->dtms_walltimestamp = dtrace_gethrestime();
2894                         mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2895                 }
2896                 return (mstate->dtms_walltimestamp);
2897
2898 #if defined(sun)
2899         case DIF_VAR_IPL:
2900                 if (!dtrace_priv_kernel(state))
2901                         return (0);
2902                 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2903                         mstate->dtms_ipl = dtrace_getipl();
2904                         mstate->dtms_present |= DTRACE_MSTATE_IPL;
2905                 }
2906                 return (mstate->dtms_ipl);
2907 #endif
2908
2909         case DIF_VAR_EPID:
2910                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2911                 return (mstate->dtms_epid);
2912
2913         case DIF_VAR_ID:
2914                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2915                 return (mstate->dtms_probe->dtpr_id);
2916
2917         case DIF_VAR_STACKDEPTH:
2918                 if (!dtrace_priv_kernel(state))
2919                         return (0);
2920                 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2921                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2922
2923                         mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2924                         mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2925                 }
2926                 return (mstate->dtms_stackdepth);
2927
2928         case DIF_VAR_USTACKDEPTH:
2929                 if (!dtrace_priv_proc(state))
2930                         return (0);
2931                 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2932                         /*
2933                          * See comment in DIF_VAR_PID.
2934                          */
2935                         if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2936                             CPU_ON_INTR(CPU)) {
2937                                 mstate->dtms_ustackdepth = 0;
2938                         } else {
2939                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2940                                 mstate->dtms_ustackdepth =
2941                                     dtrace_getustackdepth();
2942                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2943                         }
2944                         mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2945                 }
2946                 return (mstate->dtms_ustackdepth);
2947
2948         case DIF_VAR_CALLER:
2949                 if (!dtrace_priv_kernel(state))
2950                         return (0);
2951                 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2952                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2953
2954                         if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2955                                 /*
2956                                  * If this is an unanchored probe, we are
2957                                  * required to go through the slow path:
2958                                  * dtrace_caller() only guarantees correct
2959                                  * results for anchored probes.
2960                                  */
2961                                 pc_t caller[2] = {0, 0};
2962
2963                                 dtrace_getpcstack(caller, 2, aframes,
2964                                     (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2965                                 mstate->dtms_caller = caller[1];
2966                         } else if ((mstate->dtms_caller =
2967                             dtrace_caller(aframes)) == -1) {
2968                                 /*
2969                                  * We have failed to do this the quick way;
2970                                  * we must resort to the slower approach of
2971                                  * calling dtrace_getpcstack().
2972                                  */
2973                                 pc_t caller = 0;
2974
2975                                 dtrace_getpcstack(&caller, 1, aframes, NULL);
2976                                 mstate->dtms_caller = caller;
2977                         }
2978
2979                         mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2980                 }
2981                 return (mstate->dtms_caller);
2982
2983         case DIF_VAR_UCALLER:
2984                 if (!dtrace_priv_proc(state))
2985                         return (0);
2986
2987                 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
2988                         uint64_t ustack[3];
2989
2990                         /*
2991                          * dtrace_getupcstack() fills in the first uint64_t
2992                          * with the current PID.  The second uint64_t will
2993                          * be the program counter at user-level.  The third
2994                          * uint64_t will contain the caller, which is what
2995                          * we're after.
2996                          */
2997                         ustack[2] = 0;
2998                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2999                         dtrace_getupcstack(ustack, 3);
3000                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3001                         mstate->dtms_ucaller = ustack[2];
3002                         mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3003                 }
3004
3005                 return (mstate->dtms_ucaller);
3006
3007         case DIF_VAR_PROBEPROV:
3008                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3009                 return (dtrace_dif_varstr(
3010                     (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3011                     state, mstate));
3012
3013         case DIF_VAR_PROBEMOD:
3014                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3015                 return (dtrace_dif_varstr(
3016                     (uintptr_t)mstate->dtms_probe->dtpr_mod,
3017                     state, mstate));
3018
3019         case DIF_VAR_PROBEFUNC:
3020                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3021                 return (dtrace_dif_varstr(
3022                     (uintptr_t)mstate->dtms_probe->dtpr_func,
3023                     state, mstate));
3024
3025         case DIF_VAR_PROBENAME:
3026                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3027                 return (dtrace_dif_varstr(
3028                     (uintptr_t)mstate->dtms_probe->dtpr_name,
3029                     state, mstate));
3030
3031         case DIF_VAR_PID:
3032                 if (!dtrace_priv_proc(state))
3033                         return (0);
3034
3035 #if defined(sun)
3036                 /*
3037                  * Note that we are assuming that an unanchored probe is
3038                  * always due to a high-level interrupt.  (And we're assuming
3039                  * that there is only a single high level interrupt.)
3040                  */
3041                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3042                         return (pid0.pid_id);
3043
3044                 /*
3045                  * It is always safe to dereference one's own t_procp pointer:
3046                  * it always points to a valid, allocated proc structure.
3047                  * Further, it is always safe to dereference the p_pidp member
3048                  * of one's own proc structure.  (These are truisms becuase
3049                  * threads and processes don't clean up their own state --
3050                  * they leave that task to whomever reaps them.)
3051                  */
3052                 return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3053 #else
3054                 return ((uint64_t)curproc->p_pid);
3055 #endif
3056
3057         case DIF_VAR_PPID:
3058                 if (!dtrace_priv_proc(state))
3059                         return (0);
3060
3061 #if defined(sun)
3062                 /*
3063                  * See comment in DIF_VAR_PID.
3064                  */
3065                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3066                         return (pid0.pid_id);
3067
3068                 /*
3069                  * It is always safe to dereference one's own t_procp pointer:
3070                  * it always points to a valid, allocated proc structure.
3071                  * (This is true because threads don't clean up their own
3072                  * state -- they leave that task to whomever reaps them.)
3073                  */
3074                 return ((uint64_t)curthread->t_procp->p_ppid);
3075 #else
3076                 return ((uint64_t)curproc->p_pptr->p_pid);
3077 #endif
3078
3079         case DIF_VAR_TID:
3080 #if defined(sun)
3081                 /*
3082                  * See comment in DIF_VAR_PID.
3083                  */
3084                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3085                         return (0);
3086 #endif
3087
3088                 return ((uint64_t)curthread->t_tid);
3089
3090         case DIF_VAR_EXECARGS: {
3091                 struct pargs *p_args = curthread->td_proc->p_args;
3092
3093                 if (p_args == NULL)
3094                         return(0);
3095
3096                 return (dtrace_dif_varstrz(
3097                     (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3098         }
3099
3100         case DIF_VAR_EXECNAME:
3101 #if defined(sun)
3102                 if (!dtrace_priv_proc(state))
3103                         return (0);
3104
3105                 /*
3106                  * See comment in DIF_VAR_PID.
3107                  */
3108                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3109                         return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3110
3111                 /*
3112                  * It is always safe to dereference one's own t_procp pointer:
3113                  * it always points to a valid, allocated proc structure.
3114                  * (This is true because threads don't clean up their own
3115                  * state -- they leave that task to whomever reaps them.)
3116                  */
3117                 return (dtrace_dif_varstr(
3118                     (uintptr_t)curthread->t_procp->p_user.u_comm,
3119                     state, mstate));
3120 #else
3121                 return (dtrace_dif_varstr(
3122                     (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3123 #endif
3124
3125         case DIF_VAR_ZONENAME:
3126 #if defined(sun)
3127                 if (!dtrace_priv_proc(state))
3128                         return (0);
3129
3130                 /*
3131                  * See comment in DIF_VAR_PID.
3132                  */
3133                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3134                         return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3135
3136                 /*
3137                  * It is always safe to dereference one's own t_procp pointer:
3138                  * it always points to a valid, allocated proc structure.
3139                  * (This is true because threads don't clean up their own
3140                  * state -- they leave that task to whomever reaps them.)
3141                  */
3142                 return (dtrace_dif_varstr(
3143                     (uintptr_t)curthread->t_procp->p_zone->zone_name,
3144                     state, mstate));
3145 #else
3146                 return (0);
3147 #endif
3148
3149         case DIF_VAR_UID:
3150                 if (!dtrace_priv_proc(state))
3151                         return (0);
3152
3153 #if defined(sun)
3154                 /*
3155                  * See comment in DIF_VAR_PID.
3156                  */
3157                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3158                         return ((uint64_t)p0.p_cred->cr_uid);
3159 #endif
3160
3161                 /*
3162                  * It is always safe to dereference one's own t_procp pointer:
3163                  * it always points to a valid, allocated proc structure.
3164                  * (This is true because threads don't clean up their own
3165                  * state -- they leave that task to whomever reaps them.)
3166                  *
3167                  * Additionally, it is safe to dereference one's own process
3168                  * credential, since this is never NULL after process birth.
3169                  */
3170                 return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3171
3172         case DIF_VAR_GID:
3173                 if (!dtrace_priv_proc(state))
3174                         return (0);
3175
3176 #if defined(sun)
3177                 /*
3178                  * See comment in DIF_VAR_PID.
3179                  */
3180                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3181                         return ((uint64_t)p0.p_cred->cr_gid);
3182 #endif
3183
3184                 /*
3185                  * It is always safe to dereference one's own t_procp pointer:
3186                  * it always points to a valid, allocated proc structure.
3187                  * (This is true because threads don't clean up their own
3188                  * state -- they leave that task to whomever reaps them.)
3189                  *
3190                  * Additionally, it is safe to dereference one's own process
3191                  * credential, since this is never NULL after process birth.
3192                  */
3193                 return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3194
3195         case DIF_VAR_ERRNO: {
3196 #if defined(sun)
3197                 klwp_t *lwp;
3198                 if (!dtrace_priv_proc(state))
3199                         return (0);
3200
3201                 /*
3202                  * See comment in DIF_VAR_PID.
3203                  */
3204                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3205                         return (0);
3206
3207                 /*
3208                  * It is always safe to dereference one's own t_lwp pointer in
3209                  * the event that this pointer is non-NULL.  (This is true
3210                  * because threads and lwps don't clean up their own state --
3211                  * they leave that task to whomever reaps them.)
3212                  */
3213                 if ((lwp = curthread->t_lwp) == NULL)
3214                         return (0);
3215
3216                 return ((uint64_t)lwp->lwp_errno);
3217 #else
3218                 return (curthread->td_errno);
3219 #endif
3220         }
3221 #if !defined(sun)
3222         case DIF_VAR_CPU: {
3223                 return curcpu;
3224         }
3225 #endif
3226         default:
3227                 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3228                 return (0);
3229         }
3230 }
3231
3232 /*
3233  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3234  * Notice that we don't bother validating the proper number of arguments or
3235  * their types in the tuple stack.  This isn't needed because all argument
3236  * interpretation is safe because of our load safety -- the worst that can
3237  * happen is that a bogus program can obtain bogus results.
3238  */
3239 static void
3240 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3241     dtrace_key_t *tupregs, int nargs,
3242     dtrace_mstate_t *mstate, dtrace_state_t *state)
3243 {
3244         volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
3245         volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
3246         dtrace_vstate_t *vstate = &state->dts_vstate;
3247
3248 #if defined(sun)
3249         union {
3250                 mutex_impl_t mi;
3251                 uint64_t mx;
3252         } m;
3253
3254         union {
3255                 krwlock_t ri;
3256                 uintptr_t rw;
3257         } r;
3258 #else
3259         struct thread *lowner;
3260         union {
3261                 struct lock_object *li;
3262                 uintptr_t lx;
3263         } l;
3264 #endif
3265
3266         switch (subr) {
3267         case DIF_SUBR_RAND:
3268                 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3269                 break;
3270
3271 #if defined(sun)
3272         case DIF_SUBR_MUTEX_OWNED:
3273                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3274                     mstate, vstate)) {
3275                         regs[rd] = 0;
3276                         break;
3277                 }
3278
3279                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3280                 if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3281                         regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3282                 else
3283                         regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3284                 break;
3285
3286         case DIF_SUBR_MUTEX_OWNER:
3287                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3288                     mstate, vstate)) {
3289                         regs[rd] = 0;
3290                         break;
3291                 }
3292
3293                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3294                 if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3295                     MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3296                         regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3297                 else
3298                         regs[rd] = 0;
3299                 break;
3300
3301         case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3302                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3303                     mstate, vstate)) {
3304                         regs[rd] = 0;
3305                         break;
3306                 }
3307
3308                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3309                 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3310                 break;
3311
3312         case DIF_SUBR_MUTEX_TYPE_SPIN:
3313                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3314                     mstate, vstate)) {
3315                         regs[rd] = 0;
3316                         break;
3317                 }
3318
3319                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3320                 regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3321                 break;
3322
3323         case DIF_SUBR_RW_READ_HELD: {
3324                 uintptr_t tmp;
3325
3326                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3327                     mstate, vstate)) {
3328                         regs[rd] = 0;
3329                         break;
3330                 }
3331
3332                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3333                 regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3334                 break;
3335         }
3336
3337         case DIF_SUBR_RW_WRITE_HELD:
3338                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3339                     mstate, vstate)) {
3340                         regs[rd] = 0;
3341                         break;
3342                 }
3343
3344                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3345                 regs[rd] = _RW_WRITE_HELD(&r.ri);
3346                 break;
3347
3348         case DIF_SUBR_RW_ISWRITER:
3349                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3350                     mstate, vstate)) {
3351                         regs[rd] = 0;
3352                         break;
3353                 }
3354
3355                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3356                 regs[rd] = _RW_ISWRITER(&r.ri);
3357                 break;
3358
3359 #else
3360         case DIF_SUBR_MUTEX_OWNED:
3361                 if (!dtrace_canload(tupregs[0].dttk_value,
3362                         sizeof (struct lock_object), mstate, vstate)) {
3363                         regs[rd] = 0;
3364                         break;
3365                 }
3366                 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3367                 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3368                 break;
3369
3370         case DIF_SUBR_MUTEX_OWNER:
3371                 if (!dtrace_canload(tupregs[0].dttk_value,
3372                         sizeof (struct lock_object), mstate, vstate)) {
3373                         regs[rd] = 0;
3374                         break;
3375                 }
3376                 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3377                 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3378                 regs[rd] = (uintptr_t)lowner;
3379                 break;
3380
3381         case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3382                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3383                     mstate, vstate)) {
3384                         regs[rd] = 0;
3385                         break;
3386                 }
3387                 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3388                 /* XXX - should be only LC_SLEEPABLE? */
3389                 regs[rd] = (LOCK_CLASS(l.li)->lc_flags &
3390                     (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0;
3391                 break;
3392
3393         case DIF_SUBR_MUTEX_TYPE_SPIN:
3394                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3395                     mstate, vstate)) {
3396                         regs[rd] = 0;
3397                         break;
3398                 }
3399                 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3400                 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
3401                 break;
3402
3403         case DIF_SUBR_RW_READ_HELD: 
3404         case DIF_SUBR_SX_SHARED_HELD: 
3405                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3406                     mstate, vstate)) {
3407                         regs[rd] = 0;
3408                         break;
3409                 }
3410                 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3411                 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3412                     lowner == NULL;
3413                 break;
3414
3415         case DIF_SUBR_RW_WRITE_HELD:
3416         case DIF_SUBR_SX_EXCLUSIVE_HELD:
3417                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3418                     mstate, vstate)) {
3419                         regs[rd] = 0;
3420                         break;
3421                 }
3422                 l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3423                 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3424                 regs[rd] = (lowner == curthread);
3425                 break;
3426
3427         case DIF_SUBR_RW_ISWRITER:
3428         case DIF_SUBR_SX_ISEXCLUSIVE:
3429                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3430                     mstate, vstate)) {
3431                         regs[rd] = 0;
3432                         break;
3433                 }
3434                 l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3435                 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3436                     lowner != NULL;
3437                 break;
3438 #endif /* ! defined(sun) */
3439
3440         case DIF_SUBR_BCOPY: {
3441                 /*
3442                  * We need to be sure that the destination is in the scratch
3443                  * region -- no other region is allowed.
3444                  */
3445                 uintptr_t src = tupregs[0].dttk_value;
3446                 uintptr_t dest = tupregs[1].dttk_value;
3447                 size_t size = tupregs[2].dttk_value;
3448
3449                 if (!dtrace_inscratch(dest, size, mstate)) {
3450                         *flags |= CPU_DTRACE_BADADDR;
3451                         *illval = regs[rd];
3452                         break;
3453                 }
3454
3455                 if (!dtrace_canload(src, size, mstate, vstate)) {
3456                         regs[rd] = 0;
3457                         break;
3458                 }
3459
3460                 dtrace_bcopy((void *)src, (void *)dest, size);
3461                 break;
3462         }
3463
3464         case DIF_SUBR_ALLOCA:
3465         case DIF_SUBR_COPYIN: {
3466                 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3467                 uint64_t size =
3468                     tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3469                 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3470
3471                 /*
3472                  * This action doesn't require any credential checks since
3473                  * probes will not activate in user contexts to which the
3474                  * enabling user does not have permissions.
3475                  */
3476
3477                 /*
3478                  * Rounding up the user allocation size could have overflowed
3479                  * a large, bogus allocation (like -1ULL) to 0.
3480                  */
3481                 if (scratch_size < size ||
3482                     !DTRACE_INSCRATCH(mstate, scratch_size)) {
3483                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3484                         regs[rd] = 0;
3485                         break;
3486                 }
3487
3488                 if (subr == DIF_SUBR_COPYIN) {
3489                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3490                         dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3491                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3492                 }
3493
3494                 mstate->dtms_scratch_ptr += scratch_size;
3495                 regs[rd] = dest;
3496                 break;
3497         }
3498
3499         case DIF_SUBR_COPYINTO: {
3500                 uint64_t size = tupregs[1].dttk_value;
3501                 uintptr_t dest = tupregs[2].dttk_value;
3502
3503                 /*
3504                  * This action doesn't require any credential checks since
3505                  * probes will not activate in user contexts to which the
3506                  * enabling user does not have permissions.
3507                  */
3508                 if (!dtrace_inscratch(dest, size, mstate)) {
3509                         *flags |= CPU_DTRACE_BADADDR;
3510                         *illval = regs[rd];
3511                         break;
3512                 }
3513
3514                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3515                 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3516                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3517                 break;
3518         }
3519
3520         case DIF_SUBR_COPYINSTR: {
3521                 uintptr_t dest = mstate->dtms_scratch_ptr;
3522                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3523
3524                 if (nargs > 1 && tupregs[1].dttk_value < size)
3525                         size = tupregs[1].dttk_value + 1;
3526
3527                 /*
3528                  * This action doesn't require any credential checks since
3529                  * probes will not activate in user contexts to which the
3530                  * enabling user does not have permissions.
3531                  */
3532                 if (!DTRACE_INSCRATCH(mstate, size)) {
3533                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3534                         regs[rd] = 0;
3535                         break;
3536                 }
3537
3538                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3539                 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3540                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3541
3542                 ((char *)dest)[size - 1] = '\0';
3543                 mstate->dtms_scratch_ptr += size;
3544                 regs[rd] = dest;
3545                 break;
3546         }
3547
3548 #if defined(sun)
3549         case DIF_SUBR_MSGSIZE:
3550         case DIF_SUBR_MSGDSIZE: {
3551                 uintptr_t baddr = tupregs[0].dttk_value, daddr;
3552                 uintptr_t wptr, rptr;
3553                 size_t count = 0;
3554                 int cont = 0;
3555
3556                 while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
3557
3558                         if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3559                             vstate)) {
3560                                 regs[rd] = 0;
3561                                 break;
3562                         }
3563
3564                         wptr = dtrace_loadptr(baddr +
3565                             offsetof(mblk_t, b_wptr));
3566
3567                         rptr = dtrace_loadptr(baddr +
3568                             offsetof(mblk_t, b_rptr));
3569
3570                         if (wptr < rptr) {
3571                                 *flags |= CPU_DTRACE_BADADDR;
3572                                 *illval = tupregs[0].dttk_value;
3573                                 break;
3574                         }
3575
3576                         daddr = dtrace_loadptr(baddr +
3577                             offsetof(mblk_t, b_datap));
3578
3579                         baddr = dtrace_loadptr(baddr +
3580                             offsetof(mblk_t, b_cont));
3581
3582                         /*
3583                          * We want to prevent against denial-of-service here,
3584                          * so we're only going to search the list for
3585                          * dtrace_msgdsize_max mblks.
3586                          */
3587                         if (cont++ > dtrace_msgdsize_max) {
3588                                 *flags |= CPU_DTRACE_ILLOP;
3589                                 break;
3590                         }
3591
3592                         if (subr == DIF_SUBR_MSGDSIZE) {
3593                                 if (dtrace_load8(daddr +
3594                                     offsetof(dblk_t, db_type)) != M_DATA)
3595                                         continue;
3596                         }
3597
3598                         count += wptr - rptr;
3599                 }
3600
3601                 if (!(*flags & CPU_DTRACE_FAULT))
3602                         regs[rd] = count;
3603
3604                 break;
3605         }
3606 #endif
3607
3608         case DIF_SUBR_PROGENYOF: {
3609                 pid_t pid = tupregs[0].dttk_value;
3610                 proc_t *p;
3611                 int rval = 0;
3612
3613                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3614
3615                 for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3616 #if defined(sun)
3617                         if (p->p_pidp->pid_id == pid) {
3618 #else
3619                         if (p->p_pid == pid) {
3620 #endif
3621                                 rval = 1;
3622                                 break;
3623                         }
3624                 }
3625
3626                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3627
3628                 regs[rd] = rval;
3629                 break;
3630         }
3631
3632         case DIF_SUBR_SPECULATION:
3633                 regs[rd] = dtrace_speculation(state);
3634                 break;
3635
3636         case DIF_SUBR_COPYOUT: {
3637                 uintptr_t kaddr = tupregs[0].dttk_value;
3638                 uintptr_t uaddr = tupregs[1].dttk_value;
3639                 uint64_t size = tupregs[2].dttk_value;
3640
3641                 if (!dtrace_destructive_disallow &&
3642                     dtrace_priv_proc_control(state) &&
3643                     !dtrace_istoxic(kaddr, size)) {
3644                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3645                         dtrace_copyout(kaddr, uaddr, size, flags);
3646                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3647                 }
3648                 break;
3649         }
3650
3651         case DIF_SUBR_COPYOUTSTR: {
3652                 uintptr_t kaddr = tupregs[0].dttk_value;
3653                 uintptr_t uaddr = tupregs[1].dttk_value;
3654                 uint64_t size = tupregs[2].dttk_value;
3655
3656                 if (!dtrace_destructive_disallow &&
3657                     dtrace_priv_proc_control(state) &&
3658                     !dtrace_istoxic(kaddr, size)) {
3659                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3660                         dtrace_copyoutstr(kaddr, uaddr, size, flags);
3661                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3662                 }
3663                 break;
3664         }
3665
3666         case DIF_SUBR_STRLEN: {
3667                 size_t sz;
3668                 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3669                 sz = dtrace_strlen((char *)addr,
3670                     state->dts_options[DTRACEOPT_STRSIZE]);
3671
3672                 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3673                         regs[rd] = 0;
3674                         break;
3675                 }
3676
3677                 regs[rd] = sz;
3678
3679                 break;
3680         }
3681
3682         case DIF_SUBR_STRCHR:
3683         case DIF_SUBR_STRRCHR: {
3684                 /*
3685                  * We're going to iterate over the string looking for the
3686                  * specified character.  We will iterate until we have reached
3687                  * the string length or we have found the character.  If this
3688                  * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3689                  * of the specified character instead of the first.
3690                  */
3691                 uintptr_t saddr = tupregs[0].dttk_value;
3692                 uintptr_t addr = tupregs[0].dttk_value;
3693                 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3694                 char c, target = (char)tupregs[1].dttk_value;
3695
3696                 for (regs[rd] = 0; addr < limit; addr++) {
3697                         if ((c = dtrace_load8(addr)) == target) {
3698                                 regs[rd] = addr;
3699
3700                                 if (subr == DIF_SUBR_STRCHR)
3701                                         break;
3702                         }
3703
3704                         if (c == '\0')
3705                                 break;
3706                 }
3707
3708                 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3709                         regs[rd] = 0;
3710                         break;
3711                 }
3712
3713                 break;
3714         }
3715
3716         case DIF_SUBR_STRSTR:
3717         case DIF_SUBR_INDEX:
3718         case DIF_SUBR_RINDEX: {
3719                 /*
3720                  * We're going to iterate over the string looking for the
3721                  * specified string.  We will iterate until we have reached
3722                  * the string length or we have found the string.  (Yes, this
3723                  * is done in the most naive way possible -- but considering
3724                  * that the string we're searching for is likely to be
3725                  * relatively short, the complexity of Rabin-Karp or similar
3726                  * hardly seems merited.)
3727                  */
3728                 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3729                 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3730                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3731                 size_t len = dtrace_strlen(addr, size);
3732                 size_t sublen = dtrace_strlen(substr, size);
3733                 char *limit = addr + len, *orig = addr;
3734                 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3735                 int inc = 1;
3736
3737                 regs[rd] = notfound;
3738
3739                 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3740                         regs[rd] = 0;
3741                         break;
3742                 }
3743
3744                 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3745                     vstate)) {
3746                         regs[rd] = 0;
3747                         break;
3748                 }
3749
3750                 /*
3751                  * strstr() and index()/rindex() have similar semantics if
3752                  * both strings are the empty string: strstr() returns a
3753                  * pointer to the (empty) string, and index() and rindex()
3754                  * both return index 0 (regardless of any position argument).
3755                  */
3756                 if (sublen == 0 && len == 0) {
3757                         if (subr == DIF_SUBR_STRSTR)
3758                                 regs[rd] = (uintptr_t)addr;
3759                         else
3760                                 regs[rd] = 0;
3761                         break;
3762                 }
3763
3764                 if (subr != DIF_SUBR_STRSTR) {
3765                         if (subr == DIF_SUBR_RINDEX) {
3766                                 limit = orig - 1;
3767                                 addr += len;
3768                                 inc = -1;
3769                         }
3770
3771                         /*
3772                          * Both index() and rindex() take an optional position
3773                          * argument that denotes the starting position.
3774                          */
3775                         if (nargs == 3) {
3776                                 int64_t pos = (int64_t)tupregs[2].dttk_value;
3777
3778                                 /*
3779                                  * If the position argument to index() is
3780                                  * negative, Perl implicitly clamps it at
3781                                  * zero.  This semantic is a little surprising
3782                                  * given the special meaning of negative
3783                                  * positions to similar Perl functions like
3784                                  * substr(), but it appears to reflect a
3785                                  * notion that index() can start from a
3786                                  * negative index and increment its way up to
3787                                  * the string.  Given this notion, Perl's
3788                                  * rindex() is at least self-consistent in
3789                                  * that it implicitly clamps positions greater
3790                                  * than the string length to be the string
3791                                  * length.  Where Perl completely loses
3792                                  * coherence, however, is when the specified
3793                                  * substring is the empty string ("").  In
3794                                  * this case, even if the position is
3795                                  * negative, rindex() returns 0 -- and even if
3796                                  * the position is greater than the length,
3797                                  * index() returns the string length.  These
3798                                  * semantics violate the notion that index()
3799                                  * should never return a value less than the
3800                                  * specified position and that rindex() should
3801                                  * never return a value greater than the
3802                                  * specified position.  (One assumes that
3803                                  * these semantics are artifacts of Perl's
3804                                  * implementation and not the results of
3805                                  * deliberate design -- it beggars belief that
3806                                  * even Larry Wall could desire such oddness.)
3807                                  * While in the abstract one would wish for
3808                                  * consistent position semantics across
3809                                  * substr(), index() and rindex() -- or at the
3810                                  * very least self-consistent position
3811                                  * semantics for index() and rindex() -- we
3812                                  * instead opt to keep with the extant Perl
3813                                  * semantics, in all their broken glory.  (Do
3814                                  * we have more desire to maintain Perl's
3815                                  * semantics than Perl does?  Probably.)
3816                                  */
3817                                 if (subr == DIF_SUBR_RINDEX) {
3818                                         if (pos < 0) {
3819                                                 if (sublen == 0)
3820                                                         regs[rd] = 0;
3821                                                 break;
3822                                         }
3823
3824                                         if (pos > len)
3825                                                 pos = len;
3826                                 } else {
3827                                         if (pos < 0)
3828                                                 pos = 0;
3829
3830                                         if (pos >= len) {
3831                                                 if (sublen == 0)
3832                                                         regs[rd] = len;
3833                                                 break;
3834                                         }
3835                                 }
3836
3837                                 addr = orig + pos;
3838                         }
3839                 }
3840
3841                 for (regs[rd] = notfound; addr != limit; addr += inc) {
3842                         if (dtrace_strncmp(addr, substr, sublen) == 0) {
3843                                 if (subr != DIF_SUBR_STRSTR) {
3844                                         /*
3845                                          * As D index() and rindex() are
3846                                          * modeled on Perl (and not on awk),
3847                                          * we return a zero-based (and not a
3848                                          * one-based) index.  (For you Perl
3849                                          * weenies: no, we're not going to add
3850                                          * $[ -- and shouldn't you be at a con
3851                                          * or something?)
3852                                          */
3853                                         regs[rd] = (uintptr_t)(addr - orig);
3854                                         break;
3855                                 }
3856
3857                                 ASSERT(subr == DIF_SUBR_STRSTR);
3858                                 regs[rd] = (uintptr_t)addr;
3859                                 break;
3860                         }
3861                 }
3862
3863                 break;
3864         }
3865
3866         case DIF_SUBR_STRTOK: {
3867                 uintptr_t addr = tupregs[0].dttk_value;
3868                 uintptr_t tokaddr = tupregs[1].dttk_value;
3869                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3870                 uintptr_t limit, toklimit = tokaddr + size;
3871                 uint8_t c = 0, tokmap[32];       /* 256 / 8 */
3872                 char *dest = (char *)mstate->dtms_scratch_ptr;
3873                 int i;
3874
3875                 /*
3876                  * Check both the token buffer and (later) the input buffer,
3877                  * since both could be non-scratch addresses.
3878                  */
3879                 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3880                         regs[rd] = 0;
3881                         break;
3882                 }
3883
3884                 if (!DTRACE_INSCRATCH(mstate, size)) {
3885                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3886                         regs[rd] = 0;
3887                         break;
3888                 }
3889
3890                 if (addr == 0) {
3891                         /*
3892                          * If the address specified is NULL, we use our saved
3893                          * strtok pointer from the mstate.  Note that this
3894                          * means that the saved strtok pointer is _only_
3895                          * valid within multiple enablings of the same probe --
3896                          * it behaves like an implicit clause-local variable.
3897                          */
3898                         addr = mstate->dtms_strtok;
3899                 } else {
3900                         /*
3901                          * If the user-specified address is non-NULL we must
3902                          * access check it.  This is the only time we have
3903                          * a chance to do so, since this address may reside
3904                          * in the string table of this clause-- future calls
3905                          * (when we fetch addr from mstate->dtms_strtok)
3906                          * would fail this access check.
3907                          */
3908                         if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3909                                 regs[rd] = 0;
3910                                 break;
3911                         }
3912                 }
3913
3914                 /*
3915                  * First, zero the token map, and then process the token
3916                  * string -- setting a bit in the map for every character
3917                  * found in the token string.
3918                  */
3919                 for (i = 0; i < sizeof (tokmap); i++)
3920                         tokmap[i] = 0;
3921
3922                 for (; tokaddr < toklimit; tokaddr++) {
3923                         if ((c = dtrace_load8(tokaddr)) == '\0')
3924                                 break;
3925
3926                         ASSERT((c >> 3) < sizeof (tokmap));
3927                         tokmap[c >> 3] |= (1 << (c & 0x7));
3928                 }
3929
3930                 for (limit = addr + size; addr < limit; addr++) {
3931                         /*
3932                          * We're looking for a character that is _not_ contained
3933                          * in the token string.
3934                          */
3935                         if ((c = dtrace_load8(addr)) == '\0')
3936                                 break;
3937
3938                         if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3939                                 break;
3940                 }
3941
3942                 if (c == '\0') {
3943                         /*
3944                          * We reached the end of the string without finding
3945                          * any character that was not in the token string.
3946                          * We return NULL in this case, and we set the saved
3947                          * address to NULL as well.
3948                          */
3949                         regs[rd] = 0;
3950                         mstate->dtms_strtok = 0;
3951                         break;
3952                 }
3953
3954                 /*
3955                  * From here on, we're copying into the destination string.
3956                  */
3957                 for (i = 0; addr < limit && i < size - 1; addr++) {
3958                         if ((c = dtrace_load8(addr)) == '\0')
3959                                 break;
3960
3961                         if (tokmap[c >> 3] & (1 << (c & 0x7)))
3962                                 break;
3963
3964                         ASSERT(i < size);
3965                         dest[i++] = c;
3966                 }
3967
3968                 ASSERT(i < size);
3969                 dest[i] = '\0';
3970                 regs[rd] = (uintptr_t)dest;
3971                 mstate->dtms_scratch_ptr += size;
3972                 mstate->dtms_strtok = addr;
3973                 break;
3974         }
3975
3976         case DIF_SUBR_SUBSTR: {
3977                 uintptr_t s = tupregs[0].dttk_value;
3978                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3979                 char *d = (char *)mstate->dtms_scratch_ptr;
3980                 int64_t index = (int64_t)tupregs[1].dttk_value;
3981                 int64_t remaining = (int64_t)tupregs[2].dttk_value;
3982                 size_t len = dtrace_strlen((char *)s, size);
3983                 int64_t i = 0;
3984
3985                 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
3986                         regs[rd] = 0;
3987                         break;
3988                 }
3989
3990                 if (!DTRACE_INSCRATCH(mstate, size)) {
3991                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3992                         regs[rd] = 0;
3993                         break;
3994                 }
3995
3996                 if (nargs <= 2)
3997                         remaining = (int64_t)size;
3998
3999                 if (index < 0) {
4000                         index += len;
4001
4002                         if (index < 0 && index + remaining > 0) {
4003                                 remaining += index;
4004                                 index = 0;
4005                         }
4006                 }
4007
4008                 if (index >= len || index < 0) {
4009                         remaining = 0;
4010                 } else if (remaining < 0) {
4011                         remaining += len - index;
4012                 } else if (index + remaining > size) {
4013                         remaining = size - index;
4014                 }
4015
4016                 for (i = 0; i < remaining; i++) {
4017                         if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4018                                 break;
4019                 }
4020
4021                 d[i] = '\0';
4022
4023                 mstate->dtms_scratch_ptr += size;
4024                 regs[rd] = (uintptr_t)d;
4025                 break;
4026         }
4027
4028         case DIF_SUBR_TOUPPER:
4029         case DIF_SUBR_TOLOWER: {
4030                 uintptr_t s = tupregs[0].dttk_value;
4031                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4032                 char *dest = (char *)mstate->dtms_scratch_ptr, c;
4033                 size_t len = dtrace_strlen((char *)s, size);
4034                 char lower, upper, convert;
4035                 int64_t i;
4036
4037                 if (subr == DIF_SUBR_TOUPPER) {
4038                         lower = 'a';
4039                         upper = 'z';
4040                         convert = 'A';
4041                 } else {
4042                         lower = 'A';
4043                         upper = 'Z';
4044                         convert = 'a';
4045                 }
4046
4047                 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4048                         regs[rd] = 0;
4049                         break;
4050                 }
4051
4052                 if (!DTRACE_INSCRATCH(mstate, size)) {
4053                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4054                         regs[rd] = 0;
4055                         break;
4056                 }
4057
4058                 for (i = 0; i < size - 1; i++) {
4059                         if ((c = dtrace_load8(s + i)) == '\0')
4060                                 break;
4061
4062                         if (c >= lower && c <= upper)
4063                                 c = convert + (c - lower);
4064
4065                         dest[i] = c;
4066                 }
4067
4068                 ASSERT(i < size);
4069                 dest[i] = '\0';
4070                 regs[rd] = (uintptr_t)dest;
4071                 mstate->dtms_scratch_ptr += size;
4072                 break;
4073         }
4074
4075 #if defined(sun)
4076         case DIF_SUBR_GETMAJOR:
4077 #ifdef _LP64
4078                 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4079 #else
4080                 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4081 #endif
4082                 break;
4083
4084         case DIF_SUBR_GETMINOR:
4085 #ifdef _LP64
4086                 regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4087 #else
4088                 regs[rd] = tupregs[0].dttk_value & MAXMIN;
4089 #endif
4090                 break;
4091
4092         case DIF_SUBR_DDI_PATHNAME: {
4093                 /*
4094                  * This one is a galactic mess.  We are going to roughly
4095                  * emulate ddi_pathname(), but it's made more complicated
4096                  * by the fact that we (a) want to include the minor name and
4097                  * (b) must proceed iteratively instead of recursively.
4098                  */
4099                 uintptr_t dest = mstate->dtms_scratch_ptr;
4100                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4101                 char *start = (char *)dest, *end = start + size - 1;
4102                 uintptr_t daddr = tupregs[0].dttk_value;
4103                 int64_t minor = (int64_t)tupregs[1].dttk_value;
4104                 char *s;
4105                 int i, len, depth = 0;
4106
4107                 /*
4108                  * Due to all the pointer jumping we do and context we must
4109                  * rely upon, we just mandate that the user must have kernel
4110                  * read privileges to use this routine.
4111                  */
4112                 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4113                         *flags |= CPU_DTRACE_KPRIV;
4114                         *illval = daddr;
4115                         regs[rd] = 0;
4116                 }
4117
4118                 if (!DTRACE_INSCRATCH(mstate, size)) {
4119                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4120                         regs[rd] = 0;
4121                         break;
4122                 }
4123
4124                 *end = '\0';
4125
4126                 /*
4127                  * We want to have a name for the minor.  In order to do this,
4128                  * we need to walk the minor list from the devinfo.  We want
4129                  * to be sure that we don't infinitely walk a circular list,
4130                  * so we check for circularity by sending a scout pointer
4131                  * ahead two elements for every element that we iterate over;
4132                  * if the list is circular, these will ultimately point to the
4133                  * same element.  You may recognize this little trick as the
4134                  * answer to a stupid interview question -- one that always
4135                  * seems to be asked by those who had to have it laboriously
4136                  * explained to them, and who can't even concisely describe
4137                  * the conditions under which one would be forced to resort to
4138                  * this technique.  Needless to say, those conditions are
4139                  * found here -- and probably only here.  Is this the only use
4140                  * of this infamous trick in shipping, production code?  If it
4141                  * isn't, it probably should be...
4142                  */
4143                 if (minor != -1) {
4144                         uintptr_t maddr = dtrace_loadptr(daddr +
4145                             offsetof(struct dev_info, devi_minor));
4146
4147                         uintptr_t next = offsetof(struct ddi_minor_data, next);
4148                         uintptr_t name = offsetof(struct ddi_minor_data,
4149                             d_minor) + offsetof(struct ddi_minor, name);
4150                         uintptr_t dev = offsetof(struct ddi_minor_data,
4151                             d_minor) + offsetof(struct ddi_minor, dev);
4152                         uintptr_t scout;
4153
4154                         if (maddr != NULL)
4155                                 scout = dtrace_loadptr(maddr + next);
4156
4157                         while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4158                                 uint64_t m;
4159 #ifdef _LP64
4160                                 m = dtrace_load64(maddr + dev) & MAXMIN64;
4161 #else
4162                                 m = dtrace_load32(maddr + dev) & MAXMIN;
4163 #endif
4164                                 if (m != minor) {
4165                                         maddr = dtrace_loadptr(maddr + next);
4166
4167                                         if (scout == NULL)
4168                                                 continue;
4169
4170                                         scout = dtrace_loadptr(scout + next);
4171
4172                                         if (scout == NULL)
4173                                                 continue;
4174
4175                                         scout = dtrace_loadptr(scout + next);
4176
4177                                         if (scout == NULL)
4178                                                 continue;
4179
4180                                         if (scout == maddr) {
4181                                                 *flags |= CPU_DTRACE_ILLOP;
4182                                                 break;
4183                                         }
4184
4185                                         continue;
4186                                 }
4187
4188                                 /*
4189                                  * We have the minor data.  Now we need to
4190                                  * copy the minor's name into the end of the
4191                                  * pathname.
4192                                  */
4193                                 s = (char *)dtrace_loadptr(maddr + name);
4194                                 len = dtrace_strlen(s, size);
4195
4196                                 if (*flags & CPU_DTRACE_FAULT)
4197                                         break;
4198
4199                                 if (len != 0) {
4200                                         if ((end -= (len + 1)) < start)
4201                                                 break;
4202
4203                                         *end = ':';
4204                                 }
4205
4206                                 for (i = 1; i <= len; i++)
4207                                         end[i] = dtrace_load8((uintptr_t)s++);
4208                                 break;
4209                         }
4210                 }
4211
4212                 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4213                         ddi_node_state_t devi_state;
4214
4215                         devi_state = dtrace_load32(daddr +
4216                             offsetof(struct dev_info, devi_node_state));
4217
4218                         if (*flags & CPU_DTRACE_FAULT)
4219                                 break;
4220
4221                         if (devi_state >= DS_INITIALIZED) {
4222                                 s = (char *)dtrace_loadptr(daddr +
4223                                     offsetof(struct dev_info, devi_addr));
4224                                 len = dtrace_strlen(s, size);
4225
4226                                 if (*flags & CPU_DTRACE_FAULT)
4227                                         break;
4228
4229                                 if (len != 0) {
4230                                         if ((end -= (len + 1)) < start)
4231                                                 break;
4232
4233                                         *end = '@';
4234                                 }
4235
4236                                 for (i = 1; i <= len; i++)
4237                                         end[i] = dtrace_load8((uintptr_t)s++);
4238                         }
4239
4240                         /*
4241                          * Now for the node name...
4242                          */
4243                         s = (char *)dtrace_loadptr(daddr +
4244                             offsetof(struct dev_info, devi_node_name));
4245
4246                         daddr = dtrace_loadptr(daddr +
4247                             offsetof(struct dev_info, devi_parent));
4248
4249                         /*
4250                          * If our parent is NULL (that is, if we're the root
4251                          * node), we're going to use the special path
4252                          * "devices".
4253                          */
4254                         if (daddr == 0)
4255                                 s = "devices";
4256
4257                         len = dtrace_strlen(s, size);
4258                         if (*flags & CPU_DTRACE_FAULT)
4259                                 break;
4260
4261                         if ((end -= (len + 1)) < start)
4262                                 break;
4263
4264                         for (i = 1; i <= len; i++)
4265                                 end[i] = dtrace_load8((uintptr_t)s++);
4266                         *end = '/';
4267
4268                         if (depth++ > dtrace_devdepth_max) {
4269                                 *flags |= CPU_DTRACE_ILLOP;
4270                                 break;
4271                         }
4272                 }
4273
4274                 if (end < start)
4275                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4276
4277                 if (daddr == 0) {
4278                         regs[rd] = (uintptr_t)end;
4279                         mstate->dtms_scratch_ptr += size;
4280                 }
4281
4282                 break;
4283         }
4284 #endif
4285
4286         case DIF_SUBR_STRJOIN: {
4287                 char *d = (char *)mstate->dtms_scratch_ptr;
4288                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4289                 uintptr_t s1 = tupregs[0].dttk_value;
4290                 uintptr_t s2 = tupregs[1].dttk_value;
4291                 int i = 0;
4292
4293                 if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4294                     !dtrace_strcanload(s2, size, mstate, vstate)) {
4295                         regs[rd] = 0;
4296                         break;
4297                 }
4298
4299                 if (!DTRACE_INSCRATCH(mstate, size)) {
4300                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4301                         regs[rd] = 0;
4302                         break;
4303                 }
4304
4305                 for (;;) {
4306                         if (i >= size) {
4307                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4308                                 regs[rd] = 0;
4309                                 break;
4310                         }
4311
4312                         if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4313                                 i--;
4314                                 break;
4315                         }
4316                 }
4317
4318                 for (;;) {
4319                         if (i >= size) {
4320                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4321                                 regs[rd] = 0;
4322                                 break;
4323                         }
4324
4325                         if ((d[i++] = dtrace_load8(s2++)) == '\0')
4326                                 break;
4327                 }
4328
4329                 if (i < size) {
4330                         mstate->dtms_scratch_ptr += i;
4331                         regs[rd] = (uintptr_t)d;
4332                 }
4333
4334                 break;
4335         }
4336
4337         case DIF_SUBR_LLTOSTR: {
4338                 int64_t i = (int64_t)tupregs[0].dttk_value;
4339                 uint64_t val, digit;
4340                 uint64_t size = 65;     /* enough room for 2^64 in binary */
4341                 char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4342                 int base = 10;
4343
4344                 if (nargs > 1) {
4345                         if ((base = tupregs[1].dttk_value) <= 1 ||
4346                             base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
4347                                 *flags |= CPU_DTRACE_ILLOP;
4348                                 break;
4349                         }
4350                 }
4351
4352                 val = (base == 10 && i < 0) ? i * -1 : i;
4353
4354                 if (!DTRACE_INSCRATCH(mstate, size)) {
4355                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4356                         regs[rd] = 0;
4357                         break;
4358                 }
4359
4360                 for (*end-- = '\0'; val; val /= base) {
4361                         if ((digit = val % base) <= '9' - '0') {
4362                                 *end-- = '0' + digit;
4363                         } else {
4364                                 *end-- = 'a' + (digit - ('9' - '0') - 1);
4365                         }
4366                 }
4367
4368                 if (i == 0 && base == 16)
4369                         *end-- = '0';
4370
4371                 if (base == 16)
4372                         *end-- = 'x';
4373
4374                 if (i == 0 || base == 8 || base == 16)
4375                         *end-- = '0';
4376
4377                 if (i < 0 && base == 10)
4378                         *end-- = '-';
4379
4380                 regs[rd] = (uintptr_t)end + 1;
4381                 mstate->dtms_scratch_ptr += size;
4382                 break;
4383         }
4384
4385         case DIF_SUBR_HTONS:
4386         case DIF_SUBR_NTOHS:
4387 #if BYTE_ORDER == BIG_ENDIAN
4388                 regs[rd] = (uint16_t)tupregs[0].dttk_value;
4389 #else
4390                 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4391 #endif
4392                 break;
4393
4394
4395         case DIF_SUBR_HTONL:
4396         case DIF_SUBR_NTOHL:
4397 #if BYTE_ORDER == BIG_ENDIAN
4398                 regs[rd] = (uint32_t)tupregs[0].dttk_value;
4399 #else
4400                 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4401 #endif
4402                 break;
4403
4404
4405         case DIF_SUBR_HTONLL:
4406         case DIF_SUBR_NTOHLL:
4407 #if BYTE_ORDER == BIG_ENDIAN
4408                 regs[rd] = (uint64_t)tupregs[0].dttk_value;
4409 #else
4410                 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4411 #endif
4412                 break;
4413
4414
4415         case DIF_SUBR_DIRNAME:
4416         case DIF_SUBR_BASENAME: {
4417                 char *dest = (char *)mstate->dtms_scratch_ptr;
4418                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4419                 uintptr_t src = tupregs[0].dttk_value;
4420                 int i, j, len = dtrace_strlen((char *)src, size);
4421                 int lastbase = -1, firstbase = -1, lastdir = -1;
4422                 int start, end;
4423
4424                 if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4425                         regs[rd] = 0;
4426                         break;
4427                 }
4428
4429                 if (!DTRACE_INSCRATCH(mstate, size)) {
4430                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4431                         regs[rd] = 0;
4432                         break;
4433                 }
4434
4435                 /*
4436                  * The basename and dirname for a zero-length string is
4437                  * defined to be "."
4438                  */
4439                 if (len == 0) {
4440                         len = 1;
4441                         src = (uintptr_t)".";
4442                 }
4443
4444                 /*
4445                  * Start from the back of the string, moving back toward the
4446                  * front until we see a character that isn't a slash.  That
4447                  * character is the last character in the basename.
4448                  */
4449                 for (i = len - 1; i >= 0; i--) {
4450                         if (dtrace_load8(src + i) != '/')
4451                                 break;
4452                 }
4453
4454                 if (i >= 0)
4455                         lastbase = i;
4456
4457                 /*
4458                  * Starting from the last character in the basename, move
4459                  * towards the front until we find a slash.  The character
4460                  * that we processed immediately before that is the first
4461                  * character in the basename.
4462                  */
4463                 for (; i >= 0; i--) {
4464                         if (dtrace_load8(src + i) == '/')
4465                                 break;
4466                 }
4467
4468                 if (i >= 0)
4469                         firstbase = i + 1;
4470
4471                 /*
4472                  * Now keep going until we find a non-slash character.  That
4473                  * character is the last character in the dirname.
4474                  */
4475                 for (; i >= 0; i--) {
4476                         if (dtrace_load8(src + i) != '/')
4477                                 break;
4478                 }
4479
4480                 if (i >= 0)
4481                         lastdir = i;
4482
4483                 ASSERT(!(lastbase == -1 && firstbase != -1));
4484                 ASSERT(!(firstbase == -1 && lastdir != -1));
4485
4486                 if (lastbase == -1) {
4487                         /*
4488                          * We didn't find a non-slash character.  We know that
4489                          * the length is non-zero, so the whole string must be
4490                          * slashes.  In either the dirname or the basename
4491                          * case, we return '/'.
4492                          */
4493                         ASSERT(firstbase == -1);
4494                         firstbase = lastbase = lastdir = 0;
4495                 }
4496
4497                 if (firstbase == -1) {
4498                         /*
4499                          * The entire string consists only of a basename
4500                          * component.  If we're looking for dirname, we need
4501                          * to change our string to be just "."; if we're
4502                          * looking for a basename, we'll just set the first
4503                          * character of the basename to be 0.
4504                          */
4505                         if (subr == DIF_SUBR_DIRNAME) {
4506                                 ASSERT(lastdir == -1);
4507                                 src = (uintptr_t)".";
4508                                 lastdir = 0;
4509                         } else {
4510                                 firstbase = 0;
4511                         }
4512                 }
4513
4514                 if (subr == DIF_SUBR_DIRNAME) {
4515                         if (lastdir == -1) {
4516                                 /*
4517                                  * We know that we have a slash in the name --
4518                                  * or lastdir would be set to 0, above.  And
4519                                  * because lastdir is -1, we know that this
4520                                  * slash must be the first character.  (That
4521                                  * is, the full string must be of the form
4522                                  * "/basename".)  In this case, the last
4523                                  * character of the directory name is 0.
4524                                  */
4525                                 lastdir = 0;
4526                         }
4527
4528                         start = 0;
4529                         end = lastdir;
4530                 } else {
4531                         ASSERT(subr == DIF_SUBR_BASENAME);
4532                         ASSERT(firstbase != -1 && lastbase != -1);
4533                         start = firstbase;
4534                         end = lastbase;
4535                 }
4536
4537                 for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4538                         dest[j] = dtrace_load8(src + i);
4539
4540                 dest[j] = '\0';
4541                 regs[rd] = (uintptr_t)dest;
4542                 mstate->dtms_scratch_ptr += size;
4543                 break;
4544         }
4545
4546         case DIF_SUBR_CLEANPATH: {
4547                 char *dest = (char *)mstate->dtms_scratch_ptr, c;
4548                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4549                 uintptr_t src = tupregs[0].dttk_value;
4550                 int i = 0, j = 0;
4551
4552                 if (!dtrace_strcanload(src, size, mstate, vstate)) {
4553                         regs[rd] = 0;
4554                         break;
4555                 }
4556
4557                 if (!DTRACE_INSCRATCH(mstate, size)) {
4558                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4559                         regs[rd] = 0;
4560                         break;
4561                 }
4562
4563                 /*
4564                  * Move forward, loading each character.
4565                  */
4566                 do {
4567                         c = dtrace_load8(src + i++);
4568 next:
4569                         if (j + 5 >= size)      /* 5 = strlen("/..c\0") */
4570                                 break;
4571
4572                         if (c != '/') {
4573                                 dest[j++] = c;
4574                                 continue;
4575                         }
4576
4577                         c = dtrace_load8(src + i++);
4578
4579                         if (c == '/') {
4580                                 /*
4581                                  * We have two slashes -- we can just advance
4582                                  * to the next character.
4583                                  */
4584                                 goto next;
4585                         }
4586
4587                         if (c != '.') {
4588                                 /*
4589                                  * This is not "." and it's not ".." -- we can
4590                                  * just store the "/" and this character and
4591                                  * drive on.
4592                                  */
4593                                 dest[j++] = '/';
4594                                 dest[j++] = c;
4595                                 continue;
4596                         }
4597
4598                         c = dtrace_load8(src + i++);
4599
4600                         if (c == '/') {
4601                                 /*
4602                                  * This is a "/./" component.  We're not going
4603                                  * to store anything in the destination buffer;
4604                                  * we're just going to go to the next component.
4605                                  */
4606                                 goto next;
4607                         }
4608
4609                         if (c != '.') {
4610                                 /*
4611                                  * This is not ".." -- we can just store the
4612                                  * "/." and this character and continue
4613                                  * processing.
4614                                  */
4615                                 dest[j++] = '/';
4616                                 dest[j++] = '.';
4617                                 dest[j++] = c;
4618                                 continue;
4619                         }
4620
4621                         c = dtrace_load8(src + i++);
4622
4623                         if (c != '/' && c != '\0') {
4624                                 /*
4625                                  * This is not ".." -- it's "..[mumble]".
4626                                  * We'll store the "/.." and this character
4627                                  * and continue processing.
4628                                  */
4629                                 dest[j++] = '/';
4630                                 dest[j++] = '.';
4631                                 dest[j++] = '.';
4632                                 dest[j++] = c;
4633                                 continue;
4634                         }
4635
4636                         /*
4637                          * This is "/../" or "/..\0".  We need to back up
4638                          * our destination pointer until we find a "/".
4639                          */
4640                         i--;
4641                         while (j != 0 && dest[--j] != '/')
4642                                 continue;
4643
4644                         if (c == '\0')
4645                                 dest[++j] = '/';
4646                 } while (c != '\0');
4647
4648                 dest[j] = '\0';
4649                 regs[rd] = (uintptr_t)dest;
4650                 mstate->dtms_scratch_ptr += size;
4651                 break;
4652         }
4653
4654         case DIF_SUBR_INET_NTOA:
4655         case DIF_SUBR_INET_NTOA6:
4656         case DIF_SUBR_INET_NTOP: {
4657                 size_t size;
4658                 int af, argi, i;
4659                 char *base, *end;
4660
4661                 if (subr == DIF_SUBR_INET_NTOP) {
4662                         af = (int)tupregs[0].dttk_value;
4663                         argi = 1;
4664                 } else {
4665                         af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4666                         argi = 0;
4667                 }
4668
4669                 if (af == AF_INET) {
4670                         ipaddr_t ip4;
4671                         uint8_t *ptr8, val;
4672
4673                         /*
4674                          * Safely load the IPv4 address.
