]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c
MFC r274337,r274673,274681,r275515:
[FreeBSD/stable/10.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
26  * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27  */
28
29 #include <sys/zfs_context.h>
30 #include <sys/fm/fs/zfs.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/uberblock_impl.h>
37 #include <sys/metaslab.h>
38 #include <sys/metaslab_impl.h>
39 #include <sys/space_map.h>
40 #include <sys/space_reftree.h>
41 #include <sys/zio.h>
42 #include <sys/zap.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/arc.h>
45 #include <sys/zil.h>
46 #include <sys/dsl_scan.h>
47 #include <sys/trim_map.h>
48
49 SYSCTL_DECL(_vfs_zfs);
50 SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
51
52 /*
53  * Virtual device management.
54  */
55
56 /*
57  * The limit for ZFS to automatically increase a top-level vdev's ashift
58  * from logical ashift to physical ashift.
59  *
60  * Example: one or more 512B emulation child vdevs
61  *          child->vdev_ashift = 9 (512 bytes)
62  *          child->vdev_physical_ashift = 12 (4096 bytes)
63  *          zfs_max_auto_ashift = 11 (2048 bytes)
64  *          zfs_min_auto_ashift = 9 (512 bytes)
65  *
66  * On pool creation or the addition of a new top-level vdev, ZFS will
67  * increase the ashift of the top-level vdev to 2048 as limited by
68  * zfs_max_auto_ashift.
69  *
70  * Example: one or more 512B emulation child vdevs
71  *          child->vdev_ashift = 9 (512 bytes)
72  *          child->vdev_physical_ashift = 12 (4096 bytes)
73  *          zfs_max_auto_ashift = 13 (8192 bytes)
74  *          zfs_min_auto_ashift = 9 (512 bytes)
75  *
76  * On pool creation or the addition of a new top-level vdev, ZFS will
77  * increase the ashift of the top-level vdev to 4096 to match the
78  * max vdev_physical_ashift.
79  *
80  * Example: one or more 512B emulation child vdevs
81  *          child->vdev_ashift = 9 (512 bytes)
82  *          child->vdev_physical_ashift = 9 (512 bytes)
83  *          zfs_max_auto_ashift = 13 (8192 bytes)
84  *          zfs_min_auto_ashift = 12 (4096 bytes)
85  *
86  * On pool creation or the addition of a new top-level vdev, ZFS will
87  * increase the ashift of the top-level vdev to 4096 to match the
88  * zfs_min_auto_ashift.
89  */
90 static uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT;
91 static uint64_t zfs_min_auto_ashift = SPA_MINASHIFT;
92
93 static int
94 sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)
95 {
96         uint64_t val;
97         int err;
98
99         val = zfs_max_auto_ashift;
100         err = sysctl_handle_64(oidp, &val, 0, req);
101         if (err != 0 || req->newptr == NULL)
102                 return (err);
103
104         if (val > SPA_MAXASHIFT || val < zfs_min_auto_ashift)
105                 return (EINVAL);
106
107         zfs_max_auto_ashift = val;
108
109         return (0);
110 }
111 SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift,
112     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
113     sysctl_vfs_zfs_max_auto_ashift, "QU",
114     "Max ashift used when optimising for logical -> physical sectors size on "
115     "new top-level vdevs.");
116
117 static int
118 sysctl_vfs_zfs_min_auto_ashift(SYSCTL_HANDLER_ARGS)
119 {
120         uint64_t val;
121         int err;
122
123         val = zfs_min_auto_ashift;
124         err = sysctl_handle_64(oidp, &val, 0, req);
125         if (err != 0 || req->newptr == NULL)
126                 return (err);
127
128         if (val < SPA_MINASHIFT || val > zfs_max_auto_ashift)
129                 return (EINVAL);
130
131         zfs_min_auto_ashift = val;
132
133         return (0);
134 }
135 SYSCTL_PROC(_vfs_zfs, OID_AUTO, min_auto_ashift,
136     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
137     sysctl_vfs_zfs_min_auto_ashift, "QU",
138     "Min ashift used when creating new top-level vdevs.");
139
140 static vdev_ops_t *vdev_ops_table[] = {
141         &vdev_root_ops,
142         &vdev_raidz_ops,
143         &vdev_mirror_ops,
144         &vdev_replacing_ops,
145         &vdev_spare_ops,
146 #ifdef _KERNEL
147         &vdev_geom_ops,
148 #else
149         &vdev_disk_ops,
150 #endif
151         &vdev_file_ops,
152         &vdev_missing_ops,
153         &vdev_hole_ops,
154         NULL
155 };
156
157
158 /*
159  * When a vdev is added, it will be divided into approximately (but no
160  * more than) this number of metaslabs.
161  */
162 int metaslabs_per_vdev = 200;
163 SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, metaslabs_per_vdev, CTLFLAG_RDTUN,
164     &metaslabs_per_vdev, 0,
165     "When a vdev is added, how many metaslabs the vdev should be divided into");
166
167 /*
168  * Given a vdev type, return the appropriate ops vector.
169  */
170 static vdev_ops_t *
171 vdev_getops(const char *type)
172 {
173         vdev_ops_t *ops, **opspp;
174
175         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
176                 if (strcmp(ops->vdev_op_type, type) == 0)
177                         break;
178
179         return (ops);
180 }
181
182 /*
183  * Default asize function: return the MAX of psize with the asize of
184  * all children.  This is what's used by anything other than RAID-Z.
185  */
186 uint64_t
187 vdev_default_asize(vdev_t *vd, uint64_t psize)
188 {
189         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
190         uint64_t csize;
191
192         for (int c = 0; c < vd->vdev_children; c++) {
193                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
194                 asize = MAX(asize, csize);
195         }
196
197         return (asize);
198 }
199
200 /*
201  * Get the minimum allocatable size. We define the allocatable size as
202  * the vdev's asize rounded to the nearest metaslab. This allows us to
203  * replace or attach devices which don't have the same physical size but
204  * can still satisfy the same number of allocations.
205  */
206 uint64_t
207 vdev_get_min_asize(vdev_t *vd)
208 {
209         vdev_t *pvd = vd->vdev_parent;
210
211         /*
212          * If our parent is NULL (inactive spare or cache) or is the root,
213          * just return our own asize.
214          */
215         if (pvd == NULL)
216                 return (vd->vdev_asize);
217
218         /*
219          * The top-level vdev just returns the allocatable size rounded
220          * to the nearest metaslab.
221          */
222         if (vd == vd->vdev_top)
223                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
224
225         /*
226          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
227          * so each child must provide at least 1/Nth of its asize.
228          */
229         if (pvd->vdev_ops == &vdev_raidz_ops)
230                 return (pvd->vdev_min_asize / pvd->vdev_children);
231
232         return (pvd->vdev_min_asize);
233 }
234
235 void
236 vdev_set_min_asize(vdev_t *vd)
237 {
238         vd->vdev_min_asize = vdev_get_min_asize(vd);
239
240         for (int c = 0; c < vd->vdev_children; c++)
241                 vdev_set_min_asize(vd->vdev_child[c]);
242 }
243
244 vdev_t *
245 vdev_lookup_top(spa_t *spa, uint64_t vdev)
246 {
247         vdev_t *rvd = spa->spa_root_vdev;
248
249         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
250
251         if (vdev < rvd->vdev_children) {
252                 ASSERT(rvd->vdev_child[vdev] != NULL);
253                 return (rvd->vdev_child[vdev]);
254         }
255
256         return (NULL);
257 }
258
259 vdev_t *
260 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
261 {
262         vdev_t *mvd;
263
264         if (vd->vdev_guid == guid)
265                 return (vd);
266
267         for (int c = 0; c < vd->vdev_children; c++)
268                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
269                     NULL)
270                         return (mvd);
271
272         return (NULL);
273 }
274
275 void
276 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
277 {
278         size_t oldsize, newsize;
279         uint64_t id = cvd->vdev_id;
280         vdev_t **newchild;
281
282         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
283         ASSERT(cvd->vdev_parent == NULL);
284
285         cvd->vdev_parent = pvd;
286
287         if (pvd == NULL)
288                 return;
289
290         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
291
292         oldsize = pvd->vdev_children * sizeof (vdev_t *);
293         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
294         newsize = pvd->vdev_children * sizeof (vdev_t *);
295
296         newchild = kmem_zalloc(newsize, KM_SLEEP);
297         if (pvd->vdev_child != NULL) {
298                 bcopy(pvd->vdev_child, newchild, oldsize);
299                 kmem_free(pvd->vdev_child, oldsize);
300         }
301
302         pvd->vdev_child = newchild;
303         pvd->vdev_child[id] = cvd;
304
305         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
306         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
307
308         /*
309          * Walk up all ancestors to update guid sum.
310          */
311         for (; pvd != NULL; pvd = pvd->vdev_parent)
312                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
313 }
314
315 void
316 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
317 {
318         int c;
319         uint_t id = cvd->vdev_id;
320
321         ASSERT(cvd->vdev_parent == pvd);
322
323         if (pvd == NULL)
324                 return;
325
326         ASSERT(id < pvd->vdev_children);
327         ASSERT(pvd->vdev_child[id] == cvd);
328
329         pvd->vdev_child[id] = NULL;
330         cvd->vdev_parent = NULL;
331
332         for (c = 0; c < pvd->vdev_children; c++)
333                 if (pvd->vdev_child[c])
334                         break;
335
336         if (c == pvd->vdev_children) {
337                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
338                 pvd->vdev_child = NULL;
339                 pvd->vdev_children = 0;
340         }
341
342         /*
343          * Walk up all ancestors to update guid sum.
344          */
345         for (; pvd != NULL; pvd = pvd->vdev_parent)
346                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
347 }
348
349 /*
350  * Remove any holes in the child array.
351  */
352 void
353 vdev_compact_children(vdev_t *pvd)
354 {
355         vdev_t **newchild, *cvd;
356         int oldc = pvd->vdev_children;
357         int newc;
358
359         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
360
361         for (int c = newc = 0; c < oldc; c++)
362                 if (pvd->vdev_child[c])
363                         newc++;
364
365         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
366
367         for (int c = newc = 0; c < oldc; c++) {
368                 if ((cvd = pvd->vdev_child[c]) != NULL) {
369                         newchild[newc] = cvd;
370                         cvd->vdev_id = newc++;
371                 }
372         }
373
374         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
375         pvd->vdev_child = newchild;
376         pvd->vdev_children = newc;
377 }
378
379 /*
380  * Allocate and minimally initialize a vdev_t.
381  */
382 vdev_t *
383 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
384 {
385         vdev_t *vd;
386
387         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
388
389         if (spa->spa_root_vdev == NULL) {
390                 ASSERT(ops == &vdev_root_ops);
391                 spa->spa_root_vdev = vd;
392                 spa->spa_load_guid = spa_generate_guid(NULL);
393         }
394
395         if (guid == 0 && ops != &vdev_hole_ops) {
396                 if (spa->spa_root_vdev == vd) {
397                         /*
398                          * The root vdev's guid will also be the pool guid,
399                          * which must be unique among all pools.
400                          */
401                         guid = spa_generate_guid(NULL);
402                 } else {
403                         /*
404                          * Any other vdev's guid must be unique within the pool.
405                          */
406                         guid = spa_generate_guid(spa);
407                 }
408                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
409         }
410
411         vd->vdev_spa = spa;
412         vd->vdev_id = id;
413         vd->vdev_guid = guid;
414         vd->vdev_guid_sum = guid;
415         vd->vdev_ops = ops;
416         vd->vdev_state = VDEV_STATE_CLOSED;
417         vd->vdev_ishole = (ops == &vdev_hole_ops);
418
419         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
420         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
421         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
422         for (int t = 0; t < DTL_TYPES; t++) {
423                 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
424                     &vd->vdev_dtl_lock);
425         }
426         txg_list_create(&vd->vdev_ms_list,
427             offsetof(struct metaslab, ms_txg_node));
428         txg_list_create(&vd->vdev_dtl_list,
429             offsetof(struct vdev, vdev_dtl_node));
430         vd->vdev_stat.vs_timestamp = gethrtime();
431         vdev_queue_init(vd);
432         vdev_cache_init(vd);
433
434         return (vd);
435 }
436
437 /*
438  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
439  * creating a new vdev or loading an existing one - the behavior is slightly
440  * different for each case.
441  */
442 int
443 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
444     int alloctype)
445 {
446         vdev_ops_t *ops;
447         char *type;
448         uint64_t guid = 0, islog, nparity;
449         vdev_t *vd;
450
451         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
452
453         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
454                 return (SET_ERROR(EINVAL));
455
456         if ((ops = vdev_getops(type)) == NULL)
457                 return (SET_ERROR(EINVAL));
458
459         /*
460          * If this is a load, get the vdev guid from the nvlist.
461          * Otherwise, vdev_alloc_common() will generate one for us.
462          */
463         if (alloctype == VDEV_ALLOC_LOAD) {
464                 uint64_t label_id;
465
466                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
467                     label_id != id)
468                         return (SET_ERROR(EINVAL));
469
470                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
471                         return (SET_ERROR(EINVAL));
472         } else if (alloctype == VDEV_ALLOC_SPARE) {
473                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
474                         return (SET_ERROR(EINVAL));
475         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
476                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
477                         return (SET_ERROR(EINVAL));
478         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
479                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
480                         return (SET_ERROR(EINVAL));
481         }
482
483         /*
484          * The first allocated vdev must be of type 'root'.
