]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c
MFC r246631,246651,246666,246675,246678,246688:
[FreeBSD/stable/9.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2012 by Delphix. All rights reserved.
26  */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/zio.h>
40 #include <sys/zap.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/arc.h>
43 #include <sys/zil.h>
44 #include <sys/dsl_scan.h>
45
46 SYSCTL_DECL(_vfs_zfs);
47 SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
48
49 /*
50  * Virtual device management.
51  */
52
53 static vdev_ops_t *vdev_ops_table[] = {
54         &vdev_root_ops,
55         &vdev_raidz_ops,
56         &vdev_mirror_ops,
57         &vdev_replacing_ops,
58         &vdev_spare_ops,
59 #ifdef _KERNEL
60         &vdev_geom_ops,
61 #else
62         &vdev_disk_ops,
63 #endif
64         &vdev_file_ops,
65         &vdev_missing_ops,
66         &vdev_hole_ops,
67         NULL
68 };
69
70
71 /*
72  * Given a vdev type, return the appropriate ops vector.
73  */
74 static vdev_ops_t *
75 vdev_getops(const char *type)
76 {
77         vdev_ops_t *ops, **opspp;
78
79         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
80                 if (strcmp(ops->vdev_op_type, type) == 0)
81                         break;
82
83         return (ops);
84 }
85
86 /*
87  * Default asize function: return the MAX of psize with the asize of
88  * all children.  This is what's used by anything other than RAID-Z.
89  */
90 uint64_t
91 vdev_default_asize(vdev_t *vd, uint64_t psize)
92 {
93         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
94         uint64_t csize;
95
96         for (int c = 0; c < vd->vdev_children; c++) {
97                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
98                 asize = MAX(asize, csize);
99         }
100
101         return (asize);
102 }
103
104 /*
105  * Get the minimum allocatable size. We define the allocatable size as
106  * the vdev's asize rounded to the nearest metaslab. This allows us to
107  * replace or attach devices which don't have the same physical size but
108  * can still satisfy the same number of allocations.
109  */
110 uint64_t
111 vdev_get_min_asize(vdev_t *vd)
112 {
113         vdev_t *pvd = vd->vdev_parent;
114
115         /*
116          * If our parent is NULL (inactive spare or cache) or is the root,
117          * just return our own asize.
118          */
119         if (pvd == NULL)
120                 return (vd->vdev_asize);
121
122         /*
123          * The top-level vdev just returns the allocatable size rounded
124          * to the nearest metaslab.
125          */
126         if (vd == vd->vdev_top)
127                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
128
129         /*
130          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
131          * so each child must provide at least 1/Nth of its asize.
132          */
133         if (pvd->vdev_ops == &vdev_raidz_ops)
134                 return (pvd->vdev_min_asize / pvd->vdev_children);
135
136         return (pvd->vdev_min_asize);
137 }
138
139 void
140 vdev_set_min_asize(vdev_t *vd)
141 {
142         vd->vdev_min_asize = vdev_get_min_asize(vd);
143
144         for (int c = 0; c < vd->vdev_children; c++)
145                 vdev_set_min_asize(vd->vdev_child[c]);
146 }
147
148 vdev_t *
149 vdev_lookup_top(spa_t *spa, uint64_t vdev)
150 {
151         vdev_t *rvd = spa->spa_root_vdev;
152
153         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
154
155         if (vdev < rvd->vdev_children) {
156                 ASSERT(rvd->vdev_child[vdev] != NULL);
157                 return (rvd->vdev_child[vdev]);
158         }
159
160         return (NULL);
161 }
162
163 vdev_t *
164 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
165 {
166         vdev_t *mvd;
167
168         if (vd->vdev_guid == guid)
169                 return (vd);
170
171         for (int c = 0; c < vd->vdev_children; c++)
172                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
173                     NULL)
174                         return (mvd);
175
176         return (NULL);
177 }
178
179 void
180 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
181 {
182         size_t oldsize, newsize;
183         uint64_t id = cvd->vdev_id;
184         vdev_t **newchild;
185
186         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
187         ASSERT(cvd->vdev_parent == NULL);
188
189         cvd->vdev_parent = pvd;
190
191         if (pvd == NULL)
192                 return;
193
194         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
195
196         oldsize = pvd->vdev_children * sizeof (vdev_t *);
197         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
198         newsize = pvd->vdev_children * sizeof (vdev_t *);
199
200         newchild = kmem_zalloc(newsize, KM_SLEEP);
201         if (pvd->vdev_child != NULL) {
202                 bcopy(pvd->vdev_child, newchild, oldsize);
203                 kmem_free(pvd->vdev_child, oldsize);
204         }
205
206         pvd->vdev_child = newchild;
207         pvd->vdev_child[id] = cvd;
208
209         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
210         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
211
212         /*
213          * Walk up all ancestors to update guid sum.
214          */
215         for (; pvd != NULL; pvd = pvd->vdev_parent)
216                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
217 }
218
219 void
220 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
221 {
222         int c;
223         uint_t id = cvd->vdev_id;
224
225         ASSERT(cvd->vdev_parent == pvd);
226
227         if (pvd == NULL)
228                 return;
229
230         ASSERT(id < pvd->vdev_children);
231         ASSERT(pvd->vdev_child[id] == cvd);
232
233         pvd->vdev_child[id] = NULL;
234         cvd->vdev_parent = NULL;
235
236         for (c = 0; c < pvd->vdev_children; c++)
237                 if (pvd->vdev_child[c])
238                         break;
239
240         if (c == pvd->vdev_children) {
241                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
242                 pvd->vdev_child = NULL;
243                 pvd->vdev_children = 0;
244         }
245
246         /*
247          * Walk up all ancestors to update guid sum.