4675                          */
4676                         ip4 = dtrace_load32(tupregs[argi].dttk_value);
4677
4678                         /*
4679                          * Check an IPv4 string will fit in scratch.
4680                          */
4681                         size = INET_ADDRSTRLEN;
4682                         if (!DTRACE_INSCRATCH(mstate, size)) {
4683                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4684                                 regs[rd] = 0;
4685                                 break;
4686                         }
4687                         base = (char *)mstate->dtms_scratch_ptr;
4688                         end = (char *)mstate->dtms_scratch_ptr + size - 1;
4689
4690                         /*
4691                          * Stringify as a dotted decimal quad.
4692                          */
4693                         *end-- = '\0';
4694                         ptr8 = (uint8_t *)&ip4;
4695                         for (i = 3; i >= 0; i--) {
4696                                 val = ptr8[i];
4697
4698                                 if (val == 0) {
4699                                         *end-- = '0';
4700                                 } else {
4701                                         for (; val; val /= 10) {
4702                                                 *end-- = '0' + (val % 10);
4703                                         }
4704                                 }
4705
4706                                 if (i > 0)
4707                                         *end-- = '.';
4708                         }
4709                         ASSERT(end + 1 >= base);
4710
4711                 } else if (af == AF_INET6) {
4712                         struct in6_addr ip6;
4713                         int firstzero, tryzero, numzero, v6end;
4714                         uint16_t val;
4715                         const char digits[] = "0123456789abcdef";
4716
4717                         /*
4718                          * Stringify using RFC 1884 convention 2 - 16 bit
4719                          * hexadecimal values with a zero-run compression.
4720                          * Lower case hexadecimal digits are used.
4721                          *      eg, fe80::214:4fff:fe0b:76c8.
4722                          * The IPv4 embedded form is returned for inet_ntop,
4723                          * just the IPv4 string is returned for inet_ntoa6.
4724                          */
4725
4726                         /*
4727                          * Safely load the IPv6 address.
4728                          */
4729                         dtrace_bcopy(
4730                             (void *)(uintptr_t)tupregs[argi].dttk_value,
4731                             (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4732
4733                         /*
4734                          * Check an IPv6 string will fit in scratch.
4735                          */
4736                         size = INET6_ADDRSTRLEN;
4737                         if (!DTRACE_INSCRATCH(mstate, size)) {
4738                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4739                                 regs[rd] = 0;
4740                                 break;
4741                         }
4742                         base = (char *)mstate->dtms_scratch_ptr;
4743                         end = (char *)mstate->dtms_scratch_ptr + size - 1;
4744                         *end-- = '\0';
4745
4746                         /*
4747                          * Find the longest run of 16 bit zero values
4748                          * for the single allowed zero compression - "::".
4749                          */
4750                         firstzero = -1;
4751                         tryzero = -1;
4752                         numzero = 1;
4753                         for (i = 0; i < sizeof (struct in6_addr); i++) {
4754 #if defined(sun)
4755                                 if (ip6._S6_un._S6_u8[i] == 0 &&
4756 #else
4757                                 if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4758 #endif
4759                                     tryzero == -1 && i % 2 == 0) {
4760                                         tryzero = i;
4761                                         continue;
4762                                 }
4763
4764                                 if (tryzero != -1 &&
4765 #if defined(sun)
4766                                     (ip6._S6_un._S6_u8[i] != 0 ||
4767 #else
4768                                     (ip6.__u6_addr.__u6_addr8[i] != 0 ||
4769 #endif
4770                                     i == sizeof (struct in6_addr) - 1)) {
4771
4772                                         if (i - tryzero <= numzero) {
4773                                                 tryzero = -1;
4774                                                 continue;
4775                                         }
4776
4777                                         firstzero = tryzero;
4778                                         numzero = i - i % 2 - tryzero;
4779                                         tryzero = -1;
4780
4781 #if defined(sun)
4782                                         if (ip6._S6_un._S6_u8[i] == 0 &&
4783 #else
4784                                         if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4785 #endif
4786                                             i == sizeof (struct in6_addr) - 1)
4787                                                 numzero += 2;
4788                                 }
4789                         }
4790                         ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4791
4792                         /*
4793                          * Check for an IPv4 embedded address.
4794                          */
4795                         v6end = sizeof (struct in6_addr) - 2;
4796                         if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4797                             IN6_IS_ADDR_V4COMPAT(&ip6)) {
4798                                 for (i = sizeof (struct in6_addr) - 1;
4799                                     i >= DTRACE_V4MAPPED_OFFSET; i--) {
4800                                         ASSERT(end >= base);
4801
4802 #if defined(sun)
4803                                         val = ip6._S6_un._S6_u8[i];
4804 #else
4805                                         val = ip6.__u6_addr.__u6_addr8[i];
4806 #endif
4807
4808                                         if (val == 0) {
4809                                                 *end-- = '0';
4810                                         } else {
4811                                                 for (; val; val /= 10) {
4812                                                         *end-- = '0' + val % 10;
4813                                                 }
4814                                         }
4815
4816                                         if (i > DTRACE_V4MAPPED_OFFSET)
4817                                                 *end-- = '.';
4818                                 }
4819
4820                                 if (subr == DIF_SUBR_INET_NTOA6)
4821                                         goto inetout;
4822
4823                                 /*
4824                                  * Set v6end to skip the IPv4 address that
4825                                  * we have already stringified.
4826                                  */
4827                                 v6end = 10;
4828                         }
4829
4830                         /*
4831                          * Build the IPv6 string by working through the
4832                          * address in reverse.
4833                          */
4834                         for (i = v6end; i >= 0; i -= 2) {
4835                                 ASSERT(end >= base);
4836
4837                                 if (i == firstzero + numzero - 2) {
4838                                         *end-- = ':';
4839                                         *end-- = ':';
4840                                         i -= numzero - 2;
4841                                         continue;
4842                                 }
4843
4844                                 if (i < 14 && i != firstzero - 2)
4845                                         *end-- = ':';
4846
4847 #if defined(sun)
4848                                 val = (ip6._S6_un._S6_u8[i] << 8) +
4849                                     ip6._S6_un._S6_u8[i + 1];
4850 #else
4851                                 val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
4852                                     ip6.__u6_addr.__u6_addr8[i + 1];
4853 #endif
4854
4855                                 if (val == 0) {
4856                                         *end-- = '0';
4857                                 } else {
4858                                         for (; val; val /= 16) {
4859                                                 *end-- = digits[val % 16];
4860                                         }
4861                                 }
4862                         }
4863                         ASSERT(end + 1 >= base);
4864
4865                 } else {
4866                         /*
4867                          * The user didn't use AH_INET or AH_INET6.
4868                          */
4869                         DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4870                         regs[rd] = 0;
4871                         break;
4872                 }
4873
4874 inetout:        regs[rd] = (uintptr_t)end + 1;
4875                 mstate->dtms_scratch_ptr += size;
4876                 break;
4877         }
4878
4879         case DIF_SUBR_MEMREF: {
4880                 uintptr_t size = 2 * sizeof(uintptr_t);
4881                 uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4882                 size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
4883
4884                 /* address and length */
4885                 memref[0] = tupregs[0].dttk_value;
4886                 memref[1] = tupregs[1].dttk_value;
4887
4888                 regs[rd] = (uintptr_t) memref;
4889                 mstate->dtms_scratch_ptr += scratch_size;
4890                 break;
4891         }
4892
4893         case DIF_SUBR_TYPEREF: {
4894                 uintptr_t size = 4 * sizeof(uintptr_t);
4895                 uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4896                 size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
4897
4898                 /* address, num_elements, type_str, type_len */
4899                 typeref[0] = tupregs[0].dttk_value;
4900                 typeref[1] = tupregs[1].dttk_value;
4901                 typeref[2] = tupregs[2].dttk_value;
4902                 typeref[3] = tupregs[3].dttk_value;
4903
4904                 regs[rd] = (uintptr_t) typeref;
4905                 mstate->dtms_scratch_ptr += scratch_size;
4906                 break;
4907         }
4908         }
4909 }
4910
4911 /*
4912  * Emulate the execution of DTrace IR instructions specified by the given
4913  * DIF object.  This function is deliberately void of assertions as all of
4914  * the necessary checks are handled by a call to dtrace_difo_validate().
4915  */
4916 static uint64_t
4917 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4918     dtrace_vstate_t *vstate, dtrace_state_t *state)
4919 {
4920         const dif_instr_t *text = difo->dtdo_buf;
4921         const uint_t textlen = difo->dtdo_len;
4922         const char *strtab = difo->dtdo_strtab;
4923         const uint64_t *inttab = difo->dtdo_inttab;
4924
4925         uint64_t rval = 0;
4926         dtrace_statvar_t *svar;
4927         dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4928         dtrace_difv_t *v;
4929         volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4930         volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4931
4932         dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4933         uint64_t regs[DIF_DIR_NREGS];
4934         uint64_t *tmp;
4935
4936         uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4937         int64_t cc_r;
4938         uint_t pc = 0, id, opc = 0;
4939         uint8_t ttop = 0;
4940         dif_instr_t instr;
4941         uint_t r1, r2, rd;
4942
4943         /*
4944          * We stash the current DIF object into the machine state: we need it
4945          * for subsequent access checking.
4946          */
4947         mstate->dtms_difo = difo;
4948
4949         regs[DIF_REG_R0] = 0;           /* %r0 is fixed at zero */
4950
4951         while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4952                 opc = pc;
4953
4954                 instr = text[pc++];
4955                 r1 = DIF_INSTR_R1(instr);
4956                 r2 = DIF_INSTR_R2(instr);
4957                 rd = DIF_INSTR_RD(instr);
4958
4959                 switch (DIF_INSTR_OP(instr)) {
4960                 case DIF_OP_OR:
4961                         regs[rd] = regs[r1] | regs[r2];
4962                         break;
4963                 case DIF_OP_XOR:
4964                         regs[rd] = regs[r1] ^ regs[r2];
4965                         break;
4966                 case DIF_OP_AND:
4967                         regs[rd] = regs[r1] & regs[r2];
4968                         break;
4969                 case DIF_OP_SLL:
4970                         regs[rd] = regs[r1] << regs[r2];
4971                         break;
4972                 case DIF_OP_SRL:
4973                         regs[rd] = regs[r1] >> regs[r2];
4974                         break;
4975                 case DIF_OP_SUB:
4976                         regs[rd] = regs[r1] - regs[r2];
4977                         break;
4978                 case DIF_OP_ADD:
4979                         regs[rd] = regs[r1] + regs[r2];
4980                         break;
4981                 case DIF_OP_MUL:
4982                         regs[rd] = regs[r1] * regs[r2];
4983                         break;
4984                 case DIF_OP_SDIV:
4985                         if (regs[r2] == 0) {
4986                                 regs[rd] = 0;
4987                                 *flags |= CPU_DTRACE_DIVZERO;
4988                         } else {
4989                                 regs[rd] = (int64_t)regs[r1] /
4990                                     (int64_t)regs[r2];
4991                         }
4992                         break;
4993
4994                 case DIF_OP_UDIV:
4995                         if (regs[r2] == 0) {
4996                                 regs[rd] = 0;
4997                                 *flags |= CPU_DTRACE_DIVZERO;
4998                         } else {
4999                                 regs[rd] = regs[r1] / regs[r2];
5000                         }
5001                         break;
5002
5003                 case DIF_OP_SREM:
5004                         if (regs[r2] == 0) {
5005                                 regs[rd] = 0;
5006                                 *flags |= CPU_DTRACE_DIVZERO;
5007                         } else {
5008                                 regs[rd] = (int64_t)regs[r1] %
5009                                     (int64_t)regs[r2];
5010                         }
5011                         break;
5012
5013                 case DIF_OP_UREM:
5014                         if (regs[r2] == 0) {
5015                                 regs[rd] = 0;
5016                                 *flags |= CPU_DTRACE_DIVZERO;
5017                         } else {
5018                                 regs[rd] = regs[r1] % regs[r2];
5019                         }
5020                         break;
5021
5022                 case DIF_OP_NOT:
5023                         regs[rd] = ~regs[r1];
5024                         break;
5025                 case DIF_OP_MOV:
5026                         regs[rd] = regs[r1];
5027                         break;
5028                 case DIF_OP_CMP:
5029                         cc_r = regs[r1] - regs[r2];
5030                         cc_n = cc_r < 0;
5031                         cc_z = cc_r == 0;
5032                         cc_v = 0;
5033                         cc_c = regs[r1] < regs[r2];
5034                         break;
5035                 case DIF_OP_TST:
5036                         cc_n = cc_v = cc_c = 0;
5037                         cc_z = regs[r1] == 0;
5038                         break;
5039                 case DIF_OP_BA:
5040                         pc = DIF_INSTR_LABEL(instr);
5041                         break;
5042                 case DIF_OP_BE:
5043                         if (cc_z)
5044                                 pc = DIF_INSTR_LABEL(instr);
5045                         break;
5046                 case DIF_OP_BNE:
5047                         if (cc_z == 0)
5048                                 pc = DIF_INSTR_LABEL(instr);
5049                         break;
5050                 case DIF_OP_BG:
5051                         if ((cc_z | (cc_n ^ cc_v)) == 0)
5052                                 pc = DIF_INSTR_LABEL(instr);
5053                         break;
5054                 case DIF_OP_BGU:
5055                         if ((cc_c | cc_z) == 0)
5056                                 pc = DIF_INSTR_LABEL(instr);
5057                         break;
5058                 case DIF_OP_BGE:
5059                         if ((cc_n ^ cc_v) == 0)
5060                                 pc = DIF_INSTR_LABEL(instr);
5061                         break;
5062                 case DIF_OP_BGEU:
5063                         if (cc_c == 0)
5064                                 pc = DIF_INSTR_LABEL(instr);
5065                         break;
5066                 case DIF_OP_BL:
5067                         if (cc_n ^ cc_v)
5068                                 pc = DIF_INSTR_LABEL(instr);
5069                         break;
5070                 case DIF_OP_BLU:
5071                         if (cc_c)
5072                                 pc = DIF_INSTR_LABEL(instr);
5073                         break;
5074                 case DIF_OP_BLE:
5075                         if (cc_z | (cc_n ^ cc_v))
5076                                 pc = DIF_INSTR_LABEL(instr);
5077                         break;
5078                 case DIF_OP_BLEU:
5079                         if (cc_c | cc_z)
5080                                 pc = DIF_INSTR_LABEL(instr);
5081                         break;
5082                 case DIF_OP_RLDSB:
5083                         if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5084                                 *flags |= CPU_DTRACE_KPRIV;
5085                                 *illval = regs[r1];
5086                                 break;
5087                         }
5088                         /*FALLTHROUGH*/
5089                 case DIF_OP_LDSB:
5090                         regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5091                         break;
5092                 case DIF_OP_RLDSH:
5093                         if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5094                                 *flags |= CPU_DTRACE_KPRIV;
5095                                 *illval = regs[r1];
5096                                 break;
5097                         }
5098                         /*FALLTHROUGH*/
5099                 case DIF_OP_LDSH:
5100                         regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5101                         break;
5102                 case DIF_OP_RLDSW:
5103                         if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5104                                 *flags |= CPU_DTRACE_KPRIV;
5105                                 *illval = regs[r1];
5106                                 break;
5107                         }
5108                         /*FALLTHROUGH*/
5109                 case DIF_OP_LDSW:
5110                         regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5111                         break;
5112                 case DIF_OP_RLDUB:
5113                         if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5114                                 *flags |= CPU_DTRACE_KPRIV;
5115                                 *illval = regs[r1];
5116                                 break;
5117                         }
5118                         /*FALLTHROUGH*/
5119                 case DIF_OP_LDUB:
5120                         regs[rd] = dtrace_load8(regs[r1]);
5121                         break;
5122                 case DIF_OP_RLDUH:
5123                         if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5124                                 *flags |= CPU_DTRACE_KPRIV;
5125                                 *illval = regs[r1];
5126                                 break;
5127                         }
5128                         /*FALLTHROUGH*/
5129                 case DIF_OP_LDUH:
5130                         regs[rd] = dtrace_load16(regs[r1]);
5131                         break;
5132                 case DIF_OP_RLDUW:
5133                         if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5134                                 *flags |= CPU_DTRACE_KPRIV;
5135                                 *illval = regs[r1];
5136                                 break;
5137                         }
5138                         /*FALLTHROUGH*/
5139                 case DIF_OP_LDUW:
5140                         regs[rd] = dtrace_load32(regs[r1]);
5141                         break;
5142                 case DIF_OP_RLDX:
5143                         if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
5144                                 *flags |= CPU_DTRACE_KPRIV;
5145                                 *illval = regs[r1];
5146                                 break;
5147                         }
5148                         /*FALLTHROUGH*/
5149                 case DIF_OP_LDX:
5150                         regs[rd] = dtrace_load64(regs[r1]);
5151                         break;
5152                 case DIF_OP_ULDSB:
5153                         regs[rd] = (int8_t)
5154                             dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5155                         break;
5156                 case DIF_OP_ULDSH:
5157                         regs[rd] = (int16_t)
5158                             dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5159                         break;
5160                 case DIF_OP_ULDSW:
5161                         regs[rd] = (int32_t)
5162                             dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5163                         break;
5164                 case DIF_OP_ULDUB:
5165                         regs[rd] =
5166                             dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5167                         break;
5168                 case DIF_OP_ULDUH:
5169                         regs[rd] =
5170                             dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5171                         break;
5172                 case DIF_OP_ULDUW:
5173                         regs[rd] =
5174                             dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5175                         break;
5176                 case DIF_OP_ULDX:
5177                         regs[rd] =
5178                             dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5179                         break;
5180                 case DIF_OP_RET:
5181                         rval = regs[rd];
5182                         pc = textlen;
5183                         break;
5184                 case DIF_OP_NOP:
5185                         break;
5186                 case DIF_OP_SETX:
5187                         regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5188                         break;
5189                 case DIF_OP_SETS:
5190                         regs[rd] = (uint64_t)(uintptr_t)
5191                             (strtab + DIF_INSTR_STRING(instr));
5192                         break;
5193                 case DIF_OP_SCMP: {
5194                         size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5195                         uintptr_t s1 = regs[r1];
5196                         uintptr_t s2 = regs[r2];
5197
5198                         if (s1 != 0 &&
5199                             !dtrace_strcanload(s1, sz, mstate, vstate))
5200                                 break;
5201                         if (s2 != 0 &&
5202                             !dtrace_strcanload(s2, sz, mstate, vstate))
5203                                 break;
5204
5205                         cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5206
5207                         cc_n = cc_r < 0;
5208                         cc_z = cc_r == 0;
5209                         cc_v = cc_c = 0;
5210                         break;
5211                 }
5212                 case DIF_OP_LDGA:
5213                         regs[rd] = dtrace_dif_variable(mstate, state,
5214                             r1, regs[r2]);
5215                         break;
5216                 case DIF_OP_LDGS:
5217                         id = DIF_INSTR_VAR(instr);
5218
5219                         if (id >= DIF_VAR_OTHER_UBASE) {
5220                                 uintptr_t a;
5221
5222                                 id -= DIF_VAR_OTHER_UBASE;
5223                                 svar = vstate->dtvs_globals[id];
5224                                 ASSERT(svar != NULL);
5225                                 v = &svar->dtsv_var;
5226
5227                                 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5228                                         regs[rd] = svar->dtsv_data;
5229                                         break;
5230                                 }
5231
5232                                 a = (uintptr_t)svar->dtsv_data;
5233
5234                                 if (*(uint8_t *)a == UINT8_MAX) {
5235                                         /*
5236                                          * If the 0th byte is set to UINT8_MAX
5237                                          * then this is to be treated as a
5238                                          * reference to a NULL variable.
5239                                          */
5240                                         regs[rd] = 0;
5241                                 } else {
5242                                         regs[rd] = a + sizeof (uint64_t);
5243                                 }
5244
5245                                 break;
5246                         }
5247
5248                         regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5249                         break;
5250
5251                 case DIF_OP_STGS:
5252                         id = DIF_INSTR_VAR(instr);
5253
5254                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5255                         id -= DIF_VAR_OTHER_UBASE;
5256
5257                         svar = vstate->dtvs_globals[id];
5258                         ASSERT(svar != NULL);
5259                         v = &svar->dtsv_var;
5260
5261                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5262                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
5263
5264                                 ASSERT(a != 0);
5265                                 ASSERT(svar->dtsv_size != 0);
5266
5267                                 if (regs[rd] == 0) {
5268                                         *(uint8_t *)a = UINT8_MAX;
5269                                         break;
5270                                 } else {
5271                                         *(uint8_t *)a = 0;
5272                                         a += sizeof (uint64_t);
5273                                 }
5274                                 if (!dtrace_vcanload(
5275                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5276                                     mstate, vstate))
5277                                         break;
5278
5279                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5280                                     (void *)a, &v->dtdv_type);
5281                                 break;
5282                         }
5283
5284                         svar->dtsv_data = regs[rd];
5285                         break;
5286
5287                 case DIF_OP_LDTA:
5288                         /*
5289                          * There are no DTrace built-in thread-local arrays at
5290                          * present.  This opcode is saved for future work.
5291                          */
5292                         *flags |= CPU_DTRACE_ILLOP;
5293                         regs[rd] = 0;
5294                         break;
5295
5296                 case DIF_OP_LDLS:
5297                         id = DIF_INSTR_VAR(instr);
5298
5299                         if (id < DIF_VAR_OTHER_UBASE) {
5300                                 /*
5301                                  * For now, this has no meaning.
5302                                  */
5303                                 regs[rd] = 0;
5304                                 break;
5305                         }
5306
5307                         id -= DIF_VAR_OTHER_UBASE;
5308
5309                         ASSERT(id < vstate->dtvs_nlocals);
5310                         ASSERT(vstate->dtvs_locals != NULL);
5311
5312                         svar = vstate->dtvs_locals[id];
5313                         ASSERT(svar != NULL);
5314                         v = &svar->dtsv_var;
5315
5316                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5317                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
5318                                 size_t sz = v->dtdv_type.dtdt_size;
5319
5320                                 sz += sizeof (uint64_t);
5321                                 ASSERT(svar->dtsv_size == NCPU * sz);
5322                                 a += curcpu * sz;
5323
5324                                 if (*(uint8_t *)a == UINT8_MAX) {
5325                                         /*
5326                                          * If the 0th byte is set to UINT8_MAX
5327                                          * then this is to be treated as a
5328                                          * reference to a NULL variable.
5329                                          */
5330                                         regs[rd] = 0;
5331                                 } else {
5332                                         regs[rd] = a + sizeof (uint64_t);
5333                                 }
5334
5335                                 break;
5336                         }
5337
5338                         ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5339                         tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5340                         regs[rd] = tmp[curcpu];
5341                         break;
5342
5343                 case DIF_OP_STLS:
5344                         id = DIF_INSTR_VAR(instr);
5345
5346                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5347                         id -= DIF_VAR_OTHER_UBASE;
5348                         ASSERT(id < vstate->dtvs_nlocals);
5349
5350                         ASSERT(vstate->dtvs_locals != NULL);
5351                         svar = vstate->dtvs_locals[id];
5352                         ASSERT(svar != NULL);
5353                         v = &svar->dtsv_var;
5354
5355                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5356                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
5357                                 size_t sz = v->dtdv_type.dtdt_size;
5358
5359                                 sz += sizeof (uint64_t);
5360                                 ASSERT(svar->dtsv_size == NCPU * sz);
5361                                 a += curcpu * sz;
5362
5363                                 if (regs[rd] == 0) {
5364                                         *(uint8_t *)a = UINT8_MAX;
5365                                         break;
5366                                 } else {
5367                                         *(uint8_t *)a = 0;
5368                                         a += sizeof (uint64_t);
5369                                 }
5370
5371                                 if (!dtrace_vcanload(
5372                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5373                                     mstate, vstate))
5374                                         break;
5375
5376                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5377                                     (void *)a, &v->dtdv_type);
5378                                 break;
5379                         }
5380
5381                         ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5382                         tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5383                         tmp[curcpu] = regs[rd];
5384                         break;
5385
5386                 case DIF_OP_LDTS: {
5387                         dtrace_dynvar_t *dvar;
5388                         dtrace_key_t *key;
5389
5390                         id = DIF_INSTR_VAR(instr);
5391                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5392                         id -= DIF_VAR_OTHER_UBASE;
5393                         v = &vstate->dtvs_tlocals[id];
5394
5395                         key = &tupregs[DIF_DTR_NREGS];
5396                         key[0].dttk_value = (uint64_t)id;
5397                         key[0].dttk_size = 0;
5398                         DTRACE_TLS_THRKEY(key[1].dttk_value);
5399                         key[1].dttk_size = 0;
5400
5401                         dvar = dtrace_dynvar(dstate, 2, key,
5402                             sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5403                             mstate, vstate);
5404
5405                         if (dvar == NULL) {
5406                                 regs[rd] = 0;
5407                                 break;
5408                         }
5409
5410                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5411                                 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5412                         } else {
5413                                 regs[rd] = *((uint64_t *)dvar->dtdv_data);
5414                         }
5415
5416                         break;
5417                 }
5418
5419                 case DIF_OP_STTS: {
5420                         dtrace_dynvar_t *dvar;
5421                         dtrace_key_t *key;
5422
5423                         id = DIF_INSTR_VAR(instr);
5424                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5425                         id -= DIF_VAR_OTHER_UBASE;
5426
5427                         key = &tupregs[DIF_DTR_NREGS];
5428                         key[0].dttk_value = (uint64_t)id;
5429                         key[0].dttk_size = 0;
5430                         DTRACE_TLS_THRKEY(key[1].dttk_value);
5431                         key[1].dttk_size = 0;
5432                         v = &vstate->dtvs_tlocals[id];
5433
5434                         dvar = dtrace_dynvar(dstate, 2, key,
5435                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5436                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
5437                             regs[rd] ? DTRACE_DYNVAR_ALLOC :
5438                             DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5439
5440                         /*
5441                          * Given that we're storing to thread-local data,
5442                          * we need to flush our predicate cache.
5443                          */
5444                         curthread->t_predcache = 0;
5445
5446                         if (dvar == NULL)
5447                                 break;
5448
5449                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5450                                 if (!dtrace_vcanload(
5451                                     (void *)(uintptr_t)regs[rd],
5452                                     &v->dtdv_type, mstate, vstate))
5453                                         break;
5454
5455                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5456                                     dvar->dtdv_data, &v->dtdv_type);
5457                         } else {
5458                                 *((uint64_t *)dvar->dtdv_data) = regs[rd];
5459                         }
5460
5461                         break;
5462                 }
5463
5464                 case DIF_OP_SRA:
5465                         regs[rd] = (int64_t)regs[r1] >> regs[r2];
5466                         break;
5467
5468                 case DIF_OP_CALL:
5469                         dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5470                             regs, tupregs, ttop, mstate, state);
5471                         break;
5472
5473                 case DIF_OP_PUSHTR:
5474                         if (ttop == DIF_DTR_NREGS) {
5475                                 *flags |= CPU_DTRACE_TUPOFLOW;
5476                                 break;
5477                         }
5478
5479                         if (r1 == DIF_TYPE_STRING) {
5480                                 /*
5481                                  * If this is a string type and the size is 0,
5482                                  * we'll use the system-wide default string
5483                                  * size.  Note that we are _not_ looking at
5484                                  * the value of the DTRACEOPT_STRSIZE option;
5485                                  * had this been set, we would expect to have
5486                                  * a non-zero size value in the "pushtr".
5487                                  */
5488                                 tupregs[ttop].dttk_size =
5489                                     dtrace_strlen((char *)(uintptr_t)regs[rd],
5490                                     regs[r2] ? regs[r2] :
5491                                     dtrace_strsize_default) + 1;
5492                         } else {
5493                                 tupregs[ttop].dttk_size = regs[r2];
5494                         }
5495
5496                         tupregs[ttop++].dttk_value = regs[rd];
5497                         break;
5498
5499                 case DIF_OP_PUSHTV:
5500                         if (ttop == DIF_DTR_NREGS) {
5501                                 *flags |= CPU_DTRACE_TUPOFLOW;
5502                                 break;
5503                         }
5504
5505                         tupregs[ttop].dttk_value = regs[rd];
5506                         tupregs[ttop++].dttk_size = 0;
5507                         break;
5508
5509                 case DIF_OP_POPTS:
5510                         if (ttop != 0)
5511                                 ttop--;
5512                         break;
5513
5514                 case DIF_OP_FLUSHTS:
5515                         ttop = 0;
5516                         break;
5517
5518                 case DIF_OP_LDGAA:
5519                 case DIF_OP_LDTAA: {
5520                         dtrace_dynvar_t *dvar;
5521                         dtrace_key_t *key = tupregs;
5522                         uint_t nkeys = ttop;
5523
5524                         id = DIF_INSTR_VAR(instr);
5525                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5526                         id -= DIF_VAR_OTHER_UBASE;
5527
5528                         key[nkeys].dttk_value = (uint64_t)id;
5529                         key[nkeys++].dttk_size = 0;
5530
5531                         if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5532                                 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5533                                 key[nkeys++].dttk_size = 0;
5534                                 v = &vstate->dtvs_tlocals[id];
5535                         } else {
5536                                 v = &vstate->dtvs_globals[id]->dtsv_var;
5537                         }
5538
5539                         dvar = dtrace_dynvar(dstate, nkeys, key,
5540                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5541                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
5542                             DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5543
5544                         if (dvar == NULL) {
5545                                 regs[rd] = 0;
5546                                 break;
5547                         }
5548
5549                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5550                                 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5551                         } else {
5552                                 regs[rd] = *((uint64_t *)dvar->dtdv_data);
5553                         }
5554
5555                         break;
5556                 }
5557
5558                 case DIF_OP_STGAA:
5559                 case DIF_OP_STTAA: {
5560                         dtrace_dynvar_t *dvar;
5561                         dtrace_key_t *key = tupregs;
5562                         uint_t nkeys = ttop;
5563
5564                         id = DIF_INSTR_VAR(instr);
5565                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5566                         id -= DIF_VAR_OTHER_UBASE;
5567
5568                         key[nkeys].dttk_value = (uint64_t)id;
5569                         key[nkeys++].dttk_size = 0;
5570
5571                         if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5572                                 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5573                                 key[nkeys++].dttk_size = 0;
5574                                 v = &vstate->dtvs_tlocals[id];
5575                         } else {
5576                                 v = &vstate->dtvs_globals[id]->dtsv_var;
5577                         }
5578
5579                         dvar = dtrace_dynvar(dstate, nkeys, key,
5580                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5581                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
5582                             regs[rd] ? DTRACE_DYNVAR_ALLOC :
5583                             DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5584
5585                         if (dvar == NULL)
5586                                 break;
5587
5588                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5589                                 if (!dtrace_vcanload(
5590                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5591                                     mstate, vstate))
5592                                         break;
5593
5594                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5595                                     dvar->dtdv_data, &v->dtdv_type);
5596                         } else {
5597                                 *((uint64_t *)dvar->dtdv_data) = regs[rd];
5598                         }
5599
5600                         break;
5601                 }
5602
5603                 case DIF_OP_ALLOCS: {
5604                         uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5605                         size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5606
5607                         /*
5608                          * Rounding up the user allocation size could have
5609                          * overflowed large, bogus allocations (like -1ULL) to
5610                          * 0.
5611                          */
5612                         if (size < regs[r1] ||
5613                             !DTRACE_INSCRATCH(mstate, size)) {
5614                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5615                                 regs[rd] = 0;
5616                                 break;
5617                         }
5618
5619                         dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5620                         mstate->dtms_scratch_ptr += size;
5621                         regs[rd] = ptr;
5622                         break;
5623                 }
5624
5625                 case DIF_OP_COPYS:
5626                         if (!dtrace_canstore(regs[rd], regs[r2],
5627                             mstate, vstate)) {
5628                                 *flags |= CPU_DTRACE_BADADDR;
5629                                 *illval = regs[rd];
5630                                 break;
5631                         }
5632
5633                         if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5634                                 break;
5635
5636                         dtrace_bcopy((void *)(uintptr_t)regs[r1],
5637                             (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5638                         break;
5639
5640                 case DIF_OP_STB:
5641                         if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5642                                 *flags |= CPU_DTRACE_BADADDR;
5643                                 *illval = regs[rd];
5644                                 break;
5645                         }
5646                         *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5647                         break;
5648
5649                 case DIF_OP_STH:
5650                         if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5651                                 *flags |= CPU_DTRACE_BADADDR;
5652                                 *illval = regs[rd];
5653                                 break;
5654                         }
5655                         if (regs[rd] & 1) {
5656                                 *flags |= CPU_DTRACE_BADALIGN;
5657                                 *illval = regs[rd];
5658                                 break;
5659                         }
5660                         *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5661                         break;
5662
5663                 case DIF_OP_STW:
5664                         if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5665                                 *flags |= CPU_DTRACE_BADADDR;
5666                                 *illval = regs[rd];
5667                                 break;
5668                         }
5669                         if (regs[rd] & 3) {
5670                                 *flags |= CPU_DTRACE_BADALIGN;
5671                                 *illval = regs[rd];
5672                                 break;
5673                         }
5674                         *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5675                         break;
5676
5677                 case DIF_OP_STX:
5678                         if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5679                                 *flags |= CPU_DTRACE_BADADDR;
5680                                 *illval = regs[rd];
5681                                 break;
5682                         }
5683                         if (regs[rd] & 7) {
5684                                 *flags |= CPU_DTRACE_BADALIGN;
5685                                 *illval = regs[rd];
5686                                 break;
5687                         }
5688                         *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5689                         break;
5690                 }
5691         }
5692
5693         if (!(*flags & CPU_DTRACE_FAULT))
5694                 return (rval);
5695
5696         mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5697         mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5698
5699         return (0);
5700 }
5701
5702 static void
5703 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5704 {
5705         dtrace_probe_t *probe = ecb->dte_probe;
5706         dtrace_provider_t *prov = probe->dtpr_provider;
5707         char c[DTRACE_FULLNAMELEN + 80], *str;
5708         char *msg = "dtrace: breakpoint action at probe ";
5709         char *ecbmsg = " (ecb ";
5710         uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5711         uintptr_t val = (uintptr_t)ecb;
5712         int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5713
5714         if (dtrace_destructive_disallow)
5715                 return;
5716
5717         /*
5718          * It's impossible to be taking action on the NULL probe.
5719          */
5720         ASSERT(probe != NULL);
5721
5722         /*
5723          * This is a poor man's (destitute man's?) sprintf():  we want to
5724          * print the provider name, module name, function name and name of
5725          * the probe, along with the hex address of the ECB with the breakpoint
5726          * action -- all of which we must place in the character buffer by
5727          * hand.
5728          */
5729         while (*msg != '\0')
5730                 c[i++] = *msg++;
5731
5732         for (str = prov->dtpv_name; *str != '\0'; str++)
5733                 c[i++] = *str;
5734         c[i++] = ':';
5735
5736         for (str = probe->dtpr_mod; *str != '\0'; str++)
5737                 c[i++] = *str;
5738         c[i++] = ':';
5739
5740         for (str = probe->dtpr_func; *str != '\0'; str++)
5741                 c[i++] = *str;
5742         c[i++] = ':';
5743
5744         for (str = probe->dtpr_name; *str != '\0'; str++)
5745                 c[i++] = *str;
5746
5747         while (*ecbmsg != '\0')
5748                 c[i++] = *ecbmsg++;
5749
5750         while (shift >= 0) {
5751                 mask = (uintptr_t)0xf << shift;
5752
5753                 if (val >= ((uintptr_t)1 << shift))
5754                         c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5755                 shift -= 4;
5756         }
5757
5758         c[i++] = ')';
5759         c[i] = '\0';
5760
5761 #if defined(sun)
5762         debug_enter(c);
5763 #else
5764         kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
5765 #endif
5766 }
5767
5768 static void
5769 dtrace_action_panic(dtrace_ecb_t *ecb)
5770 {
5771         dtrace_probe_t *probe = ecb->dte_probe;
5772
5773         /*
5774          * It's impossible to be taking action on the NULL probe.
5775          */
5776         ASSERT(probe != NULL);
5777
5778         if (dtrace_destructive_disallow)
5779                 return;
5780
5781         if (dtrace_panicked != NULL)
5782                 return;
5783
5784         if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5785                 return;
5786
5787         /*
5788          * We won the right to panic.  (We want to be sure that only one
5789          * thread calls panic() from dtrace_probe(), and that panic() is
5790          * called exactly once.)
5791          */
5792         dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5793             probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5794             probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5795 }
5796
5797 static void
5798 dtrace_action_raise(uint64_t sig)
5799 {
5800         if (dtrace_destructive_disallow)
5801                 return;
5802
5803         if (sig >= NSIG) {
5804                 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5805                 return;
5806         }
5807
5808 #if defined(sun)
5809         /*
5810          * raise() has a queue depth of 1 -- we ignore all subsequent
5811          * invocations of the raise() action.
5812          */
5813         if (curthread->t_dtrace_sig == 0)
5814                 curthread->t_dtrace_sig = (uint8_t)sig;
5815
5816         curthread->t_sig_check = 1;
5817         aston(curthread);
5818 #else
5819         struct proc *p = curproc;
5820         PROC_LOCK(p);
5821         kern_psignal(p, sig);
5822         PROC_UNLOCK(p);
5823 #endif
5824 }
5825
5826 static void
5827 dtrace_action_stop(void)
5828 {
5829         if (dtrace_destructive_disallow)
5830                 return;
5831
5832 #if defined(sun)
5833         if (!curthread->t_dtrace_stop) {
5834                 curthread->t_dtrace_stop = 1;
5835                 curthread->t_sig_check = 1;
5836                 aston(curthread);
5837         }
5838 #else
5839         struct proc *p = curproc;
5840         PROC_LOCK(p);
5841         kern_psignal(p, SIGSTOP);
5842         PROC_UNLOCK(p);
5843 #endif
5844 }
5845
5846 static void
5847 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5848 {
5849         hrtime_t now;
5850         volatile uint16_t *flags;
5851 #if defined(sun)
5852         cpu_t *cpu = CPU;
5853 #else
5854         cpu_t *cpu = &solaris_cpu[curcpu];
5855 #endif
5856
5857         if (dtrace_destructive_disallow)
5858                 return;
5859
5860         flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5861
5862         now = dtrace_gethrtime();
5863
5864         if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5865                 /*
5866                  * We need to advance the mark to the current time.
5867                  */
5868                 cpu->cpu_dtrace_chillmark = now;
5869                 cpu->cpu_dtrace_chilled = 0;
5870         }
5871
5872         /*
5873          * Now check to see if the requested chill time would take us over
5874          * the maximum amount of time allowed in the chill interval.  (Or
5875          * worse, if the calculation itself induces overflow.)
5876          */
5877         if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5878             cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5879                 *flags |= CPU_DTRACE_ILLOP;
5880                 return;
5881         }
5882
5883         while (dtrace_gethrtime() - now < val)
5884                 continue;
5885
5886         /*
5887          * Normally, we assure that the value of the variable "timestamp" does
5888          * not change within an ECB.  The presence of chill() represents an
5889          * exception to this rule, however.
5890          */
5891         mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5892         cpu->cpu_dtrace_chilled += val;
5893 }
5894
5895 static void
5896 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5897     uint64_t *buf, uint64_t arg)
5898 {
5899         int nframes = DTRACE_USTACK_NFRAMES(arg);
5900         int strsize = DTRACE_USTACK_STRSIZE(arg);
5901         uint64_t *pcs = &buf[1], *fps;
5902         char *str = (char *)&pcs[nframes];
5903         int size, offs = 0, i, j;
5904         uintptr_t old = mstate->dtms_scratch_ptr, saved;
5905         uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5906         char *sym;
5907
5908         /*
5909          * Should be taking a faster path if string space has not been
5910          * allocated.
5911          */
5912         ASSERT(strsize != 0);
5913
5914         /*
5915          * We will first allocate some temporary space for the frame pointers.
5916          */
5917         fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5918         size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5919             (nframes * sizeof (uint64_t));
5920
5921         if (!DTRACE_INSCRATCH(mstate, size)) {
5922                 /*
5923                  * Not enough room for our frame pointers -- need to indicate
5924                  * that we ran out of scratch space.
5925                  */
5926                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5927                 return;
5928         }
5929
5930         mstate->dtms_scratch_ptr += size;
5931         saved = mstate->dtms_scratch_ptr;
5932
5933         /*
5934          * Now get a stack with both program counters and frame pointers.
5935          */
5936         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5937         dtrace_getufpstack(buf, fps, nframes + 1);
5938         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5939
5940         /*
5941          * If that faulted, we're cooked.
5942          */
5943         if (*flags & CPU_DTRACE_FAULT)
5944                 goto out;
5945
5946         /*
5947          * Now we want to walk up the stack, calling the USTACK helper.  For
5948          * each iteration, we restore the scratch pointer.
5949          */
5950         for (i = 0; i < nframes; i++) {
5951                 mstate->dtms_scratch_ptr = saved;
5952
5953                 if (offs >= strsize)
5954                         break;
5955
5956                 sym = (char *)(uintptr_t)dtrace_helper(
5957                     DTRACE_HELPER_ACTION_USTACK,
5958                     mstate, state, pcs[i], fps[i]);
5959
5960                 /*
5961                  * If we faulted while running the helper, we're going to
5962                  * clear the fault and null out the corresponding string.
5963                  */
5964                 if (*flags & CPU_DTRACE_FAULT) {
5965                         *flags &= ~CPU_DTRACE_FAULT;
5966                         str[offs++] = '\0';
5967                         continue;
5968                 }
5969
5970                 if (sym == NULL) {
5971                         str[offs++] = '\0';
5972                         continue;
5973                 }
5974
5975                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5976
5977                 /*
5978                  * Now copy in the string that the helper returned to us.
5979                  */
5980                 for (j = 0; offs + j < strsize; j++) {
5981                         if ((str[offs + j] = sym[j]) == '\0')
5982                                 break;
5983                 }
5984
5985                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5986
5987                 offs += j + 1;
5988         }
5989
5990         if (offs >= strsize) {
5991                 /*
5992                  * If we didn't have room for all of the strings, we don't
5993                  * abort processing -- this needn't be a fatal error -- but we
5994                  * still want to increment a counter (dts_stkstroverflows) to
5995                  * allow this condition to be warned about.  (If this is from
5996                  * a jstack() action, it is easily tuned via jstackstrsize.)
5997                  */
5998                 dtrace_error(&state->dts_stkstroverflows);
5999         }
6000
6001         while (offs < strsize)
6002                 str[offs++] = '\0';
6003
6004 out:
6005         mstate->dtms_scratch_ptr = old;
6006 }
6007
6008 /*
6009  * If you're looking for the epicenter of DTrace, you just found it.  This
6010  * is the function called by the provider to fire a probe -- from which all
6011  * subsequent probe-context DTrace activity emanates.
6012  */
6013 void
6014 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
6015     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
6016 {
6017         processorid_t cpuid;
6018         dtrace_icookie_t cookie;
6019         dtrace_probe_t *probe;
6020         dtrace_mstate_t mstate;
6021         dtrace_ecb_t *ecb;
6022         dtrace_action_t *act;
6023         intptr_t offs;
6024         size_t size;
6025         int vtime, onintr;
6026         volatile uint16_t *flags;
6027         hrtime_t now;
6028
6029         if (panicstr != NULL)
6030                 return;
6031
6032 #if defined(sun)
6033         /*
6034          * Kick out immediately if this CPU is still being born (in which case
6035          * curthread will be set to -1) or the current thread can't allow
6036          * probes in its current context.
6037          */
6038         if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
6039                 return;
6040 #endif
6041
6042         cookie = dtrace_interrupt_disable();
6043         probe = dtrace_probes[id - 1];
6044         cpuid = curcpu;
6045         onintr = CPU_ON_INTR(CPU);
6046
6047         if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
6048             probe->dtpr_predcache == curthread->t_predcache) {
6049                 /*
6050                  * We have hit in the predicate cache; we know that
6051                  * this predicate would evaluate to be false.
6052                  */
6053                 dtrace_interrupt_enable(cookie);
6054                 return;
6055         }
6056
6057 #if defined(sun)
6058         if (panic_quiesce) {
6059 #else
6060         if (panicstr != NULL) {
6061 #endif
6062                 /*
6063                  * We don't trace anything if we're panicking.
6064                  */
6065                 dtrace_interrupt_enable(cookie);
6066                 return;
6067         }
6068
6069         now = dtrace_gethrtime();
6070         vtime = dtrace_vtime_references != 0;
6071
6072         if (vtime && curthread->t_dtrace_start)
6073                 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
6074
6075         mstate.dtms_difo = NULL;
6076         mstate.dtms_probe = probe;
6077         mstate.dtms_strtok = 0;
6078         mstate.dtms_arg[0] = arg0;
6079         mstate.dtms_arg[1] = arg1;
6080         mstate.dtms_arg[2] = arg2;
6081         mstate.dtms_arg[3] = arg3;
6082         mstate.dtms_arg[4] = arg4;
6083
6084         flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6085
6086         for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6087                 dtrace_predicate_t *pred = ecb->dte_predicate;
6088                 dtrace_state_t *state = ecb->dte_state;
6089                 dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6090                 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6091                 dtrace_vstate_t *vstate = &state->dts_vstate;
6092                 dtrace_provider_t *prov = probe->dtpr_provider;
6093                 uint64_t tracememsize = 0;
6094                 int committed = 0;
6095                 caddr_t tomax;
6096
6097                 /*
6098                  * A little subtlety with the following (seemingly innocuous)
6099                  * declaration of the automatic 'val':  by looking at the
6100                  * code, you might think that it could be declared in the
6101                  * action processing loop, below.  (That is, it's only used in
6102                  * the action processing loop.)  However, it must be declared
6103                  * out of that scope because in the case of DIF expression
6104                  * arguments to aggregating actions, one iteration of the
6105                  * action loop will use the last iteration's value.
6106                  */
6107                 uint64_t val = 0;
6108
6109                 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6110                 *flags &= ~CPU_DTRACE_ERROR;
6111
6112                 if (prov == dtrace_provider) {
6113                         /*
6114                          * If dtrace itself is the provider of this probe,
6115                          * we're only going to continue processing the ECB if
6116                          * arg0 (the dtrace_state_t) is equal to the ECB's
6117                          * creating state.  (This prevents disjoint consumers
6118                          * from seeing one another's metaprobes.)
6119                          */
6120                         if (arg0 != (uint64_t)(uintptr_t)state)
6121                                 continue;
6122                 }
6123
6124                 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6125                         /*
6126                          * We're not currently active.  If our provider isn't
6127                          * the dtrace pseudo provider, we're not interested.
6128                          */
6129                         if (prov != dtrace_provider)
6130                                 continue;
6131
6132                         /*
6133                          * Now we must further check if we are in the BEGIN
6134                          * probe.  If we are, we will only continue processing
6135                          * if we're still in WARMUP -- if one BEGIN enabling
6136                          * has invoked the exit() action, we don't want to
6137                          * evaluate subsequent BEGIN enablings.
6138                          */
6139                         if (probe->dtpr_id == dtrace_probeid_begin &&
6140                             state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6141                                 ASSERT(state->dts_activity ==
6142                                     DTRACE_ACTIVITY_DRAINING);
6143                                 continue;
6144                         }
6145                 }
6146
6147                 if (ecb->dte_cond) {
6148                         /*
6149                          * If the dte_cond bits indicate that this
6150                          * consumer is only allowed to see user-mode firings
6151                          * of this probe, call the provider's dtps_usermode()
6152                          * entry point to check that the probe was fired
6153                          * while in a user context. Skip this ECB if that's
6154                          * not the case.
6155                          */
6156                         if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
6157                             prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
6158                             probe->dtpr_id, probe->dtpr_arg) == 0)
6159                                 continue;
6160
6161 #if defined(sun)
6162                         /*
6163                          * This is more subtle than it looks. We have to be
6164                          * absolutely certain that CRED() isn't going to
6165                          * change out from under us so it's only legit to
6166                          * examine that structure if we're in constrained
6167                          * situations. Currently, the only times we'll this
6168                          * check is if a non-super-user has enabled the
6169                          * profile or syscall providers -- providers that
6170                          * allow visibility of all processes. For the
6171                          * profile case, the check above will ensure that
6172                          * we're examining a user context.
6173                          */
6174                         if (ecb->dte_cond & DTRACE_COND_OWNER) {
6175                                 cred_t *cr;
6176                                 cred_t *s_cr =
6177                                     ecb->dte_state->dts_cred.dcr_cred;
6178                                 proc_t *proc;
6179
6180                                 ASSERT(s_cr != NULL);
6181
6182                                 if ((cr = CRED()) == NULL ||
6183                                     s_cr->cr_uid != cr->cr_uid ||
6184                                     s_cr->cr_uid != cr->cr_ruid ||
6185                                     s_cr->cr_uid != cr->cr_suid ||
6186                                     s_cr->cr_gid != cr->cr_gid ||
6187                                     s_cr->cr_gid != cr->cr_rgid ||
6188                                     s_cr->cr_gid != cr->cr_sgid ||
6189                                     (proc = ttoproc(curthread)) == NULL ||
6190                                     (proc->p_flag & SNOCD))
6191                                         continue;
6192                         }
6193
6194                         if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
6195                                 cred_t *cr;
6196                                 cred_t *s_cr =
6197                                     ecb->dte_state->dts_cred.dcr_cred;
6198
6199                                 ASSERT(s_cr != NULL);
6200
6201                                 if ((cr = CRED()) == NULL ||
6202                                     s_cr->cr_zone->zone_id !=
6203                                     cr->cr_zone->zone_id)
6204                                         continue;
6205                         }
6206 #endif
6207                 }
6208
6209                 if (now - state->dts_alive > dtrace_deadman_timeout) {
6210                         /*
6211                          * We seem to be dead.  Unless we (a) have kernel
6212                          * destructive permissions (b) have expicitly enabled
6213                          * destructive actions and (c) destructive actions have
6214                          * not been disabled, we're going to transition into
6215                          * the KILLED state, from which no further processing
6216                          * on this state will be performed.
6217                          */
6218                         if (!dtrace_priv_kernel_destructive(state) ||
6219                             !state->dts_cred.dcr_destructive ||
6220                             dtrace_destructive_disallow) {
6221                                 void *activity = &state->dts_activity;
6222                                 dtrace_activity_t current;
6223
6224                                 do {
6225                                         current = state->dts_activity;
6226                                 } while (dtrace_cas32(activity, current,
6227                                     DTRACE_ACTIVITY_KILLED) != current);
6228
6229                                 continue;
6230                         }
6231                 }
6232
6233                 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6234                     ecb->dte_alignment, state, &mstate)) < 0)
6235                         continue;
6236
6237                 tomax = buf->dtb_tomax;
6238                 ASSERT(tomax != NULL);
6239
6240                 if (ecb->dte_size != 0)
6241                         DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
6242
6243                 mstate.dtms_epid = ecb->dte_epid;
6244                 mstate.dtms_present |= DTRACE_MSTATE_EPID;
6245
6246                 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6247                         mstate.dtms_access = DTRACE_ACCESS_KERNEL;
6248                 else
6249                         mstate.dtms_access = 0;
6250
6251                 if (pred != NULL) {
6252                         dtrace_difo_t *dp = pred->dtp_difo;
6253                         int rval;
6254
6255                         rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6256
6257                         if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6258                                 dtrace_cacheid_t cid = probe->dtpr_predcache;
6259
6260                                 if (cid != DTRACE_CACHEIDNONE && !onintr) {
6261                                         /*
6262                                          * Update the predicate cache...
6263                                          */
6264                                         ASSERT(cid == pred->dtp_cacheid);
6265                                         curthread->t_predcache = cid;
6266                                 }
6267
6268                                 continue;
6269                         }
6270                 }
6271
6272                 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6273                     act != NULL; act = act->dta_next) {
6274                         size_t valoffs;
6275                         dtrace_difo_t *dp;
6276                         dtrace_recdesc_t *rec = &act->dta_rec;
6277
6278                         size = rec->dtrd_size;
6279                         valoffs = offs + rec->dtrd_offset;
6280
6281                         if (DTRACEACT_ISAGG(act->dta_kind)) {
6282                                 uint64_t v = 0xbad;
6283                                 dtrace_aggregation_t *agg;
6284
6285                                 agg = (dtrace_aggregation_t *)act;
6286
6287                                 if ((dp = act->dta_difo) != NULL)
6288                                         v = dtrace_dif_emulate(dp,
6289                                             &mstate, vstate, state);
6290
6291                                 if (*flags & CPU_DTRACE_ERROR)
6292                                         continue;
6293
6294                                 /*
6295                                  * Note that we always pass the expression
6296                                  * value from the previous iteration of the
6297                                  * action loop.  This value will only be used
6298                                  * if there is an expression argument to the
6299                                  * aggregating action, denoted by the
6300                                  * dtag_hasarg field.
6301                                  */
6302                                 dtrace_aggregate(agg, buf,
6303                                     offs, aggbuf, v, val);
6304                                 continue;
6305                         }
6306
6307                         switch (act->dta_kind) {
6308                         case DTRACEACT_STOP:
6309                                 if (dtrace_priv_proc_destructive(state))
6310                                         dtrace_action_stop();
6311                                 continue;
6312
6313                         case DTRACEACT_BREAKPOINT:
6314                                 if (dtrace_priv_kernel_destructive(state))
6315                                         dtrace_action_breakpoint(ecb);
6316                                 continue;
6317
6318                         case DTRACEACT_PANIC:
6319                                 if (dtrace_priv_kernel_destructive(state))
6320                                         dtrace_action_panic(ecb);
6321                                 continue;
6322
6323                         case DTRACEACT_STACK:
6324                                 if (!dtrace_priv_kernel(state))
6325                                         continue;
6326
6327                                 dtrace_getpcstack((pc_t *)(tomax + valoffs),
6328                                     size / sizeof (pc_t), probe->dtpr_aframes,
6329                                     DTRACE_ANCHORED(probe) ? NULL :
6330                                     (uint32_t *)arg0);
6331                                 continue;
6332
6333                         case DTRACEACT_JSTACK:
6334                         case DTRACEACT_USTACK:
6335                                 if (!dtrace_priv_proc(state))
6336                                         continue;
6337
6338                                 /*
6339                                  * See comment in DIF_VAR_PID.
6340                                  */
6341                                 if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6342                                     CPU_ON_INTR(CPU)) {
6343                                         int depth = DTRACE_USTACK_NFRAMES(
6344                                             rec->dtrd_arg) + 1;
6345
6346                                         dtrace_bzero((void *)(tomax + valoffs),
6347                                             DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6348                                             + depth * sizeof (uint64_t));
6349
6350                                         continue;
6351                                 }
6352
6353                                 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6354                                     curproc->p_dtrace_helpers != NULL) {
6355                                         /*
6356                                          * This is the slow path -- we have
6357                                          * allocated string space, and we're
6358                                          * getting the stack of a process that
6359                                          * has helpers.  Call into a separate
6360                                          * routine to perform this processing.