485          */
486         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
487                 return (SET_ERROR(EINVAL));
488
489         /*
490          * Determine whether we're a log vdev.
491          */
492         islog = 0;
493         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
494         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
495                 return (SET_ERROR(ENOTSUP));
496
497         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
498                 return (SET_ERROR(ENOTSUP));
499
500         /*
501          * Set the nparity property for RAID-Z vdevs.
502          */
503         nparity = -1ULL;
504         if (ops == &vdev_raidz_ops) {
505                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
506                     &nparity) == 0) {
507                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
508                                 return (SET_ERROR(EINVAL));
509                         /*
510                          * Previous versions could only support 1 or 2 parity
511                          * device.
512                          */
513                         if (nparity > 1 &&
514                             spa_version(spa) < SPA_VERSION_RAIDZ2)
515                                 return (SET_ERROR(ENOTSUP));
516                         if (nparity > 2 &&
517                             spa_version(spa) < SPA_VERSION_RAIDZ3)
518                                 return (SET_ERROR(ENOTSUP));
519                 } else {
520                         /*
521                          * We require the parity to be specified for SPAs that
522                          * support multiple parity levels.
523                          */
524                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
525                                 return (SET_ERROR(EINVAL));
526                         /*
527                          * Otherwise, we default to 1 parity device for RAID-Z.
528                          */
529                         nparity = 1;
530                 }
531         } else {
532                 nparity = 0;
533         }
534         ASSERT(nparity != -1ULL);
535
536         vd = vdev_alloc_common(spa, id, guid, ops);
537
538         vd->vdev_islog = islog;
539         vd->vdev_nparity = nparity;
540
541         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
542                 vd->vdev_path = spa_strdup(vd->vdev_path);
543         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
544                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
545         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
546             &vd->vdev_physpath) == 0)
547                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
548         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
549                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
550
551         /*
552          * Set the whole_disk property.  If it's not specified, leave the value
553          * as -1.
554          */
555         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
556             &vd->vdev_wholedisk) != 0)
557                 vd->vdev_wholedisk = -1ULL;
558
559         /*
560          * Look for the 'not present' flag.  This will only be set if the device
561          * was not present at the time of import.
562          */
563         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
564             &vd->vdev_not_present);
565
566         /*
567          * Get the alignment requirement.
568          */
569         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
570
571         /*
572          * Retrieve the vdev creation time.
573          */
574         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
575             &vd->vdev_crtxg);
576
577         /*
578          * If we're a top-level vdev, try to load the allocation parameters.
579          */
580         if (parent && !parent->vdev_parent &&
581             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
582                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
583                     &vd->vdev_ms_array);
584                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
585                     &vd->vdev_ms_shift);
586                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
587                     &vd->vdev_asize);
588                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
589                     &vd->vdev_removing);
590         }
591
592         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
593                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
594                     alloctype == VDEV_ALLOC_ADD ||
595                     alloctype == VDEV_ALLOC_SPLIT ||
596                     alloctype == VDEV_ALLOC_ROOTPOOL);
597                 vd->vdev_mg = metaslab_group_create(islog ?
598                     spa_log_class(spa) : spa_normal_class(spa), vd);
599         }
600
601         /*
602          * If we're a leaf vdev, try to load the DTL object and other state.
603          */
604         if (vd->vdev_ops->vdev_op_leaf &&
605             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
606             alloctype == VDEV_ALLOC_ROOTPOOL)) {
607                 if (alloctype == VDEV_ALLOC_LOAD) {
608                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
609                             &vd->vdev_dtl_object);
610                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
611                             &vd->vdev_unspare);
612                 }
613
614                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
615                         uint64_t spare = 0;
616
617                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
618                             &spare) == 0 && spare)
619                                 spa_spare_add(vd);
620                 }
621
622                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
623                     &vd->vdev_offline);
624
625                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
626                     &vd->vdev_resilver_txg);
627
628                 /*
629                  * When importing a pool, we want to ignore the persistent fault
630                  * state, as the diagnosis made on another system may not be
631                  * valid in the current context.  Local vdevs will
632                  * remain in the faulted state.
633                  */
634                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
635                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
636                             &vd->vdev_faulted);
637                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
638                             &vd->vdev_degraded);
639                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
640                             &vd->vdev_removed);
641
642                         if (vd->vdev_faulted || vd->vdev_degraded) {
643                                 char *aux;
644
645                                 vd->vdev_label_aux =
646                                     VDEV_AUX_ERR_EXCEEDED;
647                                 if (nvlist_lookup_string(nv,
648                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
649                                     strcmp(aux, "external") == 0)
650                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
651                         }
652                 }
653         }
654
655         /*
656          * Add ourselves to the parent's list of children.
657          */
658         vdev_add_child(parent, vd);
659
660         *vdp = vd;
661
662         return (0);
663 }
664
665 void
666 vdev_free(vdev_t *vd)
667 {
668         spa_t *spa = vd->vdev_spa;
669
670         /*
671          * vdev_free() implies closing the vdev first.  This is simpler than
672          * trying to ensure complicated semantics for all callers.
673          */
674         vdev_close(vd);
675
676         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
677         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
678
679         /*
680          * Free all children.
681          */
682         for (int c = 0; c < vd->vdev_children; c++)
683                 vdev_free(vd->vdev_child[c]);
684
685         ASSERT(vd->vdev_child == NULL);
686         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
687
688         /*
689          * Discard allocation state.
690          */
691         if (vd->vdev_mg != NULL) {
692                 vdev_metaslab_fini(vd);
693                 metaslab_group_destroy(vd->vdev_mg);
694         }
695
696         ASSERT0(vd->vdev_stat.vs_space);
697         ASSERT0(vd->vdev_stat.vs_dspace);
698         ASSERT0(vd->vdev_stat.vs_alloc);
699
700         /*
701          * Remove this vdev from its parent's child list.
702          */
703         vdev_remove_child(vd->vdev_parent, vd);
704
705         ASSERT(vd->vdev_parent == NULL);
706
707         /*
708          * Clean up vdev structure.
709          */
710         vdev_queue_fini(vd);
711         vdev_cache_fini(vd);
712
713         if (vd->vdev_path)
714                 spa_strfree(vd->vdev_path);
715         if (vd->vdev_devid)
716                 spa_strfree(vd->vdev_devid);
717         if (vd->vdev_physpath)
718                 spa_strfree(vd->vdev_physpath);
719         if (vd->vdev_fru)
720                 spa_strfree(vd->vdev_fru);
721
722         if (vd->vdev_isspare)
723                 spa_spare_remove(vd);
724         if (vd->vdev_isl2cache)
725                 spa_l2cache_remove(vd);
726
727         txg_list_destroy(&vd->vdev_ms_list);
728         txg_list_destroy(&vd->vdev_dtl_list);
729
730         mutex_enter(&vd->vdev_dtl_lock);
731         space_map_close(vd->vdev_dtl_sm);
732         for (int t = 0; t < DTL_TYPES; t++) {
733                 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
734                 range_tree_destroy(vd->vdev_dtl[t]);
735         }
736         mutex_exit(&vd->vdev_dtl_lock);
737
738         mutex_destroy(&vd->vdev_dtl_lock);
739         mutex_destroy(&vd->vdev_stat_lock);
740         mutex_destroy(&vd->vdev_probe_lock);
741
742         if (vd == spa->spa_root_vdev)
743                 spa->spa_root_vdev = NULL;
744
745         kmem_free(vd, sizeof (vdev_t));
746 }
747
748 /*
749  * Transfer top-level vdev state from svd to tvd.
750  */
751 static void
752 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
753 {
754         spa_t *spa = svd->vdev_spa;
755         metaslab_t *msp;
756         vdev_t *vd;
757         int t;
758
759         ASSERT(tvd == tvd->vdev_top);
760
761         tvd->vdev_ms_array = svd->vdev_ms_array;
762         tvd->vdev_ms_shift = svd->vdev_ms_shift;
763         tvd->vdev_ms_count = svd->vdev_ms_count;
764
765         svd->vdev_ms_array = 0;
766         svd->vdev_ms_shift = 0;
767         svd->vdev_ms_count = 0;
768
769         if (tvd->vdev_mg)
770                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
771         tvd->vdev_mg = svd->vdev_mg;
772         tvd->vdev_ms = svd->vdev_ms;
773
774         svd->vdev_mg = NULL;
775         svd->vdev_ms = NULL;
776
777         if (tvd->vdev_mg != NULL)
778                 tvd->vdev_mg->mg_vd = tvd;
779
780         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
781         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
782         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
783
784         svd->vdev_stat.vs_alloc = 0;
785         svd->vdev_stat.vs_space = 0;
786         svd->vdev_stat.vs_dspace = 0;
787
788         for (t = 0; t < TXG_SIZE; t++) {
789                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
790                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
791                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
792                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
793                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
794                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
795         }
796
797         if (list_link_active(&svd->vdev_config_dirty_node)) {
798                 vdev_config_clean(svd);
799                 vdev_config_dirty(tvd);
800         }
801
802         if (list_link_active(&svd->vdev_state_dirty_node)) {
803                 vdev_state_clean(svd);
804                 vdev_state_dirty(tvd);
805         }
806
807         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
808         svd->vdev_deflate_ratio = 0;
809
810         tvd->vdev_islog = svd->vdev_islog;
811         svd->vdev_islog = 0;
812 }
813
814 static void
815 vdev_top_update(vdev_t *tvd, vdev_t *vd)
816 {
817         if (vd == NULL)
818                 return;
819
820         vd->vdev_top = tvd;
821
822         for (int c = 0; c < vd->vdev_children; c++)
823                 vdev_top_update(tvd, vd->vdev_child[c]);
824 }
825
826 /*
827  * Add a mirror/replacing vdev above an existing vdev.
828  */
829 vdev_t *
830 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
831 {
832         spa_t *spa = cvd->vdev_spa;
833         vdev_t *pvd = cvd->vdev_parent;
834         vdev_t *mvd;
835
836         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
837
838         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
839
840         mvd->vdev_asize = cvd->vdev_asize;
841         mvd->vdev_min_asize = cvd->vdev_min_asize;
842         mvd->vdev_max_asize = cvd->vdev_max_asize;
843         mvd->vdev_ashift = cvd->vdev_ashift;
844         mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
845         mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
846         mvd->vdev_state = cvd->vdev_state;
847         mvd->vdev_crtxg = cvd->vdev_crtxg;
848
849         vdev_remove_child(pvd, cvd);
850         vdev_add_child(pvd, mvd);
851         cvd->vdev_id = mvd->vdev_children;
852         vdev_add_child(mvd, cvd);
853         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
854
855         if (mvd == mvd->vdev_top)
856                 vdev_top_transfer(cvd, mvd);
857
858         return (mvd);
859 }
860
861 /*
862  * Remove a 1-way mirror/replacing vdev from the tree.
863  */
864 void
865 vdev_remove_parent(vdev_t *cvd)
866 {
867         vdev_t *mvd = cvd->vdev_parent;
868         vdev_t *pvd = mvd->vdev_parent;
869
870         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
871
872         ASSERT(mvd->vdev_children == 1);
873         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
874             mvd->vdev_ops == &vdev_replacing_ops ||
875             mvd->vdev_ops == &vdev_spare_ops);
876         cvd->vdev_ashift = mvd->vdev_ashift;
877         cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
878         cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
879
880         vdev_remove_child(mvd, cvd);
881         vdev_remove_child(pvd, mvd);
882
883         /*
884          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
885          * Otherwise, we could have detached an offline device, and when we
886          * go to import the pool we'll think we have two top-level vdevs,
887          * instead of a different version of the same top-level vdev.
888          */
889         if (mvd->vdev_top == mvd) {
890                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
891                 cvd->vdev_orig_guid = cvd->vdev_guid;
892                 cvd->vdev_guid += guid_delta;
893                 cvd->vdev_guid_sum += guid_delta;
894         }
895         cvd->vdev_id = mvd->vdev_id;
896         vdev_add_child(pvd, cvd);
897         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
898
899         if (cvd == cvd->vdev_top)
900                 vdev_top_transfer(mvd, cvd);
901
902         ASSERT(mvd->vdev_children == 0);
903         vdev_free(mvd);
904 }
905
906 int
907 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
908 {
909         spa_t *spa = vd->vdev_spa;
910         objset_t *mos = spa->spa_meta_objset;
911         uint64_t m;
912         uint64_t oldc = vd->vdev_ms_count;
913         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
914         metaslab_t **mspp;
915         int error;
916
917         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
918
919         /*
920          * This vdev is not being allocated from yet or is a hole.
921          */
922         if (vd->vdev_ms_shift == 0)
923                 return (0);
924
925         ASSERT(!vd->vdev_ishole);
926
927         /*
928          * Compute the raidz-deflation ratio.  Note, we hard-code
929          * in 128k (1 << 17) because it is the "typical" blocksize.
930          * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
931          * otherwise it would inconsistently account for existing bp's.