248          */
249         for (; pvd != NULL; pvd = pvd->vdev_parent)
250                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
251 }
252
253 /*
254  * Remove any holes in the child array.
255  */
256 void
257 vdev_compact_children(vdev_t *pvd)
258 {
259         vdev_t **newchild, *cvd;
260         int oldc = pvd->vdev_children;
261         int newc;
262
263         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
264
265         for (int c = newc = 0; c < oldc; c++)
266                 if (pvd->vdev_child[c])
267                         newc++;
268
269         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
270
271         for (int c = newc = 0; c < oldc; c++) {
272                 if ((cvd = pvd->vdev_child[c]) != NULL) {
273                         newchild[newc] = cvd;
274                         cvd->vdev_id = newc++;
275                 }
276         }
277
278         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
279         pvd->vdev_child = newchild;
280         pvd->vdev_children = newc;
281 }
282
283 /*
284  * Allocate and minimally initialize a vdev_t.
285  */
286 vdev_t *
287 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
288 {
289         vdev_t *vd;
290
291         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
292
293         if (spa->spa_root_vdev == NULL) {
294                 ASSERT(ops == &vdev_root_ops);
295                 spa->spa_root_vdev = vd;
296                 spa->spa_load_guid = spa_generate_guid(NULL);
297         }
298
299         if (guid == 0 && ops != &vdev_hole_ops) {
300                 if (spa->spa_root_vdev == vd) {
301                         /*
302                          * The root vdev's guid will also be the pool guid,
303                          * which must be unique among all pools.
304                          */
305                         guid = spa_generate_guid(NULL);
306                 } else {
307                         /*
308                          * Any other vdev's guid must be unique within the pool.
309                          */
310                         guid = spa_generate_guid(spa);
311                 }
312                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
313         }
314
315         vd->vdev_spa = spa;
316         vd->vdev_id = id;
317         vd->vdev_guid = guid;
318         vd->vdev_guid_sum = guid;
319         vd->vdev_ops = ops;
320         vd->vdev_state = VDEV_STATE_CLOSED;
321         vd->vdev_ishole = (ops == &vdev_hole_ops);
322
323         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
324         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
325         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
326         for (int t = 0; t < DTL_TYPES; t++) {
327                 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
328                     &vd->vdev_dtl_lock);
329         }
330         txg_list_create(&vd->vdev_ms_list,
331             offsetof(struct metaslab, ms_txg_node));
332         txg_list_create(&vd->vdev_dtl_list,
333             offsetof(struct vdev, vdev_dtl_node));
334         vd->vdev_stat.vs_timestamp = gethrtime();
335         vdev_queue_init(vd);
336         vdev_cache_init(vd);
337
338         return (vd);
339 }
340
341 /*
342  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
343  * creating a new vdev or loading an existing one - the behavior is slightly
344  * different for each case.
345  */
346 int
347 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
348     int alloctype)
349 {
350         vdev_ops_t *ops;
351         char *type;
352         uint64_t guid = 0, islog, nparity;
353         vdev_t *vd;
354
355         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
356
357         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
358                 return (EINVAL);
359
360         if ((ops = vdev_getops(type)) == NULL)
361                 return (EINVAL);
362
363         /*
364          * If this is a load, get the vdev guid from the nvlist.
365          * Otherwise, vdev_alloc_common() will generate one for us.
366          */
367         if (alloctype == VDEV_ALLOC_LOAD) {
368                 uint64_t label_id;
369
370                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
371                     label_id != id)
372                         return (EINVAL);
373
374                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
375                         return (EINVAL);
376         } else if (alloctype == VDEV_ALLOC_SPARE) {
377                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
378                         return (EINVAL);
379         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
380                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
381                         return (EINVAL);
382         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
383                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
384                         return (EINVAL);
385         }
386
387         /*
388          * The first allocated vdev must be of type 'root'.
389          */
390         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
391                 return (EINVAL);
392
393         /*
394          * Determine whether we're a log vdev.
395          */
396         islog = 0;
397         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
398         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
399                 return (ENOTSUP);
400
401         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
402                 return (ENOTSUP);
403
404         /*
405          * Set the nparity property for RAID-Z vdevs.
406          */
407         nparity = -1ULL;
408         if (ops == &vdev_raidz_ops) {
409                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
410                     &nparity) == 0) {
411                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
412                                 return (EINVAL);
413                         /*
414                          * Previous versions could only support 1 or 2 parity
415                          * device.
416                          */
417                         if (nparity > 1 &&
418                             spa_version(spa) < SPA_VERSION_RAIDZ2)
419                                 return (ENOTSUP);
420                         if (nparity > 2 &&
421                             spa_version(spa) < SPA_VERSION_RAIDZ3)
422                                 return (ENOTSUP);
423                 } else {
424                         /*
425                          * We require the parity to be specified for SPAs that
426                          * support multiple parity levels.
427                          */
428                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
429                                 return (EINVAL);
430                         /*
431                          * Otherwise, we default to 1 parity device for RAID-Z.
432                          */
433                         nparity = 1;
434                 }
435         } else {
436                 nparity = 0;
437         }
438         ASSERT(nparity != -1ULL);
439
440         vd = vdev_alloc_common(spa, id, guid, ops);
441
442         vd->vdev_islog = islog;
443         vd->vdev_nparity = nparity;
444
445         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
446                 vd->vdev_path = spa_strdup(vd->vdev_path);
447         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
448                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
449         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
450             &vd->vdev_physpath) == 0)
451                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
452         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
453                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
454
455         /*
456          * Set the whole_disk property.  If it's not specified, leave the value
457          * as -1.