6361                                          */
6362                                         dtrace_action_ustack(&mstate, state,
6363                                             (uint64_t *)(tomax + valoffs),
6364                                             rec->dtrd_arg);
6365                                         continue;
6366                                 }
6367
6368                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6369                                 dtrace_getupcstack((uint64_t *)
6370                                     (tomax + valoffs),
6371                                     DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6372                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6373                                 continue;
6374
6375                         default:
6376                                 break;
6377                         }
6378
6379                         dp = act->dta_difo;
6380                         ASSERT(dp != NULL);
6381
6382                         val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6383
6384                         if (*flags & CPU_DTRACE_ERROR)
6385                                 continue;
6386
6387                         switch (act->dta_kind) {
6388                         case DTRACEACT_SPECULATE:
6389                                 ASSERT(buf == &state->dts_buffer[cpuid]);
6390                                 buf = dtrace_speculation_buffer(state,
6391                                     cpuid, val);
6392
6393                                 if (buf == NULL) {
6394                                         *flags |= CPU_DTRACE_DROP;
6395                                         continue;
6396                                 }
6397
6398                                 offs = dtrace_buffer_reserve(buf,
6399                                     ecb->dte_needed, ecb->dte_alignment,
6400                                     state, NULL);
6401
6402                                 if (offs < 0) {
6403                                         *flags |= CPU_DTRACE_DROP;
6404                                         continue;
6405                                 }
6406
6407                                 tomax = buf->dtb_tomax;
6408                                 ASSERT(tomax != NULL);
6409
6410                                 if (ecb->dte_size != 0)
6411                                         DTRACE_STORE(uint32_t, tomax, offs,
6412                                             ecb->dte_epid);
6413                                 continue;
6414
6415                         case DTRACEACT_PRINTM: {
6416                                 /* The DIF returns a 'memref'. */
6417                                 uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
6418
6419                                 /* Get the size from the memref. */
6420                                 size = memref[1];
6421
6422                                 /*
6423                                  * Check if the size exceeds the allocated
6424                                  * buffer size.
6425                                  */
6426                                 if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6427                                         /* Flag a drop! */
6428                                         *flags |= CPU_DTRACE_DROP;
6429                                         continue;
6430                                 }
6431
6432                                 /* Store the size in the buffer first. */
6433                                 DTRACE_STORE(uintptr_t, tomax,
6434                                     valoffs, size);
6435
6436                                 /*
6437                                  * Offset the buffer address to the start
6438                                  * of the data.
6439                                  */
6440                                 valoffs += sizeof(uintptr_t);
6441
6442                                 /*
6443                                  * Reset to the memory address rather than
6444                                  * the memref array, then let the BYREF
6445                                  * code below do the work to store the 
6446                                  * memory data in the buffer.
6447                                  */
6448                                 val = memref[0];
6449                                 break;
6450                         }
6451
6452                         case DTRACEACT_PRINTT: {
6453                                 /* The DIF returns a 'typeref'. */
6454                                 uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
6455                                 char c = '\0' + 1;
6456                                 size_t s;
6457
6458                                 /*
6459                                  * Get the type string length and round it
6460                                  * up so that the data that follows is
6461                                  * aligned for easy access.
6462                                  */
6463                                 size_t typs = strlen((char *) typeref[2]) + 1;
6464                                 typs = roundup(typs,  sizeof(uintptr_t));
6465
6466                                 /*
6467                                  *Get the size from the typeref using the
6468                                  * number of elements and the type size.
6469                                  */
6470                                 size = typeref[1] * typeref[3];
6471
6472                                 /*
6473                                  * Check if the size exceeds the allocated
6474                                  * buffer size.
6475                                  */
6476                                 if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6477                                         /* Flag a drop! */
6478                                         *flags |= CPU_DTRACE_DROP;
6479                                 
6480                                 }
6481
6482                                 /* Store the size in the buffer first. */
6483                                 DTRACE_STORE(uintptr_t, tomax,
6484                                     valoffs, size);
6485                                 valoffs += sizeof(uintptr_t);
6486
6487                                 /* Store the type size in the buffer. */
6488                                 DTRACE_STORE(uintptr_t, tomax,
6489                                     valoffs, typeref[3]);
6490                                 valoffs += sizeof(uintptr_t);
6491
6492                                 val = typeref[2];
6493
6494                                 for (s = 0; s < typs; s++) {
6495                                         if (c != '\0')
6496                                                 c = dtrace_load8(val++);
6497
6498                                         DTRACE_STORE(uint8_t, tomax,
6499                                             valoffs++, c);
6500                                 }
6501
6502                                 /*
6503                                  * Reset to the memory address rather than
6504                                  * the typeref array, then let the BYREF
6505                                  * code below do the work to store the 
6506                                  * memory data in the buffer.
6507                                  */
6508                                 val = typeref[0];
6509                                 break;
6510                         }
6511
6512                         case DTRACEACT_CHILL:
6513                                 if (dtrace_priv_kernel_destructive(state))
6514                                         dtrace_action_chill(&mstate, val);
6515                                 continue;
6516
6517                         case DTRACEACT_RAISE:
6518                                 if (dtrace_priv_proc_destructive(state))
6519                                         dtrace_action_raise(val);
6520                                 continue;
6521
6522                         case DTRACEACT_COMMIT:
6523                                 ASSERT(!committed);
6524
6525                                 /*
6526                                  * We need to commit our buffer state.
6527                                  */
6528                                 if (ecb->dte_size)
6529                                         buf->dtb_offset = offs + ecb->dte_size;
6530                                 buf = &state->dts_buffer[cpuid];
6531                                 dtrace_speculation_commit(state, cpuid, val);
6532                                 committed = 1;
6533                                 continue;
6534
6535                         case DTRACEACT_DISCARD:
6536                                 dtrace_speculation_discard(state, cpuid, val);
6537                                 continue;
6538
6539                         case DTRACEACT_DIFEXPR:
6540                         case DTRACEACT_LIBACT:
6541                         case DTRACEACT_PRINTF:
6542                         case DTRACEACT_PRINTA:
6543                         case DTRACEACT_SYSTEM:
6544                         case DTRACEACT_FREOPEN:
6545                         case DTRACEACT_TRACEMEM:
6546                                 break;
6547
6548                         case DTRACEACT_TRACEMEM_DYNSIZE:
6549                                 tracememsize = val;
6550                                 break;
6551
6552                         case DTRACEACT_SYM:
6553                         case DTRACEACT_MOD:
6554                                 if (!dtrace_priv_kernel(state))
6555                                         continue;
6556                                 break;
6557
6558                         case DTRACEACT_USYM:
6559                         case DTRACEACT_UMOD:
6560                         case DTRACEACT_UADDR: {
6561 #if defined(sun)
6562                                 struct pid *pid = curthread->t_procp->p_pidp;
6563 #endif
6564
6565                                 if (!dtrace_priv_proc(state))
6566                                         continue;
6567
6568                                 DTRACE_STORE(uint64_t, tomax,
6569 #if defined(sun)
6570                                     valoffs, (uint64_t)pid->pid_id);
6571 #else
6572                                     valoffs, (uint64_t) curproc->p_pid);
6573 #endif
6574                                 DTRACE_STORE(uint64_t, tomax,
6575                                     valoffs + sizeof (uint64_t), val);
6576
6577                                 continue;
6578                         }
6579
6580                         case DTRACEACT_EXIT: {
6581                                 /*
6582                                  * For the exit action, we are going to attempt
6583                                  * to atomically set our activity to be
6584                                  * draining.  If this fails (either because
6585                                  * another CPU has beat us to the exit action,
6586                                  * or because our current activity is something
6587                                  * other than ACTIVE or WARMUP), we will
6588                                  * continue.  This assures that the exit action
6589                                  * can be successfully recorded at most once
6590                                  * when we're in the ACTIVE state.  If we're
6591                                  * encountering the exit() action while in
6592                                  * COOLDOWN, however, we want to honor the new
6593                                  * status code.  (We know that we're the only
6594                                  * thread in COOLDOWN, so there is no race.)
6595                                  */
6596                                 void *activity = &state->dts_activity;
6597                                 dtrace_activity_t current = state->dts_activity;
6598
6599                                 if (current == DTRACE_ACTIVITY_COOLDOWN)
6600                                         break;
6601
6602                                 if (current != DTRACE_ACTIVITY_WARMUP)
6603                                         current = DTRACE_ACTIVITY_ACTIVE;
6604
6605                                 if (dtrace_cas32(activity, current,
6606                                     DTRACE_ACTIVITY_DRAINING) != current) {
6607                                         *flags |= CPU_DTRACE_DROP;
6608                                         continue;
6609                                 }
6610
6611                                 break;
6612                         }
6613
6614                         default:
6615                                 ASSERT(0);
6616                         }
6617
6618                         if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6619                                 uintptr_t end = valoffs + size;
6620
6621                                 if (tracememsize != 0 &&
6622                                     valoffs + tracememsize < end) {
6623                                         end = valoffs + tracememsize;
6624                                         tracememsize = 0;
6625                                 }
6626
6627                                 if (!dtrace_vcanload((void *)(uintptr_t)val,
6628                                     &dp->dtdo_rtype, &mstate, vstate))
6629                                         continue;
6630
6631                                 /*
6632                                  * If this is a string, we're going to only
6633                                  * load until we find the zero byte -- after
6634                                  * which we'll store zero bytes.
6635                                  */
6636                                 if (dp->dtdo_rtype.dtdt_kind ==
6637                                     DIF_TYPE_STRING) {
6638                                         char c = '\0' + 1;
6639                                         int intuple = act->dta_intuple;
6640                                         size_t s;
6641
6642                                         for (s = 0; s < size; s++) {
6643                                                 if (c != '\0')
6644                                                         c = dtrace_load8(val++);
6645
6646                                                 DTRACE_STORE(uint8_t, tomax,
6647                                                     valoffs++, c);
6648
6649                                                 if (c == '\0' && intuple)
6650                                                         break;
6651                                         }
6652
6653                                         continue;
6654                                 }
6655
6656                                 while (valoffs < end) {
6657                                         DTRACE_STORE(uint8_t, tomax, valoffs++,
6658                                             dtrace_load8(val++));
6659                                 }
6660
6661                                 continue;
6662                         }
6663
6664                         switch (size) {
6665                         case 0:
6666                                 break;
6667
6668                         case sizeof (uint8_t):
6669                                 DTRACE_STORE(uint8_t, tomax, valoffs, val);
6670                                 break;
6671                         case sizeof (uint16_t):
6672                                 DTRACE_STORE(uint16_t, tomax, valoffs, val);
6673                                 break;
6674                         case sizeof (uint32_t):
6675                                 DTRACE_STORE(uint32_t, tomax, valoffs, val);
6676                                 break;
6677                         case sizeof (uint64_t):
6678                                 DTRACE_STORE(uint64_t, tomax, valoffs, val);
6679                                 break;
6680                         default:
6681                                 /*
6682                                  * Any other size should have been returned by
6683                                  * reference, not by value.
6684                                  */
6685                                 ASSERT(0);
6686                                 break;
6687                         }
6688                 }
6689
6690                 if (*flags & CPU_DTRACE_DROP)
6691                         continue;
6692
6693                 if (*flags & CPU_DTRACE_FAULT) {
6694                         int ndx;
6695                         dtrace_action_t *err;
6696
6697                         buf->dtb_errors++;
6698
6699                         if (probe->dtpr_id == dtrace_probeid_error) {
6700                                 /*
6701                                  * There's nothing we can do -- we had an
6702                                  * error on the error probe.  We bump an
6703                                  * error counter to at least indicate that
6704                                  * this condition happened.
6705                                  */
6706                                 dtrace_error(&state->dts_dblerrors);
6707                                 continue;
6708                         }
6709
6710                         if (vtime) {
6711                                 /*
6712                                  * Before recursing on dtrace_probe(), we
6713                                  * need to explicitly clear out our start
6714                                  * time to prevent it from being accumulated
6715                                  * into t_dtrace_vtime.
6716                                  */
6717                                 curthread->t_dtrace_start = 0;
6718                         }
6719
6720                         /*
6721                          * Iterate over the actions to figure out which action
6722                          * we were processing when we experienced the error.
6723                          * Note that act points _past_ the faulting action; if
6724                          * act is ecb->dte_action, the fault was in the
6725                          * predicate, if it's ecb->dte_action->dta_next it's
6726                          * in action #1, and so on.
6727                          */
6728                         for (err = ecb->dte_action, ndx = 0;
6729                             err != act; err = err->dta_next, ndx++)
6730                                 continue;
6731
6732                         dtrace_probe_error(state, ecb->dte_epid, ndx,
6733                             (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6734                             mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6735                             cpu_core[cpuid].cpuc_dtrace_illval);
6736
6737                         continue;
6738                 }
6739
6740                 if (!committed)
6741                         buf->dtb_offset = offs + ecb->dte_size;
6742         }
6743
6744         if (vtime)
6745                 curthread->t_dtrace_start = dtrace_gethrtime();
6746
6747         dtrace_interrupt_enable(cookie);
6748 }
6749
6750 /*
6751  * DTrace Probe Hashing Functions
6752  *
6753  * The functions in this section (and indeed, the functions in remaining
6754  * sections) are not _called_ from probe context.  (Any exceptions to this are
6755  * marked with a "Note:".)  Rather, they are called from elsewhere in the
6756  * DTrace framework to look-up probes in, add probes to and remove probes from
6757  * the DTrace probe hashes.  (Each probe is hashed by each element of the
6758  * probe tuple -- allowing for fast lookups, regardless of what was
6759  * specified.)
6760  */
6761 static uint_t
6762 dtrace_hash_str(const char *p)
6763 {
6764         unsigned int g;
6765         uint_t hval = 0;
6766
6767         while (*p) {
6768                 hval = (hval << 4) + *p++;
6769                 if ((g = (hval & 0xf0000000)) != 0)
6770                         hval ^= g >> 24;
6771                 hval &= ~g;
6772         }
6773         return (hval);
6774 }
6775
6776 static dtrace_hash_t *
6777 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6778 {
6779         dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6780
6781         hash->dth_stroffs = stroffs;
6782         hash->dth_nextoffs = nextoffs;
6783         hash->dth_prevoffs = prevoffs;
6784
6785         hash->dth_size = 1;
6786         hash->dth_mask = hash->dth_size - 1;
6787
6788         hash->dth_tab = kmem_zalloc(hash->dth_size *
6789             sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6790
6791         return (hash);
6792 }
6793
6794 static void
6795 dtrace_hash_destroy(dtrace_hash_t *hash)
6796 {
6797 #ifdef DEBUG
6798         int i;
6799
6800         for (i = 0; i < hash->dth_size; i++)
6801                 ASSERT(hash->dth_tab[i] == NULL);
6802 #endif
6803
6804         kmem_free(hash->dth_tab,
6805             hash->dth_size * sizeof (dtrace_hashbucket_t *));
6806         kmem_free(hash, sizeof (dtrace_hash_t));
6807 }
6808
6809 static void
6810 dtrace_hash_resize(dtrace_hash_t *hash)
6811 {
6812         int size = hash->dth_size, i, ndx;
6813         int new_size = hash->dth_size << 1;
6814         int new_mask = new_size - 1;
6815         dtrace_hashbucket_t **new_tab, *bucket, *next;
6816
6817         ASSERT((new_size & new_mask) == 0);
6818
6819         new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6820
6821         for (i = 0; i < size; i++) {
6822                 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6823                         dtrace_probe_t *probe = bucket->dthb_chain;
6824
6825                         ASSERT(probe != NULL);
6826                         ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6827
6828                         next = bucket->dthb_next;
6829                         bucket->dthb_next = new_tab[ndx];
6830                         new_tab[ndx] = bucket;
6831                 }
6832         }
6833
6834         kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6835         hash->dth_tab = new_tab;
6836         hash->dth_size = new_size;
6837         hash->dth_mask = new_mask;
6838 }
6839
6840 static void
6841 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6842 {
6843         int hashval = DTRACE_HASHSTR(hash, new);
6844         int ndx = hashval & hash->dth_mask;
6845         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6846         dtrace_probe_t **nextp, **prevp;
6847
6848         for (; bucket != NULL; bucket = bucket->dthb_next) {
6849                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6850                         goto add;
6851         }
6852
6853         if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6854                 dtrace_hash_resize(hash);
6855                 dtrace_hash_add(hash, new);
6856                 return;
6857         }
6858
6859         bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6860         bucket->dthb_next = hash->dth_tab[ndx];
6861         hash->dth_tab[ndx] = bucket;
6862         hash->dth_nbuckets++;
6863
6864 add:
6865         nextp = DTRACE_HASHNEXT(hash, new);
6866         ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6867         *nextp = bucket->dthb_chain;
6868
6869         if (bucket->dthb_chain != NULL) {
6870                 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6871                 ASSERT(*prevp == NULL);
6872                 *prevp = new;
6873         }
6874
6875         bucket->dthb_chain = new;
6876         bucket->dthb_len++;
6877 }
6878
6879 static dtrace_probe_t *
6880 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6881 {
6882         int hashval = DTRACE_HASHSTR(hash, template);
6883         int ndx = hashval & hash->dth_mask;
6884         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6885
6886         for (; bucket != NULL; bucket = bucket->dthb_next) {
6887                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6888                         return (bucket->dthb_chain);
6889         }
6890
6891         return (NULL);
6892 }
6893
6894 static int
6895 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6896 {
6897         int hashval = DTRACE_HASHSTR(hash, template);
6898         int ndx = hashval & hash->dth_mask;
6899         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6900
6901         for (; bucket != NULL; bucket = bucket->dthb_next) {
6902                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6903                         return (bucket->dthb_len);
6904         }
6905
6906         return (0);
6907 }
6908
6909 static void
6910 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6911 {
6912         int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6913         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6914
6915         dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6916         dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6917
6918         /*
6919          * Find the bucket that we're removing this probe from.
6920          */
6921         for (; bucket != NULL; bucket = bucket->dthb_next) {
6922                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6923                         break;
6924         }
6925
6926         ASSERT(bucket != NULL);
6927
6928         if (*prevp == NULL) {
6929                 if (*nextp == NULL) {
6930                         /*
6931                          * The removed probe was the only probe on this
6932                          * bucket; we need to remove the bucket.
6933                          */
6934                         dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6935
6936                         ASSERT(bucket->dthb_chain == probe);
6937                         ASSERT(b != NULL);
6938
6939                         if (b == bucket) {
6940                                 hash->dth_tab[ndx] = bucket->dthb_next;
6941                         } else {
6942                                 while (b->dthb_next != bucket)
6943                                         b = b->dthb_next;
6944                                 b->dthb_next = bucket->dthb_next;
6945                         }
6946
6947                         ASSERT(hash->dth_nbuckets > 0);
6948                         hash->dth_nbuckets--;
6949                         kmem_free(bucket, sizeof (dtrace_hashbucket_t));
6950                         return;
6951                 }
6952
6953                 bucket->dthb_chain = *nextp;
6954         } else {
6955                 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
6956         }
6957
6958         if (*nextp != NULL)
6959                 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
6960 }
6961
6962 /*
6963  * DTrace Utility Functions
6964  *
6965  * These are random utility functions that are _not_ called from probe context.
6966  */
6967 static int
6968 dtrace_badattr(const dtrace_attribute_t *a)
6969 {
6970         return (a->dtat_name > DTRACE_STABILITY_MAX ||
6971             a->dtat_data > DTRACE_STABILITY_MAX ||
6972             a->dtat_class > DTRACE_CLASS_MAX);
6973 }
6974
6975 /*
6976  * Return a duplicate copy of a string.  If the specified string is NULL,
6977  * this function returns a zero-length string.
6978  */
6979 static char *
6980 dtrace_strdup(const char *str)
6981 {
6982         char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
6983
6984         if (str != NULL)
6985                 (void) strcpy(new, str);
6986
6987         return (new);
6988 }
6989
6990 #define DTRACE_ISALPHA(c)       \
6991         (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
6992
6993 static int
6994 dtrace_badname(const char *s)
6995 {
6996         char c;
6997
6998         if (s == NULL || (c = *s++) == '\0')
6999                 return (0);
7000
7001         if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
7002                 return (1);
7003
7004         while ((c = *s++) != '\0') {
7005                 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
7006                     c != '-' && c != '_' && c != '.' && c != '`')
7007                         return (1);
7008         }
7009
7010         return (0);
7011 }
7012
7013 static void
7014 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
7015 {
7016         uint32_t priv;
7017
7018 #if defined(sun)
7019         if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
7020                 /*
7021                  * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
7022                  */
7023                 priv = DTRACE_PRIV_ALL;
7024         } else {
7025                 *uidp = crgetuid(cr);
7026                 *zoneidp = crgetzoneid(cr);
7027
7028                 priv = 0;
7029                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
7030                         priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
7031                 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
7032                         priv |= DTRACE_PRIV_USER;
7033                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
7034                         priv |= DTRACE_PRIV_PROC;
7035                 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
7036                         priv |= DTRACE_PRIV_OWNER;
7037                 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
7038                         priv |= DTRACE_PRIV_ZONEOWNER;
7039         }
7040 #else
7041         priv = DTRACE_PRIV_ALL;
7042 #endif
7043
7044         *privp = priv;
7045 }
7046
7047 #ifdef DTRACE_ERRDEBUG
7048 static void
7049 dtrace_errdebug(const char *str)
7050 {
7051         int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
7052         int occupied = 0;
7053
7054         mutex_enter(&dtrace_errlock);
7055         dtrace_errlast = str;
7056         dtrace_errthread = curthread;
7057
7058         while (occupied++ < DTRACE_ERRHASHSZ) {
7059                 if (dtrace_errhash[hval].dter_msg == str) {
7060                         dtrace_errhash[hval].dter_count++;
7061                         goto out;
7062                 }
7063
7064                 if (dtrace_errhash[hval].dter_msg != NULL) {
7065                         hval = (hval + 1) % DTRACE_ERRHASHSZ;
7066                         continue;
7067                 }
7068
7069                 dtrace_errhash[hval].dter_msg = str;
7070                 dtrace_errhash[hval].dter_count = 1;
7071                 goto out;
7072         }
7073
7074         panic("dtrace: undersized error hash");
7075 out:
7076         mutex_exit(&dtrace_errlock);
7077 }
7078 #endif
7079
7080 /*
7081  * DTrace Matching Functions
7082  *
7083  * These functions are used to match groups of probes, given some elements of
7084  * a probe tuple, or some globbed expressions for elements of a probe tuple.
7085  */
7086 static int
7087 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
7088     zoneid_t zoneid)
7089 {
7090         if (priv != DTRACE_PRIV_ALL) {
7091                 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7092                 uint32_t match = priv & ppriv;
7093
7094                 /*
7095                  * No PRIV_DTRACE_* privileges...
7096                  */
7097                 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
7098                     DTRACE_PRIV_KERNEL)) == 0)
7099                         return (0);
7100
7101                 /*
7102                  * No matching bits, but there were bits to match...
7103                  */
7104                 if (match == 0 && ppriv != 0)
7105                         return (0);
7106
7107                 /*
7108                  * Need to have permissions to the process, but don't...
7109                  */
7110                 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
7111                     uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
7112                         return (0);
7113                 }
7114
7115                 /*
7116                  * Need to be in the same zone unless we possess the
7117                  * privilege to examine all zones.
7118                  */
7119                 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
7120                     zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
7121                         return (0);
7122                 }
7123         }
7124
7125         return (1);
7126 }
7127
7128 /*
7129  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7130  * consists of input pattern strings and an ops-vector to evaluate them.
7131  * This function returns >0 for match, 0 for no match, and <0 for error.
7132  */
7133 static int
7134 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7135     uint32_t priv, uid_t uid, zoneid_t zoneid)
7136 {
7137         dtrace_provider_t *pvp = prp->dtpr_provider;
7138         int rv;
7139
7140         if (pvp->dtpv_defunct)
7141                 return (0);
7142
7143         if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
7144                 return (rv);
7145
7146         if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
7147                 return (rv);
7148
7149         if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7150                 return (rv);
7151
7152         if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
7153                 return (rv);
7154
7155         if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7156                 return (0);
7157
7158         return (rv);
7159 }
7160
7161 /*
7162  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7163  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
7164  * libc's version, the kernel version only applies to 8-bit ASCII strings.
7165  * In addition, all of the recursion cases except for '*' matching have been
7166  * unwound.  For '*', we still implement recursive evaluation, but a depth
7167  * counter is maintained and matching is aborted if we recurse too deep.
7168  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7169  */
7170 static int
7171 dtrace_match_glob(const char *s, const char *p, int depth)
7172 {
7173         const char *olds;
7174         char s1, c;
7175         int gs;
7176
7177         if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7178                 return (-1);
7179
7180         if (s == NULL)
7181                 s = ""; /* treat NULL as empty string */
7182
7183 top:
7184         olds = s;
7185         s1 = *s++;
7186
7187         if (p == NULL)
7188                 return (0);
7189
7190         if ((c = *p++) == '\0')
7191                 return (s1 == '\0');
7192
7193         switch (c) {
7194         case '[': {
7195                 int ok = 0, notflag = 0;
7196                 char lc = '\0';
7197
7198                 if (s1 == '\0')
7199                         return (0);
7200
7201                 if (*p == '!') {
7202                         notflag = 1;
7203                         p++;
7204                 }
7205
7206                 if ((c = *p++) == '\0')
7207                         return (0);
7208
7209                 do {
7210                         if (c == '-' && lc != '\0' && *p != ']') {
7211                                 if ((c = *p++) == '\0')
7212                                         return (0);
7213                                 if (c == '\\' && (c = *p++) == '\0')
7214                                         return (0);
7215
7216                                 if (notflag) {
7217                                         if (s1 < lc || s1 > c)
7218                                                 ok++;
7219                                         else
7220                                                 return (0);
7221                                 } else if (lc <= s1 && s1 <= c)
7222                                         ok++;
7223
7224                         } else if (c == '\\' && (c = *p++) == '\0')
7225                                 return (0);
7226
7227                         lc = c; /* save left-hand 'c' for next iteration */
7228
7229                         if (notflag) {
7230                                 if (s1 != c)
7231                                         ok++;
7232                                 else
7233                                         return (0);
7234                         } else if (s1 == c)
7235                                 ok++;
7236
7237                         if ((c = *p++) == '\0')
7238                                 return (0);
7239
7240                 } while (c != ']');
7241
7242                 if (ok)
7243                         goto top;
7244
7245                 return (0);
7246         }
7247
7248         case '\\':
7249                 if ((c = *p++) == '\0')
7250                         return (0);
7251                 /*FALLTHRU*/
7252
7253         default:
7254                 if (c != s1)
7255                         return (0);
7256                 /*FALLTHRU*/
7257
7258         case '?':
7259                 if (s1 != '\0')
7260                         goto top;
7261                 return (0);
7262
7263         case '*':
7264                 while (*p == '*')
7265                         p++; /* consecutive *'s are identical to a single one */
7266
7267                 if (*p == '\0')
7268                         return (1);
7269
7270                 for (s = olds; *s != '\0'; s++) {
7271                         if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7272                                 return (gs);
7273                 }
7274
7275                 return (0);
7276         }
7277 }
7278
7279 /*ARGSUSED*/
7280 static int
7281 dtrace_match_string(const char *s, const char *p, int depth)
7282 {
7283         return (s != NULL && strcmp(s, p) == 0);
7284 }
7285
7286 /*ARGSUSED*/
7287 static int
7288 dtrace_match_nul(const char *s, const char *p, int depth)
7289 {
7290         return (1); /* always match the empty pattern */
7291 }
7292
7293 /*ARGSUSED*/
7294 static int
7295 dtrace_match_nonzero(const char *s, const char *p, int depth)
7296 {
7297         return (s != NULL && s[0] != '\0');
7298 }
7299
7300 static int
7301 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7302     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7303 {
7304         dtrace_probe_t template, *probe;
7305         dtrace_hash_t *hash = NULL;
7306         int len, best = INT_MAX, nmatched = 0;
7307         dtrace_id_t i;
7308
7309         ASSERT(MUTEX_HELD(&dtrace_lock));
7310
7311         /*
7312          * If the probe ID is specified in the key, just lookup by ID and
7313          * invoke the match callback once if a matching probe is found.
7314          */
7315         if (pkp->dtpk_id != DTRACE_IDNONE) {
7316                 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7317                     dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7318                         (void) (*matched)(probe, arg);
7319                         nmatched++;
7320                 }
7321                 return (nmatched);
7322         }
7323
7324         template.dtpr_mod = (char *)pkp->dtpk_mod;
7325         template.dtpr_func = (char *)pkp->dtpk_func;
7326         template.dtpr_name = (char *)pkp->dtpk_name;
7327
7328         /*
7329          * We want to find the most distinct of the module name, function
7330          * name, and name.  So for each one that is not a glob pattern or
7331          * empty string, we perform a lookup in the corresponding hash and
7332          * use the hash table with the fewest collisions to do our search.
7333          */
7334         if (pkp->dtpk_mmatch == &dtrace_match_string &&
7335             (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7336                 best = len;
7337                 hash = dtrace_bymod;
7338         }
7339
7340         if (pkp->dtpk_fmatch == &dtrace_match_string &&
7341             (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7342                 best = len;
7343                 hash = dtrace_byfunc;
7344         }
7345
7346         if (pkp->dtpk_nmatch == &dtrace_match_string &&
7347             (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7348                 best = len;
7349                 hash = dtrace_byname;
7350         }
7351
7352         /*
7353          * If we did not select a hash table, iterate over every probe and
7354          * invoke our callback for each one that matches our input probe key.
7355          */
7356         if (hash == NULL) {
7357                 for (i = 0; i < dtrace_nprobes; i++) {
7358                         if ((probe = dtrace_probes[i]) == NULL ||
7359                             dtrace_match_probe(probe, pkp, priv, uid,
7360                             zoneid) <= 0)
7361                                 continue;
7362
7363                         nmatched++;
7364
7365                         if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7366                                 break;
7367                 }
7368
7369                 return (nmatched);
7370         }
7371
7372         /*
7373          * If we selected a hash table, iterate over each probe of the same key
7374          * name and invoke the callback for every probe that matches the other
7375          * attributes of our input probe key.
7376          */
7377         for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7378             probe = *(DTRACE_HASHNEXT(hash, probe))) {
7379
7380                 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7381                         continue;
7382
7383                 nmatched++;
7384
7385                 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7386                         break;
7387         }
7388
7389         return (nmatched);
7390 }
7391
7392 /*
7393  * Return the function pointer dtrace_probecmp() should use to compare the
7394  * specified pattern with a string.  For NULL or empty patterns, we select
7395  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7396  * For non-empty non-glob strings, we use dtrace_match_string().
7397  */
7398 static dtrace_probekey_f *
7399 dtrace_probekey_func(const char *p)
7400 {
7401         char c;
7402
7403         if (p == NULL || *p == '\0')
7404                 return (&dtrace_match_nul);
7405
7406         while ((c = *p++) != '\0') {
7407                 if (c == '[' || c == '?' || c == '*' || c == '\\')
7408                         return (&dtrace_match_glob);
7409         }
7410
7411         return (&dtrace_match_string);
7412 }
7413
7414 /*
7415  * Build a probe comparison key for use with dtrace_match_probe() from the
7416  * given probe description.  By convention, a null key only matches anchored
7417  * probes: if each field is the empty string, reset dtpk_fmatch to
7418  * dtrace_match_nonzero().
7419  */
7420 static void
7421 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7422 {
7423         pkp->dtpk_prov = pdp->dtpd_provider;
7424         pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7425
7426         pkp->dtpk_mod = pdp->dtpd_mod;
7427         pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7428
7429         pkp->dtpk_func = pdp->dtpd_func;
7430         pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7431
7432         pkp->dtpk_name = pdp->dtpd_name;
7433         pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7434
7435         pkp->dtpk_id = pdp->dtpd_id;
7436
7437         if (pkp->dtpk_id == DTRACE_IDNONE &&
7438             pkp->dtpk_pmatch == &dtrace_match_nul &&
7439             pkp->dtpk_mmatch == &dtrace_match_nul &&
7440             pkp->dtpk_fmatch == &dtrace_match_nul &&
7441             pkp->dtpk_nmatch == &dtrace_match_nul)
7442                 pkp->dtpk_fmatch = &dtrace_match_nonzero;
7443 }
7444
7445 /*
7446  * DTrace Provider-to-Framework API Functions
7447  *
7448  * These functions implement much of the Provider-to-Framework API, as
7449  * described in <sys/dtrace.h>.  The parts of the API not in this section are
7450  * the functions in the API for probe management (found below), and
7451  * dtrace_probe() itself (found above).
7452  */
7453
7454 /*
7455  * Register the calling provider with the DTrace framework.  This should
7456  * generally be called by DTrace providers in their attach(9E) entry point.
7457  */
7458 int
7459 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7460     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7461 {
7462         dtrace_provider_t *provider;
7463
7464         if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7465                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7466                     "arguments", name ? name : "<NULL>");
7467                 return (EINVAL);
7468         }
7469
7470         if (name[0] == '\0' || dtrace_badname(name)) {
7471                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7472                     "provider name", name);
7473                 return (EINVAL);
7474         }
7475
7476         if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7477             pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7478             pops->dtps_destroy == NULL ||
7479             ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7480                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7481                     "provider ops", name);
7482                 return (EINVAL);
7483         }
7484
7485         if (dtrace_badattr(&pap->dtpa_provider) ||
7486             dtrace_badattr(&pap->dtpa_mod) ||
7487             dtrace_badattr(&pap->dtpa_func) ||
7488             dtrace_badattr(&pap->dtpa_name) ||
7489             dtrace_badattr(&pap->dtpa_args)) {
7490                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7491                     "provider attributes", name);
7492                 return (EINVAL);
7493         }
7494
7495         if (priv & ~DTRACE_PRIV_ALL) {
7496                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7497                     "privilege attributes", name);
7498                 return (EINVAL);
7499         }
7500
7501         if ((priv & DTRACE_PRIV_KERNEL) &&
7502             (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7503             pops->dtps_usermode == NULL) {
7504                 cmn_err(CE_WARN, "failed to register provider '%s': need "
7505                     "dtps_usermode() op for given privilege attributes", name);
7506                 return (EINVAL);
7507         }
7508
7509         provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7510         provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7511         (void) strcpy(provider->dtpv_name, name);
7512
7513         provider->dtpv_attr = *pap;
7514         provider->dtpv_priv.dtpp_flags = priv;
7515         if (cr != NULL) {
7516                 provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7517                 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7518         }
7519         provider->dtpv_pops = *pops;
7520
7521         if (pops->dtps_provide == NULL) {
7522                 ASSERT(pops->dtps_provide_module != NULL);
7523                 provider->dtpv_pops.dtps_provide =
7524                     (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
7525         }
7526
7527         if (pops->dtps_provide_module == NULL) {
7528                 ASSERT(pops->dtps_provide != NULL);
7529                 provider->dtpv_pops.dtps_provide_module =
7530                     (void (*)(void *, modctl_t *))dtrace_nullop;
7531         }
7532
7533         if (pops->dtps_suspend == NULL) {
7534                 ASSERT(pops->dtps_resume == NULL);
7535                 provider->dtpv_pops.dtps_suspend =
7536                     (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7537                 provider->dtpv_pops.dtps_resume =
7538                     (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7539         }
7540
7541         provider->dtpv_arg = arg;
7542         *idp = (dtrace_provider_id_t)provider;
7543
7544         if (pops == &dtrace_provider_ops) {
7545                 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7546                 ASSERT(MUTEX_HELD(&dtrace_lock));
7547                 ASSERT(dtrace_anon.dta_enabling == NULL);
7548
7549                 /*
7550                  * We make sure that the DTrace provider is at the head of
7551                  * the provider chain.
7552                  */
7553                 provider->dtpv_next = dtrace_provider;
7554                 dtrace_provider = provider;
7555                 return (0);
7556         }
7557
7558         mutex_enter(&dtrace_provider_lock);
7559         mutex_enter(&dtrace_lock);
7560
7561         /*
7562          * If there is at least one provider registered, we'll add this
7563          * provider after the first provider.
7564          */
7565         if (dtrace_provider != NULL) {
7566                 provider->dtpv_next = dtrace_provider->dtpv_next;
7567                 dtrace_provider->dtpv_next = provider;
7568         } else {
7569                 dtrace_provider = provider;
7570         }
7571
7572         if (dtrace_retained != NULL) {
7573                 dtrace_enabling_provide(provider);
7574
7575                 /*
7576                  * Now we need to call dtrace_enabling_matchall() -- which
7577                  * will acquire cpu_lock and dtrace_lock.  We therefore need
7578                  * to drop all of our locks before calling into it...
7579                  */
7580                 mutex_exit(&dtrace_lock);
7581                 mutex_exit(&dtrace_provider_lock);
7582                 dtrace_enabling_matchall();
7583
7584                 return (0);
7585         }
7586
7587         mutex_exit(&dtrace_lock);
7588         mutex_exit(&dtrace_provider_lock);
7589
7590         return (0);
7591 }
7592
7593 /*
7594  * Unregister the specified provider from the DTrace framework.  This should
7595  * generally be called by DTrace providers in their detach(9E) entry point.
7596  */
7597 int
7598 dtrace_unregister(dtrace_provider_id_t id)
7599 {
7600         dtrace_provider_t *old = (dtrace_provider_t *)id;
7601         dtrace_provider_t *prev = NULL;
7602         int i, self = 0, noreap = 0;
7603         dtrace_probe_t *probe, *first = NULL;
7604
7605         if (old->dtpv_pops.dtps_enable ==
7606             (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
7607                 /*
7608                  * If DTrace itself is the provider, we're called with locks
7609                  * already held.
7610                  */
7611                 ASSERT(old == dtrace_provider);
7612 #if defined(sun)
7613                 ASSERT(dtrace_devi != NULL);
7614 #endif
7615                 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7616                 ASSERT(MUTEX_HELD(&dtrace_lock));
7617                 self = 1;
7618
7619                 if (dtrace_provider->dtpv_next != NULL) {
7620                         /*
7621                          * There's another provider here; return failure.
7622                          */
7623                         return (EBUSY);
7624                 }
7625         } else {
7626                 mutex_enter(&dtrace_provider_lock);
7627                 mutex_enter(&mod_lock);
7628                 mutex_enter(&dtrace_lock);
7629         }
7630
7631         /*
7632          * If anyone has /dev/dtrace open, or if there are anonymous enabled
7633          * probes, we refuse to let providers slither away, unless this
7634          * provider has already been explicitly invalidated.
7635          */
7636         if (!old->dtpv_defunct &&
7637             (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7638             dtrace_anon.dta_state->dts_necbs > 0))) {
7639                 if (!self) {
7640                         mutex_exit(&dtrace_lock);
7641                         mutex_exit(&mod_lock);
7642                         mutex_exit(&dtrace_provider_lock);
7643                 }
7644                 return (EBUSY);
7645         }
7646
7647         /*
7648          * Attempt to destroy the probes associated with this provider.
7649          */
7650         for (i = 0; i < dtrace_nprobes; i++) {
7651                 if ((probe = dtrace_probes[i]) == NULL)
7652                         continue;
7653
7654                 if (probe->dtpr_provider != old)
7655                         continue;
7656
7657                 if (probe->dtpr_ecb == NULL)
7658                         continue;
7659
7660                 /*
7661                  * If we are trying to unregister a defunct provider, and the
7662                  * provider was made defunct within the interval dictated by
7663                  * dtrace_unregister_defunct_reap, we'll (asynchronously)
7664                  * attempt to reap our enablings.  To denote that the provider
7665                  * should reattempt to unregister itself at some point in the
7666                  * future, we will return a differentiable error code (EAGAIN
7667                  * instead of EBUSY) in this case.
7668                  */
7669                 if (dtrace_gethrtime() - old->dtpv_defunct >
7670                     dtrace_unregister_defunct_reap)
7671                         noreap = 1;
7672
7673                 if (!self) {
7674                         mutex_exit(&dtrace_lock);
7675                         mutex_exit(&mod_lock);
7676                         mutex_exit(&dtrace_provider_lock);
7677                 }
7678
7679                 if (noreap)
7680                         return (EBUSY);
7681
7682                 (void) taskq_dispatch(dtrace_taskq,
7683                     (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
7684
7685                 return (EAGAIN);
7686         }
7687
7688         /*
7689          * All of the probes for this provider are disabled; we can safely
7690          * remove all of them from their hash chains and from the probe array.
7691          */
7692         for (i = 0; i < dtrace_nprobes; i++) {
7693                 if ((probe = dtrace_probes[i]) == NULL)
7694                         continue;
7695
7696                 if (probe->dtpr_provider != old)
7697                         continue;
7698
7699                 dtrace_probes[i] = NULL;
7700
7701                 dtrace_hash_remove(dtrace_bymod, probe);
7702                 dtrace_hash_remove(dtrace_byfunc, probe);
7703                 dtrace_hash_remove(dtrace_byname, probe);
7704
7705                 if (first == NULL) {
7706                         first = probe;
7707                         probe->dtpr_nextmod = NULL;
7708                 } else {
7709                         probe->dtpr_nextmod = first;
7710                         first = probe;
7711                 }
7712         }
7713
7714         /*
7715          * The provider's probes have been removed from the hash chains and
7716          * from the probe array.  Now issue a dtrace_sync() to be sure that
7717          * everyone has cleared out from any probe array processing.
7718          */
7719         dtrace_sync();
7720
7721         for (probe = first; probe != NULL; probe = first) {
7722                 first = probe->dtpr_nextmod;
7723
7724                 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7725                     probe->dtpr_arg);
7726                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7727                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7728                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7729 #if defined(sun)
7730                 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7731 #else
7732                 free_unr(dtrace_arena, probe->dtpr_id);
7733 #endif
7734                 kmem_free(probe, sizeof (dtrace_probe_t));
7735         }
7736
7737         if ((prev = dtrace_provider) == old) {
7738 #if defined(sun)
7739                 ASSERT(self || dtrace_devi == NULL);
7740                 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7741 #endif
7742                 dtrace_provider = old->dtpv_next;
7743         } else {
7744                 while (prev != NULL && prev->dtpv_next != old)
7745                         prev = prev->dtpv_next;
7746
7747                 if (prev == NULL) {
7748                         panic("attempt to unregister non-existent "
7749                             "dtrace provider %p\n", (void *)id);
7750                 }
7751
7752                 prev->dtpv_next = old->dtpv_next;
7753         }
7754
7755         if (!self) {
7756                 mutex_exit(&dtrace_lock);
7757                 mutex_exit(&mod_lock);
7758                 mutex_exit(&dtrace_provider_lock);
7759         }
7760
7761         kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7762         kmem_free(old, sizeof (dtrace_provider_t));
7763
7764         return (0);
7765 }
7766
7767 /*
7768  * Invalidate the specified provider.  All subsequent probe lookups for the
7769  * specified provider will fail, but its probes will not be removed.
7770  */
7771 void
7772 dtrace_invalidate(dtrace_provider_id_t id)
7773 {
7774         dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7775
7776         ASSERT(pvp->dtpv_pops.dtps_enable !=
7777             (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7778
7779         mutex_enter(&dtrace_provider_lock);
7780         mutex_enter(&dtrace_lock);
7781
7782         pvp->dtpv_defunct = dtrace_gethrtime();
7783
7784         mutex_exit(&dtrace_lock);
7785         mutex_exit(&dtrace_provider_lock);
7786 }
7787
7788 /*
7789  * Indicate whether or not DTrace has attached.
7790  */
7791 int
7792 dtrace_attached(void)
7793 {
7794         /*
7795          * dtrace_provider will be non-NULL iff the DTrace driver has
7796          * attached.  (It's non-NULL because DTrace is always itself a
7797          * provider.)
7798          */
7799         return (dtrace_provider != NULL);
7800 }
7801
7802 /*
7803  * Remove all the unenabled probes for the given provider.  This function is
7804  * not unlike dtrace_unregister(), except that it doesn't remove the provider
7805  * -- just as many of its associated probes as it can.
7806  */
7807 int
7808 dtrace_condense(dtrace_provider_id_t id)
7809 {
7810         dtrace_provider_t *prov = (dtrace_provider_t *)id;
7811         int i;
7812         dtrace_probe_t *probe;
7813
7814         /*
7815          * Make sure this isn't the dtrace provider itself.
7816          */
7817         ASSERT(prov->dtpv_pops.dtps_enable !=
7818             (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7819
7820         mutex_enter(&dtrace_provider_lock);
7821         mutex_enter(&dtrace_lock);
7822
7823         /*
7824          * Attempt to destroy the probes associated with this provider.
7825          */
7826         for (i = 0; i < dtrace_nprobes; i++) {
7827                 if ((probe = dtrace_probes[i]) == NULL)
7828                         continue;
7829
7830                 if (probe->dtpr_provider != prov)
7831                         continue;
7832
7833                 if (probe->dtpr_ecb != NULL)
7834                         continue;
7835
7836                 dtrace_probes[i] = NULL;
7837
7838                 dtrace_hash_remove(dtrace_bymod, probe);
7839                 dtrace_hash_remove(dtrace_byfunc, probe);
7840                 dtrace_hash_remove(dtrace_byname, probe);
7841
7842                 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7843                     probe->dtpr_arg);
7844                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7845                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7846                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7847                 kmem_free(probe, sizeof (dtrace_probe_t));
7848 #if defined(sun)
7849                 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7850 #else
7851                 free_unr(dtrace_arena, i + 1);
7852 #endif
7853         }
7854
7855         mutex_exit(&dtrace_lock);
7856         mutex_exit(&dtrace_provider_lock);
7857
7858         return (0);
7859 }
7860
7861 /*
7862  * DTrace Probe Management Functions
7863  *
7864  * The functions in this section perform the DTrace probe management,
7865  * including functions to create probes, look-up probes, and call into the
7866  * providers to request that probes be provided.  Some of these functions are
7867  * in the Provider-to-Framework API; these functions can be identified by the
7868  * fact that they are not declared "static".
7869  */
7870
7871 /*
7872  * Create a probe with the specified module name, function name, and name.
7873  */
7874 dtrace_id_t
7875 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7876     const char *func, const char *name, int aframes, void *arg)
7877 {
7878         dtrace_probe_t *probe, **probes;
7879         dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7880         dtrace_id_t id;
7881
7882         if (provider == dtrace_provider) {
7883                 ASSERT(MUTEX_HELD(&dtrace_lock));
7884         } else {
7885                 mutex_enter(&dtrace_lock);
7886         }
7887
7888 #if defined(sun)
7889         id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7890             VM_BESTFIT | VM_SLEEP);
7891 #else
7892         id = alloc_unr(dtrace_arena);
7893 #endif
7894         probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7895
7896         probe->dtpr_id = id;
7897         probe->dtpr_gen = dtrace_probegen++;
7898         probe->dtpr_mod = dtrace_strdup(mod);
7899         probe->dtpr_func = dtrace_strdup(func);
7900         probe->dtpr_name = dtrace_strdup(name);
7901         probe->dtpr_arg = arg;
7902         probe->dtpr_aframes = aframes;
7903         probe->dtpr_provider = provider;
7904
7905         dtrace_hash_add(dtrace_bymod, probe);
7906         dtrace_hash_add(dtrace_byfunc, probe);
7907         dtrace_hash_add(dtrace_byname, probe);
7908
7909         if (id - 1 >= dtrace_nprobes) {
7910                 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7911                 size_t nsize = osize << 1;
7912
7913                 if (nsize == 0) {
7914                         ASSERT(osize == 0);
7915                         ASSERT(dtrace_probes == NULL);
7916                         nsize = sizeof (dtrace_probe_t *);
7917                 }
7918
7919                 probes = kmem_zalloc(nsize, KM_SLEEP);
7920
7921                 if (dtrace_probes == NULL) {
7922                         ASSERT(osize == 0);
7923                         dtrace_probes = probes;
7924                         dtrace_nprobes = 1;
7925                 } else {
7926                         dtrace_probe_t **oprobes = dtrace_probes;
7927
7928                         bcopy(oprobes, probes, osize);
7929                         dtrace_membar_producer();
7930                         dtrace_probes = probes;
7931
7932                         dtrace_sync();
7933
7934                         /*
7935                          * All CPUs are now seeing the new probes array; we can
7936                          * safely free the old array.
7937                          */
7938                         kmem_free(oprobes, osize);
7939                         dtrace_nprobes <<= 1;
7940                 }
7941
7942                 ASSERT(id - 1 < dtrace_nprobes);
7943         }
7944
7945         ASSERT(dtrace_probes[id - 1] == NULL);
7946         dtrace_probes[id - 1] = probe;
7947
7948         if (provider != dtrace_provider)
7949                 mutex_exit(&dtrace_lock);
7950
7951         return (id);
7952 }
7953
7954 static dtrace_probe_t *
7955 dtrace_probe_lookup_id(dtrace_id_t id)
7956 {
7957         ASSERT(MUTEX_HELD(&dtrace_lock));
7958
7959         if (id == 0 || id > dtrace_nprobes)
7960                 return (NULL);
7961
7962         return (dtrace_probes[id - 1]);
7963 }
7964
7965 static int
7966 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
7967 {
7968         *((dtrace_id_t *)arg) = probe->dtpr_id;
7969
7970         return (DTRACE_MATCH_DONE);
7971 }
7972
7973 /*
7974  * Look up a probe based on provider and one or more of module name, function
7975  * name and probe name.
7976  */
7977 dtrace_id_t
7978 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
7979     char *func, char *name)
7980 {
7981         dtrace_probekey_t pkey;
7982         dtrace_id_t id;
7983         int match;
7984
7985         pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
7986         pkey.dtpk_pmatch = &dtrace_match_string;
7987         pkey.dtpk_mod = mod;
7988         pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
7989         pkey.dtpk_func = func;
7990         pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
7991         pkey.dtpk_name = name;
7992         pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
7993         pkey.dtpk_id = DTRACE_IDNONE;
7994
7995         mutex_enter(&dtrace_lock);
7996         match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
7997             dtrace_probe_lookup_match, &id);
7998         mutex_exit(&dtrace_lock);
7999
8000         ASSERT(match == 1 || match == 0);
8001         return (match ? id : 0);
8002 }
8003
8004 /*
8005  * Returns the probe argument associated with the specified probe.
8006  */
8007 void *
8008 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
8009 {
8010         dtrace_probe_t *probe;
8011         void *rval = NULL;
8012
8013         mutex_enter(&dtrace_lock);
8014
8015         if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
8016             probe->dtpr_provider == (dtrace_provider_t *)id)
8017                 rval = probe->dtpr_arg;
8018
8019         mutex_exit(&dtrace_lock);
8020
8021         return (rval);
8022 }
8023
8024 /*
8025  * Copy a probe into a probe description.
8026  */
8027 static void
8028 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
8029 {
8030         bzero(pdp, sizeof (dtrace_probedesc_t));
8031         pdp->dtpd_id = prp->dtpr_id;
8032
8033         (void) strncpy(pdp->dtpd_provider,
8034             prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
8035
8036         (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
8037         (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
8038         (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
8039 }
8040
8041 /*
8042  * Called to indicate that a probe -- or probes -- should be provided by a
8043  * specfied provider.  If the specified description is NULL, the provider will
8044  * be told to provide all of its probes.  (This is done whenever a new
8045  * consumer comes along, or whenever a retained enabling is to be matched.) If
8046  * the specified description is non-NULL, the provider is given the
8047  * opportunity to dynamically provide the specified probe, allowing providers
8048  * to support the creation of probes on-the-fly.  (So-called _autocreated_
8049  * probes.)  If the provider is NULL, the operations will be applied to all
8050  * providers; if the provider is non-NULL the operations will only be applied
8051  * to the specified provider.  The dtrace_provider_lock must be held, and the
8052  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
8053  * will need to grab the dtrace_lock when it reenters the framework through
8054  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
8055  */
8056 static void
8057 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
8058 {
8059 #if defined(sun)
8060         modctl_t *ctl;
8061 #endif
8062         int all = 0;
8063
8064         ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8065
8066         if (prv == NULL) {
8067                 all = 1;
8068                 prv = dtrace_provider;
8069         }
8070
8071         do {
8072                 /*
8073                  * First, call the blanket provide operation.
8074                  */
8075                 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
8076
8077                 /*
8078                  * Now call the per-module provide operation.  We will grab
8079                  * mod_lock to prevent the list from being modified.  Note
8080                  * that this also prevents the mod_busy bits from changing.
8081                  * (mod_busy can only be changed with mod_lock held.)
8082                  */
8083                 mutex_enter(&mod_lock);
8084
8085 #if defined(sun)
8086                 ctl = &modules;
8087                 do {
8088                         if (ctl->mod_busy || ctl->mod_mp == NULL)
8089                                 continue;
8090
8091                         prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
8092
8093                 } while ((ctl = ctl->mod_next) != &modules);
8094 #endif
8095
8096                 mutex_exit(&mod_lock);
8097         } while (all && (prv = prv->dtpv_next) != NULL);
8098 }
8099
8100 #if defined(sun)
8101 /*
8102  * Iterate over each probe, and call the Framework-to-Provider API function
8103  * denoted by offs.
8104  */
8105 static void
8106 dtrace_probe_foreach(uintptr_t offs)
8107 {
8108         dtrace_provider_t *prov;
8109         void (*func)(void *, dtrace_id_t, void *);
8110         dtrace_probe_t *probe;
8111         dtrace_icookie_t cookie;
8112         int i;
8113
8114         /*
8115          * We disable interrupts to walk through the probe array.  This is
8116          * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8117          * won't see stale data.
8118          */
8119         cookie = dtrace_interrupt_disable();
8120
8121         for (i = 0; i < dtrace_nprobes; i++) {
8122                 if ((probe = dtrace_probes[i]) == NULL)
8123                         continue;
8124
8125                 if (probe->dtpr_ecb == NULL) {
8126                         /*
8127                          * This probe isn't enabled -- don't call the function.
8128                          */
8129                         continue;
8130                 }
8131
8132                 prov = probe->dtpr_provider;
8133                 func = *((void(**)(void *, dtrace_id_t, void *))
8134                     ((uintptr_t)&prov->dtpv_pops + offs));
8135
8136                 func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8137         }
8138
8139         dtrace_interrupt_enable(cookie);
8140 }
8141 #endif
8142
8143 static int
8144 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8145 {
8146         dtrace_probekey_t pkey;
8147         uint32_t priv;
8148         uid_t uid;
8149         zoneid_t zoneid;
8150
8151         ASSERT(MUTEX_HELD(&dtrace_lock));
8152         dtrace_ecb_create_cache = NULL;
8153
8154         if (desc == NULL) {
8155                 /*
8156                  * If we're passed a NULL description, we're being asked to
8157                  * create an ECB with a NULL probe.