932          */
933         vd->vdev_deflate_ratio = (1 << 17) /
934             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
935
936         ASSERT(oldc <= newc);
937
938         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
939
940         if (oldc != 0) {
941                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
942                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
943         }
944
945         vd->vdev_ms = mspp;
946         vd->vdev_ms_count = newc;
947
948         for (m = oldc; m < newc; m++) {
949                 uint64_t object = 0;
950
951                 if (txg == 0) {
952                         error = dmu_read(mos, vd->vdev_ms_array,
953                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
954                             DMU_READ_PREFETCH);
955                         if (error)
956                                 return (error);
957                 }
958                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, m, object, txg);
959         }
960
961         if (txg == 0)
962                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
963
964         /*
965          * If the vdev is being removed we don't activate
966          * the metaslabs since we want to ensure that no new
967          * allocations are performed on this device.
968          */
969         if (oldc == 0 && !vd->vdev_removing)
970                 metaslab_group_activate(vd->vdev_mg);
971
972         if (txg == 0)
973                 spa_config_exit(spa, SCL_ALLOC, FTAG);
974
975         return (0);
976 }
977
978 void
979 vdev_metaslab_fini(vdev_t *vd)
980 {
981         uint64_t m;
982         uint64_t count = vd->vdev_ms_count;
983
984         if (vd->vdev_ms != NULL) {
985                 metaslab_group_passivate(vd->vdev_mg);
986                 for (m = 0; m < count; m++) {
987                         metaslab_t *msp = vd->vdev_ms[m];
988
989                         if (msp != NULL)
990                                 metaslab_fini(msp);
991                 }
992                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
993                 vd->vdev_ms = NULL;
994         }
995 }
996
997 typedef struct vdev_probe_stats {
998         boolean_t       vps_readable;
999         boolean_t       vps_writeable;
1000         int             vps_flags;
1001 } vdev_probe_stats_t;
1002
1003 static void
1004 vdev_probe_done(zio_t *zio)
1005 {
1006         spa_t *spa = zio->io_spa;
1007         vdev_t *vd = zio->io_vd;
1008         vdev_probe_stats_t *vps = zio->io_private;
1009
1010         ASSERT(vd->vdev_probe_zio != NULL);
1011
1012         if (zio->io_type == ZIO_TYPE_READ) {
1013                 if (zio->io_error == 0)
1014                         vps->vps_readable = 1;
1015                 if (zio->io_error == 0 && spa_writeable(spa)) {
1016                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1017                             zio->io_offset, zio->io_size, zio->io_data,
1018                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1019                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1020                 } else {
1021                         zio_buf_free(zio->io_data, zio->io_size);
1022                 }
1023         } else if (zio->io_type == ZIO_TYPE_WRITE) {
1024                 if (zio->io_error == 0)
1025                         vps->vps_writeable = 1;
1026                 zio_buf_free(zio->io_data, zio->io_size);
1027         } else if (zio->io_type == ZIO_TYPE_NULL) {
1028                 zio_t *pio;
1029
1030                 vd->vdev_cant_read |= !vps->vps_readable;
1031                 vd->vdev_cant_write |= !vps->vps_writeable;
1032
1033                 if (vdev_readable(vd) &&
1034                     (vdev_writeable(vd) || !spa_writeable(spa))) {
1035                         zio->io_error = 0;
1036                 } else {
1037                         ASSERT(zio->io_error != 0);
1038                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1039                             spa, vd, NULL, 0, 0);
1040                         zio->io_error = SET_ERROR(ENXIO);
1041                 }
1042
1043                 mutex_enter(&vd->vdev_probe_lock);
1044                 ASSERT(vd->vdev_probe_zio == zio);
1045                 vd->vdev_probe_zio = NULL;
1046                 mutex_exit(&vd->vdev_probe_lock);
1047
1048                 while ((pio = zio_walk_parents(zio)) != NULL)
1049                         if (!vdev_accessible(vd, pio))
1050                                 pio->io_error = SET_ERROR(ENXIO);
1051
1052                 kmem_free(vps, sizeof (*vps));
1053         }
1054 }
1055
1056 /*
1057  * Determine whether this device is accessible.
1058  *
1059  * Read and write to several known locations: the pad regions of each
1060  * vdev label but the first, which we leave alone in case it contains
1061  * a VTOC.
1062  */
1063 zio_t *
1064 vdev_probe(vdev_t *vd, zio_t *zio)
1065 {
1066         spa_t *spa = vd->vdev_spa;
1067         vdev_probe_stats_t *vps = NULL;
1068         zio_t *pio;
1069
1070         ASSERT(vd->vdev_ops->vdev_op_leaf);
1071
1072         /*
1073          * Don't probe the probe.
1074          */
1075         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1076                 return (NULL);
1077
1078         /*
1079          * To prevent 'probe storms' when a device fails, we create
1080          * just one probe i/o at a time.  All zios that want to probe
1081          * this vdev will become parents of the probe io.
1082          */
1083         mutex_enter(&vd->vdev_probe_lock);
1084
1085         if ((pio = vd->vdev_probe_zio) == NULL) {
1086                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1087
1088                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1089                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1090                     ZIO_FLAG_TRYHARD;
1091
1092                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1093                         /*
1094                          * vdev_cant_read and vdev_cant_write can only
1095                          * transition from TRUE to FALSE when we have the
1096                          * SCL_ZIO lock as writer; otherwise they can only
1097                          * transition from FALSE to TRUE.  This ensures that
1098                          * any zio looking at these values can assume that
1099                          * failures persist for the life of the I/O.  That's
1100                          * important because when a device has intermittent
1101                          * connectivity problems, we want to ensure that
1102                          * they're ascribed to the device (ENXIO) and not
1103                          * the zio (EIO).
1104                          *
1105                          * Since we hold SCL_ZIO as writer here, clear both
1106                          * values so the probe can reevaluate from first
1107                          * principles.
1108                          */
1109                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1110                         vd->vdev_cant_read = B_FALSE;
1111                         vd->vdev_cant_write = B_FALSE;
1112                 }
1113
1114                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1115                     vdev_probe_done, vps,
1116                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1117
1118                 /*
1119                  * We can't change the vdev state in this context, so we
1120                  * kick off an async task to do it on our behalf.
1121                  */
1122                 if (zio != NULL) {
1123                         vd->vdev_probe_wanted = B_TRUE;
1124                         spa_async_request(spa, SPA_ASYNC_PROBE);
1125                 }
1126         }
1127
1128         if (zio != NULL)
1129                 zio_add_child(zio, pio);
1130
1131         mutex_exit(&vd->vdev_probe_lock);
1132
1133         if (vps == NULL) {
1134                 ASSERT(zio != NULL);
1135                 return (NULL);
1136         }
1137
1138         for (int l = 1; l < VDEV_LABELS; l++) {
1139                 zio_nowait(zio_read_phys(pio, vd,
1140                     vdev_label_offset(vd->vdev_psize, l,
1141                     offsetof(vdev_label_t, vl_pad2)),
1142                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1143                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1144                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1145         }
1146
1147         if (zio == NULL)
1148                 return (pio);
1149
1150         zio_nowait(pio);
1151         return (NULL);
1152 }
1153
1154 static void
1155 vdev_open_child(void *arg)
1156 {
1157         vdev_t *vd = arg;
1158
1159         vd->vdev_open_thread = curthread;
1160         vd->vdev_open_error = vdev_open(vd);
1161         vd->vdev_open_thread = NULL;
1162 }
1163
1164 boolean_t
1165 vdev_uses_zvols(vdev_t *vd)
1166 {
1167         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1168             strlen(ZVOL_DIR)) == 0)
1169                 return (B_TRUE);
1170         for (int c = 0; c < vd->vdev_children; c++)
1171                 if (vdev_uses_zvols(vd->vdev_child[c]))
1172                         return (B_TRUE);
1173         return (B_FALSE);
1174 }
1175
1176 void
1177 vdev_open_children(vdev_t *vd)
1178 {
1179         taskq_t *tq;
1180         int children = vd->vdev_children;
1181
1182         /*
1183          * in order to handle pools on top of zvols, do the opens
1184          * in a single thread so that the same thread holds the
1185          * spa_namespace_lock
1186          */
1187         if (B_TRUE || vdev_uses_zvols(vd)) {
1188                 for (int c = 0; c < children; c++)
1189                         vd->vdev_child[c]->vdev_open_error =
1190                             vdev_open(vd->vdev_child[c]);
1191                 return;
1192         }
1193         tq = taskq_create("vdev_open", children, minclsyspri,
1194             children, children, TASKQ_PREPOPULATE);
1195
1196         for (int c = 0; c < children; c++)
1197                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1198                     TQ_SLEEP) != 0);
1199
1200         taskq_destroy(tq);
1201 }
1202
1203 /*
1204  * Prepare a virtual device for access.
1205  */
1206 int
1207 vdev_open(vdev_t *vd)
1208 {
1209         spa_t *spa = vd->vdev_spa;
1210         int error;
1211         uint64_t osize = 0;
1212         uint64_t max_osize = 0;
1213         uint64_t asize, max_asize, psize;
1214         uint64_t logical_ashift = 0;
1215         uint64_t physical_ashift = 0;
1216
1217         ASSERT(vd->vdev_open_thread == curthread ||
1218             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1219         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1220             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1221             vd->vdev_state == VDEV_STATE_OFFLINE);
1222
1223         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1224         vd->vdev_cant_read = B_FALSE;
1225         vd->vdev_cant_write = B_FALSE;
1226         vd->vdev_notrim = B_FALSE;
1227         vd->vdev_min_asize = vdev_get_min_asize(vd);
1228
1229         /*
1230          * If this vdev is not removed, check its fault status.  If it's
1231          * faulted, bail out of the open.
1232          */
1233         if (!vd->vdev_removed && vd->vdev_faulted) {
1234                 ASSERT(vd->vdev_children == 0);
1235                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1236                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1237                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1238                     vd->vdev_label_aux);
1239                 return (SET_ERROR(ENXIO));
1240         } else if (vd->vdev_offline) {
1241                 ASSERT(vd->vdev_children == 0);
1242                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1243                 return (SET_ERROR(ENXIO));
1244         }
1245
1246         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1247             &logical_ashift, &physical_ashift);
1248
1249         /*
1250          * Reset the vdev_reopening flag so that we actually close
1251          * the vdev on error.
1252          */
1253         vd->vdev_reopening = B_FALSE;
1254         if (zio_injection_enabled && error == 0)
1255                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1256
1257         if (error) {
1258                 if (vd->vdev_removed &&
1259                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1260                         vd->vdev_removed = B_FALSE;
1261
1262                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1263                     vd->vdev_stat.vs_aux);
1264                 return (error);
1265         }
1266
1267         vd->vdev_removed = B_FALSE;
1268
1269         /*
1270          * Recheck the faulted flag now that we have confirmed that
1271          * the vdev is accessible.  If we're faulted, bail.
1272          */
1273         if (vd->vdev_faulted) {
1274                 ASSERT(vd->vdev_children == 0);
1275                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1276                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1277                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1278                     vd->vdev_label_aux);
1279                 return (SET_ERROR(ENXIO));
1280         }
1281
1282         if (vd->vdev_degraded) {
1283                 ASSERT(vd->vdev_children == 0);
1284                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1285                     VDEV_AUX_ERR_EXCEEDED);
1286         } else {
1287                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1288         }
1289
1290         /*
1291          * For hole or missing vdevs we just return success.
1292          */
1293         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1294                 return (0);
1295
1296         if (zfs_trim_enabled && !vd->vdev_notrim && vd->vdev_ops->vdev_op_leaf)
1297                 trim_map_create(vd);
1298
1299         for (int c = 0; c < vd->vdev_children; c++) {
1300                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1301                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1302                             VDEV_AUX_NONE);
1303                         break;
1304                 }
1305         }
1306
1307         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1308         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1309
1310         if (vd->vdev_children == 0) {
1311                 if (osize < SPA_MINDEVSIZE) {
1312                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1313                             VDEV_AUX_TOO_SMALL);
1314                         return (SET_ERROR(EOVERFLOW));
1315                 }
1316                 psize = osize;
1317                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1318                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1319                     VDEV_LABEL_END_SIZE);
1320         } else {
1321                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1322                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1323                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1324                             VDEV_AUX_TOO_SMALL);
1325                         return (SET_ERROR(EOVERFLOW));
1326                 }
1327                 psize = 0;
1328                 asize = osize;
1329                 max_asize = max_osize;
1330         }
1331
1332         vd->vdev_psize = psize;
1333
1334         /*
1335          * Make sure the allocatable size hasn't shrunk.
1336          */
1337         if (asize < vd->vdev_min_asize) {
1338                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1339                     VDEV_AUX_BAD_LABEL);
1340                 return (SET_ERROR(EINVAL));
1341         }
1342
1343         vd->vdev_physical_ashift =
1344             MAX(physical_ashift, vd->vdev_physical_ashift);
1345         vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
1346         vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
1347
1348         if (vd->vdev_logical_ashift > SPA_MAXASHIFT) {
1349                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1350                     VDEV_AUX_ASHIFT_TOO_BIG);
1351                 return (EINVAL);
1352         }
1353
1354         if (vd->vdev_asize == 0) {
1355                 /*
1356                  * This is the first-ever open, so use the computed values.
1357                  * For testing purposes, a higher ashift can be requested.
1358                  */
1359                 vd->vdev_asize = asize;
1360                 vd->vdev_max_asize = max_asize;
1361         } else {
1362                 /*
1363                  * Make sure the alignment requirement hasn't increased.
