]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/dbuf.c
MFC r286705: 5960 zfs recv should prefetch indirect blocks
[FreeBSD/stable/10.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / dbuf.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28  */
29
30 #include <sys/zfs_context.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_send.h>
33 #include <sys/dmu_impl.h>
34 #include <sys/dbuf.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/dsl_dir.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/spa.h>
40 #include <sys/zio.h>
41 #include <sys/dmu_zfetch.h>
42 #include <sys/sa.h>
43 #include <sys/sa_impl.h>
44 #include <sys/zfeature.h>
45 #include <sys/blkptr.h>
46 #include <sys/range_tree.h>
47
48 /*
49  * Number of times that zfs_free_range() took the slow path while doing
50  * a zfs receive.  A nonzero value indicates a potential performance problem.
51  */
52 uint64_t zfs_free_range_recv_miss;
53
54 static void dbuf_destroy(dmu_buf_impl_t *db);
55 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
56 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
57
58 #ifndef __lint
59 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
60     dmu_buf_evict_func_t *evict_func, dmu_buf_t **clear_on_evict_dbufp);
61 #endif /* ! __lint */
62
63 /*
64  * Global data structures and functions for the dbuf cache.
65  */
66 static kmem_cache_t *dbuf_cache;
67 static taskq_t *dbu_evict_taskq;
68
69 /* ARGSUSED */
70 static int
71 dbuf_cons(void *vdb, void *unused, int kmflag)
72 {
73         dmu_buf_impl_t *db = vdb;
74         bzero(db, sizeof (dmu_buf_impl_t));
75
76         mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
77         cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
78         refcount_create(&db->db_holds);
79
80         return (0);
81 }
82
83 /* ARGSUSED */
84 static void
85 dbuf_dest(void *vdb, void *unused)
86 {
87         dmu_buf_impl_t *db = vdb;
88         mutex_destroy(&db->db_mtx);
89         cv_destroy(&db->db_changed);
90         refcount_destroy(&db->db_holds);
91 }
92
93 /*
94  * dbuf hash table routines
95  */
96 static dbuf_hash_table_t dbuf_hash_table;
97
98 static uint64_t dbuf_hash_count;
99
100 static uint64_t
101 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
102 {
103         uintptr_t osv = (uintptr_t)os;
104         uint64_t crc = -1ULL;
105
106         ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
107         crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
108         crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
109         crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
110         crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
111         crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
112         crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
113
114         crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
115
116         return (crc);
117 }
118
119 #define DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid);
120
121 #define DBUF_EQUAL(dbuf, os, obj, level, blkid)         \
122         ((dbuf)->db.db_object == (obj) &&               \
123         (dbuf)->db_objset == (os) &&                    \
124         (dbuf)->db_level == (level) &&                  \
125         (dbuf)->db_blkid == (blkid))
126
127 dmu_buf_impl_t *
128 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
129 {
130         dbuf_hash_table_t *h = &dbuf_hash_table;
131         uint64_t hv = DBUF_HASH(os, obj, level, blkid);
132         uint64_t idx = hv & h->hash_table_mask;
133         dmu_buf_impl_t *db;
134
135         mutex_enter(DBUF_HASH_MUTEX(h, idx));
136         for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
137                 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
138                         mutex_enter(&db->db_mtx);
139                         if (db->db_state != DB_EVICTING) {
140                                 mutex_exit(DBUF_HASH_MUTEX(h, idx));
141                                 return (db);
142                         }
143                         mutex_exit(&db->db_mtx);
144                 }
145         }
146         mutex_exit(DBUF_HASH_MUTEX(h, idx));
147         return (NULL);
148 }
149
150 static dmu_buf_impl_t *
151 dbuf_find_bonus(objset_t *os, uint64_t object)
152 {
153         dnode_t *dn;
154         dmu_buf_impl_t *db = NULL;
155
156         if (dnode_hold(os, object, FTAG, &dn) == 0) {
157                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
158                 if (dn->dn_bonus != NULL) {
159                         db = dn->dn_bonus;
160                         mutex_enter(&db->db_mtx);
161                 }
162                 rw_exit(&dn->dn_struct_rwlock);
163                 dnode_rele(dn, FTAG);
164         }
165         return (db);
166 }
167
168 /*
169  * Insert an entry into the hash table.  If there is already an element
170  * equal to elem in the hash table, then the already existing element
171  * will be returned and the new element will not be inserted.
172  * Otherwise returns NULL.
173  */
174 static dmu_buf_impl_t *
175 dbuf_hash_insert(dmu_buf_impl_t *db)
176 {
177         dbuf_hash_table_t *h = &dbuf_hash_table;
178         objset_t *os = db->db_objset;
179         uint64_t obj = db->db.db_object;
180         int level = db->db_level;
181         uint64_t blkid = db->db_blkid;
182         uint64_t hv = DBUF_HASH(os, obj, level, blkid);
183         uint64_t idx = hv & h->hash_table_mask;
184         dmu_buf_impl_t *dbf;
185
186         mutex_enter(DBUF_HASH_MUTEX(h, idx));
187         for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
188                 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
189                         mutex_enter(&dbf->db_mtx);
190                         if (dbf->db_state != DB_EVICTING) {
191                                 mutex_exit(DBUF_HASH_MUTEX(h, idx));
192                                 return (dbf);
193                         }
194                         mutex_exit(&dbf->db_mtx);
195                 }
196         }
197
198         mutex_enter(&db->db_mtx);
199         db->db_hash_next = h->hash_table[idx];
200         h->hash_table[idx] = db;
201         mutex_exit(DBUF_HASH_MUTEX(h, idx));
202         atomic_inc_64(&dbuf_hash_count);
203
204         return (NULL);
205 }
206
207 /*
208  * Remove an entry from the hash table.  It must be in the EVICTING state.
209  */
210 static void
211 dbuf_hash_remove(dmu_buf_impl_t *db)
212 {
213         dbuf_hash_table_t *h = &dbuf_hash_table;
214         uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object,
215             db->db_level, db->db_blkid);
216         uint64_t idx = hv & h->hash_table_mask;
217         dmu_buf_impl_t *dbf, **dbp;
218
219         /*
220          * We musn't hold db_mtx to maintain lock ordering:
221          * DBUF_HASH_MUTEX > db_mtx.
222          */
223         ASSERT(refcount_is_zero(&db->db_holds));
224         ASSERT(db->db_state == DB_EVICTING);
225         ASSERT(!MUTEX_HELD(&db->db_mtx));
226
227         mutex_enter(DBUF_HASH_MUTEX(h, idx));
228         dbp = &h->hash_table[idx];
229         while ((dbf = *dbp) != db) {
230                 dbp = &dbf->db_hash_next;
231                 ASSERT(dbf != NULL);
232         }
233         *dbp = db->db_hash_next;
234         db->db_hash_next = NULL;
235         mutex_exit(DBUF_HASH_MUTEX(h, idx));
236         atomic_dec_64(&dbuf_hash_count);
237 }
238
239 static arc_evict_func_t dbuf_do_evict;
240
241 typedef enum {
242         DBVU_EVICTING,
243         DBVU_NOT_EVICTING
244 } dbvu_verify_type_t;
245
246 static void
247 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
248 {
249 #ifdef ZFS_DEBUG
250         int64_t holds;
251
252         if (db->db_user == NULL)
253                 return;
254
255         /* Only data blocks support the attachment of user data. */
256         ASSERT(db->db_level == 0);
257
258         /* Clients must resolve a dbuf before attaching user data. */
259         ASSERT(db->db.db_data != NULL);
260         ASSERT3U(db->db_state, ==, DB_CACHED);
261
262         holds = refcount_count(&db->db_holds);
263         if (verify_type == DBVU_EVICTING) {
264                 /*
265                  * Immediate eviction occurs when holds == dirtycnt.
266                  * For normal eviction buffers, holds is zero on
267                  * eviction, except when dbuf_fix_old_data() calls
268                  * dbuf_clear_data().  However, the hold count can grow
269                  * during eviction even though db_mtx is held (see
270                  * dmu_bonus_hold() for an example), so we can only
271                  * test the generic invariant that holds >= dirtycnt.
272                  */
273                 ASSERT3U(holds, >=, db->db_dirtycnt);
274         } else {
275                 if (db->db_immediate_evict == TRUE)
276                         ASSERT3U(holds, >=, db->db_dirtycnt);
277                 else
278                         ASSERT3U(holds, >, 0);
279         }
280 #endif
281 }
282
283 static void
284 dbuf_evict_user(dmu_buf_impl_t *db)
285 {
286         dmu_buf_user_t *dbu = db->db_user;
287
288         ASSERT(MUTEX_HELD(&db->db_mtx));
289
290         if (dbu == NULL)
291                 return;
292
293         dbuf_verify_user(db, DBVU_EVICTING);
294         db->db_user = NULL;
295
296 #ifdef ZFS_DEBUG
297         if (dbu->dbu_clear_on_evict_dbufp != NULL)
298                 *dbu->dbu_clear_on_evict_dbufp = NULL;
299 #endif
300
301         /*
302          * Invoke the callback from a taskq to avoid lock order reversals
303          * and limit stack depth.
304          */
305         taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func, dbu, 0,
306             &dbu->dbu_tqent);
307 }
308
309 boolean_t
310 dbuf_is_metadata(dmu_buf_impl_t *db)
311 {
312         if (db->db_level > 0) {
313                 return (B_TRUE);
314         } else {
315                 boolean_t is_metadata;
316
317                 DB_DNODE_ENTER(db);
318                 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
319                 DB_DNODE_EXIT(db);
320
321                 return (is_metadata);
322         }
323 }
324
325 void
326 dbuf_evict(dmu_buf_impl_t *db)
327 {
328         ASSERT(MUTEX_HELD(&db->db_mtx));
329         ASSERT(db->db_buf == NULL);
330         ASSERT(db->db_data_pending == NULL);
331
332         dbuf_clear(db);
333         dbuf_destroy(db);
334 }
335
336 void
337 dbuf_init(void)
338 {
339         uint64_t hsize = 1ULL << 16;
340         dbuf_hash_table_t *h = &dbuf_hash_table;
341         int i;
342
343         /*
344          * The hash table is big enough to fill all of physical memory
345          * with an average 4K block size.  The table will take up
346          * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
347          */
348         while (hsize * 4096 < (uint64_t)physmem * PAGESIZE)
349                 hsize <<= 1;
350
351 retry:
352         h->hash_table_mask = hsize - 1;
353         h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
354         if (h->hash_table == NULL) {
355                 /* XXX - we should really return an error instead of assert */
356                 ASSERT(hsize > (1ULL << 10));
357                 hsize >>= 1;
358                 goto retry;
359         }
360
361         dbuf_cache = kmem_cache_create("dmu_buf_impl_t",
362             sizeof (dmu_buf_impl_t),
363             0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
364
365         for (i = 0; i < DBUF_MUTEXES; i++)
366                 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
367
368         /*
369          * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
370          * configuration is not required.
371          */
372         dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0);
373 }
374
375 void
376 dbuf_fini(void)
377 {
378         dbuf_hash_table_t *h = &dbuf_hash_table;
379         int i;
380
381         for (i = 0; i < DBUF_MUTEXES; i++)
382                 mutex_destroy(&h->hash_mutexes[i]);
383         kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
384         kmem_cache_destroy(dbuf_cache);
385         taskq_destroy(dbu_evict_taskq);
386 }
387
388 /*
389  * Other stuff.
390  */
391
392 #ifdef ZFS_DEBUG
393 static void
394 dbuf_verify(dmu_buf_impl_t *db)
395 {
396         dnode_t *dn;
397         dbuf_dirty_record_t *dr;
398
399         ASSERT(MUTEX_HELD(&db->db_mtx));
400
401         if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
402                 return;
403
404         ASSERT(db->db_objset != NULL);
405         DB_DNODE_ENTER(db);
406         dn = DB_DNODE(db);
407         if (dn == NULL) {
408                 ASSERT(db->db_parent == NULL);
409                 ASSERT(db->db_blkptr == NULL);
410         } else {
411                 ASSERT3U(db->db.db_object, ==, dn->dn_object);
412                 ASSERT3P(db->db_objset, ==, dn->dn_objset);
413                 ASSERT3U(db->db_level, <, dn->dn_nlevels);
414                 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
415                     db->db_blkid == DMU_SPILL_BLKID ||
416                     !avl_is_empty(&dn->dn_dbufs));
417         }
418         if (db->db_blkid == DMU_BONUS_BLKID) {
419                 ASSERT(dn != NULL);
420                 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
421                 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
422         } else if (db->db_blkid == DMU_SPILL_BLKID) {
423                 ASSERT(dn != NULL);
424                 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
425                 ASSERT0(db->db.db_offset);
426         } else {
427                 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
428         }
429
430         for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
431                 ASSERT(dr->dr_dbuf == db);
432
433         for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
434                 ASSERT(dr->dr_dbuf == db);
435
436         /*
437          * We can't assert that db_size matches dn_datablksz because it
438          * can be momentarily different when another thread is doing
439          * dnode_set_blksz().
440          */
441         if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
442                 dr = db->db_data_pending;
443                 /*
444                  * It should only be modified in syncing context, so
445                  * make sure we only have one copy of the data.
