]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c
MFC r305331: MFV r304155:
[FreeBSD/stable/10.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
26  * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27  * Copyright (c) 2014 Integros [integros.com]
28  */
29
30 #include <sys/zfs_context.h>
31 #include <sys/fm/fs/zfs.h>
32 #include <sys/spa.h>
33 #include <sys/spa_impl.h>
34 #include <sys/dmu.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/vdev_impl.h>
37 #include <sys/uberblock_impl.h>
38 #include <sys/metaslab.h>
39 #include <sys/metaslab_impl.h>
40 #include <sys/space_map.h>
41 #include <sys/space_reftree.h>
42 #include <sys/zio.h>
43 #include <sys/zap.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/arc.h>
46 #include <sys/zil.h>
47 #include <sys/dsl_scan.h>
48 #include <sys/trim_map.h>
49
50 SYSCTL_DECL(_vfs_zfs);
51 SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
52
53 /*
54  * Virtual device management.
55  */
56
57 /*
58  * The limit for ZFS to automatically increase a top-level vdev's ashift
59  * from logical ashift to physical ashift.
60  *
61  * Example: one or more 512B emulation child vdevs
62  *          child->vdev_ashift = 9 (512 bytes)
63  *          child->vdev_physical_ashift = 12 (4096 bytes)
64  *          zfs_max_auto_ashift = 11 (2048 bytes)
65  *          zfs_min_auto_ashift = 9 (512 bytes)
66  *
67  * On pool creation or the addition of a new top-level vdev, ZFS will
68  * increase the ashift of the top-level vdev to 2048 as limited by
69  * zfs_max_auto_ashift.
70  *
71  * Example: one or more 512B emulation child vdevs
72  *          child->vdev_ashift = 9 (512 bytes)
73  *          child->vdev_physical_ashift = 12 (4096 bytes)
74  *          zfs_max_auto_ashift = 13 (8192 bytes)
75  *          zfs_min_auto_ashift = 9 (512 bytes)
76  *
77  * On pool creation or the addition of a new top-level vdev, ZFS will
78  * increase the ashift of the top-level vdev to 4096 to match the
79  * max vdev_physical_ashift.
80  *
81  * Example: one or more 512B emulation child vdevs
82  *          child->vdev_ashift = 9 (512 bytes)
83  *          child->vdev_physical_ashift = 9 (512 bytes)
84  *          zfs_max_auto_ashift = 13 (8192 bytes)
85  *          zfs_min_auto_ashift = 12 (4096 bytes)
86  *
87  * On pool creation or the addition of a new top-level vdev, ZFS will
88  * increase the ashift of the top-level vdev to 4096 to match the
89  * zfs_min_auto_ashift.
90  */
91 static uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT;
92 static uint64_t zfs_min_auto_ashift = SPA_MINASHIFT;
93
94 static int
95 sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)
96 {
97         uint64_t val;
98         int err;
99
100         val = zfs_max_auto_ashift;
101         err = sysctl_handle_64(oidp, &val, 0, req);
102         if (err != 0 || req->newptr == NULL)
103                 return (err);
104
105         if (val > SPA_MAXASHIFT || val < zfs_min_auto_ashift)
106                 return (EINVAL);
107
108         zfs_max_auto_ashift = val;
109
110         return (0);
111 }
112 SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift,
113     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
114     sysctl_vfs_zfs_max_auto_ashift, "QU",
115     "Max ashift used when optimising for logical -> physical sectors size on "
116     "new top-level vdevs.");
117
118 static int
119 sysctl_vfs_zfs_min_auto_ashift(SYSCTL_HANDLER_ARGS)
120 {
121         uint64_t val;
122         int err;
123
124         val = zfs_min_auto_ashift;
125         err = sysctl_handle_64(oidp, &val, 0, req);
126         if (err != 0 || req->newptr == NULL)
127                 return (err);
128
129         if (val < SPA_MINASHIFT || val > zfs_max_auto_ashift)
130                 return (EINVAL);
131
132         zfs_min_auto_ashift = val;
133
134         return (0);
135 }
136 SYSCTL_PROC(_vfs_zfs, OID_AUTO, min_auto_ashift,
137     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
138     sysctl_vfs_zfs_min_auto_ashift, "QU",
139     "Min ashift used when creating new top-level vdevs.");
140
141 static vdev_ops_t *vdev_ops_table[] = {
142         &vdev_root_ops,
143         &vdev_raidz_ops,
144         &vdev_mirror_ops,
145         &vdev_replacing_ops,
146         &vdev_spare_ops,
147 #ifdef _KERNEL
148         &vdev_geom_ops,
149 #else
150         &vdev_disk_ops,
151 #endif
152         &vdev_file_ops,
153         &vdev_missing_ops,
154         &vdev_hole_ops,
155         NULL
156 };
157
158
159 /*
160  * When a vdev is added, it will be divided into approximately (but no
161  * more than) this number of metaslabs.
162  */
163 int metaslabs_per_vdev = 200;
164 SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, metaslabs_per_vdev, CTLFLAG_RDTUN,
165     &metaslabs_per_vdev, 0,
166     "When a vdev is added, how many metaslabs the vdev should be divided into");
167
168 /*
169  * Given a vdev type, return the appropriate ops vector.
170  */
171 static vdev_ops_t *
172 vdev_getops(const char *type)
173 {
174         vdev_ops_t *ops, **opspp;
175
176         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
177                 if (strcmp(ops->vdev_op_type, type) == 0)
178                         break;
179
180         return (ops);
181 }
182
183 /*
184  * Default asize function: return the MAX of psize with the asize of
185  * all children.  This is what's used by anything other than RAID-Z.
186  */
187 uint64_t
188 vdev_default_asize(vdev_t *vd, uint64_t psize)
189 {
190         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
191         uint64_t csize;
192
193         for (int c = 0; c < vd->vdev_children; c++) {
194                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
195                 asize = MAX(asize, csize);
196         }
197
198         return (asize);
199 }
200
201 /*
202  * Get the minimum allocatable size. We define the allocatable size as
203  * the vdev's asize rounded to the nearest metaslab. This allows us to
204  * replace or attach devices which don't have the same physical size but
205  * can still satisfy the same number of allocations.
206  */
207 uint64_t
208 vdev_get_min_asize(vdev_t *vd)
209 {
210         vdev_t *pvd = vd->vdev_parent;
211
212         /*
213          * If our parent is NULL (inactive spare or cache) or is the root,
214          * just return our own asize.
215          */
216         if (pvd == NULL)
217                 return (vd->vdev_asize);
218
219         /*
220          * The top-level vdev just returns the allocatable size rounded
221          * to the nearest metaslab.
222          */
223         if (vd == vd->vdev_top)
224                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
225
226         /*
227          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
228          * so each child must provide at least 1/Nth of its asize.
229          */
230         if (pvd->vdev_ops == &vdev_raidz_ops)
231                 return (pvd->vdev_min_asize / pvd->vdev_children);
232
233         return (pvd->vdev_min_asize);
234 }
235
236 void
237 vdev_set_min_asize(vdev_t *vd)
238 {
239         vd->vdev_min_asize = vdev_get_min_asize(vd);
240
241         for (int c = 0; c < vd->vdev_children; c++)
242                 vdev_set_min_asize(vd->vdev_child[c]);
243 }
244
245 vdev_t *
246 vdev_lookup_top(spa_t *spa, uint64_t vdev)
247 {
248         vdev_t *rvd = spa->spa_root_vdev;
249
250         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
251
252         if (vdev < rvd->vdev_children) {
253                 ASSERT(rvd->vdev_child[vdev] != NULL);
254                 return (rvd->vdev_child[vdev]);
255         }
256
257         return (NULL);
258 }
259
260 vdev_t *
261 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
262 {
263         vdev_t *mvd;
264
265         if (vd->vdev_guid == guid)
266                 return (vd);
267
268         for (int c = 0; c < vd->vdev_children; c++)
269                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
270                     NULL)
271                         return (mvd);
272
273         return (NULL);
274 }
275
276 static int
277 vdev_count_leaves_impl(vdev_t *vd)
278 {
279         int n = 0;
280
281         if (vd->vdev_ops->vdev_op_leaf)
282                 return (1);
283
284         for (int c = 0; c < vd->vdev_children; c++)
285                 n += vdev_count_leaves_impl(vd->vdev_child[c]);
286
287         return (n);
288 }
289
290 int
291 vdev_count_leaves(spa_t *spa)
292 {
293         return (vdev_count_leaves_impl(spa->spa_root_vdev));
294 }
295
296 void
297 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
298 {
299         size_t oldsize, newsize;
300         uint64_t id = cvd->vdev_id;
301         vdev_t **newchild;
302         spa_t *spa = cvd->vdev_spa;
303
304         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
305         ASSERT(cvd->vdev_parent == NULL);
306
307         cvd->vdev_parent = pvd;
308
309         if (pvd == NULL)
310                 return;
311
312         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
313
314         oldsize = pvd->vdev_children * sizeof (vdev_t *);
315         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
316         newsize = pvd->vdev_children * sizeof (vdev_t *);
317
318         newchild = kmem_zalloc(newsize, KM_SLEEP);
319         if (pvd->vdev_child != NULL) {
320                 bcopy(pvd->vdev_child, newchild, oldsize);
321                 kmem_free(pvd->vdev_child, oldsize);
322         }
323
324         pvd->vdev_child = newchild;
325         pvd->vdev_child[id] = cvd;
326
327         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
328         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
329
330         /*
331          * Walk up all ancestors to update guid sum.
332          */
333         for (; pvd != NULL; pvd = pvd->vdev_parent)
334                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
335 }
336
337 void
338 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
339 {
340         int c;
341         uint_t id = cvd->vdev_id;
342
343         ASSERT(cvd->vdev_parent == pvd);
344
345         if (pvd == NULL)
346                 return;
347
348         ASSERT(id < pvd->vdev_children);
349         ASSERT(pvd->vdev_child[id] == cvd);
350
351         pvd->vdev_child[id] = NULL;
352         cvd->vdev_parent = NULL;
353
354         for (c = 0; c < pvd->vdev_children; c++)
355                 if (pvd->vdev_child[c])
356                         break;
357
358         if (c == pvd->vdev_children) {
359                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
360                 pvd->vdev_child = NULL;
361                 pvd->vdev_children = 0;
362         }
363
364         /*
365          * Walk up all ancestors to update guid sum.
366          */
367         for (; pvd != NULL; pvd = pvd->vdev_parent)
368                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
369 }
370
371 /*
372  * Remove any holes in the child array.
373  */
374 void
375 vdev_compact_children(vdev_t *pvd)
376 {
377         vdev_t **newchild, *cvd;
378         int oldc = pvd->vdev_children;
379         int newc;
380
381         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
382
383         for (int c = newc = 0; c < oldc; c++)
384                 if (pvd->vdev_child[c])
385                         newc++;
386
387         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
388
389         for (int c = newc = 0; c < oldc; c++) {
390                 if ((cvd = pvd->vdev_child[c]) != NULL) {
391                         newchild[newc] = cvd;
392                         cvd->vdev_id = newc++;
393                 }
394         }
395
396         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
397         pvd->vdev_child = newchild;
398         pvd->vdev_children = newc;
399 }
400
401 /*
402  * Allocate and minimally initialize a vdev_t.
403  */
404 vdev_t *
405 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
406 {
407         vdev_t *vd;
408
409         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
410
411         if (spa->spa_root_vdev == NULL) {
412                 ASSERT(ops == &vdev_root_ops);
413                 spa->spa_root_vdev = vd;
414                 spa->spa_load_guid = spa_generate_guid(NULL);
415         }
416
417         if (guid == 0 && ops != &vdev_hole_ops) {
418                 if (spa->spa_root_vdev == vd) {
419                         /*
420                          * The root vdev's guid will also be the pool guid,
421                          * which must be unique among all pools.
422                          */
423                         guid = spa_generate_guid(NULL);
424                 } else {
425                         /*
426                          * Any other vdev's guid must be unique within the pool.
427                          */
428                         guid = spa_generate_guid(spa);
429                 }
430                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
431         }
432
433         vd->vdev_spa = spa;
434         vd->vdev_id = id;
435         vd->vdev_guid = guid;
436         vd->vdev_guid_sum = guid;
437         vd->vdev_ops = ops;
438         vd->vdev_state = VDEV_STATE_CLOSED;
439         vd->vdev_ishole = (ops == &vdev_hole_ops);
440
441         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
442         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
443         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
444         mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
445         for (int t = 0; t < DTL_TYPES; t++) {
446                 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
447                     &vd->vdev_dtl_lock);
448         }
449         txg_list_create(&vd->vdev_ms_list,
450             offsetof(struct metaslab, ms_txg_node));
451         txg_list_create(&vd->vdev_dtl_list,
452             offsetof(struct vdev, vdev_dtl_node));
453         vd->vdev_stat.vs_timestamp = gethrtime();
454         vdev_queue_init(vd);
455         vdev_cache_init(vd);
456
457         return (vd);
458 }
459
460 /*
461  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
462  * creating a new vdev or loading an existing one - the behavior is slightly
463  * different for each case.
464  */
465 int
466 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
467     int alloctype)
468 {
469         vdev_ops_t *ops;
470         char *type;
471         uint64_t guid = 0, islog, nparity;
472         vdev_t *vd;
473
474         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
475
476         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
477                 return (SET_ERROR(EINVAL));
478
479         if ((ops = vdev_getops(type)) == NULL)
480                 return (SET_ERROR(EINVAL));
481
482         /*
483          * If this is a load, get the vdev guid from the nvlist.
484          * Otherwise, vdev_alloc_common() will generate one for us.