1364                  */
1365                 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1366                     vd->vdev_ops->vdev_op_leaf) {
1367                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1368                             VDEV_AUX_BAD_LABEL);
1369                         return (EINVAL);
1370                 }
1371                 vd->vdev_max_asize = max_asize;
1372         }
1373
1374         /*
1375          * If all children are healthy and the asize has increased,
1376          * then we've experienced dynamic LUN growth.  If automatic
1377          * expansion is enabled then use the additional space.
1378          */
1379         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1380             (vd->vdev_expanding || spa->spa_autoexpand))
1381                 vd->vdev_asize = asize;
1382
1383         vdev_set_min_asize(vd);
1384
1385         /*
1386          * Ensure we can issue some IO before declaring the
1387          * vdev open for business.
1388          */
1389         if (vd->vdev_ops->vdev_op_leaf &&
1390             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1391                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1392                     VDEV_AUX_ERR_EXCEEDED);
1393                 return (error);
1394         }
1395
1396         /*
1397          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1398          * resilver.  But don't do this if we are doing a reopen for a scrub,
1399          * since this would just restart the scrub we are already doing.
1400          */
1401         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1402             vdev_resilver_needed(vd, NULL, NULL))
1403                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1404
1405         return (0);
1406 }
1407
1408 /*
1409  * Called once the vdevs are all opened, this routine validates the label
1410  * contents.  This needs to be done before vdev_load() so that we don't
1411  * inadvertently do repair I/Os to the wrong device.
1412  *
1413  * If 'strict' is false ignore the spa guid check. This is necessary because
1414  * if the machine crashed during a re-guid the new guid might have been written
1415  * to all of the vdev labels, but not the cached config. The strict check
1416  * will be performed when the pool is opened again using the mos config.
1417  *
1418  * This function will only return failure if one of the vdevs indicates that it
1419  * has since been destroyed or exported.  This is only possible if
1420  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1421  * will be updated but the function will return 0.
1422  */
1423 int
1424 vdev_validate(vdev_t *vd, boolean_t strict)
1425 {
1426         spa_t *spa = vd->vdev_spa;
1427         nvlist_t *label;
1428         uint64_t guid = 0, top_guid;
1429         uint64_t state;
1430
1431         for (int c = 0; c < vd->vdev_children; c++)
1432                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1433                         return (SET_ERROR(EBADF));
1434
1435         /*
1436          * If the device has already failed, or was marked offline, don't do
1437          * any further validation.  Otherwise, label I/O will fail and we will
1438          * overwrite the previous state.
1439          */
1440         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1441                 uint64_t aux_guid = 0;
1442                 nvlist_t *nvl;
1443                 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1444                     spa_last_synced_txg(spa) : -1ULL;
1445
1446                 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1447                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1448                             VDEV_AUX_BAD_LABEL);
1449                         return (0);
1450                 }
1451
1452                 /*
1453                  * Determine if this vdev has been split off into another
1454                  * pool.  If so, then refuse to open it.
1455                  */
1456                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1457                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1458                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1459                             VDEV_AUX_SPLIT_POOL);
1460                         nvlist_free(label);
1461                         return (0);
1462                 }
1463
1464                 if (strict && (nvlist_lookup_uint64(label,
1465                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1466                     guid != spa_guid(spa))) {
1467                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1468                             VDEV_AUX_CORRUPT_DATA);
1469                         nvlist_free(label);
1470                         return (0);
1471                 }
1472
1473                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1474                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1475                     &aux_guid) != 0)
1476                         aux_guid = 0;
1477
1478                 /*
1479                  * If this vdev just became a top-level vdev because its
1480                  * sibling was detached, it will have adopted the parent's
1481                  * vdev guid -- but the label may or may not be on disk yet.
1482                  * Fortunately, either version of the label will have the
1483                  * same top guid, so if we're a top-level vdev, we can
1484                  * safely compare to that instead.
1485                  *
1486                  * If we split this vdev off instead, then we also check the
1487                  * original pool's guid.  We don't want to consider the vdev
1488                  * corrupt if it is partway through a split operation.
1489                  */
1490                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1491                     &guid) != 0 ||
1492                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1493                     &top_guid) != 0 ||
1494                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1495                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1496                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1497                             VDEV_AUX_CORRUPT_DATA);
1498                         nvlist_free(label);
1499                         return (0);
1500                 }
1501
1502                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1503                     &state) != 0) {
1504                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1505                             VDEV_AUX_CORRUPT_DATA);
1506                         nvlist_free(label);
1507                         return (0);
1508                 }
1509
1510                 nvlist_free(label);
1511
1512                 /*
1513                  * If this is a verbatim import, no need to check the
1514                  * state of the pool.
1515                  */
1516                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1517                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1518                     state != POOL_STATE_ACTIVE)
1519                         return (SET_ERROR(EBADF));
1520
1521                 /*
1522                  * If we were able to open and validate a vdev that was
1523                  * previously marked permanently unavailable, clear that state
1524                  * now.
1525                  */
1526                 if (vd->vdev_not_present)
1527                         vd->vdev_not_present = 0;
1528         }
1529
1530         return (0);
1531 }
1532
1533 /*
1534  * Close a virtual device.
1535  */
1536 void
1537 vdev_close(vdev_t *vd)
1538 {
1539         spa_t *spa = vd->vdev_spa;
1540         vdev_t *pvd = vd->vdev_parent;
1541
1542         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1543
1544         /*
1545          * If our parent is reopening, then we are as well, unless we are
1546          * going offline.
1547          */
1548         if (pvd != NULL && pvd->vdev_reopening)
1549                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1550
1551         vd->vdev_ops->vdev_op_close(vd);
1552
1553         vdev_cache_purge(vd);
1554
1555         if (vd->vdev_ops->vdev_op_leaf)
1556                 trim_map_destroy(vd);
1557
1558         /*
1559          * We record the previous state before we close it, so that if we are
1560          * doing a reopen(), we don't generate FMA ereports if we notice that
1561          * it's still faulted.
1562          */
1563         vd->vdev_prevstate = vd->vdev_state;
1564
1565         if (vd->vdev_offline)
1566                 vd->vdev_state = VDEV_STATE_OFFLINE;
1567         else
1568                 vd->vdev_state = VDEV_STATE_CLOSED;
1569         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1570 }
1571
1572 void
1573 vdev_hold(vdev_t *vd)
1574 {
1575         spa_t *spa = vd->vdev_spa;
1576
1577         ASSERT(spa_is_root(spa));
1578         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1579                 return;
1580
1581         for (int c = 0; c < vd->vdev_children; c++)
1582                 vdev_hold(vd->vdev_child[c]);
1583
1584         if (vd->vdev_ops->vdev_op_leaf)
1585                 vd->vdev_ops->vdev_op_hold(vd);
1586 }
1587
1588 void
1589 vdev_rele(vdev_t *vd)
1590 {
1591         spa_t *spa = vd->vdev_spa;
1592
1593         ASSERT(spa_is_root(spa));
1594         for (int c = 0; c < vd->vdev_children; c++)
1595                 vdev_rele(vd->vdev_child[c]);
1596
1597         if (vd->vdev_ops->vdev_op_leaf)
1598                 vd->vdev_ops->vdev_op_rele(vd);
1599 }
1600
1601 /*
1602  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1603  * reopen leaf vdevs which had previously been opened as they might deadlock
1604  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1605  * If the leaf has never been opened then open it, as usual.
1606  */
1607 void
1608 vdev_reopen(vdev_t *vd)
1609 {
1610         spa_t *spa = vd->vdev_spa;
1611
1612         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1613
1614         /* set the reopening flag unless we're taking the vdev offline */
1615         vd->vdev_reopening = !vd->vdev_offline;
1616         vdev_close(vd);
1617         (void) vdev_open(vd);
1618
1619         /*
1620          * Call vdev_validate() here to make sure we have the same device.
1621          * Otherwise, a device with an invalid label could be successfully
1622          * opened in response to vdev_reopen().
1623          */
1624         if (vd->vdev_aux) {
1625                 (void) vdev_validate_aux(vd);
1626                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1627                     vd->vdev_aux == &spa->spa_l2cache &&
1628                     !l2arc_vdev_present(vd))
1629                         l2arc_add_vdev(spa, vd);
1630         } else {
1631                 (void) vdev_validate(vd, B_TRUE);
1632         }
1633
1634         /*
1635          * Reassess parent vdev's health.
1636          */
1637         vdev_propagate_state(vd);
1638 }
1639
1640 int
1641 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1642 {
1643         int error;
1644
1645         /*
1646          * Normally, partial opens (e.g. of a mirror) are allowed.
1647          * For a create, however, we want to fail the request if
1648          * there are any components we can't open.
1649          */
1650         error = vdev_open(vd);
1651
1652         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1653                 vdev_close(vd);
1654                 return (error ? error : ENXIO);
1655         }
1656
1657         /*
1658          * Recursively load DTLs and initialize all labels.
1659          */
1660         if ((error = vdev_dtl_load(vd)) != 0 ||
1661             (error = vdev_label_init(vd, txg, isreplacing ?
1662             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1663                 vdev_close(vd);
1664                 return (error);
1665         }
1666
1667         return (0);
1668 }
1669
1670 void
1671 vdev_metaslab_set_size(vdev_t *vd)
1672 {
1673         /*
1674          * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1675          */
1676         vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1677         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1678 }
1679
1680 /*
1681  * Maximize performance by inflating the configured ashift for top level
1682  * vdevs to be as close to the physical ashift as possible while maintaining
1683  * administrator defined limits and ensuring it doesn't go below the
1684  * logical ashift.
1685  */
1686 void
1687 vdev_ashift_optimize(vdev_t *vd)
1688 {
1689         if (vd == vd->vdev_top) {
1690                 if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1691                         vd->vdev_ashift = MIN(
1692                             MAX(zfs_max_auto_ashift, vd->vdev_ashift),
1693                             MAX(zfs_min_auto_ashift, vd->vdev_physical_ashift));
1694                 } else {
1695                         /*
1696                          * Unusual case where logical ashift > physical ashift
1697                          * so we can't cap the calculated ashift based on max
1698                          * ashift as that would cause failures.
1699                          * We still check if we need to increase it to match
1700                          * the min ashift.
1701                          */
1702                         vd->vdev_ashift = MAX(zfs_min_auto_ashift,
1703                             vd->vdev_ashift);
1704                 }
1705         }
1706 }
1707
1708 void
1709 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1710 {
1711         ASSERT(vd == vd->vdev_top);
1712         ASSERT(!vd->vdev_ishole);
1713         ASSERT(ISP2(flags));
1714         ASSERT(spa_writeable(vd->vdev_spa));
1715
1716         if (flags & VDD_METASLAB)
1717                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1718
1719         if (flags & VDD_DTL)
1720                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1721
1722         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1723 }
1724
1725 void
1726 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1727 {
1728         for (int c = 0; c < vd->vdev_children; c++)
1729                 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1730
1731         if (vd->vdev_ops->vdev_op_leaf)
1732                 vdev_dirty(vd->vdev_top, flags, vd, txg);
1733 }
1734
1735 /*
1736  * DTLs.
1737  *
1738  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1739  * the vdev has less than perfect replication.  There are four kinds of DTL:
1740  *
1741  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1742  *
1743  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1744  *
1745  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1746  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1747  *      txgs that was scrubbed.
1748  *
1749  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1750  *      persistent errors or just some device being offline.
1751  *      Unlike the other three, the DTL_OUTAGE map is not generally
1752  *      maintained; it's only computed when needed, typically to
1753  *      determine whether a device can be detached.
1754  *
1755  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1756  * either has the data or it doesn't.
1757  *
1758  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1759  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1760  * if any child is less than fully replicated, then so is its parent.
1761  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1762  * comprising only those txgs which appear in 'maxfaults' or more children;
1763  * those are the txgs we don't have enough replication to read.  For example,
1764  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1765  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1766  * two child DTL_MISSING maps.
1767  *
1768  * It should be clear from the above that to compute the DTLs and outage maps
1769  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1770  * Therefore, that is all we keep on disk.  When loading the pool, or after
1771  * a configuration change, we generate all other DTLs from first principles.
1772  */
1773 void
1774 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1775 {
1776         range_tree_t *rt = vd->vdev_dtl[t];
1777
1778         ASSERT(t < DTL_TYPES);
1779         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1780         ASSERT(spa_writeable(vd->vdev_spa));
1781
1782         mutex_enter(rt->rt_lock);
1783         if (!range_tree_contains(rt, txg, size))
1784                 range_tree_add(rt, txg, size);
1785         mutex_exit(rt->rt_lock);
1786 }
1787
1788 boolean_t
1789 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1790 {
1791         range_tree_t *rt = vd->vdev_dtl[t];
1792         boolean_t dirty = B_FALSE;
1793
1794         ASSERT(t < DTL_TYPES);
1795         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1796
1797         mutex_enter(rt->rt_lock);
1798         if (range_tree_space(rt) != 0)
1799                 dirty = range_tree_contains(rt, txg, size);
1800         mutex_exit(rt->rt_lock);
1801
1802         return (dirty);
1803 }
1804
1805 boolean_t
1806 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1807 {
1808         range_tree_t *rt = vd->vdev_dtl[t];
1809         boolean_t empty;
1810
1811         mutex_enter(rt->rt_lock);
1812         empty = (range_tree_space(rt) == 0);
1813         mutex_exit(rt->rt_lock);
1814
1815         return (empty);
1816 }
1817
1818 /*
1819  * Returns the lowest txg in the DTL range.
