]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/dmu_send.c
MFC r305339: MFV r305336: 7247 zfs receive of deduplicated stream fails
[FreeBSD/stable/10.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / dmu_send.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24  * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25  * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26  * Copyright (c) 2012, Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27  * Copyright 2014 HybridCluster. All rights reserved.
28  * Copyright 2016 RackTop Systems.
29  * Copyright (c) 2014 Integros [integros.com]
30  */
31
32 #include <sys/dmu.h>
33 #include <sys/dmu_impl.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/dbuf.h>
36 #include <sys/dnode.h>
37 #include <sys/zfs_context.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/dmu_traverse.h>
40 #include <sys/dsl_dataset.h>
41 #include <sys/dsl_dir.h>
42 #include <sys/dsl_prop.h>
43 #include <sys/dsl_pool.h>
44 #include <sys/dsl_synctask.h>
45 #include <sys/zfs_ioctl.h>
46 #include <sys/zap.h>
47 #include <sys/zio_checksum.h>
48 #include <sys/zfs_znode.h>
49 #include <zfs_fletcher.h>
50 #include <sys/avl.h>
51 #include <sys/ddt.h>
52 #include <sys/zfs_onexit.h>
53 #include <sys/dmu_send.h>
54 #include <sys/dsl_destroy.h>
55 #include <sys/blkptr.h>
56 #include <sys/dsl_bookmark.h>
57 #include <sys/zfeature.h>
58 #include <sys/bqueue.h>
59
60 #ifdef __FreeBSD__
61 #undef dump_write
62 #define dump_write dmu_dump_write
63 #endif
64
65 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */
66 int zfs_send_corrupt_data = B_FALSE;
67 int zfs_send_queue_length = 16 * 1024 * 1024;
68 int zfs_recv_queue_length = 16 * 1024 * 1024;
69 /* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */
70 int zfs_send_set_freerecords_bit = B_TRUE;
71
72 #ifdef _KERNEL
73 TUNABLE_INT("vfs.zfs.send_set_freerecords_bit", &zfs_send_set_freerecords_bit);
74 #endif
75
76 static char *dmu_recv_tag = "dmu_recv_tag";
77 const char *recv_clone_name = "%recv";
78
79 #define BP_SPAN(datablkszsec, indblkshift, level) \
80         (((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \
81         (level) * (indblkshift - SPA_BLKPTRSHIFT)))
82
83 static void byteswap_record(dmu_replay_record_t *drr);
84
85 struct send_thread_arg {
86         bqueue_t        q;
87         dsl_dataset_t   *ds;            /* Dataset to traverse */
88         uint64_t        fromtxg;        /* Traverse from this txg */
89         int             flags;          /* flags to pass to traverse_dataset */
90         int             error_code;
91         boolean_t       cancel;
92         zbookmark_phys_t resume;
93 };
94
95 struct send_block_record {
96         boolean_t               eos_marker; /* Marks the end of the stream */
97         blkptr_t                bp;
98         zbookmark_phys_t        zb;
99         uint8_t                 indblkshift;
100         uint16_t                datablkszsec;
101         bqueue_node_t           ln;
102 };
103
104 static int
105 dump_bytes(dmu_sendarg_t *dsp, void *buf, int len)
106 {
107         dsl_dataset_t *ds = dmu_objset_ds(dsp->dsa_os);
108         struct uio auio;
109         struct iovec aiov;
110
111         /*
112          * The code does not rely on this (len being a multiple of 8).  We keep
113          * this assertion because of the corresponding assertion in
114          * receive_read().  Keeping this assertion ensures that we do not
115          * inadvertently break backwards compatibility (causing the assertion
116          * in receive_read() to trigger on old software).
117          *
118          * Removing the assertions could be rolled into a new feature that uses
119          * data that isn't 8-byte aligned; if the assertions were removed, a
120          * feature flag would have to be added.
121          */
122
123         ASSERT0(len % 8);
124
125         aiov.iov_base = buf;
126         aiov.iov_len = len;
127         auio.uio_iov = &aiov;
128         auio.uio_iovcnt = 1;
129         auio.uio_resid = len;
130         auio.uio_segflg = UIO_SYSSPACE;
131         auio.uio_rw = UIO_WRITE;
132         auio.uio_offset = (off_t)-1;
133         auio.uio_td = dsp->dsa_td;
134 #ifdef _KERNEL
135         if (dsp->dsa_fp->f_type == DTYPE_VNODE)
136                 bwillwrite();
137         dsp->dsa_err = fo_write(dsp->dsa_fp, &auio, dsp->dsa_td->td_ucred, 0,
138             dsp->dsa_td);
139 #else
140         fprintf(stderr, "%s: returning EOPNOTSUPP\n", __func__);
141         dsp->dsa_err = EOPNOTSUPP;
142 #endif
143         mutex_enter(&ds->ds_sendstream_lock);
144         *dsp->dsa_off += len;
145         mutex_exit(&ds->ds_sendstream_lock);
146
147         return (dsp->dsa_err);
148 }
149
150 /*
151  * For all record types except BEGIN, fill in the checksum (overlaid in
152  * drr_u.drr_checksum.drr_checksum).  The checksum verifies everything
153  * up to the start of the checksum itself.
154  */
155 static int
156 dump_record(dmu_sendarg_t *dsp, void *payload, int payload_len)
157 {
158         ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
159             ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
160         fletcher_4_incremental_native(dsp->dsa_drr,
161             offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
162             &dsp->dsa_zc);
163         if (dsp->dsa_drr->drr_type == DRR_BEGIN) {
164                 dsp->dsa_sent_begin = B_TRUE;
165         } else {
166                 ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp->dsa_drr->drr_u.
167                     drr_checksum.drr_checksum));
168                 dsp->dsa_drr->drr_u.drr_checksum.drr_checksum = dsp->dsa_zc;
169         }
170         if (dsp->dsa_drr->drr_type == DRR_END) {
171                 dsp->dsa_sent_end = B_TRUE;
172         }
173         fletcher_4_incremental_native(&dsp->dsa_drr->
174             drr_u.drr_checksum.drr_checksum,
175             sizeof (zio_cksum_t), &dsp->dsa_zc);
176         if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0)
177                 return (SET_ERROR(EINTR));
178         if (payload_len != 0) {
179                 fletcher_4_incremental_native(payload, payload_len,
180                     &dsp->dsa_zc);
181                 if (dump_bytes(dsp, payload, payload_len) != 0)
182                         return (SET_ERROR(EINTR));
183         }
184         return (0);
185 }
186
187 /*
188  * Fill in the drr_free struct, or perform aggregation if the previous record is
189  * also a free record, and the two are adjacent.
190  *
191  * Note that we send free records even for a full send, because we want to be
192  * able to receive a full send as a clone, which requires a list of all the free
193  * and freeobject records that were generated on the source.
194  */
195 static int
196 dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset,
197     uint64_t length)
198 {
199         struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free);
200
201         /*
202          * When we receive a free record, dbuf_free_range() assumes
203          * that the receiving system doesn't have any dbufs in the range
204          * being freed.  This is always true because there is a one-record
205          * constraint: we only send one WRITE record for any given
206          * object,offset.  We know that the one-record constraint is
207          * true because we always send data in increasing order by
208          * object,offset.
209          *
210          * If the increasing-order constraint ever changes, we should find
211          * another way to assert that the one-record constraint is still
212          * satisfied.
213          */
214         ASSERT(object > dsp->dsa_last_data_object ||
215             (object == dsp->dsa_last_data_object &&
216             offset > dsp->dsa_last_data_offset));
217
218         if (length != -1ULL && offset + length < offset)
219                 length = -1ULL;
220
221         /*
222          * If there is a pending op, but it's not PENDING_FREE, push it out,
223          * since free block aggregation can only be done for blocks of the
224          * same type (i.e., DRR_FREE records can only be aggregated with
225          * other DRR_FREE records.  DRR_FREEOBJECTS records can only be
226          * aggregated with other DRR_FREEOBJECTS records.
227          */
228         if (dsp->dsa_pending_op != PENDING_NONE &&
229             dsp->dsa_pending_op != PENDING_FREE) {
230                 if (dump_record(dsp, NULL, 0) != 0)
231                         return (SET_ERROR(EINTR));
232                 dsp->dsa_pending_op = PENDING_NONE;
233         }
234
235         if (dsp->dsa_pending_op == PENDING_FREE) {
236                 /*
237                  * There should never be a PENDING_FREE if length is -1
238                  * (because dump_dnode is the only place where this
239                  * function is called with a -1, and only after flushing
240                  * any pending record).
241                  */
242                 ASSERT(length != -1ULL);
243                 /*
244                  * Check to see whether this free block can be aggregated
245                  * with pending one.
246                  */
247                 if (drrf->drr_object == object && drrf->drr_offset +
248                     drrf->drr_length == offset) {
249                         drrf->drr_length += length;
250                         return (0);
251                 } else {
252                         /* not a continuation.  Push out pending record */
253                         if (dump_record(dsp, NULL, 0) != 0)
254                                 return (SET_ERROR(EINTR));
255                         dsp->dsa_pending_op = PENDING_NONE;
256                 }
257         }
258         /* create a FREE record and make it pending */
259         bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
260         dsp->dsa_drr->drr_type = DRR_FREE;
261         drrf->drr_object = object;
262         drrf->drr_offset = offset;
263         drrf->drr_length = length;
264         drrf->drr_toguid = dsp->dsa_toguid;
265         if (length == -1ULL) {
266                 if (dump_record(dsp, NULL, 0) != 0)
267                         return (SET_ERROR(EINTR));
268         } else {
269                 dsp->dsa_pending_op = PENDING_FREE;
270         }
271
272         return (0);
273 }
274
275 static int
276 dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type,
277     uint64_t object, uint64_t offset, int blksz, const blkptr_t *bp, void *data)
278 {
279         struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write);
280
281         /*
282          * We send data in increasing object, offset order.
283          * See comment in dump_free() for details.
284          */
285         ASSERT(object > dsp->dsa_last_data_object ||
286             (object == dsp->dsa_last_data_object &&
287             offset > dsp->dsa_last_data_offset));
288         dsp->dsa_last_data_object = object;
289         dsp->dsa_last_data_offset = offset + blksz - 1;
290
291         /*
292          * If there is any kind of pending aggregation (currently either
293          * a grouping of free objects or free blocks), push it out to
294          * the stream, since aggregation can't be done across operations
295          * of different types.
296          */
297         if (dsp->dsa_pending_op != PENDING_NONE) {
298                 if (dump_record(dsp, NULL, 0) != 0)
299                         return (SET_ERROR(EINTR));
300                 dsp->dsa_pending_op = PENDING_NONE;
301         }
302         /* write a WRITE record */
303         bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
304         dsp->dsa_drr->drr_type = DRR_WRITE;
305         drrw->drr_object = object;
306         drrw->drr_type = type;
307         drrw->drr_offset = offset;
308         drrw->drr_length = blksz;
309         drrw->drr_toguid = dsp->dsa_toguid;
310         if (bp == NULL || BP_IS_EMBEDDED(bp)) {
311                 /*
312                  * There's no pre-computed checksum for partial-block
313                  * writes or embedded BP's, so (like
314                  * fletcher4-checkummed blocks) userland will have to
315                  * compute a dedup-capable checksum itself.
316                  */
317                 drrw->drr_checksumtype = ZIO_CHECKSUM_OFF;
318         } else {
319                 drrw->drr_checksumtype = BP_GET_CHECKSUM(bp);
320                 if (zio_checksum_table[drrw->drr_checksumtype].ci_flags &
321                     ZCHECKSUM_FLAG_DEDUP)
322                         drrw->drr_checksumflags |= DRR_CHECKSUM_DEDUP;
323                 DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp));
324                 DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp));
325                 DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp));
326                 drrw->drr_key.ddk_cksum = bp->blk_cksum;
327         }
328
329         if (dump_record(dsp, data, blksz) != 0)
330                 return (SET_ERROR(EINTR));
331         return (0);
332 }
333
334 static int
335 dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset,
336     int blksz, const blkptr_t *bp)
337 {
338         char buf[BPE_PAYLOAD_SIZE];
339         struct drr_write_embedded *drrw =
340             &(dsp->dsa_drr->drr_u.drr_write_embedded);
341
342         if (dsp->dsa_pending_op != PENDING_NONE) {
343                 if (dump_record(dsp, NULL, 0) != 0)
344                         return (EINTR);
345                 dsp->dsa_pending_op = PENDING_NONE;
346         }
347
348         ASSERT(BP_IS_EMBEDDED(bp));
349
350         bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
351         dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED;
352         drrw->drr_object = object;
353         drrw->drr_offset = offset;
354         drrw->drr_length = blksz;
355         drrw->drr_toguid = dsp->dsa_toguid;
356         drrw->drr_compression = BP_GET_COMPRESS(bp);
357         drrw->drr_etype = BPE_GET_ETYPE(bp);
358         drrw->drr_lsize = BPE_GET_LSIZE(bp);
359         drrw->drr_psize = BPE_GET_PSIZE(bp);
360
361         decode_embedded_bp_compressed(bp, buf);
362
363         if (dump_record(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0)
364                 return (EINTR);
365         return (0);
366 }
367
368 static int
369 dump_spill(dmu_sendarg_t *dsp, uint64_t object, int blksz, void *data)
370 {
371         struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill);
372
373         if (dsp->dsa_pending_op != PENDING_NONE) {
374                 if (dump_record(dsp, NULL, 0) != 0)
375                         return (SET_ERROR(EINTR));
376                 dsp->dsa_pending_op = PENDING_NONE;
377         }
378
379         /* write a SPILL record */
380         bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
381         dsp->dsa_drr->drr_type = DRR_SPILL;
382         drrs->drr_object = object;
383         drrs->drr_length = blksz;
384         drrs->drr_toguid = dsp->dsa_toguid;
385
386         if (dump_record(dsp, data, blksz) != 0)
387                 return (SET_ERROR(EINTR));
388         return (0);
389 }
390
391 static int
392 dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs)
393 {
394         struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects);
395
396         /*
397          * If there is a pending op, but it's not PENDING_FREEOBJECTS,
398          * push it out, since free block aggregation can only be done for
399          * blocks of the same type (i.e., DRR_FREE records can only be
400          * aggregated with other DRR_FREE records.  DRR_FREEOBJECTS records
401          * can only be aggregated with other DRR_FREEOBJECTS records.