446                  */
447                 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
448         }
449
450         /* verify db->db_blkptr */
451         if (db->db_blkptr) {
452                 if (db->db_parent == dn->dn_dbuf) {
453                         /* db is pointed to by the dnode */
454                         /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
455                         if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
456                                 ASSERT(db->db_parent == NULL);
457                         else
458                                 ASSERT(db->db_parent != NULL);
459                         if (db->db_blkid != DMU_SPILL_BLKID)
460                                 ASSERT3P(db->db_blkptr, ==,
461                                     &dn->dn_phys->dn_blkptr[db->db_blkid]);
462                 } else {
463                         /* db is pointed to by an indirect block */
464                         int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
465                         ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
466                         ASSERT3U(db->db_parent->db.db_object, ==,
467                             db->db.db_object);
468                         /*
469                          * dnode_grow_indblksz() can make this fail if we don't
470                          * have the struct_rwlock.  XXX indblksz no longer
471                          * grows.  safe to do this now?
472                          */
473                         if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
474                                 ASSERT3P(db->db_blkptr, ==,
475                                     ((blkptr_t *)db->db_parent->db.db_data +
476                                     db->db_blkid % epb));
477                         }
478                 }
479         }
480         if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
481             (db->db_buf == NULL || db->db_buf->b_data) &&
482             db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
483             db->db_state != DB_FILL && !dn->dn_free_txg) {
484                 /*
485                  * If the blkptr isn't set but they have nonzero data,
486                  * it had better be dirty, otherwise we'll lose that
487                  * data when we evict this buffer.
488                  */
489                 if (db->db_dirtycnt == 0) {
490                         uint64_t *buf = db->db.db_data;
491                         int i;
492
493                         for (i = 0; i < db->db.db_size >> 3; i++) {
494                                 ASSERT(buf[i] == 0);
495                         }
496                 }
497         }
498         DB_DNODE_EXIT(db);
499 }
500 #endif
501
502 static void
503 dbuf_clear_data(dmu_buf_impl_t *db)
504 {
505         ASSERT(MUTEX_HELD(&db->db_mtx));
506         dbuf_evict_user(db);
507         db->db_buf = NULL;
508         db->db.db_data = NULL;
509         if (db->db_state != DB_NOFILL)
510                 db->db_state = DB_UNCACHED;
511 }
512
513 static void
514 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
515 {
516         ASSERT(MUTEX_HELD(&db->db_mtx));
517         ASSERT(buf != NULL);
518
519         db->db_buf = buf;
520         ASSERT(buf->b_data != NULL);
521         db->db.db_data = buf->b_data;
522         if (!arc_released(buf))
523                 arc_set_callback(buf, dbuf_do_evict, db);
524 }
525
526 /*
527  * Loan out an arc_buf for read.  Return the loaned arc_buf.
528  */
529 arc_buf_t *
530 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
531 {
532         arc_buf_t *abuf;
533
534         mutex_enter(&db->db_mtx);
535         if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
536                 int blksz = db->db.db_size;
537                 spa_t *spa = db->db_objset->os_spa;
538
539                 mutex_exit(&db->db_mtx);
540                 abuf = arc_loan_buf(spa, blksz);
541                 bcopy(db->db.db_data, abuf->b_data, blksz);
542         } else {
543                 abuf = db->db_buf;
544                 arc_loan_inuse_buf(abuf, db);
545                 dbuf_clear_data(db);
546                 mutex_exit(&db->db_mtx);
547         }
548         return (abuf);
549 }
550
551 /*
552  * Calculate which level n block references the data at the level 0 offset
553  * provided.
554  */
555 uint64_t
556 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset)
557 {
558         if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
559                 /*
560                  * The level n blkid is equal to the level 0 blkid divided by
561                  * the number of level 0s in a level n block.
562                  *
563                  * The level 0 blkid is offset >> datablkshift =
564                  * offset / 2^datablkshift.
565                  *
566                  * The number of level 0s in a level n is the number of block
567                  * pointers in an indirect block, raised to the power of level.
568                  * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
569                  * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
570                  *
571                  * Thus, the level n blkid is: offset /
572                  * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
573                  * = offset / 2^(datablkshift + level *
574                  *   (indblkshift - SPA_BLKPTRSHIFT))
575                  * = offset >> (datablkshift + level *
576                  *   (indblkshift - SPA_BLKPTRSHIFT))
577                  */
578                 return (offset >> (dn->dn_datablkshift + level *
579                     (dn->dn_indblkshift - SPA_BLKPTRSHIFT)));
580         } else {
581                 ASSERT3U(offset, <, dn->dn_datablksz);
582                 return (0);
583         }
584 }
585
586 static void
587 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
588 {
589         dmu_buf_impl_t *db = vdb;
590
591         mutex_enter(&db->db_mtx);
592         ASSERT3U(db->db_state, ==, DB_READ);
593         /*
594          * All reads are synchronous, so we must have a hold on the dbuf
595          */
596         ASSERT(refcount_count(&db->db_holds) > 0);
597         ASSERT(db->db_buf == NULL);
598         ASSERT(db->db.db_data == NULL);
599         if (db->db_level == 0 && db->db_freed_in_flight) {
600                 /* we were freed in flight; disregard any error */
601                 arc_release(buf, db);
602                 bzero(buf->b_data, db->db.db_size);
603                 arc_buf_freeze(buf);
604                 db->db_freed_in_flight = FALSE;
605                 dbuf_set_data(db, buf);
606                 db->db_state = DB_CACHED;
607         } else if (zio == NULL || zio->io_error == 0) {
608                 dbuf_set_data(db, buf);
609                 db->db_state = DB_CACHED;
610         } else {
611                 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
612                 ASSERT3P(db->db_buf, ==, NULL);
613                 VERIFY(arc_buf_remove_ref(buf, db));
614                 db->db_state = DB_UNCACHED;
615         }
616         cv_broadcast(&db->db_changed);
617         dbuf_rele_and_unlock(db, NULL);
618 }
619
620 static void
621 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags)
622 {
623         dnode_t *dn;
624         zbookmark_phys_t zb;
625         arc_flags_t aflags = ARC_FLAG_NOWAIT;
626
627         DB_DNODE_ENTER(db);
628         dn = DB_DNODE(db);
629         ASSERT(!refcount_is_zero(&db->db_holds));
630         /* We need the struct_rwlock to prevent db_blkptr from changing. */
631         ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
632         ASSERT(MUTEX_HELD(&db->db_mtx));
633         ASSERT(db->db_state == DB_UNCACHED);
634         ASSERT(db->db_buf == NULL);
635
636         if (db->db_blkid == DMU_BONUS_BLKID) {
637                 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
638
639                 ASSERT3U(bonuslen, <=, db->db.db_size);
640                 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
641                 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
642                 if (bonuslen < DN_MAX_BONUSLEN)
643                         bzero(db->db.db_data, DN_MAX_BONUSLEN);
644                 if (bonuslen)
645                         bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
646                 DB_DNODE_EXIT(db);
647                 db->db_state = DB_CACHED;
648                 mutex_exit(&db->db_mtx);
649                 return;
650         }
651
652         /*
653          * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
654          * processes the delete record and clears the bp while we are waiting
655          * for the dn_mtx (resulting in a "no" from block_freed).
656          */
657         if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
658             (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
659             BP_IS_HOLE(db->db_blkptr)))) {
660                 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
661
662                 DB_DNODE_EXIT(db);
663                 dbuf_set_data(db, arc_buf_alloc(db->db_objset->os_spa,
664                     db->db.db_size, db, type));
665                 bzero(db->db.db_data, db->db.db_size);
666                 db->db_state = DB_CACHED;
667                 *flags |= DB_RF_CACHED;
668                 mutex_exit(&db->db_mtx);
669                 return;
670         }
671
672         DB_DNODE_EXIT(db);
673
674         db->db_state = DB_READ;
675         mutex_exit(&db->db_mtx);
676
677         if (DBUF_IS_L2CACHEABLE(db))
678                 aflags |= ARC_FLAG_L2CACHE;
679         if (DBUF_IS_L2COMPRESSIBLE(db))
680                 aflags |= ARC_FLAG_L2COMPRESS;
681
682         SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
683             db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
684             db->db.db_object, db->db_level, db->db_blkid);
685
686         dbuf_add_ref(db, NULL);
687
688         (void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
689             dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
690             (*flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
691             &aflags, &zb);
692         if (aflags & ARC_FLAG_CACHED)
693                 *flags |= DB_RF_CACHED;
694 }
695
696 int
697 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
698 {
699         int err = 0;
700         boolean_t havepzio = (zio != NULL);
701         boolean_t prefetch;
702         dnode_t *dn;
703
704         /*
705          * We don't have to hold the mutex to check db_state because it
706          * can't be freed while we have a hold on the buffer.
707          */
708         ASSERT(!refcount_is_zero(&db->db_holds));
709
710         if (db->db_state == DB_NOFILL)
711                 return (SET_ERROR(EIO));
712
713         DB_DNODE_ENTER(db);
714         dn = DB_DNODE(db);
715         if ((flags & DB_RF_HAVESTRUCT) == 0)
716                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
717
718         prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
719             (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
720             DBUF_IS_CACHEABLE(db);
721
722         mutex_enter(&db->db_mtx);
723         if (db->db_state == DB_CACHED) {
724                 mutex_exit(&db->db_mtx);
725                 if (prefetch)
726                         dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
727                             db->db.db_size, TRUE);
728                 if ((flags & DB_RF_HAVESTRUCT) == 0)
729                         rw_exit(&dn->dn_struct_rwlock);
730                 DB_DNODE_EXIT(db);
731         } else if (db->db_state == DB_UNCACHED) {
732                 spa_t *spa = dn->dn_objset->os_spa;
733
734                 if (zio == NULL)
735                         zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
736                 dbuf_read_impl(db, zio, &flags);
737
738                 /* dbuf_read_impl has dropped db_mtx for us */
739
740                 if (prefetch)
741                         dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
742                             db->db.db_size, flags & DB_RF_CACHED);
743
744                 if ((flags & DB_RF_HAVESTRUCT) == 0)
745                         rw_exit(&dn->dn_struct_rwlock);
746                 DB_DNODE_EXIT(db);
747
748                 if (!havepzio)
749                         err = zio_wait(zio);
750         } else {
751                 /*
752                  * Another reader came in while the dbuf was in flight
753                  * between UNCACHED and CACHED.  Either a writer will finish
754                  * writing the buffer (sending the dbuf to CACHED) or the
755                  * first reader's request will reach the read_done callback
756                  * and send the dbuf to CACHED.  Otherwise, a failure
757                  * occurred and the dbuf went to UNCACHED.
758                  */
759                 mutex_exit(&db->db_mtx);
760                 if (prefetch)
761                         dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
762                             db->db.db_size, TRUE);
763                 if ((flags & DB_RF_HAVESTRUCT) == 0)
764                         rw_exit(&dn->dn_struct_rwlock);
765                 DB_DNODE_EXIT(db);
766
767                 /* Skip the wait per the caller's request. */
768                 mutex_enter(&db->db_mtx);
769                 if ((flags & DB_RF_NEVERWAIT) == 0) {
770                         while (db->db_state == DB_READ ||
771                             db->db_state == DB_FILL) {
772                                 ASSERT(db->db_state == DB_READ ||
773                                     (flags & DB_RF_HAVESTRUCT) == 0);
774                                 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
775                                     db, zio_t *, zio);
776                                 cv_wait(&db->db_changed, &db->db_mtx);
777                         }
778                         if (db->db_state == DB_UNCACHED)
779                                 err = SET_ERROR(EIO);
780                 }
781                 mutex_exit(&db->db_mtx);
782         }
783
784         ASSERT(err || havepzio || db->db_state == DB_CACHED);
785         return (err);
786 }
787
788 static void
789 dbuf_noread(dmu_buf_impl_t *db)
790 {
791         ASSERT(!refcount_is_zero(&db->db_holds));
792         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
793         mutex_enter(&db->db_mtx);
794         while (db->db_state == DB_READ || db->db_state == DB_FILL)
795                 cv_wait(&db->db_changed, &db->db_mtx);
796         if (db->db_state == DB_UNCACHED) {
797                 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
798                 spa_t *spa = db->db_objset->os_spa;
799
800                 ASSERT(db->db_buf == NULL);
801                 ASSERT(db->db.db_data == NULL);
802                 dbuf_set_data(db, arc_buf_alloc(spa, db->db.db_size, db, type));
803                 db->db_state = DB_FILL;
804         } else if (db->db_state == DB_NOFILL) {
805                 dbuf_clear_data(db);
806         } else {
807                 ASSERT3U(db->db_state, ==, DB_CACHED);
808         }
809         mutex_exit(&db->db_mtx);
810 }
811
812 /*
813  * This is our just-in-time copy function.  It makes a copy of
814  * buffers, that have been modified in a previous transaction
815  * group, before we modify them in the current active group.
816  *
817  * This function is used in two places: when we are dirtying a
818  * buffer for the first time in a txg, and when we are freeing
819  * a range in a dnode that includes this buffer.
820  *
821  * Note that when we are called from dbuf_free_range() we do
822  * not put a hold on the buffer, we just traverse the active
823  * dbuf list for the dnode.
824  */
825 static void
826 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
827 {
828         dbuf_dirty_record_t *dr = db->db_last_dirty;
829
830         ASSERT(MUTEX_HELD(&db->db_mtx));
831         ASSERT(db->db.db_data != NULL);
832         ASSERT(db->db_level == 0);
833         ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
834
835         if (dr == NULL ||
836             (dr->dt.dl.dr_data !=
837             ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
838                 return;
839
840         /*
841          * If the last dirty record for this dbuf has not yet synced
842          * and its referencing the dbuf data, either:
843          *      reset the reference to point to a new copy,
844          * or (if there a no active holders)
845          *      just null out the current db_data pointer.