8158                  */
8159                 (void) dtrace_ecb_create_enable(NULL, enab);
8160                 return (0);
8161         }
8162
8163         dtrace_probekey(desc, &pkey);
8164         dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8165             &priv, &uid, &zoneid);
8166
8167         return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8168             enab));
8169 }
8170
8171 /*
8172  * DTrace Helper Provider Functions
8173  */
8174 static void
8175 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8176 {
8177         attr->dtat_name = DOF_ATTR_NAME(dofattr);
8178         attr->dtat_data = DOF_ATTR_DATA(dofattr);
8179         attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8180 }
8181
8182 static void
8183 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8184     const dof_provider_t *dofprov, char *strtab)
8185 {
8186         hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8187         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8188             dofprov->dofpv_provattr);
8189         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8190             dofprov->dofpv_modattr);
8191         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8192             dofprov->dofpv_funcattr);
8193         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8194             dofprov->dofpv_nameattr);
8195         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8196             dofprov->dofpv_argsattr);
8197 }
8198
8199 static void
8200 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8201 {
8202         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8203         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8204         dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8205         dof_provider_t *provider;
8206         dof_probe_t *probe;
8207         uint32_t *off, *enoff;
8208         uint8_t *arg;
8209         char *strtab;
8210         uint_t i, nprobes;
8211         dtrace_helper_provdesc_t dhpv;
8212         dtrace_helper_probedesc_t dhpb;
8213         dtrace_meta_t *meta = dtrace_meta_pid;
8214         dtrace_mops_t *mops = &meta->dtm_mops;
8215         void *parg;
8216
8217         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8218         str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8219             provider->dofpv_strtab * dof->dofh_secsize);
8220         prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8221             provider->dofpv_probes * dof->dofh_secsize);
8222         arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8223             provider->dofpv_prargs * dof->dofh_secsize);
8224         off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8225             provider->dofpv_proffs * dof->dofh_secsize);
8226
8227         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8228         off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8229         arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8230         enoff = NULL;
8231
8232         /*
8233          * See dtrace_helper_provider_validate().
8234          */
8235         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8236             provider->dofpv_prenoffs != DOF_SECT_NONE) {
8237                 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8238                     provider->dofpv_prenoffs * dof->dofh_secsize);
8239                 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8240         }
8241
8242         nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8243
8244         /*
8245          * Create the provider.
8246          */
8247         dtrace_dofprov2hprov(&dhpv, provider, strtab);
8248
8249         if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8250                 return;
8251
8252         meta->dtm_count++;
8253
8254         /*
8255          * Create the probes.
8256          */
8257         for (i = 0; i < nprobes; i++) {
8258                 probe = (dof_probe_t *)(uintptr_t)(daddr +
8259                     prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8260
8261                 dhpb.dthpb_mod = dhp->dofhp_mod;
8262                 dhpb.dthpb_func = strtab + probe->dofpr_func;
8263                 dhpb.dthpb_name = strtab + probe->dofpr_name;
8264                 dhpb.dthpb_base = probe->dofpr_addr;
8265                 dhpb.dthpb_offs = off + probe->dofpr_offidx;
8266                 dhpb.dthpb_noffs = probe->dofpr_noffs;
8267                 if (enoff != NULL) {
8268                         dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8269                         dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8270                 } else {
8271                         dhpb.dthpb_enoffs = NULL;
8272                         dhpb.dthpb_nenoffs = 0;
8273                 }
8274                 dhpb.dthpb_args = arg + probe->dofpr_argidx;
8275                 dhpb.dthpb_nargc = probe->dofpr_nargc;
8276                 dhpb.dthpb_xargc = probe->dofpr_xargc;
8277                 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8278                 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8279
8280                 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8281         }
8282 }
8283
8284 static void
8285 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8286 {
8287         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8288         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8289         int i;
8290
8291         ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8292
8293         for (i = 0; i < dof->dofh_secnum; i++) {
8294                 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8295                     dof->dofh_secoff + i * dof->dofh_secsize);
8296
8297                 if (sec->dofs_type != DOF_SECT_PROVIDER)
8298                         continue;
8299
8300                 dtrace_helper_provide_one(dhp, sec, pid);
8301         }
8302
8303         /*
8304          * We may have just created probes, so we must now rematch against
8305          * any retained enablings.  Note that this call will acquire both
8306          * cpu_lock and dtrace_lock; the fact that we are holding
8307          * dtrace_meta_lock now is what defines the ordering with respect to
8308          * these three locks.
8309          */
8310         dtrace_enabling_matchall();
8311 }
8312
8313 static void
8314 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8315 {
8316         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8317         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8318         dof_sec_t *str_sec;
8319         dof_provider_t *provider;
8320         char *strtab;
8321         dtrace_helper_provdesc_t dhpv;
8322         dtrace_meta_t *meta = dtrace_meta_pid;
8323         dtrace_mops_t *mops = &meta->dtm_mops;
8324
8325         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8326         str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8327             provider->dofpv_strtab * dof->dofh_secsize);
8328
8329         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8330
8331         /*
8332          * Create the provider.
8333          */
8334         dtrace_dofprov2hprov(&dhpv, provider, strtab);
8335
8336         mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8337
8338         meta->dtm_count--;
8339 }
8340
8341 static void
8342 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8343 {
8344         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8345         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8346         int i;
8347
8348         ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8349
8350         for (i = 0; i < dof->dofh_secnum; i++) {
8351                 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8352                     dof->dofh_secoff + i * dof->dofh_secsize);
8353
8354                 if (sec->dofs_type != DOF_SECT_PROVIDER)
8355                         continue;
8356
8357                 dtrace_helper_provider_remove_one(dhp, sec, pid);
8358         }
8359 }
8360
8361 /*
8362  * DTrace Meta Provider-to-Framework API Functions
8363  *
8364  * These functions implement the Meta Provider-to-Framework API, as described
8365  * in <sys/dtrace.h>.
8366  */
8367 int
8368 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8369     dtrace_meta_provider_id_t *idp)
8370 {
8371         dtrace_meta_t *meta;
8372         dtrace_helpers_t *help, *next;
8373         int i;
8374
8375         *idp = DTRACE_METAPROVNONE;
8376
8377         /*
8378          * We strictly don't need the name, but we hold onto it for
8379          * debuggability. All hail error queues!
8380          */
8381         if (name == NULL) {
8382                 cmn_err(CE_WARN, "failed to register meta-provider: "
8383                     "invalid name");
8384                 return (EINVAL);
8385         }
8386
8387         if (mops == NULL ||
8388             mops->dtms_create_probe == NULL ||
8389             mops->dtms_provide_pid == NULL ||
8390             mops->dtms_remove_pid == NULL) {
8391                 cmn_err(CE_WARN, "failed to register meta-register %s: "
8392                     "invalid ops", name);
8393                 return (EINVAL);
8394         }
8395
8396         meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8397         meta->dtm_mops = *mops;
8398         meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8399         (void) strcpy(meta->dtm_name, name);
8400         meta->dtm_arg = arg;
8401
8402         mutex_enter(&dtrace_meta_lock);
8403         mutex_enter(&dtrace_lock);
8404
8405         if (dtrace_meta_pid != NULL) {
8406                 mutex_exit(&dtrace_lock);
8407                 mutex_exit(&dtrace_meta_lock);
8408                 cmn_err(CE_WARN, "failed to register meta-register %s: "
8409                     "user-land meta-provider exists", name);
8410                 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8411                 kmem_free(meta, sizeof (dtrace_meta_t));
8412                 return (EINVAL);
8413         }
8414
8415         dtrace_meta_pid = meta;
8416         *idp = (dtrace_meta_provider_id_t)meta;
8417
8418         /*
8419          * If there are providers and probes ready to go, pass them
8420          * off to the new meta provider now.
8421          */
8422
8423         help = dtrace_deferred_pid;
8424         dtrace_deferred_pid = NULL;
8425
8426         mutex_exit(&dtrace_lock);
8427
8428         while (help != NULL) {
8429                 for (i = 0; i < help->dthps_nprovs; i++) {
8430                         dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8431                             help->dthps_pid);
8432                 }
8433
8434                 next = help->dthps_next;
8435                 help->dthps_next = NULL;
8436                 help->dthps_prev = NULL;
8437                 help->dthps_deferred = 0;
8438                 help = next;
8439         }
8440
8441         mutex_exit(&dtrace_meta_lock);
8442
8443         return (0);
8444 }
8445
8446 int
8447 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8448 {
8449         dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8450
8451         mutex_enter(&dtrace_meta_lock);
8452         mutex_enter(&dtrace_lock);
8453
8454         if (old == dtrace_meta_pid) {
8455                 pp = &dtrace_meta_pid;
8456         } else {
8457                 panic("attempt to unregister non-existent "
8458                     "dtrace meta-provider %p\n", (void *)old);
8459         }
8460
8461         if (old->dtm_count != 0) {
8462                 mutex_exit(&dtrace_lock);
8463                 mutex_exit(&dtrace_meta_lock);
8464                 return (EBUSY);
8465         }
8466
8467         *pp = NULL;
8468
8469         mutex_exit(&dtrace_lock);
8470         mutex_exit(&dtrace_meta_lock);
8471
8472         kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8473         kmem_free(old, sizeof (dtrace_meta_t));
8474
8475         return (0);
8476 }
8477
8478
8479 /*
8480  * DTrace DIF Object Functions
8481  */
8482 static int
8483 dtrace_difo_err(uint_t pc, const char *format, ...)
8484 {
8485         if (dtrace_err_verbose) {
8486                 va_list alist;
8487
8488                 (void) uprintf("dtrace DIF object error: [%u]: ", pc);
8489                 va_start(alist, format);
8490                 (void) vuprintf(format, alist);
8491                 va_end(alist);
8492         }
8493
8494 #ifdef DTRACE_ERRDEBUG
8495         dtrace_errdebug(format);
8496 #endif
8497         return (1);
8498 }
8499
8500 /*
8501  * Validate a DTrace DIF object by checking the IR instructions.  The following
8502  * rules are currently enforced by dtrace_difo_validate():
8503  *
8504  * 1. Each instruction must have a valid opcode
8505  * 2. Each register, string, variable, or subroutine reference must be valid
8506  * 3. No instruction can modify register %r0 (must be zero)
8507  * 4. All instruction reserved bits must be set to zero
8508  * 5. The last instruction must be a "ret" instruction
8509  * 6. All branch targets must reference a valid instruction _after_ the branch
8510  */
8511 static int
8512 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8513     cred_t *cr)
8514 {
8515         int err = 0, i;
8516         int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8517         int kcheckload;
8518         uint_t pc;
8519
8520         kcheckload = cr == NULL ||
8521             (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8522
8523         dp->dtdo_destructive = 0;
8524
8525         for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8526                 dif_instr_t instr = dp->dtdo_buf[pc];
8527
8528                 uint_t r1 = DIF_INSTR_R1(instr);
8529                 uint_t r2 = DIF_INSTR_R2(instr);
8530                 uint_t rd = DIF_INSTR_RD(instr);
8531                 uint_t rs = DIF_INSTR_RS(instr);
8532                 uint_t label = DIF_INSTR_LABEL(instr);
8533                 uint_t v = DIF_INSTR_VAR(instr);
8534                 uint_t subr = DIF_INSTR_SUBR(instr);
8535                 uint_t type = DIF_INSTR_TYPE(instr);
8536                 uint_t op = DIF_INSTR_OP(instr);
8537
8538                 switch (op) {
8539                 case DIF_OP_OR:
8540                 case DIF_OP_XOR:
8541                 case DIF_OP_AND:
8542                 case DIF_OP_SLL:
8543                 case DIF_OP_SRL:
8544                 case DIF_OP_SRA:
8545                 case DIF_OP_SUB:
8546                 case DIF_OP_ADD:
8547                 case DIF_OP_MUL:
8548                 case DIF_OP_SDIV:
8549                 case DIF_OP_UDIV:
8550                 case DIF_OP_SREM:
8551                 case DIF_OP_UREM:
8552                 case DIF_OP_COPYS:
8553                         if (r1 >= nregs)
8554                                 err += efunc(pc, "invalid register %u\n", r1);
8555                         if (r2 >= nregs)
8556                                 err += efunc(pc, "invalid register %u\n", r2);
8557                         if (rd >= nregs)
8558                                 err += efunc(pc, "invalid register %u\n", rd);
8559                         if (rd == 0)
8560                                 err += efunc(pc, "cannot write to %r0\n");
8561                         break;
8562                 case DIF_OP_NOT:
8563                 case DIF_OP_MOV:
8564                 case DIF_OP_ALLOCS:
8565                         if (r1 >= nregs)
8566                                 err += efunc(pc, "invalid register %u\n", r1);
8567                         if (r2 != 0)
8568                                 err += efunc(pc, "non-zero reserved bits\n");
8569                         if (rd >= nregs)
8570                                 err += efunc(pc, "invalid register %u\n", rd);
8571                         if (rd == 0)
8572                                 err += efunc(pc, "cannot write to %r0\n");
8573                         break;
8574                 case DIF_OP_LDSB:
8575                 case DIF_OP_LDSH:
8576                 case DIF_OP_LDSW:
8577                 case DIF_OP_LDUB:
8578                 case DIF_OP_LDUH:
8579                 case DIF_OP_LDUW:
8580                 case DIF_OP_LDX:
8581                         if (r1 >= nregs)
8582                                 err += efunc(pc, "invalid register %u\n", r1);
8583                         if (r2 != 0)
8584                                 err += efunc(pc, "non-zero reserved bits\n");
8585                         if (rd >= nregs)
8586                                 err += efunc(pc, "invalid register %u\n", rd);
8587                         if (rd == 0)
8588                                 err += efunc(pc, "cannot write to %r0\n");
8589                         if (kcheckload)
8590                                 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8591                                     DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8592                         break;
8593                 case DIF_OP_RLDSB:
8594                 case DIF_OP_RLDSH:
8595                 case DIF_OP_RLDSW:
8596                 case DIF_OP_RLDUB:
8597                 case DIF_OP_RLDUH:
8598                 case DIF_OP_RLDUW:
8599                 case DIF_OP_RLDX:
8600                         if (r1 >= nregs)
8601                                 err += efunc(pc, "invalid register %u\n", r1);
8602                         if (r2 != 0)
8603                                 err += efunc(pc, "non-zero reserved bits\n");
8604                         if (rd >= nregs)
8605                                 err += efunc(pc, "invalid register %u\n", rd);
8606                         if (rd == 0)
8607                                 err += efunc(pc, "cannot write to %r0\n");
8608                         break;
8609                 case DIF_OP_ULDSB:
8610                 case DIF_OP_ULDSH:
8611                 case DIF_OP_ULDSW:
8612                 case DIF_OP_ULDUB:
8613                 case DIF_OP_ULDUH:
8614                 case DIF_OP_ULDUW:
8615                 case DIF_OP_ULDX:
8616                         if (r1 >= nregs)
8617                                 err += efunc(pc, "invalid register %u\n", r1);
8618                         if (r2 != 0)
8619                                 err += efunc(pc, "non-zero reserved bits\n");
8620                         if (rd >= nregs)
8621                                 err += efunc(pc, "invalid register %u\n", rd);
8622                         if (rd == 0)
8623                                 err += efunc(pc, "cannot write to %r0\n");
8624                         break;
8625                 case DIF_OP_STB:
8626                 case DIF_OP_STH:
8627                 case DIF_OP_STW:
8628                 case DIF_OP_STX:
8629                         if (r1 >= nregs)
8630                                 err += efunc(pc, "invalid register %u\n", r1);
8631                         if (r2 != 0)
8632                                 err += efunc(pc, "non-zero reserved bits\n");
8633                         if (rd >= nregs)
8634                                 err += efunc(pc, "invalid register %u\n", rd);
8635                         if (rd == 0)
8636                                 err += efunc(pc, "cannot write to 0 address\n");
8637                         break;
8638                 case DIF_OP_CMP:
8639                 case DIF_OP_SCMP:
8640                         if (r1 >= nregs)
8641                                 err += efunc(pc, "invalid register %u\n", r1);
8642                         if (r2 >= nregs)
8643                                 err += efunc(pc, "invalid register %u\n", r2);
8644                         if (rd != 0)
8645                                 err += efunc(pc, "non-zero reserved bits\n");
8646                         break;
8647                 case DIF_OP_TST:
8648                         if (r1 >= nregs)
8649                                 err += efunc(pc, "invalid register %u\n", r1);
8650                         if (r2 != 0 || rd != 0)
8651                                 err += efunc(pc, "non-zero reserved bits\n");
8652                         break;
8653                 case DIF_OP_BA:
8654                 case DIF_OP_BE:
8655                 case DIF_OP_BNE:
8656                 case DIF_OP_BG:
8657                 case DIF_OP_BGU:
8658                 case DIF_OP_BGE:
8659                 case DIF_OP_BGEU:
8660                 case DIF_OP_BL:
8661                 case DIF_OP_BLU:
8662                 case DIF_OP_BLE:
8663                 case DIF_OP_BLEU:
8664                         if (label >= dp->dtdo_len) {
8665                                 err += efunc(pc, "invalid branch target %u\n",
8666                                     label);
8667                         }
8668                         if (label <= pc) {
8669                                 err += efunc(pc, "backward branch to %u\n",
8670                                     label);
8671                         }
8672                         break;
8673                 case DIF_OP_RET:
8674                         if (r1 != 0 || r2 != 0)
8675                                 err += efunc(pc, "non-zero reserved bits\n");
8676                         if (rd >= nregs)
8677                                 err += efunc(pc, "invalid register %u\n", rd);
8678                         break;
8679                 case DIF_OP_NOP:
8680                 case DIF_OP_POPTS:
8681                 case DIF_OP_FLUSHTS:
8682                         if (r1 != 0 || r2 != 0 || rd != 0)
8683                                 err += efunc(pc, "non-zero reserved bits\n");
8684                         break;
8685                 case DIF_OP_SETX:
8686                         if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8687                                 err += efunc(pc, "invalid integer ref %u\n",
8688                                     DIF_INSTR_INTEGER(instr));
8689                         }
8690                         if (rd >= nregs)
8691                                 err += efunc(pc, "invalid register %u\n", rd);
8692                         if (rd == 0)
8693                                 err += efunc(pc, "cannot write to %r0\n");
8694                         break;
8695                 case DIF_OP_SETS:
8696                         if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8697                                 err += efunc(pc, "invalid string ref %u\n",
8698                                     DIF_INSTR_STRING(instr));
8699                         }
8700                         if (rd >= nregs)
8701                                 err += efunc(pc, "invalid register %u\n", rd);
8702                         if (rd == 0)
8703                                 err += efunc(pc, "cannot write to %r0\n");
8704                         break;
8705                 case DIF_OP_LDGA:
8706                 case DIF_OP_LDTA:
8707                         if (r1 > DIF_VAR_ARRAY_MAX)
8708                                 err += efunc(pc, "invalid array %u\n", r1);
8709                         if (r2 >= nregs)
8710                                 err += efunc(pc, "invalid register %u\n", r2);
8711                         if (rd >= nregs)
8712                                 err += efunc(pc, "invalid register %u\n", rd);
8713                         if (rd == 0)
8714                                 err += efunc(pc, "cannot write to %r0\n");
8715                         break;
8716                 case DIF_OP_LDGS:
8717                 case DIF_OP_LDTS:
8718                 case DIF_OP_LDLS:
8719                 case DIF_OP_LDGAA:
8720                 case DIF_OP_LDTAA:
8721                         if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8722                                 err += efunc(pc, "invalid variable %u\n", v);
8723                         if (rd >= nregs)
8724                                 err += efunc(pc, "invalid register %u\n", rd);
8725                         if (rd == 0)
8726                                 err += efunc(pc, "cannot write to %r0\n");
8727                         break;
8728                 case DIF_OP_STGS:
8729                 case DIF_OP_STTS:
8730                 case DIF_OP_STLS:
8731                 case DIF_OP_STGAA:
8732                 case DIF_OP_STTAA:
8733                         if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8734                                 err += efunc(pc, "invalid variable %u\n", v);
8735                         if (rs >= nregs)
8736                                 err += efunc(pc, "invalid register %u\n", rd);
8737                         break;
8738                 case DIF_OP_CALL:
8739                         if (subr > DIF_SUBR_MAX)
8740                                 err += efunc(pc, "invalid subr %u\n", subr);
8741                         if (rd >= nregs)
8742                                 err += efunc(pc, "invalid register %u\n", rd);
8743                         if (rd == 0)
8744                                 err += efunc(pc, "cannot write to %r0\n");
8745
8746                         if (subr == DIF_SUBR_COPYOUT ||
8747                             subr == DIF_SUBR_COPYOUTSTR) {
8748                                 dp->dtdo_destructive = 1;
8749                         }
8750                         break;
8751                 case DIF_OP_PUSHTR:
8752                         if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8753                                 err += efunc(pc, "invalid ref type %u\n", type);
8754                         if (r2 >= nregs)
8755                                 err += efunc(pc, "invalid register %u\n", r2);
8756                         if (rs >= nregs)
8757                                 err += efunc(pc, "invalid register %u\n", rs);
8758                         break;
8759                 case DIF_OP_PUSHTV:
8760                         if (type != DIF_TYPE_CTF)
8761                                 err += efunc(pc, "invalid val type %u\n", type);
8762                         if (r2 >= nregs)
8763                                 err += efunc(pc, "invalid register %u\n", r2);
8764                         if (rs >= nregs)
8765                                 err += efunc(pc, "invalid register %u\n", rs);
8766                         break;
8767                 default:
8768                         err += efunc(pc, "invalid opcode %u\n",
8769                             DIF_INSTR_OP(instr));
8770                 }
8771         }
8772
8773         if (dp->dtdo_len != 0 &&
8774             DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8775                 err += efunc(dp->dtdo_len - 1,
8776                     "expected 'ret' as last DIF instruction\n");
8777         }
8778
8779         if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8780                 /*
8781                  * If we're not returning by reference, the size must be either
8782                  * 0 or the size of one of the base types.
8783                  */
8784                 switch (dp->dtdo_rtype.dtdt_size) {
8785                 case 0:
8786                 case sizeof (uint8_t):
8787                 case sizeof (uint16_t):
8788                 case sizeof (uint32_t):
8789                 case sizeof (uint64_t):
8790                         break;
8791
8792                 default:
8793                         err += efunc(dp->dtdo_len - 1, "bad return size");
8794                 }
8795         }
8796
8797         for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8798                 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8799                 dtrace_diftype_t *vt, *et;
8800                 uint_t id, ndx;
8801
8802                 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8803                     v->dtdv_scope != DIFV_SCOPE_THREAD &&
8804                     v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8805                         err += efunc(i, "unrecognized variable scope %d\n",
8806                             v->dtdv_scope);
8807                         break;
8808                 }
8809
8810                 if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8811                     v->dtdv_kind != DIFV_KIND_SCALAR) {
8812                         err += efunc(i, "unrecognized variable type %d\n",
8813                             v->dtdv_kind);
8814                         break;
8815                 }
8816
8817                 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8818                         err += efunc(i, "%d exceeds variable id limit\n", id);
8819                         break;
8820                 }
8821
8822                 if (id < DIF_VAR_OTHER_UBASE)
8823                         continue;
8824
8825                 /*
8826                  * For user-defined variables, we need to check that this
8827                  * definition is identical to any previous definition that we
8828                  * encountered.
8829                  */
8830                 ndx = id - DIF_VAR_OTHER_UBASE;
8831
8832                 switch (v->dtdv_scope) {
8833                 case DIFV_SCOPE_GLOBAL:
8834                         if (ndx < vstate->dtvs_nglobals) {
8835                                 dtrace_statvar_t *svar;
8836
8837                                 if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8838                                         existing = &svar->dtsv_var;
8839                         }
8840
8841                         break;
8842
8843                 case DIFV_SCOPE_THREAD:
8844                         if (ndx < vstate->dtvs_ntlocals)
8845                                 existing = &vstate->dtvs_tlocals[ndx];
8846                         break;
8847
8848                 case DIFV_SCOPE_LOCAL:
8849                         if (ndx < vstate->dtvs_nlocals) {
8850                                 dtrace_statvar_t *svar;
8851
8852                                 if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8853                                         existing = &svar->dtsv_var;
8854                         }
8855
8856                         break;
8857                 }
8858
8859                 vt = &v->dtdv_type;
8860
8861                 if (vt->dtdt_flags & DIF_TF_BYREF) {
8862                         if (vt->dtdt_size == 0) {
8863                                 err += efunc(i, "zero-sized variable\n");
8864                                 break;
8865                         }
8866
8867                         if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8868                             vt->dtdt_size > dtrace_global_maxsize) {
8869                                 err += efunc(i, "oversized by-ref global\n");
8870                                 break;
8871                         }
8872                 }
8873
8874                 if (existing == NULL || existing->dtdv_id == 0)
8875                         continue;
8876
8877                 ASSERT(existing->dtdv_id == v->dtdv_id);
8878                 ASSERT(existing->dtdv_scope == v->dtdv_scope);
8879
8880                 if (existing->dtdv_kind != v->dtdv_kind)
8881                         err += efunc(i, "%d changed variable kind\n", id);
8882
8883                 et = &existing->dtdv_type;
8884
8885                 if (vt->dtdt_flags != et->dtdt_flags) {
8886                         err += efunc(i, "%d changed variable type flags\n", id);
8887                         break;
8888                 }
8889
8890                 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8891                         err += efunc(i, "%d changed variable type size\n", id);
8892                         break;
8893                 }
8894         }
8895
8896         return (err);
8897 }
8898
8899 /*
8900  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8901  * are much more constrained than normal DIFOs.  Specifically, they may
8902  * not:
8903  *
8904  * 1. Make calls to subroutines other than copyin(), copyinstr() or
8905  *    miscellaneous string routines
8906  * 2. Access DTrace variables other than the args[] array, and the
8907  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8908  * 3. Have thread-local variables.
8909  * 4. Have dynamic variables.
8910  */
8911 static int
8912 dtrace_difo_validate_helper(dtrace_difo_t *dp)
8913 {
8914         int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8915         int err = 0;
8916         uint_t pc;
8917
8918         for (pc = 0; pc < dp->dtdo_len; pc++) {
8919                 dif_instr_t instr = dp->dtdo_buf[pc];
8920
8921                 uint_t v = DIF_INSTR_VAR(instr);
8922                 uint_t subr = DIF_INSTR_SUBR(instr);
8923                 uint_t op = DIF_INSTR_OP(instr);
8924
8925                 switch (op) {
8926                 case DIF_OP_OR:
8927                 case DIF_OP_XOR:
8928                 case DIF_OP_AND:
8929                 case DIF_OP_SLL:
8930                 case DIF_OP_SRL:
8931                 case DIF_OP_SRA:
8932                 case DIF_OP_SUB:
8933                 case DIF_OP_ADD:
8934                 case DIF_OP_MUL:
8935                 case DIF_OP_SDIV:
8936                 case DIF_OP_UDIV:
8937                 case DIF_OP_SREM:
8938                 case DIF_OP_UREM:
8939                 case DIF_OP_COPYS:
8940                 case DIF_OP_NOT:
8941                 case DIF_OP_MOV:
8942                 case DIF_OP_RLDSB:
8943                 case DIF_OP_RLDSH:
8944                 case DIF_OP_RLDSW:
8945                 case DIF_OP_RLDUB:
8946                 case DIF_OP_RLDUH:
8947                 case DIF_OP_RLDUW:
8948                 case DIF_OP_RLDX:
8949                 case DIF_OP_ULDSB:
8950                 case DIF_OP_ULDSH:
8951                 case DIF_OP_ULDSW:
8952                 case DIF_OP_ULDUB:
8953                 case DIF_OP_ULDUH:
8954                 case DIF_OP_ULDUW:
8955                 case DIF_OP_ULDX:
8956                 case DIF_OP_STB:
8957                 case DIF_OP_STH:
8958                 case DIF_OP_STW:
8959                 case DIF_OP_STX:
8960                 case DIF_OP_ALLOCS:
8961                 case DIF_OP_CMP:
8962                 case DIF_OP_SCMP:
8963                 case DIF_OP_TST:
8964                 case DIF_OP_BA:
8965                 case DIF_OP_BE:
8966                 case DIF_OP_BNE:
8967                 case DIF_OP_BG:
8968                 case DIF_OP_BGU:
8969                 case DIF_OP_BGE:
8970                 case DIF_OP_BGEU:
8971                 case DIF_OP_BL:
8972                 case DIF_OP_BLU:
8973                 case DIF_OP_BLE:
8974                 case DIF_OP_BLEU:
8975                 case DIF_OP_RET:
8976                 case DIF_OP_NOP:
8977                 case DIF_OP_POPTS:
8978                 case DIF_OP_FLUSHTS:
8979                 case DIF_OP_SETX:
8980                 case DIF_OP_SETS:
8981                 case DIF_OP_LDGA:
8982                 case DIF_OP_LDLS:
8983                 case DIF_OP_STGS:
8984                 case DIF_OP_STLS:
8985                 case DIF_OP_PUSHTR:
8986                 case DIF_OP_PUSHTV:
8987                         break;
8988
8989                 case DIF_OP_LDGS:
8990                         if (v >= DIF_VAR_OTHER_UBASE)
8991                                 break;
8992
8993                         if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
8994                                 break;
8995
8996                         if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
8997                             v == DIF_VAR_PPID || v == DIF_VAR_TID ||
8998                             v == DIF_VAR_EXECARGS ||
8999                             v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
9000                             v == DIF_VAR_UID || v == DIF_VAR_GID)
9001                                 break;
9002
9003                         err += efunc(pc, "illegal variable %u\n", v);
9004                         break;
9005
9006                 case DIF_OP_LDTA:
9007                 case DIF_OP_LDTS:
9008                 case DIF_OP_LDGAA:
9009                 case DIF_OP_LDTAA:
9010                         err += efunc(pc, "illegal dynamic variable load\n");
9011                         break;
9012
9013                 case DIF_OP_STTS:
9014                 case DIF_OP_STGAA:
9015                 case DIF_OP_STTAA:
9016                         err += efunc(pc, "illegal dynamic variable store\n");
9017                         break;
9018
9019                 case DIF_OP_CALL:
9020                         if (subr == DIF_SUBR_ALLOCA ||
9021                             subr == DIF_SUBR_BCOPY ||
9022                             subr == DIF_SUBR_COPYIN ||
9023                             subr == DIF_SUBR_COPYINTO ||
9024                             subr == DIF_SUBR_COPYINSTR ||
9025                             subr == DIF_SUBR_INDEX ||
9026                             subr == DIF_SUBR_INET_NTOA ||
9027                             subr == DIF_SUBR_INET_NTOA6 ||
9028                             subr == DIF_SUBR_INET_NTOP ||
9029                             subr == DIF_SUBR_LLTOSTR ||
9030                             subr == DIF_SUBR_RINDEX ||
9031                             subr == DIF_SUBR_STRCHR ||
9032                             subr == DIF_SUBR_STRJOIN ||
9033                             subr == DIF_SUBR_STRRCHR ||
9034                             subr == DIF_SUBR_STRSTR ||
9035                             subr == DIF_SUBR_HTONS ||
9036                             subr == DIF_SUBR_HTONL ||
9037                             subr == DIF_SUBR_HTONLL ||
9038                             subr == DIF_SUBR_NTOHS ||
9039                             subr == DIF_SUBR_NTOHL ||
9040                             subr == DIF_SUBR_NTOHLL ||
9041                             subr == DIF_SUBR_MEMREF ||
9042                             subr == DIF_SUBR_TYPEREF)
9043                                 break;
9044
9045                         err += efunc(pc, "invalid subr %u\n", subr);
9046                         break;
9047
9048                 default:
9049                         err += efunc(pc, "invalid opcode %u\n",
9050                             DIF_INSTR_OP(instr));
9051                 }
9052         }
9053
9054         return (err);
9055 }
9056
9057 /*
9058  * Returns 1 if the expression in the DIF object can be cached on a per-thread
9059  * basis; 0 if not.
9060  */
9061 static int
9062 dtrace_difo_cacheable(dtrace_difo_t *dp)
9063 {
9064         int i;
9065
9066         if (dp == NULL)
9067                 return (0);
9068
9069         for (i = 0; i < dp->dtdo_varlen; i++) {
9070                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9071
9072                 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
9073                         continue;
9074
9075                 switch (v->dtdv_id) {
9076                 case DIF_VAR_CURTHREAD:
9077                 case DIF_VAR_PID:
9078                 case DIF_VAR_TID:
9079                 case DIF_VAR_EXECARGS:
9080                 case DIF_VAR_EXECNAME:
9081                 case DIF_VAR_ZONENAME:
9082                         break;
9083
9084                 default:
9085                         return (0);
9086                 }
9087         }
9088
9089         /*
9090          * This DIF object may be cacheable.  Now we need to look for any
9091          * array loading instructions, any memory loading instructions, or
9092          * any stores to thread-local variables.
9093          */
9094         for (i = 0; i < dp->dtdo_len; i++) {
9095                 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
9096
9097                 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
9098                     (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
9099                     (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9100                     op == DIF_OP_LDGA || op == DIF_OP_STTS)
9101                         return (0);
9102         }
9103
9104         return (1);
9105 }
9106
9107 static void
9108 dtrace_difo_hold(dtrace_difo_t *dp)
9109 {
9110         int i;
9111
9112         ASSERT(MUTEX_HELD(&dtrace_lock));
9113
9114         dp->dtdo_refcnt++;
9115         ASSERT(dp->dtdo_refcnt != 0);
9116
9117         /*
9118          * We need to check this DIF object for references to the variable
9119          * DIF_VAR_VTIMESTAMP.
9120          */
9121         for (i = 0; i < dp->dtdo_varlen; i++) {
9122                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9123
9124                 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9125                         continue;
9126
9127                 if (dtrace_vtime_references++ == 0)
9128                         dtrace_vtime_enable();
9129         }
9130 }
9131
9132 /*
9133  * This routine calculates the dynamic variable chunksize for a given DIF
9134  * object.  The calculation is not fool-proof, and can probably be tricked by
9135  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
9136  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9137  * if a dynamic variable size exceeds the chunksize.
9138  */
9139 static void
9140 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9141 {
9142         uint64_t sval = 0;
9143         dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9144         const dif_instr_t *text = dp->dtdo_buf;
9145         uint_t pc, srd = 0;
9146         uint_t ttop = 0;
9147         size_t size, ksize;
9148         uint_t id, i;
9149
9150         for (pc = 0; pc < dp->dtdo_len; pc++) {
9151                 dif_instr_t instr = text[pc];
9152                 uint_t op = DIF_INSTR_OP(instr);
9153                 uint_t rd = DIF_INSTR_RD(instr);
9154                 uint_t r1 = DIF_INSTR_R1(instr);
9155                 uint_t nkeys = 0;
9156                 uchar_t scope = 0;
9157
9158                 dtrace_key_t *key = tupregs;
9159
9160                 switch (op) {
9161                 case DIF_OP_SETX:
9162                         sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9163                         srd = rd;
9164                         continue;
9165
9166                 case DIF_OP_STTS:
9167                         key = &tupregs[DIF_DTR_NREGS];
9168                         key[0].dttk_size = 0;
9169                         key[1].dttk_size = 0;
9170                         nkeys = 2;
9171                         scope = DIFV_SCOPE_THREAD;
9172                         break;
9173
9174                 case DIF_OP_STGAA:
9175                 case DIF_OP_STTAA:
9176                         nkeys = ttop;
9177
9178                         if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9179                                 key[nkeys++].dttk_size = 0;
9180
9181                         key[nkeys++].dttk_size = 0;
9182
9183                         if (op == DIF_OP_STTAA) {
9184                                 scope = DIFV_SCOPE_THREAD;
9185                         } else {
9186                                 scope = DIFV_SCOPE_GLOBAL;
9187                         }
9188
9189                         break;
9190
9191                 case DIF_OP_PUSHTR:
9192                         if (ttop == DIF_DTR_NREGS)
9193                                 return;
9194
9195                         if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9196                                 /*
9197                                  * If the register for the size of the "pushtr"
9198                                  * is %r0 (or the value is 0) and the type is
9199                                  * a string, we'll use the system-wide default
9200                                  * string size.
9201                                  */
9202                                 tupregs[ttop++].dttk_size =
9203                                     dtrace_strsize_default;
9204                         } else {
9205                                 if (srd == 0)
9206                                         return;
9207
9208                                 tupregs[ttop++].dttk_size = sval;
9209                         }
9210
9211                         break;
9212
9213                 case DIF_OP_PUSHTV:
9214                         if (ttop == DIF_DTR_NREGS)
9215                                 return;
9216
9217                         tupregs[ttop++].dttk_size = 0;
9218                         break;
9219
9220                 case DIF_OP_FLUSHTS:
9221                         ttop = 0;
9222                         break;
9223
9224                 case DIF_OP_POPTS:
9225                         if (ttop != 0)
9226                                 ttop--;
9227                         break;
9228                 }
9229
9230                 sval = 0;
9231                 srd = 0;
9232
9233                 if (nkeys == 0)
9234                         continue;
9235
9236                 /*
9237                  * We have a dynamic variable allocation; calculate its size.
9238                  */
9239                 for (ksize = 0, i = 0; i < nkeys; i++)
9240                         ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9241
9242                 size = sizeof (dtrace_dynvar_t);
9243                 size += sizeof (dtrace_key_t) * (nkeys - 1);
9244                 size += ksize;
9245
9246                 /*
9247                  * Now we need to determine the size of the stored data.
9248                  */
9249                 id = DIF_INSTR_VAR(instr);
9250
9251                 for (i = 0; i < dp->dtdo_varlen; i++) {
9252                         dtrace_difv_t *v = &dp->dtdo_vartab[i];
9253
9254                         if (v->dtdv_id == id && v->dtdv_scope == scope) {
9255                                 size += v->dtdv_type.dtdt_size;
9256                                 break;
9257                         }
9258                 }
9259
9260                 if (i == dp->dtdo_varlen)
9261                         return;
9262
9263                 /*
9264                  * We have the size.  If this is larger than the chunk size
9265                  * for our dynamic variable state, reset the chunk size.
9266                  */
9267                 size = P2ROUNDUP(size, sizeof (uint64_t));
9268
9269                 if (size > vstate->dtvs_dynvars.dtds_chunksize)
9270                         vstate->dtvs_dynvars.dtds_chunksize = size;
9271         }
9272 }
9273
9274 static void
9275 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9276 {
9277         int i, oldsvars, osz, nsz, otlocals, ntlocals;
9278         uint_t id;
9279
9280         ASSERT(MUTEX_HELD(&dtrace_lock));
9281         ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9282
9283         for (i = 0; i < dp->dtdo_varlen; i++) {
9284                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9285                 dtrace_statvar_t *svar, ***svarp = NULL;
9286                 size_t dsize = 0;
9287                 uint8_t scope = v->dtdv_scope;
9288                 int *np = NULL;
9289
9290                 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9291                         continue;
9292
9293                 id -= DIF_VAR_OTHER_UBASE;
9294
9295                 switch (scope) {
9296                 case DIFV_SCOPE_THREAD:
9297                         while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9298                                 dtrace_difv_t *tlocals;
9299
9300                                 if ((ntlocals = (otlocals << 1)) == 0)
9301                                         ntlocals = 1;
9302
9303                                 osz = otlocals * sizeof (dtrace_difv_t);
9304                                 nsz = ntlocals * sizeof (dtrace_difv_t);
9305
9306                                 tlocals = kmem_zalloc(nsz, KM_SLEEP);
9307
9308                                 if (osz != 0) {
9309                                         bcopy(vstate->dtvs_tlocals,
9310                                             tlocals, osz);
9311                                         kmem_free(vstate->dtvs_tlocals, osz);
9312                                 }
9313
9314                                 vstate->dtvs_tlocals = tlocals;
9315                                 vstate->dtvs_ntlocals = ntlocals;
9316                         }
9317
9318                         vstate->dtvs_tlocals[id] = *v;
9319                         continue;
9320
9321                 case DIFV_SCOPE_LOCAL:
9322                         np = &vstate->dtvs_nlocals;
9323                         svarp = &vstate->dtvs_locals;
9324
9325                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9326                                 dsize = NCPU * (v->dtdv_type.dtdt_size +
9327                                     sizeof (uint64_t));
9328                         else
9329                                 dsize = NCPU * sizeof (uint64_t);
9330
9331                         break;
9332
9333                 case DIFV_SCOPE_GLOBAL:
9334                         np = &vstate->dtvs_nglobals;
9335                         svarp = &vstate->dtvs_globals;
9336
9337                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9338                                 dsize = v->dtdv_type.dtdt_size +
9339                                     sizeof (uint64_t);
9340
9341                         break;
9342
9343                 default:
9344                         ASSERT(0);
9345                 }
9346
9347                 while (id >= (oldsvars = *np)) {
9348                         dtrace_statvar_t **statics;
9349                         int newsvars, oldsize, newsize;
9350
9351                         if ((newsvars = (oldsvars << 1)) == 0)
9352                                 newsvars = 1;
9353
9354                         oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9355                         newsize = newsvars * sizeof (dtrace_statvar_t *);
9356
9357                         statics = kmem_zalloc(newsize, KM_SLEEP);
9358
9359                         if (oldsize != 0) {
9360                                 bcopy(*svarp, statics, oldsize);
9361                                 kmem_free(*svarp, oldsize);
9362                         }
9363
9364                         *svarp = statics;
9365                         *np = newsvars;
9366                 }
9367
9368                 if ((svar = (*svarp)[id]) == NULL) {
9369                         svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9370                         svar->dtsv_var = *v;
9371
9372                         if ((svar->dtsv_size = dsize) != 0) {
9373                                 svar->dtsv_data = (uint64_t)(uintptr_t)
9374                                     kmem_zalloc(dsize, KM_SLEEP);
9375                         }
9376
9377                         (*svarp)[id] = svar;
9378                 }
9379
9380                 svar->dtsv_refcnt++;
9381         }
9382
9383         dtrace_difo_chunksize(dp, vstate);
9384         dtrace_difo_hold(dp);
9385 }
9386
9387 static dtrace_difo_t *
9388 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9389 {
9390         dtrace_difo_t *new;
9391         size_t sz;
9392
9393         ASSERT(dp->dtdo_buf != NULL);
9394         ASSERT(dp->dtdo_refcnt != 0);
9395
9396         new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9397
9398         ASSERT(dp->dtdo_buf != NULL);
9399         sz = dp->dtdo_len * sizeof (dif_instr_t);
9400         new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9401         bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9402         new->dtdo_len = dp->dtdo_len;
9403
9404         if (dp->dtdo_strtab != NULL) {
9405                 ASSERT(dp->dtdo_strlen != 0);
9406                 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9407                 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9408                 new->dtdo_strlen = dp->dtdo_strlen;
9409         }
9410
9411         if (dp->dtdo_inttab != NULL) {
9412                 ASSERT(dp->dtdo_intlen != 0);
9413                 sz = dp->dtdo_intlen * sizeof (uint64_t);
9414                 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9415                 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9416                 new->dtdo_intlen = dp->dtdo_intlen;
9417         }
9418
9419         if (dp->dtdo_vartab != NULL) {
9420                 ASSERT(dp->dtdo_varlen != 0);
9421                 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9422                 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9423                 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9424                 new->dtdo_varlen = dp->dtdo_varlen;
9425         }
9426
9427         dtrace_difo_init(new, vstate);
9428         return (new);
9429 }
9430
9431 static void
9432 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9433 {
9434         int i;
9435
9436         ASSERT(dp->dtdo_refcnt == 0);
9437
9438         for (i = 0; i < dp->dtdo_varlen; i++) {
9439                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9440                 dtrace_statvar_t *svar, **svarp = NULL;
9441                 uint_t id;
9442                 uint8_t scope = v->dtdv_scope;
9443                 int *np = NULL;
9444
9445                 switch (scope) {
9446                 case DIFV_SCOPE_THREAD:
9447                         continue;
9448
9449                 case DIFV_SCOPE_LOCAL:
9450                         np = &vstate->dtvs_nlocals;
9451                         svarp = vstate->dtvs_locals;
9452                         break;
9453
9454                 case DIFV_SCOPE_GLOBAL:
9455                         np = &vstate->dtvs_nglobals;
9456                         svarp = vstate->dtvs_globals;
9457                         break;
9458
9459                 default:
9460                         ASSERT(0);
9461                 }
9462
9463                 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9464                         continue;
9465
9466                 id -= DIF_VAR_OTHER_UBASE;
9467                 ASSERT(id < *np);
9468
9469                 svar = svarp[id];
9470                 ASSERT(svar != NULL);
9471                 ASSERT(svar->dtsv_refcnt > 0);
9472
9473                 if (--svar->dtsv_refcnt > 0)
9474                         continue;
9475
9476                 if (svar->dtsv_size != 0) {
9477                         ASSERT(svar->dtsv_data != 0);
9478                         kmem_free((void *)(uintptr_t)svar->dtsv_data,
9479                             svar->dtsv_size);
9480                 }
9481
9482                 kmem_free(svar, sizeof (dtrace_statvar_t));
9483                 svarp[id] = NULL;
9484         }
9485
9486         if (dp->dtdo_buf != NULL)
9487                 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9488         if (dp->dtdo_inttab != NULL)
9489                 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9490         if (dp->dtdo_strtab != NULL)
9491                 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9492         if (dp->dtdo_vartab != NULL)
9493                 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9494
9495         kmem_free(dp, sizeof (dtrace_difo_t));
9496 }
9497
9498 static void
9499 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9500 {
9501         int i;
9502
9503         ASSERT(MUTEX_HELD(&dtrace_lock));
9504         ASSERT(dp->dtdo_refcnt != 0);
9505
9506         for (i = 0; i < dp->dtdo_varlen; i++) {
9507                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9508
9509                 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9510                         continue;
9511
9512                 ASSERT(dtrace_vtime_references > 0);
9513                 if (--dtrace_vtime_references == 0)
9514                         dtrace_vtime_disable();
9515         }
9516
9517         if (--dp->dtdo_refcnt == 0)
9518                 dtrace_difo_destroy(dp, vstate);
9519 }
9520
9521 /*
9522  * DTrace Format Functions
9523  */
9524 static uint16_t
9525 dtrace_format_add(dtrace_state_t *state, char *str)
9526 {
9527         char *fmt, **new;
9528         uint16_t ndx, len = strlen(str) + 1;
9529
9530         fmt = kmem_zalloc(len, KM_SLEEP);
9531         bcopy(str, fmt, len);
9532
9533         for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9534                 if (state->dts_formats[ndx] == NULL) {
9535                         state->dts_formats[ndx] = fmt;
9536                         return (ndx + 1);
9537                 }
9538         }
9539
9540         if (state->dts_nformats == USHRT_MAX) {
9541                 /*
9542                  * This is only likely if a denial-of-service attack is being
9543                  * attempted.  As such, it's okay to fail silently here.
9544                  */
9545                 kmem_free(fmt, len);
9546                 return (0);
9547         }
9548
9549         /*
9550          * For simplicity, we always resize the formats array to be exactly the
9551          * number of formats.
9552          */
9553         ndx = state->dts_nformats++;
9554         new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9555
9556         if (state->dts_formats != NULL) {
9557                 ASSERT(ndx != 0);
9558                 bcopy(state->dts_formats, new, ndx * sizeof (char *));
9559                 kmem_free(state->dts_formats, ndx * sizeof (char *));
9560         }
9561
9562         state->dts_formats = new;
9563         state->dts_formats[ndx] = fmt;
9564
9565         return (ndx + 1);
9566 }
9567
9568 static void
9569 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9570 {
9571         char *fmt;
9572
9573         ASSERT(state->dts_formats != NULL);
9574         ASSERT(format <= state->dts_nformats);
9575         ASSERT(state->dts_formats[format - 1] != NULL);
9576
9577         fmt = state->dts_formats[format - 1];
9578         kmem_free(fmt, strlen(fmt) + 1);
9579         state->dts_formats[format - 1] = NULL;
9580 }
9581
9582 static void
9583 dtrace_format_destroy(dtrace_state_t *state)
9584 {
9585         int i;
9586
9587         if (state->dts_nformats == 0) {
9588                 ASSERT(state->dts_formats == NULL);
9589                 return;
9590         }
9591
9592         ASSERT(state->dts_formats != NULL);
9593
9594         for (i = 0; i < state->dts_nformats; i++) {
9595                 char *fmt = state->dts_formats[i];
9596
9597                 if (fmt == NULL)
9598                         continue;
9599
9600                 kmem_free(fmt, strlen(fmt) + 1);
9601         }
9602
9603         kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9604         state->dts_nformats = 0;
9605         state->dts_formats = NULL;
9606 }
9607
9608 /*
9609  * DTrace Predicate Functions
9610  */
9611 static dtrace_predicate_t *
9612 dtrace_predicate_create(dtrace_difo_t *dp)
9613 {
9614         dtrace_predicate_t *pred;
9615
9616         ASSERT(MUTEX_HELD(&dtrace_lock));
9617         ASSERT(dp->dtdo_refcnt != 0);
9618
9619         pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9620         pred->dtp_difo = dp;
9621         pred->dtp_refcnt = 1;
9622
9623         if (!dtrace_difo_cacheable(dp))
9624                 return (pred);
9625
9626         if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9627                 /*
9628                  * This is only theoretically possible -- we have had 2^32
9629                  * cacheable predicates on this machine.  We cannot allow any
9630                  * more predicates to become cacheable:  as unlikely as it is,
9631                  * there may be a thread caching a (now stale) predicate cache
9632                  * ID. (N.B.: the temptation is being successfully resisted to
9633                  * have this cmn_err() "Holy shit -- we executed this code!")
9634                  */
9635                 return (pred);
9636         }
9637
9638         pred->dtp_cacheid = dtrace_predcache_id++;
9639
9640         return (pred);
9641 }
9642
9643 static void
9644 dtrace_predicate_hold(dtrace_predicate_t *pred)
9645 {
9646         ASSERT(MUTEX_HELD(&dtrace_lock));
9647         ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9648         ASSERT(pred->dtp_refcnt > 0);
9649
9650         pred->dtp_refcnt++;
9651 }
9652
9653 static void
9654 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9655 {
9656         dtrace_difo_t *dp = pred->dtp_difo;
9657
9658         ASSERT(MUTEX_HELD(&dtrace_lock));
9659         ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9660         ASSERT(pred->dtp_refcnt > 0);
9661
9662         if (--pred->dtp_refcnt == 0) {
9663                 dtrace_difo_release(pred->dtp_difo, vstate);
9664                 kmem_free(pred, sizeof (dtrace_predicate_t));
9665         }
9666 }
9667
9668 /*
9669  * DTrace Action Description Functions
9670  */
9671 static dtrace_actdesc_t *
9672 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9673     uint64_t uarg, uint64_t arg)
9674 {
9675         dtrace_actdesc_t *act;
9676
9677 #if defined(sun)
9678         ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9679             arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9680 #endif
9681
9682         act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9683         act->dtad_kind = kind;
9684         act->dtad_ntuple = ntuple;
9685         act->dtad_uarg = uarg;
9686         act->dtad_arg = arg;
9687         act->dtad_refcnt = 1;
9688
9689         return (act);
9690 }
9691
9692 static void
9693 dtrace_actdesc_hold(dtrace_actdesc_t *act)
9694 {
9695         ASSERT(act->dtad_refcnt >= 1);
9696         act->dtad_refcnt++;
9697 }
9698
9699 static void
9700 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9701 {
9702         dtrace_actkind_t kind = act->dtad_kind;
9703         dtrace_difo_t *dp;
9704
9705         ASSERT(act->dtad_refcnt >= 1);
9706
9707         if (--act->dtad_refcnt != 0)
9708                 return;
9709
9710         if ((dp = act->dtad_difo) != NULL)
9711                 dtrace_difo_release(dp, vstate);
9712
9713         if (DTRACEACT_ISPRINTFLIKE(kind)) {
9714                 char *str = (char *)(uintptr_t)act->dtad_arg;
9715
9716 #if defined(sun)
9717                 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9718                     (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9719 #endif
9720
9721                 if (str != NULL)
9722                         kmem_free(str, strlen(str) + 1);
9723         }
9724
9725         kmem_free(act, sizeof (dtrace_actdesc_t));
9726 }
9727
9728 /*
9729  * DTrace ECB Functions
9730  */
9731 static dtrace_ecb_t *
9732 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9733 {
9734         dtrace_ecb_t *ecb;
9735         dtrace_epid_t epid;
9736
9737         ASSERT(MUTEX_HELD(&dtrace_lock));
9738
9739         ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9740         ecb->dte_predicate = NULL;
9741         ecb->dte_probe = probe;
9742
9743         /*
9744          * The default size is the size of the default action: recording
9745          * the epid.
9746          */
9747         ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9748         ecb->dte_alignment = sizeof (dtrace_epid_t);
9749
9750         epid = state->dts_epid++;
9751
9752         if (epid - 1 >= state->dts_necbs) {
9753                 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9754                 int necbs = state->dts_necbs << 1;
9755
9756                 ASSERT(epid == state->dts_necbs + 1);
9757
9758                 if (necbs == 0) {
9759                         ASSERT(oecbs == NULL);
9760                         necbs = 1;
9761                 }
9762
9763                 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9764
9765                 if (oecbs != NULL)
9766                         bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9767
9768                 dtrace_membar_producer();
9769                 state->dts_ecbs = ecbs;
9770
9771                 if (oecbs != NULL) {
9772                         /*
9773                          * If this state is active, we must dtrace_sync()
9774                          * before we can free the old dts_ecbs array:  we're
9775                          * coming in hot, and there may be active ring
9776                          * buffer processing (which indexes into the dts_ecbs
9777                          * array) on another CPU.
9778                          */
9779                         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9780                                 dtrace_sync();
9781
9782                         kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9783                 }
9784
9785                 dtrace_membar_producer();
9786                 state->dts_necbs = necbs;
9787         }
9788
9789         ecb->dte_state = state;
9790
9791         ASSERT(state->dts_ecbs[epid - 1] == NULL);
9792         dtrace_membar_producer();
9793         state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9794
9795         return (ecb);
9796 }
9797
9798 static void
9799 dtrace_ecb_enable(dtrace_ecb_t *ecb)
9800 {
9801         dtrace_probe_t *probe = ecb->dte_probe;
9802
9803         ASSERT(MUTEX_HELD(&cpu_lock));
9804         ASSERT(MUTEX_HELD(&dtrace_lock));
9805         ASSERT(ecb->dte_next == NULL);
9806
9807         if (probe == NULL) {
9808                 /*
9809                  * This is the NULL probe -- there's nothing to do.
9810                  */
9811                 return;
9812         }
9813
9814         if (probe->dtpr_ecb == NULL) {
9815                 dtrace_provider_t *prov = probe->dtpr_provider;
9816
9817                 /*
9818                  * We're the first ECB on this probe.