402          */
403         if (dsp->dsa_pending_op != PENDING_NONE &&
404             dsp->dsa_pending_op != PENDING_FREEOBJECTS) {
405                 if (dump_record(dsp, NULL, 0) != 0)
406                         return (SET_ERROR(EINTR));
407                 dsp->dsa_pending_op = PENDING_NONE;
408         }
409         if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) {
410                 /*
411                  * See whether this free object array can be aggregated
412                  * with pending one
413                  */
414                 if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) {
415                         drrfo->drr_numobjs += numobjs;
416                         return (0);
417                 } else {
418                         /* can't be aggregated.  Push out pending record */
419                         if (dump_record(dsp, NULL, 0) != 0)
420                                 return (SET_ERROR(EINTR));
421                         dsp->dsa_pending_op = PENDING_NONE;
422                 }
423         }
424
425         /* write a FREEOBJECTS record */
426         bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
427         dsp->dsa_drr->drr_type = DRR_FREEOBJECTS;
428         drrfo->drr_firstobj = firstobj;
429         drrfo->drr_numobjs = numobjs;
430         drrfo->drr_toguid = dsp->dsa_toguid;
431
432         dsp->dsa_pending_op = PENDING_FREEOBJECTS;
433
434         return (0);
435 }
436
437 static int
438 dump_dnode(dmu_sendarg_t *dsp, uint64_t object, dnode_phys_t *dnp)
439 {
440         struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object);
441
442         if (object < dsp->dsa_resume_object) {
443                 /*
444                  * Note: when resuming, we will visit all the dnodes in
445                  * the block of dnodes that we are resuming from.  In
446                  * this case it's unnecessary to send the dnodes prior to
447                  * the one we are resuming from.  We should be at most one
448                  * block's worth of dnodes behind the resume point.
449                  */
450                 ASSERT3U(dsp->dsa_resume_object - object, <,
451                     1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT));
452                 return (0);
453         }
454
455         if (dnp == NULL || dnp->dn_type == DMU_OT_NONE)
456                 return (dump_freeobjects(dsp, object, 1));
457
458         if (dsp->dsa_pending_op != PENDING_NONE) {
459                 if (dump_record(dsp, NULL, 0) != 0)
460                         return (SET_ERROR(EINTR));
461                 dsp->dsa_pending_op = PENDING_NONE;
462         }
463
464         /* write an OBJECT record */
465         bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
466         dsp->dsa_drr->drr_type = DRR_OBJECT;
467         drro->drr_object = object;
468         drro->drr_type = dnp->dn_type;
469         drro->drr_bonustype = dnp->dn_bonustype;
470         drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
471         drro->drr_bonuslen = dnp->dn_bonuslen;
472         drro->drr_checksumtype = dnp->dn_checksum;
473         drro->drr_compress = dnp->dn_compress;
474         drro->drr_toguid = dsp->dsa_toguid;
475
476         if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
477             drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE)
478                 drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE;
479
480         if (dump_record(dsp, DN_BONUS(dnp),
481             P2ROUNDUP(dnp->dn_bonuslen, 8)) != 0) {
482                 return (SET_ERROR(EINTR));
483         }
484
485         /* Free anything past the end of the file. */
486         if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) *
487             (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0)
488                 return (SET_ERROR(EINTR));
489         if (dsp->dsa_err != 0)
490                 return (SET_ERROR(EINTR));
491         return (0);
492 }
493
494 static boolean_t
495 backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp)
496 {
497         if (!BP_IS_EMBEDDED(bp))
498                 return (B_FALSE);
499
500         /*
501          * Compression function must be legacy, or explicitly enabled.
502          */
503         if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS &&
504             !(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4)))
505                 return (B_FALSE);
506
507         /*
508          * Embed type must be explicitly enabled.
509          */
510         switch (BPE_GET_ETYPE(bp)) {
511         case BP_EMBEDDED_TYPE_DATA:
512                 if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
513                         return (B_TRUE);
514                 break;
515         default:
516                 return (B_FALSE);
517         }
518         return (B_FALSE);
519 }
520
521 /*
522  * This is the callback function to traverse_dataset that acts as the worker
523  * thread for dmu_send_impl.
524  */
525 /*ARGSUSED*/
526 static int
527 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
528     const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
529 {
530         struct send_thread_arg *sta = arg;
531         struct send_block_record *record;
532         uint64_t record_size;
533         int err = 0;
534
535         ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
536             zb->zb_object >= sta->resume.zb_object);
537
538         if (sta->cancel)
539                 return (SET_ERROR(EINTR));
540
541         if (bp == NULL) {
542                 ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL);
543                 return (0);
544         } else if (zb->zb_level < 0) {
545                 return (0);
546         }
547
548         record = kmem_zalloc(sizeof (struct send_block_record), KM_SLEEP);
549         record->eos_marker = B_FALSE;
550         record->bp = *bp;
551         record->zb = *zb;
552         record->indblkshift = dnp->dn_indblkshift;
553         record->datablkszsec = dnp->dn_datablkszsec;
554         record_size = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
555         bqueue_enqueue(&sta->q, record, record_size);
556
557         return (err);
558 }
559
560 /*
561  * This function kicks off the traverse_dataset.  It also handles setting the
562  * error code of the thread in case something goes wrong, and pushes the End of
563  * Stream record when the traverse_dataset call has finished.  If there is no
564  * dataset to traverse, the thread immediately pushes End of Stream marker.
565  */
566 static void
567 send_traverse_thread(void *arg)
568 {
569         struct send_thread_arg *st_arg = arg;
570         int err;
571         struct send_block_record *data;
572
573         if (st_arg->ds != NULL) {
574                 err = traverse_dataset_resume(st_arg->ds,
575                     st_arg->fromtxg, &st_arg->resume,
576                     st_arg->flags, send_cb, st_arg);
577
578                 if (err != EINTR)
579                         st_arg->error_code = err;
580         }
581         data = kmem_zalloc(sizeof (*data), KM_SLEEP);
582         data->eos_marker = B_TRUE;
583         bqueue_enqueue(&st_arg->q, data, 1);
584         thread_exit();
585 }
586
587 /*
588  * This function actually handles figuring out what kind of record needs to be
589  * dumped, reading the data (which has hopefully been prefetched), and calling
590  * the appropriate helper function.
591  */
592 static int
593 do_dump(dmu_sendarg_t *dsa, struct send_block_record *data)
594 {
595         dsl_dataset_t *ds = dmu_objset_ds(dsa->dsa_os);
596         const blkptr_t *bp = &data->bp;
597         const zbookmark_phys_t *zb = &data->zb;
598         uint8_t indblkshift = data->indblkshift;
599         uint16_t dblkszsec = data->datablkszsec;
600         spa_t *spa = ds->ds_dir->dd_pool->dp_spa;
601         dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE;
602         int err = 0;
603
604         ASSERT3U(zb->zb_level, >=, 0);
605
606         ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
607             zb->zb_object >= dsa->dsa_resume_object);
608
609         if (zb->zb_object != DMU_META_DNODE_OBJECT &&
610             DMU_OBJECT_IS_SPECIAL(zb->zb_object)) {
611                 return (0);
612         } else if (BP_IS_HOLE(bp) &&
613             zb->zb_object == DMU_META_DNODE_OBJECT) {
614                 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level);
615                 uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT;
616                 err = dump_freeobjects(dsa, dnobj, span >> DNODE_SHIFT);
617         } else if (BP_IS_HOLE(bp)) {
618                 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level);
619                 uint64_t offset = zb->zb_blkid * span;
620                 err = dump_free(dsa, zb->zb_object, offset, span);
621         } else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) {
622                 return (0);
623         } else if (type == DMU_OT_DNODE) {
624                 int blksz = BP_GET_LSIZE(bp);
625                 arc_flags_t aflags = ARC_FLAG_WAIT;
626                 arc_buf_t *abuf;
627
628                 ASSERT0(zb->zb_level);
629
630                 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
631                     ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
632                     &aflags, zb) != 0)
633                         return (SET_ERROR(EIO));
634
635                 dnode_phys_t *blk = abuf->b_data;
636                 uint64_t dnobj = zb->zb_blkid * (blksz >> DNODE_SHIFT);
637                 for (int i = 0; i < blksz >> DNODE_SHIFT; i++) {
638                         err = dump_dnode(dsa, dnobj + i, blk + i);
639                         if (err != 0)
640                                 break;
641                 }
642                 arc_buf_destroy(abuf, &abuf);
643         } else if (type == DMU_OT_SA) {
644                 arc_flags_t aflags = ARC_FLAG_WAIT;
645                 arc_buf_t *abuf;
646                 int blksz = BP_GET_LSIZE(bp);
647
648                 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
649                     ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
650                     &aflags, zb) != 0)
651                         return (SET_ERROR(EIO));
652
653                 err = dump_spill(dsa, zb->zb_object, blksz, abuf->b_data);
654                 arc_buf_destroy(abuf, &abuf);
655         } else if (backup_do_embed(dsa, bp)) {
656                 /* it's an embedded level-0 block of a regular object */
657                 int blksz = dblkszsec << SPA_MINBLOCKSHIFT;
658                 ASSERT0(zb->zb_level);
659                 err = dump_write_embedded(dsa, zb->zb_object,
660                     zb->zb_blkid * blksz, blksz, bp);
661         } else {
662                 /* it's a level-0 block of a regular object */
663                 arc_flags_t aflags = ARC_FLAG_WAIT;
664                 arc_buf_t *abuf;
665                 int blksz = dblkszsec << SPA_MINBLOCKSHIFT;
666                 uint64_t offset;
667
668                 ASSERT0(zb->zb_level);
669                 ASSERT(zb->zb_object > dsa->dsa_resume_object ||
670                     (zb->zb_object == dsa->dsa_resume_object &&
671                     zb->zb_blkid * blksz >= dsa->dsa_resume_offset));
672
673                 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
674                     ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
675                     &aflags, zb) != 0) {
676                         if (zfs_send_corrupt_data) {
677                                 /* Send a block filled with 0x"zfs badd bloc" */
678                                 abuf = arc_alloc_buf(spa, blksz, &abuf,
679                                     ARC_BUFC_DATA);
680                                 uint64_t *ptr;
681                                 for (ptr = abuf->b_data;
682                                     (char *)ptr < (char *)abuf->b_data + blksz;
683                                     ptr++)
684                                         *ptr = 0x2f5baddb10cULL;
685                         } else {
686                                 return (SET_ERROR(EIO));
687                         }
688                 }
689
690                 offset = zb->zb_blkid * blksz;
691
692                 if (!(dsa->dsa_featureflags &
693                     DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
694                     blksz > SPA_OLD_MAXBLOCKSIZE) {
695                         char *buf = abuf->b_data;
696                         while (blksz > 0 && err == 0) {
697                                 int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE);
698                                 err = dump_write(dsa, type, zb->zb_object,
699                                     offset, n, NULL, buf);
700                                 offset += n;
701                                 buf += n;
702                                 blksz -= n;
703                         }
704                 } else {
705                         err = dump_write(dsa, type, zb->zb_object,
706                             offset, blksz, bp, abuf->b_data);
707                 }
708                 arc_buf_destroy(abuf, &abuf);
709         }
710
711         ASSERT(err == 0 || err == EINTR);
712         return (err);
713 }
714
715 /*
716  * Pop the new data off the queue, and free the old data.
717  */
718 static struct send_block_record *
719 get_next_record(bqueue_t *bq, struct send_block_record *data)
720 {
721         struct send_block_record *tmp = bqueue_dequeue(bq);
722         kmem_free(data, sizeof (*data));
723         return (tmp);
724 }
725
726 /*
727  * Actually do the bulk of the work in a zfs send.
728  *
729  * Note: Releases dp using the specified tag.