485          */
486         if (alloctype == VDEV_ALLOC_LOAD) {
487                 uint64_t label_id;
488
489                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
490                     label_id != id)
491                         return (SET_ERROR(EINVAL));
492
493                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
494                         return (SET_ERROR(EINVAL));
495         } else if (alloctype == VDEV_ALLOC_SPARE) {
496                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
497                         return (SET_ERROR(EINVAL));
498         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
499                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
500                         return (SET_ERROR(EINVAL));
501         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
502                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
503                         return (SET_ERROR(EINVAL));
504         }
505
506         /*
507          * The first allocated vdev must be of type 'root'.
508          */
509         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
510                 return (SET_ERROR(EINVAL));
511
512         /*
513          * Determine whether we're a log vdev.
514          */
515         islog = 0;
516         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
517         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
518                 return (SET_ERROR(ENOTSUP));
519
520         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
521                 return (SET_ERROR(ENOTSUP));
522
523         /*
524          * Set the nparity property for RAID-Z vdevs.
525          */
526         nparity = -1ULL;
527         if (ops == &vdev_raidz_ops) {
528                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
529                     &nparity) == 0) {
530                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
531                                 return (SET_ERROR(EINVAL));
532                         /*
533                          * Previous versions could only support 1 or 2 parity
534                          * device.
535                          */
536                         if (nparity > 1 &&
537                             spa_version(spa) < SPA_VERSION_RAIDZ2)
538                                 return (SET_ERROR(ENOTSUP));
539                         if (nparity > 2 &&
540                             spa_version(spa) < SPA_VERSION_RAIDZ3)
541                                 return (SET_ERROR(ENOTSUP));
542                 } else {
543                         /*
544                          * We require the parity to be specified for SPAs that
545                          * support multiple parity levels.
546                          */
547                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
548                                 return (SET_ERROR(EINVAL));
549                         /*
550                          * Otherwise, we default to 1 parity device for RAID-Z.
551                          */
552                         nparity = 1;
553                 }
554         } else {
555                 nparity = 0;
556         }
557         ASSERT(nparity != -1ULL);
558
559         vd = vdev_alloc_common(spa, id, guid, ops);
560
561         vd->vdev_islog = islog;
562         vd->vdev_nparity = nparity;
563
564         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
565                 vd->vdev_path = spa_strdup(vd->vdev_path);
566         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
567                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
568         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
569             &vd->vdev_physpath) == 0)
570                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
571         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
572                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
573
574         /*
575          * Set the whole_disk property.  If it's not specified, leave the value
576          * as -1.
577          */
578         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
579             &vd->vdev_wholedisk) != 0)
580                 vd->vdev_wholedisk = -1ULL;
581
582         /*
583          * Look for the 'not present' flag.  This will only be set if the device
584          * was not present at the time of import.
585          */
586         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
587             &vd->vdev_not_present);
588
589         /*
590          * Get the alignment requirement.
591          */
592         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
593
594         /*
595          * Retrieve the vdev creation time.
596          */
597         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
598             &vd->vdev_crtxg);
599
600         /*
601          * If we're a top-level vdev, try to load the allocation parameters.
602          */
603         if (parent && !parent->vdev_parent &&
604             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
605                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
606                     &vd->vdev_ms_array);
607                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
608                     &vd->vdev_ms_shift);
609                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
610                     &vd->vdev_asize);
611                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
612                     &vd->vdev_removing);
613         }
614
615         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
616                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
617                     alloctype == VDEV_ALLOC_ADD ||
618                     alloctype == VDEV_ALLOC_SPLIT ||
619                     alloctype == VDEV_ALLOC_ROOTPOOL);
620                 vd->vdev_mg = metaslab_group_create(islog ?
621                     spa_log_class(spa) : spa_normal_class(spa), vd);
622         }
623
624         /*
625          * If we're a leaf vdev, try to load the DTL object and other state.
626          */
627         if (vd->vdev_ops->vdev_op_leaf &&
628             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
629             alloctype == VDEV_ALLOC_ROOTPOOL)) {
630                 if (alloctype == VDEV_ALLOC_LOAD) {
631                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
632                             &vd->vdev_dtl_object);
633                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
634                             &vd->vdev_unspare);
635                 }
636
637                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
638                         uint64_t spare = 0;
639
640                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
641                             &spare) == 0 && spare)
642                                 spa_spare_add(vd);
643                 }
644
645                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
646                     &vd->vdev_offline);
647
648                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
649                     &vd->vdev_resilver_txg);
650
651                 /*
652                  * When importing a pool, we want to ignore the persistent fault
653                  * state, as the diagnosis made on another system may not be
654                  * valid in the current context.  Local vdevs will
655                  * remain in the faulted state.
656                  */
657                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
658                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
659                             &vd->vdev_faulted);
660                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
661                             &vd->vdev_degraded);
662                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
663                             &vd->vdev_removed);
664
665                         if (vd->vdev_faulted || vd->vdev_degraded) {
666                                 char *aux;
667
668                                 vd->vdev_label_aux =
669                                     VDEV_AUX_ERR_EXCEEDED;
670                                 if (nvlist_lookup_string(nv,
671                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
672                                     strcmp(aux, "external") == 0)
673                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
674                         }
675                 }
676         }
677
678         /*
679          * Add ourselves to the parent's list of children.
680          */
681         vdev_add_child(parent, vd);
682
683         *vdp = vd;
684
685         return (0);
686 }
687
688 void
689 vdev_free(vdev_t *vd)
690 {
691         spa_t *spa = vd->vdev_spa;
692
693         /*
694          * vdev_free() implies closing the vdev first.  This is simpler than
695          * trying to ensure complicated semantics for all callers.
696          */
697         vdev_close(vd);
698
699         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
700         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
701
702         /*
703          * Free all children.
704          */
705         for (int c = 0; c < vd->vdev_children; c++)
706                 vdev_free(vd->vdev_child[c]);
707
708         ASSERT(vd->vdev_child == NULL);
709         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
710
711         /*
712          * Discard allocation state.
713          */
714         if (vd->vdev_mg != NULL) {
715                 vdev_metaslab_fini(vd);
716                 metaslab_group_destroy(vd->vdev_mg);
717         }
718
719         ASSERT0(vd->vdev_stat.vs_space);
720         ASSERT0(vd->vdev_stat.vs_dspace);
721         ASSERT0(vd->vdev_stat.vs_alloc);
722
723         /*
724          * Remove this vdev from its parent's child list.
725          */
726         vdev_remove_child(vd->vdev_parent, vd);
727
728         ASSERT(vd->vdev_parent == NULL);
729
730         /*
731          * Clean up vdev structure.
732          */
733         vdev_queue_fini(vd);
734         vdev_cache_fini(vd);
735
736         if (vd->vdev_path)
737                 spa_strfree(vd->vdev_path);
738         if (vd->vdev_devid)
739                 spa_strfree(vd->vdev_devid);
740         if (vd->vdev_physpath)
741                 spa_strfree(vd->vdev_physpath);
742         if (vd->vdev_fru)
743                 spa_strfree(vd->vdev_fru);
744
745         if (vd->vdev_isspare)
746                 spa_spare_remove(vd);
747         if (vd->vdev_isl2cache)
748                 spa_l2cache_remove(vd);
749
750         txg_list_destroy(&vd->vdev_ms_list);
751         txg_list_destroy(&vd->vdev_dtl_list);
752
753         mutex_enter(&vd->vdev_dtl_lock);
754         space_map_close(vd->vdev_dtl_sm);
755         for (int t = 0; t < DTL_TYPES; t++) {
756                 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
757                 range_tree_destroy(vd->vdev_dtl[t]);
758         }
759         mutex_exit(&vd->vdev_dtl_lock);
760
761         mutex_destroy(&vd->vdev_queue_lock);
762         mutex_destroy(&vd->vdev_dtl_lock);
763         mutex_destroy(&vd->vdev_stat_lock);
764         mutex_destroy(&vd->vdev_probe_lock);
765
766         if (vd == spa->spa_root_vdev)
767                 spa->spa_root_vdev = NULL;
768
769         kmem_free(vd, sizeof (vdev_t));
770 }
771
772 /*
773  * Transfer top-level vdev state from svd to tvd.
774  */
775 static void
776 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
777 {
778         spa_t *spa = svd->vdev_spa;
779         metaslab_t *msp;
780         vdev_t *vd;
781         int t;
782
783         ASSERT(tvd == tvd->vdev_top);
784
785         tvd->vdev_ms_array = svd->vdev_ms_array;
786         tvd->vdev_ms_shift = svd->vdev_ms_shift;
787         tvd->vdev_ms_count = svd->vdev_ms_count;
788
789         svd->vdev_ms_array = 0;
790         svd->vdev_ms_shift = 0;
791         svd->vdev_ms_count = 0;
792
793         if (tvd->vdev_mg)
794                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
795         tvd->vdev_mg = svd->vdev_mg;
796         tvd->vdev_ms = svd->vdev_ms;
797
798         svd->vdev_mg = NULL;
799         svd->vdev_ms = NULL;
800
801         if (tvd->vdev_mg != NULL)
802                 tvd->vdev_mg->mg_vd = tvd;
803
804         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
805         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
806         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
807
808         svd->vdev_stat.vs_alloc = 0;
809         svd->vdev_stat.vs_space = 0;
810         svd->vdev_stat.vs_dspace = 0;
811
812         for (t = 0; t < TXG_SIZE; t++) {
813                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
814                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
815                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
816                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
817                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
818                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
819         }
820
821         if (list_link_active(&svd->vdev_config_dirty_node)) {
822                 vdev_config_clean(svd);
823                 vdev_config_dirty(tvd);
824         }
825
826         if (list_link_active(&svd->vdev_state_dirty_node)) {
827                 vdev_state_clean(svd);
828                 vdev_state_dirty(tvd);
829         }
830
831         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
832         svd->vdev_deflate_ratio = 0;
833
834         tvd->vdev_islog = svd->vdev_islog;
835         svd->vdev_islog = 0;
836 }
837
838 static void
839 vdev_top_update(vdev_t *tvd, vdev_t *vd)
840 {
841         if (vd == NULL)
842                 return;
843
844         vd->vdev_top = tvd;
845
846         for (int c = 0; c < vd->vdev_children; c++)
847                 vdev_top_update(tvd, vd->vdev_child[c]);
848 }
849
850 /*
851  * Add a mirror/replacing vdev above an existing vdev.
852  */
853 vdev_t *
854 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
855 {
856         spa_t *spa = cvd->vdev_spa;
857         vdev_t *pvd = cvd->vdev_parent;
858         vdev_t *mvd;
859
860         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
861
862         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
863
864         mvd->vdev_asize = cvd->vdev_asize;
865         mvd->vdev_min_asize = cvd->vdev_min_asize;
866         mvd->vdev_max_asize = cvd->vdev_max_asize;
867         mvd->vdev_ashift = cvd->vdev_ashift;
868         mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
869         mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
870         mvd->vdev_state = cvd->vdev_state;
871         mvd->vdev_crtxg = cvd->vdev_crtxg;
872
873         vdev_remove_child(pvd, cvd);
874         vdev_add_child(pvd, mvd);
875         cvd->vdev_id = mvd->vdev_children;
876         vdev_add_child(mvd, cvd);
877         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
878
879         if (mvd == mvd->vdev_top)
880                 vdev_top_transfer(cvd, mvd);
881
882         return (mvd);
883 }
884
885 /*
886  * Remove a 1-way mirror/replacing vdev from the tree.
887  */
888 void
889 vdev_remove_parent(vdev_t *cvd)
890 {
891         vdev_t *mvd = cvd->vdev_parent;
892         vdev_t *pvd = mvd->vdev_parent;
893
894         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
895
896         ASSERT(mvd->vdev_children == 1);
897         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
898             mvd->vdev_ops == &vdev_replacing_ops ||
899             mvd->vdev_ops == &vdev_spare_ops);
900         cvd->vdev_ashift = mvd->vdev_ashift;
901         cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
902         cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
903
904         vdev_remove_child(mvd, cvd);
905         vdev_remove_child(pvd, mvd);
906
907         /*
908          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
909          * Otherwise, we could have detached an offline device, and when we
910          * go to import the pool we'll think we have two top-level vdevs,
911          * instead of a different version of the same top-level vdev.
912          */
913         if (mvd->vdev_top == mvd) {
914                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
915                 cvd->vdev_orig_guid = cvd->vdev_guid;
916                 cvd->vdev_guid += guid_delta;
917                 cvd->vdev_guid_sum += guid_delta;
918         }
919         cvd->vdev_id = mvd->vdev_id;
920         vdev_add_child(pvd, cvd);
921         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
922
923         if (cvd == cvd->vdev_top)
924                 vdev_top_transfer(mvd, cvd);
925
926         ASSERT(mvd->vdev_children == 0);
927         vdev_free(mvd);
928 }
929
930 int
931 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
932 {
933         spa_t *spa = vd->vdev_spa;
934         objset_t *mos = spa->spa_meta_objset;
935         uint64_t m;
936         uint64_t oldc = vd->vdev_ms_count;
937         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
938         metaslab_t **mspp;
939         int error;
940
941         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
942
943         /*
944          * This vdev is not being allocated from yet or is a hole.
945          */
946         if (vd->vdev_ms_shift == 0)
947                 return (0);
948
949         ASSERT(!vd->vdev_ishole);
950
951         /*
952          * Compute the raidz-deflation ratio.  Note, we hard-code
953          * in 128k (1 << 17) because it is the "typical" blocksize.
954          * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
955          * otherwise it would inconsistently account for existing bp's.