846          */
847         ASSERT(dr->dr_txg >= txg - 2);
848         if (db->db_blkid == DMU_BONUS_BLKID) {
849                 /* Note that the data bufs here are zio_bufs */
850                 dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
851                 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
852                 bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
853         } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
854                 int size = db->db.db_size;
855                 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
856                 spa_t *spa = db->db_objset->os_spa;
857
858                 dr->dt.dl.dr_data = arc_buf_alloc(spa, size, db, type);
859                 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
860         } else {
861                 dbuf_clear_data(db);
862         }
863 }
864
865 void
866 dbuf_unoverride(dbuf_dirty_record_t *dr)
867 {
868         dmu_buf_impl_t *db = dr->dr_dbuf;
869         blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
870         uint64_t txg = dr->dr_txg;
871
872         ASSERT(MUTEX_HELD(&db->db_mtx));
873         ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
874         ASSERT(db->db_level == 0);
875
876         if (db->db_blkid == DMU_BONUS_BLKID ||
877             dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
878                 return;
879
880         ASSERT(db->db_data_pending != dr);
881
882         /* free this block */
883         if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
884                 zio_free(db->db_objset->os_spa, txg, bp);
885
886         dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
887         dr->dt.dl.dr_nopwrite = B_FALSE;
888
889         /*
890          * Release the already-written buffer, so we leave it in
891          * a consistent dirty state.  Note that all callers are
892          * modifying the buffer, so they will immediately do
893          * another (redundant) arc_release().  Therefore, leave
894          * the buf thawed to save the effort of freezing &
895          * immediately re-thawing it.
896          */
897         arc_release(dr->dt.dl.dr_data, db);
898 }
899
900 /*
901  * Evict (if its unreferenced) or clear (if its referenced) any level-0
902  * data blocks in the free range, so that any future readers will find
903  * empty blocks.
904  *
905  * This is a no-op if the dataset is in the middle of an incremental
906  * receive; see comment below for details.
907  */
908 void
909 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
910     dmu_tx_t *tx)
911 {
912         dmu_buf_impl_t db_search;
913         dmu_buf_impl_t *db, *db_next;
914         uint64_t txg = tx->tx_txg;
915         avl_index_t where;
916
917         if (end_blkid > dn->dn_maxblkid && (end_blkid != DMU_SPILL_BLKID))
918                 end_blkid = dn->dn_maxblkid;
919         dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
920
921         db_search.db_level = 0;
922         db_search.db_blkid = start_blkid;
923         db_search.db_state = DB_SEARCH;
924
925         mutex_enter(&dn->dn_dbufs_mtx);
926         if (start_blkid >= dn->dn_unlisted_l0_blkid) {
927                 /* There can't be any dbufs in this range; no need to search. */
928 #ifdef DEBUG
929                 db = avl_find(&dn->dn_dbufs, &db_search, &where);
930                 ASSERT3P(db, ==, NULL);
931                 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
932                 ASSERT(db == NULL || db->db_level > 0);
933 #endif
934                 mutex_exit(&dn->dn_dbufs_mtx);
935                 return;
936         } else if (dmu_objset_is_receiving(dn->dn_objset)) {
937                 /*
938                  * If we are receiving, we expect there to be no dbufs in
939                  * the range to be freed, because receive modifies each
940                  * block at most once, and in offset order.  If this is
941                  * not the case, it can lead to performance problems,
942                  * so note that we unexpectedly took the slow path.
943                  */
944                 atomic_inc_64(&zfs_free_range_recv_miss);
945         }
946
947         db = avl_find(&dn->dn_dbufs, &db_search, &where);
948         ASSERT3P(db, ==, NULL);
949         db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
950
951         for (; db != NULL; db = db_next) {
952                 db_next = AVL_NEXT(&dn->dn_dbufs, db);
953                 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
954
955                 if (db->db_level != 0 || db->db_blkid > end_blkid) {
956                         break;
957                 }
958                 ASSERT3U(db->db_blkid, >=, start_blkid);
959
960                 /* found a level 0 buffer in the range */
961                 mutex_enter(&db->db_mtx);
962                 if (dbuf_undirty(db, tx)) {
963                         /* mutex has been dropped and dbuf destroyed */
964                         continue;
965                 }
966
967                 if (db->db_state == DB_UNCACHED ||
968                     db->db_state == DB_NOFILL ||
969                     db->db_state == DB_EVICTING) {
970                         ASSERT(db->db.db_data == NULL);
971                         mutex_exit(&db->db_mtx);
972                         continue;
973                 }
974                 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
975                         /* will be handled in dbuf_read_done or dbuf_rele */
976                         db->db_freed_in_flight = TRUE;
977                         mutex_exit(&db->db_mtx);
978                         continue;
979                 }
980                 if (refcount_count(&db->db_holds) == 0) {
981                         ASSERT(db->db_buf);
982                         dbuf_clear(db);
983                         continue;
984                 }
985                 /* The dbuf is referenced */
986
987                 if (db->db_last_dirty != NULL) {
988                         dbuf_dirty_record_t *dr = db->db_last_dirty;
989
990                         if (dr->dr_txg == txg) {
991                                 /*
992                                  * This buffer is "in-use", re-adjust the file
993                                  * size to reflect that this buffer may
994                                  * contain new data when we sync.
995                                  */
996                                 if (db->db_blkid != DMU_SPILL_BLKID &&
997                                     db->db_blkid > dn->dn_maxblkid)
998                                         dn->dn_maxblkid = db->db_blkid;
999                                 dbuf_unoverride(dr);
1000                         } else {
1001                                 /*
1002                                  * This dbuf is not dirty in the open context.
1003                                  * Either uncache it (if its not referenced in
1004                                  * the open context) or reset its contents to
1005                                  * empty.
1006                                  */
1007                                 dbuf_fix_old_data(db, txg);
1008                         }
1009                 }
1010                 /* clear the contents if its cached */
1011                 if (db->db_state == DB_CACHED) {
1012                         ASSERT(db->db.db_data != NULL);
1013                         arc_release(db->db_buf, db);
1014                         bzero(db->db.db_data, db->db.db_size);
1015                         arc_buf_freeze(db->db_buf);
1016                 }
1017
1018                 mutex_exit(&db->db_mtx);
1019         }
1020         mutex_exit(&dn->dn_dbufs_mtx);
1021 }
1022
1023 static int
1024 dbuf_block_freeable(dmu_buf_impl_t *db)
1025 {
1026         dsl_dataset_t *ds = db->db_objset->os_dsl_dataset;
1027         uint64_t birth_txg = 0;
1028
1029         /*
1030          * We don't need any locking to protect db_blkptr:
1031          * If it's syncing, then db_last_dirty will be set
1032          * so we'll ignore db_blkptr.
1033          *
1034          * This logic ensures that only block births for
1035          * filled blocks are considered.
1036          */
1037         ASSERT(MUTEX_HELD(&db->db_mtx));
1038         if (db->db_last_dirty && (db->db_blkptr == NULL ||
1039             !BP_IS_HOLE(db->db_blkptr))) {
1040                 birth_txg = db->db_last_dirty->dr_txg;
1041         } else if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1042                 birth_txg = db->db_blkptr->blk_birth;
1043         }
1044
1045         /*
1046          * If this block don't exist or is in a snapshot, it can't be freed.
1047          * Don't pass the bp to dsl_dataset_block_freeable() since we
1048          * are holding the db_mtx lock and might deadlock if we are
1049          * prefetching a dedup-ed block.
1050          */
1051         if (birth_txg != 0)
1052                 return (ds == NULL ||
1053                     dsl_dataset_block_freeable(ds, NULL, birth_txg));
1054         else
1055                 return (B_FALSE);
1056 }
1057
1058 void
1059 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1060 {
1061         arc_buf_t *buf, *obuf;
1062         int osize = db->db.db_size;
1063         arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1064         dnode_t *dn;
1065
1066         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1067
1068         DB_DNODE_ENTER(db);
1069         dn = DB_DNODE(db);
1070
1071         /* XXX does *this* func really need the lock? */
1072         ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1073
1074         /*
1075          * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1076          * is OK, because there can be no other references to the db
1077          * when we are changing its size, so no concurrent DB_FILL can
1078          * be happening.
1079          */
1080         /*
1081          * XXX we should be doing a dbuf_read, checking the return
1082          * value and returning that up to our callers
1083          */
1084         dmu_buf_will_dirty(&db->db, tx);
1085
1086         /* create the data buffer for the new block */
1087         buf = arc_buf_alloc(dn->dn_objset->os_spa, size, db, type);
1088
1089         /* copy old block data to the new block */
1090         obuf = db->db_buf;
1091         bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1092         /* zero the remainder */
1093         if (size > osize)
1094                 bzero((uint8_t *)buf->b_data + osize, size - osize);
1095
1096         mutex_enter(&db->db_mtx);
1097         dbuf_set_data(db, buf);
1098         VERIFY(arc_buf_remove_ref(obuf, db));
1099         db->db.db_size = size;
1100
1101         if (db->db_level == 0) {
1102                 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1103                 db->db_last_dirty->dt.dl.dr_data = buf;
1104         }
1105         mutex_exit(&db->db_mtx);
1106
1107         dnode_willuse_space(dn, size-osize, tx);
1108         DB_DNODE_EXIT(db);
1109 }
1110
1111 void
1112 dbuf_release_bp(dmu_buf_impl_t *db)
1113 {
1114         objset_t *os = db->db_objset;
1115
1116         ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1117         ASSERT(arc_released(os->os_phys_buf) ||
1118             list_link_active(&os->os_dsl_dataset->ds_synced_link));
1119         ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1120
1121         (void) arc_release(db->db_buf, db);
1122 }
1123
1124 dbuf_dirty_record_t *
1125 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1126 {
1127         dnode_t *dn;
1128         objset_t *os;
1129         dbuf_dirty_record_t **drp, *dr;
1130         int drop_struct_lock = FALSE;
1131         boolean_t do_free_accounting = B_FALSE;
1132         int txgoff = tx->tx_txg & TXG_MASK;
1133
1134         ASSERT(tx->tx_txg != 0);
1135         ASSERT(!refcount_is_zero(&db->db_holds));
1136         DMU_TX_DIRTY_BUF(tx, db);
1137
1138         DB_DNODE_ENTER(db);
1139         dn = DB_DNODE(db);
1140         /*
1141          * Shouldn't dirty a regular buffer in syncing context.  Private
1142          * objects may be dirtied in syncing context, but only if they
1143          * were already pre-dirtied in open context.
1144          */
1145         ASSERT(!dmu_tx_is_syncing(tx) ||
1146             BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1147             DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1148             dn->dn_objset->os_dsl_dataset == NULL);
1149         /*
1150          * We make this assert for private objects as well, but after we
1151          * check if we're already dirty.  They are allowed to re-dirty
1152          * in syncing context.
1153          */
1154         ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1155             dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1156             (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1157
1158         mutex_enter(&db->db_mtx);
1159         /*
1160          * XXX make this true for indirects too?  The problem is that
1161          * transactions created with dmu_tx_create_assigned() from
1162          * syncing context don't bother holding ahead.
1163          */
1164         ASSERT(db->db_level != 0 ||
1165             db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1166             db->db_state == DB_NOFILL);
1167
1168         mutex_enter(&dn->dn_mtx);
1169         /*
1170          * Don't set dirtyctx to SYNC if we're just modifying this as we
1171          * initialize the objset.
1172          */
1173         if (dn->dn_dirtyctx == DN_UNDIRTIED &&
1174             !BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1175                 dn->dn_dirtyctx =
1176                     (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1177                 ASSERT(dn->dn_dirtyctx_firstset == NULL);
1178                 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1179         }
1180         mutex_exit(&dn->dn_mtx);
1181
1182         if (db->db_blkid == DMU_SPILL_BLKID)
1183                 dn->dn_have_spill = B_TRUE;
1184
1185         /*
1186          * If this buffer is already dirty, we're done.
1187          */
1188         drp = &db->db_last_dirty;
1189         ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1190             db->db.db_object == DMU_META_DNODE_OBJECT);
1191         while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1192                 drp = &dr->dr_next;
1193         if (dr && dr->dr_txg == tx->tx_txg) {
1194                 DB_DNODE_EXIT(db);
1195
1196                 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1197                         /*
1198                          * If this buffer has already been written out,
1199                          * we now need to reset its state.
1200                          */
1201                         dbuf_unoverride(dr);
1202                         if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1203                             db->db_state != DB_NOFILL)
1204                                 arc_buf_thaw(db->db_buf);
1205                 }
1206                 mutex_exit(&db->db_mtx);
1207                 return (dr);
1208         }
1209
1210         /*
1211          * Only valid if not already dirty.
1212          */
1213         ASSERT(dn->dn_object == 0 ||
1214             dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1215             (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1216
1217         ASSERT3U(dn->dn_nlevels, >, db->db_level);
1218         ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1219             dn->dn_phys->dn_nlevels > db->db_level ||
1220             dn->dn_next_nlevels[txgoff] > db->db_level ||
1221             dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1222             dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1223
1224         /*
1225          * We should only be dirtying in syncing context if it's the
1226          * mos or we're initializing the os or it's a special object.
1227          * However, we are allowed to dirty in syncing context provided
1228          * we already dirtied it in open context.  Hence we must make
1229          * this assertion only if we're not already dirty.
1230          */
1231         os = dn->dn_objset;
1232         ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1233             os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1234         ASSERT(db->db.db_size != 0);
1235
1236         dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1237
1238         if (db->db_blkid != DMU_BONUS_BLKID) {
1239                 /*
1240                  * Update the accounting.
1241                  * Note: we delay "free accounting" until after we drop
1242                  * the db_mtx.  This keeps us from grabbing other locks
1243                  * (and possibly deadlocking) in bp_get_dsize() while
1244                  * also holding the db_mtx.