730  */
731 static int
732 dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *to_ds,
733     zfs_bookmark_phys_t *ancestor_zb,
734     boolean_t is_clone, boolean_t embedok, boolean_t large_block_ok, int outfd,
735     uint64_t resumeobj, uint64_t resumeoff,
736 #ifdef illumos
737     vnode_t *vp, offset_t *off)
738 #else
739     struct file *fp, offset_t *off)
740 #endif
741 {
742         objset_t *os;
743         dmu_replay_record_t *drr;
744         dmu_sendarg_t *dsp;
745         int err;
746         uint64_t fromtxg = 0;
747         uint64_t featureflags = 0;
748         struct send_thread_arg to_arg = { 0 };
749
750         err = dmu_objset_from_ds(to_ds, &os);
751         if (err != 0) {
752                 dsl_pool_rele(dp, tag);
753                 return (err);
754         }
755
756         drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP);
757         drr->drr_type = DRR_BEGIN;
758         drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC;
759         DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo,
760             DMU_SUBSTREAM);
761
762 #ifdef _KERNEL
763         if (dmu_objset_type(os) == DMU_OST_ZFS) {
764                 uint64_t version;
765                 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) {
766                         kmem_free(drr, sizeof (dmu_replay_record_t));
767                         dsl_pool_rele(dp, tag);
768                         return (SET_ERROR(EINVAL));
769                 }
770                 if (version >= ZPL_VERSION_SA) {
771                         featureflags |= DMU_BACKUP_FEATURE_SA_SPILL;
772                 }
773         }
774 #endif
775
776         if (large_block_ok && to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_BLOCKS])
777                 featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS;
778         if (embedok &&
779             spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) {
780                 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA;
781                 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
782                         featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA_LZ4;
783         }
784
785         if (resumeobj != 0 || resumeoff != 0) {
786                 featureflags |= DMU_BACKUP_FEATURE_RESUMING;
787         }
788
789         DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo,
790             featureflags);
791
792         drr->drr_u.drr_begin.drr_creation_time =
793             dsl_dataset_phys(to_ds)->ds_creation_time;
794         drr->drr_u.drr_begin.drr_type = dmu_objset_type(os);
795         if (is_clone)
796                 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE;
797         drr->drr_u.drr_begin.drr_toguid = dsl_dataset_phys(to_ds)->ds_guid;
798         if (dsl_dataset_phys(to_ds)->ds_flags & DS_FLAG_CI_DATASET)
799                 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA;
800         if (zfs_send_set_freerecords_bit)
801                 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_FREERECORDS;
802
803         if (ancestor_zb != NULL) {
804                 drr->drr_u.drr_begin.drr_fromguid =
805                     ancestor_zb->zbm_guid;
806                 fromtxg = ancestor_zb->zbm_creation_txg;
807         }
808         dsl_dataset_name(to_ds, drr->drr_u.drr_begin.drr_toname);
809         if (!to_ds->ds_is_snapshot) {
810                 (void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--",
811                     sizeof (drr->drr_u.drr_begin.drr_toname));
812         }
813
814         dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP);
815
816         dsp->dsa_drr = drr;
817         dsp->dsa_outfd = outfd;
818         dsp->dsa_proc = curproc;
819         dsp->dsa_td = curthread;
820         dsp->dsa_fp = fp;
821         dsp->dsa_os = os;
822         dsp->dsa_off = off;
823         dsp->dsa_toguid = dsl_dataset_phys(to_ds)->ds_guid;
824         dsp->dsa_pending_op = PENDING_NONE;
825         dsp->dsa_featureflags = featureflags;
826         dsp->dsa_resume_object = resumeobj;
827         dsp->dsa_resume_offset = resumeoff;
828
829         mutex_enter(&to_ds->ds_sendstream_lock);
830         list_insert_head(&to_ds->ds_sendstreams, dsp);
831         mutex_exit(&to_ds->ds_sendstream_lock);
832
833         dsl_dataset_long_hold(to_ds, FTAG);
834         dsl_pool_rele(dp, tag);
835
836         void *payload = NULL;
837         size_t payload_len = 0;
838         if (resumeobj != 0 || resumeoff != 0) {
839                 dmu_object_info_t to_doi;
840                 err = dmu_object_info(os, resumeobj, &to_doi);
841                 if (err != 0)
842                         goto out;
843                 SET_BOOKMARK(&to_arg.resume, to_ds->ds_object, resumeobj, 0,
844                     resumeoff / to_doi.doi_data_block_size);
845
846                 nvlist_t *nvl = fnvlist_alloc();
847                 fnvlist_add_uint64(nvl, "resume_object", resumeobj);
848                 fnvlist_add_uint64(nvl, "resume_offset", resumeoff);
849                 payload = fnvlist_pack(nvl, &payload_len);
850                 drr->drr_payloadlen = payload_len;
851                 fnvlist_free(nvl);
852         }
853
854         err = dump_record(dsp, payload, payload_len);
855         fnvlist_pack_free(payload, payload_len);
856         if (err != 0) {
857                 err = dsp->dsa_err;
858                 goto out;
859         }
860
861         err = bqueue_init(&to_arg.q, zfs_send_queue_length,
862             offsetof(struct send_block_record, ln));
863         to_arg.error_code = 0;
864         to_arg.cancel = B_FALSE;
865         to_arg.ds = to_ds;
866         to_arg.fromtxg = fromtxg;
867         to_arg.flags = TRAVERSE_PRE | TRAVERSE_PREFETCH;
868         (void) thread_create(NULL, 0, send_traverse_thread, &to_arg, 0, &p0,
869             TS_RUN, minclsyspri);
870
871         struct send_block_record *to_data;
872         to_data = bqueue_dequeue(&to_arg.q);
873
874         while (!to_data->eos_marker && err == 0) {
875                 err = do_dump(dsp, to_data);
876                 to_data = get_next_record(&to_arg.q, to_data);
877                 if (issig(JUSTLOOKING) && issig(FORREAL))
878                         err = EINTR;
879         }
880
881         if (err != 0) {
882                 to_arg.cancel = B_TRUE;
883                 while (!to_data->eos_marker) {
884                         to_data = get_next_record(&to_arg.q, to_data);
885                 }
886         }
887         kmem_free(to_data, sizeof (*to_data));
888
889         bqueue_destroy(&to_arg.q);
890
891         if (err == 0 && to_arg.error_code != 0)
892                 err = to_arg.error_code;
893
894         if (err != 0)
895                 goto out;
896
897         if (dsp->dsa_pending_op != PENDING_NONE)
898                 if (dump_record(dsp, NULL, 0) != 0)
899                         err = SET_ERROR(EINTR);
900
901         if (err != 0) {
902                 if (err == EINTR && dsp->dsa_err != 0)
903                         err = dsp->dsa_err;
904                 goto out;
905         }
906
907         bzero(drr, sizeof (dmu_replay_record_t));
908         drr->drr_type = DRR_END;
909         drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc;
910         drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid;
911
912         if (dump_record(dsp, NULL, 0) != 0)
913                 err = dsp->dsa_err;
914
915 out:
916         mutex_enter(&to_ds->ds_sendstream_lock);
917         list_remove(&to_ds->ds_sendstreams, dsp);
918         mutex_exit(&to_ds->ds_sendstream_lock);
919
920         VERIFY(err != 0 || (dsp->dsa_sent_begin && dsp->dsa_sent_end));
921
922         kmem_free(drr, sizeof (dmu_replay_record_t));
923         kmem_free(dsp, sizeof (dmu_sendarg_t));
924
925         dsl_dataset_long_rele(to_ds, FTAG);
926
927         return (err);
928 }
929
930 int
931 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap,
932     boolean_t embedok, boolean_t large_block_ok,
933 #ifdef illumos
934     int outfd, vnode_t *vp, offset_t *off)
935 #else
936     int outfd, struct file *fp, offset_t *off)
937 #endif
938 {
939         dsl_pool_t *dp;
940         dsl_dataset_t *ds;
941         dsl_dataset_t *fromds = NULL;
942         int err;
943
944         err = dsl_pool_hold(pool, FTAG, &dp);
945         if (err != 0)
946                 return (err);
947
948         err = dsl_dataset_hold_obj(dp, tosnap, FTAG, &ds);
949         if (err != 0) {
950                 dsl_pool_rele(dp, FTAG);
951                 return (err);
952         }
953
954         if (fromsnap != 0) {
955                 zfs_bookmark_phys_t zb;
956                 boolean_t is_clone;
957
958                 err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds);
959                 if (err != 0) {
960                         dsl_dataset_rele(ds, FTAG);
961                         dsl_pool_rele(dp, FTAG);
962                         return (err);
963                 }
964                 if (!dsl_dataset_is_before(ds, fromds, 0))
965                         err = SET_ERROR(EXDEV);
966                 zb.zbm_creation_time =
967                     dsl_dataset_phys(fromds)->ds_creation_time;
968                 zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg;
969                 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
970                 is_clone = (fromds->ds_dir != ds->ds_dir);
971                 dsl_dataset_rele(fromds, FTAG);
972                 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone,
973                     embedok, large_block_ok, outfd, 0, 0, fp, off);
974         } else {
975                 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE,
976                     embedok, large_block_ok, outfd, 0, 0, fp, off);
977         }
978         dsl_dataset_rele(ds, FTAG);
979         return (err);
980 }
981
982 int
983 dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok,
984     boolean_t large_block_ok, int outfd, uint64_t resumeobj, uint64_t resumeoff,
985 #ifdef illumos
986     vnode_t *vp, offset_t *off)
987 #else
988     struct file *fp, offset_t *off)
989 #endif
990 {
991         dsl_pool_t *dp;
992         dsl_dataset_t *ds;
993         int err;
994         boolean_t owned = B_FALSE;
995
996         if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL)
997                 return (SET_ERROR(EINVAL));
998
999         err = dsl_pool_hold(tosnap, FTAG, &dp);
1000         if (err != 0)
1001                 return (err);
1002
1003         if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) {
1004                 /*
1005                  * We are sending a filesystem or volume.  Ensure
1006                  * that it doesn't change by owning the dataset.
1007                  */
1008                 err = dsl_dataset_own(dp, tosnap, FTAG, &ds);
1009                 owned = B_TRUE;
1010         } else {
1011                 err = dsl_dataset_hold(dp, tosnap, FTAG, &ds);
1012         }
1013         if (err != 0) {
1014                 dsl_pool_rele(dp, FTAG);
1015                 return (err);
1016         }
1017
1018         if (fromsnap != NULL) {
1019                 zfs_bookmark_phys_t zb;
1020                 boolean_t is_clone = B_FALSE;
1021                 int fsnamelen = strchr(tosnap, '@') - tosnap;
1022
1023                 /*
1024                  * If the fromsnap is in a different filesystem, then
1025                  * mark the send stream as a clone.
1026                  */
1027                 if (strncmp(tosnap, fromsnap, fsnamelen) != 0 ||
1028                     (fromsnap[fsnamelen] != '@' &&
1029                     fromsnap[fsnamelen] != '#')) {
1030                         is_clone = B_TRUE;
1031                 }
1032
1033                 if (strchr(fromsnap, '@')) {
1034                         dsl_dataset_t *fromds;
1035                         err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds);
1036                         if (err == 0) {
1037                                 if (!dsl_dataset_is_before(ds, fromds, 0))
1038                                         err = SET_ERROR(EXDEV);
1039                                 zb.zbm_creation_time =
1040                                     dsl_dataset_phys(fromds)->ds_creation_time;
1041                                 zb.zbm_creation_txg =
1042                                     dsl_dataset_phys(fromds)->ds_creation_txg;
1043                                 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
1044                                 is_clone = (ds->ds_dir != fromds->ds_dir);
1045                                 dsl_dataset_rele(fromds, FTAG);
1046                         }
1047                 } else {
1048                         err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb);
1049                 }
1050                 if (err != 0) {
1051                         dsl_dataset_rele(ds, FTAG);
1052                         dsl_pool_rele(dp, FTAG);
1053                         return (err);
1054                 }
1055                 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone,
1056                     embedok, large_block_ok,
1057                     outfd, resumeobj, resumeoff, fp, off);
1058         } else {
1059                 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE,
1060                     embedok, large_block_ok,
1061                     outfd, resumeobj, resumeoff, fp, off);
1062         }
1063         if (owned)
1064                 dsl_dataset_disown(ds, FTAG);
1065         else
1066                 dsl_dataset_rele(ds, FTAG);
1067         return (err);
1068 }
1069
1070 static int
1071 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t size,
1072     uint64_t *sizep)
1073 {
1074         int err;
1075         /*
1076          * Assume that space (both on-disk and in-stream) is dominated by
1077          * data.  We will adjust for indirect blocks and the copies property,
1078          * but ignore per-object space used (eg, dnodes and DRR_OBJECT records).
1079          */
1080
1081         /*
1082          * Subtract out approximate space used by indirect blocks.
1083          * Assume most space is used by data blocks (non-indirect, non-dnode).
1084          * Assume all blocks are recordsize.  Assume ditto blocks and
1085          * internal fragmentation counter out compression.
1086          *
1087          * Therefore, space used by indirect blocks is sizeof(blkptr_t) per
1088          * block, which we observe in practice.
1089          */
1090         uint64_t recordsize;
1091         err = dsl_prop_get_int_ds(ds, "recordsize", &recordsize);
1092         if (err != 0)
1093                 return (err);
1094         size -= size / recordsize * sizeof (blkptr_t);
1095
1096         /* Add in the space for the record associated with each block. */
1097         size += size / recordsize * sizeof (dmu_replay_record_t);
1098
1099         *sizep = size;
1100
1101         return (0);
1102 }
1103
1104 int
1105 dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds, uint64_t *sizep)
1106 {
1107         dsl_pool_t *dp = ds->ds_dir->dd_pool;
1108         int err;
1109         uint64_t size;
1110
1111         ASSERT(dsl_pool_config_held(dp));
1112
1113         /* tosnap must be a snapshot */
1114         if (!ds->ds_is_snapshot)
1115                 return (SET_ERROR(EINVAL));
1116
1117         /* fromsnap, if provided, must be a snapshot */
1118         if (fromds != NULL && !fromds->ds_is_snapshot)
1119                 return (SET_ERROR(EINVAL));
1120
1121         /*
1122          * fromsnap must be an earlier snapshot from the same fs as tosnap,
1123          * or the origin's fs.
1124          */
1125         if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0))
1126                 return (SET_ERROR(EXDEV));
1127
1128         /* Get uncompressed size estimate of changed data. */
1129         if (fromds == NULL) {
1130                 size = dsl_dataset_phys(ds)->ds_uncompressed_bytes;
1131         } else {
1132                 uint64_t used, comp;
1133                 err = dsl_dataset_space_written(fromds, ds,
1134                     &used, &comp, &size);
1135                 if (err != 0)
1136                         return (err);
1137         }
1138
1139         err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep);
1140         return (err);
1141 }
1142
1143 /*
1144  * Simple callback used to traverse the blocks of a snapshot and sum their
1145  * uncompressed size
1146  */
1147 /* ARGSUSED */
1148 static int
1149 dmu_calculate_send_traversal(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1150     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1151 {
1152         uint64_t *spaceptr = arg;
1153         if (bp != NULL && !BP_IS_HOLE(bp)) {
1154                 *spaceptr += BP_GET_UCSIZE(bp);
1155         }
1156         return (0);
1157 }
1158
1159 /*
1160  * Given a desination snapshot and a TXG, calculate the approximate size of a
1161  * send stream sent from that TXG. from_txg may be zero, indicating that the
1162  * whole snapshot will be sent.
1163  */
1164 int
1165 dmu_send_estimate_from_txg(dsl_dataset_t *ds, uint64_t from_txg,
1166     uint64_t *sizep)
1167 {
1168         dsl_pool_t *dp = ds->ds_dir->dd_pool;
1169         int err;
1170         uint64_t size = 0;
1171
1172         ASSERT(dsl_pool_config_held(dp));
1173
1174         /* tosnap must be a snapshot */
1175         if (!dsl_dataset_is_snapshot(ds))
1176                 return (SET_ERROR(EINVAL));
1177
1178         /* verify that from_txg is before the provided snapshot was taken */
1179         if (from_txg >= dsl_dataset_phys(ds)->ds_creation_txg) {
1180                 return (SET_ERROR(EXDEV));
1181         }
1182
1183         /*
1184          * traverse the blocks of the snapshot with birth times after
1185          * from_txg, summing their uncompressed size
1186          */
1187         err = traverse_dataset(ds, from_txg, TRAVERSE_POST,
1188             dmu_calculate_send_traversal, &size);
1189         if (err)
1190                 return (err);
1191
1192         err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep);
1193         return (err);
1194 }
1195
1196 typedef struct dmu_recv_begin_arg {
1197         const char *drba_origin;
1198         dmu_recv_cookie_t *drba_cookie;
1199         cred_t *drba_cred;
1200         uint64_t drba_snapobj;
1201 } dmu_recv_begin_arg_t;
1202
1203 static int
1204 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
1205     uint64_t fromguid)
1206 {
1207         uint64_t val;
1208         int error;
1209         dsl_pool_t *dp = ds->ds_dir->dd_pool;
1210
1211         /* temporary clone name must not exist */
1212         error = zap_lookup(dp->dp_meta_objset,
1213             dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
1214             8, 1, &val);
1215         if (error != ENOENT)
1216                 return (error == 0 ? EBUSY : error);
1217
1218         /* new snapshot name must not exist */
1219         error = zap_lookup(dp->dp_meta_objset,
1220             dsl_dataset_phys(ds)->ds_snapnames_zapobj,
1221             drba->drba_cookie->drc_tosnap, 8, 1, &val);
1222         if (error != ENOENT)
1223                 return (error == 0 ? EEXIST : error);
1224
1225         /*
1226          * Check snapshot limit before receiving. We'll recheck again at the
1227          * end, but might as well abort before receiving if we're already over
1228          * the limit.