458          */
459         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
460             &vd->vdev_wholedisk) != 0)
461                 vd->vdev_wholedisk = -1ULL;
462
463         /*
464          * Look for the 'not present' flag.  This will only be set if the device
465          * was not present at the time of import.
466          */
467         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
468             &vd->vdev_not_present);
469
470         /*
471          * Get the alignment requirement.
472          */
473         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
474
475         /*
476          * Retrieve the vdev creation time.
477          */
478         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
479             &vd->vdev_crtxg);
480
481         /*
482          * If we're a top-level vdev, try to load the allocation parameters.
483          */
484         if (parent && !parent->vdev_parent &&
485             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
486                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
487                     &vd->vdev_ms_array);
488                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
489                     &vd->vdev_ms_shift);
490                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
491                     &vd->vdev_asize);
492                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
493                     &vd->vdev_removing);
494         }
495
496         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
497                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
498                     alloctype == VDEV_ALLOC_ADD ||
499                     alloctype == VDEV_ALLOC_SPLIT ||
500                     alloctype == VDEV_ALLOC_ROOTPOOL);
501                 vd->vdev_mg = metaslab_group_create(islog ?
502                     spa_log_class(spa) : spa_normal_class(spa), vd);
503         }
504
505         /*
506          * If we're a leaf vdev, try to load the DTL object and other state.
507          */
508         if (vd->vdev_ops->vdev_op_leaf &&
509             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
510             alloctype == VDEV_ALLOC_ROOTPOOL)) {
511                 if (alloctype == VDEV_ALLOC_LOAD) {
512                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
513                             &vd->vdev_dtl_smo.smo_object);
514                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
515                             &vd->vdev_unspare);
516                 }
517
518                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
519                         uint64_t spare = 0;
520
521                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
522                             &spare) == 0 && spare)
523                                 spa_spare_add(vd);
524                 }
525
526                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
527                     &vd->vdev_offline);
528
529                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
530                     &vd->vdev_resilvering);
531
532                 /*
533                  * When importing a pool, we want to ignore the persistent fault
534                  * state, as the diagnosis made on another system may not be
535                  * valid in the current context.  Local vdevs will
536                  * remain in the faulted state.
537                  */
538                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
539                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
540                             &vd->vdev_faulted);
541                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
542                             &vd->vdev_degraded);
543                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
544                             &vd->vdev_removed);
545
546                         if (vd->vdev_faulted || vd->vdev_degraded) {
547                                 char *aux;
548
549                                 vd->vdev_label_aux =
550                                     VDEV_AUX_ERR_EXCEEDED;
551                                 if (nvlist_lookup_string(nv,
552                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
553                                     strcmp(aux, "external") == 0)
554                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
555                         }
556                 }
557         }
558
559         /*
560          * Add ourselves to the parent's list of children.
561          */
562         vdev_add_child(parent, vd);
563
564         *vdp = vd;
565
566         return (0);
567 }
568
569 void
570 vdev_free(vdev_t *vd)
571 {
572         spa_t *spa = vd->vdev_spa;
573
574         /*
575          * vdev_free() implies closing the vdev first.  This is simpler than
576          * trying to ensure complicated semantics for all callers.
577          */
578         vdev_close(vd);
579
580         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
581         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
582
583         /*
584          * Free all children.
585          */
586         for (int c = 0; c < vd->vdev_children; c++)
587                 vdev_free(vd->vdev_child[c]);
588
589         ASSERT(vd->vdev_child == NULL);
590         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
591
592         /*
593          * Discard allocation state.
594          */
595         if (vd->vdev_mg != NULL) {
596                 vdev_metaslab_fini(vd);
597                 metaslab_group_destroy(vd->vdev_mg);
598         }
599
600         ASSERT0(vd->vdev_stat.vs_space);
601         ASSERT0(vd->vdev_stat.vs_dspace);
602         ASSERT0(vd->vdev_stat.vs_alloc);
603
604         /*
605          * Remove this vdev from its parent's child list.
606          */
607         vdev_remove_child(vd->vdev_parent, vd);
608
609         ASSERT(vd->vdev_parent == NULL);
610
611         /*
612          * Clean up vdev structure.
613          */
614         vdev_queue_fini(vd);
615         vdev_cache_fini(vd);
616
617         if (vd->vdev_path)
618                 spa_strfree(vd->vdev_path);
619         if (vd->vdev_devid)
620                 spa_strfree(vd->vdev_devid);
621         if (vd->vdev_physpath)
622                 spa_strfree(vd->vdev_physpath);
623         if (vd->vdev_fru)
624                 spa_strfree(vd->vdev_fru);
625
626         if (vd->vdev_isspare)
627                 spa_spare_remove(vd);
628         if (vd->vdev_isl2cache)
629                 spa_l2cache_remove(vd);
630
631         txg_list_destroy(&vd->vdev_ms_list);
632         txg_list_destroy(&vd->vdev_dtl_list);
633
634         mutex_enter(&vd->vdev_dtl_lock);
635         for (int t = 0; t < DTL_TYPES; t++) {
636                 space_map_unload(&vd->vdev_dtl[t]);
637                 space_map_destroy(&vd->vdev_dtl[t]);
638         }
639         mutex_exit(&vd->vdev_dtl_lock);
640
641         mutex_destroy(&vd->vdev_dtl_lock);
642         mutex_destroy(&vd->vdev_stat_lock);
643         mutex_destroy(&vd->vdev_probe_lock);
644
645         if (vd == spa->spa_root_vdev)
646                 spa->spa_root_vdev = NULL;
647
648         kmem_free(vd, sizeof (vdev_t));
649 }
650
651 /*
652  * Transfer top-level vdev state from svd to tvd.