1820  */
1821 static uint64_t
1822 vdev_dtl_min(vdev_t *vd)
1823 {
1824         range_seg_t *rs;
1825
1826         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1827         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1828         ASSERT0(vd->vdev_children);
1829
1830         rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1831         return (rs->rs_start - 1);
1832 }
1833
1834 /*
1835  * Returns the highest txg in the DTL.
1836  */
1837 static uint64_t
1838 vdev_dtl_max(vdev_t *vd)
1839 {
1840         range_seg_t *rs;
1841
1842         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1843         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1844         ASSERT0(vd->vdev_children);
1845
1846         rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1847         return (rs->rs_end);
1848 }
1849
1850 /*
1851  * Determine if a resilvering vdev should remove any DTL entries from
1852  * its range. If the vdev was resilvering for the entire duration of the
1853  * scan then it should excise that range from its DTLs. Otherwise, this
1854  * vdev is considered partially resilvered and should leave its DTL
1855  * entries intact. The comment in vdev_dtl_reassess() describes how we
1856  * excise the DTLs.
1857  */
1858 static boolean_t
1859 vdev_dtl_should_excise(vdev_t *vd)
1860 {
1861         spa_t *spa = vd->vdev_spa;
1862         dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1863
1864         ASSERT0(scn->scn_phys.scn_errors);
1865         ASSERT0(vd->vdev_children);
1866
1867         if (vd->vdev_resilver_txg == 0 ||
1868             range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1869                 return (B_TRUE);
1870
1871         /*
1872          * When a resilver is initiated the scan will assign the scn_max_txg
1873          * value to the highest txg value that exists in all DTLs. If this
1874          * device's max DTL is not part of this scan (i.e. it is not in
1875          * the range (scn_min_txg, scn_max_txg] then it is not eligible
1876          * for excision.
1877          */
1878         if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1879                 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1880                 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1881                 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1882                 return (B_TRUE);
1883         }
1884         return (B_FALSE);
1885 }
1886
1887 /*
1888  * Reassess DTLs after a config change or scrub completion.
1889  */
1890 void
1891 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1892 {
1893         spa_t *spa = vd->vdev_spa;
1894         avl_tree_t reftree;
1895         int minref;
1896
1897         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1898
1899         for (int c = 0; c < vd->vdev_children; c++)
1900                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1901                     scrub_txg, scrub_done);
1902
1903         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1904                 return;
1905
1906         if (vd->vdev_ops->vdev_op_leaf) {
1907                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1908
1909                 mutex_enter(&vd->vdev_dtl_lock);
1910
1911                 /*
1912                  * If we've completed a scan cleanly then determine
1913                  * if this vdev should remove any DTLs. We only want to
1914                  * excise regions on vdevs that were available during
1915                  * the entire duration of this scan.
1916                  */
1917                 if (scrub_txg != 0 &&
1918                     (spa->spa_scrub_started ||
1919                     (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1920                     vdev_dtl_should_excise(vd)) {
1921                         /*
1922                          * We completed a scrub up to scrub_txg.  If we
1923                          * did it without rebooting, then the scrub dtl
1924                          * will be valid, so excise the old region and
1925                          * fold in the scrub dtl.  Otherwise, leave the
1926                          * dtl as-is if there was an error.
1927                          *
1928                          * There's little trick here: to excise the beginning
1929                          * of the DTL_MISSING map, we put it into a reference
1930                          * tree and then add a segment with refcnt -1 that
1931                          * covers the range [0, scrub_txg).  This means
1932                          * that each txg in that range has refcnt -1 or 0.
1933                          * We then add DTL_SCRUB with a refcnt of 2, so that
1934                          * entries in the range [0, scrub_txg) will have a
1935                          * positive refcnt -- either 1 or 2.  We then convert
1936                          * the reference tree into the new DTL_MISSING map.
1937                          */
1938                         space_reftree_create(&reftree);
1939                         space_reftree_add_map(&reftree,
1940                             vd->vdev_dtl[DTL_MISSING], 1);
1941                         space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1942                         space_reftree_add_map(&reftree,
1943                             vd->vdev_dtl[DTL_SCRUB], 2);
1944                         space_reftree_generate_map(&reftree,
1945                             vd->vdev_dtl[DTL_MISSING], 1);
1946                         space_reftree_destroy(&reftree);
1947                 }
1948                 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1949                 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1950                     range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1951                 if (scrub_done)
1952                         range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1953                 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1954                 if (!vdev_readable(vd))
1955                         range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1956                 else
1957                         range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1958                             range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1959
1960                 /*
1961                  * If the vdev was resilvering and no longer has any
1962                  * DTLs then reset its resilvering flag and dirty
1963                  * the top level so that we persist the change.
1964                  */
1965                 if (vd->vdev_resilver_txg != 0 &&
1966                     range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1967                     range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
1968                         vd->vdev_resilver_txg = 0;
1969                         vdev_config_dirty(vd->vdev_top);
1970                 }
1971
1972                 mutex_exit(&vd->vdev_dtl_lock);
1973
1974                 if (txg != 0)
1975                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1976                 return;
1977         }
1978
1979         mutex_enter(&vd->vdev_dtl_lock);
1980         for (int t = 0; t < DTL_TYPES; t++) {
1981                 /* account for child's outage in parent's missing map */
1982                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1983                 if (t == DTL_SCRUB)
1984                         continue;                       /* leaf vdevs only */
1985                 if (t == DTL_PARTIAL)
1986                         minref = 1;                     /* i.e. non-zero */
1987                 else if (vd->vdev_nparity != 0)
1988                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1989                 else
1990                         minref = vd->vdev_children;     /* any kind of mirror */
1991                 space_reftree_create(&reftree);
1992                 for (int c = 0; c < vd->vdev_children; c++) {
1993                         vdev_t *cvd = vd->vdev_child[c];
1994                         mutex_enter(&cvd->vdev_dtl_lock);
1995                         space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1996                         mutex_exit(&cvd->vdev_dtl_lock);
1997                 }
1998                 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1999                 space_reftree_destroy(&reftree);
2000         }
2001         mutex_exit(&vd->vdev_dtl_lock);
2002 }
2003
2004 int
2005 vdev_dtl_load(vdev_t *vd)
2006 {
2007         spa_t *spa = vd->vdev_spa;
2008         objset_t *mos = spa->spa_meta_objset;
2009         int error = 0;
2010
2011         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2012                 ASSERT(!vd->vdev_ishole);
2013
2014                 error = space_map_open(&vd->vdev_dtl_sm, mos,
2015                     vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
2016                 if (error)
2017                         return (error);
2018                 ASSERT(vd->vdev_dtl_sm != NULL);
2019
2020                 mutex_enter(&vd->vdev_dtl_lock);
2021
2022                 /*
2023                  * Now that we've opened the space_map we need to update
2024                  * the in-core DTL.
2025                  */
2026                 space_map_update(vd->vdev_dtl_sm);
2027
2028                 error = space_map_load(vd->vdev_dtl_sm,
2029                     vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2030                 mutex_exit(&vd->vdev_dtl_lock);
2031
2032                 return (error);
2033         }
2034
2035         for (int c = 0; c < vd->vdev_children; c++) {
2036                 error = vdev_dtl_load(vd->vdev_child[c]);
2037                 if (error != 0)
2038                         break;
2039         }
2040
2041         return (error);
2042 }
2043
2044 void
2045 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2046 {
2047         spa_t *spa = vd->vdev_spa;
2048         range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2049         objset_t *mos = spa->spa_meta_objset;
2050         range_tree_t *rtsync;
2051         kmutex_t rtlock;
2052         dmu_tx_t *tx;
2053         uint64_t object = space_map_object(vd->vdev_dtl_sm);
2054
2055         ASSERT(!vd->vdev_ishole);
2056         ASSERT(vd->vdev_ops->vdev_op_leaf);
2057
2058         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2059
2060         if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2061                 mutex_enter(&vd->vdev_dtl_lock);
2062                 space_map_free(vd->vdev_dtl_sm, tx);
2063                 space_map_close(vd->vdev_dtl_sm);
2064                 vd->vdev_dtl_sm = NULL;
2065                 mutex_exit(&vd->vdev_dtl_lock);
2066                 dmu_tx_commit(tx);
2067                 return;
2068         }
2069
2070         if (vd->vdev_dtl_sm == NULL) {
2071                 uint64_t new_object;
2072
2073                 new_object = space_map_alloc(mos, tx);
2074                 VERIFY3U(new_object, !=, 0);
2075
2076                 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2077                     0, -1ULL, 0, &vd->vdev_dtl_lock));
2078                 ASSERT(vd->vdev_dtl_sm != NULL);
2079         }
2080
2081         bzero(&rtlock, sizeof(rtlock));
2082         mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2083
2084         rtsync = range_tree_create(NULL, NULL, &rtlock);
2085
2086         mutex_enter(&rtlock);
2087
2088         mutex_enter(&vd->vdev_dtl_lock);
2089         range_tree_walk(rt, range_tree_add, rtsync);
2090         mutex_exit(&vd->vdev_dtl_lock);
2091
2092         space_map_truncate(vd->vdev_dtl_sm, tx);
2093         space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2094         range_tree_vacate(rtsync, NULL, NULL);
2095
2096         range_tree_destroy(rtsync);
2097
2098         mutex_exit(&rtlock);
2099         mutex_destroy(&rtlock);
2100
2101         /*
2102          * If the object for the space map has changed then dirty
2103          * the top level so that we update the config.
2104          */
2105         if (object != space_map_object(vd->vdev_dtl_sm)) {
2106                 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2107                     "new object %llu", txg, spa_name(spa), object,
2108                     space_map_object(vd->vdev_dtl_sm));
2109                 vdev_config_dirty(vd->vdev_top);
2110         }
2111
2112         dmu_tx_commit(tx);
2113
2114         mutex_enter(&vd->vdev_dtl_lock);
2115         space_map_update(vd->vdev_dtl_sm);
2116         mutex_exit(&vd->vdev_dtl_lock);
2117 }
2118
2119 /*
2120  * Determine whether the specified vdev can be offlined/detached/removed
2121  * without losing data.
2122  */
2123 boolean_t
2124 vdev_dtl_required(vdev_t *vd)
2125 {
2126         spa_t *spa = vd->vdev_spa;
2127         vdev_t *tvd = vd->vdev_top;
2128         uint8_t cant_read = vd->vdev_cant_read;
2129         boolean_t required;
2130
2131         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2132
2133         if (vd == spa->spa_root_vdev || vd == tvd)
2134                 return (B_TRUE);
2135
2136         /*
2137          * Temporarily mark the device as unreadable, and then determine
2138          * whether this results in any DTL outages in the top-level vdev.
2139          * If not, we can safely offline/detach/remove the device.
2140          */
2141         vd->vdev_cant_read = B_TRUE;
2142         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2143         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2144         vd->vdev_cant_read = cant_read;
2145         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2146
2147         if (!required && zio_injection_enabled)
2148                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2149
2150         return (required);
2151 }
2152
2153 /*
2154  * Determine if resilver is needed, and if so the txg range.
2155  */
2156 boolean_t
2157 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2158 {
2159         boolean_t needed = B_FALSE;
2160         uint64_t thismin = UINT64_MAX;
2161         uint64_t thismax = 0;
2162
2163         if (vd->vdev_children == 0) {
2164                 mutex_enter(&vd->vdev_dtl_lock);
2165                 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2166                     vdev_writeable(vd)) {
2167
2168                         thismin = vdev_dtl_min(vd);
2169                         thismax = vdev_dtl_max(vd);
2170                         needed = B_TRUE;
2171                 }
2172                 mutex_exit(&vd->vdev_dtl_lock);
2173         } else {
2174                 for (int c = 0; c < vd->vdev_children; c++) {
2175                         vdev_t *cvd = vd->vdev_child[c];
2176                         uint64_t cmin, cmax;
2177
2178                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2179                                 thismin = MIN(thismin, cmin);
2180                                 thismax = MAX(thismax, cmax);
2181                                 needed = B_TRUE;
2182                         }
2183                 }
2184         }
2185
2186         if (needed && minp) {
2187                 *minp = thismin;
2188                 *maxp = thismax;
2189         }
2190         return (needed);
2191 }
2192
2193 void
2194 vdev_load(vdev_t *vd)
2195 {
2196         /*
2197          * Recursively load all children.
2198          */
2199         for (int c = 0; c < vd->vdev_children; c++)
2200                 vdev_load(vd->vdev_child[c]);
2201
2202         /*
2203          * If this is a top-level vdev, initialize its metaslabs.
2204          */
2205         if (vd == vd->vdev_top && !vd->vdev_ishole &&
2206             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2207             vdev_metaslab_init(vd, 0) != 0))
2208                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2209                     VDEV_AUX_CORRUPT_DATA);
2210
2211         /*
2212          * If this is a leaf vdev, load its DTL.
2213          */
2214         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2215                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2216                     VDEV_AUX_CORRUPT_DATA);
2217 }
2218
2219 /*
2220  * The special vdev case is used for hot spares and l2cache devices.  Its
2221  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2222  * we make sure that we can open the underlying device, then try to read the
2223  * label, and make sure that the label is sane and that it hasn't been
2224  * repurposed to another pool.