1229          *
1230          * Note that we do not check the file system limit with
1231          * dsl_dir_fscount_check because the temporary %clones don't count
1232          * against that limit.
1233          */
1234         error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
1235             NULL, drba->drba_cred);
1236         if (error != 0)
1237                 return (error);
1238
1239         if (fromguid != 0) {
1240                 dsl_dataset_t *snap;
1241                 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
1242
1243                 /* Find snapshot in this dir that matches fromguid. */
1244                 while (obj != 0) {
1245                         error = dsl_dataset_hold_obj(dp, obj, FTAG,
1246                             &snap);
1247                         if (error != 0)
1248                                 return (SET_ERROR(ENODEV));
1249                         if (snap->ds_dir != ds->ds_dir) {
1250                                 dsl_dataset_rele(snap, FTAG);
1251                                 return (SET_ERROR(ENODEV));
1252                         }
1253                         if (dsl_dataset_phys(snap)->ds_guid == fromguid)
1254                                 break;
1255                         obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
1256                         dsl_dataset_rele(snap, FTAG);
1257                 }
1258                 if (obj == 0)
1259                         return (SET_ERROR(ENODEV));
1260
1261                 if (drba->drba_cookie->drc_force) {
1262                         drba->drba_snapobj = obj;
1263                 } else {
1264                         /*
1265                          * If we are not forcing, there must be no
1266                          * changes since fromsnap.
1267                          */
1268                         if (dsl_dataset_modified_since_snap(ds, snap)) {
1269                                 dsl_dataset_rele(snap, FTAG);
1270                                 return (SET_ERROR(ETXTBSY));
1271                         }
1272                         drba->drba_snapobj = ds->ds_prev->ds_object;
1273                 }
1274
1275                 dsl_dataset_rele(snap, FTAG);
1276         } else {
1277                 /* if full, then must be forced */
1278                 if (!drba->drba_cookie->drc_force)
1279                         return (SET_ERROR(EEXIST));
1280                 /* start from $ORIGIN@$ORIGIN, if supported */
1281                 drba->drba_snapobj = dp->dp_origin_snap != NULL ?
1282                     dp->dp_origin_snap->ds_object : 0;
1283         }
1284
1285         return (0);
1286
1287 }
1288
1289 static int
1290 dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
1291 {
1292         dmu_recv_begin_arg_t *drba = arg;
1293         dsl_pool_t *dp = dmu_tx_pool(tx);
1294         struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1295         uint64_t fromguid = drrb->drr_fromguid;
1296         int flags = drrb->drr_flags;
1297         int error;
1298         uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
1299         dsl_dataset_t *ds;
1300         const char *tofs = drba->drba_cookie->drc_tofs;
1301
1302         /* already checked */
1303         ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1304         ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
1305
1306         if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1307             DMU_COMPOUNDSTREAM ||
1308             drrb->drr_type >= DMU_OST_NUMTYPES ||
1309             ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
1310                 return (SET_ERROR(EINVAL));
1311
1312         /* Verify pool version supports SA if SA_SPILL feature set */
1313         if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
1314             spa_version(dp->dp_spa) < SPA_VERSION_SA)
1315                 return (SET_ERROR(ENOTSUP));
1316
1317         if (drba->drba_cookie->drc_resumable &&
1318             !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
1319                 return (SET_ERROR(ENOTSUP));
1320
1321         /*
1322          * The receiving code doesn't know how to translate a WRITE_EMBEDDED
1323          * record to a plan WRITE record, so the pool must have the
1324          * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
1325          * records.  Same with WRITE_EMBEDDED records that use LZ4 compression.
1326          */
1327         if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
1328             !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
1329                 return (SET_ERROR(ENOTSUP));
1330         if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) &&
1331             !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
1332                 return (SET_ERROR(ENOTSUP));
1333
1334         /*
1335          * The receiving code doesn't know how to translate large blocks
1336          * to smaller ones, so the pool must have the LARGE_BLOCKS
1337          * feature enabled if the stream has LARGE_BLOCKS.
1338          */
1339         if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
1340             !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS))
1341                 return (SET_ERROR(ENOTSUP));
1342
1343         error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1344         if (error == 0) {
1345                 /* target fs already exists; recv into temp clone */
1346
1347                 /* Can't recv a clone into an existing fs */
1348                 if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
1349                         dsl_dataset_rele(ds, FTAG);
1350                         return (SET_ERROR(EINVAL));
1351                 }
1352
1353                 error = recv_begin_check_existing_impl(drba, ds, fromguid);
1354                 dsl_dataset_rele(ds, FTAG);
1355         } else if (error == ENOENT) {
1356                 /* target fs does not exist; must be a full backup or clone */
1357                 char buf[ZFS_MAX_DATASET_NAME_LEN];
1358
1359                 /*
1360                  * If it's a non-clone incremental, we are missing the
1361                  * target fs, so fail the recv.
1362                  */
1363                 if (fromguid != 0 && !(flags & DRR_FLAG_CLONE ||
1364                     drba->drba_origin))
1365                         return (SET_ERROR(ENOENT));
1366
1367                 /*
1368                  * If we're receiving a full send as a clone, and it doesn't
1369                  * contain all the necessary free records and freeobject
1370                  * records, reject it.
1371                  */
1372                 if (fromguid == 0 && drba->drba_origin &&
1373                     !(flags & DRR_FLAG_FREERECORDS))
1374                         return (SET_ERROR(EINVAL));
1375
1376                 /* Open the parent of tofs */
1377                 ASSERT3U(strlen(tofs), <, sizeof (buf));
1378                 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
1379                 error = dsl_dataset_hold(dp, buf, FTAG, &ds);
1380                 if (error != 0)
1381                         return (error);
1382
1383                 /*
1384                  * Check filesystem and snapshot limits before receiving. We'll
1385                  * recheck snapshot limits again at the end (we create the
1386                  * filesystems and increment those counts during begin_sync).
1387                  */
1388                 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
1389                     ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred);
1390                 if (error != 0) {
1391                         dsl_dataset_rele(ds, FTAG);
1392                         return (error);
1393                 }
1394
1395                 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
1396                     ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred);
1397                 if (error != 0) {
1398                         dsl_dataset_rele(ds, FTAG);
1399                         return (error);
1400                 }
1401
1402                 if (drba->drba_origin != NULL) {
1403                         dsl_dataset_t *origin;
1404                         error = dsl_dataset_hold(dp, drba->drba_origin,
1405                             FTAG, &origin);
1406                         if (error != 0) {
1407                                 dsl_dataset_rele(ds, FTAG);
1408                                 return (error);
1409                         }
1410                         if (!origin->ds_is_snapshot) {
1411                                 dsl_dataset_rele(origin, FTAG);
1412                                 dsl_dataset_rele(ds, FTAG);
1413                                 return (SET_ERROR(EINVAL));
1414                         }
1415                         if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
1416                             fromguid != 0) {
1417                                 dsl_dataset_rele(origin, FTAG);
1418                                 dsl_dataset_rele(ds, FTAG);
1419                                 return (SET_ERROR(ENODEV));
1420                         }
1421                         dsl_dataset_rele(origin, FTAG);
1422                 }
1423                 dsl_dataset_rele(ds, FTAG);
1424                 error = 0;
1425         }
1426         return (error);
1427 }
1428
1429 static void
1430 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
1431 {
1432         dmu_recv_begin_arg_t *drba = arg;
1433         dsl_pool_t *dp = dmu_tx_pool(tx);
1434         objset_t *mos = dp->dp_meta_objset;
1435         struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1436         const char *tofs = drba->drba_cookie->drc_tofs;
1437         dsl_dataset_t *ds, *newds;
1438         uint64_t dsobj;
1439         int error;
1440         uint64_t crflags = 0;
1441
1442         if (drrb->drr_flags & DRR_FLAG_CI_DATA)
1443                 crflags |= DS_FLAG_CI_DATASET;
1444
1445         error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1446         if (error == 0) {
1447                 /* create temporary clone */
1448                 dsl_dataset_t *snap = NULL;
1449                 if (drba->drba_snapobj != 0) {
1450                         VERIFY0(dsl_dataset_hold_obj(dp,
1451                             drba->drba_snapobj, FTAG, &snap));
1452                 }
1453                 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name,
1454                     snap, crflags, drba->drba_cred, tx);
1455                 if (drba->drba_snapobj != 0)
1456                         dsl_dataset_rele(snap, FTAG);
1457                 dsl_dataset_rele(ds, FTAG);
1458         } else {
1459                 dsl_dir_t *dd;
1460                 const char *tail;
1461                 dsl_dataset_t *origin = NULL;
1462
1463                 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
1464
1465                 if (drba->drba_origin != NULL) {
1466                         VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
1467                             FTAG, &origin));
1468                 }
1469
1470                 /* Create new dataset. */
1471                 dsobj = dsl_dataset_create_sync(dd,
1472                     strrchr(tofs, '/') + 1,
1473                     origin, crflags, drba->drba_cred, tx);
1474                 if (origin != NULL)
1475                         dsl_dataset_rele(origin, FTAG);
1476                 dsl_dir_rele(dd, FTAG);
1477                 drba->drba_cookie->drc_newfs = B_TRUE;
1478         }
1479         VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &newds));
1480
1481         if (drba->drba_cookie->drc_resumable) {
1482                 dsl_dataset_zapify(newds, tx);
1483                 if (drrb->drr_fromguid != 0) {
1484                         VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
1485                             8, 1, &drrb->drr_fromguid, tx));
1486                 }
1487                 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
1488                     8, 1, &drrb->drr_toguid, tx));
1489                 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
1490                     1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
1491                 uint64_t one = 1;
1492                 uint64_t zero = 0;
1493                 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
1494                     8, 1, &one, tx));
1495                 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
1496                     8, 1, &zero, tx));
1497                 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
1498                     8, 1, &zero, tx));
1499                 if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) &
1500                     DMU_BACKUP_FEATURE_EMBED_DATA) {
1501                         VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
1502                             8, 1, &one, tx));
1503                 }
1504         }
1505
1506         dmu_buf_will_dirty(newds->ds_dbuf, tx);
1507         dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
1508
1509         /*
1510          * If we actually created a non-clone, we need to create the
1511          * objset in our new dataset.
1512          */
1513         if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds))) {
1514                 (void) dmu_objset_create_impl(dp->dp_spa,
1515                     newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
1516         }
1517
1518         drba->drba_cookie->drc_ds = newds;
1519
1520         spa_history_log_internal_ds(newds, "receive", tx, "");
1521 }
1522
1523 static int
1524 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
1525 {
1526         dmu_recv_begin_arg_t *drba = arg;
1527         dsl_pool_t *dp = dmu_tx_pool(tx);
1528         struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1529         int error;
1530         uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
1531         dsl_dataset_t *ds;
1532         const char *tofs = drba->drba_cookie->drc_tofs;
1533
1534         /* already checked */
1535         ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1536         ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING);
1537
1538         if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1539             DMU_COMPOUNDSTREAM ||
1540             drrb->drr_type >= DMU_OST_NUMTYPES)
1541                 return (SET_ERROR(EINVAL));
1542
1543         /* Verify pool version supports SA if SA_SPILL feature set */
1544         if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
1545             spa_version(dp->dp_spa) < SPA_VERSION_SA)
1546                 return (SET_ERROR(ENOTSUP));
1547
1548         /*
1549          * The receiving code doesn't know how to translate a WRITE_EMBEDDED
1550          * record to a plain WRITE record, so the pool must have the
1551          * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
1552          * records.  Same with WRITE_EMBEDDED records that use LZ4 compression.
1553          */
1554         if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
1555             !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
1556                 return (SET_ERROR(ENOTSUP));
1557         if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) &&
1558             !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
1559                 return (SET_ERROR(ENOTSUP));
1560
1561         /* 6 extra bytes for /%recv */
1562         char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1563
1564         (void) snprintf(recvname, sizeof (recvname), "%s/%s",
1565             tofs, recv_clone_name);
1566
1567         if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) {
1568                 /* %recv does not exist; continue in tofs */
1569                 error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1570                 if (error != 0)
1571                         return (error);
1572         }
1573
1574         /* check that ds is marked inconsistent */
1575         if (!DS_IS_INCONSISTENT(ds)) {
1576                 dsl_dataset_rele(ds, FTAG);
1577                 return (SET_ERROR(EINVAL));
1578         }
1579
1580         /* check that there is resuming data, and that the toguid matches */
1581         if (!dsl_dataset_is_zapified(ds)) {
1582                 dsl_dataset_rele(ds, FTAG);
1583                 return (SET_ERROR(EINVAL));
1584         }
1585         uint64_t val;
1586         error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1587             DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1588         if (error != 0 || drrb->drr_toguid != val) {
1589                 dsl_dataset_rele(ds, FTAG);
1590                 return (SET_ERROR(EINVAL));
1591         }
1592
1593         /*
1594          * Check if the receive is still running.  If so, it will be owned.
1595          * Note that nothing else can own the dataset (e.g. after the receive
1596          * fails) because it will be marked inconsistent.