956          */
957         vd->vdev_deflate_ratio = (1 << 17) /
958             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
959
960         ASSERT(oldc <= newc);
961
962         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
963
964         if (oldc != 0) {
965                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
966                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
967         }
968
969         vd->vdev_ms = mspp;
970         vd->vdev_ms_count = newc;
971
972         for (m = oldc; m < newc; m++) {
973                 uint64_t object = 0;
974
975                 if (txg == 0) {
976                         error = dmu_read(mos, vd->vdev_ms_array,
977                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
978                             DMU_READ_PREFETCH);
979                         if (error)
980                                 return (error);
981                 }
982
983                 error = metaslab_init(vd->vdev_mg, m, object, txg,
984                     &(vd->vdev_ms[m]));
985                 if (error)
986                         return (error);
987         }
988
989         if (txg == 0)
990                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
991
992         /*
993          * If the vdev is being removed we don't activate
994          * the metaslabs since we want to ensure that no new
995          * allocations are performed on this device.
996          */
997         if (oldc == 0 && !vd->vdev_removing)
998                 metaslab_group_activate(vd->vdev_mg);
999
1000         if (txg == 0)
1001                 spa_config_exit(spa, SCL_ALLOC, FTAG);
1002
1003         return (0);
1004 }
1005
1006 void
1007 vdev_metaslab_fini(vdev_t *vd)
1008 {
1009         uint64_t m;
1010         uint64_t count = vd->vdev_ms_count;
1011
1012         if (vd->vdev_ms != NULL) {
1013                 metaslab_group_passivate(vd->vdev_mg);
1014                 for (m = 0; m < count; m++) {
1015                         metaslab_t *msp = vd->vdev_ms[m];
1016
1017                         if (msp != NULL)
1018                                 metaslab_fini(msp);
1019                 }
1020                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1021                 vd->vdev_ms = NULL;
1022         }
1023 }
1024
1025 typedef struct vdev_probe_stats {
1026         boolean_t       vps_readable;
1027         boolean_t       vps_writeable;
1028         int             vps_flags;
1029 } vdev_probe_stats_t;
1030
1031 static void
1032 vdev_probe_done(zio_t *zio)
1033 {
1034         spa_t *spa = zio->io_spa;
1035         vdev_t *vd = zio->io_vd;
1036         vdev_probe_stats_t *vps = zio->io_private;
1037
1038         ASSERT(vd->vdev_probe_zio != NULL);
1039
1040         if (zio->io_type == ZIO_TYPE_READ) {
1041                 if (zio->io_error == 0)
1042                         vps->vps_readable = 1;
1043                 if (zio->io_error == 0 && spa_writeable(spa)) {
1044                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1045                             zio->io_offset, zio->io_size, zio->io_data,
1046                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1047                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1048                 } else {
1049                         zio_buf_free(zio->io_data, zio->io_size);
1050                 }
1051         } else if (zio->io_type == ZIO_TYPE_WRITE) {
1052                 if (zio->io_error == 0)
1053                         vps->vps_writeable = 1;
1054                 zio_buf_free(zio->io_data, zio->io_size);
1055         } else if (zio->io_type == ZIO_TYPE_NULL) {
1056                 zio_t *pio;
1057
1058                 vd->vdev_cant_read |= !vps->vps_readable;
1059                 vd->vdev_cant_write |= !vps->vps_writeable;
1060
1061                 if (vdev_readable(vd) &&
1062                     (vdev_writeable(vd) || !spa_writeable(spa))) {
1063                         zio->io_error = 0;
1064                 } else {
1065                         ASSERT(zio->io_error != 0);
1066                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1067                             spa, vd, NULL, 0, 0);
1068                         zio->io_error = SET_ERROR(ENXIO);
1069                 }
1070
1071                 mutex_enter(&vd->vdev_probe_lock);
1072                 ASSERT(vd->vdev_probe_zio == zio);
1073                 vd->vdev_probe_zio = NULL;
1074                 mutex_exit(&vd->vdev_probe_lock);
1075
1076                 zio_link_t *zl = NULL;
1077                 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1078                         if (!vdev_accessible(vd, pio))
1079                                 pio->io_error = SET_ERROR(ENXIO);
1080
1081                 kmem_free(vps, sizeof (*vps));
1082         }
1083 }
1084
1085 /*
1086  * Determine whether this device is accessible.
1087  *
1088  * Read and write to several known locations: the pad regions of each
1089  * vdev label but the first, which we leave alone in case it contains
1090  * a VTOC.
1091  */
1092 zio_t *
1093 vdev_probe(vdev_t *vd, zio_t *zio)
1094 {
1095         spa_t *spa = vd->vdev_spa;
1096         vdev_probe_stats_t *vps = NULL;
1097         zio_t *pio;
1098
1099         ASSERT(vd->vdev_ops->vdev_op_leaf);
1100
1101         /*
1102          * Don't probe the probe.
1103          */
1104         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1105                 return (NULL);
1106
1107         /*
1108          * To prevent 'probe storms' when a device fails, we create
1109          * just one probe i/o at a time.  All zios that want to probe
1110          * this vdev will become parents of the probe io.
1111          */
1112         mutex_enter(&vd->vdev_probe_lock);
1113
1114         if ((pio = vd->vdev_probe_zio) == NULL) {
1115                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1116
1117                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1118                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1119                     ZIO_FLAG_TRYHARD;
1120
1121                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1122                         /*
1123                          * vdev_cant_read and vdev_cant_write can only
1124                          * transition from TRUE to FALSE when we have the
1125                          * SCL_ZIO lock as writer; otherwise they can only
1126                          * transition from FALSE to TRUE.  This ensures that
1127                          * any zio looking at these values can assume that
1128                          * failures persist for the life of the I/O.  That's
1129                          * important because when a device has intermittent
1130                          * connectivity problems, we want to ensure that
1131                          * they're ascribed to the device (ENXIO) and not
1132                          * the zio (EIO).
1133                          *
1134                          * Since we hold SCL_ZIO as writer here, clear both
1135                          * values so the probe can reevaluate from first
1136                          * principles.
1137                          */
1138                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1139                         vd->vdev_cant_read = B_FALSE;
1140                         vd->vdev_cant_write = B_FALSE;
1141                 }
1142
1143                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1144                     vdev_probe_done, vps,
1145                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1146
1147                 /*
1148                  * We can't change the vdev state in this context, so we
1149                  * kick off an async task to do it on our behalf.
1150                  */
1151                 if (zio != NULL) {
1152                         vd->vdev_probe_wanted = B_TRUE;
1153                         spa_async_request(spa, SPA_ASYNC_PROBE);
1154                 }
1155         }
1156
1157         if (zio != NULL)
1158                 zio_add_child(zio, pio);
1159
1160         mutex_exit(&vd->vdev_probe_lock);
1161
1162         if (vps == NULL) {
1163                 ASSERT(zio != NULL);
1164                 return (NULL);
1165         }
1166
1167         for (int l = 1; l < VDEV_LABELS; l++) {
1168                 zio_nowait(zio_read_phys(pio, vd,
1169                     vdev_label_offset(vd->vdev_psize, l,
1170                     offsetof(vdev_label_t, vl_pad2)),
1171                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1172                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1173                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1174         }
1175
1176         if (zio == NULL)
1177                 return (pio);
1178
1179         zio_nowait(pio);
1180         return (NULL);
1181 }
1182
1183 static void
1184 vdev_open_child(void *arg)
1185 {
1186         vdev_t *vd = arg;
1187
1188         vd->vdev_open_thread = curthread;
1189         vd->vdev_open_error = vdev_open(vd);
1190         vd->vdev_open_thread = NULL;
1191 }
1192
1193 boolean_t
1194 vdev_uses_zvols(vdev_t *vd)
1195 {
1196         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1197             strlen(ZVOL_DIR)) == 0)
1198                 return (B_TRUE);
1199         for (int c = 0; c < vd->vdev_children; c++)
1200                 if (vdev_uses_zvols(vd->vdev_child[c]))
1201                         return (B_TRUE);
1202         return (B_FALSE);
1203 }
1204
1205 void
1206 vdev_open_children(vdev_t *vd)
1207 {
1208         taskq_t *tq;
1209         int children = vd->vdev_children;
1210
1211         /*
1212          * in order to handle pools on top of zvols, do the opens
1213          * in a single thread so that the same thread holds the
1214          * spa_namespace_lock
1215          */
1216         if (B_TRUE || vdev_uses_zvols(vd)) {
1217                 for (int c = 0; c < children; c++)
1218                         vd->vdev_child[c]->vdev_open_error =
1219                             vdev_open(vd->vdev_child[c]);
1220                 return;
1221         }
1222         tq = taskq_create("vdev_open", children, minclsyspri,
1223             children, children, TASKQ_PREPOPULATE);
1224
1225         for (int c = 0; c < children; c++)
1226                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1227                     TQ_SLEEP) != 0);
1228
1229         taskq_destroy(tq);
1230 }
1231
1232 /*
1233  * Prepare a virtual device for access.
1234  */
1235 int
1236 vdev_open(vdev_t *vd)
1237 {
1238         spa_t *spa = vd->vdev_spa;
1239         int error;
1240         uint64_t osize = 0;
1241         uint64_t max_osize = 0;
1242         uint64_t asize, max_asize, psize;
1243         uint64_t logical_ashift = 0;
1244         uint64_t physical_ashift = 0;
1245
1246         ASSERT(vd->vdev_open_thread == curthread ||
1247             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1248         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1249             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1250             vd->vdev_state == VDEV_STATE_OFFLINE);
1251
1252         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1253         vd->vdev_cant_read = B_FALSE;
1254         vd->vdev_cant_write = B_FALSE;
1255         vd->vdev_notrim = B_FALSE;
1256         vd->vdev_min_asize = vdev_get_min_asize(vd);
1257
1258         /*
1259          * If this vdev is not removed, check its fault status.  If it's
1260          * faulted, bail out of the open.
1261          */
1262         if (!vd->vdev_removed && vd->vdev_faulted) {
1263                 ASSERT(vd->vdev_children == 0);
1264                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1265                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1266                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1267                     vd->vdev_label_aux);
1268                 return (SET_ERROR(ENXIO));
1269         } else if (vd->vdev_offline) {
1270                 ASSERT(vd->vdev_children == 0);
1271                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1272                 return (SET_ERROR(ENXIO));
1273         }
1274
1275         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1276             &logical_ashift, &physical_ashift);
1277
1278         /*
1279          * Reset the vdev_reopening flag so that we actually close
1280          * the vdev on error.
1281          */
1282         vd->vdev_reopening = B_FALSE;
1283         if (zio_injection_enabled && error == 0)
1284                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1285
1286         if (error) {
1287                 if (vd->vdev_removed &&
1288                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1289                         vd->vdev_removed = B_FALSE;
1290
1291                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1292                     vd->vdev_stat.vs_aux);
1293                 return (error);
1294         }
1295
1296         vd->vdev_removed = B_FALSE;
1297
1298         /*
1299          * Recheck the faulted flag now that we have confirmed that
1300          * the vdev is accessible.  If we're faulted, bail.
1301          */
1302         if (vd->vdev_faulted) {
1303                 ASSERT(vd->vdev_children == 0);
1304                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1305                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1306                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1307                     vd->vdev_label_aux);
1308                 return (SET_ERROR(ENXIO));
1309         }
1310
1311         if (vd->vdev_degraded) {
1312                 ASSERT(vd->vdev_children == 0);
1313                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1314                     VDEV_AUX_ERR_EXCEEDED);
1315         } else {
1316                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1317         }
1318
1319         /*
1320          * For hole or missing vdevs we just return success.
1321          */
1322         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1323                 return (0);
1324
1325         if (zfs_trim_enabled && !vd->vdev_notrim && vd->vdev_ops->vdev_op_leaf)
1326                 trim_map_create(vd);
1327
1328         for (int c = 0; c < vd->vdev_children; c++) {
1329                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1330                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1331                             VDEV_AUX_NONE);
1332                         break;
1333                 }
1334         }
1335
1336         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1337         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1338
1339         if (vd->vdev_children == 0) {
1340                 if (osize < SPA_MINDEVSIZE) {
1341                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1342                             VDEV_AUX_TOO_SMALL);
1343                         return (SET_ERROR(EOVERFLOW));
1344                 }
1345                 psize = osize;
1346                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1347                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1348                     VDEV_LABEL_END_SIZE);
1349         } else {
1350                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1351                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1352                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1353                             VDEV_AUX_TOO_SMALL);
1354                         return (SET_ERROR(EOVERFLOW));
1355                 }
1356                 psize = 0;
1357                 asize = osize;
1358                 max_asize = max_osize;
1359         }
1360
1361         vd->vdev_psize = psize;
1362
1363         /*
1364          * Make sure the allocatable size hasn't shrunk.
1365          */
1366         if (asize < vd->vdev_min_asize) {
1367                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1368                     VDEV_AUX_BAD_LABEL);
1369                 return (SET_ERROR(EINVAL));
1370         }
1371
1372         vd->vdev_physical_ashift =
1373             MAX(physical_ashift, vd->vdev_physical_ashift);
1374         vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
1375         vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
1376
1377         if (vd->vdev_logical_ashift > SPA_MAXASHIFT) {
1378                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1379                     VDEV_AUX_ASHIFT_TOO_BIG);
1380                 return (EINVAL);
1381         }
1382
1383         if (vd->vdev_asize == 0) {
1384                 /*
1385                  * This is the first-ever open, so use the computed values.
1386                  * For testing purposes, a higher ashift can be requested.
1387                  */
1388                 vd->vdev_asize = asize;
1389                 vd->vdev_max_asize = max_asize;
1390         } else {
1391                 /*
1392                  * Make sure the alignment requirement hasn't increased.