1245                  */
1246                 dnode_willuse_space(dn, db->db.db_size, tx);
1247                 do_free_accounting = dbuf_block_freeable(db);
1248         }
1249
1250         /*
1251          * If this buffer is dirty in an old transaction group we need
1252          * to make a copy of it so that the changes we make in this
1253          * transaction group won't leak out when we sync the older txg.
1254          */
1255         dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1256         if (db->db_level == 0) {
1257                 void *data_old = db->db_buf;
1258
1259                 if (db->db_state != DB_NOFILL) {
1260                         if (db->db_blkid == DMU_BONUS_BLKID) {
1261                                 dbuf_fix_old_data(db, tx->tx_txg);
1262                                 data_old = db->db.db_data;
1263                         } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1264                                 /*
1265                                  * Release the data buffer from the cache so
1266                                  * that we can modify it without impacting
1267                                  * possible other users of this cached data
1268                                  * block.  Note that indirect blocks and
1269                                  * private objects are not released until the
1270                                  * syncing state (since they are only modified
1271                                  * then).
1272                                  */
1273                                 arc_release(db->db_buf, db);
1274                                 dbuf_fix_old_data(db, tx->tx_txg);
1275                                 data_old = db->db_buf;
1276                         }
1277                         ASSERT(data_old != NULL);
1278                 }
1279                 dr->dt.dl.dr_data = data_old;
1280         } else {
1281                 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1282                 list_create(&dr->dt.di.dr_children,
1283                     sizeof (dbuf_dirty_record_t),
1284                     offsetof(dbuf_dirty_record_t, dr_dirty_node));
1285         }
1286         if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1287                 dr->dr_accounted = db->db.db_size;
1288         dr->dr_dbuf = db;
1289         dr->dr_txg = tx->tx_txg;
1290         dr->dr_next = *drp;
1291         *drp = dr;
1292
1293         /*
1294          * We could have been freed_in_flight between the dbuf_noread
1295          * and dbuf_dirty.  We win, as though the dbuf_noread() had
1296          * happened after the free.
1297          */
1298         if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1299             db->db_blkid != DMU_SPILL_BLKID) {
1300                 mutex_enter(&dn->dn_mtx);
1301                 if (dn->dn_free_ranges[txgoff] != NULL) {
1302                         range_tree_clear(dn->dn_free_ranges[txgoff],
1303                             db->db_blkid, 1);
1304                 }
1305                 mutex_exit(&dn->dn_mtx);
1306                 db->db_freed_in_flight = FALSE;
1307         }
1308
1309         /*
1310          * This buffer is now part of this txg
1311          */
1312         dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1313         db->db_dirtycnt += 1;
1314         ASSERT3U(db->db_dirtycnt, <=, 3);
1315
1316         mutex_exit(&db->db_mtx);
1317
1318         if (db->db_blkid == DMU_BONUS_BLKID ||
1319             db->db_blkid == DMU_SPILL_BLKID) {
1320                 mutex_enter(&dn->dn_mtx);
1321                 ASSERT(!list_link_active(&dr->dr_dirty_node));
1322                 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1323                 mutex_exit(&dn->dn_mtx);
1324                 dnode_setdirty(dn, tx);
1325                 DB_DNODE_EXIT(db);
1326                 return (dr);
1327         } else if (do_free_accounting) {
1328                 blkptr_t *bp = db->db_blkptr;
1329                 int64_t willfree = (bp && !BP_IS_HOLE(bp)) ?
1330                     bp_get_dsize(os->os_spa, bp) : db->db.db_size;
1331                 /*
1332                  * This is only a guess -- if the dbuf is dirty
1333                  * in a previous txg, we don't know how much
1334                  * space it will use on disk yet.  We should
1335                  * really have the struct_rwlock to access
1336                  * db_blkptr, but since this is just a guess,
1337                  * it's OK if we get an odd answer.
1338                  */
1339                 ddt_prefetch(os->os_spa, bp);
1340                 dnode_willuse_space(dn, -willfree, tx);
1341         }
1342
1343         if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1344                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1345                 drop_struct_lock = TRUE;
1346         }
1347
1348         if (db->db_level == 0) {
1349                 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1350                 ASSERT(dn->dn_maxblkid >= db->db_blkid);
1351         }
1352
1353         if (db->db_level+1 < dn->dn_nlevels) {
1354                 dmu_buf_impl_t *parent = db->db_parent;
1355                 dbuf_dirty_record_t *di;
1356                 int parent_held = FALSE;
1357
1358                 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1359                         int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1360
1361                         parent = dbuf_hold_level(dn, db->db_level+1,
1362                             db->db_blkid >> epbs, FTAG);
1363                         ASSERT(parent != NULL);
1364                         parent_held = TRUE;
1365                 }
1366                 if (drop_struct_lock)
1367                         rw_exit(&dn->dn_struct_rwlock);
1368                 ASSERT3U(db->db_level+1, ==, parent->db_level);
1369                 di = dbuf_dirty(parent, tx);
1370                 if (parent_held)
1371                         dbuf_rele(parent, FTAG);
1372
1373                 mutex_enter(&db->db_mtx);
1374                 /*
1375                  * Since we've dropped the mutex, it's possible that
1376                  * dbuf_undirty() might have changed this out from under us.
1377                  */
1378                 if (db->db_last_dirty == dr ||
1379                     dn->dn_object == DMU_META_DNODE_OBJECT) {
1380                         mutex_enter(&di->dt.di.dr_mtx);
1381                         ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1382                         ASSERT(!list_link_active(&dr->dr_dirty_node));
1383                         list_insert_tail(&di->dt.di.dr_children, dr);
1384                         mutex_exit(&di->dt.di.dr_mtx);
1385                         dr->dr_parent = di;
1386                 }
1387                 mutex_exit(&db->db_mtx);
1388         } else {
1389                 ASSERT(db->db_level+1 == dn->dn_nlevels);
1390                 ASSERT(db->db_blkid < dn->dn_nblkptr);
1391                 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1392                 mutex_enter(&dn->dn_mtx);
1393                 ASSERT(!list_link_active(&dr->dr_dirty_node));
1394                 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1395                 mutex_exit(&dn->dn_mtx);
1396                 if (drop_struct_lock)
1397                         rw_exit(&dn->dn_struct_rwlock);
1398         }
1399
1400         dnode_setdirty(dn, tx);
1401         DB_DNODE_EXIT(db);
1402         return (dr);
1403 }
1404
1405 /*
1406  * Undirty a buffer in the transaction group referenced by the given
1407  * transaction.  Return whether this evicted the dbuf.
1408  */
1409 static boolean_t
1410 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1411 {
1412         dnode_t *dn;
1413         uint64_t txg = tx->tx_txg;
1414         dbuf_dirty_record_t *dr, **drp;
1415
1416         ASSERT(txg != 0);
1417
1418         /*
1419          * Due to our use of dn_nlevels below, this can only be called
1420          * in open context, unless we are operating on the MOS.
1421          * From syncing context, dn_nlevels may be different from the
1422          * dn_nlevels used when dbuf was dirtied.
1423          */
1424         ASSERT(db->db_objset ==
1425             dmu_objset_pool(db->db_objset)->dp_meta_objset ||
1426             txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1427         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1428         ASSERT0(db->db_level);
1429         ASSERT(MUTEX_HELD(&db->db_mtx));
1430
1431         /*
1432          * If this buffer is not dirty, we're done.
1433          */
1434         for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1435                 if (dr->dr_txg <= txg)
1436                         break;
1437         if (dr == NULL || dr->dr_txg < txg)
1438                 return (B_FALSE);
1439         ASSERT(dr->dr_txg == txg);
1440         ASSERT(dr->dr_dbuf == db);
1441
1442         DB_DNODE_ENTER(db);
1443         dn = DB_DNODE(db);
1444
1445         dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1446
1447         ASSERT(db->db.db_size != 0);
1448
1449         dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
1450             dr->dr_accounted, txg);
1451
1452         *drp = dr->dr_next;
1453
1454         /*
1455          * Note that there are three places in dbuf_dirty()
1456          * where this dirty record may be put on a list.
1457          * Make sure to do a list_remove corresponding to
1458          * every one of those list_insert calls.
1459          */
1460         if (dr->dr_parent) {
1461                 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1462                 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1463                 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1464         } else if (db->db_blkid == DMU_SPILL_BLKID ||
1465             db->db_level + 1 == dn->dn_nlevels) {
1466                 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1467                 mutex_enter(&dn->dn_mtx);
1468                 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1469                 mutex_exit(&dn->dn_mtx);
1470         }
1471         DB_DNODE_EXIT(db);
1472
1473         if (db->db_state != DB_NOFILL) {
1474                 dbuf_unoverride(dr);
1475
1476                 ASSERT(db->db_buf != NULL);
1477                 ASSERT(dr->dt.dl.dr_data != NULL);
1478                 if (dr->dt.dl.dr_data != db->db_buf)
1479                         VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db));
1480         }
1481
1482         kmem_free(dr, sizeof (dbuf_dirty_record_t));
1483
1484         ASSERT(db->db_dirtycnt > 0);
1485         db->db_dirtycnt -= 1;
1486
1487         if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1488                 arc_buf_t *buf = db->db_buf;
1489
1490                 ASSERT(db->db_state == DB_NOFILL || arc_released(buf));
1491                 dbuf_clear_data(db);
1492                 VERIFY(arc_buf_remove_ref(buf, db));
1493                 dbuf_evict(db);
1494                 return (B_TRUE);
1495         }
1496
1497         return (B_FALSE);
1498 }
1499
1500 void
1501 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1502 {
1503         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1504         int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1505
1506         ASSERT(tx->tx_txg != 0);
1507         ASSERT(!refcount_is_zero(&db->db_holds));
1508
1509         DB_DNODE_ENTER(db);
1510         if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1511                 rf |= DB_RF_HAVESTRUCT;
1512         DB_DNODE_EXIT(db);
1513         (void) dbuf_read(db, NULL, rf);
1514         (void) dbuf_dirty(db, tx);
1515 }
1516
1517 void
1518 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1519 {
1520         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1521
1522         db->db_state = DB_NOFILL;
1523
1524         dmu_buf_will_fill(db_fake, tx);
1525 }
1526
1527 void
1528 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1529 {
1530         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1531
1532         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1533         ASSERT(tx->tx_txg != 0);
1534         ASSERT(db->db_level == 0);
1535         ASSERT(!refcount_is_zero(&db->db_holds));
1536
1537         ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1538             dmu_tx_private_ok(tx));
1539
1540         dbuf_noread(db);
1541         (void) dbuf_dirty(db, tx);
1542 }
1543
1544 #pragma weak dmu_buf_fill_done = dbuf_fill_done
1545 /* ARGSUSED */
1546 void
1547 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1548 {
1549         mutex_enter(&db->db_mtx);
1550         DBUF_VERIFY(db);
1551
1552         if (db->db_state == DB_FILL) {
1553                 if (db->db_level == 0 && db->db_freed_in_flight) {
1554                         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1555                         /* we were freed while filling */
1556                         /* XXX dbuf_undirty? */
1557                         bzero(db->db.db_data, db->db.db_size);
1558                         db->db_freed_in_flight = FALSE;
1559                 }
1560                 db->db_state = DB_CACHED;
1561                 cv_broadcast(&db->db_changed);
1562         }
1563         mutex_exit(&db->db_mtx);
1564 }
1565
1566 void
1567 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
1568     bp_embedded_type_t etype, enum zio_compress comp,
1569     int uncompressed_size, int compressed_size, int byteorder,
1570     dmu_tx_t *tx)
1571 {
1572         dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
1573         struct dirty_leaf *dl;
1574         dmu_object_type_t type;
1575
1576         DB_DNODE_ENTER(db);
1577         type = DB_DNODE(db)->dn_type;
1578         DB_DNODE_EXIT(db);
1579
1580         ASSERT0(db->db_level);
1581         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1582
1583         dmu_buf_will_not_fill(dbuf, tx);
1584
1585         ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1586         dl = &db->db_last_dirty->dt.dl;
1587         encode_embedded_bp_compressed(&dl->dr_overridden_by,
1588             data, comp, uncompressed_size, compressed_size);
1589         BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
1590         BP_SET_TYPE(&dl->dr_overridden_by, type);
1591         BP_SET_LEVEL(&dl->dr_overridden_by, 0);
1592         BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
1593
1594         dl->dr_override_state = DR_OVERRIDDEN;
1595         dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
1596 }
1597
1598 /*
1599  * Directly assign a provided arc buf to a given dbuf if it's not referenced
1600  * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
1601  */
1602 void
1603 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
1604 {
1605         ASSERT(!refcount_is_zero(&db->db_holds));
1606         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1607         ASSERT(db->db_level == 0);
1608         ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA);
1609         ASSERT(buf != NULL);
1610         ASSERT(arc_buf_size(buf) == db->db.db_size);
1611         ASSERT(tx->tx_txg != 0);
1612
1613         arc_return_buf(buf, db);
1614         ASSERT(arc_released(buf));
1615
1616         mutex_enter(&db->db_mtx);
1617
1618         while (db->db_state == DB_READ || db->db_state == DB_FILL)
1619                 cv_wait(&db->db_changed, &db->db_mtx);
1620
1621         ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
1622
1623         if (db->db_state == DB_CACHED &&
1624             refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
1625                 mutex_exit(&db->db_mtx);
1626                 (void) dbuf_dirty(db, tx);
1627                 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
1628                 VERIFY(arc_buf_remove_ref(buf, db));
1629                 xuio_stat_wbuf_copied();
1630                 return;
1631         }
1632
1633         xuio_stat_wbuf_nocopy();
1634         if (db->db_state == DB_CACHED) {
1635                 dbuf_dirty_record_t *dr = db->db_last_dirty;
1636
1637                 ASSERT(db->db_buf != NULL);
1638                 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
1639                         ASSERT(dr->dt.dl.dr_data == db->db_buf);
1640                         if (!arc_released(db->db_buf)) {
1641                                 ASSERT(dr->dt.dl.dr_override_state ==
1642                                     DR_OVERRIDDEN);
1643                                 arc_release(db->db_buf, db);
1644                         }
1645                         dr->dt.dl.dr_data = buf;
1646                         VERIFY(arc_buf_remove_ref(db->db_buf, db));
1647                 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
1648                         arc_release(db->db_buf, db);
1649                         VERIFY(arc_buf_remove_ref(db->db_buf, db));
1650                 }
1651                 db->db_buf = NULL;
1652         }
1653         ASSERT(db->db_buf == NULL);
1654         dbuf_set_data(db, buf);
1655         db->db_state = DB_FILL;
1656         mutex_exit(&db->db_mtx);
1657         (void) dbuf_dirty(db, tx);
1658         dmu_buf_fill_done(&db->db, tx);
1659 }
1660
1661 /*
1662  * "Clear" the contents of this dbuf.  This will mark the dbuf
1663  * EVICTING and clear *most* of its references.  Unfortunately,
1664  * when we are not holding the dn_dbufs_mtx, we can't clear the
1665  * entry in the dn_dbufs list.  We have to wait until dbuf_destroy()
1666  * in this case.  For callers from the DMU we will usually see:
1667  *      dbuf_clear()->arc_clear_callback()->dbuf_do_evict()->dbuf_destroy()
1668  * For the arc callback, we will usually see:
1669  *      dbuf_do_evict()->dbuf_clear();dbuf_destroy()
1670  * Sometimes, though, we will get a mix of these two:
1671  *      DMU: dbuf_clear()->arc_clear_callback()
1672  *      ARC: dbuf_do_evict()->dbuf_destroy()
1673  *
1674  * This routine will dissociate the dbuf from the arc, by calling
1675  * arc_clear_callback(), but will not evict the data from the ARC.