1597          */
1598         if (dsl_dataset_has_owner(ds)) {
1599                 dsl_dataset_rele(ds, FTAG);
1600                 return (SET_ERROR(EBUSY));
1601         }
1602
1603         /* There should not be any snapshots of this fs yet. */
1604         if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1605                 dsl_dataset_rele(ds, FTAG);
1606                 return (SET_ERROR(EINVAL));
1607         }
1608
1609         /*
1610          * Note: resume point will be checked when we process the first WRITE
1611          * record.
1612          */
1613
1614         /* check that the origin matches */
1615         val = 0;
1616         (void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1617             DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1618         if (drrb->drr_fromguid != val) {
1619                 dsl_dataset_rele(ds, FTAG);
1620                 return (SET_ERROR(EINVAL));
1621         }
1622
1623         dsl_dataset_rele(ds, FTAG);
1624         return (0);
1625 }
1626
1627 static void
1628 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1629 {
1630         dmu_recv_begin_arg_t *drba = arg;
1631         dsl_pool_t *dp = dmu_tx_pool(tx);
1632         const char *tofs = drba->drba_cookie->drc_tofs;
1633         dsl_dataset_t *ds;
1634         uint64_t dsobj;
1635         /* 6 extra bytes for /%recv */
1636         char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1637
1638         (void) snprintf(recvname, sizeof (recvname), "%s/%s",
1639             tofs, recv_clone_name);
1640
1641         if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) {
1642                 /* %recv does not exist; continue in tofs */
1643                 VERIFY0(dsl_dataset_hold(dp, tofs, FTAG, &ds));
1644                 drba->drba_cookie->drc_newfs = B_TRUE;
1645         }
1646
1647         /* clear the inconsistent flag so that we can own it */
1648         ASSERT(DS_IS_INCONSISTENT(ds));
1649         dmu_buf_will_dirty(ds->ds_dbuf, tx);
1650         dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
1651         dsobj = ds->ds_object;
1652         dsl_dataset_rele(ds, FTAG);
1653
1654         VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &ds));
1655
1656         dmu_buf_will_dirty(ds->ds_dbuf, tx);
1657         dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT;
1658
1659         ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)));
1660
1661         drba->drba_cookie->drc_ds = ds;
1662
1663         spa_history_log_internal_ds(ds, "resume receive", tx, "");
1664 }
1665
1666 /*
1667  * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1668  * succeeds; otherwise we will leak the holds on the datasets.
1669  */
1670 int
1671 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
1672     boolean_t force, boolean_t resumable, char *origin, dmu_recv_cookie_t *drc)
1673 {
1674         dmu_recv_begin_arg_t drba = { 0 };
1675
1676         bzero(drc, sizeof (dmu_recv_cookie_t));
1677         drc->drc_drr_begin = drr_begin;
1678         drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1679         drc->drc_tosnap = tosnap;
1680         drc->drc_tofs = tofs;
1681         drc->drc_force = force;
1682         drc->drc_resumable = resumable;
1683         drc->drc_cred = CRED();
1684
1685         if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1686                 drc->drc_byteswap = B_TRUE;
1687                 fletcher_4_incremental_byteswap(drr_begin,
1688                     sizeof (dmu_replay_record_t), &drc->drc_cksum);
1689                 byteswap_record(drr_begin);
1690         } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1691                 fletcher_4_incremental_native(drr_begin,
1692                     sizeof (dmu_replay_record_t), &drc->drc_cksum);
1693         } else {
1694                 return (SET_ERROR(EINVAL));
1695         }
1696
1697         drba.drba_origin = origin;
1698         drba.drba_cookie = drc;
1699         drba.drba_cred = CRED();
1700
1701         if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1702             DMU_BACKUP_FEATURE_RESUMING) {
1703                 return (dsl_sync_task(tofs,
1704                     dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
1705                     &drba, 5, ZFS_SPACE_CHECK_NORMAL));
1706         } else  {
1707                 return (dsl_sync_task(tofs,
1708                     dmu_recv_begin_check, dmu_recv_begin_sync,
1709                     &drba, 5, ZFS_SPACE_CHECK_NORMAL));
1710         }
1711 }
1712
1713 struct receive_record_arg {
1714         dmu_replay_record_t header;
1715         void *payload; /* Pointer to a buffer containing the payload */
1716         /*
1717          * If the record is a write, pointer to the arc_buf_t containing the
1718          * payload.
1719          */
1720         arc_buf_t *write_buf;
1721         int payload_size;
1722         uint64_t bytes_read; /* bytes read from stream when record created */
1723         boolean_t eos_marker; /* Marks the end of the stream */
1724         bqueue_node_t node;
1725 };
1726
1727 struct receive_writer_arg {
1728         objset_t *os;
1729         boolean_t byteswap;
1730         bqueue_t q;
1731
1732         /*
1733          * These three args are used to signal to the main thread that we're
1734          * done.
1735          */
1736         kmutex_t mutex;
1737         kcondvar_t cv;
1738         boolean_t done;
1739
1740         int err;
1741         /* A map from guid to dataset to help handle dedup'd streams. */
1742         avl_tree_t *guid_to_ds_map;
1743         boolean_t resumable;
1744         uint64_t last_object, last_offset;
1745         uint64_t bytes_read; /* bytes read when current record created */
1746 };
1747
1748 struct objlist {
1749         list_t list; /* List of struct receive_objnode. */
1750         /*
1751          * Last object looked up. Used to assert that objects are being looked
1752          * up in ascending order.
1753          */
1754         uint64_t last_lookup;
1755 };
1756
1757 struct receive_objnode {
1758         list_node_t node;
1759         uint64_t object;
1760 };
1761
1762 struct receive_arg  {
1763         objset_t *os;
1764         kthread_t *td;
1765         struct file *fp;
1766         uint64_t voff; /* The current offset in the stream */
1767         uint64_t bytes_read;
1768         /*
1769          * A record that has had its payload read in, but hasn't yet been handed
1770          * off to the worker thread.
1771          */
1772         struct receive_record_arg *rrd;
1773         /* A record that has had its header read in, but not its payload. */
1774         struct receive_record_arg *next_rrd;
1775         zio_cksum_t cksum;
1776         zio_cksum_t prev_cksum;
1777         int err;
1778         boolean_t byteswap;
1779         /* Sorted list of objects not to issue prefetches for. */
1780         struct objlist ignore_objlist;
1781 };
1782
1783 typedef struct guid_map_entry {
1784         uint64_t        guid;
1785         dsl_dataset_t   *gme_ds;
1786         avl_node_t      avlnode;
1787 } guid_map_entry_t;
1788
1789 static int
1790 guid_compare(const void *arg1, const void *arg2)
1791 {
1792         const guid_map_entry_t *gmep1 = arg1;
1793         const guid_map_entry_t *gmep2 = arg2;
1794
1795         if (gmep1->guid < gmep2->guid)
1796                 return (-1);
1797         else if (gmep1->guid > gmep2->guid)
1798                 return (1);
1799         return (0);
1800 }
1801
1802 static void
1803 free_guid_map_onexit(void *arg)
1804 {
1805         avl_tree_t *ca = arg;
1806         void *cookie = NULL;
1807         guid_map_entry_t *gmep;
1808
1809         while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) {
1810                 dsl_dataset_long_rele(gmep->gme_ds, gmep);
1811                 dsl_dataset_rele(gmep->gme_ds, gmep);
1812                 kmem_free(gmep, sizeof (guid_map_entry_t));
1813         }
1814         avl_destroy(ca);
1815         kmem_free(ca, sizeof (avl_tree_t));
1816 }
1817
1818 static int
1819 restore_bytes(struct receive_arg *ra, void *buf, int len, off_t off, ssize_t *resid)
1820 {
1821         struct uio auio;
1822         struct iovec aiov;
1823         int error;
1824
1825         aiov.iov_base = buf;
1826         aiov.iov_len = len;
1827         auio.uio_iov = &aiov;
1828         auio.uio_iovcnt = 1;
1829         auio.uio_resid = len;
1830         auio.uio_segflg = UIO_SYSSPACE;
1831         auio.uio_rw = UIO_READ;
1832         auio.uio_offset = off;
1833         auio.uio_td = ra->td;
1834 #ifdef _KERNEL
1835         error = fo_read(ra->fp, &auio, ra->td->td_ucred, FOF_OFFSET, ra->td);
1836 #else
1837         fprintf(stderr, "%s: returning EOPNOTSUPP\n", __func__);
1838         error = EOPNOTSUPP;
1839 #endif
1840         *resid = auio.uio_resid;
1841         return (error);
1842 }
1843
1844 static int
1845 receive_read(struct receive_arg *ra, int len, void *buf)
1846 {
1847         int done = 0;
1848
1849         /*
1850          * The code doesn't rely on this (lengths being multiples of 8).  See
1851          * comment in dump_bytes.
1852          */
1853         ASSERT0(len % 8);
1854
1855         while (done < len) {
1856                 ssize_t resid;
1857
1858                 ra->err = restore_bytes(ra, buf + done,
1859                     len - done, ra->voff, &resid);
1860
1861                 if (resid == len - done) {
1862                         /*
1863                          * Note: ECKSUM indicates that the receive
1864                          * was interrupted and can potentially be resumed.
1865                          */
1866                         ra->err = SET_ERROR(ECKSUM);
1867                 }
1868                 ra->voff += len - done - resid;
1869                 done = len - resid;
1870                 if (ra->err != 0)
1871                         return (ra->err);
1872         }
1873
1874         ra->bytes_read += len;
1875
1876         ASSERT3U(done, ==, len);
1877         return (0);
1878 }
1879
1880 static void
1881 byteswap_record(dmu_replay_record_t *drr)
1882 {
1883 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
1884 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
1885         drr->drr_type = BSWAP_32(drr->drr_type);
1886         drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
1887
1888         switch (drr->drr_type) {
1889         case DRR_BEGIN:
1890                 DO64(drr_begin.drr_magic);
1891                 DO64(drr_begin.drr_versioninfo);
1892                 DO64(drr_begin.drr_creation_time);
1893                 DO32(drr_begin.drr_type);
1894                 DO32(drr_begin.drr_flags);
1895                 DO64(drr_begin.drr_toguid);
1896                 DO64(drr_begin.drr_fromguid);
1897                 break;
1898         case DRR_OBJECT:
1899                 DO64(drr_object.drr_object);
1900                 DO32(drr_object.drr_type);
1901                 DO32(drr_object.drr_bonustype);
1902                 DO32(drr_object.drr_blksz);
1903                 DO32(drr_object.drr_bonuslen);
1904                 DO64(drr_object.drr_toguid);
1905                 break;
1906         case DRR_FREEOBJECTS:
1907                 DO64(drr_freeobjects.drr_firstobj);
1908                 DO64(drr_freeobjects.drr_numobjs);
1909                 DO64(drr_freeobjects.drr_toguid);
1910                 break;
1911         case DRR_WRITE:
1912                 DO64(drr_write.drr_object);
1913                 DO32(drr_write.drr_type);
1914                 DO64(drr_write.drr_offset);
1915                 DO64(drr_write.drr_length);
1916                 DO64(drr_write.drr_toguid);
1917                 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
1918                 DO64(drr_write.drr_key.ddk_prop);
1919                 break;
1920         case DRR_WRITE_BYREF:
1921                 DO64(drr_write_byref.drr_object);
1922                 DO64(drr_write_byref.drr_offset);
1923                 DO64(drr_write_byref.drr_length);
1924                 DO64(drr_write_byref.drr_toguid);
1925                 DO64(drr_write_byref.drr_refguid);
1926                 DO64(drr_write_byref.drr_refobject);
1927                 DO64(drr_write_byref.drr_refoffset);
1928                 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref.
1929                     drr_key.ddk_cksum);
1930                 DO64(drr_write_byref.drr_key.ddk_prop);
1931                 break;
1932         case DRR_WRITE_EMBEDDED:
1933                 DO64(drr_write_embedded.drr_object);
1934                 DO64(drr_write_embedded.drr_offset);
1935                 DO64(drr_write_embedded.drr_length);
1936                 DO64(drr_write_embedded.drr_toguid);
1937                 DO32(drr_write_embedded.drr_lsize);
1938                 DO32(drr_write_embedded.drr_psize);
1939                 break;
1940         case DRR_FREE:
1941                 DO64(drr_free.drr_object);
1942                 DO64(drr_free.drr_offset);
1943                 DO64(drr_free.drr_length);
1944                 DO64(drr_free.drr_toguid);
1945                 break;
1946         case DRR_SPILL:
1947                 DO64(drr_spill.drr_object);
1948                 DO64(drr_spill.drr_length);
1949                 DO64(drr_spill.drr_toguid);
1950                 break;
1951         case DRR_END:
1952                 DO64(drr_end.drr_toguid);
1953                 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
1954                 break;
1955         }
1956
1957         if (drr->drr_type != DRR_BEGIN) {
1958                 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
1959         }
1960
1961 #undef DO64
1962 #undef DO32
1963 }
1964
1965 static inline uint8_t
1966 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1967 {
1968         if (bonus_type == DMU_OT_SA) {
1969                 return (1);
1970         } else {
1971                 return (1 +
1972                     ((DN_MAX_BONUSLEN - bonus_size) >> SPA_BLKPTRSHIFT));
1973         }
1974 }
1975
1976 static void
1977 save_resume_state(struct receive_writer_arg *rwa,
1978     uint64_t object, uint64_t offset, dmu_tx_t *tx)
1979 {
1980         int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1981
1982         if (!rwa->resumable)
1983                 return;
1984
1985         /*
1986          * We use ds_resume_bytes[] != 0 to indicate that we need to
1987          * update this on disk, so it must not be 0.
1988          */
1989         ASSERT(rwa->bytes_read != 0);
1990
1991         /*
1992          * We only resume from write records, which have a valid
1993          * (non-meta-dnode) object number.
1994          */
1995         ASSERT(object != 0);
1996
1997         /*
1998          * For resuming to work correctly, we must receive records in order,
1999          * sorted by object,offset.  This is checked by the callers, but
2000          * assert it here for good measure.