653  */
654 static void
655 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
656 {
657         spa_t *spa = svd->vdev_spa;
658         metaslab_t *msp;
659         vdev_t *vd;
660         int t;
661
662         ASSERT(tvd == tvd->vdev_top);
663
664         tvd->vdev_ms_array = svd->vdev_ms_array;
665         tvd->vdev_ms_shift = svd->vdev_ms_shift;
666         tvd->vdev_ms_count = svd->vdev_ms_count;
667
668         svd->vdev_ms_array = 0;
669         svd->vdev_ms_shift = 0;
670         svd->vdev_ms_count = 0;
671
672         if (tvd->vdev_mg)
673                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
674         tvd->vdev_mg = svd->vdev_mg;
675         tvd->vdev_ms = svd->vdev_ms;
676
677         svd->vdev_mg = NULL;
678         svd->vdev_ms = NULL;
679
680         if (tvd->vdev_mg != NULL)
681                 tvd->vdev_mg->mg_vd = tvd;
682
683         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
684         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
685         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
686
687         svd->vdev_stat.vs_alloc = 0;
688         svd->vdev_stat.vs_space = 0;
689         svd->vdev_stat.vs_dspace = 0;
690
691         for (t = 0; t < TXG_SIZE; t++) {
692                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
693                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
694                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
695                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
696                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
697                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
698         }
699
700         if (list_link_active(&svd->vdev_config_dirty_node)) {
701                 vdev_config_clean(svd);
702                 vdev_config_dirty(tvd);
703         }
704
705         if (list_link_active(&svd->vdev_state_dirty_node)) {
706                 vdev_state_clean(svd);
707                 vdev_state_dirty(tvd);
708         }
709
710         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
711         svd->vdev_deflate_ratio = 0;
712
713         tvd->vdev_islog = svd->vdev_islog;
714         svd->vdev_islog = 0;
715 }
716
717 static void
718 vdev_top_update(vdev_t *tvd, vdev_t *vd)
719 {
720         if (vd == NULL)
721                 return;
722
723         vd->vdev_top = tvd;
724
725         for (int c = 0; c < vd->vdev_children; c++)
726                 vdev_top_update(tvd, vd->vdev_child[c]);
727 }
728
729 /*
730  * Add a mirror/replacing vdev above an existing vdev.
731  */
732 vdev_t *
733 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
734 {
735         spa_t *spa = cvd->vdev_spa;
736         vdev_t *pvd = cvd->vdev_parent;
737         vdev_t *mvd;
738
739         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
740
741         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
742
743         mvd->vdev_asize = cvd->vdev_asize;
744         mvd->vdev_min_asize = cvd->vdev_min_asize;
745         mvd->vdev_max_asize = cvd->vdev_max_asize;
746         mvd->vdev_ashift = cvd->vdev_ashift;
747         mvd->vdev_state = cvd->vdev_state;
748         mvd->vdev_crtxg = cvd->vdev_crtxg;
749
750         vdev_remove_child(pvd, cvd);
751         vdev_add_child(pvd, mvd);
752         cvd->vdev_id = mvd->vdev_children;
753         vdev_add_child(mvd, cvd);
754         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
755
756         if (mvd == mvd->vdev_top)
757                 vdev_top_transfer(cvd, mvd);
758
759         return (mvd);
760 }
761
762 /*
763  * Remove a 1-way mirror/replacing vdev from the tree.
764  */
765 void
766 vdev_remove_parent(vdev_t *cvd)
767 {
768         vdev_t *mvd = cvd->vdev_parent;
769         vdev_t *pvd = mvd->vdev_parent;
770
771         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
772
773         ASSERT(mvd->vdev_children == 1);
774         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
775             mvd->vdev_ops == &vdev_replacing_ops ||
776             mvd->vdev_ops == &vdev_spare_ops);
777         cvd->vdev_ashift = mvd->vdev_ashift;
778
779         vdev_remove_child(mvd, cvd);
780         vdev_remove_child(pvd, mvd);
781
782         /*
783          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
784          * Otherwise, we could have detached an offline device, and when we
785          * go to import the pool we'll think we have two top-level vdevs,
786          * instead of a different version of the same top-level vdev.
787          */
788         if (mvd->vdev_top == mvd) {
789                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
790                 cvd->vdev_orig_guid = cvd->vdev_guid;
791                 cvd->vdev_guid += guid_delta;
792                 cvd->vdev_guid_sum += guid_delta;
793         }
794         cvd->vdev_id = mvd->vdev_id;
795         vdev_add_child(pvd, cvd);
796         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
797
798         if (cvd == cvd->vdev_top)
799                 vdev_top_transfer(mvd, cvd);
800
801         ASSERT(mvd->vdev_children == 0);
802         vdev_free(mvd);
803 }
804
805 int
806 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
807 {
808         spa_t *spa = vd->vdev_spa;
809         objset_t *mos = spa->spa_meta_objset;
810         uint64_t m;
811         uint64_t oldc = vd->vdev_ms_count;
812         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
813         metaslab_t **mspp;
814         int error;
815
816         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
817
818         /*
819          * This vdev is not being allocated from yet or is a hole.