2225  */
2226 int
2227 vdev_validate_aux(vdev_t *vd)
2228 {
2229         nvlist_t *label;
2230         uint64_t guid, version;
2231         uint64_t state;
2232
2233         if (!vdev_readable(vd))
2234                 return (0);
2235
2236         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2237                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2238                     VDEV_AUX_CORRUPT_DATA);
2239                 return (-1);
2240         }
2241
2242         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2243             !SPA_VERSION_IS_SUPPORTED(version) ||
2244             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2245             guid != vd->vdev_guid ||
2246             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2247                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2248                     VDEV_AUX_CORRUPT_DATA);
2249                 nvlist_free(label);
2250                 return (-1);
2251         }
2252
2253         /*
2254          * We don't actually check the pool state here.  If it's in fact in
2255          * use by another pool, we update this fact on the fly when requested.
2256          */
2257         nvlist_free(label);
2258         return (0);
2259 }
2260
2261 void
2262 vdev_remove(vdev_t *vd, uint64_t txg)
2263 {
2264         spa_t *spa = vd->vdev_spa;
2265         objset_t *mos = spa->spa_meta_objset;
2266         dmu_tx_t *tx;
2267
2268         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2269
2270         if (vd->vdev_ms != NULL) {
2271                 metaslab_group_t *mg = vd->vdev_mg;
2272
2273                 metaslab_group_histogram_verify(mg);
2274                 metaslab_class_histogram_verify(mg->mg_class);
2275
2276                 for (int m = 0; m < vd->vdev_ms_count; m++) {
2277                         metaslab_t *msp = vd->vdev_ms[m];
2278
2279                         if (msp == NULL || msp->ms_sm == NULL)
2280                                 continue;
2281
2282                         mutex_enter(&msp->ms_lock);
2283                         /*
2284                          * If the metaslab was not loaded when the vdev
2285                          * was removed then the histogram accounting may
2286                          * not be accurate. Update the histogram information
2287                          * here so that we ensure that the metaslab group
2288                          * and metaslab class are up-to-date.
2289                          */
2290                         metaslab_group_histogram_remove(mg, msp);
2291
2292                         VERIFY0(space_map_allocated(msp->ms_sm));
2293                         space_map_free(msp->ms_sm, tx);
2294                         space_map_close(msp->ms_sm);
2295                         msp->ms_sm = NULL;
2296                         mutex_exit(&msp->ms_lock);
2297                 }
2298
2299                 metaslab_group_histogram_verify(mg);
2300                 metaslab_class_histogram_verify(mg->mg_class);
2301                 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2302                         ASSERT0(mg->mg_histogram[i]);
2303
2304         }
2305
2306         if (vd->vdev_ms_array) {
2307                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2308                 vd->vdev_ms_array = 0;
2309         }
2310         dmu_tx_commit(tx);
2311 }
2312
2313 void
2314 vdev_sync_done(vdev_t *vd, uint64_t txg)
2315 {
2316         metaslab_t *msp;
2317         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2318
2319         ASSERT(!vd->vdev_ishole);
2320
2321         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2322                 metaslab_sync_done(msp, txg);
2323
2324         if (reassess)
2325                 metaslab_sync_reassess(vd->vdev_mg);
2326 }
2327
2328 void
2329 vdev_sync(vdev_t *vd, uint64_t txg)
2330 {
2331         spa_t *spa = vd->vdev_spa;
2332         vdev_t *lvd;
2333         metaslab_t *msp;
2334         dmu_tx_t *tx;
2335
2336         ASSERT(!vd->vdev_ishole);
2337
2338         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2339                 ASSERT(vd == vd->vdev_top);
2340                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2341                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2342                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2343                 ASSERT(vd->vdev_ms_array != 0);
2344                 vdev_config_dirty(vd);
2345                 dmu_tx_commit(tx);
2346         }
2347
2348         /*
2349          * Remove the metadata associated with this vdev once it's empty.
2350          */
2351         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2352                 vdev_remove(vd, txg);
2353
2354         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2355                 metaslab_sync(msp, txg);
2356                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2357         }
2358
2359         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2360                 vdev_dtl_sync(lvd, txg);
2361
2362         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2363 }
2364
2365 uint64_t
2366 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2367 {
2368         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2369 }
2370
2371 /*
2372  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2373  * not be opened, and no I/O is attempted.
2374  */
2375 int
2376 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2377 {
2378         vdev_t *vd, *tvd;
2379
2380         spa_vdev_state_enter(spa, SCL_NONE);
2381
2382         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2383                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2384
2385         if (!vd->vdev_ops->vdev_op_leaf)
2386                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2387
2388         tvd = vd->vdev_top;
2389
2390         /*
2391          * We don't directly use the aux state here, but if we do a
2392          * vdev_reopen(), we need this value to be present to remember why we
2393          * were faulted.
2394          */
2395         vd->vdev_label_aux = aux;
2396
2397         /*
2398          * Faulted state takes precedence over degraded.
2399          */
2400         vd->vdev_delayed_close = B_FALSE;
2401         vd->vdev_faulted = 1ULL;
2402         vd->vdev_degraded = 0ULL;
2403         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2404
2405         /*
2406          * If this device has the only valid copy of the data, then
2407          * back off and simply mark the vdev as degraded instead.
2408          */
2409         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2410                 vd->vdev_degraded = 1ULL;
2411                 vd->vdev_faulted = 0ULL;
2412
2413                 /*
2414                  * If we reopen the device and it's not dead, only then do we
2415                  * mark it degraded.
2416                  */
2417                 vdev_reopen(tvd);
2418
2419                 if (vdev_readable(vd))
2420                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2421         }
2422
2423         return (spa_vdev_state_exit(spa, vd, 0));
2424 }
2425
2426 /*
2427  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2428  * user that something is wrong.  The vdev continues to operate as normal as far
2429  * as I/O is concerned.
2430  */
2431 int
2432 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2433 {
2434         vdev_t *vd;
2435
2436         spa_vdev_state_enter(spa, SCL_NONE);
2437
2438         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2439                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2440
2441         if (!vd->vdev_ops->vdev_op_leaf)
2442                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2443
2444         /*
2445          * If the vdev is already faulted, then don't do anything.
2446          */
2447         if (vd->vdev_faulted || vd->vdev_degraded)
2448                 return (spa_vdev_state_exit(spa, NULL, 0));
2449
2450         vd->vdev_degraded = 1ULL;
2451         if (!vdev_is_dead(vd))
2452                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2453                     aux);
2454
2455         return (spa_vdev_state_exit(spa, vd, 0));
2456 }
2457
2458 /*
2459  * Online the given vdev.
2460  *
2461  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2462  * spare device should be detached when the device finishes resilvering.
2463  * Second, the online should be treated like a 'test' online case, so no FMA
2464  * events are generated if the device fails to open.
2465  */
2466 int
2467 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2468 {
2469         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2470
2471         spa_vdev_state_enter(spa, SCL_NONE);
2472
2473         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2474                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2475
2476         if (!vd->vdev_ops->vdev_op_leaf)
2477                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2478
2479         tvd = vd->vdev_top;
2480         vd->vdev_offline = B_FALSE;
2481         vd->vdev_tmpoffline = B_FALSE;
2482         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2483         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2484
2485         /* XXX - L2ARC 1.0 does not support expansion */
2486         if (!vd->vdev_aux) {
2487                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2488                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2489         }
2490
2491         vdev_reopen(tvd);
2492         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2493
2494         if (!vd->vdev_aux) {
2495                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2496                         pvd->vdev_expanding = B_FALSE;
2497         }
2498
2499         if (newstate)
2500                 *newstate = vd->vdev_state;
2501         if ((flags & ZFS_ONLINE_UNSPARE) &&
2502             !vdev_is_dead(vd) && vd->vdev_parent &&
2503             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2504             vd->vdev_parent->vdev_child[0] == vd)
2505                 vd->vdev_unspare = B_TRUE;
2506
2507         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2508
2509                 /* XXX - L2ARC 1.0 does not support expansion */
2510                 if (vd->vdev_aux)
2511                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2512                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2513         }
2514         return (spa_vdev_state_exit(spa, vd, 0));
2515 }
2516
2517 static int
2518 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2519 {
2520         vdev_t *vd, *tvd;
2521         int error = 0;
2522         uint64_t generation;
2523         metaslab_group_t *mg;
2524
2525 top:
2526         spa_vdev_state_enter(spa, SCL_ALLOC);
2527
2528         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2529                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2530
2531         if (!vd->vdev_ops->vdev_op_leaf)
2532                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2533
2534         tvd = vd->vdev_top;
2535         mg = tvd->vdev_mg;
2536         generation = spa->spa_config_generation + 1;
2537
2538         /*
2539          * If the device isn't already offline, try to offline it.
2540          */
2541         if (!vd->vdev_offline) {
2542                 /*
2543                  * If this device has the only valid copy of some data,
2544                  * don't allow it to be offlined. Log devices are always
2545                  * expendable.
2546                  */
2547                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2548                     vdev_dtl_required(vd))
2549                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2550
2551                 /*
2552                  * If the top-level is a slog and it has had allocations
2553                  * then proceed.  We check that the vdev's metaslab group
2554                  * is not NULL since it's possible that we may have just
2555                  * added this vdev but not yet initialized its metaslabs.
2556                  */
2557                 if (tvd->vdev_islog && mg != NULL) {
2558                         /*
2559                          * Prevent any future allocations.
2560                          */
2561                         metaslab_group_passivate(mg);
2562                         (void) spa_vdev_state_exit(spa, vd, 0);
2563
2564                         error = spa_offline_log(spa);
2565
2566                         spa_vdev_state_enter(spa, SCL_ALLOC);
2567
2568                         /*
2569                          * Check to see if the config has changed.
2570                          */
2571                         if (error || generation != spa->spa_config_generation) {
2572                                 metaslab_group_activate(mg);
2573                                 if (error)
2574                                         return (spa_vdev_state_exit(spa,
2575                                             vd, error));
2576                                 (void) spa_vdev_state_exit(spa, vd, 0);
2577                                 goto top;
2578                         }
2579                         ASSERT0(tvd->vdev_stat.vs_alloc);
2580                 }
2581
2582                 /*
2583                  * Offline this device and reopen its top-level vdev.
2584                  * If the top-level vdev is a log device then just offline
2585                  * it. Otherwise, if this action results in the top-level
2586                  * vdev becoming unusable, undo it and fail the request.
2587                  */
2588                 vd->vdev_offline = B_TRUE;
2589                 vdev_reopen(tvd);
2590
2591                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2592                     vdev_is_dead(tvd)) {
2593                         vd->vdev_offline = B_FALSE;
2594                         vdev_reopen(tvd);
2595                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2596                 }
2597
2598                 /*
2599                  * Add the device back into the metaslab rotor so that
2600                  * once we online the device it's open for business.
2601                  */
2602                 if (tvd->vdev_islog && mg != NULL)
2603                         metaslab_group_activate(mg);
2604         }
2605
2606         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2607
2608         return (spa_vdev_state_exit(spa, vd, 0));
2609 }
2610
2611 int
2612 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2613 {
2614         int error;
2615
2616         mutex_enter(&spa->spa_vdev_top_lock);
2617         error = vdev_offline_locked(spa, guid, flags);
2618         mutex_exit(&spa->spa_vdev_top_lock);
2619
2620         return (error);
2621 }
2622
2623 /*
2624  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2625  * vdev_offline(), we assume the spa config is locked.  We also clear all
2626  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2627  */
2628 void
2629 vdev_clear(spa_t *spa, vdev_t *vd)
2630 {
2631         vdev_t *rvd = spa->spa_root_vdev;
2632
2633         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2634
2635         if (vd == NULL)
2636                 vd = rvd;
2637
2638         vd->vdev_stat.vs_read_errors = 0;
2639         vd->vdev_stat.vs_write_errors = 0;
2640         vd->vdev_stat.vs_checksum_errors = 0;
2641
2642         for (int c = 0; c < vd->vdev_children; c++)
2643                 vdev_clear(spa, vd->vdev_child[c]);
2644
2645         if (vd == rvd) {
2646                 for (int c = 0; c < spa->spa_l2cache.sav_count; c++)
2647                         vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
2648
2649                 for (int c = 0; c < spa->spa_spares.sav_count; c++)
2650                         vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
2651         }
2652
2653         /*
2654          * If we're in the FAULTED state or have experienced failed I/O, then
2655          * clear the persistent state and attempt to reopen the device.  We
2656          * also mark the vdev config dirty, so that the new faulted state is
2657          * written out to disk.
2658          */
2659         if (vd->vdev_faulted || vd->vdev_degraded ||
2660             !vdev_readable(vd) || !vdev_writeable(vd)) {
2661
2662                 /*
2663                  * When reopening in reponse to a clear event, it may be due to
2664                  * a fmadm repair request.  In this case, if the device is
2665                  * still broken, we want to still post the ereport again.
2666                  */
2667                 vd->vdev_forcefault = B_TRUE;
2668
2669                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2670                 vd->vdev_cant_read = B_FALSE;
2671                 vd->vdev_cant_write = B_FALSE;
2672
2673                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2674
2675                 vd->vdev_forcefault = B_FALSE;
2676
2677                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2678                         vdev_state_dirty(vd->vdev_top);
2679
2680                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2681                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2682
2683                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2684         }
2685
2686         /*
2687          * When clearing a FMA-diagnosed fault, we always want to
2688          * unspare the device, as we assume that the original spare was
2689          * done in response to the FMA fault.