1676  */
1677 void
1678 dbuf_clear(dmu_buf_impl_t *db)
1679 {
1680         dnode_t *dn;
1681         dmu_buf_impl_t *parent = db->db_parent;
1682         dmu_buf_impl_t *dndb;
1683         boolean_t dbuf_gone = B_FALSE;
1684
1685         ASSERT(MUTEX_HELD(&db->db_mtx));
1686         ASSERT(refcount_is_zero(&db->db_holds));
1687
1688         dbuf_evict_user(db);
1689
1690         if (db->db_state == DB_CACHED) {
1691                 ASSERT(db->db.db_data != NULL);
1692                 if (db->db_blkid == DMU_BONUS_BLKID) {
1693                         zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
1694                         arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1695                 }
1696                 db->db.db_data = NULL;
1697                 db->db_state = DB_UNCACHED;
1698         }
1699
1700         ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1701         ASSERT(db->db_data_pending == NULL);
1702
1703         db->db_state = DB_EVICTING;
1704         db->db_blkptr = NULL;
1705
1706         DB_DNODE_ENTER(db);
1707         dn = DB_DNODE(db);
1708         dndb = dn->dn_dbuf;
1709         if (db->db_blkid != DMU_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) {
1710                 avl_remove(&dn->dn_dbufs, db);
1711                 atomic_dec_32(&dn->dn_dbufs_count);
1712                 membar_producer();
1713                 DB_DNODE_EXIT(db);
1714                 /*
1715                  * Decrementing the dbuf count means that the hold corresponding
1716                  * to the removed dbuf is no longer discounted in dnode_move(),
1717                  * so the dnode cannot be moved until after we release the hold.
1718                  * The membar_producer() ensures visibility of the decremented
1719                  * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
1720                  * release any lock.
1721                  */
1722                 dnode_rele(dn, db);
1723                 db->db_dnode_handle = NULL;
1724         } else {
1725                 DB_DNODE_EXIT(db);
1726         }
1727
1728         if (db->db_buf)
1729                 dbuf_gone = arc_clear_callback(db->db_buf);
1730
1731         if (!dbuf_gone)
1732                 mutex_exit(&db->db_mtx);
1733
1734         /*
1735          * If this dbuf is referenced from an indirect dbuf,
1736          * decrement the ref count on the indirect dbuf.
1737          */
1738         if (parent && parent != dndb)
1739                 dbuf_rele(parent, db);
1740 }
1741
1742 /*
1743  * Note: While bpp will always be updated if the function returns success,
1744  * parentp will not be updated if the dnode does not have dn_dbuf filled in;
1745  * this happens when the dnode is the meta-dnode, or a userused or groupused
1746  * object.
1747  */
1748 static int
1749 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
1750     dmu_buf_impl_t **parentp, blkptr_t **bpp)
1751 {
1752         int nlevels, epbs;
1753
1754         *parentp = NULL;
1755         *bpp = NULL;
1756
1757         ASSERT(blkid != DMU_BONUS_BLKID);
1758
1759         if (blkid == DMU_SPILL_BLKID) {
1760                 mutex_enter(&dn->dn_mtx);
1761                 if (dn->dn_have_spill &&
1762                     (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1763                         *bpp = &dn->dn_phys->dn_spill;
1764                 else
1765                         *bpp = NULL;
1766                 dbuf_add_ref(dn->dn_dbuf, NULL);
1767                 *parentp = dn->dn_dbuf;
1768                 mutex_exit(&dn->dn_mtx);
1769                 return (0);
1770         }
1771
1772         if (dn->dn_phys->dn_nlevels == 0)
1773                 nlevels = 1;
1774         else
1775                 nlevels = dn->dn_phys->dn_nlevels;
1776
1777         epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1778
1779         ASSERT3U(level * epbs, <, 64);
1780         ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1781         if (level >= nlevels ||
1782             (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
1783                 /* the buffer has no parent yet */
1784                 return (SET_ERROR(ENOENT));
1785         } else if (level < nlevels-1) {
1786                 /* this block is referenced from an indirect block */
1787                 int err = dbuf_hold_impl(dn, level+1,
1788                     blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
1789                 if (err)
1790                         return (err);
1791                 err = dbuf_read(*parentp, NULL,
1792                     (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
1793                 if (err) {
1794                         dbuf_rele(*parentp, NULL);
1795                         *parentp = NULL;
1796                         return (err);
1797                 }
1798                 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
1799                     (blkid & ((1ULL << epbs) - 1));
1800                 return (0);
1801         } else {
1802                 /* the block is referenced from the dnode */
1803                 ASSERT3U(level, ==, nlevels-1);
1804                 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
1805                     blkid < dn->dn_phys->dn_nblkptr);
1806                 if (dn->dn_dbuf) {
1807                         dbuf_add_ref(dn->dn_dbuf, NULL);
1808                         *parentp = dn->dn_dbuf;
1809                 }
1810                 *bpp = &dn->dn_phys->dn_blkptr[blkid];
1811                 return (0);
1812         }
1813 }
1814
1815 static dmu_buf_impl_t *
1816 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
1817     dmu_buf_impl_t *parent, blkptr_t *blkptr)
1818 {
1819         objset_t *os = dn->dn_objset;
1820         dmu_buf_impl_t *db, *odb;
1821
1822         ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1823         ASSERT(dn->dn_type != DMU_OT_NONE);
1824
1825         db = kmem_cache_alloc(dbuf_cache, KM_SLEEP);
1826
1827         db->db_objset = os;
1828         db->db.db_object = dn->dn_object;
1829         db->db_level = level;
1830         db->db_blkid = blkid;
1831         db->db_last_dirty = NULL;
1832         db->db_dirtycnt = 0;
1833         db->db_dnode_handle = dn->dn_handle;
1834         db->db_parent = parent;
1835         db->db_blkptr = blkptr;
1836
1837         db->db_user = NULL;
1838         db->db_immediate_evict = 0;
1839         db->db_freed_in_flight = 0;
1840
1841         if (blkid == DMU_BONUS_BLKID) {
1842                 ASSERT3P(parent, ==, dn->dn_dbuf);
1843                 db->db.db_size = DN_MAX_BONUSLEN -
1844                     (dn->dn_nblkptr-1) * sizeof (blkptr_t);
1845                 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1846                 db->db.db_offset = DMU_BONUS_BLKID;
1847                 db->db_state = DB_UNCACHED;
1848                 /* the bonus dbuf is not placed in the hash table */
1849                 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1850                 return (db);
1851         } else if (blkid == DMU_SPILL_BLKID) {
1852                 db->db.db_size = (blkptr != NULL) ?
1853                     BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
1854                 db->db.db_offset = 0;
1855         } else {
1856                 int blocksize =
1857                     db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
1858                 db->db.db_size = blocksize;
1859                 db->db.db_offset = db->db_blkid * blocksize;
1860         }
1861
1862         /*
1863          * Hold the dn_dbufs_mtx while we get the new dbuf
1864          * in the hash table *and* added to the dbufs list.
1865          * This prevents a possible deadlock with someone
1866          * trying to look up this dbuf before its added to the
1867          * dn_dbufs list.
1868          */
1869         mutex_enter(&dn->dn_dbufs_mtx);
1870         db->db_state = DB_EVICTING;
1871         if ((odb = dbuf_hash_insert(db)) != NULL) {
1872                 /* someone else inserted it first */
1873                 kmem_cache_free(dbuf_cache, db);
1874                 mutex_exit(&dn->dn_dbufs_mtx);
1875                 return (odb);
1876         }
1877         avl_add(&dn->dn_dbufs, db);
1878         if (db->db_level == 0 && db->db_blkid >=
1879             dn->dn_unlisted_l0_blkid)
1880                 dn->dn_unlisted_l0_blkid = db->db_blkid + 1;
1881         db->db_state = DB_UNCACHED;
1882         mutex_exit(&dn->dn_dbufs_mtx);
1883         arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1884
1885         if (parent && parent != dn->dn_dbuf)
1886                 dbuf_add_ref(parent, db);
1887
1888         ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1889             refcount_count(&dn->dn_holds) > 0);
1890         (void) refcount_add(&dn->dn_holds, db);
1891         atomic_inc_32(&dn->dn_dbufs_count);
1892
1893         dprintf_dbuf(db, "db=%p\n", db);
1894
1895         return (db);
1896 }
1897
1898 static int
1899 dbuf_do_evict(void *private)
1900 {
1901         dmu_buf_impl_t *db = private;
1902
1903         if (!MUTEX_HELD(&db->db_mtx))
1904                 mutex_enter(&db->db_mtx);
1905
1906         ASSERT(refcount_is_zero(&db->db_holds));
1907
1908         if (db->db_state != DB_EVICTING) {
1909                 ASSERT(db->db_state == DB_CACHED);
1910                 DBUF_VERIFY(db);
1911                 db->db_buf = NULL;
1912                 dbuf_evict(db);
1913         } else {
1914                 mutex_exit(&db->db_mtx);
1915                 dbuf_destroy(db);
1916         }
1917         return (0);
1918 }
1919
1920 static void
1921 dbuf_destroy(dmu_buf_impl_t *db)
1922 {
1923         ASSERT(refcount_is_zero(&db->db_holds));
1924
1925         if (db->db_blkid != DMU_BONUS_BLKID) {
1926                 /*
1927                  * If this dbuf is still on the dn_dbufs list,
1928                  * remove it from that list.
1929                  */
1930                 if (db->db_dnode_handle != NULL) {
1931                         dnode_t *dn;
1932
1933                         DB_DNODE_ENTER(db);
1934                         dn = DB_DNODE(db);
1935                         mutex_enter(&dn->dn_dbufs_mtx);
1936                         avl_remove(&dn->dn_dbufs, db);
1937                         atomic_dec_32(&dn->dn_dbufs_count);
1938                         mutex_exit(&dn->dn_dbufs_mtx);
1939                         DB_DNODE_EXIT(db);
1940                         /*
1941                          * Decrementing the dbuf count means that the hold
1942                          * corresponding to the removed dbuf is no longer
1943                          * discounted in dnode_move(), so the dnode cannot be
1944                          * moved until after we release the hold.
1945                          */
1946                         dnode_rele(dn, db);
1947                         db->db_dnode_handle = NULL;
1948                 }
1949                 dbuf_hash_remove(db);
1950         }
1951         db->db_parent = NULL;
1952         db->db_buf = NULL;
1953
1954         ASSERT(db->db.db_data == NULL);
1955         ASSERT(db->db_hash_next == NULL);
1956         ASSERT(db->db_blkptr == NULL);
1957         ASSERT(db->db_data_pending == NULL);
1958
1959         kmem_cache_free(dbuf_cache, db);
1960         arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1961 }
1962
1963 typedef struct dbuf_prefetch_arg {
1964         spa_t *dpa_spa; /* The spa to issue the prefetch in. */
1965         zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
1966         int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
1967         int dpa_curlevel; /* The current level that we're reading */
1968         zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
1969         zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
1970         arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
1971 } dbuf_prefetch_arg_t;
1972
1973 /*
1974  * Actually issue the prefetch read for the block given.
1975  */
1976 static void
1977 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
1978 {
1979         if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1980                 return;
1981
1982         arc_flags_t aflags =
1983             dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
1984
1985         ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
1986         ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
1987         ASSERT(dpa->dpa_zio != NULL);
1988         (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
1989             dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
1990             &aflags, &dpa->dpa_zb);
1991 }
1992
1993 /*
1994  * Called when an indirect block above our prefetch target is read in.  This
1995  * will either read in the next indirect block down the tree or issue the actual
1996  * prefetch if the next block down is our target.