820          */
821         if (vd->vdev_ms_shift == 0)
822                 return (0);
823
824         ASSERT(!vd->vdev_ishole);
825
826         /*
827          * Compute the raidz-deflation ratio.  Note, we hard-code
828          * in 128k (1 << 17) because it is the current "typical" blocksize.
829          * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
830          * or we will inconsistently account for existing bp's.
831          */
832         vd->vdev_deflate_ratio = (1 << 17) /
833             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
834
835         ASSERT(oldc <= newc);
836
837         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
838
839         if (oldc != 0) {
840                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
841                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
842         }
843
844         vd->vdev_ms = mspp;
845         vd->vdev_ms_count = newc;
846
847         for (m = oldc; m < newc; m++) {
848                 space_map_obj_t smo = { 0, 0, 0 };
849                 if (txg == 0) {
850                         uint64_t object = 0;
851                         error = dmu_read(mos, vd->vdev_ms_array,
852                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
853                             DMU_READ_PREFETCH);
854                         if (error)
855                                 return (error);
856                         if (object != 0) {
857                                 dmu_buf_t *db;
858                                 error = dmu_bonus_hold(mos, object, FTAG, &db);
859                                 if (error)
860                                         return (error);
861                                 ASSERT3U(db->db_size, >=, sizeof (smo));
862                                 bcopy(db->db_data, &smo, sizeof (smo));
863                                 ASSERT3U(smo.smo_object, ==, object);
864                                 dmu_buf_rele(db, FTAG);
865                         }
866                 }
867                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
868                     m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
869         }
870
871         if (txg == 0)
872                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
873
874         /*
875          * If the vdev is being removed we don't activate
876          * the metaslabs since we want to ensure that no new
877          * allocations are performed on this device.
878          */
879         if (oldc == 0 && !vd->vdev_removing)
880                 metaslab_group_activate(vd->vdev_mg);
881
882         if (txg == 0)
883                 spa_config_exit(spa, SCL_ALLOC, FTAG);
884
885         return (0);
886 }
887
888 void
889 vdev_metaslab_fini(vdev_t *vd)
890 {
891         uint64_t m;
892         uint64_t count = vd->vdev_ms_count;
893
894         if (vd->vdev_ms != NULL) {
895                 metaslab_group_passivate(vd->vdev_mg);
896                 for (m = 0; m < count; m++)
897                         if (vd->vdev_ms[m] != NULL)
898                                 metaslab_fini(vd->vdev_ms[m]);
899                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
900                 vd->vdev_ms = NULL;
901         }
902 }
903
904 typedef struct vdev_probe_stats {
905         boolean_t       vps_readable;
906         boolean_t       vps_writeable;
907         int             vps_flags;
908 } vdev_probe_stats_t;
909
910 static void
911 vdev_probe_done(zio_t *zio)
912 {
913         spa_t *spa = zio->io_spa;
914         vdev_t *vd = zio->io_vd;
915         vdev_probe_stats_t *vps = zio->io_private;
916
917         ASSERT(vd->vdev_probe_zio != NULL);
918
919         if (zio->io_type == ZIO_TYPE_READ) {
920                 if (zio->io_error == 0)
921                         vps->vps_readable = 1;
922                 if (zio->io_error == 0 && spa_writeable(spa)) {
923                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
924                             zio->io_offset, zio->io_size, zio->io_data,
925                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
926                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
927                 } else {
928                         zio_buf_free(zio->io_data, zio->io_size);
929                 }
930         } else if (zio->io_type == ZIO_TYPE_WRITE) {
931                 if (zio->io_error == 0)
932                         vps->vps_writeable = 1;
933                 zio_buf_free(zio->io_data, zio->io_size);
934         } else if (zio->io_type == ZIO_TYPE_NULL) {
935                 zio_t *pio;
936
937                 vd->vdev_cant_read |= !vps->vps_readable;
938                 vd->vdev_cant_write |= !vps->vps_writeable;
939
940                 if (vdev_readable(vd) &&
941                     (vdev_writeable(vd) || !spa_writeable(spa))) {
942                         zio->io_error = 0;
943                 } else {
944                         ASSERT(zio->io_error != 0);
945                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
946                             spa, vd, NULL, 0, 0);
947                         zio->io_error = ENXIO;
948                 }
949
950                 mutex_enter(&vd->vdev_probe_lock);
951                 ASSERT(vd->vdev_probe_zio == zio);
952                 vd->vdev_probe_zio = NULL;
953                 mutex_exit(&vd->vdev_probe_lock);
954
955                 while ((pio = zio_walk_parents(zio)) != NULL)
956                         if (!vdev_accessible(vd, pio))
957                                 pio->io_error = ENXIO;
958
959                 kmem_free(vps, sizeof (*vps));
960         }
961 }
962
963 /*
964  * Determine whether this device is accessible by reading and writing
965  * to several known locations: the pad regions of each vdev label
966  * but the first (which we leave alone in case it contains a VTOC).
967  */
968 zio_t *
969 vdev_probe(vdev_t *vd, zio_t *zio)
970 {
971         spa_t *spa = vd->vdev_spa;
972         vdev_probe_stats_t *vps = NULL;
973         zio_t *pio;
974
975         ASSERT(vd->vdev_ops->vdev_op_leaf);
976
977         /*
978          * Don't probe the probe.
979          */
980         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
981                 return (NULL);
982
983         /*
984          * To prevent 'probe storms' when a device fails, we create
985          * just one probe i/o at a time.  All zios that want to probe
986          * this vdev will become parents of the probe io.