9819                  */
9820                 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9821
9822                 if (ecb->dte_predicate != NULL)
9823                         probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9824
9825                 prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9826                     probe->dtpr_id, probe->dtpr_arg);
9827         } else {
9828                 /*
9829                  * This probe is already active.  Swing the last pointer to
9830                  * point to the new ECB, and issue a dtrace_sync() to assure
9831                  * that all CPUs have seen the change.
9832                  */
9833                 ASSERT(probe->dtpr_ecb_last != NULL);
9834                 probe->dtpr_ecb_last->dte_next = ecb;
9835                 probe->dtpr_ecb_last = ecb;
9836                 probe->dtpr_predcache = 0;
9837
9838                 dtrace_sync();
9839         }
9840 }
9841
9842 static void
9843 dtrace_ecb_resize(dtrace_ecb_t *ecb)
9844 {
9845         uint32_t maxalign = sizeof (dtrace_epid_t);
9846         uint32_t align = sizeof (uint8_t), offs, diff;
9847         dtrace_action_t *act;
9848         int wastuple = 0;
9849         uint32_t aggbase = UINT32_MAX;
9850         dtrace_state_t *state = ecb->dte_state;
9851
9852         /*
9853          * If we record anything, we always record the epid.  (And we always
9854          * record it first.)
9855          */
9856         offs = sizeof (dtrace_epid_t);
9857         ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9858
9859         for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9860                 dtrace_recdesc_t *rec = &act->dta_rec;
9861
9862                 if ((align = rec->dtrd_alignment) > maxalign)
9863                         maxalign = align;
9864
9865                 if (!wastuple && act->dta_intuple) {
9866                         /*
9867                          * This is the first record in a tuple.  Align the
9868                          * offset to be at offset 4 in an 8-byte aligned
9869                          * block.
9870                          */
9871                         diff = offs + sizeof (dtrace_aggid_t);
9872
9873                         if ((diff = (diff & (sizeof (uint64_t) - 1))))
9874                                 offs += sizeof (uint64_t) - diff;
9875
9876                         aggbase = offs - sizeof (dtrace_aggid_t);
9877                         ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
9878                 }
9879
9880                 /*LINTED*/
9881                 if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
9882                         /*
9883                          * The current offset is not properly aligned; align it.
9884                          */
9885                         offs += align - diff;
9886                 }
9887
9888                 rec->dtrd_offset = offs;
9889
9890                 if (offs + rec->dtrd_size > ecb->dte_needed) {
9891                         ecb->dte_needed = offs + rec->dtrd_size;
9892
9893                         if (ecb->dte_needed > state->dts_needed)
9894                                 state->dts_needed = ecb->dte_needed;
9895                 }
9896
9897                 if (DTRACEACT_ISAGG(act->dta_kind)) {
9898                         dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9899                         dtrace_action_t *first = agg->dtag_first, *prev;
9900
9901                         ASSERT(rec->dtrd_size != 0 && first != NULL);
9902                         ASSERT(wastuple);
9903                         ASSERT(aggbase != UINT32_MAX);
9904
9905                         agg->dtag_base = aggbase;
9906
9907                         while ((prev = first->dta_prev) != NULL &&
9908                             DTRACEACT_ISAGG(prev->dta_kind)) {
9909                                 agg = (dtrace_aggregation_t *)prev;
9910                                 first = agg->dtag_first;
9911                         }
9912
9913                         if (prev != NULL) {
9914                                 offs = prev->dta_rec.dtrd_offset +
9915                                     prev->dta_rec.dtrd_size;
9916                         } else {
9917                                 offs = sizeof (dtrace_epid_t);
9918                         }
9919                         wastuple = 0;
9920                 } else {
9921                         if (!act->dta_intuple)
9922                                 ecb->dte_size = offs + rec->dtrd_size;
9923
9924                         offs += rec->dtrd_size;
9925                 }
9926
9927                 wastuple = act->dta_intuple;
9928         }
9929
9930         if ((act = ecb->dte_action) != NULL &&
9931             !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9932             ecb->dte_size == sizeof (dtrace_epid_t)) {
9933                 /*
9934                  * If the size is still sizeof (dtrace_epid_t), then all
9935                  * actions store no data; set the size to 0.
9936                  */
9937                 ecb->dte_alignment = maxalign;
9938                 ecb->dte_size = 0;
9939
9940                 /*
9941                  * If the needed space is still sizeof (dtrace_epid_t), then
9942                  * all actions need no additional space; set the needed
9943                  * size to 0.
9944                  */
9945                 if (ecb->dte_needed == sizeof (dtrace_epid_t))
9946                         ecb->dte_needed = 0;
9947
9948                 return;
9949         }
9950
9951         /*
9952          * Set our alignment, and make sure that the dte_size and dte_needed
9953          * are aligned to the size of an EPID.
9954          */
9955         ecb->dte_alignment = maxalign;
9956         ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
9957             ~(sizeof (dtrace_epid_t) - 1);
9958         ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
9959             ~(sizeof (dtrace_epid_t) - 1);
9960         ASSERT(ecb->dte_size <= ecb->dte_needed);
9961 }
9962
9963 static dtrace_action_t *
9964 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9965 {
9966         dtrace_aggregation_t *agg;
9967         size_t size = sizeof (uint64_t);
9968         int ntuple = desc->dtad_ntuple;
9969         dtrace_action_t *act;
9970         dtrace_recdesc_t *frec;
9971         dtrace_aggid_t aggid;
9972         dtrace_state_t *state = ecb->dte_state;
9973
9974         agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
9975         agg->dtag_ecb = ecb;
9976
9977         ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
9978
9979         switch (desc->dtad_kind) {
9980         case DTRACEAGG_MIN:
9981                 agg->dtag_initial = INT64_MAX;
9982                 agg->dtag_aggregate = dtrace_aggregate_min;
9983                 break;
9984
9985         case DTRACEAGG_MAX:
9986                 agg->dtag_initial = INT64_MIN;
9987                 agg->dtag_aggregate = dtrace_aggregate_max;
9988                 break;
9989
9990         case DTRACEAGG_COUNT:
9991                 agg->dtag_aggregate = dtrace_aggregate_count;
9992                 break;
9993
9994         case DTRACEAGG_QUANTIZE:
9995                 agg->dtag_aggregate = dtrace_aggregate_quantize;
9996                 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
9997                     sizeof (uint64_t);
9998                 break;
9999
10000         case DTRACEAGG_LQUANTIZE: {
10001                 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
10002                 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
10003
10004                 agg->dtag_initial = desc->dtad_arg;
10005                 agg->dtag_aggregate = dtrace_aggregate_lquantize;
10006
10007                 if (step == 0 || levels == 0)
10008                         goto err;
10009
10010                 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
10011                 break;
10012         }
10013
10014         case DTRACEAGG_LLQUANTIZE: {
10015                 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
10016                 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
10017                 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
10018                 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
10019                 int64_t v;
10020
10021                 agg->dtag_initial = desc->dtad_arg;
10022                 agg->dtag_aggregate = dtrace_aggregate_llquantize;
10023
10024                 if (factor < 2 || low >= high || nsteps < factor)
10025                         goto err;
10026
10027                 /*
10028                  * Now check that the number of steps evenly divides a power
10029                  * of the factor.  (This assures both integer bucket size and
10030                  * linearity within each magnitude.)
10031                  */
10032                 for (v = factor; v < nsteps; v *= factor)
10033                         continue;
10034
10035                 if ((v % nsteps) || (nsteps % factor))
10036                         goto err;
10037
10038                 size = (dtrace_aggregate_llquantize_bucket(factor,
10039                     low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
10040                 break;
10041         }
10042
10043         case DTRACEAGG_AVG:
10044                 agg->dtag_aggregate = dtrace_aggregate_avg;
10045                 size = sizeof (uint64_t) * 2;
10046                 break;
10047
10048         case DTRACEAGG_STDDEV:
10049                 agg->dtag_aggregate = dtrace_aggregate_stddev;
10050                 size = sizeof (uint64_t) * 4;
10051                 break;
10052
10053         case DTRACEAGG_SUM:
10054                 agg->dtag_aggregate = dtrace_aggregate_sum;
10055                 break;
10056
10057         default:
10058                 goto err;
10059         }
10060
10061         agg->dtag_action.dta_rec.dtrd_size = size;
10062
10063         if (ntuple == 0)
10064                 goto err;
10065
10066         /*
10067          * We must make sure that we have enough actions for the n-tuple.
10068          */
10069         for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
10070                 if (DTRACEACT_ISAGG(act->dta_kind))
10071                         break;
10072
10073                 if (--ntuple == 0) {
10074                         /*
10075                          * This is the action with which our n-tuple begins.
10076                          */
10077                         agg->dtag_first = act;
10078                         goto success;
10079                 }
10080         }
10081
10082         /*
10083          * This n-tuple is short by ntuple elements.  Return failure.
10084          */
10085         ASSERT(ntuple != 0);
10086 err:
10087         kmem_free(agg, sizeof (dtrace_aggregation_t));
10088         return (NULL);
10089
10090 success:
10091         /*
10092          * If the last action in the tuple has a size of zero, it's actually
10093          * an expression argument for the aggregating action.
10094          */
10095         ASSERT(ecb->dte_action_last != NULL);
10096         act = ecb->dte_action_last;
10097
10098         if (act->dta_kind == DTRACEACT_DIFEXPR) {
10099                 ASSERT(act->dta_difo != NULL);
10100
10101                 if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
10102                         agg->dtag_hasarg = 1;
10103         }
10104
10105         /*
10106          * We need to allocate an id for this aggregation.
10107          */
10108 #if defined(sun)
10109         aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
10110             VM_BESTFIT | VM_SLEEP);
10111 #else
10112         aggid = alloc_unr(state->dts_aggid_arena);
10113 #endif
10114
10115         if (aggid - 1 >= state->dts_naggregations) {
10116                 dtrace_aggregation_t **oaggs = state->dts_aggregations;
10117                 dtrace_aggregation_t **aggs;
10118                 int naggs = state->dts_naggregations << 1;
10119                 int onaggs = state->dts_naggregations;
10120
10121                 ASSERT(aggid == state->dts_naggregations + 1);
10122
10123                 if (naggs == 0) {
10124                         ASSERT(oaggs == NULL);
10125                         naggs = 1;
10126                 }
10127
10128                 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
10129
10130                 if (oaggs != NULL) {
10131                         bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
10132                         kmem_free(oaggs, onaggs * sizeof (*aggs));
10133                 }
10134
10135                 state->dts_aggregations = aggs;
10136                 state->dts_naggregations = naggs;
10137         }
10138
10139         ASSERT(state->dts_aggregations[aggid - 1] == NULL);
10140         state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
10141
10142         frec = &agg->dtag_first->dta_rec;
10143         if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
10144                 frec->dtrd_alignment = sizeof (dtrace_aggid_t);
10145
10146         for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
10147                 ASSERT(!act->dta_intuple);
10148                 act->dta_intuple = 1;
10149         }
10150
10151         return (&agg->dtag_action);
10152 }
10153
10154 static void
10155 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
10156 {
10157         dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10158         dtrace_state_t *state = ecb->dte_state;
10159         dtrace_aggid_t aggid = agg->dtag_id;
10160
10161         ASSERT(DTRACEACT_ISAGG(act->dta_kind));
10162 #if defined(sun)
10163         vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
10164 #else
10165         free_unr(state->dts_aggid_arena, aggid);
10166 #endif
10167
10168         ASSERT(state->dts_aggregations[aggid - 1] == agg);
10169         state->dts_aggregations[aggid - 1] = NULL;
10170
10171         kmem_free(agg, sizeof (dtrace_aggregation_t));
10172 }
10173
10174 static int
10175 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10176 {
10177         dtrace_action_t *action, *last;
10178         dtrace_difo_t *dp = desc->dtad_difo;
10179         uint32_t size = 0, align = sizeof (uint8_t), mask;
10180         uint16_t format = 0;
10181         dtrace_recdesc_t *rec;
10182         dtrace_state_t *state = ecb->dte_state;
10183         dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
10184         uint64_t arg = desc->dtad_arg;
10185
10186         ASSERT(MUTEX_HELD(&dtrace_lock));
10187         ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
10188
10189         if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10190                 /*
10191                  * If this is an aggregating action, there must be neither
10192                  * a speculate nor a commit on the action chain.
10193                  */
10194                 dtrace_action_t *act;
10195
10196                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10197                         if (act->dta_kind == DTRACEACT_COMMIT)
10198                                 return (EINVAL);
10199
10200                         if (act->dta_kind == DTRACEACT_SPECULATE)
10201                                 return (EINVAL);
10202                 }
10203
10204                 action = dtrace_ecb_aggregation_create(ecb, desc);
10205
10206                 if (action == NULL)
10207                         return (EINVAL);
10208         } else {
10209                 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10210                     (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10211                     dp != NULL && dp->dtdo_destructive)) {
10212                         state->dts_destructive = 1;
10213                 }
10214
10215                 switch (desc->dtad_kind) {
10216                 case DTRACEACT_PRINTF:
10217                 case DTRACEACT_PRINTA:
10218                 case DTRACEACT_SYSTEM:
10219                 case DTRACEACT_FREOPEN:
10220                 case DTRACEACT_DIFEXPR:
10221                         /*
10222                          * We know that our arg is a string -- turn it into a
10223                          * format.
10224                          */
10225                         if (arg == 0) {
10226                                 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
10227                                     desc->dtad_kind == DTRACEACT_DIFEXPR);
10228                                 format = 0;
10229                         } else {
10230                                 ASSERT(arg != 0);
10231 #if defined(sun)
10232                                 ASSERT(arg > KERNELBASE);
10233 #endif
10234                                 format = dtrace_format_add(state,
10235                                     (char *)(uintptr_t)arg);
10236                         }
10237
10238                         /*FALLTHROUGH*/
10239                 case DTRACEACT_LIBACT:
10240                 case DTRACEACT_TRACEMEM:
10241                 case DTRACEACT_TRACEMEM_DYNSIZE:
10242                         if (dp == NULL)
10243                                 return (EINVAL);
10244
10245                         if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10246                                 break;
10247
10248                         if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10249                                 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10250                                         return (EINVAL);
10251
10252                                 size = opt[DTRACEOPT_STRSIZE];
10253                         }
10254
10255                         break;
10256
10257                 case DTRACEACT_STACK:
10258                         if ((nframes = arg) == 0) {
10259                                 nframes = opt[DTRACEOPT_STACKFRAMES];
10260                                 ASSERT(nframes > 0);
10261                                 arg = nframes;
10262                         }
10263
10264                         size = nframes * sizeof (pc_t);
10265                         break;
10266
10267                 case DTRACEACT_JSTACK:
10268                         if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10269                                 strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10270
10271                         if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10272                                 nframes = opt[DTRACEOPT_JSTACKFRAMES];
10273
10274                         arg = DTRACE_USTACK_ARG(nframes, strsize);
10275
10276                         /*FALLTHROUGH*/
10277                 case DTRACEACT_USTACK:
10278                         if (desc->dtad_kind != DTRACEACT_JSTACK &&
10279                             (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10280                                 strsize = DTRACE_USTACK_STRSIZE(arg);
10281                                 nframes = opt[DTRACEOPT_USTACKFRAMES];
10282                                 ASSERT(nframes > 0);
10283                                 arg = DTRACE_USTACK_ARG(nframes, strsize);
10284                         }
10285
10286                         /*
10287                          * Save a slot for the pid.
10288                          */
10289                         size = (nframes + 1) * sizeof (uint64_t);
10290                         size += DTRACE_USTACK_STRSIZE(arg);
10291                         size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10292
10293                         break;
10294
10295                 case DTRACEACT_SYM:
10296                 case DTRACEACT_MOD:
10297                         if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10298                             sizeof (uint64_t)) ||
10299                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10300                                 return (EINVAL);
10301                         break;
10302
10303                 case DTRACEACT_USYM:
10304                 case DTRACEACT_UMOD:
10305                 case DTRACEACT_UADDR:
10306                         if (dp == NULL ||
10307                             (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10308                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10309                                 return (EINVAL);
10310
10311                         /*
10312                          * We have a slot for the pid, plus a slot for the
10313                          * argument.  To keep things simple (aligned with
10314                          * bitness-neutral sizing), we store each as a 64-bit
10315                          * quantity.
10316                          */
10317                         size = 2 * sizeof (uint64_t);
10318                         break;
10319
10320                 case DTRACEACT_STOP:
10321                 case DTRACEACT_BREAKPOINT:
10322                 case DTRACEACT_PANIC:
10323                         break;
10324
10325                 case DTRACEACT_CHILL:
10326                 case DTRACEACT_DISCARD:
10327                 case DTRACEACT_RAISE:
10328                         if (dp == NULL)
10329                                 return (EINVAL);
10330                         break;
10331
10332                 case DTRACEACT_EXIT:
10333                         if (dp == NULL ||
10334                             (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10335                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10336                                 return (EINVAL);
10337                         break;
10338
10339                 case DTRACEACT_SPECULATE:
10340                         if (ecb->dte_size > sizeof (dtrace_epid_t))
10341                                 return (EINVAL);
10342
10343                         if (dp == NULL)
10344                                 return (EINVAL);
10345
10346                         state->dts_speculates = 1;
10347                         break;
10348
10349                 case DTRACEACT_PRINTM:
10350                         size = dp->dtdo_rtype.dtdt_size;
10351                         break;
10352
10353                 case DTRACEACT_PRINTT:
10354                         size = dp->dtdo_rtype.dtdt_size;
10355                         break;
10356
10357                 case DTRACEACT_COMMIT: {
10358                         dtrace_action_t *act = ecb->dte_action;
10359
10360                         for (; act != NULL; act = act->dta_next) {
10361                                 if (act->dta_kind == DTRACEACT_COMMIT)
10362                                         return (EINVAL);
10363                         }
10364
10365                         if (dp == NULL)
10366                                 return (EINVAL);
10367                         break;
10368                 }
10369
10370                 default:
10371                         return (EINVAL);
10372                 }
10373
10374                 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10375                         /*
10376                          * If this is a data-storing action or a speculate,
10377                          * we must be sure that there isn't a commit on the
10378                          * action chain.
10379                          */
10380                         dtrace_action_t *act = ecb->dte_action;
10381
10382                         for (; act != NULL; act = act->dta_next) {
10383                                 if (act->dta_kind == DTRACEACT_COMMIT)
10384                                         return (EINVAL);
10385                         }
10386                 }
10387
10388                 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10389                 action->dta_rec.dtrd_size = size;
10390         }
10391
10392         action->dta_refcnt = 1;
10393         rec = &action->dta_rec;
10394         size = rec->dtrd_size;
10395
10396         for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10397                 if (!(size & mask)) {
10398                         align = mask + 1;
10399                         break;
10400                 }
10401         }
10402
10403         action->dta_kind = desc->dtad_kind;
10404
10405         if ((action->dta_difo = dp) != NULL)
10406                 dtrace_difo_hold(dp);
10407
10408         rec->dtrd_action = action->dta_kind;
10409         rec->dtrd_arg = arg;
10410         rec->dtrd_uarg = desc->dtad_uarg;
10411         rec->dtrd_alignment = (uint16_t)align;
10412         rec->dtrd_format = format;
10413
10414         if ((last = ecb->dte_action_last) != NULL) {
10415                 ASSERT(ecb->dte_action != NULL);
10416                 action->dta_prev = last;
10417                 last->dta_next = action;
10418         } else {
10419                 ASSERT(ecb->dte_action == NULL);
10420                 ecb->dte_action = action;
10421         }
10422
10423         ecb->dte_action_last = action;
10424
10425         return (0);
10426 }
10427
10428 static void
10429 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10430 {
10431         dtrace_action_t *act = ecb->dte_action, *next;
10432         dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10433         dtrace_difo_t *dp;
10434         uint16_t format;
10435
10436         if (act != NULL && act->dta_refcnt > 1) {
10437                 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10438                 act->dta_refcnt--;
10439         } else {
10440                 for (; act != NULL; act = next) {
10441                         next = act->dta_next;
10442                         ASSERT(next != NULL || act == ecb->dte_action_last);
10443                         ASSERT(act->dta_refcnt == 1);
10444
10445                         if ((format = act->dta_rec.dtrd_format) != 0)
10446                                 dtrace_format_remove(ecb->dte_state, format);
10447
10448                         if ((dp = act->dta_difo) != NULL)
10449                                 dtrace_difo_release(dp, vstate);
10450
10451                         if (DTRACEACT_ISAGG(act->dta_kind)) {
10452                                 dtrace_ecb_aggregation_destroy(ecb, act);
10453                         } else {
10454                                 kmem_free(act, sizeof (dtrace_action_t));
10455                         }
10456                 }
10457         }
10458
10459         ecb->dte_action = NULL;
10460         ecb->dte_action_last = NULL;
10461         ecb->dte_size = sizeof (dtrace_epid_t);
10462 }
10463
10464 static void
10465 dtrace_ecb_disable(dtrace_ecb_t *ecb)
10466 {
10467         /*
10468          * We disable the ECB by removing it from its probe.
10469          */
10470         dtrace_ecb_t *pecb, *prev = NULL;
10471         dtrace_probe_t *probe = ecb->dte_probe;
10472
10473         ASSERT(MUTEX_HELD(&dtrace_lock));
10474
10475         if (probe == NULL) {
10476                 /*
10477                  * This is the NULL probe; there is nothing to disable.
10478                  */
10479                 return;
10480         }
10481
10482         for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10483                 if (pecb == ecb)
10484                         break;
10485                 prev = pecb;
10486         }
10487
10488         ASSERT(pecb != NULL);
10489
10490         if (prev == NULL) {
10491                 probe->dtpr_ecb = ecb->dte_next;
10492         } else {
10493                 prev->dte_next = ecb->dte_next;
10494         }
10495
10496         if (ecb == probe->dtpr_ecb_last) {
10497                 ASSERT(ecb->dte_next == NULL);
10498                 probe->dtpr_ecb_last = prev;
10499         }
10500
10501         /*
10502          * The ECB has been disconnected from the probe; now sync to assure
10503          * that all CPUs have seen the change before returning.
10504          */
10505         dtrace_sync();
10506
10507         if (probe->dtpr_ecb == NULL) {
10508                 /*
10509                  * That was the last ECB on the probe; clear the predicate
10510                  * cache ID for the probe, disable it and sync one more time
10511                  * to assure that we'll never hit it again.
10512                  */
10513                 dtrace_provider_t *prov = probe->dtpr_provider;
10514
10515                 ASSERT(ecb->dte_next == NULL);
10516                 ASSERT(probe->dtpr_ecb_last == NULL);
10517                 probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10518                 prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10519                     probe->dtpr_id, probe->dtpr_arg);
10520                 dtrace_sync();
10521         } else {
10522                 /*
10523                  * There is at least one ECB remaining on the probe.  If there
10524                  * is _exactly_ one, set the probe's predicate cache ID to be
10525                  * the predicate cache ID of the remaining ECB.
10526                  */
10527                 ASSERT(probe->dtpr_ecb_last != NULL);
10528                 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10529
10530                 if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10531                         dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10532
10533                         ASSERT(probe->dtpr_ecb->dte_next == NULL);
10534
10535                         if (p != NULL)
10536                                 probe->dtpr_predcache = p->dtp_cacheid;
10537                 }
10538
10539                 ecb->dte_next = NULL;
10540         }
10541 }
10542
10543 static void
10544 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10545 {
10546         dtrace_state_t *state = ecb->dte_state;
10547         dtrace_vstate_t *vstate = &state->dts_vstate;
10548         dtrace_predicate_t *pred;
10549         dtrace_epid_t epid = ecb->dte_epid;
10550
10551         ASSERT(MUTEX_HELD(&dtrace_lock));
10552         ASSERT(ecb->dte_next == NULL);
10553         ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10554
10555         if ((pred = ecb->dte_predicate) != NULL)
10556                 dtrace_predicate_release(pred, vstate);
10557
10558         dtrace_ecb_action_remove(ecb);
10559
10560         ASSERT(state->dts_ecbs[epid - 1] == ecb);
10561         state->dts_ecbs[epid - 1] = NULL;
10562
10563         kmem_free(ecb, sizeof (dtrace_ecb_t));
10564 }
10565
10566 static dtrace_ecb_t *
10567 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10568     dtrace_enabling_t *enab)
10569 {
10570         dtrace_ecb_t *ecb;
10571         dtrace_predicate_t *pred;
10572         dtrace_actdesc_t *act;
10573         dtrace_provider_t *prov;
10574         dtrace_ecbdesc_t *desc = enab->dten_current;
10575
10576         ASSERT(MUTEX_HELD(&dtrace_lock));
10577         ASSERT(state != NULL);
10578
10579         ecb = dtrace_ecb_add(state, probe);
10580         ecb->dte_uarg = desc->dted_uarg;
10581
10582         if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10583                 dtrace_predicate_hold(pred);
10584                 ecb->dte_predicate = pred;
10585         }
10586
10587         if (probe != NULL) {
10588                 /*
10589                  * If the provider shows more leg than the consumer is old
10590                  * enough to see, we need to enable the appropriate implicit
10591                  * predicate bits to prevent the ecb from activating at
10592                  * revealing times.
10593                  *
10594                  * Providers specifying DTRACE_PRIV_USER at register time
10595                  * are stating that they need the /proc-style privilege
10596                  * model to be enforced, and this is what DTRACE_COND_OWNER
10597                  * and DTRACE_COND_ZONEOWNER will then do at probe time.
10598                  */
10599                 prov = probe->dtpr_provider;
10600                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10601                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10602                         ecb->dte_cond |= DTRACE_COND_OWNER;
10603
10604                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10605                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10606                         ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10607
10608                 /*
10609                  * If the provider shows us kernel innards and the user
10610                  * is lacking sufficient privilege, enable the
10611                  * DTRACE_COND_USERMODE implicit predicate.
10612                  */
10613                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10614                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10615                         ecb->dte_cond |= DTRACE_COND_USERMODE;
10616         }
10617
10618         if (dtrace_ecb_create_cache != NULL) {
10619                 /*
10620                  * If we have a cached ecb, we'll use its action list instead
10621                  * of creating our own (saving both time and space).
10622                  */
10623                 dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10624                 dtrace_action_t *act = cached->dte_action;
10625
10626                 if (act != NULL) {
10627                         ASSERT(act->dta_refcnt > 0);
10628                         act->dta_refcnt++;
10629                         ecb->dte_action = act;
10630                         ecb->dte_action_last = cached->dte_action_last;
10631                         ecb->dte_needed = cached->dte_needed;
10632                         ecb->dte_size = cached->dte_size;
10633                         ecb->dte_alignment = cached->dte_alignment;
10634                 }
10635
10636                 return (ecb);
10637         }
10638
10639         for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10640                 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10641                         dtrace_ecb_destroy(ecb);
10642                         return (NULL);
10643                 }
10644         }
10645
10646         dtrace_ecb_resize(ecb);
10647
10648         return (dtrace_ecb_create_cache = ecb);
10649 }
10650
10651 static int
10652 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10653 {
10654         dtrace_ecb_t *ecb;
10655         dtrace_enabling_t *enab = arg;
10656         dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10657
10658         ASSERT(state != NULL);
10659
10660         if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10661                 /*
10662                  * This probe was created in a generation for which this
10663                  * enabling has previously created ECBs; we don't want to
10664                  * enable it again, so just kick out.
10665                  */
10666                 return (DTRACE_MATCH_NEXT);
10667         }
10668
10669         if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10670                 return (DTRACE_MATCH_DONE);
10671
10672         dtrace_ecb_enable(ecb);
10673         return (DTRACE_MATCH_NEXT);
10674 }
10675
10676 static dtrace_ecb_t *
10677 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10678 {
10679         dtrace_ecb_t *ecb;
10680
10681         ASSERT(MUTEX_HELD(&dtrace_lock));
10682
10683         if (id == 0 || id > state->dts_necbs)
10684                 return (NULL);
10685
10686         ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10687         ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10688
10689         return (state->dts_ecbs[id - 1]);
10690 }
10691
10692 static dtrace_aggregation_t *
10693 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10694 {
10695         dtrace_aggregation_t *agg;
10696
10697         ASSERT(MUTEX_HELD(&dtrace_lock));
10698
10699         if (id == 0 || id > state->dts_naggregations)
10700                 return (NULL);
10701
10702         ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10703         ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10704             agg->dtag_id == id);
10705
10706         return (state->dts_aggregations[id - 1]);
10707 }
10708
10709 /*
10710  * DTrace Buffer Functions
10711  *
10712  * The following functions manipulate DTrace buffers.  Most of these functions
10713  * are called in the context of establishing or processing consumer state;
10714  * exceptions are explicitly noted.
10715  */
10716
10717 /*
10718  * Note:  called from cross call context.  This function switches the two
10719  * buffers on a given CPU.  The atomicity of this operation is assured by
10720  * disabling interrupts while the actual switch takes place; the disabling of
10721  * interrupts serializes the execution with any execution of dtrace_probe() on
10722  * the same CPU.
10723  */
10724 static void
10725 dtrace_buffer_switch(dtrace_buffer_t *buf)
10726 {
10727         caddr_t tomax = buf->dtb_tomax;
10728         caddr_t xamot = buf->dtb_xamot;
10729         dtrace_icookie_t cookie;
10730         hrtime_t now = dtrace_gethrtime();
10731
10732         ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10733         ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10734
10735         cookie = dtrace_interrupt_disable();
10736         buf->dtb_tomax = xamot;
10737         buf->dtb_xamot = tomax;
10738         buf->dtb_xamot_drops = buf->dtb_drops;
10739         buf->dtb_xamot_offset = buf->dtb_offset;
10740         buf->dtb_xamot_errors = buf->dtb_errors;
10741         buf->dtb_xamot_flags = buf->dtb_flags;
10742         buf->dtb_offset = 0;
10743         buf->dtb_drops = 0;
10744         buf->dtb_errors = 0;
10745         buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10746         buf->dtb_interval = now - buf->dtb_switched;
10747         buf->dtb_switched = now;
10748         dtrace_interrupt_enable(cookie);
10749 }
10750
10751 /*
10752  * Note:  called from cross call context.  This function activates a buffer
10753  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10754  * is guaranteed by the disabling of interrupts.
10755  */
10756 static void
10757 dtrace_buffer_activate(dtrace_state_t *state)
10758 {
10759         dtrace_buffer_t *buf;
10760         dtrace_icookie_t cookie = dtrace_interrupt_disable();
10761
10762         buf = &state->dts_buffer[curcpu];
10763
10764         if (buf->dtb_tomax != NULL) {
10765                 /*
10766                  * We might like to assert that the buffer is marked inactive,
10767                  * but this isn't necessarily true:  the buffer for the CPU
10768                  * that processes the BEGIN probe has its buffer activated
10769                  * manually.  In this case, we take the (harmless) action
10770                  * re-clearing the bit INACTIVE bit.
10771                  */
10772                 buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10773         }
10774
10775         dtrace_interrupt_enable(cookie);
10776 }
10777
10778 static int
10779 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10780     processorid_t cpu)
10781 {
10782 #if defined(sun)
10783         cpu_t *cp;
10784 #endif
10785         dtrace_buffer_t *buf;
10786
10787 #if defined(sun)
10788         ASSERT(MUTEX_HELD(&cpu_lock));
10789         ASSERT(MUTEX_HELD(&dtrace_lock));
10790
10791         if (size > dtrace_nonroot_maxsize &&
10792             !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10793                 return (EFBIG);
10794
10795         cp = cpu_list;
10796
10797         do {
10798                 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10799                         continue;
10800
10801                 buf = &bufs[cp->cpu_id];
10802
10803                 /*
10804                  * If there is already a buffer allocated for this CPU, it
10805                  * is only possible that this is a DR event.  In this case,
10806                  */
10807                 if (buf->dtb_tomax != NULL) {
10808                         ASSERT(buf->dtb_size == size);
10809                         continue;
10810                 }
10811
10812                 ASSERT(buf->dtb_xamot == NULL);
10813
10814                 if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10815                         goto err;
10816
10817                 buf->dtb_size = size;
10818                 buf->dtb_flags = flags;
10819                 buf->dtb_offset = 0;
10820                 buf->dtb_drops = 0;
10821
10822                 if (flags & DTRACEBUF_NOSWITCH)
10823                         continue;
10824
10825                 if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10826                         goto err;
10827         } while ((cp = cp->cpu_next) != cpu_list);
10828
10829         return (0);
10830
10831 err:
10832         cp = cpu_list;
10833
10834         do {
10835                 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10836                         continue;
10837
10838                 buf = &bufs[cp->cpu_id];
10839
10840                 if (buf->dtb_xamot != NULL) {
10841                         ASSERT(buf->dtb_tomax != NULL);
10842                         ASSERT(buf->dtb_size == size);
10843                         kmem_free(buf->dtb_xamot, size);
10844                 }
10845
10846                 if (buf->dtb_tomax != NULL) {
10847                         ASSERT(buf->dtb_size == size);
10848                         kmem_free(buf->dtb_tomax, size);
10849                 }
10850
10851                 buf->dtb_tomax = NULL;
10852                 buf->dtb_xamot = NULL;
10853                 buf->dtb_size = 0;
10854         } while ((cp = cp->cpu_next) != cpu_list);
10855
10856         return (ENOMEM);
10857 #else
10858         int i;
10859
10860 #if defined(__amd64__)
10861         /*
10862          * FreeBSD isn't good at limiting the amount of memory we
10863          * ask to malloc, so let's place a limit here before trying
10864          * to do something that might well end in tears at bedtime.
10865          */
10866         if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
10867                 return(ENOMEM);
10868 #endif
10869
10870         ASSERT(MUTEX_HELD(&dtrace_lock));
10871         CPU_FOREACH(i) {
10872                 if (cpu != DTRACE_CPUALL && cpu != i)
10873                         continue;
10874
10875                 buf = &bufs[i];
10876
10877                 /*
10878                  * If there is already a buffer allocated for this CPU, it
10879                  * is only possible that this is a DR event.  In this case,
10880                  * the buffer size must match our specified size.
10881                  */
10882                 if (buf->dtb_tomax != NULL) {
10883                         ASSERT(buf->dtb_size == size);
10884                         continue;
10885                 }
10886
10887                 ASSERT(buf->dtb_xamot == NULL);
10888
10889                 if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10890                         goto err;
10891
10892                 buf->dtb_size = size;
10893                 buf->dtb_flags = flags;
10894                 buf->dtb_offset = 0;
10895                 buf->dtb_drops = 0;
10896
10897                 if (flags & DTRACEBUF_NOSWITCH)
10898                         continue;
10899
10900                 if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10901                         goto err;
10902         }
10903
10904         return (0);
10905
10906 err:
10907         /*
10908          * Error allocating memory, so free the buffers that were
10909          * allocated before the failed allocation.
10910          */
10911         CPU_FOREACH(i) {
10912                 if (cpu != DTRACE_CPUALL && cpu != i)
10913                         continue;
10914
10915                 buf = &bufs[i];
10916
10917                 if (buf->dtb_xamot != NULL) {
10918                         ASSERT(buf->dtb_tomax != NULL);
10919                         ASSERT(buf->dtb_size == size);
10920                         kmem_free(buf->dtb_xamot, size);
10921                 }
10922
10923                 if (buf->dtb_tomax != NULL) {
10924                         ASSERT(buf->dtb_size == size);
10925                         kmem_free(buf->dtb_tomax, size);
10926                 }
10927
10928                 buf->dtb_tomax = NULL;
10929                 buf->dtb_xamot = NULL;
10930                 buf->dtb_size = 0;
10931
10932         }
10933
10934         return (ENOMEM);
10935 #endif
10936 }
10937
10938 /*
10939  * Note:  called from probe context.  This function just increments the drop
10940  * count on a buffer.  It has been made a function to allow for the
10941  * possibility of understanding the source of mysterious drop counts.  (A
10942  * problem for which one may be particularly disappointed that DTrace cannot
10943  * be used to understand DTrace.)
10944  */
10945 static void
10946 dtrace_buffer_drop(dtrace_buffer_t *buf)
10947 {
10948         buf->dtb_drops++;
10949 }
10950
10951 /*
10952  * Note:  called from probe context.  This function is called to reserve space
10953  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10954  * mstate.  Returns the new offset in the buffer, or a negative value if an
10955  * error has occurred.
10956  */
10957 static intptr_t
10958 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10959     dtrace_state_t *state, dtrace_mstate_t *mstate)
10960 {
10961         intptr_t offs = buf->dtb_offset, soffs;
10962         intptr_t woffs;
10963         caddr_t tomax;
10964         size_t total;
10965
10966         if (buf->dtb_flags & DTRACEBUF_INACTIVE)
10967                 return (-1);
10968
10969         if ((tomax = buf->dtb_tomax) == NULL) {
10970                 dtrace_buffer_drop(buf);
10971                 return (-1);
10972         }
10973
10974         if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
10975                 while (offs & (align - 1)) {
10976                         /*
10977                          * Assert that our alignment is off by a number which
10978                          * is itself sizeof (uint32_t) aligned.
10979                          */
10980                         ASSERT(!((align - (offs & (align - 1))) &
10981                             (sizeof (uint32_t) - 1)));
10982                         DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10983                         offs += sizeof (uint32_t);
10984                 }
10985
10986                 if ((soffs = offs + needed) > buf->dtb_size) {
10987                         dtrace_buffer_drop(buf);
10988                         return (-1);
10989                 }
10990
10991                 if (mstate == NULL)
10992                         return (offs);
10993
10994                 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
10995                 mstate->dtms_scratch_size = buf->dtb_size - soffs;
10996                 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10997
10998                 return (offs);
10999         }
11000
11001         if (buf->dtb_flags & DTRACEBUF_FILL) {
11002                 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
11003                     (buf->dtb_flags & DTRACEBUF_FULL))
11004                         return (-1);
11005                 goto out;
11006         }
11007
11008         total = needed + (offs & (align - 1));
11009
11010         /*
11011          * For a ring buffer, life is quite a bit more complicated.  Before
11012          * we can store any padding, we need to adjust our wrapping offset.
11013          * (If we've never before wrapped or we're not about to, no adjustment
11014          * is required.)
11015          */
11016         if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
11017             offs + total > buf->dtb_size) {
11018                 woffs = buf->dtb_xamot_offset;
11019
11020                 if (offs + total > buf->dtb_size) {
11021                         /*
11022                          * We can't fit in the end of the buffer.  First, a
11023                          * sanity check that we can fit in the buffer at all.
11024                          */
11025                         if (total > buf->dtb_size) {
11026                                 dtrace_buffer_drop(buf);
11027                                 return (-1);
11028                         }
11029
11030                         /*
11031                          * We're going to be storing at the top of the buffer,
11032                          * so now we need to deal with the wrapped offset.  We
11033                          * only reset our wrapped offset to 0 if it is
11034                          * currently greater than the current offset.  If it
11035                          * is less than the current offset, it is because a
11036                          * previous allocation induced a wrap -- but the
11037                          * allocation didn't subsequently take the space due
11038                          * to an error or false predicate evaluation.  In this
11039                          * case, we'll just leave the wrapped offset alone: if
11040                          * the wrapped offset hasn't been advanced far enough
11041                          * for this allocation, it will be adjusted in the
11042                          * lower loop.
11043                          */
11044                         if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
11045                                 if (woffs >= offs)
11046                                         woffs = 0;
11047                         } else {
11048                                 woffs = 0;
11049                         }
11050
11051                         /*
11052                          * Now we know that we're going to be storing to the
11053                          * top of the buffer and that there is room for us
11054                          * there.  We need to clear the buffer from the current
11055                          * offset to the end (there may be old gunk there).
11056                          */
11057                         while (offs < buf->dtb_size)
11058                                 tomax[offs++] = 0;
11059
11060                         /*
11061                          * We need to set our offset to zero.  And because we
11062                          * are wrapping, we need to set the bit indicating as
11063                          * much.  We can also adjust our needed space back
11064                          * down to the space required by the ECB -- we know
11065                          * that the top of the buffer is aligned.
11066                          */
11067                         offs = 0;
11068                         total = needed;
11069                         buf->dtb_flags |= DTRACEBUF_WRAPPED;
11070                 } else {
11071                         /*
11072                          * There is room for us in the buffer, so we simply
11073                          * need to check the wrapped offset.
11074                          */
11075                         if (woffs < offs) {
11076                                 /*
11077                                  * The wrapped offset is less than the offset.
11078                                  * This can happen if we allocated buffer space
11079                                  * that induced a wrap, but then we didn't
11080                                  * subsequently take the space due to an error
11081                                  * or false predicate evaluation.  This is
11082                                  * okay; we know that _this_ allocation isn't
11083                                  * going to induce a wrap.  We still can't
11084                                  * reset the wrapped offset to be zero,
11085                                  * however: the space may have been trashed in
11086                                  * the previous failed probe attempt.  But at
11087                                  * least the wrapped offset doesn't need to
11088                                  * be adjusted at all...
11089                                  */
11090                                 goto out;
11091                         }
11092                 }
11093
11094                 while (offs + total > woffs) {
11095                         dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
11096                         size_t size;
11097
11098                         if (epid == DTRACE_EPIDNONE) {
11099                                 size = sizeof (uint32_t);
11100                         } else {
11101                                 ASSERT(epid <= state->dts_necbs);
11102                                 ASSERT(state->dts_ecbs[epid - 1] != NULL);
11103
11104                                 size = state->dts_ecbs[epid - 1]->dte_size;
11105                         }
11106
11107                         ASSERT(woffs + size <= buf->dtb_size);
11108                         ASSERT(size != 0);
11109
11110                         if (woffs + size == buf->dtb_size) {
11111                                 /*
11112                                  * We've reached the end of the buffer; we want
11113                                  * to set the wrapped offset to 0 and break
11114                                  * out.  However, if the offs is 0, then we're
11115                                  * in a strange edge-condition:  the amount of
11116                                  * space that we want to reserve plus the size
11117                                  * of the record that we're overwriting is
11118                                  * greater than the size of the buffer.  This
11119                                  * is problematic because if we reserve the
11120                                  * space but subsequently don't consume it (due
11121                                  * to a failed predicate or error) the wrapped
11122                                  * offset will be 0 -- yet the EPID at offset 0
11123                                  * will not be committed.  This situation is
11124                                  * relatively easy to deal with:  if we're in
11125                                  * this case, the buffer is indistinguishable
11126                                  * from one that hasn't wrapped; we need only
11127                                  * finish the job by clearing the wrapped bit,
11128                                  * explicitly setting the offset to be 0, and
11129                                  * zero'ing out the old data in the buffer.
11130                                  */
11131                                 if (offs == 0) {
11132                                         buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
11133                                         buf->dtb_offset = 0;
11134                                         woffs = total;
11135
11136                                         while (woffs < buf->dtb_size)
11137                                                 tomax[woffs++] = 0;
11138                                 }
11139
11140                                 woffs = 0;
11141                                 break;
11142                         }
11143
11144                         woffs += size;
11145                 }
11146
11147                 /*
11148                  * We have a wrapped offset.  It may be that the wrapped offset
11149                  * has become zero -- that's okay.
11150                  */
11151                 buf->dtb_xamot_offset = woffs;
11152         }
11153
11154 out:
11155         /*
11156          * Now we can plow the buffer with any necessary padding.
11157          */
11158         while (offs & (align - 1)) {
11159                 /*
11160                  * Assert that our alignment is off by a number which
11161                  * is itself sizeof (uint32_t) aligned.
11162                  */
11163                 ASSERT(!((align - (offs & (align - 1))) &
11164                     (sizeof (uint32_t) - 1)));
11165                 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11166                 offs += sizeof (uint32_t);
11167         }
11168
11169         if (buf->dtb_flags & DTRACEBUF_FILL) {
11170                 if (offs + needed > buf->dtb_size - state->dts_reserve) {
11171                         buf->dtb_flags |= DTRACEBUF_FULL;
11172                         return (-1);
11173                 }
11174         }
11175
11176         if (mstate == NULL)
11177                 return (offs);
11178
11179         /*
11180          * For ring buffers and fill buffers, the scratch space is always
11181          * the inactive buffer.
11182          */
11183         mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
11184         mstate->dtms_scratch_size = buf->dtb_size;
11185         mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11186
11187         return (offs);
11188 }
11189
11190 static void
11191 dtrace_buffer_polish(dtrace_buffer_t *buf)
11192 {
11193         ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11194         ASSERT(MUTEX_HELD(&dtrace_lock));
11195
11196         if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11197                 return;
11198
11199         /*
11200          * We need to polish the ring buffer.  There are three cases:
11201          *
11202          * - The first (and presumably most common) is that there is no gap
11203          *   between the buffer offset and the wrapped offset.  In this case,
11204          *   there is nothing in the buffer that isn't valid data; we can
11205          *   mark the buffer as polished and return.
11206          *
11207          * - The second (less common than the first but still more common
11208          *   than the third) is that there is a gap between the buffer offset
11209          *   and the wrapped offset, and the wrapped offset is larger than the
11210          *   buffer offset.  This can happen because of an alignment issue, or
11211          *   can happen because of a call to dtrace_buffer_reserve() that
11212          *   didn't subsequently consume the buffer space.  In this case,
11213          *   we need to zero the data from the buffer offset to the wrapped
11214          *   offset.
11215          *
11216          * - The third (and least common) is that there is a gap between the
11217          *   buffer offset and the wrapped offset, but the wrapped offset is
11218          *   _less_ than the buffer offset.  This can only happen because a
11219          *   call to dtrace_buffer_reserve() induced a wrap, but the space
11220          *   was not subsequently consumed.  In this case, we need to zero the
11221          *   space from the offset to the end of the buffer _and_ from the
11222          *   top of the buffer to the wrapped offset.
11223          */
11224         if (buf->dtb_offset < buf->dtb_xamot_offset) {
11225                 bzero(buf->dtb_tomax + buf->dtb_offset,
11226                     buf->dtb_xamot_offset - buf->dtb_offset);
11227         }
11228
11229         if (buf->dtb_offset > buf->dtb_xamot_offset) {
11230                 bzero(buf->dtb_tomax + buf->dtb_offset,
11231                     buf->dtb_size - buf->dtb_offset);
11232                 bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11233         }
11234 }
11235
11236 /*
11237  * This routine determines if data generated at the specified time has likely
11238  * been entirely consumed at user-level.  This routine is called to determine
11239  * if an ECB on a defunct probe (but for an active enabling) can be safely
11240  * disabled and destroyed.
11241  */
11242 static int
11243 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
11244 {
11245         int i;
11246
11247         for (i = 0; i < NCPU; i++) {
11248                 dtrace_buffer_t *buf = &bufs[i];
11249
11250                 if (buf->dtb_size == 0)
11251                         continue;
11252
11253                 if (buf->dtb_flags & DTRACEBUF_RING)
11254                         return (0);
11255
11256                 if (!buf->dtb_switched && buf->dtb_offset != 0)
11257                         return (0);
11258
11259                 if (buf->dtb_switched - buf->dtb_interval < when)
11260                         return (0);
11261         }
11262
11263         return (1);
11264 }
11265
11266 static void
11267 dtrace_buffer_free(dtrace_buffer_t *bufs)
11268 {
11269         int i;
11270
11271         for (i = 0; i < NCPU; i++) {
11272                 dtrace_buffer_t *buf = &bufs[i];
11273
11274                 if (buf->dtb_tomax == NULL) {
11275                         ASSERT(buf->dtb_xamot == NULL);
11276                         ASSERT(buf->dtb_size == 0);
11277                         continue;
11278                 }
11279
11280                 if (buf->dtb_xamot != NULL) {
11281                         ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11282                         kmem_free(buf->dtb_xamot, buf->dtb_size);
11283                 }
11284
11285                 kmem_free(buf->dtb_tomax, buf->dtb_size);
11286                 buf->dtb_size = 0;
11287                 buf->dtb_tomax = NULL;
11288                 buf->dtb_xamot = NULL;
11289         }
11290 }
11291
11292 /*
11293  * DTrace Enabling Functions
11294  */
11295 static dtrace_enabling_t *
11296 dtrace_enabling_create(dtrace_vstate_t *vstate)
11297 {
11298         dtrace_enabling_t *enab;
11299
11300         enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11301         enab->dten_vstate = vstate;
11302
11303         return (enab);
11304 }
11305
11306 static void
11307 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11308 {
11309         dtrace_ecbdesc_t **ndesc;
11310         size_t osize, nsize;
11311
11312         /*
11313          * We can't add to enablings after we've enabled them, or after we've
11314          * retained them.
11315          */
11316         ASSERT(enab->dten_probegen == 0);
11317         ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11318
11319         if (enab->dten_ndesc < enab->dten_maxdesc) {
11320                 enab->dten_desc[enab->dten_ndesc++] = ecb;
11321                 return;
11322         }
11323
11324         osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11325
11326         if (enab->dten_maxdesc == 0) {
11327                 enab->dten_maxdesc = 1;
11328         } else {
11329                 enab->dten_maxdesc <<= 1;
11330         }
11331
11332         ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11333
11334         nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11335         ndesc = kmem_zalloc(nsize, KM_SLEEP);
11336         bcopy(enab->dten_desc, ndesc, osize);
11337         if (enab->dten_desc != NULL)
11338                 kmem_free(enab->dten_desc, osize);
11339
11340         enab->dten_desc = ndesc;
11341         enab->dten_desc[enab->dten_ndesc++] = ecb;
11342 }
11343
11344 static void
11345 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11346     dtrace_probedesc_t *pd)
11347 {
11348         dtrace_ecbdesc_t *new;
11349         dtrace_predicate_t *pred;
11350         dtrace_actdesc_t *act;
11351
11352         /*
11353          * We're going to create a new ECB description that matches the
11354          * specified ECB in every way, but has the specified probe description.
11355          */
11356         new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11357
11358         if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11359                 dtrace_predicate_hold(pred);
11360
11361         for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11362                 dtrace_actdesc_hold(act);
11363
11364         new->dted_action = ecb->dted_action;
11365         new->dted_pred = ecb->dted_pred;
11366         new->dted_probe = *pd;
11367         new->dted_uarg = ecb->dted_uarg;
11368
11369         dtrace_enabling_add(enab, new);
11370 }
11371
11372 static void
11373 dtrace_enabling_dump(dtrace_enabling_t *enab)
11374 {
11375         int i;
11376
11377         for (i = 0; i < enab->dten_ndesc; i++) {
11378                 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11379
11380                 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11381                     desc->dtpd_provider, desc->dtpd_mod,
11382                     desc->dtpd_func, desc->dtpd_name);
11383         }
11384 }
11385
11386 static void
11387 dtrace_enabling_destroy(dtrace_enabling_t *enab)
11388 {
11389         int i;
11390         dtrace_ecbdesc_t *ep;
11391         dtrace_vstate_t *vstate = enab->dten_vstate;
11392
11393         ASSERT(MUTEX_HELD(&dtrace_lock));
11394
11395         for (i = 0; i < enab->dten_ndesc; i++) {
11396                 dtrace_actdesc_t *act, *next;
11397                 dtrace_predicate_t *pred;
11398
11399                 ep = enab->dten_desc[i];
11400
11401                 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11402                         dtrace_predicate_release(pred, vstate);
11403
11404                 for (act = ep->dted_action; act != NULL; act = next) {
11405                         next = act->dtad_next;
11406                         dtrace_actdesc_release(act, vstate);
11407                 }
11408
11409                 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11410         }
11411
11412         if (enab->dten_desc != NULL)
11413                 kmem_free(enab->dten_desc,
11414                     enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11415
11416         /*
11417          * If this was a retained enabling, decrement the dts_nretained count
11418          * and take it off of the dtrace_retained list.
11419          */
11420         if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11421             dtrace_retained == enab) {
11422                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11423                 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11424                 enab->dten_vstate->dtvs_state->dts_nretained--;
11425         }
11426
11427         if (enab->dten_prev == NULL) {
11428                 if (dtrace_retained == enab) {
11429                         dtrace_retained = enab->dten_next;
11430
11431                         if (dtrace_retained != NULL)
11432                                 dtrace_retained->dten_prev = NULL;
11433                 }
11434         } else {
11435                 ASSERT(enab != dtrace_retained);
11436                 ASSERT(dtrace_retained != NULL);
11437                 enab->dten_prev->dten_next = enab->dten_next;
11438         }
11439
11440         if (enab->dten_next != NULL) {
11441                 ASSERT(dtrace_retained != NULL);
11442                 enab->dten_next->dten_prev = enab->dten_prev;
11443         }
11444
11445         kmem_free(enab, sizeof (dtrace_enabling_t));
11446 }
11447
11448 static int
11449 dtrace_enabling_retain(dtrace_enabling_t *enab)
11450 {
11451         dtrace_state_t *state;
11452
11453         ASSERT(MUTEX_HELD(&dtrace_lock));
11454         ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11455         ASSERT(enab->dten_vstate != NULL);
11456
11457         state = enab->dten_vstate->dtvs_state;
11458         ASSERT(state != NULL);
11459
11460         /*
11461          * We only allow each state to retain dtrace_retain_max enablings.
11462          */
11463         if (state->dts_nretained >= dtrace_retain_max)
11464                 return (ENOSPC);
11465
11466         state->dts_nretained++;
11467
11468         if (dtrace_retained == NULL) {
11469                 dtrace_retained = enab;
11470                 return (0);
11471         }
11472
11473         enab->dten_next = dtrace_retained;
11474         dtrace_retained->dten_prev = enab;
11475         dtrace_retained = enab;
11476
11477         return (0);
11478 }
11479
11480 static int
11481 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11482     dtrace_probedesc_t *create)
11483 {
11484         dtrace_enabling_t *new, *enab;
11485         int found = 0, err = ENOENT;
11486
11487         ASSERT(MUTEX_HELD(&dtrace_lock));
11488         ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11489         ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11490         ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11491         ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11492
11493         new = dtrace_enabling_create(&state->dts_vstate);
11494
11495         /*
11496          * Iterate over all retained enablings, looking for enablings that
11497          * match the specified state.
11498          */
11499         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11500                 int i;
11501
11502                 /*
11503                  * dtvs_state can only be NULL for helper enablings -- and
11504                  * helper enablings can't be retained.
11505                  */
11506                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11507
11508                 if (enab->dten_vstate->dtvs_state != state)
11509                         continue;
11510
11511                 /*
11512                  * Now iterate over each probe description; we're looking for
11513                  * an exact match to the specified probe description.
11514                  */
11515                 for (i = 0; i < enab->dten_ndesc; i++) {
11516                         dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11517                         dtrace_probedesc_t *pd = &ep->dted_probe;
11518
11519                         if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11520                                 continue;
11521
11522                         if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11523                                 continue;
11524
11525                         if (strcmp(pd->dtpd_func, match->dtpd_func))
11526                                 continue;
11527
11528                         if (strcmp(pd->dtpd_name, match->dtpd_name))
11529                                 continue;
11530
11531                         /*
11532                          * We have a winning probe!  Add it to our growing
11533                          * enabling.