1997  */
1998 static void
1999 dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private)
2000 {
2001         dbuf_prefetch_arg_t *dpa = private;
2002
2003         ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2004         ASSERT3S(dpa->dpa_curlevel, >, 0);
2005         if (zio != NULL) {
2006                 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2007                 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2008                 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2009         }
2010
2011         dpa->dpa_curlevel--;
2012
2013         uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2014             (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2015         blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2016             P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2017         if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) {
2018                 kmem_free(dpa, sizeof (*dpa));
2019         } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2020                 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2021                 dbuf_issue_final_prefetch(dpa, bp);
2022                 kmem_free(dpa, sizeof (*dpa));
2023         } else {
2024                 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2025                 zbookmark_phys_t zb;
2026
2027                 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2028
2029                 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2030                     dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2031
2032                 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2033                     bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2034                     ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2035                     &iter_aflags, &zb);
2036         }
2037         (void) arc_buf_remove_ref(abuf, private);
2038 }
2039
2040 /*
2041  * Issue prefetch reads for the given block on the given level.  If the indirect
2042  * blocks above that block are not in memory, we will read them in
2043  * asynchronously.  As a result, this call never blocks waiting for a read to
2044  * complete.
2045  */
2046 void
2047 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2048     arc_flags_t aflags)
2049 {
2050         blkptr_t bp;
2051         int epbs, nlevels, curlevel;
2052         uint64_t curblkid;
2053
2054         ASSERT(blkid != DMU_BONUS_BLKID);
2055         ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2056
2057         if (dnode_block_freed(dn, blkid))
2058                 return;
2059
2060         /*
2061          * This dnode hasn't been written to disk yet, so there's nothing to
2062          * prefetch.
2063          */
2064         nlevels = dn->dn_phys->dn_nlevels;
2065         if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2066                 return;
2067
2068         epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2069         if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2070                 return;
2071
2072         dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2073             level, blkid);
2074         if (db != NULL) {
2075                 mutex_exit(&db->db_mtx);
2076                 /*
2077                  * This dbuf already exists.  It is either CACHED, or
2078                  * (we assume) about to be read or filled.
2079                  */
2080                 return;
2081         }
2082
2083         /*
2084          * Find the closest ancestor (indirect block) of the target block
2085          * that is present in the cache.  In this indirect block, we will
2086          * find the bp that is at curlevel, curblkid.
2087          */
2088         curlevel = level;
2089         curblkid = blkid;
2090         while (curlevel < nlevels - 1) {
2091                 int parent_level = curlevel + 1;
2092                 uint64_t parent_blkid = curblkid >> epbs;
2093                 dmu_buf_impl_t *db;
2094
2095                 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2096                     FALSE, TRUE, FTAG, &db) == 0) {
2097                         blkptr_t *bpp = db->db_buf->b_data;
2098                         bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2099                         dbuf_rele(db, FTAG);
2100                         break;
2101                 }
2102
2103                 curlevel = parent_level;
2104                 curblkid = parent_blkid;
2105         }
2106
2107         if (curlevel == nlevels - 1) {
2108                 /* No cached indirect blocks found. */
2109                 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2110                 bp = dn->dn_phys->dn_blkptr[curblkid];
2111         }
2112         if (BP_IS_HOLE(&bp))
2113                 return;
2114
2115         ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2116
2117         zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2118             ZIO_FLAG_CANFAIL);
2119
2120         dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2121         dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2122         SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2123             dn->dn_object, level, blkid);
2124         dpa->dpa_curlevel = curlevel;
2125         dpa->dpa_prio = prio;
2126         dpa->dpa_aflags = aflags;
2127         dpa->dpa_spa = dn->dn_objset->os_spa;
2128         dpa->dpa_epbs = epbs;
2129         dpa->dpa_zio = pio;
2130
2131         /*
2132          * If we have the indirect just above us, no need to do the asynchronous
2133          * prefetch chain; we'll just run the last step ourselves.  If we're at
2134          * a higher level, though, we want to issue the prefetches for all the
2135          * indirect blocks asynchronously, so we can go on with whatever we were
2136          * doing.
2137          */
2138         if (curlevel == level) {
2139                 ASSERT3U(curblkid, ==, blkid);
2140                 dbuf_issue_final_prefetch(dpa, &bp);
2141                 kmem_free(dpa, sizeof (*dpa));
2142         } else {
2143                 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2144                 zbookmark_phys_t zb;
2145
2146                 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2147                     dn->dn_object, curlevel, curblkid);
2148                 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2149                     &bp, dbuf_prefetch_indirect_done, dpa, prio,
2150                     ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2151                     &iter_aflags, &zb);
2152         }
2153         /*
2154          * We use pio here instead of dpa_zio since it's possible that
2155          * dpa may have already been freed.
2156          */
2157         zio_nowait(pio);
2158 }
2159
2160 /*
2161  * Returns with db_holds incremented, and db_mtx not held.
2162  * Note: dn_struct_rwlock must be held.
2163  */
2164 int
2165 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
2166     boolean_t fail_sparse, boolean_t fail_uncached,
2167     void *tag, dmu_buf_impl_t **dbp)
2168 {
2169         dmu_buf_impl_t *db, *parent = NULL;
2170
2171         ASSERT(blkid != DMU_BONUS_BLKID);
2172         ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2173         ASSERT3U(dn->dn_nlevels, >, level);
2174
2175         *dbp = NULL;
2176 top:
2177         /* dbuf_find() returns with db_mtx held */
2178         db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid);
2179
2180         if (db == NULL) {
2181                 blkptr_t *bp = NULL;
2182                 int err;
2183
2184                 if (fail_uncached)
2185                         return (SET_ERROR(ENOENT));
2186
2187                 ASSERT3P(parent, ==, NULL);
2188                 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
2189                 if (fail_sparse) {
2190                         if (err == 0 && bp && BP_IS_HOLE(bp))
2191                                 err = SET_ERROR(ENOENT);
2192                         if (err) {
2193                                 if (parent)
2194                                         dbuf_rele(parent, NULL);
2195                                 return (err);
2196                         }
2197                 }
2198                 if (err && err != ENOENT)
2199                         return (err);
2200                 db = dbuf_create(dn, level, blkid, parent, bp);
2201         }
2202
2203         if (fail_uncached && db->db_state != DB_CACHED) {
2204                 mutex_exit(&db->db_mtx);
2205                 return (SET_ERROR(ENOENT));
2206         }
2207
2208         if (db->db_buf && refcount_is_zero(&db->db_holds)) {
2209                 arc_buf_add_ref(db->db_buf, db);
2210                 if (db->db_buf->b_data == NULL) {
2211                         dbuf_clear(db);
2212                         if (parent) {
2213                                 dbuf_rele(parent, NULL);
2214                                 parent = NULL;
2215                         }
2216                         goto top;
2217                 }
2218                 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
2219         }
2220
2221         ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
2222
2223         /*
2224          * If this buffer is currently syncing out, and we are are
2225          * still referencing it from db_data, we need to make a copy
2226          * of it in case we decide we want to dirty it again in this txg.
2227          */
2228         if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2229             dn->dn_object != DMU_META_DNODE_OBJECT &&
2230             db->db_state == DB_CACHED && db->db_data_pending) {
2231                 dbuf_dirty_record_t *dr = db->db_data_pending;
2232
2233                 if (dr->dt.dl.dr_data == db->db_buf) {
2234                         arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2235
2236                         dbuf_set_data(db,
2237                             arc_buf_alloc(dn->dn_objset->os_spa,
2238                             db->db.db_size, db, type));
2239                         bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
2240                             db->db.db_size);
2241                 }
2242         }
2243
2244         (void) refcount_add(&db->db_holds, tag);
2245         DBUF_VERIFY(db);
2246         mutex_exit(&db->db_mtx);
2247
2248         /* NOTE: we can't rele the parent until after we drop the db_mtx */
2249         if (parent)
2250                 dbuf_rele(parent, NULL);
2251
2252         ASSERT3P(DB_DNODE(db), ==, dn);
2253         ASSERT3U(db->db_blkid, ==, blkid);
2254         ASSERT3U(db->db_level, ==, level);
2255         *dbp = db;
2256
2257         return (0);
2258 }
2259
2260 dmu_buf_impl_t *
2261 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
2262 {
2263         return (dbuf_hold_level(dn, 0, blkid, tag));
2264 }
2265
2266 dmu_buf_impl_t *
2267 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
2268 {
2269         dmu_buf_impl_t *db;
2270         int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
2271         return (err ? NULL : db);
2272 }
2273
2274 void
2275 dbuf_create_bonus(dnode_t *dn)
2276 {
2277         ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2278
2279         ASSERT(dn->dn_bonus == NULL);
2280         dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
2281 }
2282
2283 int
2284 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
2285 {
2286         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2287         dnode_t *dn;
2288
2289         if (db->db_blkid != DMU_SPILL_BLKID)
2290                 return (SET_ERROR(ENOTSUP));
2291         if (blksz == 0)
2292                 blksz = SPA_MINBLOCKSIZE;
2293         ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
2294         blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2295
2296         DB_DNODE_ENTER(db);
2297         dn = DB_DNODE(db);
2298         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2299         dbuf_new_size(db, blksz, tx);
2300         rw_exit(&dn->dn_struct_rwlock);
2301         DB_DNODE_EXIT(db);
2302
2303         return (0);
2304 }
2305
2306 void
2307 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2308 {
2309         dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2310 }
2311
2312 #pragma weak dmu_buf_add_ref = dbuf_add_ref
2313 void
2314 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2315 {
2316         int64_t holds = refcount_add(&db->db_holds, tag);
2317         ASSERT(holds > 1);
2318 }
2319
2320 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
2321 boolean_t
2322 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
2323     void *tag)
2324 {
2325         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2326         dmu_buf_impl_t *found_db;
2327         boolean_t result = B_FALSE;
2328
2329         if (db->db_blkid == DMU_BONUS_BLKID)
2330                 found_db = dbuf_find_bonus(os, obj);
2331         else
2332                 found_db = dbuf_find(os, obj, 0, blkid);
2333
2334         if (found_db != NULL) {
2335                 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
2336                         (void) refcount_add(&db->db_holds, tag);
2337                         result = B_TRUE;
2338                 }
2339                 mutex_exit(&db->db_mtx);
2340         }
2341         return (result);
2342 }
2343
2344 /*
2345  * If you call dbuf_rele() you had better not be referencing the dnode handle
2346  * unless you have some other direct or indirect hold on the dnode. (An indirect
2347  * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2348  * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2349  * dnode's parent dbuf evicting its dnode handles.
2350  */
2351 void
2352 dbuf_rele(dmu_buf_impl_t *db, void *tag)
2353 {
2354         mutex_enter(&db->db_mtx);
2355         dbuf_rele_and_unlock(db, tag);
2356 }
2357
2358 void
2359 dmu_buf_rele(dmu_buf_t *db, void *tag)
2360 {
2361         dbuf_rele((dmu_buf_impl_t *)db, tag);
2362 }
2363
2364 /*
2365  * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
2366  * db_dirtycnt and db_holds to be updated atomically.
2367  */
2368 void
2369 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2370 {
2371         int64_t holds;
2372
2373         ASSERT(MUTEX_HELD(&db->db_mtx));
2374         DBUF_VERIFY(db);
2375
2376         /*
2377          * Remove the reference to the dbuf before removing its hold on the
2378          * dnode so we can guarantee in dnode_move() that a referenced bonus
2379          * buffer has a corresponding dnode hold.
2380          */
2381         holds = refcount_remove(&db->db_holds, tag);
2382         ASSERT(holds >= 0);
2383
2384         /*
2385          * We can't freeze indirects if there is a possibility that they
2386          * may be modified in the current syncing context.
2387          */
2388         if (db->db_buf && holds == (db->db_level == 0 ? db->db_dirtycnt : 0))
2389                 arc_buf_freeze(db->db_buf);
2390
2391         if (holds == db->db_dirtycnt &&
2392             db->db_level == 0 && db->db_immediate_evict)
2393                 dbuf_evict_user(db);
2394
2395         if (holds == 0) {
2396                 if (db->db_blkid == DMU_BONUS_BLKID) {
2397                         dnode_t *dn;
2398
2399                         /*
2400                          * If the dnode moves here, we cannot cross this
2401                          * barrier until the move completes.
2402                          */
2403                         DB_DNODE_ENTER(db);
2404
2405                         dn = DB_DNODE(db);
2406                         atomic_dec_32(&dn->dn_dbufs_count);
2407
2408                         /*
2409                          * Decrementing the dbuf count means that the bonus
2410                          * buffer's dnode hold is no longer discounted in
2411                          * dnode_move(). The dnode cannot move until after
2412                          * the dnode_rele_and_unlock() below.
2413                          */
2414                         DB_DNODE_EXIT(db);
2415
2416                         /*
2417                          * Do not reference db after its lock is dropped.
2418                          * Another thread may evict it.
2419                          */
2420                         mutex_exit(&db->db_mtx);
2421
2422                         /*
2423                          * If the dnode has been freed, evict the bonus
2424                          * buffer immediately.  The data in the bonus
2425                          * buffer is no longer relevant and this prevents
2426                          * a stale bonus buffer from being associated
2427                          * with this dnode_t should the dnode_t be reused
2428                          * prior to being destroyed.
2429                          */
2430                         mutex_enter(&dn->dn_mtx);
2431                         if (dn->dn_type == DMU_OT_NONE ||
2432                             dn->dn_free_txg != 0) {
2433                                 /*
2434                                  * Drop dn_mtx.  It is a leaf lock and
2435                                  * cannot be held when dnode_evict_bonus()
2436                                  * acquires other locks in order to
2437                                  * perform the eviction.