987          */
988         mutex_enter(&vd->vdev_probe_lock);
989
990         if ((pio = vd->vdev_probe_zio) == NULL) {
991                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
992
993                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
994                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
995                     ZIO_FLAG_TRYHARD;
996
997                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
998                         /*
999                          * vdev_cant_read and vdev_cant_write can only
1000                          * transition from TRUE to FALSE when we have the
1001                          * SCL_ZIO lock as writer; otherwise they can only
1002                          * transition from FALSE to TRUE.  This ensures that
1003                          * any zio looking at these values can assume that
1004                          * failures persist for the life of the I/O.  That's
1005                          * important because when a device has intermittent
1006                          * connectivity problems, we want to ensure that
1007                          * they're ascribed to the device (ENXIO) and not
1008                          * the zio (EIO).
1009                          *
1010                          * Since we hold SCL_ZIO as writer here, clear both
1011                          * values so the probe can reevaluate from first
1012                          * principles.
1013                          */
1014                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1015                         vd->vdev_cant_read = B_FALSE;
1016                         vd->vdev_cant_write = B_FALSE;
1017                 }
1018
1019                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1020                     vdev_probe_done, vps,
1021                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1022
1023                 /*
1024                  * We can't change the vdev state in this context, so we
1025                  * kick off an async task to do it on our behalf.
1026                  */
1027                 if (zio != NULL) {
1028                         vd->vdev_probe_wanted = B_TRUE;
1029                         spa_async_request(spa, SPA_ASYNC_PROBE);
1030                 }
1031         }
1032
1033         if (zio != NULL)
1034                 zio_add_child(zio, pio);
1035
1036         mutex_exit(&vd->vdev_probe_lock);
1037
1038         if (vps == NULL) {
1039                 ASSERT(zio != NULL);
1040                 return (NULL);
1041         }
1042
1043         for (int l = 1; l < VDEV_LABELS; l++) {
1044                 zio_nowait(zio_read_phys(pio, vd,
1045                     vdev_label_offset(vd->vdev_psize, l,
1046                     offsetof(vdev_label_t, vl_pad2)),
1047                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1048                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1049                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1050         }
1051
1052         if (zio == NULL)
1053                 return (pio);
1054
1055         zio_nowait(pio);
1056         return (NULL);
1057 }
1058
1059 static void
1060 vdev_open_child(void *arg)
1061 {
1062         vdev_t *vd = arg;
1063
1064         vd->vdev_open_thread = curthread;
1065         vd->vdev_open_error = vdev_open(vd);
1066         vd->vdev_open_thread = NULL;
1067 }
1068
1069 boolean_t
1070 vdev_uses_zvols(vdev_t *vd)
1071 {
1072         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1073             strlen(ZVOL_DIR)) == 0)
1074                 return (B_TRUE);
1075         for (int c = 0; c < vd->vdev_children; c++)
1076                 if (vdev_uses_zvols(vd->vdev_child[c]))
1077                         return (B_TRUE);
1078         return (B_FALSE);
1079 }
1080
1081 void
1082 vdev_open_children(vdev_t *vd)
1083 {
1084         taskq_t *tq;
1085         int children = vd->vdev_children;
1086
1087         /*
1088          * in order to handle pools on top of zvols, do the opens
1089          * in a single thread so that the same thread holds the
1090          * spa_namespace_lock
1091          */
1092         if (B_TRUE || vdev_uses_zvols(vd)) {
1093                 for (int c = 0; c < children; c++)
1094                         vd->vdev_child[c]->vdev_open_error =
1095                             vdev_open(vd->vdev_child[c]);
1096                 return;
1097         }
1098         tq = taskq_create("vdev_open", children, minclsyspri,
1099             children, children, TASKQ_PREPOPULATE);
1100
1101         for (int c = 0; c < children; c++)
1102                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1103                     TQ_SLEEP) != 0);
1104
1105         taskq_destroy(tq);
1106 }
1107
1108 /*
1109  * Prepare a virtual device for access.
1110  */
1111 int
1112 vdev_open(vdev_t *vd)
1113 {
1114         spa_t *spa = vd->vdev_spa;
1115         int error;
1116         uint64_t osize = 0;
1117         uint64_t max_osize = 0;
1118         uint64_t asize, max_asize, psize;
1119         uint64_t ashift = 0;
1120
1121         ASSERT(vd->vdev_open_thread == curthread ||
1122             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1123         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1124             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1125             vd->vdev_state == VDEV_STATE_OFFLINE);
1126
1127         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1128         vd->vdev_cant_read = B_FALSE;
1129         vd->vdev_cant_write = B_FALSE;
1130         vd->vdev_min_asize = vdev_get_min_asize(vd);
1131
1132         /*
1133          * If this vdev is not removed, check its fault status.  If it's
1134          * faulted, bail out of the open.
1135          */
1136         if (!vd->vdev_removed && vd->vdev_faulted) {
1137                 ASSERT(vd->vdev_children == 0);
1138                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1139                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1140                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1141                     vd->vdev_label_aux);
1142                 return (ENXIO);
1143         } else if (vd->vdev_offline) {
1144                 ASSERT(vd->vdev_children == 0);
1145                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1146                 return (ENXIO);
1147         }
1148
1149         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1150
1151         /*
1152          * Reset the vdev_reopening flag so that we actually close
1153          * the vdev on error.