11534                          */
11535                         found = 1;
11536                         dtrace_enabling_addlike(new, ep, create);
11537                 }
11538         }
11539
11540         if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11541                 dtrace_enabling_destroy(new);
11542                 return (err);
11543         }
11544
11545         return (0);
11546 }
11547
11548 static void
11549 dtrace_enabling_retract(dtrace_state_t *state)
11550 {
11551         dtrace_enabling_t *enab, *next;
11552
11553         ASSERT(MUTEX_HELD(&dtrace_lock));
11554
11555         /*
11556          * Iterate over all retained enablings, destroy the enablings retained
11557          * for the specified state.
11558          */
11559         for (enab = dtrace_retained; enab != NULL; enab = next) {
11560                 next = enab->dten_next;
11561
11562                 /*
11563                  * dtvs_state can only be NULL for helper enablings -- and
11564                  * helper enablings can't be retained.
11565                  */
11566                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11567
11568                 if (enab->dten_vstate->dtvs_state == state) {
11569                         ASSERT(state->dts_nretained > 0);
11570                         dtrace_enabling_destroy(enab);
11571                 }
11572         }
11573
11574         ASSERT(state->dts_nretained == 0);
11575 }
11576
11577 static int
11578 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11579 {
11580         int i = 0;
11581         int matched = 0;
11582
11583         ASSERT(MUTEX_HELD(&cpu_lock));
11584         ASSERT(MUTEX_HELD(&dtrace_lock));
11585
11586         for (i = 0; i < enab->dten_ndesc; i++) {
11587                 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11588
11589                 enab->dten_current = ep;
11590                 enab->dten_error = 0;
11591
11592                 matched += dtrace_probe_enable(&ep->dted_probe, enab);
11593
11594                 if (enab->dten_error != 0) {
11595                         /*
11596                          * If we get an error half-way through enabling the
11597                          * probes, we kick out -- perhaps with some number of
11598                          * them enabled.  Leaving enabled probes enabled may
11599                          * be slightly confusing for user-level, but we expect
11600                          * that no one will attempt to actually drive on in
11601                          * the face of such errors.  If this is an anonymous
11602                          * enabling (indicated with a NULL nmatched pointer),
11603                          * we cmn_err() a message.  We aren't expecting to
11604                          * get such an error -- such as it can exist at all,
11605                          * it would be a result of corrupted DOF in the driver
11606                          * properties.
11607                          */
11608                         if (nmatched == NULL) {
11609                                 cmn_err(CE_WARN, "dtrace_enabling_match() "
11610                                     "error on %p: %d", (void *)ep,
11611                                     enab->dten_error);
11612                         }
11613
11614                         return (enab->dten_error);
11615                 }
11616         }
11617
11618         enab->dten_probegen = dtrace_probegen;
11619         if (nmatched != NULL)
11620                 *nmatched = matched;
11621
11622         return (0);
11623 }
11624
11625 static void
11626 dtrace_enabling_matchall(void)
11627 {
11628         dtrace_enabling_t *enab;
11629
11630         mutex_enter(&cpu_lock);
11631         mutex_enter(&dtrace_lock);
11632
11633         /*
11634          * Iterate over all retained enablings to see if any probes match
11635          * against them.  We only perform this operation on enablings for which
11636          * we have sufficient permissions by virtue of being in the global zone
11637          * or in the same zone as the DTrace client.  Because we can be called
11638          * after dtrace_detach() has been called, we cannot assert that there
11639          * are retained enablings.  We can safely load from dtrace_retained,
11640          * however:  the taskq_destroy() at the end of dtrace_detach() will
11641          * block pending our completion.
11642          */
11643         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11644 #if defined(sun)
11645                 cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
11646
11647                 if (INGLOBALZONE(curproc) || getzoneid() == crgetzoneid(cr))
11648 #endif
11649                         (void) dtrace_enabling_match(enab, NULL);
11650         }
11651
11652         mutex_exit(&dtrace_lock);
11653         mutex_exit(&cpu_lock);
11654 }
11655
11656 /*
11657  * If an enabling is to be enabled without having matched probes (that is, if
11658  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11659  * enabling must be _primed_ by creating an ECB for every ECB description.
11660  * This must be done to assure that we know the number of speculations, the
11661  * number of aggregations, the minimum buffer size needed, etc. before we
11662  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11663  * enabling any probes, we create ECBs for every ECB decription, but with a
11664  * NULL probe -- which is exactly what this function does.
11665  */
11666 static void
11667 dtrace_enabling_prime(dtrace_state_t *state)
11668 {
11669         dtrace_enabling_t *enab;
11670         int i;
11671
11672         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11673                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11674
11675                 if (enab->dten_vstate->dtvs_state != state)
11676                         continue;
11677
11678                 /*
11679                  * We don't want to prime an enabling more than once, lest
11680                  * we allow a malicious user to induce resource exhaustion.
11681                  * (The ECBs that result from priming an enabling aren't
11682                  * leaked -- but they also aren't deallocated until the
11683                  * consumer state is destroyed.)
11684                  */
11685                 if (enab->dten_primed)
11686                         continue;
11687
11688                 for (i = 0; i < enab->dten_ndesc; i++) {
11689                         enab->dten_current = enab->dten_desc[i];
11690                         (void) dtrace_probe_enable(NULL, enab);
11691                 }
11692
11693                 enab->dten_primed = 1;
11694         }
11695 }
11696
11697 /*
11698  * Called to indicate that probes should be provided due to retained
11699  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11700  * must take an initial lap through the enabling calling the dtps_provide()
11701  * entry point explicitly to allow for autocreated probes.
11702  */
11703 static void
11704 dtrace_enabling_provide(dtrace_provider_t *prv)
11705 {
11706         int i, all = 0;
11707         dtrace_probedesc_t desc;
11708
11709         ASSERT(MUTEX_HELD(&dtrace_lock));
11710         ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11711
11712         if (prv == NULL) {
11713                 all = 1;
11714                 prv = dtrace_provider;
11715         }
11716
11717         do {
11718                 dtrace_enabling_t *enab = dtrace_retained;
11719                 void *parg = prv->dtpv_arg;
11720
11721                 for (; enab != NULL; enab = enab->dten_next) {
11722                         for (i = 0; i < enab->dten_ndesc; i++) {
11723                                 desc = enab->dten_desc[i]->dted_probe;
11724                                 mutex_exit(&dtrace_lock);
11725                                 prv->dtpv_pops.dtps_provide(parg, &desc);
11726                                 mutex_enter(&dtrace_lock);
11727                         }
11728                 }
11729         } while (all && (prv = prv->dtpv_next) != NULL);
11730
11731         mutex_exit(&dtrace_lock);
11732         dtrace_probe_provide(NULL, all ? NULL : prv);
11733         mutex_enter(&dtrace_lock);
11734 }
11735
11736 /*
11737  * Called to reap ECBs that are attached to probes from defunct providers.
11738  */
11739 static void
11740 dtrace_enabling_reap(void)
11741 {
11742         dtrace_provider_t *prov;
11743         dtrace_probe_t *probe;
11744         dtrace_ecb_t *ecb;
11745         hrtime_t when;
11746         int i;
11747
11748         mutex_enter(&cpu_lock);
11749         mutex_enter(&dtrace_lock);
11750
11751         for (i = 0; i < dtrace_nprobes; i++) {
11752                 if ((probe = dtrace_probes[i]) == NULL)
11753                         continue;
11754
11755                 if (probe->dtpr_ecb == NULL)
11756                         continue;
11757
11758                 prov = probe->dtpr_provider;
11759
11760                 if ((when = prov->dtpv_defunct) == 0)
11761                         continue;
11762
11763                 /*
11764                  * We have ECBs on a defunct provider:  we want to reap these
11765                  * ECBs to allow the provider to unregister.  The destruction
11766                  * of these ECBs must be done carefully:  if we destroy the ECB
11767                  * and the consumer later wishes to consume an EPID that
11768                  * corresponds to the destroyed ECB (and if the EPID metadata
11769                  * has not been previously consumed), the consumer will abort
11770                  * processing on the unknown EPID.  To reduce (but not, sadly,
11771                  * eliminate) the possibility of this, we will only destroy an
11772                  * ECB for a defunct provider if, for the state that
11773                  * corresponds to the ECB:
11774                  *
11775                  *  (a) There is no speculative tracing (which can effectively
11776                  *      cache an EPID for an arbitrary amount of time).
11777                  *
11778                  *  (b) The principal buffers have been switched twice since the
11779                  *      provider became defunct.
11780                  *
11781                  *  (c) The aggregation buffers are of zero size or have been
11782                  *      switched twice since the provider became defunct.
11783                  *
11784                  * We use dts_speculates to determine (a) and call a function
11785                  * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
11786                  * that as soon as we've been unable to destroy one of the ECBs
11787                  * associated with the probe, we quit trying -- reaping is only
11788                  * fruitful in as much as we can destroy all ECBs associated
11789                  * with the defunct provider's probes.
11790                  */
11791                 while ((ecb = probe->dtpr_ecb) != NULL) {
11792                         dtrace_state_t *state = ecb->dte_state;
11793                         dtrace_buffer_t *buf = state->dts_buffer;
11794                         dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
11795
11796                         if (state->dts_speculates)
11797                                 break;
11798
11799                         if (!dtrace_buffer_consumed(buf, when))
11800                                 break;
11801
11802                         if (!dtrace_buffer_consumed(aggbuf, when))
11803                                 break;
11804
11805                         dtrace_ecb_disable(ecb);
11806                         ASSERT(probe->dtpr_ecb != ecb);
11807                         dtrace_ecb_destroy(ecb);
11808                 }
11809         }
11810
11811         mutex_exit(&dtrace_lock);
11812         mutex_exit(&cpu_lock);
11813 }
11814
11815 /*
11816  * DTrace DOF Functions
11817  */
11818 /*ARGSUSED*/
11819 static void
11820 dtrace_dof_error(dof_hdr_t *dof, const char *str)
11821 {
11822         if (dtrace_err_verbose)
11823                 cmn_err(CE_WARN, "failed to process DOF: %s", str);
11824
11825 #ifdef DTRACE_ERRDEBUG
11826         dtrace_errdebug(str);
11827 #endif
11828 }
11829
11830 /*
11831  * Create DOF out of a currently enabled state.  Right now, we only create
11832  * DOF containing the run-time options -- but this could be expanded to create
11833  * complete DOF representing the enabled state.
11834  */
11835 static dof_hdr_t *
11836 dtrace_dof_create(dtrace_state_t *state)
11837 {
11838         dof_hdr_t *dof;
11839         dof_sec_t *sec;
11840         dof_optdesc_t *opt;
11841         int i, len = sizeof (dof_hdr_t) +
11842             roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11843             sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11844
11845         ASSERT(MUTEX_HELD(&dtrace_lock));
11846
11847         dof = kmem_zalloc(len, KM_SLEEP);
11848         dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11849         dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11850         dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11851         dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11852
11853         dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11854         dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11855         dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11856         dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11857         dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11858         dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11859
11860         dof->dofh_flags = 0;
11861         dof->dofh_hdrsize = sizeof (dof_hdr_t);
11862         dof->dofh_secsize = sizeof (dof_sec_t);
11863         dof->dofh_secnum = 1;   /* only DOF_SECT_OPTDESC */
11864         dof->dofh_secoff = sizeof (dof_hdr_t);
11865         dof->dofh_loadsz = len;
11866         dof->dofh_filesz = len;
11867         dof->dofh_pad = 0;
11868
11869         /*
11870          * Fill in the option section header...
11871          */
11872         sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11873         sec->dofs_type = DOF_SECT_OPTDESC;
11874         sec->dofs_align = sizeof (uint64_t);
11875         sec->dofs_flags = DOF_SECF_LOAD;
11876         sec->dofs_entsize = sizeof (dof_optdesc_t);
11877
11878         opt = (dof_optdesc_t *)((uintptr_t)sec +
11879             roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11880
11881         sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11882         sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11883
11884         for (i = 0; i < DTRACEOPT_MAX; i++) {
11885                 opt[i].dofo_option = i;
11886                 opt[i].dofo_strtab = DOF_SECIDX_NONE;
11887                 opt[i].dofo_value = state->dts_options[i];
11888         }
11889
11890         return (dof);
11891 }
11892
11893 static dof_hdr_t *
11894 dtrace_dof_copyin(uintptr_t uarg, int *errp)
11895 {
11896         dof_hdr_t hdr, *dof;
11897
11898         ASSERT(!MUTEX_HELD(&dtrace_lock));
11899
11900         /*
11901          * First, we're going to copyin() the sizeof (dof_hdr_t).
11902          */
11903         if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11904                 dtrace_dof_error(NULL, "failed to copyin DOF header");
11905                 *errp = EFAULT;
11906                 return (NULL);
11907         }
11908
11909         /*
11910          * Now we'll allocate the entire DOF and copy it in -- provided
11911          * that the length isn't outrageous.
11912          */
11913         if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11914                 dtrace_dof_error(&hdr, "load size exceeds maximum");
11915                 *errp = E2BIG;
11916                 return (NULL);
11917         }
11918
11919         if (hdr.dofh_loadsz < sizeof (hdr)) {
11920                 dtrace_dof_error(&hdr, "invalid load size");
11921                 *errp = EINVAL;
11922                 return (NULL);
11923         }
11924
11925         dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
11926
11927         if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
11928                 kmem_free(dof, hdr.dofh_loadsz);
11929                 *errp = EFAULT;
11930                 return (NULL);
11931         }
11932
11933         return (dof);
11934 }
11935
11936 #if !defined(sun)
11937 static __inline uchar_t
11938 dtrace_dof_char(char c) {
11939         switch (c) {
11940         case '0':
11941         case '1':
11942         case '2':
11943         case '3':
11944         case '4':
11945         case '5':
11946         case '6':
11947         case '7':
11948         case '8':
11949         case '9':
11950                 return (c - '0');
11951         case 'A':
11952         case 'B':
11953         case 'C':
11954         case 'D':
11955         case 'E':
11956         case 'F':
11957                 return (c - 'A' + 10);
11958         case 'a':
11959         case 'b':
11960         case 'c':
11961         case 'd':
11962         case 'e':
11963         case 'f':
11964                 return (c - 'a' + 10);
11965         }
11966         /* Should not reach here. */
11967         return (0);
11968 }
11969 #endif
11970
11971 static dof_hdr_t *
11972 dtrace_dof_property(const char *name)
11973 {
11974         uchar_t *buf;
11975         uint64_t loadsz;
11976         unsigned int len, i;
11977         dof_hdr_t *dof;
11978
11979 #if defined(sun)
11980         /*
11981          * Unfortunately, array of values in .conf files are always (and
11982          * only) interpreted to be integer arrays.  We must read our DOF
11983          * as an integer array, and then squeeze it into a byte array.
11984          */
11985         if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
11986             (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
11987                 return (NULL);
11988
11989         for (i = 0; i < len; i++)
11990                 buf[i] = (uchar_t)(((int *)buf)[i]);
11991
11992         if (len < sizeof (dof_hdr_t)) {
11993                 ddi_prop_free(buf);
11994                 dtrace_dof_error(NULL, "truncated header");
11995                 return (NULL);
11996         }
11997
11998         if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
11999                 ddi_prop_free(buf);
12000                 dtrace_dof_error(NULL, "truncated DOF");
12001                 return (NULL);
12002         }
12003
12004         if (loadsz >= dtrace_dof_maxsize) {
12005                 ddi_prop_free(buf);
12006                 dtrace_dof_error(NULL, "oversized DOF");
12007                 return (NULL);
12008         }
12009
12010         dof = kmem_alloc(loadsz, KM_SLEEP);
12011         bcopy(buf, dof, loadsz);
12012         ddi_prop_free(buf);
12013 #else
12014         char *p;
12015         char *p_env;
12016
12017         if ((p_env = getenv(name)) == NULL)
12018                 return (NULL);
12019
12020         len = strlen(p_env) / 2;
12021
12022         buf = kmem_alloc(len, KM_SLEEP);
12023
12024         dof = (dof_hdr_t *) buf;
12025
12026         p = p_env;
12027
12028         for (i = 0; i < len; i++) {
12029                 buf[i] = (dtrace_dof_char(p[0]) << 4) |
12030                      dtrace_dof_char(p[1]);
12031                 p += 2;
12032         }
12033
12034         freeenv(p_env);
12035
12036         if (len < sizeof (dof_hdr_t)) {
12037                 kmem_free(buf, 0);
12038                 dtrace_dof_error(NULL, "truncated header");
12039                 return (NULL);
12040         }
12041
12042         if (len < (loadsz = dof->dofh_loadsz)) {
12043                 kmem_free(buf, 0);
12044                 dtrace_dof_error(NULL, "truncated DOF");
12045                 return (NULL);
12046         }
12047
12048         if (loadsz >= dtrace_dof_maxsize) {
12049                 kmem_free(buf, 0);
12050                 dtrace_dof_error(NULL, "oversized DOF");
12051                 return (NULL);
12052         }
12053 #endif
12054
12055         return (dof);
12056 }
12057
12058 static void
12059 dtrace_dof_destroy(dof_hdr_t *dof)
12060 {
12061         kmem_free(dof, dof->dofh_loadsz);
12062 }
12063
12064 /*
12065  * Return the dof_sec_t pointer corresponding to a given section index.  If the
12066  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
12067  * a type other than DOF_SECT_NONE is specified, the header is checked against
12068  * this type and NULL is returned if the types do not match.
12069  */
12070 static dof_sec_t *
12071 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
12072 {
12073         dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
12074             ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
12075
12076         if (i >= dof->dofh_secnum) {
12077                 dtrace_dof_error(dof, "referenced section index is invalid");
12078                 return (NULL);
12079         }
12080
12081         if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
12082                 dtrace_dof_error(dof, "referenced section is not loadable");
12083                 return (NULL);
12084         }
12085
12086         if (type != DOF_SECT_NONE && type != sec->dofs_type) {
12087                 dtrace_dof_error(dof, "referenced section is the wrong type");
12088                 return (NULL);
12089         }
12090
12091         return (sec);
12092 }
12093
12094 static dtrace_probedesc_t *
12095 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
12096 {
12097         dof_probedesc_t *probe;
12098         dof_sec_t *strtab;
12099         uintptr_t daddr = (uintptr_t)dof;
12100         uintptr_t str;
12101         size_t size;
12102
12103         if (sec->dofs_type != DOF_SECT_PROBEDESC) {
12104                 dtrace_dof_error(dof, "invalid probe section");
12105                 return (NULL);
12106         }
12107
12108         if (sec->dofs_align != sizeof (dof_secidx_t)) {
12109                 dtrace_dof_error(dof, "bad alignment in probe description");
12110                 return (NULL);
12111         }
12112
12113         if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
12114                 dtrace_dof_error(dof, "truncated probe description");
12115                 return (NULL);
12116         }
12117
12118         probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
12119         strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
12120
12121         if (strtab == NULL)
12122                 return (NULL);
12123
12124         str = daddr + strtab->dofs_offset;
12125         size = strtab->dofs_size;
12126
12127         if (probe->dofp_provider >= strtab->dofs_size) {
12128                 dtrace_dof_error(dof, "corrupt probe provider");
12129                 return (NULL);
12130         }
12131
12132         (void) strncpy(desc->dtpd_provider,
12133             (char *)(str + probe->dofp_provider),
12134             MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
12135
12136         if (probe->dofp_mod >= strtab->dofs_size) {
12137                 dtrace_dof_error(dof, "corrupt probe module");
12138                 return (NULL);
12139         }
12140
12141         (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
12142             MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
12143
12144         if (probe->dofp_func >= strtab->dofs_size) {
12145                 dtrace_dof_error(dof, "corrupt probe function");
12146                 return (NULL);
12147         }
12148
12149         (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
12150             MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
12151
12152         if (probe->dofp_name >= strtab->dofs_size) {
12153                 dtrace_dof_error(dof, "corrupt probe name");
12154                 return (NULL);
12155         }
12156
12157         (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
12158             MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
12159
12160         return (desc);
12161 }
12162
12163 static dtrace_difo_t *
12164 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12165     cred_t *cr)
12166 {
12167         dtrace_difo_t *dp;
12168         size_t ttl = 0;
12169         dof_difohdr_t *dofd;
12170         uintptr_t daddr = (uintptr_t)dof;
12171         size_t max = dtrace_difo_maxsize;
12172         int i, l, n;
12173
12174         static const struct {
12175                 int section;
12176                 int bufoffs;
12177                 int lenoffs;
12178                 int entsize;
12179                 int align;
12180                 const char *msg;
12181         } difo[] = {
12182                 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
12183                 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
12184                 sizeof (dif_instr_t), "multiple DIF sections" },
12185
12186                 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
12187                 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
12188                 sizeof (uint64_t), "multiple integer tables" },
12189
12190                 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
12191                 offsetof(dtrace_difo_t, dtdo_strlen), 0,
12192                 sizeof (char), "multiple string tables" },
12193
12194                 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
12195                 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
12196                 sizeof (uint_t), "multiple variable tables" },
12197
12198                 { DOF_SECT_NONE, 0, 0, 0, 0, NULL }
12199         };
12200
12201         if (sec->dofs_type != DOF_SECT_DIFOHDR) {
12202                 dtrace_dof_error(dof, "invalid DIFO header section");
12203                 return (NULL);
12204         }
12205
12206         if (sec->dofs_align != sizeof (dof_secidx_t)) {
12207                 dtrace_dof_error(dof, "bad alignment in DIFO header");
12208                 return (NULL);
12209         }
12210
12211         if (sec->dofs_size < sizeof (dof_difohdr_t) ||
12212             sec->dofs_size % sizeof (dof_secidx_t)) {
12213                 dtrace_dof_error(dof, "bad size in DIFO header");
12214                 return (NULL);
12215         }
12216
12217         dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12218         n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
12219
12220         dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
12221         dp->dtdo_rtype = dofd->dofd_rtype;
12222
12223         for (l = 0; l < n; l++) {
12224                 dof_sec_t *subsec;
12225                 void **bufp;
12226                 uint32_t *lenp;
12227
12228                 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
12229                     dofd->dofd_links[l])) == NULL)
12230                         goto err; /* invalid section link */
12231
12232                 if (ttl + subsec->dofs_size > max) {
12233                         dtrace_dof_error(dof, "exceeds maximum size");
12234                         goto err;
12235                 }
12236
12237                 ttl += subsec->dofs_size;
12238
12239                 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
12240                         if (subsec->dofs_type != difo[i].section)
12241                                 continue;
12242
12243                         if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
12244                                 dtrace_dof_error(dof, "section not loaded");
12245                                 goto err;
12246                         }
12247
12248                         if (subsec->dofs_align != difo[i].align) {
12249                                 dtrace_dof_error(dof, "bad alignment");
12250                                 goto err;
12251                         }
12252
12253                         bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
12254                         lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
12255
12256                         if (*bufp != NULL) {
12257                                 dtrace_dof_error(dof, difo[i].msg);
12258                                 goto err;
12259                         }
12260
12261                         if (difo[i].entsize != subsec->dofs_entsize) {
12262                                 dtrace_dof_error(dof, "entry size mismatch");
12263                                 goto err;
12264                         }
12265
12266                         if (subsec->dofs_entsize != 0 &&
12267                             (subsec->dofs_size % subsec->dofs_entsize) != 0) {
12268                                 dtrace_dof_error(dof, "corrupt entry size");
12269                                 goto err;
12270                         }
12271
12272                         *lenp = subsec->dofs_size;
12273                         *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
12274                         bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12275                             *bufp, subsec->dofs_size);
12276
12277                         if (subsec->dofs_entsize != 0)
12278                                 *lenp /= subsec->dofs_entsize;
12279
12280                         break;
12281                 }
12282
12283                 /*
12284                  * If we encounter a loadable DIFO sub-section that is not
12285                  * known to us, assume this is a broken program and fail.
12286                  */
12287                 if (difo[i].section == DOF_SECT_NONE &&
12288                     (subsec->dofs_flags & DOF_SECF_LOAD)) {
12289                         dtrace_dof_error(dof, "unrecognized DIFO subsection");
12290                         goto err;
12291                 }
12292         }
12293
12294         if (dp->dtdo_buf == NULL) {
12295                 /*
12296                  * We can't have a DIF object without DIF text.
12297                  */
12298                 dtrace_dof_error(dof, "missing DIF text");
12299                 goto err;
12300         }
12301
12302         /*
12303          * Before we validate the DIF object, run through the variable table
12304          * looking for the strings -- if any of their size are under, we'll set
12305          * their size to be the system-wide default string size.  Note that
12306          * this should _not_ happen if the "strsize" option has been set --
12307          * in this case, the compiler should have set the size to reflect the
12308          * setting of the option.
12309          */
12310         for (i = 0; i < dp->dtdo_varlen; i++) {
12311                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
12312                 dtrace_diftype_t *t = &v->dtdv_type;
12313
12314                 if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12315                         continue;
12316
12317                 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12318                         t->dtdt_size = dtrace_strsize_default;
12319         }
12320
12321         if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12322                 goto err;
12323
12324         dtrace_difo_init(dp, vstate);
12325         return (dp);
12326
12327 err:
12328         kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12329         kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12330         kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12331         kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12332
12333         kmem_free(dp, sizeof (dtrace_difo_t));
12334         return (NULL);
12335 }
12336
12337 static dtrace_predicate_t *
12338 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12339     cred_t *cr)
12340 {
12341         dtrace_difo_t *dp;
12342
12343         if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12344                 return (NULL);
12345
12346         return (dtrace_predicate_create(dp));
12347 }
12348
12349 static dtrace_actdesc_t *
12350 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12351     cred_t *cr)
12352 {
12353         dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12354         dof_actdesc_t *desc;
12355         dof_sec_t *difosec;
12356         size_t offs;
12357         uintptr_t daddr = (uintptr_t)dof;
12358         uint64_t arg;
12359         dtrace_actkind_t kind;
12360
12361         if (sec->dofs_type != DOF_SECT_ACTDESC) {
12362                 dtrace_dof_error(dof, "invalid action section");
12363                 return (NULL);
12364         }
12365
12366         if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12367                 dtrace_dof_error(dof, "truncated action description");
12368                 return (NULL);
12369         }
12370
12371         if (sec->dofs_align != sizeof (uint64_t)) {
12372                 dtrace_dof_error(dof, "bad alignment in action description");
12373                 return (NULL);
12374         }
12375
12376         if (sec->dofs_size < sec->dofs_entsize) {
12377                 dtrace_dof_error(dof, "section entry size exceeds total size");
12378                 return (NULL);
12379         }
12380
12381         if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12382                 dtrace_dof_error(dof, "bad entry size in action description");
12383                 return (NULL);
12384         }
12385
12386         if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12387                 dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12388                 return (NULL);
12389         }
12390
12391         for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12392                 desc = (dof_actdesc_t *)(daddr +
12393                     (uintptr_t)sec->dofs_offset + offs);
12394                 kind = (dtrace_actkind_t)desc->dofa_kind;
12395
12396                 if ((DTRACEACT_ISPRINTFLIKE(kind) &&
12397                     (kind != DTRACEACT_PRINTA ||
12398                     desc->dofa_strtab != DOF_SECIDX_NONE)) ||
12399                     (kind == DTRACEACT_DIFEXPR &&
12400                     desc->dofa_strtab != DOF_SECIDX_NONE)) {
12401                         dof_sec_t *strtab;
12402                         char *str, *fmt;
12403                         uint64_t i;
12404
12405                         /*
12406                          * The argument to these actions is an index into the
12407                          * DOF string table.  For printf()-like actions, this
12408                          * is the format string.  For print(), this is the
12409                          * CTF type of the expression result.
12410                          */
12411                         if ((strtab = dtrace_dof_sect(dof,
12412                             DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12413                                 goto err;
12414
12415                         str = (char *)((uintptr_t)dof +
12416                             (uintptr_t)strtab->dofs_offset);
12417
12418                         for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12419                                 if (str[i] == '\0')
12420                                         break;
12421                         }
12422
12423                         if (i >= strtab->dofs_size) {
12424                                 dtrace_dof_error(dof, "bogus format string");
12425                                 goto err;
12426                         }
12427
12428                         if (i == desc->dofa_arg) {
12429                                 dtrace_dof_error(dof, "empty format string");
12430                                 goto err;
12431                         }
12432
12433                         i -= desc->dofa_arg;
12434                         fmt = kmem_alloc(i + 1, KM_SLEEP);
12435                         bcopy(&str[desc->dofa_arg], fmt, i + 1);
12436                         arg = (uint64_t)(uintptr_t)fmt;
12437                 } else {
12438                         if (kind == DTRACEACT_PRINTA) {
12439                                 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12440                                 arg = 0;
12441                         } else {
12442                                 arg = desc->dofa_arg;
12443                         }
12444                 }
12445
12446                 act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12447                     desc->dofa_uarg, arg);
12448
12449                 if (last != NULL) {
12450                         last->dtad_next = act;
12451                 } else {
12452                         first = act;
12453                 }
12454
12455                 last = act;
12456
12457                 if (desc->dofa_difo == DOF_SECIDX_NONE)
12458                         continue;
12459
12460                 if ((difosec = dtrace_dof_sect(dof,
12461                     DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12462                         goto err;
12463
12464                 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12465
12466                 if (act->dtad_difo == NULL)
12467                         goto err;
12468         }
12469
12470         ASSERT(first != NULL);
12471         return (first);
12472
12473 err:
12474         for (act = first; act != NULL; act = next) {
12475                 next = act->dtad_next;
12476                 dtrace_actdesc_release(act, vstate);
12477         }
12478
12479         return (NULL);
12480 }
12481
12482 static dtrace_ecbdesc_t *
12483 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12484     cred_t *cr)
12485 {
12486         dtrace_ecbdesc_t *ep;
12487         dof_ecbdesc_t *ecb;
12488         dtrace_probedesc_t *desc;
12489         dtrace_predicate_t *pred = NULL;
12490
12491         if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12492                 dtrace_dof_error(dof, "truncated ECB description");
12493                 return (NULL);
12494         }
12495
12496         if (sec->dofs_align != sizeof (uint64_t)) {
12497                 dtrace_dof_error(dof, "bad alignment in ECB description");
12498                 return (NULL);
12499         }
12500
12501         ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12502         sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12503
12504         if (sec == NULL)
12505                 return (NULL);
12506
12507         ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12508         ep->dted_uarg = ecb->dofe_uarg;
12509         desc = &ep->dted_probe;
12510
12511         if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12512                 goto err;
12513
12514         if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12515                 if ((sec = dtrace_dof_sect(dof,
12516                     DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12517                         goto err;
12518
12519                 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12520                         goto err;
12521
12522                 ep->dted_pred.dtpdd_predicate = pred;
12523         }
12524
12525         if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12526                 if ((sec = dtrace_dof_sect(dof,
12527                     DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12528                         goto err;
12529
12530                 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12531
12532                 if (ep->dted_action == NULL)
12533                         goto err;
12534         }
12535
12536         return (ep);
12537
12538 err:
12539         if (pred != NULL)
12540                 dtrace_predicate_release(pred, vstate);
12541         kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12542         return (NULL);
12543 }
12544
12545 /*
12546  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12547  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12548  * site of any user SETX relocations to account for load object base address.
12549  * In the future, if we need other relocations, this function can be extended.
12550  */
12551 static int
12552 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12553 {
12554         uintptr_t daddr = (uintptr_t)dof;
12555         dof_relohdr_t *dofr =
12556             (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12557         dof_sec_t *ss, *rs, *ts;
12558         dof_relodesc_t *r;
12559         uint_t i, n;
12560
12561         if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12562             sec->dofs_align != sizeof (dof_secidx_t)) {
12563                 dtrace_dof_error(dof, "invalid relocation header");
12564                 return (-1);
12565         }
12566
12567         ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12568         rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12569         ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12570
12571         if (ss == NULL || rs == NULL || ts == NULL)
12572                 return (-1); /* dtrace_dof_error() has been called already */
12573
12574         if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12575             rs->dofs_align != sizeof (uint64_t)) {
12576                 dtrace_dof_error(dof, "invalid relocation section");
12577                 return (-1);
12578         }
12579
12580         r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12581         n = rs->dofs_size / rs->dofs_entsize;
12582
12583         for (i = 0; i < n; i++) {
12584                 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12585
12586                 switch (r->dofr_type) {
12587                 case DOF_RELO_NONE:
12588                         break;
12589                 case DOF_RELO_SETX:
12590                         if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12591                             sizeof (uint64_t) > ts->dofs_size) {
12592                                 dtrace_dof_error(dof, "bad relocation offset");
12593                                 return (-1);
12594                         }
12595
12596                         if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12597                                 dtrace_dof_error(dof, "misaligned setx relo");
12598                                 return (-1);
12599                         }
12600
12601                         *(uint64_t *)taddr += ubase;
12602                         break;
12603                 default:
12604                         dtrace_dof_error(dof, "invalid relocation type");
12605                         return (-1);
12606                 }
12607
12608                 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12609         }
12610
12611         return (0);
12612 }
12613
12614 /*
12615  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12616  * header:  it should be at the front of a memory region that is at least
12617  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12618  * size.  It need not be validated in any other way.
12619  */
12620 static int
12621 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12622     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12623 {
12624         uint64_t len = dof->dofh_loadsz, seclen;
12625         uintptr_t daddr = (uintptr_t)dof;
12626         dtrace_ecbdesc_t *ep;
12627         dtrace_enabling_t *enab;
12628         uint_t i;
12629
12630         ASSERT(MUTEX_HELD(&dtrace_lock));
12631         ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12632
12633         /*
12634          * Check the DOF header identification bytes.  In addition to checking
12635          * valid settings, we also verify that unused bits/bytes are zeroed so
12636          * we can use them later without fear of regressing existing binaries.
12637          */
12638         if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12639             DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12640                 dtrace_dof_error(dof, "DOF magic string mismatch");
12641                 return (-1);
12642         }
12643
12644         if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12645             dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12646                 dtrace_dof_error(dof, "DOF has invalid data model");
12647                 return (-1);
12648         }
12649
12650         if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12651                 dtrace_dof_error(dof, "DOF encoding mismatch");
12652                 return (-1);
12653         }
12654
12655         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12656             dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12657                 dtrace_dof_error(dof, "DOF version mismatch");
12658                 return (-1);
12659         }
12660
12661         if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12662                 dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12663                 return (-1);
12664         }
12665
12666         if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12667                 dtrace_dof_error(dof, "DOF uses too many integer registers");
12668                 return (-1);
12669         }
12670
12671         if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12672                 dtrace_dof_error(dof, "DOF uses too many tuple registers");
12673                 return (-1);
12674         }
12675
12676         for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12677                 if (dof->dofh_ident[i] != 0) {
12678                         dtrace_dof_error(dof, "DOF has invalid ident byte set");
12679                         return (-1);
12680                 }
12681         }
12682
12683         if (dof->dofh_flags & ~DOF_FL_VALID) {
12684                 dtrace_dof_error(dof, "DOF has invalid flag bits set");
12685                 return (-1);
12686         }
12687
12688         if (dof->dofh_secsize == 0) {
12689                 dtrace_dof_error(dof, "zero section header size");
12690                 return (-1);
12691         }
12692
12693         /*
12694          * Check that the section headers don't exceed the amount of DOF
12695          * data.  Note that we cast the section size and number of sections
12696          * to uint64_t's to prevent possible overflow in the multiplication.
12697          */
12698         seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12699
12700         if (dof->dofh_secoff > len || seclen > len ||
12701             dof->dofh_secoff + seclen > len) {
12702                 dtrace_dof_error(dof, "truncated section headers");
12703                 return (-1);
12704         }
12705
12706         if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12707                 dtrace_dof_error(dof, "misaligned section headers");
12708                 return (-1);
12709         }
12710
12711         if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12712                 dtrace_dof_error(dof, "misaligned section size");
12713                 return (-1);
12714         }
12715
12716         /*
12717          * Take an initial pass through the section headers to be sure that
12718          * the headers don't have stray offsets.  If the 'noprobes' flag is
12719          * set, do not permit sections relating to providers, probes, or args.
12720          */
12721         for (i = 0; i < dof->dofh_secnum; i++) {
12722                 dof_sec_t *sec = (dof_sec_t *)(daddr +
12723                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12724
12725                 if (noprobes) {
12726                         switch (sec->dofs_type) {
12727                         case DOF_SECT_PROVIDER:
12728                         case DOF_SECT_PROBES:
12729                         case DOF_SECT_PRARGS:
12730                         case DOF_SECT_PROFFS:
12731                                 dtrace_dof_error(dof, "illegal sections "
12732                                     "for enabling");
12733                                 return (-1);
12734                         }
12735                 }
12736
12737                 if (!(sec->dofs_flags & DOF_SECF_LOAD))
12738                         continue; /* just ignore non-loadable sections */
12739
12740                 if (sec->dofs_align & (sec->dofs_align - 1)) {
12741                         dtrace_dof_error(dof, "bad section alignment");
12742                         return (-1);
12743                 }
12744
12745                 if (sec->dofs_offset & (sec->dofs_align - 1)) {
12746                         dtrace_dof_error(dof, "misaligned section");
12747                         return (-1);
12748                 }
12749
12750                 if (sec->dofs_offset > len || sec->dofs_size > len ||
12751                     sec->dofs_offset + sec->dofs_size > len) {
12752                         dtrace_dof_error(dof, "corrupt section header");
12753                         return (-1);
12754                 }
12755
12756                 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12757                     sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12758                         dtrace_dof_error(dof, "non-terminating string table");
12759                         return (-1);
12760                 }
12761         }
12762
12763         /*
12764          * Take a second pass through the sections and locate and perform any
12765          * relocations that are present.  We do this after the first pass to
12766          * be sure that all sections have had their headers validated.
12767          */
12768         for (i = 0; i < dof->dofh_secnum; i++) {
12769                 dof_sec_t *sec = (dof_sec_t *)(daddr +
12770                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12771
12772                 if (!(sec->dofs_flags & DOF_SECF_LOAD))
12773                         continue; /* skip sections that are not loadable */
12774
12775                 switch (sec->dofs_type) {
12776                 case DOF_SECT_URELHDR:
12777                         if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12778                                 return (-1);
12779                         break;
12780                 }
12781         }
12782
12783         if ((enab = *enabp) == NULL)
12784                 enab = *enabp = dtrace_enabling_create(vstate);
12785
12786         for (i = 0; i < dof->dofh_secnum; i++) {
12787                 dof_sec_t *sec = (dof_sec_t *)(daddr +
12788                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12789
12790                 if (sec->dofs_type != DOF_SECT_ECBDESC)
12791                         continue;
12792
12793                 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12794                         dtrace_enabling_destroy(enab);
12795                         *enabp = NULL;
12796                         return (-1);
12797                 }
12798
12799                 dtrace_enabling_add(enab, ep);
12800         }
12801
12802         return (0);
12803 }
12804
12805 /*
12806  * Process DOF for any options.  This routine assumes that the DOF has been
12807  * at least processed by dtrace_dof_slurp().
12808  */
12809 static int
12810 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12811 {
12812         int i, rval;
12813         uint32_t entsize;
12814         size_t offs;
12815         dof_optdesc_t *desc;
12816
12817         for (i = 0; i < dof->dofh_secnum; i++) {
12818                 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12819                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12820
12821                 if (sec->dofs_type != DOF_SECT_OPTDESC)
12822                         continue;
12823
12824                 if (sec->dofs_align != sizeof (uint64_t)) {
12825                         dtrace_dof_error(dof, "bad alignment in "
12826                             "option description");
12827                         return (EINVAL);
12828                 }
12829
12830                 if ((entsize = sec->dofs_entsize) == 0) {
12831                         dtrace_dof_error(dof, "zeroed option entry size");
12832                         return (EINVAL);
12833                 }
12834
12835                 if (entsize < sizeof (dof_optdesc_t)) {
12836                         dtrace_dof_error(dof, "bad option entry size");
12837                         return (EINVAL);
12838                 }
12839
12840                 for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12841                         desc = (dof_optdesc_t *)((uintptr_t)dof +
12842                             (uintptr_t)sec->dofs_offset + offs);
12843
12844                         if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12845                                 dtrace_dof_error(dof, "non-zero option string");
12846                                 return (EINVAL);
12847                         }
12848
12849                         if (desc->dofo_value == DTRACEOPT_UNSET) {
12850                                 dtrace_dof_error(dof, "unset option");
12851                                 return (EINVAL);
12852                         }
12853
12854                         if ((rval = dtrace_state_option(state,
12855                             desc->dofo_option, desc->dofo_value)) != 0) {
12856                                 dtrace_dof_error(dof, "rejected option");
12857                                 return (rval);
12858                         }
12859                 }
12860         }
12861
12862         return (0);
12863 }
12864
12865 /*
12866  * DTrace Consumer State Functions
12867  */
12868 static int
12869 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12870 {
12871         size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
12872         void *base;
12873         uintptr_t limit;
12874         dtrace_dynvar_t *dvar, *next, *start;
12875         int i;
12876
12877         ASSERT(MUTEX_HELD(&dtrace_lock));
12878         ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12879
12880         bzero(dstate, sizeof (dtrace_dstate_t));
12881
12882         if ((dstate->dtds_chunksize = chunksize) == 0)
12883                 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12884
12885         if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12886                 size = min;
12887
12888         if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
12889                 return (ENOMEM);
12890
12891         dstate->dtds_size = size;
12892         dstate->dtds_base = base;
12893         dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12894         bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12895
12896         hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12897
12898         if (hashsize != 1 && (hashsize & 1))
12899                 hashsize--;
12900
12901         dstate->dtds_hashsize = hashsize;
12902         dstate->dtds_hash = dstate->dtds_base;
12903
12904         /*
12905          * Set all of our hash buckets to point to the single sink, and (if
12906          * it hasn't already been set), set the sink's hash value to be the
12907          * sink sentinel value.  The sink is needed for dynamic variable
12908          * lookups to know that they have iterated over an entire, valid hash
12909          * chain.
12910          */
12911         for (i = 0; i < hashsize; i++)
12912                 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12913
12914         if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12915                 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12916
12917         /*
12918          * Determine number of active CPUs.  Divide free list evenly among
12919          * active CPUs.
12920          */
12921         start = (dtrace_dynvar_t *)
12922             ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12923         limit = (uintptr_t)base + size;
12924
12925         maxper = (limit - (uintptr_t)start) / NCPU;
12926         maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12927
12928 #if !defined(sun)
12929         CPU_FOREACH(i) {
12930 #else
12931         for (i = 0; i < NCPU; i++) {
12932 #endif
12933                 dstate->dtds_percpu[i].dtdsc_free = dvar = start;
12934
12935                 /*
12936                  * If we don't even have enough chunks to make it once through
12937                  * NCPUs, we're just going to allocate everything to the first
12938                  * CPU.  And if we're on the last CPU, we're going to allocate
12939                  * whatever is left over.  In either case, we set the limit to
12940                  * be the limit of the dynamic variable space.
12941                  */
12942                 if (maxper == 0 || i == NCPU - 1) {
12943                         limit = (uintptr_t)base + size;
12944                         start = NULL;
12945                 } else {
12946                         limit = (uintptr_t)start + maxper;
12947                         start = (dtrace_dynvar_t *)limit;
12948                 }
12949
12950                 ASSERT(limit <= (uintptr_t)base + size);
12951
12952                 for (;;) {
12953                         next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12954                             dstate->dtds_chunksize);
12955
12956                         if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
12957                                 break;
12958
12959                         dvar->dtdv_next = next;
12960                         dvar = next;
12961                 }
12962
12963                 if (maxper == 0)
12964                         break;
12965         }
12966
12967         return (0);
12968 }
12969
12970 static void
12971 dtrace_dstate_fini(dtrace_dstate_t *dstate)
12972 {
12973         ASSERT(MUTEX_HELD(&cpu_lock));
12974
12975         if (dstate->dtds_base == NULL)
12976                 return;
12977
12978         kmem_free(dstate->dtds_base, dstate->dtds_size);
12979         kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
12980 }
12981
12982 static void
12983 dtrace_vstate_fini(dtrace_vstate_t *vstate)
12984 {
12985         /*
12986          * Logical XOR, where are you?
12987          */
12988         ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
12989
12990         if (vstate->dtvs_nglobals > 0) {
12991                 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
12992                     sizeof (dtrace_statvar_t *));
12993         }
12994
12995         if (vstate->dtvs_ntlocals > 0) {
12996                 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
12997                     sizeof (dtrace_difv_t));
12998         }
12999
13000         ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
13001
13002         if (vstate->dtvs_nlocals > 0) {
13003                 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
13004                     sizeof (dtrace_statvar_t *));
13005         }
13006 }
13007
13008 #if defined(sun)
13009 static void
13010 dtrace_state_clean(dtrace_state_t *state)
13011 {
13012         if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13013                 return;
13014
13015         dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13016         dtrace_speculation_clean(state);
13017 }
13018
13019 static void
13020 dtrace_state_deadman(dtrace_state_t *state)
13021 {
13022         hrtime_t now;
13023
13024         dtrace_sync();
13025
13026         now = dtrace_gethrtime();
13027
13028         if (state != dtrace_anon.dta_state &&
13029             now - state->dts_laststatus >= dtrace_deadman_user)
13030                 return;
13031
13032         /*
13033          * We must be sure that dts_alive never appears to be less than the
13034          * value upon entry to dtrace_state_deadman(), and because we lack a
13035          * dtrace_cas64(), we cannot store to it atomically.  We thus instead
13036          * store INT64_MAX to it, followed by a memory barrier, followed by
13037          * the new value.  This assures that dts_alive never appears to be
13038          * less than its true value, regardless of the order in which the
13039          * stores to the underlying storage are issued.
13040          */
13041         state->dts_alive = INT64_MAX;
13042         dtrace_membar_producer();
13043         state->dts_alive = now;
13044 }
13045 #else
13046 static void
13047 dtrace_state_clean(void *arg)
13048 {
13049         dtrace_state_t *state = arg;
13050         dtrace_optval_t *opt = state->dts_options;
13051
13052         if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13053                 return;
13054
13055         dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13056         dtrace_speculation_clean(state);
13057
13058         callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13059             dtrace_state_clean, state);
13060 }
13061
13062 static void
13063 dtrace_state_deadman(void *arg)
13064 {
13065         dtrace_state_t *state = arg;
13066         hrtime_t now;
13067
13068         dtrace_sync();
13069
13070         dtrace_debug_output();
13071
13072         now = dtrace_gethrtime();
13073
13074         if (state != dtrace_anon.dta_state &&
13075             now - state->dts_laststatus >= dtrace_deadman_user)
13076                 return;
13077
13078         /*
13079          * We must be sure that dts_alive never appears to be less than the
13080          * value upon entry to dtrace_state_deadman(), and because we lack a
13081          * dtrace_cas64(), we cannot store to it atomically.  We thus instead
13082          * store INT64_MAX to it, followed by a memory barrier, followed by
13083          * the new value.  This assures that dts_alive never appears to be
13084          * less than its true value, regardless of the order in which the
13085          * stores to the underlying storage are issued.
13086          */
13087         state->dts_alive = INT64_MAX;
13088         dtrace_membar_producer();
13089         state->dts_alive = now;
13090
13091         callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13092             dtrace_state_deadman, state);
13093 }
13094 #endif
13095
13096 static dtrace_state_t *
13097 #if defined(sun)
13098 dtrace_state_create(dev_t *devp, cred_t *cr)
13099 #else
13100 dtrace_state_create(struct cdev *dev)
13101 #endif
13102 {
13103 #if defined(sun)
13104         minor_t minor;
13105         major_t major;
13106 #else
13107         cred_t *cr = NULL;
13108         int m = 0;
13109 #endif
13110         char c[30];
13111         dtrace_state_t *state;
13112         dtrace_optval_t *opt;
13113         int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
13114
13115         ASSERT(MUTEX_HELD(&dtrace_lock));
13116         ASSERT(MUTEX_HELD(&cpu_lock));
13117
13118 #if defined(sun)
13119         minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
13120             VM_BESTFIT | VM_SLEEP);
13121
13122         if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
13123                 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13124                 return (NULL);
13125         }
13126
13127         state = ddi_get_soft_state(dtrace_softstate, minor);
13128 #else
13129         if (dev != NULL) {
13130                 cr = dev->si_cred;
13131                 m = dev2unit(dev);
13132                 }
13133
13134         /* Allocate memory for the state. */
13135         state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
13136 #endif
13137
13138         state->dts_epid = DTRACE_EPIDNONE + 1;
13139
13140         (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
13141 #if defined(sun)
13142         state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
13143             NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
13144
13145         if (devp != NULL) {
13146                 major = getemajor(*devp);
13147         } else {
13148                 major = ddi_driver_major(dtrace_devi);
13149         }
13150
13151         state->dts_dev = makedevice(major, minor);
13152
13153         if (devp != NULL)
13154                 *devp = state->dts_dev;
13155 #else
13156         state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
13157         state->dts_dev = dev;
13158 #endif
13159
13160         /*
13161          * We allocate NCPU buffers.  On the one hand, this can be quite
13162          * a bit of memory per instance (nearly 36K on a Starcat).  On the
13163          * other hand, it saves an additional memory reference in the probe
13164          * path.
13165          */
13166         state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
13167         state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
13168
13169 #if defined(sun)
13170         state->dts_cleaner = CYCLIC_NONE;
13171         state->dts_deadman = CYCLIC_NONE;
13172 #else
13173         callout_init(&state->dts_cleaner, CALLOUT_MPSAFE);
13174         callout_init(&state->dts_deadman, CALLOUT_MPSAFE);
13175 #endif
13176         state->dts_vstate.dtvs_state = state;
13177
13178         for (i = 0; i < DTRACEOPT_MAX; i++)
13179                 state->dts_options[i] = DTRACEOPT_UNSET;
13180
13181         /*
13182          * Set the default options.
13183          */
13184         opt = state->dts_options;
13185         opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
13186         opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
13187         opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
13188         opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
13189         opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
13190         opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
13191         opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
13192         opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
13193         opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
13194         opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
13195         opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
13196         opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
13197         opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
13198         opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
13199
13200         state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
13201
13202         /*
13203          * Depending on the user credentials, we set flag bits which alter probe
13204          * visibility or the amount of destructiveness allowed.  In the case of
13205          * actual anonymous tracing, or the possession of all privileges, all of
13206          * the normal checks are bypassed.
13207          */
13208         if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
13209                 state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
13210                 state->dts_cred.dcr_action = DTRACE_CRA_ALL;
13211         } else {
13212                 /*
13213                  * Set up the credentials for this instantiation.  We take a
13214                  * hold on the credential to prevent it from disappearing on
13215                  * us; this in turn prevents the zone_t referenced by this
13216                  * credential from disappearing.  This means that we can
13217                  * examine the credential and the zone from probe context.
13218                  */
13219                 crhold(cr);
13220                 state->dts_cred.dcr_cred = cr;
13221
13222                 /*
13223                  * CRA_PROC means "we have *some* privilege for dtrace" and
13224                  * unlocks the use of variables like pid, zonename, etc.
13225                  */
13226                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
13227                     PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13228                         state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
13229                 }
13230
13231                 /*
13232                  * dtrace_user allows use of syscall and profile providers.
13233                  * If the user also has proc_owner and/or proc_zone, we
13234                  * extend the scope to include additional visibility and
13235                  * destructive power.
13236                  */
13237                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
13238                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
13239                                 state->dts_cred.dcr_visible |=
13240                                     DTRACE_CRV_ALLPROC;
13241
13242                                 state->dts_cred.dcr_action |=
13243                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13244                         }
13245
13246                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
13247                                 state->dts_cred.dcr_visible |=
13248                                     DTRACE_CRV_ALLZONE;
13249
13250                                 state->dts_cred.dcr_action |=
13251                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13252                         }
13253
13254                         /*
13255                          * If we have all privs in whatever zone this is,
13256                          * we can do destructive things to processes which
13257                          * have altered credentials.
13258                          */
13259 #if defined(sun)
13260                         if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13261                             cr->cr_zone->zone_privset)) {
13262                                 state->dts_cred.dcr_action |=
13263                                     DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13264                         }
13265 #endif
13266                 }
13267
13268                 /*
13269                  * Holding the dtrace_kernel privilege also implies that
13270                  * the user has the dtrace_user privilege from a visibility
13271                  * perspective.  But without further privileges, some
13272                  * destructive actions are not available.
13273                  */
13274                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
13275                         /*
13276                          * Make all probes in all zones visible.  However,
13277                          * this doesn't mean that all actions become available
13278                          * to all zones.
13279                          */
13280                         state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
13281                             DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
13282
13283                         state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
13284                             DTRACE_CRA_PROC;
13285                         /*
13286                          * Holding proc_owner means that destructive actions
13287                          * for *this* zone are allowed.
13288                          */
13289                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13290                                 state->dts_cred.dcr_action |=
13291                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13292
13293                         /*
13294                          * Holding proc_zone means that destructive actions
13295                          * for this user/group ID in all zones is allowed.
13296                          */
13297                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13298                                 state->dts_cred.dcr_action |=
13299                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13300
13301 #if defined(sun)
13302                         /*
13303                          * If we have all privs in whatever zone this is,
13304                          * we can do destructive things to processes which
13305                          * have altered credentials.
13306                          */
13307                         if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13308                             cr->cr_zone->zone_privset)) {
13309                                 state->dts_cred.dcr_action |=
13310                                     DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13311                         }
13312 #endif
13313                 }
13314
13315                 /*
13316                  * Holding the dtrace_proc privilege gives control over fasttrap
13317                  * and pid providers.  We need to grant wider destructive
13318                  * privileges in the event that the user has proc_owner and/or
13319                  * proc_zone.
13320                  */
13321                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13322                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13323                                 state->dts_cred.dcr_action |=
13324                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13325
13326                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13327                                 state->dts_cred.dcr_action |=
13328                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13329                 }
13330         }
13331
13332         return (state);
13333 }
13334
13335 static int
13336 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13337 {
13338         dtrace_optval_t *opt = state->dts_options, size;
13339         processorid_t cpu = 0;;
13340         int flags = 0, rval;
13341
13342         ASSERT(MUTEX_HELD(&dtrace_lock));
13343         ASSERT(MUTEX_HELD(&cpu_lock));
13344         ASSERT(which < DTRACEOPT_MAX);
13345         ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13346             (state == dtrace_anon.dta_state &&
13347             state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13348
13349         if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13350                 return (0);
13351
13352         if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13353                 cpu = opt[DTRACEOPT_CPU];
13354
13355         if (which == DTRACEOPT_SPECSIZE)
13356                 flags |= DTRACEBUF_NOSWITCH;
13357
13358         if (which == DTRACEOPT_BUFSIZE) {
13359                 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13360                         flags |= DTRACEBUF_RING;
13361
13362                 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13363                         flags |= DTRACEBUF_FILL;
13364
13365                 if (state != dtrace_anon.dta_state ||
13366                     state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13367                         flags |= DTRACEBUF_INACTIVE;
13368         }
13369
13370         for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
13371                 /*
13372                  * The size must be 8-byte aligned.  If the size is not 8-byte
13373                  * aligned, drop it down by the difference.