2001          */
2002         ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
2003         ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
2004             offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
2005         ASSERT3U(rwa->bytes_read, >=,
2006             rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
2007
2008         rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
2009         rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
2010         rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
2011 }
2012
2013 static int
2014 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
2015     void *data)
2016 {
2017         dmu_object_info_t doi;
2018         dmu_tx_t *tx;
2019         uint64_t object;
2020         int err;
2021
2022         if (drro->drr_type == DMU_OT_NONE ||
2023             !DMU_OT_IS_VALID(drro->drr_type) ||
2024             !DMU_OT_IS_VALID(drro->drr_bonustype) ||
2025             drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
2026             drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
2027             P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
2028             drro->drr_blksz < SPA_MINBLOCKSIZE ||
2029             drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
2030             drro->drr_bonuslen > DN_MAX_BONUSLEN) {
2031                 return (SET_ERROR(EINVAL));
2032         }
2033
2034         err = dmu_object_info(rwa->os, drro->drr_object, &doi);
2035
2036         if (err != 0 && err != ENOENT)
2037                 return (SET_ERROR(EINVAL));
2038         object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT;
2039
2040         /*
2041          * If we are losing blkptrs or changing the block size this must
2042          * be a new file instance.  We must clear out the previous file
2043          * contents before we can change this type of metadata in the dnode.
2044          */
2045         if (err == 0) {
2046                 int nblkptr;
2047
2048                 nblkptr = deduce_nblkptr(drro->drr_bonustype,
2049                     drro->drr_bonuslen);
2050
2051                 if (drro->drr_blksz != doi.doi_data_block_size ||
2052                     nblkptr < doi.doi_nblkptr) {
2053                         err = dmu_free_long_range(rwa->os, drro->drr_object,
2054                             0, DMU_OBJECT_END);
2055                         if (err != 0)
2056                                 return (SET_ERROR(EINVAL));
2057                 }
2058         }
2059
2060         tx = dmu_tx_create(rwa->os);
2061         dmu_tx_hold_bonus(tx, object);
2062         err = dmu_tx_assign(tx, TXG_WAIT);
2063         if (err != 0) {
2064                 dmu_tx_abort(tx);
2065                 return (err);
2066         }
2067
2068         if (object == DMU_NEW_OBJECT) {
2069                 /* currently free, want to be allocated */
2070                 err = dmu_object_claim(rwa->os, drro->drr_object,
2071                     drro->drr_type, drro->drr_blksz,
2072                     drro->drr_bonustype, drro->drr_bonuslen, tx);
2073         } else if (drro->drr_type != doi.doi_type ||
2074             drro->drr_blksz != doi.doi_data_block_size ||
2075             drro->drr_bonustype != doi.doi_bonus_type ||
2076             drro->drr_bonuslen != doi.doi_bonus_size) {
2077                 /* currently allocated, but with different properties */
2078                 err = dmu_object_reclaim(rwa->os, drro->drr_object,
2079                     drro->drr_type, drro->drr_blksz,
2080                     drro->drr_bonustype, drro->drr_bonuslen, tx);
2081         }
2082         if (err != 0) {
2083                 dmu_tx_commit(tx);
2084                 return (SET_ERROR(EINVAL));
2085         }
2086
2087         dmu_object_set_checksum(rwa->os, drro->drr_object,
2088             drro->drr_checksumtype, tx);
2089         dmu_object_set_compress(rwa->os, drro->drr_object,
2090             drro->drr_compress, tx);
2091
2092         if (data != NULL) {
2093                 dmu_buf_t *db;
2094
2095                 VERIFY0(dmu_bonus_hold(rwa->os, drro->drr_object, FTAG, &db));
2096                 dmu_buf_will_dirty(db, tx);
2097
2098                 ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
2099                 bcopy(data, db->db_data, drro->drr_bonuslen);
2100                 if (rwa->byteswap) {
2101                         dmu_object_byteswap_t byteswap =
2102                             DMU_OT_BYTESWAP(drro->drr_bonustype);
2103                         dmu_ot_byteswap[byteswap].ob_func(db->db_data,
2104                             drro->drr_bonuslen);
2105                 }
2106                 dmu_buf_rele(db, FTAG);
2107         }
2108         dmu_tx_commit(tx);
2109
2110         return (0);
2111 }
2112
2113 /* ARGSUSED */
2114 static int
2115 receive_freeobjects(struct receive_writer_arg *rwa,
2116     struct drr_freeobjects *drrfo)
2117 {
2118         uint64_t obj;
2119         int next_err = 0;
2120
2121         if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
2122                 return (SET_ERROR(EINVAL));
2123
2124         for (obj = drrfo->drr_firstobj;
2125             obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0;
2126             next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
2127                 int err;
2128
2129                 if (dmu_object_info(rwa->os, obj, NULL) != 0)
2130                         continue;
2131
2132                 err = dmu_free_long_object(rwa->os, obj);
2133                 if (err != 0)
2134                         return (err);
2135         }
2136         if (next_err != ESRCH)
2137                 return (next_err);
2138         return (0);
2139 }
2140
2141 static int
2142 receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw,
2143     arc_buf_t *abuf)
2144 {
2145         dmu_tx_t *tx;
2146         int err;
2147
2148         if (drrw->drr_offset + drrw->drr_length < drrw->drr_offset ||
2149             !DMU_OT_IS_VALID(drrw->drr_type))
2150                 return (SET_ERROR(EINVAL));
2151
2152         /*
2153          * For resuming to work, records must be in increasing order
2154          * by (object, offset).
2155          */
2156         if (drrw->drr_object < rwa->last_object ||
2157             (drrw->drr_object == rwa->last_object &&
2158             drrw->drr_offset < rwa->last_offset)) {
2159                 return (SET_ERROR(EINVAL));
2160         }
2161         rwa->last_object = drrw->drr_object;
2162         rwa->last_offset = drrw->drr_offset;
2163
2164         if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0)
2165                 return (SET_ERROR(EINVAL));
2166
2167         tx = dmu_tx_create(rwa->os);
2168
2169         dmu_tx_hold_write(tx, drrw->drr_object,
2170             drrw->drr_offset, drrw->drr_length);
2171         err = dmu_tx_assign(tx, TXG_WAIT);
2172         if (err != 0) {
2173                 dmu_tx_abort(tx);
2174                 return (err);
2175         }
2176         if (rwa->byteswap) {
2177                 dmu_object_byteswap_t byteswap =
2178                     DMU_OT_BYTESWAP(drrw->drr_type);
2179                 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
2180                     drrw->drr_length);
2181         }
2182
2183         dmu_buf_t *bonus;
2184         if (dmu_bonus_hold(rwa->os, drrw->drr_object, FTAG, &bonus) != 0)
2185                 return (SET_ERROR(EINVAL));
2186         dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx);
2187
2188         /*
2189          * Note: If the receive fails, we want the resume stream to start
2190          * with the same record that we last successfully received (as opposed
2191          * to the next record), so that we can verify that we are
2192          * resuming from the correct location.
2193          */
2194         save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2195         dmu_tx_commit(tx);
2196         dmu_buf_rele(bonus, FTAG);
2197
2198         return (0);
2199 }
2200
2201 /*
2202  * Handle a DRR_WRITE_BYREF record.  This record is used in dedup'ed
2203  * streams to refer to a copy of the data that is already on the
2204  * system because it came in earlier in the stream.  This function
2205  * finds the earlier copy of the data, and uses that copy instead of
2206  * data from the stream to fulfill this write.
2207  */
2208 static int
2209 receive_write_byref(struct receive_writer_arg *rwa,
2210     struct drr_write_byref *drrwbr)
2211 {
2212         dmu_tx_t *tx;
2213         int err;
2214         guid_map_entry_t gmesrch;
2215         guid_map_entry_t *gmep;
2216         avl_index_t where;
2217         objset_t *ref_os = NULL;
2218         dmu_buf_t *dbp;
2219
2220         if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset)
2221                 return (SET_ERROR(EINVAL));
2222
2223         /*
2224          * If the GUID of the referenced dataset is different from the
2225          * GUID of the target dataset, find the referenced dataset.
2226          */
2227         if (drrwbr->drr_toguid != drrwbr->drr_refguid) {
2228                 gmesrch.guid = drrwbr->drr_refguid;
2229                 if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch,
2230                     &where)) == NULL) {
2231                         return (SET_ERROR(EINVAL));
2232                 }
2233                 if (dmu_objset_from_ds(gmep->gme_ds, &ref_os))
2234                         return (SET_ERROR(EINVAL));
2235         } else {
2236                 ref_os = rwa->os;
2237         }
2238
2239         err = dmu_buf_hold(ref_os, drrwbr->drr_refobject,
2240             drrwbr->drr_refoffset, FTAG, &dbp, DMU_READ_PREFETCH);
2241         if (err != 0)
2242                 return (err);
2243
2244         tx = dmu_tx_create(rwa->os);
2245
2246         dmu_tx_hold_write(tx, drrwbr->drr_object,
2247             drrwbr->drr_offset, drrwbr->drr_length);
2248         err = dmu_tx_assign(tx, TXG_WAIT);
2249         if (err != 0) {
2250                 dmu_tx_abort(tx);
2251                 return (err);
2252         }
2253         dmu_write(rwa->os, drrwbr->drr_object,
2254             drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx);
2255         dmu_buf_rele(dbp, FTAG);
2256
2257         /* See comment in restore_write. */
2258         save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx);
2259         dmu_tx_commit(tx);
2260         return (0);
2261 }
2262
2263 static int
2264 receive_write_embedded(struct receive_writer_arg *rwa,
2265     struct drr_write_embedded *drrwe, void *data)
2266 {
2267         dmu_tx_t *tx;
2268         int err;
2269
2270         if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2271                 return (EINVAL);
2272
2273         if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2274                 return (EINVAL);
2275
2276         if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2277                 return (EINVAL);
2278         if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2279                 return (EINVAL);
2280
2281         tx = dmu_tx_create(rwa->os);
2282
2283         dmu_tx_hold_write(tx, drrwe->drr_object,
2284             drrwe->drr_offset, drrwe->drr_length);
2285         err = dmu_tx_assign(tx, TXG_WAIT);
2286         if (err != 0) {
2287                 dmu_tx_abort(tx);
2288                 return (err);
2289         }
2290
2291         dmu_write_embedded(rwa->os, drrwe->drr_object,
2292             drrwe->drr_offset, data, drrwe->drr_etype,
2293             drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2294             rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2295
2296         /* See comment in restore_write. */
2297         save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2298         dmu_tx_commit(tx);
2299         return (0);
2300 }
2301
2302 static int
2303 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
2304     void *data)
2305 {
2306         dmu_tx_t *tx;
2307         dmu_buf_t *db, *db_spill;
2308         int err;
2309
2310         if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2311             drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2312                 return (SET_ERROR(EINVAL));
2313
2314         if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2315                 return (SET_ERROR(EINVAL));
2316
2317         VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2318         if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) {
2319                 dmu_buf_rele(db, FTAG);
2320                 return (err);
2321         }
2322
2323         tx = dmu_tx_create(rwa->os);
2324
2325         dmu_tx_hold_spill(tx, db->db_object);
2326
2327         err = dmu_tx_assign(tx, TXG_WAIT);
2328         if (err != 0) {
2329                 dmu_buf_rele(db, FTAG);
2330                 dmu_buf_rele(db_spill, FTAG);
2331                 dmu_tx_abort(tx);
2332                 return (err);
2333         }
2334         dmu_buf_will_dirty(db_spill, tx);
2335
2336         if (db_spill->db_size < drrs->drr_length)
2337                 VERIFY(0 == dbuf_spill_set_blksz(db_spill,
2338                     drrs->drr_length, tx));
2339         bcopy(data, db_spill->db_data, drrs->drr_length);
2340
2341         dmu_buf_rele(db, FTAG);
2342         dmu_buf_rele(db_spill, FTAG);
2343
2344         dmu_tx_commit(tx);
2345         return (0);
2346 }
2347
2348 /* ARGSUSED */
2349 static int
2350 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2351 {
2352         int err;
2353
2354         if (drrf->drr_length != -1ULL &&
2355             drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2356                 return (SET_ERROR(EINVAL));
2357
2358         if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2359                 return (SET_ERROR(EINVAL));
2360
2361         err = dmu_free_long_range(rwa->os, drrf->drr_object,
2362             drrf->drr_offset, drrf->drr_length);
2363
2364         return (err);
2365 }
2366
2367 /* used to destroy the drc_ds on error */
2368 static void
2369 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2370 {
2371         if (drc->drc_resumable) {
2372                 /* wait for our resume state to be written to disk */
2373                 txg_wait_synced(drc->drc_ds->ds_dir->dd_pool, 0);
2374                 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
2375         } else {
2376                 char name[ZFS_MAX_DATASET_NAME_LEN];
2377                 dsl_dataset_name(drc->drc_ds, name);
2378                 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
2379                 (void) dsl_destroy_head(name);
2380         }
2381 }
2382
2383 static void
2384 receive_cksum(struct receive_arg *ra, int len, void *buf)
2385 {
2386         if (ra->byteswap) {
2387                 fletcher_4_incremental_byteswap(buf, len, &ra->cksum);
2388         } else {
2389                 fletcher_4_incremental_native(buf, len, &ra->cksum);
2390         }
2391 }
2392
2393 /*
2394  * Read the payload into a buffer of size len, and update the current record's
2395  * payload field.
2396  * Allocate ra->next_rrd and read the next record's header into
2397  * ra->next_rrd->header.
2398  * Verify checksum of payload and next record.
2399  */
2400 static int
2401 receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf)
2402 {
2403         int err;
2404
2405         if (len != 0) {
2406                 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
2407                 err = receive_read(ra, len, buf);
2408                 if (err != 0)
2409                         return (err);
2410                 receive_cksum(ra, len, buf);
2411
2412                 /* note: rrd is NULL when reading the begin record's payload */
2413                 if (ra->rrd != NULL) {
2414                         ra->rrd->payload = buf;
2415                         ra->rrd->payload_size = len;
2416                         ra->rrd->bytes_read = ra->bytes_read;
2417                 }
2418         }
2419
2420         ra->prev_cksum = ra->cksum;
2421
2422         ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP);
2423         err = receive_read(ra, sizeof (ra->next_rrd->header),
2424             &ra->next_rrd->header);
2425         ra->next_rrd->bytes_read = ra->bytes_read;
2426         if (err != 0) {
2427                 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2428                 ra->next_rrd = NULL;
2429                 return (err);
2430         }
2431         if (ra->next_rrd->header.drr_type == DRR_BEGIN) {
2432                 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2433                 ra->next_rrd = NULL;
2434                 return (SET_ERROR(EINVAL));
2435         }
2436
2437         /*
2438          * Note: checksum is of everything up to but not including the
2439          * checksum itself.