1154          */
1155         vd->vdev_reopening = B_FALSE;
1156         if (zio_injection_enabled && error == 0)
1157                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1158
1159         if (error) {
1160                 if (vd->vdev_removed &&
1161                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1162                         vd->vdev_removed = B_FALSE;
1163
1164                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1165                     vd->vdev_stat.vs_aux);
1166                 return (error);
1167         }
1168
1169         vd->vdev_removed = B_FALSE;
1170
1171         /*
1172          * Recheck the faulted flag now that we have confirmed that
1173          * the vdev is accessible.  If we're faulted, bail.
1174          */
1175         if (vd->vdev_faulted) {
1176                 ASSERT(vd->vdev_children == 0);
1177                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1178                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1179                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1180                     vd->vdev_label_aux);
1181                 return (ENXIO);
1182         }
1183
1184         if (vd->vdev_degraded) {
1185                 ASSERT(vd->vdev_children == 0);
1186                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1187                     VDEV_AUX_ERR_EXCEEDED);
1188         } else {
1189                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1190         }
1191
1192         /*
1193          * For hole or missing vdevs we just return success.
1194          */
1195         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1196                 return (0);
1197
1198         for (int c = 0; c < vd->vdev_children; c++) {
1199                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1200                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1201                             VDEV_AUX_NONE);
1202                         break;
1203                 }
1204         }
1205
1206         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1207         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1208
1209         if (vd->vdev_children == 0) {
1210                 if (osize < SPA_MINDEVSIZE) {
1211                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1212                             VDEV_AUX_TOO_SMALL);
1213                         return (EOVERFLOW);
1214                 }
1215                 psize = osize;
1216                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1217                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1218                     VDEV_LABEL_END_SIZE);
1219         } else {
1220                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1221                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1222                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1223                             VDEV_AUX_TOO_SMALL);
1224                         return (EOVERFLOW);
1225                 }
1226                 psize = 0;
1227                 asize = osize;
1228                 max_asize = max_osize;
1229         }
1230
1231         vd->vdev_psize = psize;
1232
1233         /*
1234          * Make sure the allocatable size hasn't shrunk.
1235          */
1236         if (asize < vd->vdev_min_asize) {
1237                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1238                     VDEV_AUX_BAD_LABEL);
1239                 return (EINVAL);
1240         }
1241
1242         if (vd->vdev_asize == 0) {
1243                 /*
1244                  * This is the first-ever open, so use the computed values.
1245                  * For testing purposes, a higher ashift can be requested.
1246                  */
1247                 vd->vdev_asize = asize;
1248                 vd->vdev_max_asize = max_asize;
1249                 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1250         } else {
1251                 /*
1252                  * Make sure the alignment requirement hasn't increased.
1253                  */
1254                 if (ashift > vd->vdev_top->vdev_ashift) {
1255                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1256                             VDEV_AUX_BAD_LABEL);
1257                         return (EINVAL);
1258                 }
1259                 vd->vdev_max_asize = max_asize;
1260         }
1261
1262         /*
1263          * If all children are healthy and the asize has increased,
1264          * then we've experienced dynamic LUN growth.  If automatic
1265          * expansion is enabled then use the additional space.
1266          */
1267         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1268             (vd->vdev_expanding || spa->spa_autoexpand))
1269                 vd->vdev_asize = asize;
1270
1271         vdev_set_min_asize(vd);
1272
1273         /*
1274          * Ensure we can issue some IO before declaring the
1275          * vdev open for business.
1276          */
1277         if (vd->vdev_ops->vdev_op_leaf &&
1278             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1279                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1280                     VDEV_AUX_ERR_EXCEEDED);
1281                 return (error);
1282         }
1283
1284         /*
1285          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1286          * resilver.  But don't do this if we are doing a reopen for a scrub,
1287          * since this would just restart the scrub we are already doing.
1288          */
1289         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1290             vdev_resilver_needed(vd, NULL, NULL))
1291                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1292
1293         return (0);
1294 }
1295
1296 /*
1297  * Called once the vdevs are all opened, this routine validates the label
1298  * contents.  This needs to be done before vdev_load() so that we don't
1299  * inadvertently do repair I/Os to the wrong device.
1300  *
1301  * If 'strict' is false ignore the spa guid check. This is necessary because
1302  * if the machine crashed during a re-guid the new guid might have been written
1303  * to all of the vdev labels, but not the cached config. The strict check
1304  * will be performed when the pool is opened again using the mos config.
1305  *
1306  * This function will only return failure if one of the vdevs indicates that it
1307  * has since been destroyed or exported.  This is only possible if
1308  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1309  * will be updated but the function will return 0.
1310  */
1311 int
1312 vdev_validate(vdev_t *vd, boolean_t strict)
1313 {
1314         spa_t *spa = vd->vdev_spa;
1315         nvlist_t *label;
1316         uint64_t guid = 0, top_guid;
1317         uint64_t state;
1318
1319         for (int c = 0; c < vd->vdev_children; c++)
1320                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1321                         return (EBADF);
1322
1323         /*
1324          * If the device has already failed, or was marked offline, don't do
1325          * any further validation.  Otherwise, label I/O will fail and we will
1326          * overwrite the previous state.
1327          */
1328         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1329                 uint64_t aux_guid = 0;
1330                 nvlist_t *nvl;
1331                 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1332                     spa_last_synced_txg(spa) : -1ULL;
1333
1334                 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1335                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1336                             VDEV_AUX_BAD_LABEL);
1337                         return (0);
1338                 }
1339
1340                 /*
1341                  * Determine if this vdev has been split off into another
1342                  * pool.  If so, then refuse to open it.