2438                                  *
2439                                  * Freed dnodes cannot be reused until the
2440                                  * last hold is released.  Since this bonus
2441                                  * buffer has a hold, the dnode will remain
2442                                  * in the free state, even without dn_mtx
2443                                  * held, until the dnode_rele_and_unlock()
2444                                  * below.
2445                                  */
2446                                 mutex_exit(&dn->dn_mtx);
2447                                 dnode_evict_bonus(dn);
2448                                 mutex_enter(&dn->dn_mtx);
2449                         }
2450                         dnode_rele_and_unlock(dn, db);
2451                 } else if (db->db_buf == NULL) {
2452                         /*
2453                          * This is a special case: we never associated this
2454                          * dbuf with any data allocated from the ARC.
2455                          */
2456                         ASSERT(db->db_state == DB_UNCACHED ||
2457                             db->db_state == DB_NOFILL);
2458                         dbuf_evict(db);
2459                 } else if (arc_released(db->db_buf)) {
2460                         arc_buf_t *buf = db->db_buf;
2461                         /*
2462                          * This dbuf has anonymous data associated with it.
2463                          */
2464                         dbuf_clear_data(db);
2465                         VERIFY(arc_buf_remove_ref(buf, db));
2466                         dbuf_evict(db);
2467                 } else {
2468                         VERIFY(!arc_buf_remove_ref(db->db_buf, db));
2469
2470                         /*
2471                          * A dbuf will be eligible for eviction if either the
2472                          * 'primarycache' property is set or a duplicate
2473                          * copy of this buffer is already cached in the arc.
2474                          *
2475                          * In the case of the 'primarycache' a buffer
2476                          * is considered for eviction if it matches the
2477                          * criteria set in the property.
2478                          *
2479                          * To decide if our buffer is considered a
2480                          * duplicate, we must call into the arc to determine
2481                          * if multiple buffers are referencing the same
2482                          * block on-disk. If so, then we simply evict
2483                          * ourselves.
2484                          */
2485                         if (!DBUF_IS_CACHEABLE(db)) {
2486                                 if (db->db_blkptr != NULL &&
2487                                     !BP_IS_HOLE(db->db_blkptr) &&
2488                                     !BP_IS_EMBEDDED(db->db_blkptr)) {
2489                                         spa_t *spa =
2490                                             dmu_objset_spa(db->db_objset);
2491                                         blkptr_t bp = *db->db_blkptr;
2492                                         dbuf_clear(db);
2493                                         arc_freed(spa, &bp);
2494                                 } else {
2495                                         dbuf_clear(db);
2496                                 }
2497                         } else if (db->db_objset->os_evicting ||
2498                             arc_buf_eviction_needed(db->db_buf)) {
2499                                 dbuf_clear(db);
2500                         } else {
2501                                 mutex_exit(&db->db_mtx);
2502                         }
2503                 }
2504         } else {
2505                 mutex_exit(&db->db_mtx);
2506         }
2507 }
2508
2509 #pragma weak dmu_buf_refcount = dbuf_refcount
2510 uint64_t
2511 dbuf_refcount(dmu_buf_impl_t *db)
2512 {
2513         return (refcount_count(&db->db_holds));
2514 }
2515
2516 void *
2517 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
2518     dmu_buf_user_t *new_user)
2519 {
2520         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2521
2522         mutex_enter(&db->db_mtx);
2523         dbuf_verify_user(db, DBVU_NOT_EVICTING);
2524         if (db->db_user == old_user)
2525                 db->db_user = new_user;
2526         else
2527                 old_user = db->db_user;
2528         dbuf_verify_user(db, DBVU_NOT_EVICTING);
2529         mutex_exit(&db->db_mtx);
2530
2531         return (old_user);
2532 }
2533
2534 void *
2535 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2536 {
2537         return (dmu_buf_replace_user(db_fake, NULL, user));
2538 }
2539
2540 void *
2541 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2542 {
2543         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2544
2545         db->db_immediate_evict = TRUE;
2546         return (dmu_buf_set_user(db_fake, user));
2547 }
2548
2549 void *
2550 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2551 {
2552         return (dmu_buf_replace_user(db_fake, user, NULL));
2553 }
2554
2555 void *
2556 dmu_buf_get_user(dmu_buf_t *db_fake)
2557 {
2558         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2559
2560         dbuf_verify_user(db, DBVU_NOT_EVICTING);
2561         return (db->db_user);
2562 }
2563
2564 void
2565 dmu_buf_user_evict_wait()
2566 {
2567         taskq_wait(dbu_evict_taskq);
2568 }
2569
2570 boolean_t
2571 dmu_buf_freeable(dmu_buf_t *dbuf)
2572 {
2573         boolean_t res = B_FALSE;
2574         dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2575
2576         if (db->db_blkptr)
2577                 res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset,
2578                     db->db_blkptr, db->db_blkptr->blk_birth);
2579
2580         return (res);
2581 }
2582
2583 blkptr_t *
2584 dmu_buf_get_blkptr(dmu_buf_t *db)
2585 {
2586         dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2587         return (dbi->db_blkptr);
2588 }
2589
2590 static void
2591 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
2592 {
2593         /* ASSERT(dmu_tx_is_syncing(tx) */
2594         ASSERT(MUTEX_HELD(&db->db_mtx));
2595
2596         if (db->db_blkptr != NULL)
2597                 return;
2598
2599         if (db->db_blkid == DMU_SPILL_BLKID) {
2600                 db->db_blkptr = &dn->dn_phys->dn_spill;
2601                 BP_ZERO(db->db_blkptr);
2602                 return;
2603         }
2604         if (db->db_level == dn->dn_phys->dn_nlevels-1) {
2605                 /*
2606                  * This buffer was allocated at a time when there was
2607                  * no available blkptrs from the dnode, or it was
2608                  * inappropriate to hook it in (i.e., nlevels mis-match).
2609                  */
2610                 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
2611                 ASSERT(db->db_parent == NULL);
2612                 db->db_parent = dn->dn_dbuf;
2613                 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
2614                 DBUF_VERIFY(db);
2615         } else {
2616                 dmu_buf_impl_t *parent = db->db_parent;
2617                 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2618
2619                 ASSERT(dn->dn_phys->dn_nlevels > 1);
2620                 if (parent == NULL) {
2621                         mutex_exit(&db->db_mtx);
2622                         rw_enter(&dn->dn_struct_rwlock, RW_READER);
2623                         parent = dbuf_hold_level(dn, db->db_level + 1,
2624                             db->db_blkid >> epbs, db);
2625                         rw_exit(&dn->dn_struct_rwlock);
2626                         mutex_enter(&db->db_mtx);
2627                         db->db_parent = parent;
2628                 }
2629                 db->db_blkptr = (blkptr_t *)parent->db.db_data +
2630                     (db->db_blkid & ((1ULL << epbs) - 1));
2631                 DBUF_VERIFY(db);
2632         }
2633 }
2634
2635 static void
2636 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2637 {
2638         dmu_buf_impl_t *db = dr->dr_dbuf;
2639         dnode_t *dn;
2640         zio_t *zio;
2641
2642         ASSERT(dmu_tx_is_syncing(tx));
2643
2644         dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2645
2646         mutex_enter(&db->db_mtx);
2647
2648         ASSERT(db->db_level > 0);
2649         DBUF_VERIFY(db);
2650
2651         /* Read the block if it hasn't been read yet. */
2652         if (db->db_buf == NULL) {
2653                 mutex_exit(&db->db_mtx);
2654                 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
2655                 mutex_enter(&db->db_mtx);
2656         }
2657         ASSERT3U(db->db_state, ==, DB_CACHED);
2658         ASSERT(db->db_buf != NULL);
2659
2660         DB_DNODE_ENTER(db);
2661         dn = DB_DNODE(db);
2662         /* Indirect block size must match what the dnode thinks it is. */
2663         ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2664         dbuf_check_blkptr(dn, db);
2665         DB_DNODE_EXIT(db);
2666
2667         /* Provide the pending dirty record to child dbufs */
2668         db->db_data_pending = dr;
2669
2670         mutex_exit(&db->db_mtx);
2671         dbuf_write(dr, db->db_buf, tx);
2672
2673         zio = dr->dr_zio;
2674         mutex_enter(&dr->dt.di.dr_mtx);
2675         dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
2676         ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2677         mutex_exit(&dr->dt.di.dr_mtx);
2678         zio_nowait(zio);
2679 }
2680
2681 static void
2682 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2683 {
2684         arc_buf_t **datap = &dr->dt.dl.dr_data;
2685         dmu_buf_impl_t *db = dr->dr_dbuf;
2686         dnode_t *dn;
2687         objset_t *os;
2688         uint64_t txg = tx->tx_txg;
2689
2690         ASSERT(dmu_tx_is_syncing(tx));
2691
2692         dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2693
2694         mutex_enter(&db->db_mtx);
2695         /*
2696          * To be synced, we must be dirtied.  But we
2697          * might have been freed after the dirty.
2698          */
2699         if (db->db_state == DB_UNCACHED) {
2700                 /* This buffer has been freed since it was dirtied */
2701                 ASSERT(db->db.db_data == NULL);
2702         } else if (db->db_state == DB_FILL) {
2703                 /* This buffer was freed and is now being re-filled */
2704                 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
2705         } else {
2706                 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
2707         }
2708         DBUF_VERIFY(db);
2709
2710         DB_DNODE_ENTER(db);
2711         dn = DB_DNODE(db);
2712
2713         if (db->db_blkid == DMU_SPILL_BLKID) {
2714                 mutex_enter(&dn->dn_mtx);
2715                 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
2716                 mutex_exit(&dn->dn_mtx);
2717         }
2718
2719         /*
2720          * If this is a bonus buffer, simply copy the bonus data into the
2721          * dnode.  It will be written out when the dnode is synced (and it
2722          * will be synced, since it must have been dirty for dbuf_sync to
2723          * be called).
2724          */
2725         if (db->db_blkid == DMU_BONUS_BLKID) {
2726                 dbuf_dirty_record_t **drp;
2727
2728                 ASSERT(*datap != NULL);
2729                 ASSERT0(db->db_level);
2730                 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
2731                 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
2732                 DB_DNODE_EXIT(db);
2733
2734                 if (*datap != db->db.db_data) {
2735                         zio_buf_free(*datap, DN_MAX_BONUSLEN);
2736                         arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2737                 }
2738                 db->db_data_pending = NULL;
2739                 drp = &db->db_last_dirty;
2740                 while (*drp != dr)
2741                         drp = &(*drp)->dr_next;
2742                 ASSERT(dr->dr_next == NULL);
2743                 ASSERT(dr->dr_dbuf == db);
2744                 *drp = dr->dr_next;
2745                 if (dr->dr_dbuf->db_level != 0) {
2746                         list_destroy(&dr->dt.di.dr_children);
2747                         mutex_destroy(&dr->dt.di.dr_mtx);
2748                 }
2749                 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2750                 ASSERT(db->db_dirtycnt > 0);
2751                 db->db_dirtycnt -= 1;
2752                 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
2753                 return;
2754         }
2755
2756         os = dn->dn_objset;
2757
2758         /*
2759          * This function may have dropped the db_mtx lock allowing a dmu_sync
2760          * operation to sneak in. As a result, we need to ensure that we
2761          * don't check the dr_override_state until we have returned from
2762          * dbuf_check_blkptr.
2763          */
2764         dbuf_check_blkptr(dn, db);
2765
2766         /*
2767          * If this buffer is in the middle of an immediate write,
2768          * wait for the synchronous IO to complete.
2769          */
2770         while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
2771                 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
2772                 cv_wait(&db->db_changed, &db->db_mtx);
2773                 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
2774         }
2775
2776         if (db->db_state != DB_NOFILL &&
2777             dn->dn_object != DMU_META_DNODE_OBJECT &&
2778             refcount_count(&db->db_holds) > 1 &&
2779             dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
2780             *datap == db->db_buf) {
2781                 /*
2782                  * If this buffer is currently "in use" (i.e., there
2783                  * are active holds and db_data still references it),
2784                  * then make a copy before we start the write so that
2785                  * any modifications from the open txg will not leak
2786                  * into this write.
2787                  *
2788                  * NOTE: this copy does not need to be made for
2789                  * objects only modified in the syncing context (e.g.
2790                  * DNONE_DNODE blocks).
2791                  */
2792                 int blksz = arc_buf_size(*datap);
2793                 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2794                 *datap = arc_buf_alloc(os->os_spa, blksz, db, type);
2795                 bcopy(db->db.db_data, (*datap)->b_data, blksz);
2796         }
2797         db->db_data_pending = dr;
2798
2799         mutex_exit(&db->db_mtx);
2800
2801         dbuf_write(dr, *datap, tx);
2802
2803         ASSERT(!list_link_active(&dr->dr_dirty_node));
2804         if (dn->dn_object == DMU_META_DNODE_OBJECT) {
2805                 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
2806                 DB_DNODE_EXIT(db);
2807         } else {
2808                 /*
2809                  * Although zio_nowait() does not "wait for an IO", it does
2810                  * initiate the IO. If this is an empty write it seems plausible
2811                  * that the IO could actually be completed before the nowait
2812                  * returns. We need to DB_DNODE_EXIT() first in case
2813                  * zio_nowait() invalidates the dbuf.
2814                  */
2815                 DB_DNODE_EXIT(db);
2816                 zio_nowait(dr->dr_zio);
2817         }
2818 }
2819
2820 void
2821 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
2822 {
2823         dbuf_dirty_record_t *dr;
2824
2825         while (dr = list_head(list)) {
2826                 if (dr->dr_zio != NULL) {
2827                         /*
2828                          * If we find an already initialized zio then we
2829                          * are processing the meta-dnode, and we have finished.