1393                  */
1394                 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1395                     vd->vdev_ops->vdev_op_leaf) {
1396                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1397                             VDEV_AUX_BAD_LABEL);
1398                         return (EINVAL);
1399                 }
1400                 vd->vdev_max_asize = max_asize;
1401         }
1402
1403         /*
1404          * If all children are healthy and the asize has increased,
1405          * then we've experienced dynamic LUN growth.  If automatic
1406          * expansion is enabled then use the additional space.
1407          */
1408         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1409             (vd->vdev_expanding || spa->spa_autoexpand))
1410                 vd->vdev_asize = asize;
1411
1412         vdev_set_min_asize(vd);
1413
1414         /*
1415          * Ensure we can issue some IO before declaring the
1416          * vdev open for business.
1417          */
1418         if (vd->vdev_ops->vdev_op_leaf &&
1419             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1420                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1421                     VDEV_AUX_ERR_EXCEEDED);
1422                 return (error);
1423         }
1424
1425         /*
1426          * Track the min and max ashift values for normal data devices.
1427          */
1428         if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1429             !vd->vdev_islog && vd->vdev_aux == NULL) {
1430                 if (vd->vdev_ashift > spa->spa_max_ashift)
1431                         spa->spa_max_ashift = vd->vdev_ashift;
1432                 if (vd->vdev_ashift < spa->spa_min_ashift)
1433                         spa->spa_min_ashift = vd->vdev_ashift;
1434         }
1435
1436         /*
1437          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1438          * resilver.  But don't do this if we are doing a reopen for a scrub,
1439          * since this would just restart the scrub we are already doing.
1440          */
1441         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1442             vdev_resilver_needed(vd, NULL, NULL))
1443                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1444
1445         return (0);
1446 }
1447
1448 /*
1449  * Called once the vdevs are all opened, this routine validates the label
1450  * contents.  This needs to be done before vdev_load() so that we don't
1451  * inadvertently do repair I/Os to the wrong device.
1452  *
1453  * If 'strict' is false ignore the spa guid check. This is necessary because
1454  * if the machine crashed during a re-guid the new guid might have been written
1455  * to all of the vdev labels, but not the cached config. The strict check
1456  * will be performed when the pool is opened again using the mos config.
1457  *
1458  * This function will only return failure if one of the vdevs indicates that it
1459  * has since been destroyed or exported.  This is only possible if
1460  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1461  * will be updated but the function will return 0.
1462  */
1463 int
1464 vdev_validate(vdev_t *vd, boolean_t strict)
1465 {
1466         spa_t *spa = vd->vdev_spa;
1467         nvlist_t *label;
1468         uint64_t guid = 0, top_guid;
1469         uint64_t state;
1470
1471         for (int c = 0; c < vd->vdev_children; c++)
1472                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1473                         return (SET_ERROR(EBADF));
1474
1475         /*
1476          * If the device has already failed, or was marked offline, don't do
1477          * any further validation.  Otherwise, label I/O will fail and we will
1478          * overwrite the previous state.
1479          */
1480         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1481                 uint64_t aux_guid = 0;
1482                 nvlist_t *nvl;
1483                 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1484                     spa_last_synced_txg(spa) : -1ULL;
1485
1486                 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1487                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1488                             VDEV_AUX_BAD_LABEL);
1489                         return (0);
1490                 }
1491
1492                 /*
1493                  * Determine if this vdev has been split off into another
1494                  * pool.  If so, then refuse to open it.
1495                  */
1496                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1497                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1498                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1499                             VDEV_AUX_SPLIT_POOL);
1500                         nvlist_free(label);
1501                         return (0);
1502                 }
1503
1504                 if (strict && (nvlist_lookup_uint64(label,
1505                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1506                     guid != spa_guid(spa))) {
1507                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1508                             VDEV_AUX_CORRUPT_DATA);
1509                         nvlist_free(label);
1510                         return (0);
1511                 }
1512
1513                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1514                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1515                     &aux_guid) != 0)
1516                         aux_guid = 0;
1517
1518                 /*
1519                  * If this vdev just became a top-level vdev because its
1520                  * sibling was detached, it will have adopted the parent's
1521                  * vdev guid -- but the label may or may not be on disk yet.
1522                  * Fortunately, either version of the label will have the
1523                  * same top guid, so if we're a top-level vdev, we can
1524                  * safely compare to that instead.
1525                  *
1526                  * If we split this vdev off instead, then we also check the
1527                  * original pool's guid.  We don't want to consider the vdev
1528                  * corrupt if it is partway through a split operation.
1529                  */
1530                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1531                     &guid) != 0 ||
1532                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1533                     &top_guid) != 0 ||
1534                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1535                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1536                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1537                             VDEV_AUX_CORRUPT_DATA);
1538                         nvlist_free(label);
1539                         return (0);
1540                 }
1541
1542                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1543                     &state) != 0) {
1544                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1545                             VDEV_AUX_CORRUPT_DATA);
1546                         nvlist_free(label);
1547                         return (0);
1548                 }
1549
1550                 nvlist_free(label);
1551
1552                 /*
1553                  * If this is a verbatim import, no need to check the
1554                  * state of the pool.
1555                  */
1556                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1557                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1558                     state != POOL_STATE_ACTIVE)
1559                         return (SET_ERROR(EBADF));
1560
1561                 /*
1562                  * If we were able to open and validate a vdev that was
1563                  * previously marked permanently unavailable, clear that state
1564                  * now.
1565                  */
1566                 if (vd->vdev_not_present)
1567                         vd->vdev_not_present = 0;
1568         }
1569
1570         return (0);
1571 }
1572
1573 /*
1574  * Close a virtual device.
1575  */
1576 void
1577 vdev_close(vdev_t *vd)
1578 {
1579         spa_t *spa = vd->vdev_spa;
1580         vdev_t *pvd = vd->vdev_parent;
1581
1582         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1583
1584         /*
1585          * If our parent is reopening, then we are as well, unless we are
1586          * going offline.
1587          */
1588         if (pvd != NULL && pvd->vdev_reopening)
1589                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1590
1591         vd->vdev_ops->vdev_op_close(vd);
1592
1593         vdev_cache_purge(vd);
1594
1595         if (vd->vdev_ops->vdev_op_leaf)
1596                 trim_map_destroy(vd);
1597
1598         /*
1599          * We record the previous state before we close it, so that if we are
1600          * doing a reopen(), we don't generate FMA ereports if we notice that
1601          * it's still faulted.
1602          */
1603         vd->vdev_prevstate = vd->vdev_state;
1604
1605         if (vd->vdev_offline)
1606                 vd->vdev_state = VDEV_STATE_OFFLINE;
1607         else
1608                 vd->vdev_state = VDEV_STATE_CLOSED;
1609         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1610 }
1611
1612 void
1613 vdev_hold(vdev_t *vd)
1614 {
1615         spa_t *spa = vd->vdev_spa;
1616
1617         ASSERT(spa_is_root(spa));
1618         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1619                 return;
1620
1621         for (int c = 0; c < vd->vdev_children; c++)
1622                 vdev_hold(vd->vdev_child[c]);
1623
1624         if (vd->vdev_ops->vdev_op_leaf)
1625                 vd->vdev_ops->vdev_op_hold(vd);
1626 }
1627
1628 void
1629 vdev_rele(vdev_t *vd)
1630 {
1631         spa_t *spa = vd->vdev_spa;
1632
1633         ASSERT(spa_is_root(spa));
1634         for (int c = 0; c < vd->vdev_children; c++)
1635                 vdev_rele(vd->vdev_child[c]);
1636
1637         if (vd->vdev_ops->vdev_op_leaf)
1638                 vd->vdev_ops->vdev_op_rele(vd);
1639 }
1640
1641 /*
1642  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1643  * reopen leaf vdevs which had previously been opened as they might deadlock
1644  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1645  * If the leaf has never been opened then open it, as usual.
1646  */
1647 void
1648 vdev_reopen(vdev_t *vd)
1649 {
1650         spa_t *spa = vd->vdev_spa;
1651
1652         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1653
1654         /* set the reopening flag unless we're taking the vdev offline */
1655         vd->vdev_reopening = !vd->vdev_offline;
1656         vdev_close(vd);
1657         (void) vdev_open(vd);
1658
1659         /*
1660          * Call vdev_validate() here to make sure we have the same device.
1661          * Otherwise, a device with an invalid label could be successfully
1662          * opened in response to vdev_reopen().
1663          */
1664         if (vd->vdev_aux) {
1665                 (void) vdev_validate_aux(vd);
1666                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1667                     vd->vdev_aux == &spa->spa_l2cache &&
1668                     !l2arc_vdev_present(vd))
1669                         l2arc_add_vdev(spa, vd);
1670         } else {
1671                 (void) vdev_validate(vd, B_TRUE);
1672         }
1673
1674         /*
1675          * Reassess parent vdev's health.
1676          */
1677         vdev_propagate_state(vd);
1678 }
1679
1680 int
1681 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1682 {
1683         int error;
1684
1685         /*
1686          * Normally, partial opens (e.g. of a mirror) are allowed.
1687          * For a create, however, we want to fail the request if
1688          * there are any components we can't open.
1689          */
1690         error = vdev_open(vd);
1691
1692         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1693                 vdev_close(vd);
1694                 return (error ? error : ENXIO);
1695         }
1696
1697         /*
1698          * Recursively load DTLs and initialize all labels.
1699          */
1700         if ((error = vdev_dtl_load(vd)) != 0 ||
1701             (error = vdev_label_init(vd, txg, isreplacing ?
1702             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1703                 vdev_close(vd);
1704                 return (error);
1705         }
1706
1707         return (0);
1708 }
1709
1710 void
1711 vdev_metaslab_set_size(vdev_t *vd)
1712 {
1713         /*
1714          * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1715          */
1716         vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1717         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1718 }
1719
1720 /*
1721  * Maximize performance by inflating the configured ashift for top level
1722  * vdevs to be as close to the physical ashift as possible while maintaining
1723  * administrator defined limits and ensuring it doesn't go below the
1724  * logical ashift.
1725  */
1726 void
1727 vdev_ashift_optimize(vdev_t *vd)
1728 {
1729         if (vd == vd->vdev_top) {
1730                 if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1731                         vd->vdev_ashift = MIN(
1732                             MAX(zfs_max_auto_ashift, vd->vdev_ashift),
1733                             MAX(zfs_min_auto_ashift, vd->vdev_physical_ashift));
1734                 } else {
1735                         /*
1736                          * Unusual case where logical ashift > physical ashift
1737                          * so we can't cap the calculated ashift based on max
1738                          * ashift as that would cause failures.
1739                          * We still check if we need to increase it to match
1740                          * the min ashift.
1741                          */
1742                         vd->vdev_ashift = MAX(zfs_min_auto_ashift,
1743                             vd->vdev_ashift);
1744                 }
1745         }
1746 }
1747
1748 void
1749 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1750 {
1751         ASSERT(vd == vd->vdev_top);
1752         ASSERT(!vd->vdev_ishole);
1753         ASSERT(ISP2(flags));
1754         ASSERT(spa_writeable(vd->vdev_spa));
1755
1756         if (flags & VDD_METASLAB)
1757                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1758
1759         if (flags & VDD_DTL)
1760                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1761
1762         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1763 }
1764
1765 void
1766 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1767 {
1768         for (int c = 0; c < vd->vdev_children; c++)
1769                 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1770
1771         if (vd->vdev_ops->vdev_op_leaf)
1772                 vdev_dirty(vd->vdev_top, flags, vd, txg);
1773 }
1774
1775 /*
1776  * DTLs.
1777  *
1778  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1779  * the vdev has less than perfect replication.  There are four kinds of DTL:
1780  *
1781  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1782  *
1783  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1784  *
1785  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1786  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1787  *      txgs that was scrubbed.
1788  *
1789  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1790  *      persistent errors or just some device being offline.
1791  *      Unlike the other three, the DTL_OUTAGE map is not generally
1792  *      maintained; it's only computed when needed, typically to
1793  *      determine whether a device can be detached.
1794  *
1795  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1796  * either has the data or it doesn't.
1797  *
1798  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1799  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1800  * if any child is less than fully replicated, then so is its parent.
1801  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1802  * comprising only those txgs which appear in 'maxfaults' or more children;
1803  * those are the txgs we don't have enough replication to read.  For example,
1804  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1805  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1806  * two child DTL_MISSING maps.
1807  *
1808  * It should be clear from the above that to compute the DTLs and outage maps
1809  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1810  * Therefore, that is all we keep on disk.  When loading the pool, or after
1811  * a configuration change, we generate all other DTLs from first principles.
1812  */
1813 void
1814 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1815 {
1816         range_tree_t *rt = vd->vdev_dtl[t];
1817
1818         ASSERT(t < DTL_TYPES);
1819         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1820         ASSERT(spa_writeable(vd->vdev_spa));
1821
1822         mutex_enter(rt->rt_lock);
1823         if (!range_tree_contains(rt, txg, size))
1824                 range_tree_add(rt, txg, size);
1825         mutex_exit(rt->rt_lock);
1826 }
1827
1828 boolean_t
1829 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1830 {
1831         range_tree_t *rt = vd->vdev_dtl[t];
1832         boolean_t dirty = B_FALSE;
1833
1834         ASSERT(t < DTL_TYPES);
1835         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1836
1837         mutex_enter(rt->rt_lock);
1838         if (range_tree_space(rt) != 0)
1839                 dirty = range_tree_contains(rt, txg, size);
1840         mutex_exit(rt->rt_lock);
1841
1842         return (dirty);
1843 }
1844
1845 boolean_t
1846 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1847 {
1848         range_tree_t *rt = vd->vdev_dtl[t];
1849         boolean_t empty;
1850
1851         mutex_enter(rt->rt_lock);
1852         empty = (range_tree_space(rt) == 0);
1853         mutex_exit(rt->rt_lock);
1854
1855         return (empty);
1856 }
1857
1858 /*
1859  * Returns the lowest txg in the DTL range.