2690          */
2691         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2692             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2693             vd->vdev_parent->vdev_child[0] == vd)
2694                 vd->vdev_unspare = B_TRUE;
2695 }
2696
2697 boolean_t
2698 vdev_is_dead(vdev_t *vd)
2699 {
2700         /*
2701          * Holes and missing devices are always considered "dead".
2702          * This simplifies the code since we don't have to check for
2703          * these types of devices in the various code paths.
2704          * Instead we rely on the fact that we skip over dead devices
2705          * before issuing I/O to them.
2706          */
2707         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2708             vd->vdev_ops == &vdev_missing_ops);
2709 }
2710
2711 boolean_t
2712 vdev_readable(vdev_t *vd)
2713 {
2714         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2715 }
2716
2717 boolean_t
2718 vdev_writeable(vdev_t *vd)
2719 {
2720         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2721 }
2722
2723 boolean_t
2724 vdev_allocatable(vdev_t *vd)
2725 {
2726         uint64_t state = vd->vdev_state;
2727
2728         /*
2729          * We currently allow allocations from vdevs which may be in the
2730          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2731          * fails to reopen then we'll catch it later when we're holding
2732          * the proper locks.  Note that we have to get the vdev state
2733          * in a local variable because although it changes atomically,
2734          * we're asking two separate questions about it.
2735          */
2736         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2737             !vd->vdev_cant_write && !vd->vdev_ishole);
2738 }
2739
2740 boolean_t
2741 vdev_accessible(vdev_t *vd, zio_t *zio)
2742 {
2743         ASSERT(zio->io_vd == vd);
2744
2745         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2746                 return (B_FALSE);
2747
2748         if (zio->io_type == ZIO_TYPE_READ)
2749                 return (!vd->vdev_cant_read);
2750
2751         if (zio->io_type == ZIO_TYPE_WRITE)
2752                 return (!vd->vdev_cant_write);
2753
2754         return (B_TRUE);
2755 }
2756
2757 /*
2758  * Get statistics for the given vdev.
2759  */
2760 void
2761 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2762 {
2763         spa_t *spa = vd->vdev_spa;
2764         vdev_t *rvd = spa->spa_root_vdev;
2765
2766         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2767
2768         mutex_enter(&vd->vdev_stat_lock);
2769         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2770         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2771         vs->vs_state = vd->vdev_state;
2772         vs->vs_rsize = vdev_get_min_asize(vd);
2773         if (vd->vdev_ops->vdev_op_leaf)
2774                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2775         vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2776         vs->vs_configured_ashift = vd->vdev_top != NULL
2777             ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
2778         vs->vs_logical_ashift = vd->vdev_logical_ashift;
2779         vs->vs_physical_ashift = vd->vdev_physical_ashift;
2780         if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2781                 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2782         }
2783
2784         /*
2785          * If we're getting stats on the root vdev, aggregate the I/O counts
2786          * over all top-level vdevs (i.e. the direct children of the root).
2787          */
2788         if (vd == rvd) {
2789                 for (int c = 0; c < rvd->vdev_children; c++) {
2790                         vdev_t *cvd = rvd->vdev_child[c];
2791                         vdev_stat_t *cvs = &cvd->vdev_stat;
2792
2793                         for (int t = 0; t < ZIO_TYPES; t++) {
2794                                 vs->vs_ops[t] += cvs->vs_ops[t];
2795                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2796                         }
2797                         cvs->vs_scan_removing = cvd->vdev_removing;
2798                 }
2799         }
2800         mutex_exit(&vd->vdev_stat_lock);
2801 }
2802
2803 void
2804 vdev_clear_stats(vdev_t *vd)
2805 {
2806         mutex_enter(&vd->vdev_stat_lock);
2807         vd->vdev_stat.vs_space = 0;
2808         vd->vdev_stat.vs_dspace = 0;
2809         vd->vdev_stat.vs_alloc = 0;
2810         mutex_exit(&vd->vdev_stat_lock);
2811 }
2812
2813 void
2814 vdev_scan_stat_init(vdev_t *vd)
2815 {
2816         vdev_stat_t *vs = &vd->vdev_stat;
2817
2818         for (int c = 0; c < vd->vdev_children; c++)
2819                 vdev_scan_stat_init(vd->vdev_child[c]);
2820
2821         mutex_enter(&vd->vdev_stat_lock);
2822         vs->vs_scan_processed = 0;
2823         mutex_exit(&vd->vdev_stat_lock);
2824 }
2825
2826 void
2827 vdev_stat_update(zio_t *zio, uint64_t psize)
2828 {
2829         spa_t *spa = zio->io_spa;
2830         vdev_t *rvd = spa->spa_root_vdev;
2831         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2832         vdev_t *pvd;
2833         uint64_t txg = zio->io_txg;
2834         vdev_stat_t *vs = &vd->vdev_stat;
2835         zio_type_t type = zio->io_type;
2836         int flags = zio->io_flags;
2837
2838         /*
2839          * If this i/o is a gang leader, it didn't do any actual work.
2840          */
2841         if (zio->io_gang_tree)
2842                 return;
2843
2844         if (zio->io_error == 0) {
2845                 /*
2846                  * If this is a root i/o, don't count it -- we've already
2847                  * counted the top-level vdevs, and vdev_get_stats() will
2848                  * aggregate them when asked.  This reduces contention on
2849                  * the root vdev_stat_lock and implicitly handles blocks
2850                  * that compress away to holes, for which there is no i/o.
2851                  * (Holes never create vdev children, so all the counters
2852                  * remain zero, which is what we want.)
2853                  *
2854                  * Note: this only applies to successful i/o (io_error == 0)
2855                  * because unlike i/o counts, errors are not additive.
2856                  * When reading a ditto block, for example, failure of
2857                  * one top-level vdev does not imply a root-level error.
2858                  */
2859                 if (vd == rvd)
2860                         return;
2861
2862                 ASSERT(vd == zio->io_vd);
2863
2864                 if (flags & ZIO_FLAG_IO_BYPASS)
2865                         return;
2866
2867                 mutex_enter(&vd->vdev_stat_lock);
2868
2869                 if (flags & ZIO_FLAG_IO_REPAIR) {
2870                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2871                                 dsl_scan_phys_t *scn_phys =
2872                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2873                                 uint64_t *processed = &scn_phys->scn_processed;
2874
2875                                 /* XXX cleanup? */
2876                                 if (vd->vdev_ops->vdev_op_leaf)
2877                                         atomic_add_64(processed, psize);
2878                                 vs->vs_scan_processed += psize;
2879                         }
2880
2881                         if (flags & ZIO_FLAG_SELF_HEAL)
2882                                 vs->vs_self_healed += psize;
2883                 }
2884
2885                 vs->vs_ops[type]++;
2886                 vs->vs_bytes[type] += psize;
2887
2888                 mutex_exit(&vd->vdev_stat_lock);
2889                 return;
2890         }
2891
2892         if (flags & ZIO_FLAG_SPECULATIVE)
2893                 return;
2894
2895         /*
2896          * If this is an I/O error that is going to be retried, then ignore the
2897          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2898          * hard errors, when in reality they can happen for any number of
2899          * innocuous reasons (bus resets, MPxIO link failure, etc).
2900          */
2901         if (zio->io_error == EIO &&
2902             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2903                 return;
2904
2905         /*
2906          * Intent logs writes won't propagate their error to the root
2907          * I/O so don't mark these types of failures as pool-level
2908          * errors.
2909          */
2910         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2911                 return;
2912
2913         mutex_enter(&vd->vdev_stat_lock);
2914         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2915                 if (zio->io_error == ECKSUM)
2916                         vs->vs_checksum_errors++;
2917                 else
2918                         vs->vs_read_errors++;
2919         }
2920         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2921                 vs->vs_write_errors++;
2922         mutex_exit(&vd->vdev_stat_lock);
2923
2924         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2925             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2926             (flags & ZIO_FLAG_SCAN_THREAD) ||
2927             spa->spa_claiming)) {
2928                 /*
2929                  * This is either a normal write (not a repair), or it's
2930                  * a repair induced by the scrub thread, or it's a repair
2931                  * made by zil_claim() during spa_load() in the first txg.
2932                  * In the normal case, we commit the DTL change in the same
2933                  * txg as the block was born.  In the scrub-induced repair
2934                  * case, we know that scrubs run in first-pass syncing context,
2935                  * so we commit the DTL change in spa_syncing_txg(spa).
2936                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2937                  *
2938                  * We currently do not make DTL entries for failed spontaneous
2939                  * self-healing writes triggered by normal (non-scrubbing)
2940                  * reads, because we have no transactional context in which to
2941                  * do so -- and it's not clear that it'd be desirable anyway.
2942                  */
2943                 if (vd->vdev_ops->vdev_op_leaf) {
2944                         uint64_t commit_txg = txg;
2945                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2946                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2947                                 ASSERT(spa_sync_pass(spa) == 1);
2948                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2949                                 commit_txg = spa_syncing_txg(spa);
2950                         } else if (spa->spa_claiming) {
2951                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2952                                 commit_txg = spa_first_txg(spa);
2953                         }
2954                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2955                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2956                                 return;
2957                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2958                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2959                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2960                 }
2961                 if (vd != rvd)
2962                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2963         }
2964 }
2965
2966 /*
2967  * Update the in-core space usage stats for this vdev, its metaslab class,
2968  * and the root vdev.
2969  */
2970 void
2971 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2972     int64_t space_delta)
2973 {
2974         int64_t dspace_delta = space_delta;
2975         spa_t *spa = vd->vdev_spa;
2976         vdev_t *rvd = spa->spa_root_vdev;
2977         metaslab_group_t *mg = vd->vdev_mg;
2978         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2979
2980         ASSERT(vd == vd->vdev_top);
2981
2982         /*
2983          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2984          * factor.  We must calculate this here and not at the root vdev
2985          * because the root vdev's psize-to-asize is simply the max of its
2986          * childrens', thus not accurate enough for us.
2987          */
2988         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2989         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2990         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2991             vd->vdev_deflate_ratio;
2992
2993         mutex_enter(&vd->vdev_stat_lock);
2994         vd->vdev_stat.vs_alloc += alloc_delta;
2995         vd->vdev_stat.vs_space += space_delta;
2996         vd->vdev_stat.vs_dspace += dspace_delta;
2997         mutex_exit(&vd->vdev_stat_lock);
2998
2999         if (mc == spa_normal_class(spa)) {
3000                 mutex_enter(&rvd->vdev_stat_lock);
3001                 rvd->vdev_stat.vs_alloc += alloc_delta;
3002                 rvd->vdev_stat.vs_space += space_delta;
3003                 rvd->vdev_stat.vs_dspace += dspace_delta;
3004                 mutex_exit(&rvd->vdev_stat_lock);
3005         }
3006
3007         if (mc != NULL) {
3008                 ASSERT(rvd == vd->vdev_parent);
3009                 ASSERT(vd->vdev_ms_count != 0);
3010
3011                 metaslab_class_space_update(mc,
3012                     alloc_delta, defer_delta, space_delta, dspace_delta);
3013         }
3014 }
3015
3016 /*
3017  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3018  * so that it will be written out next time the vdev configuration is synced.
3019  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3020  */
3021 void
3022 vdev_config_dirty(vdev_t *vd)
3023 {
3024         spa_t *spa = vd->vdev_spa;
3025         vdev_t *rvd = spa->spa_root_vdev;
3026         int c;
3027
3028         ASSERT(spa_writeable(spa));
3029
3030         /*
3031          * If this is an aux vdev (as with l2cache and spare devices), then we
3032          * update the vdev config manually and set the sync flag.
3033          */
3034         if (vd->vdev_aux != NULL) {
3035                 spa_aux_vdev_t *sav = vd->vdev_aux;
3036                 nvlist_t **aux;
3037                 uint_t naux;
3038
3039                 for (c = 0; c < sav->sav_count; c++) {
3040                         if (sav->sav_vdevs[c] == vd)
3041                                 break;
3042                 }
3043
3044                 if (c == sav->sav_count) {
3045                         /*
3046                          * We're being removed.  There's nothing more to do.
3047                          */
3048                         ASSERT(sav->sav_sync == B_TRUE);
3049                         return;
3050                 }
3051
3052                 sav->sav_sync = B_TRUE;
3053
3054                 if (nvlist_lookup_nvlist_array(sav->sav_config,
3055                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3056                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3057                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3058                 }
3059
3060                 ASSERT(c < naux);
3061
3062                 /*
3063                  * Setting the nvlist in the middle if the array is a little
3064                  * sketchy, but it will work.
3065                  */
3066                 nvlist_free(aux[c]);
3067                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3068
3069                 return;
3070         }
3071
3072         /*
3073          * The dirty list is protected by the SCL_CONFIG lock.  The caller
3074          * must either hold SCL_CONFIG as writer, or must be the sync thread
3075          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3076          * so this is sufficient to ensure mutual exclusion.
3077          */
3078         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3079             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3080             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3081
3082         if (vd == rvd) {
3083                 for (c = 0; c < rvd->vdev_children; c++)
3084                         vdev_config_dirty(rvd->vdev_child[c]);
3085         } else {
3086                 ASSERT(vd == vd->vdev_top);
3087
3088                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3089                     !vd->vdev_ishole)
3090                         list_insert_head(&spa->spa_config_dirty_list, vd);
3091         }
3092 }
3093
3094 void
3095 vdev_config_clean(vdev_t *vd)
3096 {
3097         spa_t *spa = vd->vdev_spa;
3098
3099         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3100             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3101             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3102
3103         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3104         list_remove(&spa->spa_config_dirty_list, vd);
3105 }
3106
3107 /*
3108  * Mark a top-level vdev's state as dirty, so that the next pass of
3109  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3110  * the state changes from larger config changes because they require
3111  * much less locking, and are often needed for administrative actions.