2440          */
2441         ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2442             ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
2443         receive_cksum(ra,
2444             offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2445             &ra->next_rrd->header);
2446
2447         zio_cksum_t cksum_orig =
2448             ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
2449         zio_cksum_t *cksump =
2450             &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
2451
2452         if (ra->byteswap)
2453                 byteswap_record(&ra->next_rrd->header);
2454
2455         if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
2456             !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) {
2457                 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2458                 ra->next_rrd = NULL;
2459                 return (SET_ERROR(ECKSUM));
2460         }
2461
2462         receive_cksum(ra, sizeof (cksum_orig), &cksum_orig);
2463
2464         return (0);
2465 }
2466
2467 static void
2468 objlist_create(struct objlist *list)
2469 {
2470         list_create(&list->list, sizeof (struct receive_objnode),
2471             offsetof(struct receive_objnode, node));
2472         list->last_lookup = 0;
2473 }
2474
2475 static void
2476 objlist_destroy(struct objlist *list)
2477 {
2478         for (struct receive_objnode *n = list_remove_head(&list->list);
2479             n != NULL; n = list_remove_head(&list->list)) {
2480                 kmem_free(n, sizeof (*n));
2481         }
2482         list_destroy(&list->list);
2483 }
2484
2485 /*
2486  * This function looks through the objlist to see if the specified object number
2487  * is contained in the objlist.  In the process, it will remove all object
2488  * numbers in the list that are smaller than the specified object number.  Thus,
2489  * any lookup of an object number smaller than a previously looked up object
2490  * number will always return false; therefore, all lookups should be done in
2491  * ascending order.
2492  */
2493 static boolean_t
2494 objlist_exists(struct objlist *list, uint64_t object)
2495 {
2496         struct receive_objnode *node = list_head(&list->list);
2497         ASSERT3U(object, >=, list->last_lookup);
2498         list->last_lookup = object;
2499         while (node != NULL && node->object < object) {
2500                 VERIFY3P(node, ==, list_remove_head(&list->list));
2501                 kmem_free(node, sizeof (*node));
2502                 node = list_head(&list->list);
2503         }
2504         return (node != NULL && node->object == object);
2505 }
2506
2507 /*
2508  * The objlist is a list of object numbers stored in ascending order.  However,
2509  * the insertion of new object numbers does not seek out the correct location to
2510  * store a new object number; instead, it appends it to the list for simplicity.
2511  * Thus, any users must take care to only insert new object numbers in ascending
2512  * order.
2513  */
2514 static void
2515 objlist_insert(struct objlist *list, uint64_t object)
2516 {
2517         struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP);
2518         node->object = object;
2519 #ifdef ZFS_DEBUG
2520         struct receive_objnode *last_object = list_tail(&list->list);
2521         uint64_t last_objnum = (last_object != NULL ? last_object->object : 0);
2522         ASSERT3U(node->object, >, last_objnum);
2523 #endif
2524         list_insert_tail(&list->list, node);
2525 }
2526
2527 /*
2528  * Issue the prefetch reads for any necessary indirect blocks.
2529  *
2530  * We use the object ignore list to tell us whether or not to issue prefetches
2531  * for a given object.  We do this for both correctness (in case the blocksize
2532  * of an object has changed) and performance (if the object doesn't exist, don't
2533  * needlessly try to issue prefetches).  We also trim the list as we go through
2534  * the stream to prevent it from growing to an unbounded size.
2535  *
2536  * The object numbers within will always be in sorted order, and any write
2537  * records we see will also be in sorted order, but they're not sorted with
2538  * respect to each other (i.e. we can get several object records before
2539  * receiving each object's write records).  As a result, once we've reached a
2540  * given object number, we can safely remove any reference to lower object
2541  * numbers in the ignore list. In practice, we receive up to 32 object records
2542  * before receiving write records, so the list can have up to 32 nodes in it.
2543  */
2544 /* ARGSUSED */
2545 static void
2546 receive_read_prefetch(struct receive_arg *ra,
2547     uint64_t object, uint64_t offset, uint64_t length)
2548 {
2549         if (!objlist_exists(&ra->ignore_objlist, object)) {
2550                 dmu_prefetch(ra->os, object, 1, offset, length,
2551                     ZIO_PRIORITY_SYNC_READ);
2552         }
2553 }
2554
2555 /*
2556  * Read records off the stream, issuing any necessary prefetches.
2557  */
2558 static int
2559 receive_read_record(struct receive_arg *ra)
2560 {
2561         int err;
2562
2563         switch (ra->rrd->header.drr_type) {
2564         case DRR_OBJECT:
2565         {
2566                 struct drr_object *drro = &ra->rrd->header.drr_u.drr_object;
2567                 uint32_t size = P2ROUNDUP(drro->drr_bonuslen, 8);
2568                 void *buf = kmem_zalloc(size, KM_SLEEP);
2569                 dmu_object_info_t doi;
2570                 err = receive_read_payload_and_next_header(ra, size, buf);
2571                 if (err != 0) {
2572                         kmem_free(buf, size);
2573                         return (err);
2574                 }
2575                 err = dmu_object_info(ra->os, drro->drr_object, &doi);
2576                 /*
2577                  * See receive_read_prefetch for an explanation why we're
2578                  * storing this object in the ignore_obj_list.
2579                  */
2580                 if (err == ENOENT ||
2581                     (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2582                         objlist_insert(&ra->ignore_objlist, drro->drr_object);
2583                         err = 0;
2584                 }
2585                 return (err);
2586         }
2587         case DRR_FREEOBJECTS:
2588         {
2589                 err = receive_read_payload_and_next_header(ra, 0, NULL);
2590                 return (err);
2591         }
2592         case DRR_WRITE:
2593         {
2594                 struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write;
2595                 arc_buf_t *abuf = arc_loan_buf(dmu_objset_spa(ra->os),
2596                     drrw->drr_length);
2597
2598                 err = receive_read_payload_and_next_header(ra,
2599                     drrw->drr_length, abuf->b_data);
2600                 if (err != 0) {
2601                         dmu_return_arcbuf(abuf);
2602                         return (err);
2603                 }
2604                 ra->rrd->write_buf = abuf;
2605                 receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset,
2606                     drrw->drr_length);
2607                 return (err);
2608         }
2609         case DRR_WRITE_BYREF:
2610         {
2611                 struct drr_write_byref *drrwb =
2612                     &ra->rrd->header.drr_u.drr_write_byref;
2613                 err = receive_read_payload_and_next_header(ra, 0, NULL);
2614                 receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset,
2615                     drrwb->drr_length);
2616                 return (err);
2617         }
2618         case DRR_WRITE_EMBEDDED:
2619         {
2620                 struct drr_write_embedded *drrwe =
2621                     &ra->rrd->header.drr_u.drr_write_embedded;
2622                 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2623                 void *buf = kmem_zalloc(size, KM_SLEEP);
2624
2625                 err = receive_read_payload_and_next_header(ra, size, buf);
2626                 if (err != 0) {
2627                         kmem_free(buf, size);
2628                         return (err);
2629                 }
2630
2631                 receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset,
2632                     drrwe->drr_length);
2633                 return (err);
2634         }
2635         case DRR_FREE:
2636         {
2637                 /*
2638                  * It might be beneficial to prefetch indirect blocks here, but
2639                  * we don't really have the data to decide for sure.
2640                  */
2641                 err = receive_read_payload_and_next_header(ra, 0, NULL);
2642                 return (err);
2643         }
2644         case DRR_END:
2645         {
2646                 struct drr_end *drre = &ra->rrd->header.drr_u.drr_end;
2647                 if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum))
2648                         return (SET_ERROR(ECKSUM));
2649                 return (0);
2650         }
2651         case DRR_SPILL:
2652         {
2653                 struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill;
2654                 void *buf = kmem_zalloc(drrs->drr_length, KM_SLEEP);
2655                 err = receive_read_payload_and_next_header(ra, drrs->drr_length,
2656                     buf);
2657                 if (err != 0)
2658                         kmem_free(buf, drrs->drr_length);
2659                 return (err);
2660         }
2661         default:
2662                 return (SET_ERROR(EINVAL));
2663         }
2664 }
2665
2666 /*
2667  * Commit the records to the pool.
2668  */
2669 static int
2670 receive_process_record(struct receive_writer_arg *rwa,
2671     struct receive_record_arg *rrd)
2672 {
2673         int err;
2674
2675         /* Processing in order, therefore bytes_read should be increasing. */
2676         ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
2677         rwa->bytes_read = rrd->bytes_read;
2678
2679         switch (rrd->header.drr_type) {
2680         case DRR_OBJECT:
2681         {
2682                 struct drr_object *drro = &rrd->header.drr_u.drr_object;
2683                 err = receive_object(rwa, drro, rrd->payload);
2684                 kmem_free(rrd->payload, rrd->payload_size);
2685                 rrd->payload = NULL;
2686                 return (err);
2687         }
2688         case DRR_FREEOBJECTS:
2689         {
2690                 struct drr_freeobjects *drrfo =
2691                     &rrd->header.drr_u.drr_freeobjects;
2692                 return (receive_freeobjects(rwa, drrfo));
2693         }
2694         case DRR_WRITE:
2695         {
2696                 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2697                 err = receive_write(rwa, drrw, rrd->write_buf);
2698                 /* if receive_write() is successful, it consumes the arc_buf */
2699                 if (err != 0)
2700                         dmu_return_arcbuf(rrd->write_buf);
2701                 rrd->write_buf = NULL;
2702                 rrd->payload = NULL;
2703                 return (err);
2704         }
2705         case DRR_WRITE_BYREF:
2706         {
2707                 struct drr_write_byref *drrwbr =
2708                     &rrd->header.drr_u.drr_write_byref;
2709                 return (receive_write_byref(rwa, drrwbr));
2710         }
2711         case DRR_WRITE_EMBEDDED:
2712         {
2713                 struct drr_write_embedded *drrwe =
2714                     &rrd->header.drr_u.drr_write_embedded;
2715                 err = receive_write_embedded(rwa, drrwe, rrd->payload);
2716                 kmem_free(rrd->payload, rrd->payload_size);
2717                 rrd->payload = NULL;
2718                 return (err);
2719         }
2720         case DRR_FREE:
2721         {
2722                 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2723                 return (receive_free(rwa, drrf));
2724         }
2725         case DRR_SPILL:
2726         {
2727                 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2728                 err = receive_spill(rwa, drrs, rrd->payload);
2729                 kmem_free(rrd->payload, rrd->payload_size);
2730                 rrd->payload = NULL;
2731                 return (err);
2732         }
2733         default:
2734                 return (SET_ERROR(EINVAL));
2735         }
2736 }
2737
2738 /*
2739  * dmu_recv_stream's worker thread; pull records off the queue, and then call
2740  * receive_process_record  When we're done, signal the main thread and exit.
2741  */
2742 static void
2743 receive_writer_thread(void *arg)
2744 {
2745         struct receive_writer_arg *rwa = arg;
2746         struct receive_record_arg *rrd;
2747         for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
2748             rrd = bqueue_dequeue(&rwa->q)) {
2749                 /*
2750                  * If there's an error, the main thread will stop putting things
2751                  * on the queue, but we need to clear everything in it before we
2752                  * can exit.
2753                  */
2754                 if (rwa->err == 0) {
2755                         rwa->err = receive_process_record(rwa, rrd);
2756                 } else if (rrd->write_buf != NULL) {
2757                         dmu_return_arcbuf(rrd->write_buf);
2758                         rrd->write_buf = NULL;
2759                         rrd->payload = NULL;
2760                 } else if (rrd->payload != NULL) {
2761                         kmem_free(rrd->payload, rrd->payload_size);
2762                         rrd->payload = NULL;
2763                 }
2764                 kmem_free(rrd, sizeof (*rrd));
2765         }
2766         kmem_free(rrd, sizeof (*rrd));
2767         mutex_enter(&rwa->mutex);
2768         rwa->done = B_TRUE;
2769         cv_signal(&rwa->cv);
2770         mutex_exit(&rwa->mutex);
2771         thread_exit();
2772 }
2773
2774 static int
2775 resume_check(struct receive_arg *ra, nvlist_t *begin_nvl)
2776 {
2777         uint64_t val;
2778         objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset;
2779         uint64_t dsobj = dmu_objset_id(ra->os);
2780         uint64_t resume_obj, resume_off;
2781
2782         if (nvlist_lookup_uint64(begin_nvl,
2783             "resume_object", &resume_obj) != 0 ||
2784             nvlist_lookup_uint64(begin_nvl,
2785             "resume_offset", &resume_off) != 0) {
2786                 return (SET_ERROR(EINVAL));
2787         }
2788         VERIFY0(zap_lookup(mos, dsobj,
2789             DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
2790         if (resume_obj != val)
2791                 return (SET_ERROR(EINVAL));
2792         VERIFY0(zap_lookup(mos, dsobj,
2793             DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
2794         if (resume_off != val)
2795                 return (SET_ERROR(EINVAL));
2796
2797         return (0);
2798 }
2799
2800 /*
2801  * Read in the stream's records, one by one, and apply them to the pool.  There
2802  * are two threads involved; the thread that calls this function will spin up a
2803  * worker thread, read the records off the stream one by one, and issue
2804  * prefetches for any necessary indirect blocks.  It will then push the records
2805  * onto an internal blocking queue.  The worker thread will pull the records off
2806  * the queue, and actually write the data into the DMU.  This way, the worker
2807  * thread doesn't have to wait for reads to complete, since everything it needs
2808  * (the indirect blocks) will be prefetched.
2809  *
2810  * NB: callers *must* call dmu_recv_end() if this succeeds.
2811  */
2812 int
2813 dmu_recv_stream(dmu_recv_cookie_t *drc, struct file *fp, offset_t *voffp,
2814     int cleanup_fd, uint64_t *action_handlep)
2815 {
2816         int err = 0;
2817         struct receive_arg ra = { 0 };
2818         struct receive_writer_arg rwa = { 0 };
2819         int featureflags;
2820         nvlist_t *begin_nvl = NULL;
2821
2822         ra.byteswap = drc->drc_byteswap;
2823         ra.cksum = drc->drc_cksum;
2824         ra.td = curthread;
2825         ra.fp = fp;
2826         ra.voff = *voffp;
2827
2828         if (dsl_dataset_is_zapified(drc->drc_ds)) {
2829                 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
2830                     drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
2831                     sizeof (ra.bytes_read), 1, &ra.bytes_read);
2832         }
2833
2834         objlist_create(&ra.ignore_objlist);
2835
2836         /* these were verified in dmu_recv_begin */
2837         ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
2838             DMU_SUBSTREAM);
2839         ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
2840
2841         /*
2842          * Open the objset we are modifying.