1860  */
1861 static uint64_t
1862 vdev_dtl_min(vdev_t *vd)
1863 {
1864         range_seg_t *rs;
1865
1866         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1867         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1868         ASSERT0(vd->vdev_children);
1869
1870         rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1871         return (rs->rs_start - 1);
1872 }
1873
1874 /*
1875  * Returns the highest txg in the DTL.
1876  */
1877 static uint64_t
1878 vdev_dtl_max(vdev_t *vd)
1879 {
1880         range_seg_t *rs;
1881
1882         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1883         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1884         ASSERT0(vd->vdev_children);
1885
1886         rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1887         return (rs->rs_end);
1888 }
1889
1890 /*
1891  * Determine if a resilvering vdev should remove any DTL entries from
1892  * its range. If the vdev was resilvering for the entire duration of the
1893  * scan then it should excise that range from its DTLs. Otherwise, this
1894  * vdev is considered partially resilvered and should leave its DTL
1895  * entries intact. The comment in vdev_dtl_reassess() describes how we
1896  * excise the DTLs.
1897  */
1898 static boolean_t
1899 vdev_dtl_should_excise(vdev_t *vd)
1900 {
1901         spa_t *spa = vd->vdev_spa;
1902         dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1903
1904         ASSERT0(scn->scn_phys.scn_errors);
1905         ASSERT0(vd->vdev_children);
1906
1907         if (vd->vdev_resilver_txg == 0 ||
1908             range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1909                 return (B_TRUE);
1910
1911         /*
1912          * When a resilver is initiated the scan will assign the scn_max_txg
1913          * value to the highest txg value that exists in all DTLs. If this
1914          * device's max DTL is not part of this scan (i.e. it is not in
1915          * the range (scn_min_txg, scn_max_txg] then it is not eligible
1916          * for excision.
1917          */
1918         if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1919                 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1920                 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1921                 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1922                 return (B_TRUE);
1923         }
1924         return (B_FALSE);
1925 }
1926
1927 /*
1928  * Reassess DTLs after a config change or scrub completion.
1929  */
1930 void
1931 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1932 {
1933         spa_t *spa = vd->vdev_spa;
1934         avl_tree_t reftree;
1935         int minref;
1936
1937         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1938
1939         for (int c = 0; c < vd->vdev_children; c++)
1940                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1941                     scrub_txg, scrub_done);
1942
1943         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1944                 return;
1945
1946         if (vd->vdev_ops->vdev_op_leaf) {
1947                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1948
1949                 mutex_enter(&vd->vdev_dtl_lock);
1950
1951                 /*
1952                  * If we've completed a scan cleanly then determine
1953                  * if this vdev should remove any DTLs. We only want to
1954                  * excise regions on vdevs that were available during
1955                  * the entire duration of this scan.
1956                  */
1957                 if (scrub_txg != 0 &&
1958                     (spa->spa_scrub_started ||
1959                     (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1960                     vdev_dtl_should_excise(vd)) {
1961                         /*
1962                          * We completed a scrub up to scrub_txg.  If we
1963                          * did it without rebooting, then the scrub dtl
1964                          * will be valid, so excise the old region and
1965                          * fold in the scrub dtl.  Otherwise, leave the
1966                          * dtl as-is if there was an error.
1967                          *
1968                          * There's little trick here: to excise the beginning
1969                          * of the DTL_MISSING map, we put it into a reference
1970                          * tree and then add a segment with refcnt -1 that
1971                          * covers the range [0, scrub_txg).  This means
1972                          * that each txg in that range has refcnt -1 or 0.
1973                          * We then add DTL_SCRUB with a refcnt of 2, so that
1974                          * entries in the range [0, scrub_txg) will have a
1975                          * positive refcnt -- either 1 or 2.  We then convert
1976                          * the reference tree into the new DTL_MISSING map.
1977                          */
1978                         space_reftree_create(&reftree);
1979                         space_reftree_add_map(&reftree,
1980                             vd->vdev_dtl[DTL_MISSING], 1);
1981                         space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1982                         space_reftree_add_map(&reftree,
1983                             vd->vdev_dtl[DTL_SCRUB], 2);
1984                         space_reftree_generate_map(&reftree,
1985                             vd->vdev_dtl[DTL_MISSING], 1);
1986                         space_reftree_destroy(&reftree);
1987                 }
1988                 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1989                 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1990                     range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1991                 if (scrub_done)
1992                         range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1993                 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1994                 if (!vdev_readable(vd))
1995                         range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1996                 else
1997                         range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1998                             range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1999
2000                 /*
2001                  * If the vdev was resilvering and no longer has any
2002                  * DTLs then reset its resilvering flag and dirty
2003                  * the top level so that we persist the change.
2004                  */
2005                 if (vd->vdev_resilver_txg != 0 &&
2006                     range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
2007                     range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
2008                         vd->vdev_resilver_txg = 0;
2009                         vdev_config_dirty(vd->vdev_top);
2010                 }
2011
2012                 mutex_exit(&vd->vdev_dtl_lock);
2013
2014                 if (txg != 0)
2015                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2016                 return;
2017         }
2018
2019         mutex_enter(&vd->vdev_dtl_lock);
2020         for (int t = 0; t < DTL_TYPES; t++) {
2021                 /* account for child's outage in parent's missing map */
2022                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2023                 if (t == DTL_SCRUB)
2024                         continue;                       /* leaf vdevs only */
2025                 if (t == DTL_PARTIAL)
2026                         minref = 1;                     /* i.e. non-zero */
2027                 else if (vd->vdev_nparity != 0)
2028                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
2029                 else
2030                         minref = vd->vdev_children;     /* any kind of mirror */
2031                 space_reftree_create(&reftree);
2032                 for (int c = 0; c < vd->vdev_children; c++) {
2033                         vdev_t *cvd = vd->vdev_child[c];
2034                         mutex_enter(&cvd->vdev_dtl_lock);
2035                         space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2036                         mutex_exit(&cvd->vdev_dtl_lock);
2037                 }
2038                 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2039                 space_reftree_destroy(&reftree);
2040         }
2041         mutex_exit(&vd->vdev_dtl_lock);
2042 }
2043
2044 int
2045 vdev_dtl_load(vdev_t *vd)
2046 {
2047         spa_t *spa = vd->vdev_spa;
2048         objset_t *mos = spa->spa_meta_objset;
2049         int error = 0;
2050
2051         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2052                 ASSERT(!vd->vdev_ishole);
2053
2054                 error = space_map_open(&vd->vdev_dtl_sm, mos,
2055                     vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
2056                 if (error)
2057                         return (error);
2058                 ASSERT(vd->vdev_dtl_sm != NULL);
2059
2060                 mutex_enter(&vd->vdev_dtl_lock);
2061
2062                 /*
2063                  * Now that we've opened the space_map we need to update
2064                  * the in-core DTL.
2065                  */
2066                 space_map_update(vd->vdev_dtl_sm);
2067
2068                 error = space_map_load(vd->vdev_dtl_sm,
2069                     vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2070                 mutex_exit(&vd->vdev_dtl_lock);
2071
2072                 return (error);
2073         }
2074
2075         for (int c = 0; c < vd->vdev_children; c++) {
2076                 error = vdev_dtl_load(vd->vdev_child[c]);
2077                 if (error != 0)
2078                         break;
2079         }
2080
2081         return (error);
2082 }
2083
2084 void
2085 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2086 {
2087         spa_t *spa = vd->vdev_spa;
2088         range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2089         objset_t *mos = spa->spa_meta_objset;
2090         range_tree_t *rtsync;
2091         kmutex_t rtlock;
2092         dmu_tx_t *tx;
2093         uint64_t object = space_map_object(vd->vdev_dtl_sm);
2094
2095         ASSERT(!vd->vdev_ishole);
2096         ASSERT(vd->vdev_ops->vdev_op_leaf);
2097
2098         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2099
2100         if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2101                 mutex_enter(&vd->vdev_dtl_lock);
2102                 space_map_free(vd->vdev_dtl_sm, tx);
2103                 space_map_close(vd->vdev_dtl_sm);
2104                 vd->vdev_dtl_sm = NULL;
2105                 mutex_exit(&vd->vdev_dtl_lock);
2106                 dmu_tx_commit(tx);
2107                 return;
2108         }
2109
2110         if (vd->vdev_dtl_sm == NULL) {
2111                 uint64_t new_object;
2112
2113                 new_object = space_map_alloc(mos, tx);
2114                 VERIFY3U(new_object, !=, 0);
2115
2116                 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2117                     0, -1ULL, 0, &vd->vdev_dtl_lock));
2118                 ASSERT(vd->vdev_dtl_sm != NULL);
2119         }
2120
2121         bzero(&rtlock, sizeof(rtlock));
2122         mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2123
2124         rtsync = range_tree_create(NULL, NULL, &rtlock);
2125
2126         mutex_enter(&rtlock);
2127
2128         mutex_enter(&vd->vdev_dtl_lock);
2129         range_tree_walk(rt, range_tree_add, rtsync);
2130         mutex_exit(&vd->vdev_dtl_lock);
2131
2132         space_map_truncate(vd->vdev_dtl_sm, tx);
2133         space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2134         range_tree_vacate(rtsync, NULL, NULL);
2135
2136         range_tree_destroy(rtsync);
2137
2138         mutex_exit(&rtlock);
2139         mutex_destroy(&rtlock);
2140
2141         /*
2142          * If the object for the space map has changed then dirty
2143          * the top level so that we update the config.
2144          */
2145         if (object != space_map_object(vd->vdev_dtl_sm)) {
2146                 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2147                     "new object %llu", txg, spa_name(spa), object,
2148                     space_map_object(vd->vdev_dtl_sm));
2149                 vdev_config_dirty(vd->vdev_top);
2150         }
2151
2152         dmu_tx_commit(tx);
2153
2154         mutex_enter(&vd->vdev_dtl_lock);
2155         space_map_update(vd->vdev_dtl_sm);
2156         mutex_exit(&vd->vdev_dtl_lock);
2157 }
2158
2159 /*
2160  * Determine whether the specified vdev can be offlined/detached/removed
2161  * without losing data.
2162  */
2163 boolean_t
2164 vdev_dtl_required(vdev_t *vd)
2165 {
2166         spa_t *spa = vd->vdev_spa;
2167         vdev_t *tvd = vd->vdev_top;
2168         uint8_t cant_read = vd->vdev_cant_read;
2169         boolean_t required;
2170
2171         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2172
2173         if (vd == spa->spa_root_vdev || vd == tvd)
2174                 return (B_TRUE);
2175
2176         /*
2177          * Temporarily mark the device as unreadable, and then determine
2178          * whether this results in any DTL outages in the top-level vdev.
2179          * If not, we can safely offline/detach/remove the device.
2180          */
2181         vd->vdev_cant_read = B_TRUE;
2182         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2183         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2184         vd->vdev_cant_read = cant_read;
2185         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2186
2187         if (!required && zio_injection_enabled)
2188                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2189
2190         return (required);
2191 }
2192
2193 /*
2194  * Determine if resilver is needed, and if so the txg range.
2195  */
2196 boolean_t
2197 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2198 {
2199         boolean_t needed = B_FALSE;
2200         uint64_t thismin = UINT64_MAX;
2201         uint64_t thismax = 0;
2202
2203         if (vd->vdev_children == 0) {
2204                 mutex_enter(&vd->vdev_dtl_lock);
2205                 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2206                     vdev_writeable(vd)) {
2207
2208                         thismin = vdev_dtl_min(vd);
2209                         thismax = vdev_dtl_max(vd);
2210                         needed = B_TRUE;
2211                 }
2212                 mutex_exit(&vd->vdev_dtl_lock);
2213         } else {
2214                 for (int c = 0; c < vd->vdev_children; c++) {
2215                         vdev_t *cvd = vd->vdev_child[c];
2216                         uint64_t cmin, cmax;
2217
2218                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2219                                 thismin = MIN(thismin, cmin);
2220                                 thismax = MAX(thismax, cmax);
2221                                 needed = B_TRUE;
2222                         }
2223                 }
2224         }
2225
2226         if (needed && minp) {
2227                 *minp = thismin;
2228                 *maxp = thismax;
2229         }
2230         return (needed);
2231 }
2232
2233 void
2234 vdev_load(vdev_t *vd)
2235 {
2236         /*
2237          * Recursively load all children.
2238          */
2239         for (int c = 0; c < vd->vdev_children; c++)
2240                 vdev_load(vd->vdev_child[c]);
2241
2242         /*
2243          * If this is a top-level vdev, initialize its metaslabs.
2244          */
2245         if (vd == vd->vdev_top && !vd->vdev_ishole &&
2246             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2247             vdev_metaslab_init(vd, 0) != 0))
2248                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2249                     VDEV_AUX_CORRUPT_DATA);
2250
2251         /*
2252          * If this is a leaf vdev, load its DTL.
2253          */
2254         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2255                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2256                     VDEV_AUX_CORRUPT_DATA);
2257 }
2258
2259 /*
2260  * The special vdev case is used for hot spares and l2cache devices.  Its
2261  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2262  * we make sure that we can open the underlying device, then try to read the
2263  * label, and make sure that the label is sane and that it hasn't been
2264  * repurposed to another pool.