3112  */
3113 void
3114 vdev_state_dirty(vdev_t *vd)
3115 {
3116         spa_t *spa = vd->vdev_spa;
3117
3118         ASSERT(spa_writeable(spa));
3119         ASSERT(vd == vd->vdev_top);
3120
3121         /*
3122          * The state list is protected by the SCL_STATE lock.  The caller
3123          * must either hold SCL_STATE as writer, or must be the sync thread
3124          * (which holds SCL_STATE as reader).  There's only one sync thread,
3125          * so this is sufficient to ensure mutual exclusion.
3126          */
3127         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3128             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3129             spa_config_held(spa, SCL_STATE, RW_READER)));
3130
3131         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3132                 list_insert_head(&spa->spa_state_dirty_list, vd);
3133 }
3134
3135 void
3136 vdev_state_clean(vdev_t *vd)
3137 {
3138         spa_t *spa = vd->vdev_spa;
3139
3140         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3141             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3142             spa_config_held(spa, SCL_STATE, RW_READER)));
3143
3144         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3145         list_remove(&spa->spa_state_dirty_list, vd);
3146 }
3147
3148 /*
3149  * Propagate vdev state up from children to parent.
3150  */
3151 void
3152 vdev_propagate_state(vdev_t *vd)
3153 {
3154         spa_t *spa = vd->vdev_spa;
3155         vdev_t *rvd = spa->spa_root_vdev;
3156         int degraded = 0, faulted = 0;
3157         int corrupted = 0;
3158         vdev_t *child;
3159
3160         if (vd->vdev_children > 0) {
3161                 for (int c = 0; c < vd->vdev_children; c++) {
3162                         child = vd->vdev_child[c];
3163
3164                         /*
3165                          * Don't factor holes into the decision.
3166                          */
3167                         if (child->vdev_ishole)
3168                                 continue;
3169
3170                         if (!vdev_readable(child) ||
3171                             (!vdev_writeable(child) && spa_writeable(spa))) {
3172                                 /*
3173                                  * Root special: if there is a top-level log
3174                                  * device, treat the root vdev as if it were
3175                                  * degraded.
3176                                  */
3177                                 if (child->vdev_islog && vd == rvd)
3178                                         degraded++;
3179                                 else
3180                                         faulted++;
3181                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3182                                 degraded++;
3183                         }
3184
3185                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3186                                 corrupted++;
3187                 }
3188
3189                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3190
3191                 /*
3192                  * Root special: if there is a top-level vdev that cannot be
3193                  * opened due to corrupted metadata, then propagate the root
3194                  * vdev's aux state as 'corrupt' rather than 'insufficient
3195                  * replicas'.
3196                  */
3197                 if (corrupted && vd == rvd &&
3198                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3199                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3200                             VDEV_AUX_CORRUPT_DATA);
3201         }
3202
3203         if (vd->vdev_parent)
3204                 vdev_propagate_state(vd->vdev_parent);
3205 }
3206
3207 /*
3208  * Set a vdev's state.  If this is during an open, we don't update the parent
3209  * state, because we're in the process of opening children depth-first.
3210  * Otherwise, we propagate the change to the parent.
3211  *
3212  * If this routine places a device in a faulted state, an appropriate ereport is
3213  * generated.
3214  */
3215 void
3216 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3217 {
3218         uint64_t save_state;
3219         spa_t *spa = vd->vdev_spa;
3220
3221         if (state == vd->vdev_state) {
3222                 vd->vdev_stat.vs_aux = aux;
3223                 return;
3224         }
3225
3226         save_state = vd->vdev_state;
3227
3228         vd->vdev_state = state;
3229         vd->vdev_stat.vs_aux = aux;
3230
3231         /*
3232          * If we are setting the vdev state to anything but an open state, then
3233          * always close the underlying device unless the device has requested
3234          * a delayed close (i.e. we're about to remove or fault the device).
3235          * Otherwise, we keep accessible but invalid devices open forever.
3236          * We don't call vdev_close() itself, because that implies some extra
3237          * checks (offline, etc) that we don't want here.  This is limited to
3238          * leaf devices, because otherwise closing the device will affect other
3239          * children.
3240          */
3241         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3242             vd->vdev_ops->vdev_op_leaf)
3243                 vd->vdev_ops->vdev_op_close(vd);
3244
3245         /*
3246          * If we have brought this vdev back into service, we need
3247          * to notify fmd so that it can gracefully repair any outstanding
3248          * cases due to a missing device.  We do this in all cases, even those
3249          * that probably don't correlate to a repaired fault.  This is sure to
3250          * catch all cases, and we let the zfs-retire agent sort it out.  If
3251          * this is a transient state it's OK, as the retire agent will
3252          * double-check the state of the vdev before repairing it.
3253          */
3254         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3255             vd->vdev_prevstate != state)
3256                 zfs_post_state_change(spa, vd);
3257
3258         if (vd->vdev_removed &&
3259             state == VDEV_STATE_CANT_OPEN &&
3260             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3261                 /*
3262                  * If the previous state is set to VDEV_STATE_REMOVED, then this
3263                  * device was previously marked removed and someone attempted to
3264                  * reopen it.  If this failed due to a nonexistent device, then
3265                  * keep the device in the REMOVED state.  We also let this be if
3266                  * it is one of our special test online cases, which is only
3267                  * attempting to online the device and shouldn't generate an FMA
3268                  * fault.
3269                  */
3270                 vd->vdev_state = VDEV_STATE_REMOVED;
3271                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3272         } else if (state == VDEV_STATE_REMOVED) {
3273                 vd->vdev_removed = B_TRUE;
3274         } else if (state == VDEV_STATE_CANT_OPEN) {
3275                 /*
3276                  * If we fail to open a vdev during an import or recovery, we
3277                  * mark it as "not available", which signifies that it was
3278                  * never there to begin with.  Failure to open such a device
3279                  * is not considered an error.
3280                  */
3281                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3282                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3283                     vd->vdev_ops->vdev_op_leaf)
3284                         vd->vdev_not_present = 1;
3285
3286                 /*
3287                  * Post the appropriate ereport.  If the 'prevstate' field is
3288                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
3289                  * that this is part of a vdev_reopen().  In this case, we don't
3290                  * want to post the ereport if the device was already in the
3291                  * CANT_OPEN state beforehand.
3292                  *
3293                  * If the 'checkremove' flag is set, then this is an attempt to
3294                  * online the device in response to an insertion event.  If we
3295                  * hit this case, then we have detected an insertion event for a
3296                  * faulted or offline device that wasn't in the removed state.
3297                  * In this scenario, we don't post an ereport because we are
3298                  * about to replace the device, or attempt an online with
3299                  * vdev_forcefault, which will generate the fault for us.
3300                  */
3301                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3302                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3303                     vd != spa->spa_root_vdev) {
3304                         const char *class;
3305
3306                         switch (aux) {
3307                         case VDEV_AUX_OPEN_FAILED:
3308                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3309                                 break;
3310                         case VDEV_AUX_CORRUPT_DATA:
3311                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3312                                 break;
3313                         case VDEV_AUX_NO_REPLICAS:
3314                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3315                                 break;
3316                         case VDEV_AUX_BAD_GUID_SUM:
3317                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3318                                 break;
3319                         case VDEV_AUX_TOO_SMALL:
3320                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3321                                 break;
3322                         case VDEV_AUX_BAD_LABEL:
3323                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3324                                 break;
3325                         default:
3326                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3327                         }
3328
3329                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3330                 }
3331
3332                 /* Erase any notion of persistent removed state */
3333                 vd->vdev_removed = B_FALSE;
3334         } else {
3335                 vd->vdev_removed = B_FALSE;
3336         }
3337
3338         if (!isopen && vd->vdev_parent)
3339                 vdev_propagate_state(vd->vdev_parent);
3340 }
3341
3342 /*
3343  * Check the vdev configuration to ensure that it's capable of supporting
3344  * a root pool.
3345  *
3346  * On Solaris, we do not support RAID-Z or partial configuration.  In
3347  * addition, only a single top-level vdev is allowed and none of the
3348  * leaves can be wholedisks.
3349  *
3350  * For FreeBSD, we can boot from any configuration. There is a
3351  * limitation that the boot filesystem must be either uncompressed or
3352  * compresses with lzjb compression but I'm not sure how to enforce
3353  * that here.
3354  */
3355 boolean_t
3356 vdev_is_bootable(vdev_t *vd)
3357 {
3358 #ifdef sun
3359         if (!vd->vdev_ops->vdev_op_leaf) {
3360                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3361
3362                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3363                     vd->vdev_children > 1) {
3364                         return (B_FALSE);
3365                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3366                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3367                         return (B_FALSE);
3368                 }
3369         } else if (vd->vdev_wholedisk == 1) {
3370                 return (B_FALSE);
3371         }
3372
3373         for (int c = 0; c < vd->vdev_children; c++) {
3374                 if (!vdev_is_bootable(vd->vdev_child[c]))
3375                         return (B_FALSE);
3376         }
3377 #endif  /* sun */
3378         return (B_TRUE);
3379 }
3380
3381 /*
3382  * Load the state from the original vdev tree (ovd) which
3383  * we've retrieved from the MOS config object. If the original
3384  * vdev was offline or faulted then we transfer that state to the
3385  * device in the current vdev tree (nvd).
3386  */
3387 void
3388 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3389 {
3390         spa_t *spa = nvd->vdev_spa;
3391
3392         ASSERT(nvd->vdev_top->vdev_islog);
3393         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3394         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3395
3396         for (int c = 0; c < nvd->vdev_children; c++)
3397                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3398
3399         if (nvd->vdev_ops->vdev_op_leaf) {
3400                 /*
3401                  * Restore the persistent vdev state
3402                  */
3403                 nvd->vdev_offline = ovd->vdev_offline;
3404                 nvd->vdev_faulted = ovd->vdev_faulted;
3405                 nvd->vdev_degraded = ovd->vdev_degraded;
3406                 nvd->vdev_removed = ovd->vdev_removed;
3407         }
3408 }
3409
3410 /*
3411  * Determine if a log device has valid content.  If the vdev was
3412  * removed or faulted in the MOS config then we know that
3413  * the content on the log device has already been written to the pool.
3414  */
3415 boolean_t
3416 vdev_log_state_valid(vdev_t *vd)
3417 {
3418         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3419             !vd->vdev_removed)
3420                 return (B_TRUE);
3421
3422         for (int c = 0; c < vd->vdev_children; c++)
3423                 if (vdev_log_state_valid(vd->vdev_child[c]))
3424                         return (B_TRUE);
3425
3426         return (B_FALSE);
3427 }
3428
3429 /*
3430  * Expand a vdev if possible.
3431  */
3432 void
3433 vdev_expand(vdev_t *vd, uint64_t txg)
3434 {
3435         ASSERT(vd->vdev_top == vd);
3436         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3437
3438         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3439                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3440                 vdev_config_dirty(vd);
3441         }
3442 }
3443
3444 /*
3445  * Split a vdev.
3446  */
3447 void
3448 vdev_split(vdev_t *vd)
3449 {
3450         vdev_t *cvd, *pvd = vd->vdev_parent;
3451
3452         vdev_remove_child(pvd, vd);
3453         vdev_compact_children(pvd);
3454
3455         cvd = pvd->vdev_child[0];
3456         if (pvd->vdev_children == 1) {
3457                 vdev_remove_parent(cvd);
3458                 cvd->vdev_splitting = B_TRUE;
3459         }
3460         vdev_propagate_state(cvd);
3461 }
3462
3463 void
3464 vdev_deadman(vdev_t *vd)
3465 {
3466         for (int c = 0; c < vd->vdev_children; c++) {
3467                 vdev_t *cvd = vd->vdev_child[c];
3468
3469                 vdev_deadman(cvd);
3470         }
3471
3472         if (vd->vdev_ops->vdev_op_leaf) {
3473                 vdev_queue_t *vq = &vd->vdev_queue;
3474
3475                 mutex_enter(&vq->vq_lock);
3476                 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3477                         spa_t *spa = vd->vdev_spa;
3478                         zio_t *fio;
3479                         uint64_t delta;
3480
3481                         /*
3482                          * Look at the head of all the pending queues,
3483                          * if any I/O has been outstanding for longer than
3484                          * the spa_deadman_synctime we panic the system.
3485                          */
3486                         fio = avl_first(&vq->vq_active_tree);
3487                         delta = gethrtime() - fio->io_timestamp;
3488                         if (delta > spa_deadman_synctime(spa)) {
3489                                 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3490                                     "delta %lluns, last io %lluns",
3491                                     fio->io_timestamp, delta,
3492                                     vq->vq_io_complete_ts);
3493                                 fm_panic("I/O to pool '%s' appears to be "
3494                                     "hung on vdev guid %llu at '%s'.",
3495                                     spa_name(spa),
3496                                     (long long unsigned int) vd->vdev_guid,
3497                                     vd->vdev_path);
3498                         }
3499                 }
3500                 mutex_exit(&vq->vq_lock);
3501         }
3502 }