2830                          * The dbufs for all dnodes are put back on the list
2831                          * during processing, so that we can zio_wait()
2832                          * these IOs after initiating all child IOs.
2833                          */
2834                         ASSERT3U(dr->dr_dbuf->db.db_object, ==,
2835                             DMU_META_DNODE_OBJECT);
2836                         break;
2837                 }
2838                 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
2839                     dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
2840                         VERIFY3U(dr->dr_dbuf->db_level, ==, level);
2841                 }
2842                 list_remove(list, dr);
2843                 if (dr->dr_dbuf->db_level > 0)
2844                         dbuf_sync_indirect(dr, tx);
2845                 else
2846                         dbuf_sync_leaf(dr, tx);
2847         }
2848 }
2849
2850 /* ARGSUSED */
2851 static void
2852 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
2853 {
2854         dmu_buf_impl_t *db = vdb;
2855         dnode_t *dn;
2856         blkptr_t *bp = zio->io_bp;
2857         blkptr_t *bp_orig = &zio->io_bp_orig;
2858         spa_t *spa = zio->io_spa;
2859         int64_t delta;
2860         uint64_t fill = 0;
2861         int i;
2862
2863         ASSERT3P(db->db_blkptr, ==, bp);
2864
2865         DB_DNODE_ENTER(db);
2866         dn = DB_DNODE(db);
2867         delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
2868         dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
2869         zio->io_prev_space_delta = delta;
2870
2871         if (bp->blk_birth != 0) {
2872                 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
2873                     BP_GET_TYPE(bp) == dn->dn_type) ||
2874                     (db->db_blkid == DMU_SPILL_BLKID &&
2875                     BP_GET_TYPE(bp) == dn->dn_bonustype) ||
2876                     BP_IS_EMBEDDED(bp));
2877                 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
2878         }
2879
2880         mutex_enter(&db->db_mtx);
2881
2882 #ifdef ZFS_DEBUG
2883         if (db->db_blkid == DMU_SPILL_BLKID) {
2884                 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2885                 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2886                     db->db_blkptr == &dn->dn_phys->dn_spill);
2887         }
2888 #endif
2889
2890         if (db->db_level == 0) {
2891                 mutex_enter(&dn->dn_mtx);
2892                 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
2893                     db->db_blkid != DMU_SPILL_BLKID)
2894                         dn->dn_phys->dn_maxblkid = db->db_blkid;
2895                 mutex_exit(&dn->dn_mtx);
2896
2897                 if (dn->dn_type == DMU_OT_DNODE) {
2898                         dnode_phys_t *dnp = db->db.db_data;
2899                         for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
2900                             i--, dnp++) {
2901                                 if (dnp->dn_type != DMU_OT_NONE)
2902                                         fill++;
2903                         }
2904                 } else {
2905                         if (BP_IS_HOLE(bp)) {
2906                                 fill = 0;
2907                         } else {
2908                                 fill = 1;
2909                         }
2910                 }
2911         } else {
2912                 blkptr_t *ibp = db->db.db_data;
2913                 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2914                 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
2915                         if (BP_IS_HOLE(ibp))
2916                                 continue;
2917                         fill += BP_GET_FILL(ibp);
2918                 }
2919         }
2920         DB_DNODE_EXIT(db);
2921
2922         if (!BP_IS_EMBEDDED(bp))
2923                 bp->blk_fill = fill;
2924
2925         mutex_exit(&db->db_mtx);
2926 }
2927
2928 /*
2929  * The SPA will call this callback several times for each zio - once
2930  * for every physical child i/o (zio->io_phys_children times).  This
2931  * allows the DMU to monitor the progress of each logical i/o.  For example,
2932  * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
2933  * block.  There may be a long delay before all copies/fragments are completed,
2934  * so this callback allows us to retire dirty space gradually, as the physical
2935  * i/os complete.
2936  */
2937 /* ARGSUSED */
2938 static void
2939 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
2940 {
2941         dmu_buf_impl_t *db = arg;
2942         objset_t *os = db->db_objset;
2943         dsl_pool_t *dp = dmu_objset_pool(os);
2944         dbuf_dirty_record_t *dr;
2945         int delta = 0;
2946
2947         dr = db->db_data_pending;
2948         ASSERT3U(dr->dr_txg, ==, zio->io_txg);
2949
2950         /*
2951          * The callback will be called io_phys_children times.  Retire one
2952          * portion of our dirty space each time we are called.  Any rounding
2953          * error will be cleaned up by dsl_pool_sync()'s call to
2954          * dsl_pool_undirty_space().
2955          */
2956         delta = dr->dr_accounted / zio->io_phys_children;
2957         dsl_pool_undirty_space(dp, delta, zio->io_txg);
2958 }
2959
2960 /* ARGSUSED */
2961 static void
2962 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
2963 {
2964         dmu_buf_impl_t *db = vdb;
2965         blkptr_t *bp_orig = &zio->io_bp_orig;
2966         blkptr_t *bp = db->db_blkptr;
2967         objset_t *os = db->db_objset;
2968         dmu_tx_t *tx = os->os_synctx;
2969         dbuf_dirty_record_t **drp, *dr;
2970
2971         ASSERT0(zio->io_error);
2972         ASSERT(db->db_blkptr == bp);
2973
2974         /*
2975          * For nopwrites and rewrites we ensure that the bp matches our
2976          * original and bypass all the accounting.
2977          */
2978         if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
2979                 ASSERT(BP_EQUAL(bp, bp_orig));
2980         } else {
2981                 dsl_dataset_t *ds = os->os_dsl_dataset;
2982                 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
2983                 dsl_dataset_block_born(ds, bp, tx);
2984         }
2985
2986         mutex_enter(&db->db_mtx);
2987
2988         DBUF_VERIFY(db);
2989
2990         drp = &db->db_last_dirty;
2991         while ((dr = *drp) != db->db_data_pending)
2992                 drp = &dr->dr_next;
2993         ASSERT(!list_link_active(&dr->dr_dirty_node));
2994         ASSERT(dr->dr_dbuf == db);
2995         ASSERT(dr->dr_next == NULL);
2996         *drp = dr->dr_next;
2997
2998 #ifdef ZFS_DEBUG
2999         if (db->db_blkid == DMU_SPILL_BLKID) {
3000                 dnode_t *dn;
3001
3002                 DB_DNODE_ENTER(db);
3003                 dn = DB_DNODE(db);
3004                 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3005                 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3006                     db->db_blkptr == &dn->dn_phys->dn_spill);
3007                 DB_DNODE_EXIT(db);
3008         }
3009 #endif
3010
3011         if (db->db_level == 0) {
3012                 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3013                 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3014                 if (db->db_state != DB_NOFILL) {
3015                         if (dr->dt.dl.dr_data != db->db_buf)
3016                                 VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data,
3017                                     db));
3018                         else if (!arc_released(db->db_buf))
3019                                 arc_set_callback(db->db_buf, dbuf_do_evict, db);
3020                 }
3021         } else {
3022                 dnode_t *dn;
3023
3024                 DB_DNODE_ENTER(db);
3025                 dn = DB_DNODE(db);
3026                 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3027                 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3028                 if (!BP_IS_HOLE(db->db_blkptr)) {
3029                         int epbs =
3030                             dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3031                         ASSERT3U(db->db_blkid, <=,
3032                             dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
3033                         ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3034                             db->db.db_size);
3035                         if (!arc_released(db->db_buf))
3036                                 arc_set_callback(db->db_buf, dbuf_do_evict, db);
3037                 }
3038                 DB_DNODE_EXIT(db);
3039                 mutex_destroy(&dr->dt.di.dr_mtx);
3040                 list_destroy(&dr->dt.di.dr_children);
3041         }
3042         kmem_free(dr, sizeof (dbuf_dirty_record_t));
3043
3044         cv_broadcast(&db->db_changed);
3045         ASSERT(db->db_dirtycnt > 0);
3046         db->db_dirtycnt -= 1;
3047         db->db_data_pending = NULL;
3048         dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
3049 }
3050
3051 static void
3052 dbuf_write_nofill_ready(zio_t *zio)
3053 {
3054         dbuf_write_ready(zio, NULL, zio->io_private);
3055 }
3056
3057 static void
3058 dbuf_write_nofill_done(zio_t *zio)
3059 {
3060         dbuf_write_done(zio, NULL, zio->io_private);
3061 }
3062
3063 static void
3064 dbuf_write_override_ready(zio_t *zio)
3065 {
3066         dbuf_dirty_record_t *dr = zio->io_private;
3067         dmu_buf_impl_t *db = dr->dr_dbuf;
3068
3069         dbuf_write_ready(zio, NULL, db);
3070 }
3071
3072 static void
3073 dbuf_write_override_done(zio_t *zio)
3074 {
3075         dbuf_dirty_record_t *dr = zio->io_private;
3076         dmu_buf_impl_t *db = dr->dr_dbuf;
3077         blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
3078
3079         mutex_enter(&db->db_mtx);
3080         if (!BP_EQUAL(zio->io_bp, obp)) {
3081                 if (!BP_IS_HOLE(obp))
3082                         dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
3083                 arc_release(dr->dt.dl.dr_data, db);
3084         }
3085         mutex_exit(&db->db_mtx);
3086
3087         dbuf_write_done(zio, NULL, db);
3088 }
3089
3090 /* Issue I/O to commit a dirty buffer to disk. */
3091 static void
3092 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
3093 {
3094         dmu_buf_impl_t *db = dr->dr_dbuf;
3095         dnode_t *dn;
3096         objset_t *os;
3097         dmu_buf_impl_t *parent = db->db_parent;
3098         uint64_t txg = tx->tx_txg;
3099         zbookmark_phys_t zb;
3100         zio_prop_t zp;
3101         zio_t *zio;
3102         int wp_flag = 0;
3103
3104         DB_DNODE_ENTER(db);
3105         dn = DB_DNODE(db);
3106         os = dn->dn_objset;
3107
3108         if (db->db_state != DB_NOFILL) {
3109                 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
3110                         /*
3111                          * Private object buffers are released here rather
3112                          * than in dbuf_dirty() since they are only modified
3113                          * in the syncing context and we don't want the
3114                          * overhead of making multiple copies of the data.
3115                          */
3116                         if (BP_IS_HOLE(db->db_blkptr)) {
3117                                 arc_buf_thaw(data);
3118                         } else {
3119                                 dbuf_release_bp(db);
3120                         }
3121                 }
3122         }
3123
3124         if (parent != dn->dn_dbuf) {
3125                 /* Our parent is an indirect block. */
3126                 /* We have a dirty parent that has been scheduled for write. */
3127                 ASSERT(parent && parent->db_data_pending);
3128                 /* Our parent's buffer is one level closer to the dnode. */
3129                 ASSERT(db->db_level == parent->db_level-1);
3130                 /*
3131                  * We're about to modify our parent's db_data by modifying
3132                  * our block pointer, so the parent must be released.
3133                  */
3134                 ASSERT(arc_released(parent->db_buf));
3135                 zio = parent->db_data_pending->dr_zio;
3136         } else {
3137                 /* Our parent is the dnode itself. */
3138                 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
3139                     db->db_blkid != DMU_SPILL_BLKID) ||
3140                     (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
3141                 if (db->db_blkid != DMU_SPILL_BLKID)
3142                         ASSERT3P(db->db_blkptr, ==,
3143                             &dn->dn_phys->dn_blkptr[db->db_blkid]);
3144                 zio = dn->dn_zio;
3145         }
3146
3147         ASSERT(db->db_level == 0 || data == db->db_buf);
3148         ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
3149         ASSERT(zio);
3150
3151         SET_BOOKMARK(&zb, os->os_dsl_dataset ?
3152             os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
3153             db->db.db_object, db->db_level, db->db_blkid);
3154
3155         if (db->db_blkid == DMU_SPILL_BLKID)
3156                 wp_flag = WP_SPILL;
3157         wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
3158
3159         dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
3160         DB_DNODE_EXIT(db);
3161
3162         if (db->db_level == 0 &&
3163             dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
3164                 /*
3165                  * The BP for this block has been provided by open context
3166                  * (by dmu_sync() or dmu_buf_write_embedded()).
3167                  */
3168                 void *contents = (data != NULL) ? data->b_data : NULL;
3169
3170                 dr->dr_zio = zio_write(zio, os->os_spa, txg,
3171                     db->db_blkptr, contents, db->db.db_size, &zp,
3172                     dbuf_write_override_ready, NULL, dbuf_write_override_done,
3173                     dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3174                 mutex_enter(&db->db_mtx);
3175                 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
3176                 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
3177                     dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
3178                 mutex_exit(&db->db_mtx);
3179         } else if (db->db_state == DB_NOFILL) {
3180                 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
3181                     zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
3182                 dr->dr_zio = zio_write(zio, os->os_spa, txg,
3183                     db->db_blkptr, NULL, db->db.db_size, &zp,
3184                     dbuf_write_nofill_ready, NULL, dbuf_write_nofill_done, db,
3185                     ZIO_PRIORITY_ASYNC_WRITE,
3186                     ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
3187         } else {
3188                 ASSERT(arc_released(data));
3189                 dr->dr_zio = arc_write(zio, os->os_spa, txg,
3190                     db->db_blkptr, data, DBUF_IS_L2CACHEABLE(db),
3191                     DBUF_IS_L2COMPRESSIBLE(db), &zp, dbuf_write_ready,
3192                     dbuf_write_physdone, dbuf_write_done, db,
3193                     ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3194         }
3195 }