2265  */
2266 int
2267 vdev_validate_aux(vdev_t *vd)
2268 {
2269         nvlist_t *label;
2270         uint64_t guid, version;
2271         uint64_t state;
2272
2273         if (!vdev_readable(vd))
2274                 return (0);
2275
2276         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2277                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2278                     VDEV_AUX_CORRUPT_DATA);
2279                 return (-1);
2280         }
2281
2282         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2283             !SPA_VERSION_IS_SUPPORTED(version) ||
2284             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2285             guid != vd->vdev_guid ||
2286             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2287                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2288                     VDEV_AUX_CORRUPT_DATA);
2289                 nvlist_free(label);
2290                 return (-1);
2291         }
2292
2293         /*
2294          * We don't actually check the pool state here.  If it's in fact in
2295          * use by another pool, we update this fact on the fly when requested.
2296          */
2297         nvlist_free(label);
2298         return (0);
2299 }
2300
2301 void
2302 vdev_remove(vdev_t *vd, uint64_t txg)
2303 {
2304         spa_t *spa = vd->vdev_spa;
2305         objset_t *mos = spa->spa_meta_objset;
2306         dmu_tx_t *tx;
2307
2308         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2309
2310         if (vd->vdev_ms != NULL) {
2311                 metaslab_group_t *mg = vd->vdev_mg;
2312
2313                 metaslab_group_histogram_verify(mg);
2314                 metaslab_class_histogram_verify(mg->mg_class);
2315
2316                 for (int m = 0; m < vd->vdev_ms_count; m++) {
2317                         metaslab_t *msp = vd->vdev_ms[m];
2318
2319                         if (msp == NULL || msp->ms_sm == NULL)
2320                                 continue;
2321
2322                         mutex_enter(&msp->ms_lock);
2323                         /*
2324                          * If the metaslab was not loaded when the vdev
2325                          * was removed then the histogram accounting may
2326                          * not be accurate. Update the histogram information
2327                          * here so that we ensure that the metaslab group
2328                          * and metaslab class are up-to-date.
2329                          */
2330                         metaslab_group_histogram_remove(mg, msp);
2331
2332                         VERIFY0(space_map_allocated(msp->ms_sm));
2333                         space_map_free(msp->ms_sm, tx);
2334                         space_map_close(msp->ms_sm);
2335                         msp->ms_sm = NULL;
2336                         mutex_exit(&msp->ms_lock);
2337                 }
2338
2339                 metaslab_group_histogram_verify(mg);
2340                 metaslab_class_histogram_verify(mg->mg_class);
2341                 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2342                         ASSERT0(mg->mg_histogram[i]);
2343
2344         }
2345
2346         if (vd->vdev_ms_array) {
2347                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2348                 vd->vdev_ms_array = 0;
2349         }
2350         dmu_tx_commit(tx);
2351 }
2352
2353 void
2354 vdev_sync_done(vdev_t *vd, uint64_t txg)
2355 {
2356         metaslab_t *msp;
2357         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2358
2359         ASSERT(!vd->vdev_ishole);
2360
2361         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2362                 metaslab_sync_done(msp, txg);
2363
2364         if (reassess)
2365                 metaslab_sync_reassess(vd->vdev_mg);
2366 }
2367
2368 void
2369 vdev_sync(vdev_t *vd, uint64_t txg)
2370 {
2371         spa_t *spa = vd->vdev_spa;
2372         vdev_t *lvd;
2373         metaslab_t *msp;
2374         dmu_tx_t *tx;
2375
2376         ASSERT(!vd->vdev_ishole);
2377
2378         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2379                 ASSERT(vd == vd->vdev_top);
2380                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2381                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2382                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2383                 ASSERT(vd->vdev_ms_array != 0);
2384                 vdev_config_dirty(vd);
2385                 dmu_tx_commit(tx);
2386         }
2387
2388         /*
2389          * Remove the metadata associated with this vdev once it's empty.
2390          */
2391         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2392                 vdev_remove(vd, txg);
2393
2394         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2395                 metaslab_sync(msp, txg);
2396                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2397         }
2398
2399         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2400                 vdev_dtl_sync(lvd, txg);
2401
2402         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2403 }
2404
2405 uint64_t
2406 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2407 {
2408         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2409 }
2410
2411 /*
2412  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2413  * not be opened, and no I/O is attempted.
2414  */
2415 int
2416 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2417 {
2418         vdev_t *vd, *tvd;
2419
2420         spa_vdev_state_enter(spa, SCL_NONE);
2421
2422         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2423                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2424
2425         if (!vd->vdev_ops->vdev_op_leaf)
2426                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2427
2428         tvd = vd->vdev_top;
2429
2430         /*
2431          * We don't directly use the aux state here, but if we do a
2432          * vdev_reopen(), we need this value to be present to remember why we
2433          * were faulted.
2434          */
2435         vd->vdev_label_aux = aux;
2436
2437         /*
2438          * Faulted state takes precedence over degraded.
2439          */
2440         vd->vdev_delayed_close = B_FALSE;
2441         vd->vdev_faulted = 1ULL;
2442         vd->vdev_degraded = 0ULL;
2443         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2444
2445         /*
2446          * If this device has the only valid copy of the data, then
2447          * back off and simply mark the vdev as degraded instead.
2448          */
2449         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2450                 vd->vdev_degraded = 1ULL;
2451                 vd->vdev_faulted = 0ULL;
2452
2453                 /*
2454                  * If we reopen the device and it's not dead, only then do we
2455                  * mark it degraded.
2456                  */
2457                 vdev_reopen(tvd);
2458
2459                 if (vdev_readable(vd))
2460                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2461         }
2462
2463         return (spa_vdev_state_exit(spa, vd, 0));
2464 }
2465
2466 /*
2467  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2468  * user that something is wrong.  The vdev continues to operate as normal as far
2469  * as I/O is concerned.
2470  */
2471 int
2472 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2473 {
2474         vdev_t *vd;
2475
2476         spa_vdev_state_enter(spa, SCL_NONE);
2477
2478         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2479                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2480
2481         if (!vd->vdev_ops->vdev_op_leaf)
2482                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2483
2484         /*
2485          * If the vdev is already faulted, then don't do anything.
2486          */
2487         if (vd->vdev_faulted || vd->vdev_degraded)
2488                 return (spa_vdev_state_exit(spa, NULL, 0));
2489
2490         vd->vdev_degraded = 1ULL;
2491         if (!vdev_is_dead(vd))
2492                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2493                     aux);
2494
2495         return (spa_vdev_state_exit(spa, vd, 0));
2496 }
2497
2498 /*
2499  * Online the given vdev.
2500  *
2501  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2502  * spare device should be detached when the device finishes resilvering.
2503  * Second, the online should be treated like a 'test' online case, so no FMA
2504  * events are generated if the device fails to open.
2505  */
2506 int
2507 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2508 {
2509         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2510         boolean_t postevent = B_FALSE;
2511
2512         spa_vdev_state_enter(spa, SCL_NONE);
2513
2514         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2515                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2516
2517         if (!vd->vdev_ops->vdev_op_leaf)
2518                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2519
2520         postevent =
2521             (vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ?
2522             B_TRUE : B_FALSE;
2523
2524         tvd = vd->vdev_top;
2525         vd->vdev_offline = B_FALSE;
2526         vd->vdev_tmpoffline = B_FALSE;
2527         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2528         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2529
2530         /* XXX - L2ARC 1.0 does not support expansion */
2531         if (!vd->vdev_aux) {
2532                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2533                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2534         }
2535
2536         vdev_reopen(tvd);
2537         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2538
2539         if (!vd->vdev_aux) {
2540                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2541                         pvd->vdev_expanding = B_FALSE;
2542         }
2543
2544         if (newstate)
2545                 *newstate = vd->vdev_state;
2546         if ((flags & ZFS_ONLINE_UNSPARE) &&
2547             !vdev_is_dead(vd) && vd->vdev_parent &&
2548             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2549             vd->vdev_parent->vdev_child[0] == vd)
2550                 vd->vdev_unspare = B_TRUE;
2551
2552         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2553
2554                 /* XXX - L2ARC 1.0 does not support expansion */
2555                 if (vd->vdev_aux)
2556                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2557                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2558         }
2559
2560         if (postevent)
2561                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE);
2562
2563         return (spa_vdev_state_exit(spa, vd, 0));
2564 }
2565
2566 static int
2567 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2568 {
2569         vdev_t *vd, *tvd;
2570         int error = 0;
2571         uint64_t generation;
2572         metaslab_group_t *mg;
2573
2574 top:
2575         spa_vdev_state_enter(spa, SCL_ALLOC);
2576
2577         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2578                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2579
2580         if (!vd->vdev_ops->vdev_op_leaf)
2581                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2582
2583         tvd = vd->vdev_top;
2584         mg = tvd->vdev_mg;
2585         generation = spa->spa_config_generation + 1;
2586
2587         /*
2588          * If the device isn't already offline, try to offline it.
2589          */
2590         if (!vd->vdev_offline) {
2591                 /*
2592                  * If this device has the only valid copy of some data,
2593                  * don't allow it to be offlined. Log devices are always
2594                  * expendable.
2595                  */
2596                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2597                     vdev_dtl_required(vd))
2598                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2599
2600                 /*
2601                  * If the top-level is a slog and it has had allocations
2602                  * then proceed.  We check that the vdev's metaslab group
2603                  * is not NULL since it's possible that we may have just
2604                  * added this vdev but not yet initialized its metaslabs.
2605                  */
2606                 if (tvd->vdev_islog && mg != NULL) {
2607                         /*
2608                          * Prevent any future allocations.
2609                          */
2610                         metaslab_group_passivate(mg);
2611                         (void) spa_vdev_state_exit(spa, vd, 0);
2612
2613                         error = spa_offline_log(spa);
2614
2615                         spa_vdev_state_enter(spa, SCL_ALLOC);
2616
2617                         /*
2618                          * Check to see if the config has changed.
2619                          */
2620                         if (error || generation != spa->spa_config_generation) {
2621                                 metaslab_group_activate(mg);
2622                                 if (error)
2623                                         return (spa_vdev_state_exit(spa,
2624                                             vd, error));
2625                                 (void) spa_vdev_state_exit(spa, vd, 0);
2626                                 goto top;
2627                         }
2628                         ASSERT0(tvd->vdev_stat.vs_alloc);
2629                 }
2630
2631                 /*
2632                  * Offline this device and reopen its top-level vdev.
2633                  * If the top-level vdev is a log device then just offline
2634                  * it. Otherwise, if this action results in the top-level
2635                  * vdev becoming unusable, undo it and fail the request.
2636                  */
2637                 vd->vdev_offline = B_TRUE;
2638                 vdev_reopen(tvd);
2639
2640                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2641                     vdev_is_dead(tvd)) {
2642                         vd->vdev_offline = B_FALSE;
2643                         vdev_reopen(tvd);
2644                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2645                 }
2646
2647                 /*
2648                  * Add the device back into the metaslab rotor so that
2649                  * once we online the device it's open for business.
2650                  */
2651                 if (tvd->vdev_islog && mg != NULL)
2652                         metaslab_group_activate(mg);
2653         }
2654
2655         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2656
2657         return (spa_vdev_state_exit(spa, vd, 0));
2658 }
2659
2660 int
2661 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2662 {
2663         int error;
2664
2665         mutex_enter(&spa->spa_vdev_top_lock);
2666         error = vdev_offline_locked(spa, guid, flags);
2667         mutex_exit(&spa->spa_vdev_top_lock);
2668
2669         return (error);
2670 }
2671
2672 /*
2673  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2674  * vdev_offline(), we assume the spa config is locked.  We also clear all
2675  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2676  */
2677 void
2678 vdev_clear(spa_t *spa, vdev_t *vd)
2679 {
2680         vdev_t *rvd = spa->spa_root_vdev;
2681
2682         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2683
2684         if (vd == NULL)
2685                 vd = rvd;
2686
2687         vd->vdev_stat.vs_read_errors = 0;
2688         vd->vdev_stat.vs_write_errors = 0;
2689         vd->vdev_stat.vs_checksum_errors = 0;
2690
2691         for (int c = 0; c < vd->vdev_children; c++)
2692                 vdev_clear(spa, vd->vdev_child[c]);
2693
2694         if (vd == rvd) {
2695                 for (int c = 0; c < spa->spa_l2cache.sav_count; c++)
2696                         vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
2697
2698                 for (int c = 0; c < spa->spa_spares.sav_count; c++)
2699                         vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
2700         }
2701
2702         /*
2703          * If we're in the FAULTED state or have experienced failed I/O, then
2704          * clear the persistent state and attempt to reopen the device.  We
2705          * also mark the vdev config dirty, so that the new faulted state is
2706          * written out to disk.
2707          */
2708         if (vd->vdev_faulted || vd->vdev_degraded ||
2709             !vdev_readable(vd) || !vdev_writeable(vd)) {
2710
2711                 /*
2712                  * When reopening in reponse to a clear event, it may be due to
2713                  * a fmadm repair request.  In this case, if the device is
2714                  * still broken, we want to still post the ereport again.
2715                  */
2716                 vd->vdev_forcefault = B_TRUE;
2717
2718                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2719                 vd->vdev_cant_read = B_FALSE;
2720                 vd->vdev_cant_write = B_FALSE;
2721
2722                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2723
2724                 vd->vdev_forcefault = B_FALSE;
2725
2726                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2727                         vdev_state_dirty(vd->vdev_top);
2728
2729                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2730                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2731
2732                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2733         }
2734
2735         /*
2736          * When clearing a FMA-diagnosed fault, we always want to
2737          * unspare the device, as we assume that the original spare was
2738          * done in response to the FMA fault.