2843          */
2844         VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os));
2845
2846         ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
2847
2848         featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
2849
2850         /* if this stream is dedup'ed, set up the avl tree for guid mapping */
2851         if (featureflags & DMU_BACKUP_FEATURE_DEDUP) {
2852                 minor_t minor;
2853
2854                 if (cleanup_fd == -1) {
2855                         ra.err = SET_ERROR(EBADF);
2856                         goto out;
2857                 }
2858                 ra.err = zfs_onexit_fd_hold(cleanup_fd, &minor);
2859                 if (ra.err != 0) {
2860                         cleanup_fd = -1;
2861                         goto out;
2862                 }
2863
2864                 if (*action_handlep == 0) {
2865                         rwa.guid_to_ds_map =
2866                             kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
2867                         avl_create(rwa.guid_to_ds_map, guid_compare,
2868                             sizeof (guid_map_entry_t),
2869                             offsetof(guid_map_entry_t, avlnode));
2870                         err = zfs_onexit_add_cb(minor,
2871                             free_guid_map_onexit, rwa.guid_to_ds_map,
2872                             action_handlep);
2873                         if (ra.err != 0)
2874                                 goto out;
2875                 } else {
2876                         err = zfs_onexit_cb_data(minor, *action_handlep,
2877                             (void **)&rwa.guid_to_ds_map);
2878                         if (ra.err != 0)
2879                                 goto out;
2880                 }
2881
2882                 drc->drc_guid_to_ds_map = rwa.guid_to_ds_map;
2883         }
2884
2885         uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
2886         void *payload = NULL;
2887         if (payloadlen != 0)
2888                 payload = kmem_alloc(payloadlen, KM_SLEEP);
2889
2890         err = receive_read_payload_and_next_header(&ra, payloadlen, payload);
2891         if (err != 0) {
2892                 if (payloadlen != 0)
2893                         kmem_free(payload, payloadlen);
2894                 goto out;
2895         }
2896         if (payloadlen != 0) {
2897                 err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP);
2898                 kmem_free(payload, payloadlen);
2899                 if (err != 0)
2900                         goto out;
2901         }
2902
2903         if (featureflags & DMU_BACKUP_FEATURE_RESUMING) {
2904                 err = resume_check(&ra, begin_nvl);
2905                 if (err != 0)
2906                         goto out;
2907         }
2908
2909         (void) bqueue_init(&rwa.q, zfs_recv_queue_length,
2910             offsetof(struct receive_record_arg, node));
2911         cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL);
2912         mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL);
2913         rwa.os = ra.os;
2914         rwa.byteswap = drc->drc_byteswap;
2915         rwa.resumable = drc->drc_resumable;
2916
2917         (void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, &p0,
2918             TS_RUN, minclsyspri);
2919         /*
2920          * We're reading rwa.err without locks, which is safe since we are the
2921          * only reader, and the worker thread is the only writer.  It's ok if we
2922          * miss a write for an iteration or two of the loop, since the writer
2923          * thread will keep freeing records we send it until we send it an eos
2924          * marker.
2925          *
2926          * We can leave this loop in 3 ways:  First, if rwa.err is
2927          * non-zero.  In that case, the writer thread will free the rrd we just
2928          * pushed.  Second, if  we're interrupted; in that case, either it's the
2929          * first loop and ra.rrd was never allocated, or it's later, and ra.rrd
2930          * has been handed off to the writer thread who will free it.  Finally,
2931          * if receive_read_record fails or we're at the end of the stream, then
2932          * we free ra.rrd and exit.
2933          */
2934         while (rwa.err == 0) {
2935                 if (issig(JUSTLOOKING) && issig(FORREAL)) {
2936                         err = SET_ERROR(EINTR);
2937                         break;
2938                 }
2939
2940                 ASSERT3P(ra.rrd, ==, NULL);
2941                 ra.rrd = ra.next_rrd;
2942                 ra.next_rrd = NULL;
2943                 /* Allocates and loads header into ra.next_rrd */
2944                 err = receive_read_record(&ra);
2945
2946                 if (ra.rrd->header.drr_type == DRR_END || err != 0) {
2947                         kmem_free(ra.rrd, sizeof (*ra.rrd));
2948                         ra.rrd = NULL;
2949                         break;
2950                 }
2951
2952                 bqueue_enqueue(&rwa.q, ra.rrd,
2953                     sizeof (struct receive_record_arg) + ra.rrd->payload_size);
2954                 ra.rrd = NULL;
2955         }
2956         if (ra.next_rrd == NULL)
2957                 ra.next_rrd = kmem_zalloc(sizeof (*ra.next_rrd), KM_SLEEP);
2958         ra.next_rrd->eos_marker = B_TRUE;
2959         bqueue_enqueue(&rwa.q, ra.next_rrd, 1);
2960
2961         mutex_enter(&rwa.mutex);
2962         while (!rwa.done) {
2963                 cv_wait(&rwa.cv, &rwa.mutex);
2964         }
2965         mutex_exit(&rwa.mutex);
2966
2967         cv_destroy(&rwa.cv);
2968         mutex_destroy(&rwa.mutex);
2969         bqueue_destroy(&rwa.q);
2970         if (err == 0)
2971                 err = rwa.err;
2972
2973 out:
2974         nvlist_free(begin_nvl);
2975         if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1))
2976                 zfs_onexit_fd_rele(cleanup_fd);
2977
2978         if (err != 0) {
2979                 /*
2980                  * Clean up references. If receive is not resumable,
2981                  * destroy what we created, so we don't leave it in
2982                  * the inconsistent state.
2983                  */
2984                 dmu_recv_cleanup_ds(drc);
2985         }
2986
2987         *voffp = ra.voff;
2988         objlist_destroy(&ra.ignore_objlist);
2989         return (err);
2990 }
2991
2992 static int
2993 dmu_recv_end_check(void *arg, dmu_tx_t *tx)
2994 {
2995         dmu_recv_cookie_t *drc = arg;
2996         dsl_pool_t *dp = dmu_tx_pool(tx);
2997         int error;
2998
2999         ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
3000
3001         if (!drc->drc_newfs) {
3002                 dsl_dataset_t *origin_head;
3003
3004                 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
3005                 if (error != 0)
3006                         return (error);
3007                 if (drc->drc_force) {
3008                         /*
3009                          * We will destroy any snapshots in tofs (i.e. before
3010                          * origin_head) that are after the origin (which is
3011                          * the snap before drc_ds, because drc_ds can not
3012                          * have any snaps of its own).
3013                          */
3014                         uint64_t obj;
3015
3016                         obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3017                         while (obj !=
3018                             dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3019                                 dsl_dataset_t *snap;
3020                                 error = dsl_dataset_hold_obj(dp, obj, FTAG,
3021                                     &snap);
3022                                 if (error != 0)
3023                                         break;
3024                                 if (snap->ds_dir != origin_head->ds_dir)
3025                                         error = SET_ERROR(EINVAL);
3026                                 if (error == 0)  {
3027                                         error = dsl_destroy_snapshot_check_impl(
3028                                             snap, B_FALSE);
3029                                 }
3030                                 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3031                                 dsl_dataset_rele(snap, FTAG);
3032                                 if (error != 0)
3033                                         break;
3034                         }
3035                         if (error != 0) {
3036                                 dsl_dataset_rele(origin_head, FTAG);
3037                                 return (error);
3038                         }
3039                 }
3040                 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
3041                     origin_head, drc->drc_force, drc->drc_owner, tx);
3042                 if (error != 0) {
3043                         dsl_dataset_rele(origin_head, FTAG);
3044                         return (error);
3045                 }
3046                 error = dsl_dataset_snapshot_check_impl(origin_head,
3047                     drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
3048                 dsl_dataset_rele(origin_head, FTAG);
3049                 if (error != 0)
3050                         return (error);
3051
3052                 error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
3053         } else {
3054                 error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
3055                     drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
3056         }
3057         return (error);
3058 }
3059
3060 static void
3061 dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
3062 {
3063         dmu_recv_cookie_t *drc = arg;
3064         dsl_pool_t *dp = dmu_tx_pool(tx);
3065
3066         spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
3067             tx, "snap=%s", drc->drc_tosnap);
3068
3069         if (!drc->drc_newfs) {
3070                 dsl_dataset_t *origin_head;
3071
3072                 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
3073                     &origin_head));
3074
3075                 if (drc->drc_force) {
3076                         /*
3077                          * Destroy any snapshots of drc_tofs (origin_head)
3078                          * after the origin (the snap before drc_ds).
3079                          */
3080                         uint64_t obj;
3081
3082                         obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3083                         while (obj !=
3084                             dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3085                                 dsl_dataset_t *snap;
3086                                 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
3087                                     &snap));
3088                                 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
3089                                 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3090                                 dsl_destroy_snapshot_sync_impl(snap,
3091                                     B_FALSE, tx);
3092                                 dsl_dataset_rele(snap, FTAG);
3093                         }
3094                 }
3095                 VERIFY3P(drc->drc_ds->ds_prev, ==,
3096                     origin_head->ds_prev);
3097
3098                 dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3099                     origin_head, tx);
3100                 dsl_dataset_snapshot_sync_impl(origin_head,
3101                     drc->drc_tosnap, tx);
3102
3103                 /* set snapshot's creation time and guid */
3104                 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3105                 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3106                     drc->drc_drrb->drr_creation_time;
3107                 dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3108                     drc->drc_drrb->drr_toguid;
3109                 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3110                     ~DS_FLAG_INCONSISTENT;
3111
3112                 dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3113                 dsl_dataset_phys(origin_head)->ds_flags &=
3114                     ~DS_FLAG_INCONSISTENT;
3115
3116                 drc->drc_newsnapobj =
3117                     dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3118
3119                 dsl_dataset_rele(origin_head, FTAG);
3120                 dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3121
3122                 if (drc->drc_owner != NULL)
3123                         VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3124         } else {
3125                 dsl_dataset_t *ds = drc->drc_ds;
3126
3127                 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3128
3129                 /* set snapshot's creation time and guid */
3130                 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3131                 dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3132                     drc->drc_drrb->drr_creation_time;
3133                 dsl_dataset_phys(ds->ds_prev)->ds_guid =
3134                     drc->drc_drrb->drr_toguid;
3135                 dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3136                     ~DS_FLAG_INCONSISTENT;
3137
3138                 dmu_buf_will_dirty(ds->ds_dbuf, tx);
3139                 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3140                 if (dsl_dataset_has_resume_receive_state(ds)) {
3141                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3142                             DS_FIELD_RESUME_FROMGUID, tx);
3143                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3144                             DS_FIELD_RESUME_OBJECT, tx);
3145                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3146                             DS_FIELD_RESUME_OFFSET, tx);
3147                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3148                             DS_FIELD_RESUME_BYTES, tx);
3149                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3150                             DS_FIELD_RESUME_TOGUID, tx);
3151                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3152                             DS_FIELD_RESUME_TONAME, tx);
3153                 }
3154                 drc->drc_newsnapobj =
3155                     dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3156         }
3157         /*
3158          * Release the hold from dmu_recv_begin.  This must be done before
3159          * we return to open context, so that when we free the dataset's dnode,
3160          * we can evict its bonus buffer.
3161          */
3162         dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
3163         drc->drc_ds = NULL;
3164 }
3165
3166 static int
3167 add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj)
3168 {
3169         dsl_pool_t *dp;
3170         dsl_dataset_t *snapds;
3171         guid_map_entry_t *gmep;
3172         int err;
3173
3174         ASSERT(guid_map != NULL);
3175
3176         err = dsl_pool_hold(name, FTAG, &dp);
3177         if (err != 0)
3178                 return (err);
3179         gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP);
3180         err = dsl_dataset_hold_obj(dp, snapobj, gmep, &snapds);
3181         if (err == 0) {
3182                 gmep->guid = dsl_dataset_phys(snapds)->ds_guid;
3183                 gmep->gme_ds = snapds;
3184                 avl_add(guid_map, gmep);
3185                 dsl_dataset_long_hold(snapds, gmep);
3186         } else
3187                 kmem_free(gmep, sizeof (*gmep));
3188
3189         dsl_pool_rele(dp, FTAG);
3190         return (err);
3191 }
3192
3193 static int dmu_recv_end_modified_blocks = 3;
3194
3195 static int
3196 dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3197 {
3198 #ifdef _KERNEL
3199         /*
3200          * We will be destroying the ds; make sure its origin is unmounted if
3201          * necessary.
3202          */
3203         char name[ZFS_MAX_DATASET_NAME_LEN];
3204         dsl_dataset_name(drc->drc_ds, name);
3205         zfs_destroy_unmount_origin(name);
3206 #endif
3207
3208         return (dsl_sync_task(drc->drc_tofs,
3209             dmu_recv_end_check, dmu_recv_end_sync, drc,
3210             dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3211 }
3212
3213 static int
3214 dmu_recv_new_end(dmu_recv_cookie_t *drc)
3215 {
3216         return (dsl_sync_task(drc->drc_tofs,
3217             dmu_recv_end_check, dmu_recv_end_sync, drc,
3218             dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3219 }
3220
3221 int
3222 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3223 {
3224         int error;
3225
3226         drc->drc_owner = owner;
3227
3228         if (drc->drc_newfs)
3229                 error = dmu_recv_new_end(drc);
3230         else
3231                 error = dmu_recv_existing_end(drc);
3232
3233         if (error != 0) {
3234                 dmu_recv_cleanup_ds(drc);
3235         } else if (drc->drc_guid_to_ds_map != NULL) {
3236                 (void) add_ds_to_guidmap(drc->drc_tofs,
3237                     drc->drc_guid_to_ds_map,
3238                     drc->drc_newsnapobj);
3239         }
3240         return (error);
3241 }
3242
3243 /*
3244  * Return TRUE if this objset is currently being received into.
3245  */
3246 boolean_t
3247 dmu_objset_is_receiving(objset_t *os)
3248 {
3249         return (os->os_dsl_dataset != NULL &&
3250             os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3251 }