13374                  */
13375                 if (size & (sizeof (uint64_t) - 1))
13376                         size -= size & (sizeof (uint64_t) - 1);
13377
13378                 if (size < state->dts_reserve) {
13379                         /*
13380                          * Buffers always must be large enough to accommodate
13381                          * their prereserved space.  We return E2BIG instead
13382                          * of ENOMEM in this case to allow for user-level
13383                          * software to differentiate the cases.
13384                          */
13385                         return (E2BIG);
13386                 }
13387
13388                 rval = dtrace_buffer_alloc(buf, size, flags, cpu);
13389
13390                 if (rval != ENOMEM) {
13391                         opt[which] = size;
13392                         return (rval);
13393                 }
13394
13395                 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13396                         return (rval);
13397         }
13398
13399         return (ENOMEM);
13400 }
13401
13402 static int
13403 dtrace_state_buffers(dtrace_state_t *state)
13404 {
13405         dtrace_speculation_t *spec = state->dts_speculations;
13406         int rval, i;
13407
13408         if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13409             DTRACEOPT_BUFSIZE)) != 0)
13410                 return (rval);
13411
13412         if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13413             DTRACEOPT_AGGSIZE)) != 0)
13414                 return (rval);
13415
13416         for (i = 0; i < state->dts_nspeculations; i++) {
13417                 if ((rval = dtrace_state_buffer(state,
13418                     spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13419                         return (rval);
13420         }
13421
13422         return (0);
13423 }
13424
13425 static void
13426 dtrace_state_prereserve(dtrace_state_t *state)
13427 {
13428         dtrace_ecb_t *ecb;
13429         dtrace_probe_t *probe;
13430
13431         state->dts_reserve = 0;
13432
13433         if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13434                 return;
13435
13436         /*
13437          * If our buffer policy is a "fill" buffer policy, we need to set the
13438          * prereserved space to be the space required by the END probes.
13439          */
13440         probe = dtrace_probes[dtrace_probeid_end - 1];
13441         ASSERT(probe != NULL);
13442
13443         for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13444                 if (ecb->dte_state != state)
13445                         continue;
13446
13447                 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13448         }
13449 }
13450
13451 static int
13452 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13453 {
13454         dtrace_optval_t *opt = state->dts_options, sz, nspec;
13455         dtrace_speculation_t *spec;
13456         dtrace_buffer_t *buf;
13457 #if defined(sun)
13458         cyc_handler_t hdlr;
13459         cyc_time_t when;
13460 #endif
13461         int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13462         dtrace_icookie_t cookie;
13463
13464         mutex_enter(&cpu_lock);
13465         mutex_enter(&dtrace_lock);
13466
13467         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13468                 rval = EBUSY;
13469                 goto out;
13470         }
13471
13472         /*
13473          * Before we can perform any checks, we must prime all of the
13474          * retained enablings that correspond to this state.
13475          */
13476         dtrace_enabling_prime(state);
13477
13478         if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13479                 rval = EACCES;
13480                 goto out;
13481         }
13482
13483         dtrace_state_prereserve(state);
13484
13485         /*
13486          * Now we want to do is try to allocate our speculations.
13487          * We do not automatically resize the number of speculations; if
13488          * this fails, we will fail the operation.
13489          */
13490         nspec = opt[DTRACEOPT_NSPEC];
13491         ASSERT(nspec != DTRACEOPT_UNSET);
13492
13493         if (nspec > INT_MAX) {
13494                 rval = ENOMEM;
13495                 goto out;
13496         }
13497
13498         spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
13499
13500         if (spec == NULL) {
13501                 rval = ENOMEM;
13502                 goto out;
13503         }
13504
13505         state->dts_speculations = spec;
13506         state->dts_nspeculations = (int)nspec;
13507
13508         for (i = 0; i < nspec; i++) {
13509                 if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
13510                         rval = ENOMEM;
13511                         goto err;
13512                 }
13513
13514                 spec[i].dtsp_buffer = buf;
13515         }
13516
13517         if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13518                 if (dtrace_anon.dta_state == NULL) {
13519                         rval = ENOENT;
13520                         goto out;
13521                 }
13522
13523                 if (state->dts_necbs != 0) {
13524                         rval = EALREADY;
13525                         goto out;
13526                 }
13527
13528                 state->dts_anon = dtrace_anon_grab();
13529                 ASSERT(state->dts_anon != NULL);
13530                 state = state->dts_anon;
13531
13532                 /*
13533                  * We want "grabanon" to be set in the grabbed state, so we'll
13534                  * copy that option value from the grabbing state into the
13535                  * grabbed state.
13536                  */
13537                 state->dts_options[DTRACEOPT_GRABANON] =
13538                     opt[DTRACEOPT_GRABANON];
13539
13540                 *cpu = dtrace_anon.dta_beganon;
13541
13542                 /*
13543                  * If the anonymous state is active (as it almost certainly
13544                  * is if the anonymous enabling ultimately matched anything),
13545                  * we don't allow any further option processing -- but we
13546                  * don't return failure.
13547                  */
13548                 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13549                         goto out;
13550         }
13551
13552         if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13553             opt[DTRACEOPT_AGGSIZE] != 0) {
13554                 if (state->dts_aggregations == NULL) {
13555                         /*
13556                          * We're not going to create an aggregation buffer
13557                          * because we don't have any ECBs that contain
13558                          * aggregations -- set this option to 0.
13559                          */
13560                         opt[DTRACEOPT_AGGSIZE] = 0;
13561                 } else {
13562                         /*
13563                          * If we have an aggregation buffer, we must also have
13564                          * a buffer to use as scratch.
13565                          */
13566                         if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13567                             opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13568                                 opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13569                         }
13570                 }
13571         }
13572
13573         if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13574             opt[DTRACEOPT_SPECSIZE] != 0) {
13575                 if (!state->dts_speculates) {
13576                         /*
13577                          * We're not going to create speculation buffers
13578                          * because we don't have any ECBs that actually
13579                          * speculate -- set the speculation size to 0.
13580                          */
13581                         opt[DTRACEOPT_SPECSIZE] = 0;
13582                 }
13583         }
13584
13585         /*
13586          * The bare minimum size for any buffer that we're actually going to
13587          * do anything to is sizeof (uint64_t).
13588          */
13589         sz = sizeof (uint64_t);
13590
13591         if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13592             (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13593             (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13594                 /*
13595                  * A buffer size has been explicitly set to 0 (or to a size
13596                  * that will be adjusted to 0) and we need the space -- we
13597                  * need to return failure.  We return ENOSPC to differentiate
13598                  * it from failing to allocate a buffer due to failure to meet
13599                  * the reserve (for which we return E2BIG).
13600                  */
13601                 rval = ENOSPC;
13602                 goto out;
13603         }
13604
13605         if ((rval = dtrace_state_buffers(state)) != 0)
13606                 goto err;
13607
13608         if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13609                 sz = dtrace_dstate_defsize;
13610
13611         do {
13612                 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13613
13614                 if (rval == 0)
13615                         break;
13616
13617                 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13618                         goto err;
13619         } while (sz >>= 1);
13620
13621         opt[DTRACEOPT_DYNVARSIZE] = sz;
13622
13623         if (rval != 0)
13624                 goto err;
13625
13626         if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13627                 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13628
13629         if (opt[DTRACEOPT_CLEANRATE] == 0)
13630                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13631
13632         if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13633                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13634
13635         if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13636                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13637
13638         state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13639 #if defined(sun)
13640         hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13641         hdlr.cyh_arg = state;
13642         hdlr.cyh_level = CY_LOW_LEVEL;
13643
13644         when.cyt_when = 0;
13645         when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13646
13647         state->dts_cleaner = cyclic_add(&hdlr, &when);
13648
13649         hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13650         hdlr.cyh_arg = state;
13651         hdlr.cyh_level = CY_LOW_LEVEL;
13652
13653         when.cyt_when = 0;
13654         when.cyt_interval = dtrace_deadman_interval;
13655
13656         state->dts_deadman = cyclic_add(&hdlr, &when);
13657 #else
13658         callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13659             dtrace_state_clean, state);
13660         callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13661             dtrace_state_deadman, state);
13662 #endif
13663
13664         state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13665
13666         /*
13667          * Now it's time to actually fire the BEGIN probe.  We need to disable
13668          * interrupts here both to record the CPU on which we fired the BEGIN
13669          * probe (the data from this CPU will be processed first at user
13670          * level) and to manually activate the buffer for this CPU.
13671          */
13672         cookie = dtrace_interrupt_disable();
13673         *cpu = curcpu;
13674         ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13675         state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13676
13677         dtrace_probe(dtrace_probeid_begin,
13678             (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13679         dtrace_interrupt_enable(cookie);
13680         /*
13681          * We may have had an exit action from a BEGIN probe; only change our
13682          * state to ACTIVE if we're still in WARMUP.
13683          */
13684         ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13685             state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13686
13687         if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13688                 state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13689
13690         /*
13691          * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13692          * want each CPU to transition its principal buffer out of the
13693          * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13694          * processing an ECB halfway down a probe's ECB chain; all CPUs will
13695          * atomically transition from processing none of a state's ECBs to
13696          * processing all of them.
13697          */
13698         dtrace_xcall(DTRACE_CPUALL,
13699             (dtrace_xcall_t)dtrace_buffer_activate, state);
13700         goto out;
13701
13702 err:
13703         dtrace_buffer_free(state->dts_buffer);
13704         dtrace_buffer_free(state->dts_aggbuffer);
13705
13706         if ((nspec = state->dts_nspeculations) == 0) {
13707                 ASSERT(state->dts_speculations == NULL);
13708                 goto out;
13709         }
13710
13711         spec = state->dts_speculations;
13712         ASSERT(spec != NULL);
13713
13714         for (i = 0; i < state->dts_nspeculations; i++) {
13715                 if ((buf = spec[i].dtsp_buffer) == NULL)
13716                         break;
13717
13718                 dtrace_buffer_free(buf);
13719                 kmem_free(buf, bufsize);
13720         }
13721
13722         kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13723         state->dts_nspeculations = 0;
13724         state->dts_speculations = NULL;
13725
13726 out:
13727         mutex_exit(&dtrace_lock);
13728         mutex_exit(&cpu_lock);
13729
13730         return (rval);
13731 }
13732
13733 static int
13734 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13735 {
13736         dtrace_icookie_t cookie;
13737
13738         ASSERT(MUTEX_HELD(&dtrace_lock));
13739
13740         if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13741             state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13742                 return (EINVAL);
13743
13744         /*
13745          * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13746          * to be sure that every CPU has seen it.  See below for the details
13747          * on why this is done.
13748          */
13749         state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13750         dtrace_sync();
13751
13752         /*
13753          * By this point, it is impossible for any CPU to be still processing
13754          * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13755          * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13756          * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13757          * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13758          * iff we're in the END probe.
13759          */
13760         state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13761         dtrace_sync();
13762         ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13763
13764         /*
13765          * Finally, we can release the reserve and call the END probe.  We
13766          * disable interrupts across calling the END probe to allow us to
13767          * return the CPU on which we actually called the END probe.  This
13768          * allows user-land to be sure that this CPU's principal buffer is
13769          * processed last.
13770          */
13771         state->dts_reserve = 0;
13772
13773         cookie = dtrace_interrupt_disable();
13774         *cpu = curcpu;
13775         dtrace_probe(dtrace_probeid_end,
13776             (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13777         dtrace_interrupt_enable(cookie);
13778
13779         state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13780         dtrace_sync();
13781
13782         return (0);
13783 }
13784
13785 static int
13786 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13787     dtrace_optval_t val)
13788 {
13789         ASSERT(MUTEX_HELD(&dtrace_lock));
13790
13791         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13792                 return (EBUSY);
13793
13794         if (option >= DTRACEOPT_MAX)
13795                 return (EINVAL);
13796
13797         if (option != DTRACEOPT_CPU && val < 0)
13798                 return (EINVAL);
13799
13800         switch (option) {
13801         case DTRACEOPT_DESTRUCTIVE:
13802                 if (dtrace_destructive_disallow)
13803                         return (EACCES);
13804
13805                 state->dts_cred.dcr_destructive = 1;
13806                 break;
13807
13808         case DTRACEOPT_BUFSIZE:
13809         case DTRACEOPT_DYNVARSIZE:
13810         case DTRACEOPT_AGGSIZE:
13811         case DTRACEOPT_SPECSIZE:
13812         case DTRACEOPT_STRSIZE:
13813                 if (val < 0)
13814                         return (EINVAL);
13815
13816                 if (val >= LONG_MAX) {
13817                         /*
13818                          * If this is an otherwise negative value, set it to
13819                          * the highest multiple of 128m less than LONG_MAX.
13820                          * Technically, we're adjusting the size without
13821                          * regard to the buffer resizing policy, but in fact,
13822                          * this has no effect -- if we set the buffer size to
13823                          * ~LONG_MAX and the buffer policy is ultimately set to
13824                          * be "manual", the buffer allocation is guaranteed to
13825                          * fail, if only because the allocation requires two
13826                          * buffers.  (We set the the size to the highest
13827                          * multiple of 128m because it ensures that the size
13828                          * will remain a multiple of a megabyte when
13829                          * repeatedly halved -- all the way down to 15m.)
13830                          */
13831                         val = LONG_MAX - (1 << 27) + 1;
13832                 }
13833         }
13834
13835         state->dts_options[option] = val;
13836
13837         return (0);
13838 }
13839
13840 static void
13841 dtrace_state_destroy(dtrace_state_t *state)
13842 {
13843         dtrace_ecb_t *ecb;
13844         dtrace_vstate_t *vstate = &state->dts_vstate;
13845 #if defined(sun)
13846         minor_t minor = getminor(state->dts_dev);
13847 #endif
13848         int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13849         dtrace_speculation_t *spec = state->dts_speculations;
13850         int nspec = state->dts_nspeculations;
13851         uint32_t match;
13852
13853         ASSERT(MUTEX_HELD(&dtrace_lock));
13854         ASSERT(MUTEX_HELD(&cpu_lock));
13855
13856         /*
13857          * First, retract any retained enablings for this state.
13858          */
13859         dtrace_enabling_retract(state);
13860         ASSERT(state->dts_nretained == 0);
13861
13862         if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13863             state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13864                 /*
13865                  * We have managed to come into dtrace_state_destroy() on a
13866                  * hot enabling -- almost certainly because of a disorderly
13867                  * shutdown of a consumer.  (That is, a consumer that is
13868                  * exiting without having called dtrace_stop().) In this case,
13869                  * we're going to set our activity to be KILLED, and then
13870                  * issue a sync to be sure that everyone is out of probe
13871                  * context before we start blowing away ECBs.
13872                  */
13873                 state->dts_activity = DTRACE_ACTIVITY_KILLED;
13874                 dtrace_sync();
13875         }
13876
13877         /*
13878          * Release the credential hold we took in dtrace_state_create().
13879          */
13880         if (state->dts_cred.dcr_cred != NULL)
13881                 crfree(state->dts_cred.dcr_cred);
13882
13883         /*
13884          * Now we can safely disable and destroy any enabled probes.  Because
13885          * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13886          * (especially if they're all enabled), we take two passes through the
13887          * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13888          * in the second we disable whatever is left over.
13889          */
13890         for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13891                 for (i = 0; i < state->dts_necbs; i++) {
13892                         if ((ecb = state->dts_ecbs[i]) == NULL)
13893                                 continue;
13894
13895                         if (match && ecb->dte_probe != NULL) {
13896                                 dtrace_probe_t *probe = ecb->dte_probe;
13897                                 dtrace_provider_t *prov = probe->dtpr_provider;
13898
13899                                 if (!(prov->dtpv_priv.dtpp_flags & match))
13900                                         continue;
13901                         }
13902
13903                         dtrace_ecb_disable(ecb);
13904                         dtrace_ecb_destroy(ecb);
13905                 }
13906
13907                 if (!match)
13908                         break;
13909         }
13910
13911         /*
13912          * Before we free the buffers, perform one more sync to assure that
13913          * every CPU is out of probe context.
13914          */
13915         dtrace_sync();
13916
13917         dtrace_buffer_free(state->dts_buffer);
13918         dtrace_buffer_free(state->dts_aggbuffer);
13919
13920         for (i = 0; i < nspec; i++)
13921                 dtrace_buffer_free(spec[i].dtsp_buffer);
13922
13923 #if defined(sun)
13924         if (state->dts_cleaner != CYCLIC_NONE)
13925                 cyclic_remove(state->dts_cleaner);
13926
13927         if (state->dts_deadman != CYCLIC_NONE)
13928                 cyclic_remove(state->dts_deadman);
13929 #else
13930         callout_stop(&state->dts_cleaner);
13931         callout_drain(&state->dts_cleaner);
13932         callout_stop(&state->dts_deadman);
13933         callout_drain(&state->dts_deadman);
13934 #endif
13935
13936         dtrace_dstate_fini(&vstate->dtvs_dynvars);
13937         dtrace_vstate_fini(vstate);
13938         if (state->dts_ecbs != NULL)
13939                 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
13940
13941         if (state->dts_aggregations != NULL) {
13942 #ifdef DEBUG
13943                 for (i = 0; i < state->dts_naggregations; i++)
13944                         ASSERT(state->dts_aggregations[i] == NULL);
13945 #endif
13946                 ASSERT(state->dts_naggregations > 0);
13947                 kmem_free(state->dts_aggregations,
13948                     state->dts_naggregations * sizeof (dtrace_aggregation_t *));
13949         }
13950
13951         kmem_free(state->dts_buffer, bufsize);
13952         kmem_free(state->dts_aggbuffer, bufsize);
13953
13954         for (i = 0; i < nspec; i++)
13955                 kmem_free(spec[i].dtsp_buffer, bufsize);
13956
13957         if (spec != NULL)
13958                 kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13959
13960         dtrace_format_destroy(state);
13961
13962         if (state->dts_aggid_arena != NULL) {
13963 #if defined(sun)
13964                 vmem_destroy(state->dts_aggid_arena);
13965 #else
13966                 delete_unrhdr(state->dts_aggid_arena);
13967 #endif
13968                 state->dts_aggid_arena = NULL;
13969         }
13970 #if defined(sun)
13971         ddi_soft_state_free(dtrace_softstate, minor);
13972         vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13973 #endif
13974 }
13975
13976 /*
13977  * DTrace Anonymous Enabling Functions
13978  */
13979 static dtrace_state_t *
13980 dtrace_anon_grab(void)
13981 {
13982         dtrace_state_t *state;
13983
13984         ASSERT(MUTEX_HELD(&dtrace_lock));
13985
13986         if ((state = dtrace_anon.dta_state) == NULL) {
13987                 ASSERT(dtrace_anon.dta_enabling == NULL);
13988                 return (NULL);
13989         }
13990
13991         ASSERT(dtrace_anon.dta_enabling != NULL);
13992         ASSERT(dtrace_retained != NULL);
13993
13994         dtrace_enabling_destroy(dtrace_anon.dta_enabling);
13995         dtrace_anon.dta_enabling = NULL;
13996         dtrace_anon.dta_state = NULL;
13997
13998         return (state);
13999 }
14000
14001 static void
14002 dtrace_anon_property(void)
14003 {
14004         int i, rv;
14005         dtrace_state_t *state;
14006         dof_hdr_t *dof;
14007         char c[32];             /* enough for "dof-data-" + digits */
14008
14009         ASSERT(MUTEX_HELD(&dtrace_lock));
14010         ASSERT(MUTEX_HELD(&cpu_lock));
14011
14012         for (i = 0; ; i++) {
14013                 (void) snprintf(c, sizeof (c), "dof-data-%d", i);
14014
14015                 dtrace_err_verbose = 1;
14016
14017                 if ((dof = dtrace_dof_property(c)) == NULL) {
14018                         dtrace_err_verbose = 0;
14019                         break;
14020                 }
14021
14022 #if defined(sun)
14023                 /*
14024                  * We want to create anonymous state, so we need to transition
14025                  * the kernel debugger to indicate that DTrace is active.  If
14026                  * this fails (e.g. because the debugger has modified text in
14027                  * some way), we won't continue with the processing.
14028                  */
14029                 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
14030                         cmn_err(CE_NOTE, "kernel debugger active; anonymous "
14031                             "enabling ignored.");
14032                         dtrace_dof_destroy(dof);
14033                         break;
14034                 }
14035 #endif
14036
14037                 /*
14038                  * If we haven't allocated an anonymous state, we'll do so now.
14039                  */
14040                 if ((state = dtrace_anon.dta_state) == NULL) {
14041 #if defined(sun)
14042                         state = dtrace_state_create(NULL, NULL);
14043 #else
14044                         state = dtrace_state_create(NULL);
14045 #endif
14046                         dtrace_anon.dta_state = state;
14047
14048                         if (state == NULL) {
14049                                 /*
14050                                  * This basically shouldn't happen:  the only
14051                                  * failure mode from dtrace_state_create() is a
14052                                  * failure of ddi_soft_state_zalloc() that
14053                                  * itself should never happen.  Still, the
14054                                  * interface allows for a failure mode, and
14055                                  * we want to fail as gracefully as possible:
14056                                  * we'll emit an error message and cease
14057                                  * processing anonymous state in this case.
14058                                  */
14059                                 cmn_err(CE_WARN, "failed to create "
14060                                     "anonymous state");
14061                                 dtrace_dof_destroy(dof);
14062                                 break;
14063                         }
14064                 }
14065
14066                 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
14067                     &dtrace_anon.dta_enabling, 0, B_TRUE);
14068
14069                 if (rv == 0)
14070                         rv = dtrace_dof_options(dof, state);
14071
14072                 dtrace_err_verbose = 0;
14073                 dtrace_dof_destroy(dof);
14074
14075                 if (rv != 0) {
14076                         /*
14077                          * This is malformed DOF; chuck any anonymous state
14078                          * that we created.
14079                          */
14080                         ASSERT(dtrace_anon.dta_enabling == NULL);
14081                         dtrace_state_destroy(state);
14082                         dtrace_anon.dta_state = NULL;
14083                         break;
14084                 }
14085
14086                 ASSERT(dtrace_anon.dta_enabling != NULL);
14087         }
14088
14089         if (dtrace_anon.dta_enabling != NULL) {
14090                 int rval;
14091
14092                 /*
14093                  * dtrace_enabling_retain() can only fail because we are
14094                  * trying to retain more enablings than are allowed -- but
14095                  * we only have one anonymous enabling, and we are guaranteed
14096                  * to be allowed at least one retained enabling; we assert
14097                  * that dtrace_enabling_retain() returns success.
14098                  */
14099                 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
14100                 ASSERT(rval == 0);
14101
14102                 dtrace_enabling_dump(dtrace_anon.dta_enabling);
14103         }
14104 }
14105
14106 /*
14107  * DTrace Helper Functions
14108  */
14109 static void
14110 dtrace_helper_trace(dtrace_helper_action_t *helper,
14111     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
14112 {
14113         uint32_t size, next, nnext, i;
14114         dtrace_helptrace_t *ent;
14115         uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
14116
14117         if (!dtrace_helptrace_enabled)
14118                 return;
14119
14120         ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
14121
14122         /*
14123          * What would a tracing framework be without its own tracing
14124          * framework?  (Well, a hell of a lot simpler, for starters...)
14125          */
14126         size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
14127             sizeof (uint64_t) - sizeof (uint64_t);
14128
14129         /*
14130          * Iterate until we can allocate a slot in the trace buffer.
14131          */
14132         do {
14133                 next = dtrace_helptrace_next;
14134
14135                 if (next + size < dtrace_helptrace_bufsize) {
14136                         nnext = next + size;
14137                 } else {
14138                         nnext = size;
14139                 }
14140         } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
14141
14142         /*
14143          * We have our slot; fill it in.
14144          */
14145         if (nnext == size)
14146                 next = 0;
14147
14148         ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
14149         ent->dtht_helper = helper;
14150         ent->dtht_where = where;
14151         ent->dtht_nlocals = vstate->dtvs_nlocals;
14152
14153         ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
14154             mstate->dtms_fltoffs : -1;
14155         ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
14156         ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
14157
14158         for (i = 0; i < vstate->dtvs_nlocals; i++) {
14159                 dtrace_statvar_t *svar;
14160
14161                 if ((svar = vstate->dtvs_locals[i]) == NULL)
14162                         continue;
14163
14164                 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
14165                 ent->dtht_locals[i] =
14166                     ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
14167         }
14168 }
14169
14170 static uint64_t
14171 dtrace_helper(int which, dtrace_mstate_t *mstate,
14172     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
14173 {
14174         uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
14175         uint64_t sarg0 = mstate->dtms_arg[0];
14176         uint64_t sarg1 = mstate->dtms_arg[1];
14177         uint64_t rval = 0;
14178         dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
14179         dtrace_helper_action_t *helper;
14180         dtrace_vstate_t *vstate;
14181         dtrace_difo_t *pred;
14182         int i, trace = dtrace_helptrace_enabled;
14183
14184         ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
14185
14186         if (helpers == NULL)
14187                 return (0);
14188
14189         if ((helper = helpers->dthps_actions[which]) == NULL)
14190                 return (0);
14191
14192         vstate = &helpers->dthps_vstate;
14193         mstate->dtms_arg[0] = arg0;
14194         mstate->dtms_arg[1] = arg1;
14195
14196         /*
14197          * Now iterate over each helper.  If its predicate evaluates to 'true',
14198          * we'll call the corresponding actions.  Note that the below calls
14199          * to dtrace_dif_emulate() may set faults in machine state.  This is
14200          * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
14201          * the stored DIF offset with its own (which is the desired behavior).
14202          * Also, note the calls to dtrace_dif_emulate() may allocate scratch
14203          * from machine state; this is okay, too.
14204          */
14205         for (; helper != NULL; helper = helper->dtha_next) {
14206                 if ((pred = helper->dtha_predicate) != NULL) {
14207                         if (trace)
14208                                 dtrace_helper_trace(helper, mstate, vstate, 0);
14209
14210                         if (!dtrace_dif_emulate(pred, mstate, vstate, state))
14211                                 goto next;
14212
14213                         if (*flags & CPU_DTRACE_FAULT)
14214                                 goto err;
14215                 }
14216
14217                 for (i = 0; i < helper->dtha_nactions; i++) {
14218                         if (trace)
14219                                 dtrace_helper_trace(helper,
14220                                     mstate, vstate, i + 1);
14221
14222                         rval = dtrace_dif_emulate(helper->dtha_actions[i],
14223                             mstate, vstate, state);
14224
14225                         if (*flags & CPU_DTRACE_FAULT)
14226                                 goto err;
14227                 }
14228
14229 next:
14230                 if (trace)
14231                         dtrace_helper_trace(helper, mstate, vstate,
14232                             DTRACE_HELPTRACE_NEXT);
14233         }
14234
14235         if (trace)
14236                 dtrace_helper_trace(helper, mstate, vstate,
14237                     DTRACE_HELPTRACE_DONE);
14238
14239         /*
14240          * Restore the arg0 that we saved upon entry.
14241          */
14242         mstate->dtms_arg[0] = sarg0;
14243         mstate->dtms_arg[1] = sarg1;
14244
14245         return (rval);
14246
14247 err:
14248         if (trace)
14249                 dtrace_helper_trace(helper, mstate, vstate,
14250                     DTRACE_HELPTRACE_ERR);
14251
14252         /*
14253          * Restore the arg0 that we saved upon entry.
14254          */
14255         mstate->dtms_arg[0] = sarg0;
14256         mstate->dtms_arg[1] = sarg1;
14257
14258         return (0);
14259 }
14260
14261 static void
14262 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
14263     dtrace_vstate_t *vstate)
14264 {
14265         int i;
14266
14267         if (helper->dtha_predicate != NULL)
14268                 dtrace_difo_release(helper->dtha_predicate, vstate);
14269
14270         for (i = 0; i < helper->dtha_nactions; i++) {
14271                 ASSERT(helper->dtha_actions[i] != NULL);
14272                 dtrace_difo_release(helper->dtha_actions[i], vstate);
14273         }
14274
14275         kmem_free(helper->dtha_actions,
14276             helper->dtha_nactions * sizeof (dtrace_difo_t *));
14277         kmem_free(helper, sizeof (dtrace_helper_action_t));
14278 }
14279
14280 static int
14281 dtrace_helper_destroygen(int gen)
14282 {
14283         proc_t *p = curproc;
14284         dtrace_helpers_t *help = p->p_dtrace_helpers;
14285         dtrace_vstate_t *vstate;
14286         int i;
14287
14288         ASSERT(MUTEX_HELD(&dtrace_lock));
14289
14290         if (help == NULL || gen > help->dthps_generation)
14291                 return (EINVAL);
14292
14293         vstate = &help->dthps_vstate;
14294
14295         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14296                 dtrace_helper_action_t *last = NULL, *h, *next;
14297
14298                 for (h = help->dthps_actions[i]; h != NULL; h = next) {
14299                         next = h->dtha_next;
14300
14301                         if (h->dtha_generation == gen) {
14302                                 if (last != NULL) {
14303                                         last->dtha_next = next;
14304                                 } else {
14305                                         help->dthps_actions[i] = next;
14306                                 }
14307
14308                                 dtrace_helper_action_destroy(h, vstate);
14309                         } else {
14310                                 last = h;
14311                         }
14312                 }
14313         }
14314
14315         /*
14316          * Interate until we've cleared out all helper providers with the
14317          * given generation number.
14318          */
14319         for (;;) {
14320                 dtrace_helper_provider_t *prov;
14321
14322                 /*
14323                  * Look for a helper provider with the right generation. We
14324                  * have to start back at the beginning of the list each time
14325                  * because we drop dtrace_lock. It's unlikely that we'll make
14326                  * more than two passes.
14327                  */
14328                 for (i = 0; i < help->dthps_nprovs; i++) {
14329                         prov = help->dthps_provs[i];
14330
14331                         if (prov->dthp_generation == gen)
14332                                 break;
14333                 }
14334
14335                 /*
14336                  * If there were no matches, we're done.
14337                  */
14338                 if (i == help->dthps_nprovs)
14339                         break;
14340
14341                 /*
14342                  * Move the last helper provider into this slot.
14343                  */
14344                 help->dthps_nprovs--;
14345                 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14346                 help->dthps_provs[help->dthps_nprovs] = NULL;
14347
14348                 mutex_exit(&dtrace_lock);
14349
14350                 /*
14351                  * If we have a meta provider, remove this helper provider.
14352                  */
14353                 mutex_enter(&dtrace_meta_lock);
14354                 if (dtrace_meta_pid != NULL) {
14355                         ASSERT(dtrace_deferred_pid == NULL);
14356                         dtrace_helper_provider_remove(&prov->dthp_prov,
14357                             p->p_pid);
14358                 }
14359                 mutex_exit(&dtrace_meta_lock);
14360
14361                 dtrace_helper_provider_destroy(prov);
14362
14363                 mutex_enter(&dtrace_lock);
14364         }
14365
14366         return (0);
14367 }
14368
14369 static int
14370 dtrace_helper_validate(dtrace_helper_action_t *helper)
14371 {
14372         int err = 0, i;
14373         dtrace_difo_t *dp;
14374
14375         if ((dp = helper->dtha_predicate) != NULL)
14376                 err += dtrace_difo_validate_helper(dp);
14377
14378         for (i = 0; i < helper->dtha_nactions; i++)
14379                 err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14380
14381         return (err == 0);
14382 }
14383
14384 static int
14385 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14386 {
14387         dtrace_helpers_t *help;
14388         dtrace_helper_action_t *helper, *last;
14389         dtrace_actdesc_t *act;
14390         dtrace_vstate_t *vstate;
14391         dtrace_predicate_t *pred;
14392         int count = 0, nactions = 0, i;
14393
14394         if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14395                 return (EINVAL);
14396
14397         help = curproc->p_dtrace_helpers;
14398         last = help->dthps_actions[which];
14399         vstate = &help->dthps_vstate;
14400
14401         for (count = 0; last != NULL; last = last->dtha_next) {
14402                 count++;
14403                 if (last->dtha_next == NULL)
14404                         break;
14405         }
14406
14407         /*
14408          * If we already have dtrace_helper_actions_max helper actions for this
14409          * helper action type, we'll refuse to add a new one.
14410          */
14411         if (count >= dtrace_helper_actions_max)
14412                 return (ENOSPC);
14413
14414         helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14415         helper->dtha_generation = help->dthps_generation;
14416
14417         if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14418                 ASSERT(pred->dtp_difo != NULL);
14419                 dtrace_difo_hold(pred->dtp_difo);
14420                 helper->dtha_predicate = pred->dtp_difo;
14421         }
14422
14423         for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14424                 if (act->dtad_kind != DTRACEACT_DIFEXPR)
14425                         goto err;
14426
14427                 if (act->dtad_difo == NULL)
14428                         goto err;
14429
14430                 nactions++;
14431         }
14432
14433         helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14434             (helper->dtha_nactions = nactions), KM_SLEEP);
14435
14436         for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14437                 dtrace_difo_hold(act->dtad_difo);
14438                 helper->dtha_actions[i++] = act->dtad_difo;
14439         }
14440
14441         if (!dtrace_helper_validate(helper))
14442                 goto err;
14443
14444         if (last == NULL) {
14445                 help->dthps_actions[which] = helper;
14446         } else {
14447                 last->dtha_next = helper;
14448         }
14449
14450         if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14451                 dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14452                 dtrace_helptrace_next = 0;
14453         }
14454
14455         return (0);
14456 err:
14457         dtrace_helper_action_destroy(helper, vstate);
14458         return (EINVAL);
14459 }
14460
14461 static void
14462 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14463     dof_helper_t *dofhp)
14464 {
14465         ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14466
14467         mutex_enter(&dtrace_meta_lock);
14468         mutex_enter(&dtrace_lock);
14469
14470         if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14471                 /*
14472                  * If the dtrace module is loaded but not attached, or if
14473                  * there aren't isn't a meta provider registered to deal with
14474                  * these provider descriptions, we need to postpone creating
14475                  * the actual providers until later.
14476                  */
14477
14478                 if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14479                     dtrace_deferred_pid != help) {
14480                         help->dthps_deferred = 1;
14481                         help->dthps_pid = p->p_pid;
14482                         help->dthps_next = dtrace_deferred_pid;
14483                         help->dthps_prev = NULL;
14484                         if (dtrace_deferred_pid != NULL)
14485                                 dtrace_deferred_pid->dthps_prev = help;
14486                         dtrace_deferred_pid = help;
14487                 }
14488
14489                 mutex_exit(&dtrace_lock);
14490
14491         } else if (dofhp != NULL) {
14492                 /*
14493                  * If the dtrace module is loaded and we have a particular
14494                  * helper provider description, pass that off to the
14495                  * meta provider.
14496                  */
14497
14498                 mutex_exit(&dtrace_lock);
14499
14500                 dtrace_helper_provide(dofhp, p->p_pid);
14501
14502         } else {
14503                 /*
14504                  * Otherwise, just pass all the helper provider descriptions
14505                  * off to the meta provider.
14506                  */
14507
14508                 int i;
14509                 mutex_exit(&dtrace_lock);
14510
14511                 for (i = 0; i < help->dthps_nprovs; i++) {
14512                         dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14513                             p->p_pid);
14514                 }
14515         }
14516
14517         mutex_exit(&dtrace_meta_lock);
14518 }
14519
14520 static int
14521 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14522 {
14523         dtrace_helpers_t *help;
14524         dtrace_helper_provider_t *hprov, **tmp_provs;
14525         uint_t tmp_maxprovs, i;
14526
14527         ASSERT(MUTEX_HELD(&dtrace_lock));
14528
14529         help = curproc->p_dtrace_helpers;
14530         ASSERT(help != NULL);
14531
14532         /*
14533          * If we already have dtrace_helper_providers_max helper providers,
14534          * we're refuse to add a new one.
14535          */
14536         if (help->dthps_nprovs >= dtrace_helper_providers_max)
14537                 return (ENOSPC);
14538
14539         /*
14540          * Check to make sure this isn't a duplicate.
14541          */
14542         for (i = 0; i < help->dthps_nprovs; i++) {
14543                 if (dofhp->dofhp_addr ==
14544                     help->dthps_provs[i]->dthp_prov.dofhp_addr)
14545                         return (EALREADY);
14546         }
14547
14548         hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14549         hprov->dthp_prov = *dofhp;
14550         hprov->dthp_ref = 1;
14551         hprov->dthp_generation = gen;
14552
14553         /*
14554          * Allocate a bigger table for helper providers if it's already full.
14555          */
14556         if (help->dthps_maxprovs == help->dthps_nprovs) {
14557                 tmp_maxprovs = help->dthps_maxprovs;
14558                 tmp_provs = help->dthps_provs;
14559
14560                 if (help->dthps_maxprovs == 0)
14561                         help->dthps_maxprovs = 2;
14562                 else
14563                         help->dthps_maxprovs *= 2;
14564                 if (help->dthps_maxprovs > dtrace_helper_providers_max)
14565                         help->dthps_maxprovs = dtrace_helper_providers_max;
14566
14567                 ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14568
14569                 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14570                     sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14571
14572                 if (tmp_provs != NULL) {
14573                         bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14574                             sizeof (dtrace_helper_provider_t *));
14575                         kmem_free(tmp_provs, tmp_maxprovs *
14576                             sizeof (dtrace_helper_provider_t *));
14577                 }
14578         }
14579
14580         help->dthps_provs[help->dthps_nprovs] = hprov;
14581         help->dthps_nprovs++;
14582
14583         return (0);
14584 }
14585
14586 static void
14587 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14588 {
14589         mutex_enter(&dtrace_lock);
14590
14591         if (--hprov->dthp_ref == 0) {
14592                 dof_hdr_t *dof;
14593                 mutex_exit(&dtrace_lock);
14594                 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14595                 dtrace_dof_destroy(dof);
14596                 kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14597         } else {
14598                 mutex_exit(&dtrace_lock);
14599         }
14600 }
14601
14602 static int
14603 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14604 {
14605         uintptr_t daddr = (uintptr_t)dof;
14606         dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14607         dof_provider_t *provider;
14608         dof_probe_t *probe;
14609         uint8_t *arg;
14610         char *strtab, *typestr;
14611         dof_stridx_t typeidx;
14612         size_t typesz;
14613         uint_t nprobes, j, k;
14614
14615         ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14616
14617         if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14618                 dtrace_dof_error(dof, "misaligned section offset");
14619                 return (-1);
14620         }
14621
14622         /*
14623          * The section needs to be large enough to contain the DOF provider
14624          * structure appropriate for the given version.
14625          */
14626         if (sec->dofs_size <
14627             ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14628             offsetof(dof_provider_t, dofpv_prenoffs) :
14629             sizeof (dof_provider_t))) {
14630                 dtrace_dof_error(dof, "provider section too small");
14631                 return (-1);
14632         }
14633
14634         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14635         str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14636         prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14637         arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14638         off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14639
14640         if (str_sec == NULL || prb_sec == NULL ||
14641             arg_sec == NULL || off_sec == NULL)
14642                 return (-1);
14643
14644         enoff_sec = NULL;
14645
14646         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14647             provider->dofpv_prenoffs != DOF_SECT_NONE &&
14648             (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14649             provider->dofpv_prenoffs)) == NULL)
14650                 return (-1);
14651
14652         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14653
14654         if (provider->dofpv_name >= str_sec->dofs_size ||
14655             strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14656                 dtrace_dof_error(dof, "invalid provider name");
14657                 return (-1);
14658         }
14659
14660         if (prb_sec->dofs_entsize == 0 ||
14661             prb_sec->dofs_entsize > prb_sec->dofs_size) {
14662                 dtrace_dof_error(dof, "invalid entry size");
14663                 return (-1);
14664         }
14665
14666         if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14667                 dtrace_dof_error(dof, "misaligned entry size");
14668                 return (-1);
14669         }
14670
14671         if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14672                 dtrace_dof_error(dof, "invalid entry size");
14673                 return (-1);
14674         }
14675
14676         if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14677                 dtrace_dof_error(dof, "misaligned section offset");
14678                 return (-1);
14679         }
14680
14681         if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14682                 dtrace_dof_error(dof, "invalid entry size");
14683                 return (-1);
14684         }
14685
14686         arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14687
14688         nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14689
14690         /*
14691          * Take a pass through the probes to check for errors.
14692          */
14693         for (j = 0; j < nprobes; j++) {
14694                 probe = (dof_probe_t *)(uintptr_t)(daddr +
14695                     prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14696
14697                 if (probe->dofpr_func >= str_sec->dofs_size) {
14698                         dtrace_dof_error(dof, "invalid function name");
14699                         return (-1);
14700                 }
14701
14702                 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14703                         dtrace_dof_error(dof, "function name too long");
14704                         return (-1);
14705                 }
14706
14707                 if (probe->dofpr_name >= str_sec->dofs_size ||
14708                     strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14709                         dtrace_dof_error(dof, "invalid probe name");
14710                         return (-1);
14711                 }
14712
14713                 /*
14714                  * The offset count must not wrap the index, and the offsets
14715                  * must also not overflow the section's data.
14716                  */
14717                 if (probe->dofpr_offidx + probe->dofpr_noffs <
14718                     probe->dofpr_offidx ||
14719                     (probe->dofpr_offidx + probe->dofpr_noffs) *
14720                     off_sec->dofs_entsize > off_sec->dofs_size) {
14721                         dtrace_dof_error(dof, "invalid probe offset");
14722                         return (-1);
14723                 }
14724
14725                 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14726                         /*
14727                          * If there's no is-enabled offset section, make sure
14728                          * there aren't any is-enabled offsets. Otherwise
14729                          * perform the same checks as for probe offsets
14730                          * (immediately above).
14731                          */
14732                         if (enoff_sec == NULL) {
14733                                 if (probe->dofpr_enoffidx != 0 ||
14734                                     probe->dofpr_nenoffs != 0) {
14735                                         dtrace_dof_error(dof, "is-enabled "
14736                                             "offsets with null section");
14737                                         return (-1);
14738                                 }
14739                         } else if (probe->dofpr_enoffidx +
14740                             probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14741                             (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14742                             enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14743                                 dtrace_dof_error(dof, "invalid is-enabled "
14744                                     "offset");
14745                                 return (-1);
14746                         }
14747
14748                         if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14749                                 dtrace_dof_error(dof, "zero probe and "
14750                                     "is-enabled offsets");
14751                                 return (-1);
14752                         }
14753                 } else if (probe->dofpr_noffs == 0) {
14754                         dtrace_dof_error(dof, "zero probe offsets");
14755                         return (-1);
14756                 }
14757
14758                 if (probe->dofpr_argidx + probe->dofpr_xargc <
14759                     probe->dofpr_argidx ||
14760                     (probe->dofpr_argidx + probe->dofpr_xargc) *
14761                     arg_sec->dofs_entsize > arg_sec->dofs_size) {
14762                         dtrace_dof_error(dof, "invalid args");
14763                         return (-1);
14764                 }
14765
14766                 typeidx = probe->dofpr_nargv;
14767                 typestr = strtab + probe->dofpr_nargv;
14768                 for (k = 0; k < probe->dofpr_nargc; k++) {
14769                         if (typeidx >= str_sec->dofs_size) {
14770                                 dtrace_dof_error(dof, "bad "
14771                                     "native argument type");
14772                                 return (-1);
14773                         }
14774
14775                         typesz = strlen(typestr) + 1;
14776                         if (typesz > DTRACE_ARGTYPELEN) {
14777                                 dtrace_dof_error(dof, "native "
14778                                     "argument type too long");
14779                                 return (-1);
14780                         }
14781                         typeidx += typesz;
14782                         typestr += typesz;
14783                 }
14784
14785                 typeidx = probe->dofpr_xargv;
14786                 typestr = strtab + probe->dofpr_xargv;
14787                 for (k = 0; k < probe->dofpr_xargc; k++) {
14788                         if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14789                                 dtrace_dof_error(dof, "bad "
14790                                     "native argument index");
14791                                 return (-1);
14792                         }
14793
14794                         if (typeidx >= str_sec->dofs_size) {
14795                                 dtrace_dof_error(dof, "bad "
14796                                     "translated argument type");
14797                                 return (-1);
14798                         }
14799
14800                         typesz = strlen(typestr) + 1;
14801                         if (typesz > DTRACE_ARGTYPELEN) {
14802                                 dtrace_dof_error(dof, "translated argument "
14803                                     "type too long");
14804                                 return (-1);
14805                         }
14806
14807                         typeidx += typesz;
14808                         typestr += typesz;
14809                 }
14810         }
14811
14812         return (0);
14813 }
14814
14815 static int
14816 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14817 {
14818         dtrace_helpers_t *help;
14819         dtrace_vstate_t *vstate;
14820         dtrace_enabling_t *enab = NULL;
14821         int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14822         uintptr_t daddr = (uintptr_t)dof;
14823
14824         ASSERT(MUTEX_HELD(&dtrace_lock));
14825
14826         if ((help = curproc->p_dtrace_helpers) == NULL)
14827                 help = dtrace_helpers_create(curproc);
14828
14829         vstate = &help->dthps_vstate;
14830
14831         if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14832             dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14833                 dtrace_dof_destroy(dof);
14834                 return (rv);
14835         }
14836
14837         /*
14838          * Look for helper providers and validate their descriptions.
14839          */
14840         if (dhp != NULL) {
14841                 for (i = 0; i < dof->dofh_secnum; i++) {
14842                         dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14843                             dof->dofh_secoff + i * dof->dofh_secsize);
14844
14845                         if (sec->dofs_type != DOF_SECT_PROVIDER)
14846                                 continue;
14847
14848                         if (dtrace_helper_provider_validate(dof, sec) != 0) {
14849                                 dtrace_enabling_destroy(enab);
14850                                 dtrace_dof_destroy(dof);
14851                                 return (-1);
14852                         }
14853
14854                         nprovs++;
14855                 }
14856         }
14857
14858         /*
14859          * Now we need to walk through the ECB descriptions in the enabling.
14860          */
14861         for (i = 0; i < enab->dten_ndesc; i++) {
14862                 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14863                 dtrace_probedesc_t *desc = &ep->dted_probe;
14864
14865                 if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14866                         continue;
14867
14868                 if (strcmp(desc->dtpd_mod, "helper") != 0)
14869                         continue;
14870
14871                 if (strcmp(desc->dtpd_func, "ustack") != 0)
14872                         continue;
14873
14874                 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14875                     ep)) != 0) {
14876                         /*
14877                          * Adding this helper action failed -- we are now going
14878                          * to rip out the entire generation and return failure.
14879                          */
14880                         (void) dtrace_helper_destroygen(help->dthps_generation);
14881                         dtrace_enabling_destroy(enab);
14882                         dtrace_dof_destroy(dof);
14883                         return (-1);
14884                 }
14885
14886                 nhelpers++;
14887         }
14888
14889         if (nhelpers < enab->dten_ndesc)
14890                 dtrace_dof_error(dof, "unmatched helpers");
14891
14892         gen = help->dthps_generation++;
14893         dtrace_enabling_destroy(enab);
14894
14895         if (dhp != NULL && nprovs > 0) {
14896                 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14897                 if (dtrace_helper_provider_add(dhp, gen) == 0) {
14898                         mutex_exit(&dtrace_lock);
14899                         dtrace_helper_provider_register(curproc, help, dhp);
14900                         mutex_enter(&dtrace_lock);
14901
14902                         destroy = 0;
14903                 }
14904         }
14905
14906         if (destroy)
14907                 dtrace_dof_destroy(dof);
14908
14909         return (gen);
14910 }
14911
14912 static dtrace_helpers_t *
14913 dtrace_helpers_create(proc_t *p)
14914 {
14915         dtrace_helpers_t *help;
14916
14917         ASSERT(MUTEX_HELD(&dtrace_lock));
14918         ASSERT(p->p_dtrace_helpers == NULL);
14919
14920         help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14921         help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14922             DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14923
14924         p->p_dtrace_helpers = help;
14925         dtrace_helpers++;
14926
14927         return (help);
14928 }
14929
14930 #if defined(sun)
14931 static
14932 #endif
14933 void
14934 dtrace_helpers_destroy(proc_t *p)
14935 {
14936         dtrace_helpers_t *help;
14937         dtrace_vstate_t *vstate;
14938 #if defined(sun)
14939         proc_t *p = curproc;
14940 #endif
14941         int i;
14942
14943         mutex_enter(&dtrace_lock);
14944
14945         ASSERT(p->p_dtrace_helpers != NULL);
14946         ASSERT(dtrace_helpers > 0);
14947
14948         help = p->p_dtrace_helpers;
14949         vstate = &help->dthps_vstate;
14950
14951         /*
14952          * We're now going to lose the help from this process.
14953          */
14954         p->p_dtrace_helpers = NULL;
14955         dtrace_sync();
14956
14957         /*
14958          * Destory the helper actions.
14959          */
14960         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14961                 dtrace_helper_action_t *h, *next;
14962
14963                 for (h = help->dthps_actions[i]; h != NULL; h = next) {
14964                         next = h->dtha_next;
14965                         dtrace_helper_action_destroy(h, vstate);
14966                         h = next;
14967                 }
14968         }
14969
14970         mutex_exit(&dtrace_lock);
14971
14972         /*
14973          * Destroy the helper providers.
14974          */
14975         if (help->dthps_maxprovs > 0) {
14976                 mutex_enter(&dtrace_meta_lock);
14977                 if (dtrace_meta_pid != NULL) {
14978                         ASSERT(dtrace_deferred_pid == NULL);
14979
14980                         for (i = 0; i < help->dthps_nprovs; i++) {
14981                                 dtrace_helper_provider_remove(
14982                                     &help->dthps_provs[i]->dthp_prov, p->p_pid);
14983                         }
14984                 } else {
14985                         mutex_enter(&dtrace_lock);
14986                         ASSERT(help->dthps_deferred == 0 ||
14987                             help->dthps_next != NULL ||
14988                             help->dthps_prev != NULL ||
14989                             help == dtrace_deferred_pid);
14990
14991                         /*
14992                          * Remove the helper from the deferred list.
14993                          */
14994                         if (help->dthps_next != NULL)
14995                                 help->dthps_next->dthps_prev = help->dthps_prev;
14996                         if (help->dthps_prev != NULL)
14997                                 help->dthps_prev->dthps_next = help->dthps_next;
14998                         if (dtrace_deferred_pid == help) {
14999                                 dtrace_deferred_pid = help->dthps_next;
15000                                 ASSERT(help->dthps_prev == NULL);
15001                         }
15002
15003                         mutex_exit(&dtrace_lock);
15004                 }
15005
15006                 mutex_exit(&dtrace_meta_lock);
15007
15008                 for (i = 0; i < help->dthps_nprovs; i++) {
15009                         dtrace_helper_provider_destroy(help->dthps_provs[i]);
15010                 }
15011
15012                 kmem_free(help->dthps_provs, help->dthps_maxprovs *
15013                     sizeof (dtrace_helper_provider_t *));
15014         }
15015
15016         mutex_enter(&dtrace_lock);
15017
15018         dtrace_vstate_fini(&help->dthps_vstate);
15019         kmem_free(help->dthps_actions,
15020             sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
15021         kmem_free(help, sizeof (dtrace_helpers_t));
15022
15023         --dtrace_helpers;
15024         mutex_exit(&dtrace_lock);
15025 }
15026
15027 #if defined(sun)
15028 static
15029 #endif
15030 void
15031 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
15032 {
15033         dtrace_helpers_t *help, *newhelp;
15034         dtrace_helper_action_t *helper, *new, *last;
15035         dtrace_difo_t *dp;
15036         dtrace_vstate_t *vstate;
15037         int i, j, sz, hasprovs = 0;
15038
15039         mutex_enter(&dtrace_lock);
15040         ASSERT(from->p_dtrace_helpers != NULL);
15041         ASSERT(dtrace_helpers > 0);
15042
15043         help = from->p_dtrace_helpers;
15044         newhelp = dtrace_helpers_create(to);
15045         ASSERT(to->p_dtrace_helpers != NULL);
15046
15047         newhelp->dthps_generation = help->dthps_generation;
15048         vstate = &newhelp->dthps_vstate;
15049
15050         /*
15051          * Duplicate the helper actions.
15052          */
15053         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15054                 if ((helper = help->dthps_actions[i]) == NULL)
15055                         continue;
15056
15057                 for (last = NULL; helper != NULL; helper = helper->dtha_next) {
15058                         new = kmem_zalloc(sizeof (dtrace_helper_action_t),
15059                             KM_SLEEP);
15060                         new->dtha_generation = helper->dtha_generation;
15061
15062                         if ((dp = helper->dtha_predicate) != NULL) {
15063                                 dp = dtrace_difo_duplicate(dp, vstate);
15064                                 new->dtha_predicate = dp;
15065                         }
15066
15067                         new->dtha_nactions = helper->dtha_nactions;
15068                         sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
15069                         new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
15070
15071                         for (j = 0; j < new->dtha_nactions; j++) {
15072                                 dtrace_difo_t *dp = helper->dtha_actions[j];
15073
15074                                 ASSERT(dp != NULL);
15075                                 dp = dtrace_difo_duplicate(dp, vstate);
15076                                 new->dtha_actions[j] = dp;
15077                         }
15078
15079                         if (last != NULL) {
15080                                 last->dtha_next = new;
15081                         } else {
15082                                 newhelp->dthps_actions[i] = new;
15083                         }
15084
15085                         last = new;
15086                 }
15087         }
15088
15089         /*
15090          * Duplicate the helper providers and register them with the
15091          * DTrace framework.
15092          */
15093         if (help->dthps_nprovs > 0) {
15094                 newhelp->dthps_nprovs = help->dthps_nprovs;
15095                 newhelp->dthps_maxprovs = help->dthps_nprovs;
15096                 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
15097                     sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15098                 for (i = 0; i < newhelp->dthps_nprovs; i++) {
15099                         newhelp->dthps_provs[i] = help->dthps_provs[i];
15100                         newhelp->dthps_provs[i]->dthp_ref++;
15101                 }
15102
15103                 hasprovs = 1;
15104         }
15105
15106         mutex_exit(&dtrace_lock);
15107
15108         if (hasprovs)
15109                 dtrace_helper_provider_register(to, newhelp, NULL);
15110 }
15111
15112 /*
15113  * DTrace Hook Functions
15114  */
15115 static void
15116 dtrace_module_loaded(modctl_t *ctl)
15117 {
15118         dtrace_provider_t *prv;
15119
15120         mutex_enter(&dtrace_provider_lock);
15121         mutex_enter(&mod_lock);
15122
15123 #if defined(sun)
15124         ASSERT(ctl->mod_busy);
15125 #endif
15126
15127         /*
15128          * We're going to call each providers per-module provide operation
15129          * specifying only this module.
15130          */
15131         for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
15132                 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
15133
15134         mutex_exit(&mod_lock);
15135         mutex_exit(&dtrace_provider_lock);
15136
15137         /*
15138          * If we have any retained enablings, we need to match against them.