2739          */
2740         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2741             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2742             vd->vdev_parent->vdev_child[0] == vd)
2743                 vd->vdev_unspare = B_TRUE;
2744 }
2745
2746 boolean_t
2747 vdev_is_dead(vdev_t *vd)
2748 {
2749         /*
2750          * Holes and missing devices are always considered "dead".
2751          * This simplifies the code since we don't have to check for
2752          * these types of devices in the various code paths.
2753          * Instead we rely on the fact that we skip over dead devices
2754          * before issuing I/O to them.
2755          */
2756         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2757             vd->vdev_ops == &vdev_missing_ops);
2758 }
2759
2760 boolean_t
2761 vdev_readable(vdev_t *vd)
2762 {
2763         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2764 }
2765
2766 boolean_t
2767 vdev_writeable(vdev_t *vd)
2768 {
2769         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2770 }
2771
2772 boolean_t
2773 vdev_allocatable(vdev_t *vd)
2774 {
2775         uint64_t state = vd->vdev_state;
2776
2777         /*
2778          * We currently allow allocations from vdevs which may be in the
2779          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2780          * fails to reopen then we'll catch it later when we're holding
2781          * the proper locks.  Note that we have to get the vdev state
2782          * in a local variable because although it changes atomically,
2783          * we're asking two separate questions about it.
2784          */
2785         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2786             !vd->vdev_cant_write && !vd->vdev_ishole &&
2787             vd->vdev_mg->mg_initialized);
2788 }
2789
2790 boolean_t
2791 vdev_accessible(vdev_t *vd, zio_t *zio)
2792 {
2793         ASSERT(zio->io_vd == vd);
2794
2795         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2796                 return (B_FALSE);
2797
2798         if (zio->io_type == ZIO_TYPE_READ)
2799                 return (!vd->vdev_cant_read);
2800
2801         if (zio->io_type == ZIO_TYPE_WRITE)
2802                 return (!vd->vdev_cant_write);
2803
2804         return (B_TRUE);
2805 }
2806
2807 /*
2808  * Get statistics for the given vdev.
2809  */
2810 void
2811 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2812 {
2813         spa_t *spa = vd->vdev_spa;
2814         vdev_t *rvd = spa->spa_root_vdev;
2815         vdev_t *tvd = vd->vdev_top;
2816
2817         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2818
2819         mutex_enter(&vd->vdev_stat_lock);
2820         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2821         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2822         vs->vs_state = vd->vdev_state;
2823         vs->vs_rsize = vdev_get_min_asize(vd);
2824         if (vd->vdev_ops->vdev_op_leaf)
2825                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2826         /*
2827          * Report expandable space on top-level, non-auxillary devices only.
2828          * The expandable space is reported in terms of metaslab sized units
2829          * since that determines how much space the pool can expand.
2830          */
2831         if (vd->vdev_aux == NULL && tvd != NULL && vd->vdev_max_asize != 0) {
2832                 vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize,
2833                     1ULL << tvd->vdev_ms_shift);
2834         }
2835         vs->vs_configured_ashift = vd->vdev_top != NULL
2836             ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
2837         vs->vs_logical_ashift = vd->vdev_logical_ashift;
2838         vs->vs_physical_ashift = vd->vdev_physical_ashift;
2839         if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2840                 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2841         }
2842
2843         /*
2844          * If we're getting stats on the root vdev, aggregate the I/O counts
2845          * over all top-level vdevs (i.e. the direct children of the root).
2846          */
2847         if (vd == rvd) {
2848                 for (int c = 0; c < rvd->vdev_children; c++) {
2849                         vdev_t *cvd = rvd->vdev_child[c];
2850                         vdev_stat_t *cvs = &cvd->vdev_stat;
2851
2852                         for (int t = 0; t < ZIO_TYPES; t++) {
2853                                 vs->vs_ops[t] += cvs->vs_ops[t];
2854                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2855                         }
2856                         cvs->vs_scan_removing = cvd->vdev_removing;
2857                 }
2858         }
2859         mutex_exit(&vd->vdev_stat_lock);
2860 }
2861
2862 void
2863 vdev_clear_stats(vdev_t *vd)
2864 {
2865         mutex_enter(&vd->vdev_stat_lock);
2866         vd->vdev_stat.vs_space = 0;
2867         vd->vdev_stat.vs_dspace = 0;
2868         vd->vdev_stat.vs_alloc = 0;
2869         mutex_exit(&vd->vdev_stat_lock);
2870 }
2871
2872 void
2873 vdev_scan_stat_init(vdev_t *vd)
2874 {
2875         vdev_stat_t *vs = &vd->vdev_stat;
2876
2877         for (int c = 0; c < vd->vdev_children; c++)
2878                 vdev_scan_stat_init(vd->vdev_child[c]);
2879
2880         mutex_enter(&vd->vdev_stat_lock);
2881         vs->vs_scan_processed = 0;
2882         mutex_exit(&vd->vdev_stat_lock);
2883 }
2884
2885 void
2886 vdev_stat_update(zio_t *zio, uint64_t psize)
2887 {
2888         spa_t *spa = zio->io_spa;
2889         vdev_t *rvd = spa->spa_root_vdev;
2890         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2891         vdev_t *pvd;
2892         uint64_t txg = zio->io_txg;
2893         vdev_stat_t *vs = &vd->vdev_stat;
2894         zio_type_t type = zio->io_type;
2895         int flags = zio->io_flags;
2896
2897         /*
2898          * If this i/o is a gang leader, it didn't do any actual work.
2899          */
2900         if (zio->io_gang_tree)
2901                 return;
2902
2903         if (zio->io_error == 0) {
2904                 /*
2905                  * If this is a root i/o, don't count it -- we've already
2906                  * counted the top-level vdevs, and vdev_get_stats() will
2907                  * aggregate them when asked.  This reduces contention on
2908                  * the root vdev_stat_lock and implicitly handles blocks
2909                  * that compress away to holes, for which there is no i/o.
2910                  * (Holes never create vdev children, so all the counters
2911                  * remain zero, which is what we want.)
2912                  *
2913                  * Note: this only applies to successful i/o (io_error == 0)
2914                  * because unlike i/o counts, errors are not additive.
2915                  * When reading a ditto block, for example, failure of
2916                  * one top-level vdev does not imply a root-level error.
2917                  */
2918                 if (vd == rvd)
2919                         return;
2920
2921                 ASSERT(vd == zio->io_vd);
2922
2923                 if (flags & ZIO_FLAG_IO_BYPASS)
2924                         return;
2925
2926                 mutex_enter(&vd->vdev_stat_lock);
2927
2928                 if (flags & ZIO_FLAG_IO_REPAIR) {
2929                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2930                                 dsl_scan_phys_t *scn_phys =
2931                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2932                                 uint64_t *processed = &scn_phys->scn_processed;
2933
2934                                 /* XXX cleanup? */
2935                                 if (vd->vdev_ops->vdev_op_leaf)
2936                                         atomic_add_64(processed, psize);
2937                                 vs->vs_scan_processed += psize;
2938                         }
2939
2940                         if (flags & ZIO_FLAG_SELF_HEAL)
2941                                 vs->vs_self_healed += psize;
2942                 }
2943
2944                 vs->vs_ops[type]++;
2945                 vs->vs_bytes[type] += psize;
2946
2947                 mutex_exit(&vd->vdev_stat_lock);
2948                 return;
2949         }
2950
2951         if (flags & ZIO_FLAG_SPECULATIVE)
2952                 return;
2953
2954         /*
2955          * If this is an I/O error that is going to be retried, then ignore the
2956          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2957          * hard errors, when in reality they can happen for any number of
2958          * innocuous reasons (bus resets, MPxIO link failure, etc).
2959          */
2960         if (zio->io_error == EIO &&
2961             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2962                 return;
2963
2964         /*
2965          * Intent logs writes won't propagate their error to the root
2966          * I/O so don't mark these types of failures as pool-level
2967          * errors.
2968          */
2969         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2970                 return;
2971
2972         mutex_enter(&vd->vdev_stat_lock);
2973         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2974                 if (zio->io_error == ECKSUM)
2975                         vs->vs_checksum_errors++;
2976                 else
2977                         vs->vs_read_errors++;
2978         }
2979         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2980                 vs->vs_write_errors++;
2981         mutex_exit(&vd->vdev_stat_lock);
2982
2983         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2984             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2985             (flags & ZIO_FLAG_SCAN_THREAD) ||
2986             spa->spa_claiming)) {
2987                 /*
2988                  * This is either a normal write (not a repair), or it's
2989                  * a repair induced by the scrub thread, or it's a repair
2990                  * made by zil_claim() during spa_load() in the first txg.
2991                  * In the normal case, we commit the DTL change in the same
2992                  * txg as the block was born.  In the scrub-induced repair
2993                  * case, we know that scrubs run in first-pass syncing context,
2994                  * so we commit the DTL change in spa_syncing_txg(spa).
2995                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2996                  *
2997                  * We currently do not make DTL entries for failed spontaneous
2998                  * self-healing writes triggered by normal (non-scrubbing)
2999                  * reads, because we have no transactional context in which to
3000                  * do so -- and it's not clear that it'd be desirable anyway.
3001                  */
3002                 if (vd->vdev_ops->vdev_op_leaf) {
3003                         uint64_t commit_txg = txg;
3004                         if (flags & ZIO_FLAG_SCAN_THREAD) {
3005                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3006                                 ASSERT(spa_sync_pass(spa) == 1);
3007                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3008                                 commit_txg = spa_syncing_txg(spa);
3009                         } else if (spa->spa_claiming) {
3010                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3011                                 commit_txg = spa_first_txg(spa);
3012                         }
3013                         ASSERT(commit_txg >= spa_syncing_txg(spa));
3014                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3015                                 return;
3016                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3017                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3018                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3019                 }
3020                 if (vd != rvd)
3021                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3022         }
3023 }
3024
3025 /*
3026  * Update the in-core space usage stats for this vdev, its metaslab class,
3027  * and the root vdev.
3028  */
3029 void
3030 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3031     int64_t space_delta)
3032 {
3033         int64_t dspace_delta = space_delta;
3034         spa_t *spa = vd->vdev_spa;
3035         vdev_t *rvd = spa->spa_root_vdev;
3036         metaslab_group_t *mg = vd->vdev_mg;
3037         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3038
3039         ASSERT(vd == vd->vdev_top);
3040
3041         /*
3042          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3043          * factor.  We must calculate this here and not at the root vdev
3044          * because the root vdev's psize-to-asize is simply the max of its
3045          * childrens', thus not accurate enough for us.
3046          */
3047         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3048         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3049         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3050             vd->vdev_deflate_ratio;
3051
3052         mutex_enter(&vd->vdev_stat_lock);
3053         vd->vdev_stat.vs_alloc += alloc_delta;
3054         vd->vdev_stat.vs_space += space_delta;
3055         vd->vdev_stat.vs_dspace += dspace_delta;
3056         mutex_exit(&vd->vdev_stat_lock);
3057
3058         if (mc == spa_normal_class(spa)) {
3059                 mutex_enter(&rvd->vdev_stat_lock);
3060                 rvd->vdev_stat.vs_alloc += alloc_delta;
3061                 rvd->vdev_stat.vs_space += space_delta;
3062                 rvd->vdev_stat.vs_dspace += dspace_delta;
3063                 mutex_exit(&rvd->vdev_stat_lock);
3064         }
3065
3066         if (mc != NULL) {
3067                 ASSERT(rvd == vd->vdev_parent);
3068                 ASSERT(vd->vdev_ms_count != 0);
3069
3070                 metaslab_class_space_update(mc,
3071                     alloc_delta, defer_delta, space_delta, dspace_delta);
3072         }
3073 }
3074
3075 /*
3076  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3077  * so that it will be written out next time the vdev configuration is synced.
3078  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3079  */
3080 void
3081 vdev_config_dirty(vdev_t *vd)
3082 {
3083         spa_t *spa = vd->vdev_spa;
3084         vdev_t *rvd = spa->spa_root_vdev;
3085         int c;
3086
3087         ASSERT(spa_writeable(spa));
3088
3089         /*
3090          * If this is an aux vdev (as with l2cache and spare devices), then we
3091          * update the vdev config manually and set the sync flag.
3092          */
3093         if (vd->vdev_aux != NULL) {
3094                 spa_aux_vdev_t *sav = vd->vdev_aux;
3095                 nvlist_t **aux;
3096                 uint_t naux;
3097
3098                 for (c = 0; c < sav->sav_count; c++) {
3099                         if (sav->sav_vdevs[c] == vd)
3100                                 break;
3101                 }
3102
3103                 if (c == sav->sav_count) {
3104                         /*
3105                          * We're being removed.  There's nothing more to do.
3106                          */
3107                         ASSERT(sav->sav_sync == B_TRUE);
3108                         return;
3109                 }
3110
3111                 sav->sav_sync = B_TRUE;
3112
3113                 if (nvlist_lookup_nvlist_array(sav->sav_config,
3114                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3115                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3116                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3117                 }
3118
3119                 ASSERT(c < naux);
3120
3121                 /*
3122                  * Setting the nvlist in the middle if the array is a little
3123                  * sketchy, but it will work.
3124                  */
3125                 nvlist_free(aux[c]);
3126                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3127
3128                 return;
3129         }
3130
3131         /*
3132          * The dirty list is protected by the SCL_CONFIG lock.  The caller
3133          * must either hold SCL_CONFIG as writer, or must be the sync thread
3134          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3135          * so this is sufficient to ensure mutual exclusion.