15139          * Enabling probes requires that cpu_lock be held, and we cannot hold
15140          * cpu_lock here -- it is legal for cpu_lock to be held when loading a
15141          * module.  (In particular, this happens when loading scheduling
15142          * classes.)  So if we have any retained enablings, we need to dispatch
15143          * our task queue to do the match for us.
15144          */
15145         mutex_enter(&dtrace_lock);
15146
15147         if (dtrace_retained == NULL) {
15148                 mutex_exit(&dtrace_lock);
15149                 return;
15150         }
15151
15152         (void) taskq_dispatch(dtrace_taskq,
15153             (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
15154
15155         mutex_exit(&dtrace_lock);
15156
15157         /*
15158          * And now, for a little heuristic sleaze:  in general, we want to
15159          * match modules as soon as they load.  However, we cannot guarantee
15160          * this, because it would lead us to the lock ordering violation
15161          * outlined above.  The common case, of course, is that cpu_lock is
15162          * _not_ held -- so we delay here for a clock tick, hoping that that's
15163          * long enough for the task queue to do its work.  If it's not, it's
15164          * not a serious problem -- it just means that the module that we
15165          * just loaded may not be immediately instrumentable.
15166          */
15167         delay(1);
15168 }
15169
15170 static void
15171 #if defined(sun)
15172 dtrace_module_unloaded(modctl_t *ctl)
15173 #else
15174 dtrace_module_unloaded(modctl_t *ctl, int *error)
15175 #endif
15176 {
15177         dtrace_probe_t template, *probe, *first, *next;
15178         dtrace_provider_t *prov;
15179 #if !defined(sun)
15180         char modname[DTRACE_MODNAMELEN];
15181         size_t len;
15182 #endif
15183
15184 #if defined(sun)
15185         template.dtpr_mod = ctl->mod_modname;
15186 #else
15187         /* Handle the fact that ctl->filename may end in ".ko". */
15188         strlcpy(modname, ctl->filename, sizeof(modname));
15189         len = strlen(ctl->filename);
15190         if (len > 3 && strcmp(modname + len - 3, ".ko") == 0)
15191                 modname[len - 3] = '\0';
15192         template.dtpr_mod = modname;
15193 #endif
15194
15195         mutex_enter(&dtrace_provider_lock);
15196         mutex_enter(&mod_lock);
15197         mutex_enter(&dtrace_lock);
15198
15199 #if !defined(sun)
15200         if (ctl->nenabled > 0) {
15201                 /* Don't allow unloads if a probe is enabled. */
15202                 mutex_exit(&dtrace_provider_lock);
15203                 mutex_exit(&dtrace_lock);
15204                 *error = -1;
15205                 printf(
15206         "kldunload: attempt to unload module that has DTrace probes enabled\n");
15207                 return;
15208         }
15209 #endif
15210
15211         if (dtrace_bymod == NULL) {
15212                 /*
15213                  * The DTrace module is loaded (obviously) but not attached;
15214                  * we don't have any work to do.
15215                  */
15216                 mutex_exit(&dtrace_provider_lock);
15217                 mutex_exit(&mod_lock);
15218                 mutex_exit(&dtrace_lock);
15219                 return;
15220         }
15221
15222         for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
15223             probe != NULL; probe = probe->dtpr_nextmod) {
15224                 if (probe->dtpr_ecb != NULL) {
15225                         mutex_exit(&dtrace_provider_lock);
15226                         mutex_exit(&mod_lock);
15227                         mutex_exit(&dtrace_lock);
15228
15229                         /*
15230                          * This shouldn't _actually_ be possible -- we're
15231                          * unloading a module that has an enabled probe in it.
15232                          * (It's normally up to the provider to make sure that
15233                          * this can't happen.)  However, because dtps_enable()
15234                          * doesn't have a failure mode, there can be an
15235                          * enable/unload race.  Upshot:  we don't want to
15236                          * assert, but we're not going to disable the
15237                          * probe, either.
15238                          */
15239                         if (dtrace_err_verbose) {
15240 #if defined(sun)
15241                                 cmn_err(CE_WARN, "unloaded module '%s' had "
15242                                     "enabled probes", ctl->mod_modname);
15243 #else
15244                                 cmn_err(CE_WARN, "unloaded module '%s' had "
15245                                     "enabled probes", modname);
15246 #endif
15247                         }
15248
15249                         return;
15250                 }
15251         }
15252
15253         probe = first;
15254
15255         for (first = NULL; probe != NULL; probe = next) {
15256                 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
15257
15258                 dtrace_probes[probe->dtpr_id - 1] = NULL;
15259
15260                 next = probe->dtpr_nextmod;
15261                 dtrace_hash_remove(dtrace_bymod, probe);
15262                 dtrace_hash_remove(dtrace_byfunc, probe);
15263                 dtrace_hash_remove(dtrace_byname, probe);
15264
15265                 if (first == NULL) {
15266                         first = probe;
15267                         probe->dtpr_nextmod = NULL;
15268                 } else {
15269                         probe->dtpr_nextmod = first;
15270                         first = probe;
15271                 }
15272         }
15273
15274         /*
15275          * We've removed all of the module's probes from the hash chains and
15276          * from the probe array.  Now issue a dtrace_sync() to be sure that
15277          * everyone has cleared out from any probe array processing.
15278          */
15279         dtrace_sync();
15280
15281         for (probe = first; probe != NULL; probe = first) {
15282                 first = probe->dtpr_nextmod;
15283                 prov = probe->dtpr_provider;
15284                 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15285                     probe->dtpr_arg);
15286                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15287                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15288                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15289 #if defined(sun)
15290                 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15291 #else
15292                 free_unr(dtrace_arena, probe->dtpr_id);
15293 #endif
15294                 kmem_free(probe, sizeof (dtrace_probe_t));
15295         }
15296
15297         mutex_exit(&dtrace_lock);
15298         mutex_exit(&mod_lock);
15299         mutex_exit(&dtrace_provider_lock);
15300 }
15301
15302 #if !defined(sun)
15303 static void
15304 dtrace_kld_load(void *arg __unused, linker_file_t lf)
15305 {
15306
15307         dtrace_module_loaded(lf);
15308 }
15309
15310 static void
15311 dtrace_kld_unload(void *arg __unused, linker_file_t lf, int *error)
15312 {
15313
15314         if (*error != 0)
15315                 /* We already have an error, so don't do anything. */
15316                 return;
15317         dtrace_module_unloaded(lf, error);
15318 }
15319 #endif
15320
15321 #if defined(sun)
15322 static void
15323 dtrace_suspend(void)
15324 {
15325         dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15326 }
15327
15328 static void
15329 dtrace_resume(void)
15330 {
15331         dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
15332 }
15333 #endif
15334
15335 static int
15336 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
15337 {
15338         ASSERT(MUTEX_HELD(&cpu_lock));
15339         mutex_enter(&dtrace_lock);
15340
15341         switch (what) {
15342         case CPU_CONFIG: {
15343                 dtrace_state_t *state;
15344                 dtrace_optval_t *opt, rs, c;
15345
15346                 /*
15347                  * For now, we only allocate a new buffer for anonymous state.
15348                  */
15349                 if ((state = dtrace_anon.dta_state) == NULL)
15350                         break;
15351
15352                 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
15353                         break;
15354
15355                 opt = state->dts_options;
15356                 c = opt[DTRACEOPT_CPU];
15357
15358                 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
15359                         break;
15360
15361                 /*
15362                  * Regardless of what the actual policy is, we're going to
15363                  * temporarily set our resize policy to be manual.  We're
15364                  * also going to temporarily set our CPU option to denote
15365                  * the newly configured CPU.
15366                  */
15367                 rs = opt[DTRACEOPT_BUFRESIZE];
15368                 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15369                 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15370
15371                 (void) dtrace_state_buffers(state);
15372
15373                 opt[DTRACEOPT_BUFRESIZE] = rs;
15374                 opt[DTRACEOPT_CPU] = c;
15375
15376                 break;
15377         }
15378
15379         case CPU_UNCONFIG:
15380                 /*
15381                  * We don't free the buffer in the CPU_UNCONFIG case.  (The
15382                  * buffer will be freed when the consumer exits.)
15383                  */
15384                 break;
15385
15386         default:
15387                 break;
15388         }
15389
15390         mutex_exit(&dtrace_lock);
15391         return (0);
15392 }
15393
15394 #if defined(sun)
15395 static void
15396 dtrace_cpu_setup_initial(processorid_t cpu)
15397 {
15398         (void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15399 }
15400 #endif
15401
15402 static void
15403 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15404 {
15405         if (dtrace_toxranges >= dtrace_toxranges_max) {
15406                 int osize, nsize;
15407                 dtrace_toxrange_t *range;
15408
15409                 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15410
15411                 if (osize == 0) {
15412                         ASSERT(dtrace_toxrange == NULL);
15413                         ASSERT(dtrace_toxranges_max == 0);
15414                         dtrace_toxranges_max = 1;
15415                 } else {
15416                         dtrace_toxranges_max <<= 1;
15417                 }
15418
15419                 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15420                 range = kmem_zalloc(nsize, KM_SLEEP);
15421
15422                 if (dtrace_toxrange != NULL) {
15423                         ASSERT(osize != 0);
15424                         bcopy(dtrace_toxrange, range, osize);
15425                         kmem_free(dtrace_toxrange, osize);
15426                 }
15427
15428                 dtrace_toxrange = range;
15429         }
15430
15431         ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
15432         ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
15433
15434         dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15435         dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15436         dtrace_toxranges++;
15437 }
15438
15439 /*
15440  * DTrace Driver Cookbook Functions
15441  */
15442 #if defined(sun)
15443 /*ARGSUSED*/
15444 static int
15445 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15446 {
15447         dtrace_provider_id_t id;
15448         dtrace_state_t *state = NULL;
15449         dtrace_enabling_t *enab;
15450
15451         mutex_enter(&cpu_lock);
15452         mutex_enter(&dtrace_provider_lock);
15453         mutex_enter(&dtrace_lock);
15454
15455         if (ddi_soft_state_init(&dtrace_softstate,
15456             sizeof (dtrace_state_t), 0) != 0) {
15457                 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15458                 mutex_exit(&cpu_lock);
15459                 mutex_exit(&dtrace_provider_lock);
15460                 mutex_exit(&dtrace_lock);
15461                 return (DDI_FAILURE);
15462         }
15463
15464         if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15465             DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15466             ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15467             DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15468                 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15469                 ddi_remove_minor_node(devi, NULL);
15470                 ddi_soft_state_fini(&dtrace_softstate);
15471                 mutex_exit(&cpu_lock);
15472                 mutex_exit(&dtrace_provider_lock);
15473                 mutex_exit(&dtrace_lock);
15474                 return (DDI_FAILURE);
15475         }
15476
15477         ddi_report_dev(devi);
15478         dtrace_devi = devi;
15479
15480         dtrace_modload = dtrace_module_loaded;
15481         dtrace_modunload = dtrace_module_unloaded;
15482         dtrace_cpu_init = dtrace_cpu_setup_initial;
15483         dtrace_helpers_cleanup = dtrace_helpers_destroy;
15484         dtrace_helpers_fork = dtrace_helpers_duplicate;
15485         dtrace_cpustart_init = dtrace_suspend;
15486         dtrace_cpustart_fini = dtrace_resume;
15487         dtrace_debugger_init = dtrace_suspend;
15488         dtrace_debugger_fini = dtrace_resume;
15489
15490         register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15491
15492         ASSERT(MUTEX_HELD(&cpu_lock));
15493
15494         dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15495             NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15496         dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15497             UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15498             VM_SLEEP | VMC_IDENTIFIER);
15499         dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15500             1, INT_MAX, 0);
15501
15502         dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15503             sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15504             NULL, NULL, NULL, NULL, NULL, 0);
15505
15506         ASSERT(MUTEX_HELD(&cpu_lock));
15507         dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15508             offsetof(dtrace_probe_t, dtpr_nextmod),
15509             offsetof(dtrace_probe_t, dtpr_prevmod));
15510
15511         dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15512             offsetof(dtrace_probe_t, dtpr_nextfunc),
15513             offsetof(dtrace_probe_t, dtpr_prevfunc));
15514
15515         dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15516             offsetof(dtrace_probe_t, dtpr_nextname),
15517             offsetof(dtrace_probe_t, dtpr_prevname));
15518
15519         if (dtrace_retain_max < 1) {
15520                 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15521                     "setting to 1", dtrace_retain_max);
15522                 dtrace_retain_max = 1;
15523         }
15524
15525         /*
15526          * Now discover our toxic ranges.
15527          */
15528         dtrace_toxic_ranges(dtrace_toxrange_add);
15529
15530         /*
15531          * Before we register ourselves as a provider to our own framework,
15532          * we would like to assert that dtrace_provider is NULL -- but that's
15533          * not true if we were loaded as a dependency of a DTrace provider.
15534          * Once we've registered, we can assert that dtrace_provider is our
15535          * pseudo provider.
15536          */
15537         (void) dtrace_register("dtrace", &dtrace_provider_attr,
15538             DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15539
15540         ASSERT(dtrace_provider != NULL);
15541         ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15542
15543         dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15544             dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15545         dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15546             dtrace_provider, NULL, NULL, "END", 0, NULL);
15547         dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15548             dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15549
15550         dtrace_anon_property();
15551         mutex_exit(&cpu_lock);
15552
15553         /*
15554          * If DTrace helper tracing is enabled, we need to allocate the
15555          * trace buffer and initialize the values.
15556          */
15557         if (dtrace_helptrace_enabled) {
15558                 ASSERT(dtrace_helptrace_buffer == NULL);
15559                 dtrace_helptrace_buffer =
15560                     kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15561                 dtrace_helptrace_next = 0;
15562         }
15563
15564         /*
15565          * If there are already providers, we must ask them to provide their
15566          * probes, and then match any anonymous enabling against them.  Note
15567          * that there should be no other retained enablings at this time:
15568          * the only retained enablings at this time should be the anonymous
15569          * enabling.
15570          */
15571         if (dtrace_anon.dta_enabling != NULL) {
15572                 ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15573
15574                 dtrace_enabling_provide(NULL);
15575                 state = dtrace_anon.dta_state;
15576
15577                 /*
15578                  * We couldn't hold cpu_lock across the above call to
15579                  * dtrace_enabling_provide(), but we must hold it to actually
15580                  * enable the probes.  We have to drop all of our locks, pick
15581                  * up cpu_lock, and regain our locks before matching the
15582                  * retained anonymous enabling.
15583                  */
15584                 mutex_exit(&dtrace_lock);
15585                 mutex_exit(&dtrace_provider_lock);
15586
15587                 mutex_enter(&cpu_lock);
15588                 mutex_enter(&dtrace_provider_lock);
15589                 mutex_enter(&dtrace_lock);
15590
15591                 if ((enab = dtrace_anon.dta_enabling) != NULL)
15592                         (void) dtrace_enabling_match(enab, NULL);
15593
15594                 mutex_exit(&cpu_lock);
15595         }
15596
15597         mutex_exit(&dtrace_lock);
15598         mutex_exit(&dtrace_provider_lock);
15599
15600         if (state != NULL) {
15601                 /*
15602                  * If we created any anonymous state, set it going now.
15603                  */
15604                 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15605         }
15606
15607         return (DDI_SUCCESS);
15608 }
15609 #endif
15610
15611 #if !defined(sun)
15612 #if __FreeBSD_version >= 800039
15613 static void
15614 dtrace_dtr(void *data __unused)
15615 {
15616 }
15617 #endif
15618 #endif
15619
15620 /*ARGSUSED*/
15621 static int
15622 #if defined(sun)
15623 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15624 #else
15625 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
15626 #endif
15627 {
15628         dtrace_state_t *state;
15629         uint32_t priv;
15630         uid_t uid;
15631         zoneid_t zoneid;
15632
15633 #if defined(sun)
15634         if (getminor(*devp) == DTRACEMNRN_HELPER)
15635                 return (0);
15636
15637         /*
15638          * If this wasn't an open with the "helper" minor, then it must be
15639          * the "dtrace" minor.
15640          */
15641         ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
15642 #else
15643         cred_t *cred_p = NULL;
15644
15645 #if __FreeBSD_version < 800039
15646         /*
15647          * The first minor device is the one that is cloned so there is
15648          * nothing more to do here.
15649          */
15650         if (dev2unit(dev) == 0)
15651                 return 0;
15652
15653         /*
15654          * Devices are cloned, so if the DTrace state has already
15655          * been allocated, that means this device belongs to a
15656          * different client. Each client should open '/dev/dtrace'
15657          * to get a cloned device.
15658          */
15659         if (dev->si_drv1 != NULL)
15660                 return (EBUSY);
15661 #endif
15662
15663         cred_p = dev->si_cred;
15664 #endif
15665
15666         /*
15667          * If no DTRACE_PRIV_* bits are set in the credential, then the
15668          * caller lacks sufficient permission to do anything with DTrace.
15669          */
15670         dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15671         if (priv == DTRACE_PRIV_NONE) {
15672 #if !defined(sun)
15673 #if __FreeBSD_version < 800039
15674                 /* Destroy the cloned device. */
15675                 destroy_dev(dev);
15676 #endif
15677 #endif
15678
15679                 return (EACCES);
15680         }
15681
15682         /*
15683          * Ask all providers to provide all their probes.
15684          */
15685         mutex_enter(&dtrace_provider_lock);
15686         dtrace_probe_provide(NULL, NULL);
15687         mutex_exit(&dtrace_provider_lock);
15688
15689         mutex_enter(&cpu_lock);
15690         mutex_enter(&dtrace_lock);
15691         dtrace_opens++;
15692         dtrace_membar_producer();
15693
15694 #if defined(sun)
15695         /*
15696          * If the kernel debugger is active (that is, if the kernel debugger
15697          * modified text in some way), we won't allow the open.
15698          */
15699         if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15700                 dtrace_opens--;
15701                 mutex_exit(&cpu_lock);
15702                 mutex_exit(&dtrace_lock);
15703                 return (EBUSY);
15704         }
15705
15706         state = dtrace_state_create(devp, cred_p);
15707 #else
15708         state = dtrace_state_create(dev);
15709 #if __FreeBSD_version < 800039
15710         dev->si_drv1 = state;
15711 #else
15712         devfs_set_cdevpriv(state, dtrace_dtr);
15713 #endif
15714         /* This code actually belongs in dtrace_attach() */
15715         if (dtrace_opens == 1)
15716                 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15717                     1, INT_MAX, 0);
15718 #endif
15719
15720         mutex_exit(&cpu_lock);
15721
15722         if (state == NULL) {
15723 #if defined(sun)
15724                 if (--dtrace_opens == 0)
15725                         (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15726 #else
15727                 --dtrace_opens;
15728 #endif
15729                 mutex_exit(&dtrace_lock);
15730 #if !defined(sun)
15731 #if __FreeBSD_version < 800039
15732                 /* Destroy the cloned device. */
15733                 destroy_dev(dev);
15734 #endif
15735 #endif
15736                 return (EAGAIN);
15737         }
15738
15739         mutex_exit(&dtrace_lock);
15740
15741         return (0);
15742 }
15743
15744 /*ARGSUSED*/
15745 static int
15746 #if defined(sun)
15747 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15748 #else
15749 dtrace_close(struct cdev *dev, int flags, int fmt __unused, struct thread *td)
15750 #endif
15751 {
15752 #if defined(sun)
15753         minor_t minor = getminor(dev);
15754         dtrace_state_t *state;
15755
15756         if (minor == DTRACEMNRN_HELPER)
15757                 return (0);
15758
15759         state = ddi_get_soft_state(dtrace_softstate, minor);
15760 #else
15761 #if __FreeBSD_version < 800039
15762         dtrace_state_t *state = dev->si_drv1;
15763
15764         /* Check if this is not a cloned device. */
15765         if (dev2unit(dev) == 0)
15766                 return (0);
15767 #else
15768         dtrace_state_t *state;
15769         devfs_get_cdevpriv((void **) &state);
15770 #endif
15771
15772 #endif
15773
15774         mutex_enter(&cpu_lock);
15775         mutex_enter(&dtrace_lock);
15776
15777         if (state != NULL) {
15778                 if (state->dts_anon) {
15779                         /*
15780                          * There is anonymous state. Destroy that first.
15781                          */
15782                         ASSERT(dtrace_anon.dta_state == NULL);
15783                         dtrace_state_destroy(state->dts_anon);
15784                 }
15785
15786                 dtrace_state_destroy(state);
15787
15788 #if !defined(sun)
15789                 kmem_free(state, 0);
15790 #if __FreeBSD_version < 800039
15791                 dev->si_drv1 = NULL;
15792 #endif
15793 #endif
15794         }
15795
15796         ASSERT(dtrace_opens > 0);
15797 #if defined(sun)
15798         if (--dtrace_opens == 0)
15799                 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15800 #else
15801         --dtrace_opens;
15802         /* This code actually belongs in dtrace_detach() */
15803         if ((dtrace_opens == 0) && (dtrace_taskq != NULL)) {
15804                 taskq_destroy(dtrace_taskq);
15805                 dtrace_taskq = NULL;
15806         }
15807 #endif
15808
15809         mutex_exit(&dtrace_lock);
15810         mutex_exit(&cpu_lock);
15811
15812 #if __FreeBSD_version < 800039
15813         /* Schedule this cloned device to be destroyed. */
15814         destroy_dev_sched(dev);
15815 #endif
15816
15817         return (0);
15818 }
15819
15820 #if defined(sun)
15821 /*ARGSUSED*/
15822 static int
15823 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15824 {
15825         int rval;
15826         dof_helper_t help, *dhp = NULL;
15827
15828         switch (cmd) {
15829         case DTRACEHIOC_ADDDOF:
15830                 if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15831                         dtrace_dof_error(NULL, "failed to copyin DOF helper");
15832                         return (EFAULT);
15833                 }
15834
15835                 dhp = &help;
15836                 arg = (intptr_t)help.dofhp_dof;
15837                 /*FALLTHROUGH*/
15838
15839         case DTRACEHIOC_ADD: {
15840                 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15841
15842                 if (dof == NULL)
15843                         return (rval);
15844
15845                 mutex_enter(&dtrace_lock);
15846
15847                 /*
15848                  * dtrace_helper_slurp() takes responsibility for the dof --
15849                  * it may free it now or it may save it and free it later.
15850                  */
15851                 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15852                         *rv = rval;
15853                         rval = 0;
15854                 } else {
15855                         rval = EINVAL;
15856                 }
15857
15858                 mutex_exit(&dtrace_lock);
15859                 return (rval);
15860         }
15861
15862         case DTRACEHIOC_REMOVE: {
15863                 mutex_enter(&dtrace_lock);
15864                 rval = dtrace_helper_destroygen(arg);
15865                 mutex_exit(&dtrace_lock);
15866
15867                 return (rval);
15868         }
15869
15870         default:
15871                 break;
15872         }
15873
15874         return (ENOTTY);
15875 }
15876
15877 /*ARGSUSED*/
15878 static int
15879 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15880 {
15881         minor_t minor = getminor(dev);
15882         dtrace_state_t *state;
15883         int rval;
15884
15885         if (minor == DTRACEMNRN_HELPER)
15886                 return (dtrace_ioctl_helper(cmd, arg, rv));
15887
15888         state = ddi_get_soft_state(dtrace_softstate, minor);
15889
15890         if (state->dts_anon) {
15891                 ASSERT(dtrace_anon.dta_state == NULL);
15892                 state = state->dts_anon;
15893         }
15894
15895         switch (cmd) {
15896         case DTRACEIOC_PROVIDER: {
15897                 dtrace_providerdesc_t pvd;
15898                 dtrace_provider_t *pvp;
15899
15900                 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15901                         return (EFAULT);
15902
15903                 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15904                 mutex_enter(&dtrace_provider_lock);
15905
15906                 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15907                         if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15908                                 break;
15909                 }
15910
15911                 mutex_exit(&dtrace_provider_lock);
15912
15913                 if (pvp == NULL)
15914                         return (ESRCH);
15915
15916                 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15917                 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15918
15919                 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15920                         return (EFAULT);
15921
15922                 return (0);
15923         }
15924
15925         case DTRACEIOC_EPROBE: {
15926                 dtrace_eprobedesc_t epdesc;
15927                 dtrace_ecb_t *ecb;
15928                 dtrace_action_t *act;
15929                 void *buf;
15930                 size_t size;
15931                 uintptr_t dest;
15932                 int nrecs;
15933
15934                 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15935                         return (EFAULT);
15936
15937                 mutex_enter(&dtrace_lock);
15938
15939                 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15940                         mutex_exit(&dtrace_lock);
15941                         return (EINVAL);
15942                 }
15943
15944                 if (ecb->dte_probe == NULL) {
15945                         mutex_exit(&dtrace_lock);
15946                         return (EINVAL);
15947                 }
15948
15949                 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
15950                 epdesc.dtepd_uarg = ecb->dte_uarg;
15951                 epdesc.dtepd_size = ecb->dte_size;
15952
15953                 nrecs = epdesc.dtepd_nrecs;
15954                 epdesc.dtepd_nrecs = 0;
15955                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15956                         if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15957                                 continue;
15958
15959                         epdesc.dtepd_nrecs++;
15960                 }
15961
15962                 /*
15963                  * Now that we have the size, we need to allocate a temporary
15964                  * buffer in which to store the complete description.  We need
15965                  * the temporary buffer to be able to drop dtrace_lock()
15966                  * across the copyout(), below.
15967                  */
15968                 size = sizeof (dtrace_eprobedesc_t) +
15969                     (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
15970
15971                 buf = kmem_alloc(size, KM_SLEEP);
15972                 dest = (uintptr_t)buf;
15973
15974                 bcopy(&epdesc, (void *)dest, sizeof (epdesc));
15975                 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
15976
15977                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15978                         if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15979                                 continue;
15980
15981                         if (nrecs-- == 0)
15982                                 break;
15983
15984                         bcopy(&act->dta_rec, (void *)dest,
15985                             sizeof (dtrace_recdesc_t));
15986                         dest += sizeof (dtrace_recdesc_t);
15987                 }
15988
15989                 mutex_exit(&dtrace_lock);
15990
15991                 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15992                         kmem_free(buf, size);
15993                         return (EFAULT);
15994                 }
15995
15996                 kmem_free(buf, size);
15997                 return (0);
15998         }
15999
16000         case DTRACEIOC_AGGDESC: {
16001                 dtrace_aggdesc_t aggdesc;
16002                 dtrace_action_t *act;
16003                 dtrace_aggregation_t *agg;
16004                 int nrecs;
16005                 uint32_t offs;
16006                 dtrace_recdesc_t *lrec;
16007                 void *buf;
16008                 size_t size;
16009                 uintptr_t dest;
16010
16011                 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
16012                         return (EFAULT);
16013
16014                 mutex_enter(&dtrace_lock);
16015
16016                 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
16017                         mutex_exit(&dtrace_lock);
16018                         return (EINVAL);
16019                 }
16020
16021                 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
16022
16023                 nrecs = aggdesc.dtagd_nrecs;
16024                 aggdesc.dtagd_nrecs = 0;
16025
16026                 offs = agg->dtag_base;
16027                 lrec = &agg->dtag_action.dta_rec;
16028                 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
16029
16030                 for (act = agg->dtag_first; ; act = act->dta_next) {
16031                         ASSERT(act->dta_intuple ||
16032                             DTRACEACT_ISAGG(act->dta_kind));
16033
16034                         /*
16035                          * If this action has a record size of zero, it
16036                          * denotes an argument to the aggregating action.
16037                          * Because the presence of this record doesn't (or
16038                          * shouldn't) affect the way the data is interpreted,
16039                          * we don't copy it out to save user-level the
16040                          * confusion of dealing with a zero-length record.
16041                          */
16042                         if (act->dta_rec.dtrd_size == 0) {
16043                                 ASSERT(agg->dtag_hasarg);
16044                                 continue;
16045                         }
16046
16047                         aggdesc.dtagd_nrecs++;
16048
16049                         if (act == &agg->dtag_action)
16050                                 break;
16051                 }
16052
16053                 /*
16054                  * Now that we have the size, we need to allocate a temporary
16055                  * buffer in which to store the complete description.  We need
16056                  * the temporary buffer to be able to drop dtrace_lock()
16057                  * across the copyout(), below.
16058                  */
16059                 size = sizeof (dtrace_aggdesc_t) +
16060                     (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
16061
16062                 buf = kmem_alloc(size, KM_SLEEP);
16063                 dest = (uintptr_t)buf;
16064
16065                 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
16066                 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
16067
16068                 for (act = agg->dtag_first; ; act = act->dta_next) {
16069                         dtrace_recdesc_t rec = act->dta_rec;
16070
16071                         /*
16072                          * See the comment in the above loop for why we pass
16073                          * over zero-length records.
16074                          */
16075                         if (rec.dtrd_size == 0) {
16076                                 ASSERT(agg->dtag_hasarg);
16077                                 continue;
16078                         }
16079
16080                         if (nrecs-- == 0)
16081                                 break;
16082
16083                         rec.dtrd_offset -= offs;
16084                         bcopy(&rec, (void *)dest, sizeof (rec));
16085                         dest += sizeof (dtrace_recdesc_t);
16086
16087                         if (act == &agg->dtag_action)
16088                                 break;
16089                 }
16090
16091                 mutex_exit(&dtrace_lock);
16092
16093                 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16094                         kmem_free(buf, size);
16095                         return (EFAULT);
16096                 }
16097
16098                 kmem_free(buf, size);
16099                 return (0);
16100         }
16101
16102         case DTRACEIOC_ENABLE: {
16103                 dof_hdr_t *dof;
16104                 dtrace_enabling_t *enab = NULL;
16105                 dtrace_vstate_t *vstate;
16106                 int err = 0;
16107
16108                 *rv = 0;
16109
16110                 /*
16111                  * If a NULL argument has been passed, we take this as our
16112                  * cue to reevaluate our enablings.
16113                  */
16114                 if (arg == NULL) {
16115                         dtrace_enabling_matchall();
16116
16117                         return (0);
16118                 }
16119
16120                 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
16121                         return (rval);
16122
16123                 mutex_enter(&cpu_lock);
16124                 mutex_enter(&dtrace_lock);
16125                 vstate = &state->dts_vstate;
16126
16127                 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
16128                         mutex_exit(&dtrace_lock);
16129                         mutex_exit(&cpu_lock);
16130                         dtrace_dof_destroy(dof);
16131                         return (EBUSY);
16132                 }
16133
16134                 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
16135                         mutex_exit(&dtrace_lock);
16136                         mutex_exit(&cpu_lock);
16137                         dtrace_dof_destroy(dof);
16138                         return (EINVAL);
16139                 }
16140
16141                 if ((rval = dtrace_dof_options(dof, state)) != 0) {
16142                         dtrace_enabling_destroy(enab);
16143                         mutex_exit(&dtrace_lock);
16144                         mutex_exit(&cpu_lock);
16145                         dtrace_dof_destroy(dof);
16146                         return (rval);
16147                 }
16148
16149                 if ((err = dtrace_enabling_match(enab, rv)) == 0) {
16150                         err = dtrace_enabling_retain(enab);
16151                 } else {
16152                         dtrace_enabling_destroy(enab);
16153                 }
16154
16155                 mutex_exit(&cpu_lock);
16156                 mutex_exit(&dtrace_lock);
16157                 dtrace_dof_destroy(dof);
16158
16159                 return (err);
16160         }
16161
16162         case DTRACEIOC_REPLICATE: {
16163                 dtrace_repldesc_t desc;
16164                 dtrace_probedesc_t *match = &desc.dtrpd_match;
16165                 dtrace_probedesc_t *create = &desc.dtrpd_create;
16166                 int err;
16167
16168                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16169                         return (EFAULT);
16170
16171                 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16172                 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16173                 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16174                 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16175
16176                 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16177                 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16178                 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16179                 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16180
16181                 mutex_enter(&dtrace_lock);
16182                 err = dtrace_enabling_replicate(state, match, create);
16183                 mutex_exit(&dtrace_lock);
16184
16185                 return (err);
16186         }
16187
16188         case DTRACEIOC_PROBEMATCH:
16189         case DTRACEIOC_PROBES: {
16190                 dtrace_probe_t *probe = NULL;
16191                 dtrace_probedesc_t desc;
16192                 dtrace_probekey_t pkey;
16193                 dtrace_id_t i;
16194                 int m = 0;
16195                 uint32_t priv;
16196                 uid_t uid;
16197                 zoneid_t zoneid;
16198
16199                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16200                         return (EFAULT);
16201
16202                 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16203                 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16204                 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16205                 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16206
16207                 /*
16208                  * Before we attempt to match this probe, we want to give
16209                  * all providers the opportunity to provide it.
16210                  */
16211                 if (desc.dtpd_id == DTRACE_IDNONE) {
16212                         mutex_enter(&dtrace_provider_lock);
16213                         dtrace_probe_provide(&desc, NULL);
16214                         mutex_exit(&dtrace_provider_lock);
16215                         desc.dtpd_id++;
16216                 }
16217
16218                 if (cmd == DTRACEIOC_PROBEMATCH)  {
16219                         dtrace_probekey(&desc, &pkey);
16220                         pkey.dtpk_id = DTRACE_IDNONE;
16221                 }
16222
16223                 dtrace_cred2priv(cr, &priv, &uid, &zoneid);
16224
16225                 mutex_enter(&dtrace_lock);
16226
16227                 if (cmd == DTRACEIOC_PROBEMATCH) {
16228                         for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16229                                 if ((probe = dtrace_probes[i - 1]) != NULL &&
16230                                     (m = dtrace_match_probe(probe, &pkey,
16231                                     priv, uid, zoneid)) != 0)
16232                                         break;
16233                         }
16234
16235                         if (m < 0) {
16236                                 mutex_exit(&dtrace_lock);
16237                                 return (EINVAL);
16238                         }
16239
16240                 } else {
16241                         for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16242                                 if ((probe = dtrace_probes[i - 1]) != NULL &&
16243                                     dtrace_match_priv(probe, priv, uid, zoneid))
16244                                         break;
16245                         }
16246                 }
16247
16248                 if (probe == NULL) {
16249                         mutex_exit(&dtrace_lock);
16250                         return (ESRCH);
16251                 }
16252
16253                 dtrace_probe_description(probe, &desc);
16254                 mutex_exit(&dtrace_lock);
16255
16256                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16257                         return (EFAULT);
16258
16259                 return (0);
16260         }
16261
16262         case DTRACEIOC_PROBEARG: {
16263                 dtrace_argdesc_t desc;
16264                 dtrace_probe_t *probe;
16265                 dtrace_provider_t *prov;
16266
16267                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16268                         return (EFAULT);
16269
16270                 if (desc.dtargd_id == DTRACE_IDNONE)
16271                         return (EINVAL);
16272
16273                 if (desc.dtargd_ndx == DTRACE_ARGNONE)
16274                         return (EINVAL);
16275
16276                 mutex_enter(&dtrace_provider_lock);
16277                 mutex_enter(&mod_lock);
16278                 mutex_enter(&dtrace_lock);
16279
16280                 if (desc.dtargd_id > dtrace_nprobes) {
16281                         mutex_exit(&dtrace_lock);
16282                         mutex_exit(&mod_lock);
16283                         mutex_exit(&dtrace_provider_lock);
16284                         return (EINVAL);
16285                 }
16286
16287                 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16288                         mutex_exit(&dtrace_lock);
16289                         mutex_exit(&mod_lock);
16290                         mutex_exit(&dtrace_provider_lock);
16291                         return (EINVAL);
16292                 }
16293
16294                 mutex_exit(&dtrace_lock);
16295
16296                 prov = probe->dtpr_provider;
16297
16298                 if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16299                         /*
16300                          * There isn't any typed information for this probe.
16301                          * Set the argument number to DTRACE_ARGNONE.
16302                          */
16303                         desc.dtargd_ndx = DTRACE_ARGNONE;
16304                 } else {
16305                         desc.dtargd_native[0] = '\0';
16306                         desc.dtargd_xlate[0] = '\0';
16307                         desc.dtargd_mapping = desc.dtargd_ndx;
16308
16309                         prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16310                             probe->dtpr_id, probe->dtpr_arg, &desc);
16311                 }
16312
16313                 mutex_exit(&mod_lock);
16314                 mutex_exit(&dtrace_provider_lock);
16315
16316                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16317                         return (EFAULT);
16318
16319                 return (0);
16320         }
16321
16322         case DTRACEIOC_GO: {
16323                 processorid_t cpuid;
16324                 rval = dtrace_state_go(state, &cpuid);
16325
16326                 if (rval != 0)
16327                         return (rval);
16328
16329                 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16330                         return (EFAULT);
16331
16332                 return (0);
16333         }
16334
16335         case DTRACEIOC_STOP: {
16336                 processorid_t cpuid;
16337
16338                 mutex_enter(&dtrace_lock);
16339                 rval = dtrace_state_stop(state, &cpuid);
16340                 mutex_exit(&dtrace_lock);
16341
16342                 if (rval != 0)
16343                         return (rval);
16344
16345                 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16346                         return (EFAULT);
16347
16348                 return (0);
16349         }
16350
16351         case DTRACEIOC_DOFGET: {
16352                 dof_hdr_t hdr, *dof;
16353                 uint64_t len;
16354
16355                 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
16356                         return (EFAULT);
16357
16358                 mutex_enter(&dtrace_lock);
16359                 dof = dtrace_dof_create(state);
16360                 mutex_exit(&dtrace_lock);
16361
16362                 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16363                 rval = copyout(dof, (void *)arg, len);
16364                 dtrace_dof_destroy(dof);
16365
16366                 return (rval == 0 ? 0 : EFAULT);
16367         }
16368
16369         case DTRACEIOC_AGGSNAP:
16370         case DTRACEIOC_BUFSNAP: {
16371                 dtrace_bufdesc_t desc;
16372                 caddr_t cached;
16373                 dtrace_buffer_t *buf;
16374
16375                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16376                         return (EFAULT);
16377
16378                 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16379                         return (EINVAL);
16380
16381                 mutex_enter(&dtrace_lock);
16382
16383                 if (cmd == DTRACEIOC_BUFSNAP) {
16384                         buf = &state->dts_buffer[desc.dtbd_cpu];
16385                 } else {
16386                         buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16387                 }
16388
16389                 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16390                         size_t sz = buf->dtb_offset;
16391
16392                         if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16393                                 mutex_exit(&dtrace_lock);
16394                                 return (EBUSY);
16395                         }
16396
16397                         /*
16398                          * If this buffer has already been consumed, we're
16399                          * going to indicate that there's nothing left here
16400                          * to consume.
16401                          */
16402                         if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16403                                 mutex_exit(&dtrace_lock);
16404
16405                                 desc.dtbd_size = 0;
16406                                 desc.dtbd_drops = 0;
16407                                 desc.dtbd_errors = 0;
16408                                 desc.dtbd_oldest = 0;
16409                                 sz = sizeof (desc);
16410
16411                                 if (copyout(&desc, (void *)arg, sz) != 0)
16412                                         return (EFAULT);
16413
16414                                 return (0);
16415                         }
16416
16417                         /*
16418                          * If this is a ring buffer that has wrapped, we want
16419                          * to copy the whole thing out.
16420                          */
16421                         if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16422                                 dtrace_buffer_polish(buf);
16423                                 sz = buf->dtb_size;
16424                         }
16425
16426                         if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16427                                 mutex_exit(&dtrace_lock);
16428                                 return (EFAULT);
16429                         }
16430
16431                         desc.dtbd_size = sz;
16432                         desc.dtbd_drops = buf->dtb_drops;
16433                         desc.dtbd_errors = buf->dtb_errors;
16434                         desc.dtbd_oldest = buf->dtb_xamot_offset;
16435
16436                         mutex_exit(&dtrace_lock);
16437
16438                         if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16439                                 return (EFAULT);
16440
16441                         buf->dtb_flags |= DTRACEBUF_CONSUMED;
16442
16443                         return (0);
16444                 }
16445
16446                 if (buf->dtb_tomax == NULL) {
16447                         ASSERT(buf->dtb_xamot == NULL);
16448                         mutex_exit(&dtrace_lock);
16449                         return (ENOENT);
16450                 }
16451
16452                 cached = buf->dtb_tomax;
16453                 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16454
16455                 dtrace_xcall(desc.dtbd_cpu,
16456                     (dtrace_xcall_t)dtrace_buffer_switch, buf);
16457
16458                 state->dts_errors += buf->dtb_xamot_errors;
16459
16460                 /*
16461                  * If the buffers did not actually switch, then the cross call
16462                  * did not take place -- presumably because the given CPU is
16463                  * not in the ready set.  If this is the case, we'll return
16464                  * ENOENT.
16465                  */
16466                 if (buf->dtb_tomax == cached) {
16467                         ASSERT(buf->dtb_xamot != cached);
16468                         mutex_exit(&dtrace_lock);
16469                         return (ENOENT);
16470                 }
16471
16472                 ASSERT(cached == buf->dtb_xamot);
16473
16474                 /*
16475                  * We have our snapshot; now copy it out.
16476                  */
16477                 if (copyout(buf->dtb_xamot, desc.dtbd_data,
16478                     buf->dtb_xamot_offset) != 0) {
16479                         mutex_exit(&dtrace_lock);
16480                         return (EFAULT);
16481                 }
16482
16483                 desc.dtbd_size = buf->dtb_xamot_offset;
16484                 desc.dtbd_drops = buf->dtb_xamot_drops;
16485                 desc.dtbd_errors = buf->dtb_xamot_errors;
16486                 desc.dtbd_oldest = 0;
16487
16488                 mutex_exit(&dtrace_lock);
16489
16490                 /*
16491                  * Finally, copy out the buffer description.
16492                  */
16493                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16494                         return (EFAULT);
16495
16496                 return (0);
16497         }
16498
16499         case DTRACEIOC_CONF: {
16500                 dtrace_conf_t conf;
16501
16502                 bzero(&conf, sizeof (conf));
16503                 conf.dtc_difversion = DIF_VERSION;
16504                 conf.dtc_difintregs = DIF_DIR_NREGS;
16505                 conf.dtc_diftupregs = DIF_DTR_NREGS;
16506                 conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16507
16508                 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16509                         return (EFAULT);
16510
16511                 return (0);
16512         }
16513
16514         case DTRACEIOC_STATUS: {
16515                 dtrace_status_t stat;
16516                 dtrace_dstate_t *dstate;
16517                 int i, j;
16518                 uint64_t nerrs;
16519
16520                 /*
16521                  * See the comment in dtrace_state_deadman() for the reason
16522                  * for setting dts_laststatus to INT64_MAX before setting
16523                  * it to the correct value.
16524                  */
16525                 state->dts_laststatus = INT64_MAX;
16526                 dtrace_membar_producer();
16527                 state->dts_laststatus = dtrace_gethrtime();
16528
16529                 bzero(&stat, sizeof (stat));
16530
16531                 mutex_enter(&dtrace_lock);
16532
16533                 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16534                         mutex_exit(&dtrace_lock);
16535                         return (ENOENT);
16536                 }
16537
16538                 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16539                         stat.dtst_exiting = 1;
16540
16541                 nerrs = state->dts_errors;
16542                 dstate = &state->dts_vstate.dtvs_dynvars;
16543
16544                 for (i = 0; i < NCPU; i++) {
16545                         dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16546
16547                         stat.dtst_dyndrops += dcpu->dtdsc_drops;
16548                         stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16549                         stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16550
16551                         if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16552                                 stat.dtst_filled++;
16553
16554                         nerrs += state->dts_buffer[i].dtb_errors;
16555
16556                         for (j = 0; j < state->dts_nspeculations; j++) {
16557                                 dtrace_speculation_t *spec;
16558                                 dtrace_buffer_t *buf;
16559
16560                                 spec = &state->dts_speculations[j];
16561                                 buf = &spec->dtsp_buffer[i];
16562                                 stat.dtst_specdrops += buf->dtb_xamot_drops;
16563                         }
16564                 }
16565
16566                 stat.dtst_specdrops_busy = state->dts_speculations_busy;
16567                 stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16568                 stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16569                 stat.dtst_dblerrors = state->dts_dblerrors;
16570                 stat.dtst_killed =
16571                     (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16572                 stat.dtst_errors = nerrs;
16573
16574                 mutex_exit(&dtrace_lock);
16575
16576                 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16577                         return (EFAULT);
16578
16579                 return (0);
16580         }
16581
16582         case DTRACEIOC_FORMAT: {
16583                 dtrace_fmtdesc_t fmt;
16584                 char *str;
16585                 int len;
16586
16587                 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16588                         return (EFAULT);
16589
16590                 mutex_enter(&dtrace_lock);
16591
16592                 if (fmt.dtfd_format == 0 ||
16593                     fmt.dtfd_format > state->dts_nformats) {
16594                         mutex_exit(&dtrace_lock);
16595                         return (EINVAL);
16596                 }
16597
16598                 /*
16599                  * Format strings are allocated contiguously and they are
16600                  * never freed; if a format index is less than the number
16601                  * of formats, we can assert that the format map is non-NULL
16602                  * and that the format for the specified index is non-NULL.
16603                  */
16604                 ASSERT(state->dts_formats != NULL);
16605                 str = state->dts_formats[fmt.dtfd_format - 1];
16606                 ASSERT(str != NULL);
16607
16608                 len = strlen(str) + 1;
16609
16610                 if (len > fmt.dtfd_length) {
16611                         fmt.dtfd_length = len;
16612
16613                         if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16614                                 mutex_exit(&dtrace_lock);
16615                                 return (EINVAL);
16616                         }
16617                 } else {
16618                         if (copyout(str, fmt.dtfd_string, len) != 0) {
16619                                 mutex_exit(&dtrace_lock);
16620                                 return (EINVAL);
16621                         }
16622                 }
16623
16624                 mutex_exit(&dtrace_lock);
16625                 return (0);
16626         }
16627
16628         default:
16629                 break;
16630         }
16631
16632         return (ENOTTY);
16633 }
16634
16635 /*ARGSUSED*/
16636 static int
16637 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16638 {
16639         dtrace_state_t *state;
16640
16641         switch (cmd) {
16642         case DDI_DETACH:
16643                 break;
16644
16645         case DDI_SUSPEND:
16646                 return (DDI_SUCCESS);
16647
16648         default:
16649                 return (DDI_FAILURE);
16650         }
16651
16652         mutex_enter(&cpu_lock);
16653         mutex_enter(&dtrace_provider_lock);
16654         mutex_enter(&dtrace_lock);
16655
16656         ASSERT(dtrace_opens == 0);
16657
16658         if (dtrace_helpers > 0) {
16659                 mutex_exit(&dtrace_provider_lock);
16660                 mutex_exit(&dtrace_lock);
16661                 mutex_exit(&cpu_lock);
16662                 return (DDI_FAILURE);
16663         }
16664
16665         if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16666                 mutex_exit(&dtrace_provider_lock);
16667                 mutex_exit(&dtrace_lock);
16668                 mutex_exit(&cpu_lock);
16669                 return (DDI_FAILURE);
16670         }
16671
16672         dtrace_provider = NULL;
16673
16674         if ((state = dtrace_anon_grab()) != NULL) {
16675                 /*
16676                  * If there were ECBs on this state, the provider should
16677                  * have not been allowed to detach; assert that there is
16678                  * none.
16679                  */
16680                 ASSERT(state->dts_necbs == 0);
16681                 dtrace_state_destroy(state);
16682
16683                 /*
16684                  * If we're being detached with anonymous state, we need to
16685                  * indicate to the kernel debugger that DTrace is now inactive.
16686                  */
16687                 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16688         }
16689
16690         bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16691         unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16692         dtrace_cpu_init = NULL;
16693         dtrace_helpers_cleanup = NULL;
16694         dtrace_helpers_fork = NULL;
16695         dtrace_cpustart_init = NULL;
16696         dtrace_cpustart_fini = NULL;
16697         dtrace_debugger_init = NULL;
16698         dtrace_debugger_fini = NULL;
16699         dtrace_modload = NULL;
16700         dtrace_modunload = NULL;
16701
16702         mutex_exit(&cpu_lock);
16703
16704         if (dtrace_helptrace_enabled) {
16705                 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16706                 dtrace_helptrace_buffer = NULL;
16707         }
16708
16709         kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16710         dtrace_probes = NULL;
16711         dtrace_nprobes = 0;
16712
16713         dtrace_hash_destroy(dtrace_bymod);
16714         dtrace_hash_destroy(dtrace_byfunc);
16715         dtrace_hash_destroy(dtrace_byname);
16716         dtrace_bymod = NULL;
16717         dtrace_byfunc = NULL;
16718         dtrace_byname = NULL;
16719
16720         kmem_cache_destroy(dtrace_state_cache);
16721         vmem_destroy(dtrace_minor);
16722         vmem_destroy(dtrace_arena);
16723
16724         if (dtrace_toxrange != NULL) {
16725                 kmem_free(dtrace_toxrange,
16726                     dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16727                 dtrace_toxrange = NULL;
16728                 dtrace_toxranges = 0;
16729                 dtrace_toxranges_max = 0;
16730         }
16731
16732         ddi_remove_minor_node(dtrace_devi, NULL);
16733         dtrace_devi = NULL;
16734
16735         ddi_soft_state_fini(&dtrace_softstate);
16736
16737         ASSERT(dtrace_vtime_references == 0);
16738         ASSERT(dtrace_opens == 0);
16739         ASSERT(dtrace_retained == NULL);
16740
16741         mutex_exit(&dtrace_lock);
16742         mutex_exit(&dtrace_provider_lock);
16743
16744         /*
16745          * We don't destroy the task queue until after we have dropped our
16746          * locks (taskq_destroy() may block on running tasks).  To prevent
16747          * attempting to do work after we have effectively detached but before
16748          * the task queue has been destroyed, all tasks dispatched via the
16749          * task queue must check that DTrace is still attached before
16750          * performing any operation.
16751          */
16752         taskq_destroy(dtrace_taskq);
16753         dtrace_taskq = NULL;
16754
16755         return (DDI_SUCCESS);
16756 }
16757 #endif
16758
16759 #if defined(sun)
16760 /*ARGSUSED*/
16761 static int
16762 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16763 {
16764         int error;
16765
16766         switch (infocmd) {
16767         case DDI_INFO_DEVT2DEVINFO:
16768                 *result = (void *)dtrace_devi;
16769                 error = DDI_SUCCESS;
16770                 break;
16771         case DDI_INFO_DEVT2INSTANCE:
16772                 *result = (void *)0;
16773                 error = DDI_SUCCESS;
16774                 break;
16775         default:
16776                 error = DDI_FAILURE;
16777         }
16778         return (error);
16779 }
16780 #endif
16781
16782 #if defined(sun)
16783 static struct cb_ops dtrace_cb_ops = {
16784         dtrace_open,            /* open */
16785         dtrace_close,           /* close */
16786         nulldev,                /* strategy */
16787         nulldev,                /* print */
16788         nodev,                  /* dump */
16789         nodev,                  /* read */
16790         nodev,                  /* write */
16791         dtrace_ioctl,           /* ioctl */
16792         nodev,                  /* devmap */
16793         nodev,                  /* mmap */
16794         nodev,                  /* segmap */
16795         nochpoll,               /* poll */
16796         ddi_prop_op,            /* cb_prop_op */
16797         0,                      /* streamtab  */
16798         D_NEW | D_MP            /* Driver compatibility flag */
16799 };
16800
16801 static struct dev_ops dtrace_ops = {
16802         DEVO_REV,               /* devo_rev */
16803         0,                      /* refcnt */
16804         dtrace_info,            /* get_dev_info */
16805         nulldev,                /* identify */
16806         nulldev,                /* probe */
16807         dtrace_attach,          /* attach */
16808         dtrace_detach,          /* detach */
16809         nodev,                  /* reset */
16810         &dtrace_cb_ops,         /* driver operations */
16811         NULL,                   /* bus operations */
16812         nodev                   /* dev power */
16813 };
16814
16815 static struct modldrv modldrv = {
16816         &mod_driverops,         /* module type (this is a pseudo driver) */
16817         "Dynamic Tracing",      /* name of module */
16818         &dtrace_ops,            /* driver ops */
16819 };
16820
16821 static struct modlinkage modlinkage = {
16822         MODREV_1,
16823         (void *)&modldrv,
16824         NULL
16825 };
16826
16827 int
16828 _init(void)
16829 {
16830         return (mod_install(&modlinkage));
16831 }
16832
16833 int
16834 _info(struct modinfo *modinfop)
16835 {
16836         return (mod_info(&modlinkage, modinfop));
16837 }
16838
16839 int
16840 _fini(void)
16841 {
16842         return (mod_remove(&modlinkage));
16843 }
16844 #else
16845
16846 static d_ioctl_t        dtrace_ioctl;
16847 static d_ioctl_t        dtrace_ioctl_helper;
16848 static void             dtrace_load(void *);
16849 static int              dtrace_unload(void);
16850 #if __FreeBSD_version < 800039
16851 static void             dtrace_clone(void *, struct ucred *, char *, int , struct cdev **);
16852 static struct clonedevs *dtrace_clones;         /* Ptr to the array of cloned devices. */
16853 static eventhandler_tag eh_tag;                 /* Event handler tag. */
16854 #else
16855 static struct cdev      *dtrace_dev;
16856 static struct cdev      *helper_dev;
16857 #endif
16858
16859 void dtrace_invop_init(void);
16860 void dtrace_invop_uninit(void);
16861
16862 static struct cdevsw dtrace_cdevsw = {
16863         .d_version      = D_VERSION,
16864         .d_flags        = D_TRACKCLOSE | D_NEEDMINOR,
16865         .d_close        = dtrace_close,
16866         .d_ioctl        = dtrace_ioctl,
16867         .d_open         = dtrace_open,
16868         .d_name         = "dtrace",
16869 };
16870
16871 static struct cdevsw helper_cdevsw = {
16872         .d_version      = D_VERSION,
16873         .d_flags        = D_TRACKCLOSE | D_NEEDMINOR,
16874         .d_ioctl        = dtrace_ioctl_helper,
16875         .d_name         = "helper",
16876 };
16877
16878 #include <dtrace_anon.c>
16879 #if __FreeBSD_version < 800039
16880 #include <dtrace_clone.c>
16881 #endif
16882 #include <dtrace_ioctl.c>
16883 #include <dtrace_load.c>
16884 #include <dtrace_modevent.c>
16885 #include <dtrace_sysctl.c>
16886 #include <dtrace_unload.c>
16887 #include <dtrace_vtime.c>
16888 #include <dtrace_hacks.c>
16889 #include <dtrace_isa.c>
16890
16891 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
16892 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
16893 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
16894
16895 DEV_MODULE(dtrace, dtrace_modevent, NULL);
16896 MODULE_VERSION(dtrace, 1);
16897 MODULE_DEPEND(dtrace, cyclic, 1, 1, 1);
16898 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
16899 #endif