3136          */
3137         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3138             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3139             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3140
3141         if (vd == rvd) {
3142                 for (c = 0; c < rvd->vdev_children; c++)
3143                         vdev_config_dirty(rvd->vdev_child[c]);
3144         } else {
3145                 ASSERT(vd == vd->vdev_top);
3146
3147                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3148                     !vd->vdev_ishole)
3149                         list_insert_head(&spa->spa_config_dirty_list, vd);
3150         }
3151 }
3152
3153 void
3154 vdev_config_clean(vdev_t *vd)
3155 {
3156         spa_t *spa = vd->vdev_spa;
3157
3158         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3159             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3160             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3161
3162         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3163         list_remove(&spa->spa_config_dirty_list, vd);
3164 }
3165
3166 /*
3167  * Mark a top-level vdev's state as dirty, so that the next pass of
3168  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3169  * the state changes from larger config changes because they require
3170  * much less locking, and are often needed for administrative actions.
3171  */
3172 void
3173 vdev_state_dirty(vdev_t *vd)
3174 {
3175         spa_t *spa = vd->vdev_spa;
3176
3177         ASSERT(spa_writeable(spa));
3178         ASSERT(vd == vd->vdev_top);
3179
3180         /*
3181          * The state list is protected by the SCL_STATE lock.  The caller
3182          * must either hold SCL_STATE as writer, or must be the sync thread
3183          * (which holds SCL_STATE as reader).  There's only one sync thread,
3184          * so this is sufficient to ensure mutual exclusion.
3185          */
3186         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3187             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3188             spa_config_held(spa, SCL_STATE, RW_READER)));
3189
3190         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3191                 list_insert_head(&spa->spa_state_dirty_list, vd);
3192 }
3193
3194 void
3195 vdev_state_clean(vdev_t *vd)
3196 {
3197         spa_t *spa = vd->vdev_spa;
3198
3199         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3200             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3201             spa_config_held(spa, SCL_STATE, RW_READER)));
3202
3203         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3204         list_remove(&spa->spa_state_dirty_list, vd);
3205 }
3206
3207 /*
3208  * Propagate vdev state up from children to parent.
3209  */
3210 void
3211 vdev_propagate_state(vdev_t *vd)
3212 {
3213         spa_t *spa = vd->vdev_spa;
3214         vdev_t *rvd = spa->spa_root_vdev;
3215         int degraded = 0, faulted = 0;
3216         int corrupted = 0;
3217         vdev_t *child;
3218
3219         if (vd->vdev_children > 0) {
3220                 for (int c = 0; c < vd->vdev_children; c++) {
3221                         child = vd->vdev_child[c];
3222
3223                         /*
3224                          * Don't factor holes into the decision.
3225                          */
3226                         if (child->vdev_ishole)
3227                                 continue;
3228
3229                         if (!vdev_readable(child) ||
3230                             (!vdev_writeable(child) && spa_writeable(spa))) {
3231                                 /*
3232                                  * Root special: if there is a top-level log
3233                                  * device, treat the root vdev as if it were
3234                                  * degraded.
3235                                  */
3236                                 if (child->vdev_islog && vd == rvd)
3237                                         degraded++;
3238                                 else
3239                                         faulted++;
3240                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3241                                 degraded++;
3242                         }
3243
3244                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3245                                 corrupted++;
3246                 }
3247
3248                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3249
3250                 /*
3251                  * Root special: if there is a top-level vdev that cannot be
3252                  * opened due to corrupted metadata, then propagate the root
3253                  * vdev's aux state as 'corrupt' rather than 'insufficient
3254                  * replicas'.
3255                  */
3256                 if (corrupted && vd == rvd &&
3257                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3258                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3259                             VDEV_AUX_CORRUPT_DATA);
3260         }
3261
3262         if (vd->vdev_parent)
3263                 vdev_propagate_state(vd->vdev_parent);
3264 }
3265
3266 /*
3267  * Set a vdev's state.  If this is during an open, we don't update the parent
3268  * state, because we're in the process of opening children depth-first.
3269  * Otherwise, we propagate the change to the parent.
3270  *
3271  * If this routine places a device in a faulted state, an appropriate ereport is
3272  * generated.
3273  */
3274 void
3275 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3276 {
3277         uint64_t save_state;
3278         spa_t *spa = vd->vdev_spa;
3279
3280         if (state == vd->vdev_state) {
3281                 vd->vdev_stat.vs_aux = aux;
3282                 return;
3283         }
3284
3285         save_state = vd->vdev_state;
3286
3287         vd->vdev_state = state;
3288         vd->vdev_stat.vs_aux = aux;
3289
3290         /*
3291          * If we are setting the vdev state to anything but an open state, then
3292          * always close the underlying device unless the device has requested
3293          * a delayed close (i.e. we're about to remove or fault the device).
3294          * Otherwise, we keep accessible but invalid devices open forever.
3295          * We don't call vdev_close() itself, because that implies some extra
3296          * checks (offline, etc) that we don't want here.  This is limited to
3297          * leaf devices, because otherwise closing the device will affect other
3298          * children.
3299          */
3300         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3301             vd->vdev_ops->vdev_op_leaf)
3302                 vd->vdev_ops->vdev_op_close(vd);
3303
3304         /*
3305          * If we have brought this vdev back into service, we need
3306          * to notify fmd so that it can gracefully repair any outstanding
3307          * cases due to a missing device.  We do this in all cases, even those
3308          * that probably don't correlate to a repaired fault.  This is sure to
3309          * catch all cases, and we let the zfs-retire agent sort it out.  If
3310          * this is a transient state it's OK, as the retire agent will
3311          * double-check the state of the vdev before repairing it.
3312          */
3313         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3314             vd->vdev_prevstate != state)
3315                 zfs_post_state_change(spa, vd);
3316
3317         if (vd->vdev_removed &&
3318             state == VDEV_STATE_CANT_OPEN &&
3319             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3320                 /*
3321                  * If the previous state is set to VDEV_STATE_REMOVED, then this
3322                  * device was previously marked removed and someone attempted to
3323                  * reopen it.  If this failed due to a nonexistent device, then
3324                  * keep the device in the REMOVED state.  We also let this be if
3325                  * it is one of our special test online cases, which is only
3326                  * attempting to online the device and shouldn't generate an FMA
3327                  * fault.
3328                  */
3329                 vd->vdev_state = VDEV_STATE_REMOVED;
3330                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3331         } else if (state == VDEV_STATE_REMOVED) {
3332                 vd->vdev_removed = B_TRUE;
3333         } else if (state == VDEV_STATE_CANT_OPEN) {
3334                 /*
3335                  * If we fail to open a vdev during an import or recovery, we
3336                  * mark it as "not available", which signifies that it was
3337                  * never there to begin with.  Failure to open such a device
3338                  * is not considered an error.
3339                  */
3340                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3341                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3342                     vd->vdev_ops->vdev_op_leaf)
3343                         vd->vdev_not_present = 1;
3344
3345                 /*
3346                  * Post the appropriate ereport.  If the 'prevstate' field is
3347                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
3348                  * that this is part of a vdev_reopen().  In this case, we don't
3349                  * want to post the ereport if the device was already in the
3350                  * CANT_OPEN state beforehand.
3351                  *
3352                  * If the 'checkremove' flag is set, then this is an attempt to
3353                  * online the device in response to an insertion event.  If we
3354                  * hit this case, then we have detected an insertion event for a
3355                  * faulted or offline device that wasn't in the removed state.
3356                  * In this scenario, we don't post an ereport because we are
3357                  * about to replace the device, or attempt an online with
3358                  * vdev_forcefault, which will generate the fault for us.
3359                  */
3360                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3361                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3362                     vd != spa->spa_root_vdev) {
3363                         const char *class;
3364
3365                         switch (aux) {
3366                         case VDEV_AUX_OPEN_FAILED:
3367                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3368                                 break;
3369                         case VDEV_AUX_CORRUPT_DATA:
3370                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3371                                 break;
3372                         case VDEV_AUX_NO_REPLICAS:
3373                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3374                                 break;
3375                         case VDEV_AUX_BAD_GUID_SUM:
3376                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3377                                 break;
3378                         case VDEV_AUX_TOO_SMALL:
3379                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3380                                 break;
3381                         case VDEV_AUX_BAD_LABEL:
3382                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3383                                 break;
3384                         default:
3385                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3386                         }
3387
3388                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3389                 }
3390
3391                 /* Erase any notion of persistent removed state */
3392                 vd->vdev_removed = B_FALSE;
3393         } else {
3394                 vd->vdev_removed = B_FALSE;
3395         }
3396
3397         if (!isopen && vd->vdev_parent)
3398                 vdev_propagate_state(vd->vdev_parent);
3399 }
3400
3401 /*
3402  * Check the vdev configuration to ensure that it's capable of supporting
3403  * a root pool.
3404  *
3405  * On Solaris, we do not support RAID-Z or partial configuration.  In
3406  * addition, only a single top-level vdev is allowed and none of the
3407  * leaves can be wholedisks.
3408  *
3409  * For FreeBSD, we can boot from any configuration. There is a
3410  * limitation that the boot filesystem must be either uncompressed or
3411  * compresses with lzjb compression but I'm not sure how to enforce
3412  * that here.
3413  */
3414 boolean_t
3415 vdev_is_bootable(vdev_t *vd)
3416 {
3417 #ifdef illumos
3418         if (!vd->vdev_ops->vdev_op_leaf) {
3419                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3420
3421                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3422                     vd->vdev_children > 1) {
3423                         return (B_FALSE);
3424                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3425                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3426                         return (B_FALSE);
3427                 }
3428         }
3429
3430         for (int c = 0; c < vd->vdev_children; c++) {
3431                 if (!vdev_is_bootable(vd->vdev_child[c]))
3432                         return (B_FALSE);
3433         }
3434 #endif  /* illumos */
3435         return (B_TRUE);
3436 }
3437
3438 /*
3439  * Load the state from the original vdev tree (ovd) which
3440  * we've retrieved from the MOS config object. If the original
3441  * vdev was offline or faulted then we transfer that state to the
3442  * device in the current vdev tree (nvd).
3443  */
3444 void
3445 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3446 {
3447         spa_t *spa = nvd->vdev_spa;
3448
3449         ASSERT(nvd->vdev_top->vdev_islog);
3450         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3451         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3452
3453         for (int c = 0; c < nvd->vdev_children; c++)
3454                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3455
3456         if (nvd->vdev_ops->vdev_op_leaf) {
3457                 /*
3458                  * Restore the persistent vdev state
3459                  */
3460                 nvd->vdev_offline = ovd->vdev_offline;
3461                 nvd->vdev_faulted = ovd->vdev_faulted;
3462                 nvd->vdev_degraded = ovd->vdev_degraded;
3463                 nvd->vdev_removed = ovd->vdev_removed;
3464         }
3465 }
3466
3467 /*
3468  * Determine if a log device has valid content.  If the vdev was
3469  * removed or faulted in the MOS config then we know that
3470  * the content on the log device has already been written to the pool.
3471  */
3472 boolean_t
3473 vdev_log_state_valid(vdev_t *vd)
3474 {
3475         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3476             !vd->vdev_removed)
3477                 return (B_TRUE);
3478
3479         for (int c = 0; c < vd->vdev_children; c++)
3480                 if (vdev_log_state_valid(vd->vdev_child[c]))
3481                         return (B_TRUE);
3482
3483         return (B_FALSE);
3484 }
3485
3486 /*
3487  * Expand a vdev if possible.
3488  */
3489 void
3490 vdev_expand(vdev_t *vd, uint64_t txg)
3491 {
3492         ASSERT(vd->vdev_top == vd);
3493         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3494
3495         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3496                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3497                 vdev_config_dirty(vd);
3498         }
3499 }
3500
3501 /*
3502  * Split a vdev.
3503  */
3504 void
3505 vdev_split(vdev_t *vd)
3506 {
3507         vdev_t *cvd, *pvd = vd->vdev_parent;
3508
3509         vdev_remove_child(pvd, vd);
3510         vdev_compact_children(pvd);
3511
3512         cvd = pvd->vdev_child[0];
3513         if (pvd->vdev_children == 1) {
3514                 vdev_remove_parent(cvd);
3515                 cvd->vdev_splitting = B_TRUE;
3516         }
3517         vdev_propagate_state(cvd);
3518 }
3519
3520 void
3521 vdev_deadman(vdev_t *vd)
3522 {
3523         for (int c = 0; c < vd->vdev_children; c++) {
3524                 vdev_t *cvd = vd->vdev_child[c];
3525
3526                 vdev_deadman(cvd);
3527         }
3528
3529         if (vd->vdev_ops->vdev_op_leaf) {
3530                 vdev_queue_t *vq = &vd->vdev_queue;
3531
3532                 mutex_enter(&vq->vq_lock);
3533                 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3534                         spa_t *spa = vd->vdev_spa;
3535                         zio_t *fio;
3536                         uint64_t delta;
3537
3538                         /*
3539                          * Look at the head of all the pending queues,
3540                          * if any I/O has been outstanding for longer than
3541                          * the spa_deadman_synctime we panic the system.
3542                          */
3543                         fio = avl_first(&vq->vq_active_tree);
3544                         delta = gethrtime() - fio->io_timestamp;
3545                         if (delta > spa_deadman_synctime(spa)) {
3546                                 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3547                                     "delta %lluns, last io %lluns",
3548                                     fio->io_timestamp, delta,
3549                                     vq->vq_io_complete_ts);
3550                                 fm_panic("I/O to pool '%s' appears to be "
3551                                     "hung on vdev guid %llu at '%s'.",
3552                                     spa_name(spa),
3553                                     (long long unsigned int) vd->vdev_guid,
3554                                     vd->vdev_path);
3555                         }
3556                 }
3557                 mutex_exit(&vq->vq_lock);
3558         }
3559 }