1343                  */
1344                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1345                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1346                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1347                             VDEV_AUX_SPLIT_POOL);
1348                         nvlist_free(label);
1349                         return (0);
1350                 }
1351
1352                 if (strict && (nvlist_lookup_uint64(label,
1353                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1354                     guid != spa_guid(spa))) {
1355                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1356                             VDEV_AUX_CORRUPT_DATA);
1357                         nvlist_free(label);
1358                         return (0);
1359                 }
1360
1361                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1362                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1363                     &aux_guid) != 0)
1364                         aux_guid = 0;
1365
1366                 /*
1367                  * If this vdev just became a top-level vdev because its
1368                  * sibling was detached, it will have adopted the parent's
1369                  * vdev guid -- but the label may or may not be on disk yet.
1370                  * Fortunately, either version of the label will have the
1371                  * same top guid, so if we're a top-level vdev, we can
1372                  * safely compare to that instead.
1373                  *
1374                  * If we split this vdev off instead, then we also check the
1375                  * original pool's guid.  We don't want to consider the vdev
1376                  * corrupt if it is partway through a split operation.
1377                  */
1378                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1379                     &guid) != 0 ||
1380                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1381                     &top_guid) != 0 ||
1382                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1383                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1384                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1385                             VDEV_AUX_CORRUPT_DATA);
1386                         nvlist_free(label);
1387                         return (0);
1388                 }
1389
1390                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1391                     &state) != 0) {
1392                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1393                             VDEV_AUX_CORRUPT_DATA);
1394                         nvlist_free(label);
1395                         return (0);
1396                 }
1397
1398                 nvlist_free(label);
1399
1400                 /*
1401                  * If this is a verbatim import, no need to check the
1402                  * state of the pool.
1403                  */
1404                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1405                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1406                     state != POOL_STATE_ACTIVE)
1407                         return (EBADF);
1408
1409                 /*
1410                  * If we were able to open and validate a vdev that was
1411                  * previously marked permanently unavailable, clear that state
1412                  * now.
1413                  */
1414                 if (vd->vdev_not_present)
1415                         vd->vdev_not_present = 0;
1416         }
1417
1418         return (0);
1419 }
1420
1421 /*
1422  * Close a virtual device.
1423  */
1424 void
1425 vdev_close(vdev_t *vd)
1426 {
1427         spa_t *spa = vd->vdev_spa;
1428         vdev_t *pvd = vd->vdev_parent;
1429
1430         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1431
1432         /*
1433          * If our parent is reopening, then we are as well, unless we are
1434          * going offline.
1435          */
1436         if (pvd != NULL && pvd->vdev_reopening)
1437                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1438
1439         vd->vdev_ops->vdev_op_close(vd);
1440
1441         vdev_cache_purge(vd);
1442
1443         /*
1444          * We record the previous state before we close it, so that if we are
1445          * doing a reopen(), we don't generate FMA ereports if we notice that
1446          * it's still faulted.
1447          */
1448         vd->vdev_prevstate = vd->vdev_state;
1449
1450         if (vd->vdev_offline)
1451                 vd->vdev_state = VDEV_STATE_OFFLINE;
1452         else
1453                 vd->vdev_state = VDEV_STATE_CLOSED;
1454         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1455 }
1456
1457 void
1458 vdev_hold(vdev_t *vd)
1459 {
1460         spa_t *spa = vd->vdev_spa;
1461
1462         ASSERT(spa_is_root(spa));
1463         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1464                 return;
1465
1466         for (int c = 0; c < vd->vdev_children; c++)
1467                 vdev_hold(vd->vdev_child[c]);
1468
1469         if (vd->vdev_ops->vdev_op_leaf)
1470                 vd->vdev_ops->vdev_op_hold(vd);
1471 }
1472
1473 void
1474 vdev_rele(vdev_t *vd)
1475 {
1476         spa_t *spa = vd->vdev_spa;
1477
1478         ASSERT(spa_is_root(spa));
1479         for (int c = 0; c < vd->vdev_children; c++)
1480                 vdev_rele(vd->vdev_child[c]);
1481
1482         if (vd->vdev_ops->vdev_op_leaf)
1483                 vd->vdev_ops->vdev_op_rele(vd);
1484 }
1485
1486 /*
1487  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1488  * reopen leaf vdevs which had previously been opened as they might deadlock
1489  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1490  * If the leaf has never been opened then open it, as usual.
1491  */
1492 void
1493 vdev_reopen(vdev_t *vd)
1494 {
1495         spa_t *spa = vd->vdev_spa;
1496
1497         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1498
1499         /* set the reopening flag unless we're taking the vdev offline */
1500         vd->vdev_reopening = !vd->vdev_offline;
1501         vdev_close(vd);
1502         (void) vdev_open(vd);
1503
1504         /*
1505          * Call vdev_validate() here to make sure we have the same device.
1506          * Otherwise, a device with an invalid label could be successfully
1507          * opened in response to vdev_reopen().
1508          */
1509         if (vd->vdev_aux) {
1510                 (void) vdev_validate_aux(vd);
1511                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1512                     vd->vdev_aux == &spa->spa_l2cache &&
1513                     !l2arc_vdev_present(vd))
1514                         l2arc_add_vdev(spa, vd);
1515         } else {
1516                 (void) vdev_validate(vd, B_TRUE);
1517         }
1518
1519         /*
1520          * Reassess parent vdev's health.
1521          */
1522         vdev_propagate_state(vd);
1523 }
1524
1525 int
1526 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1527 {
1528         int error;
1529
1530         /*
1531          * Normally, partial opens (e.g. of a mirror) are allowed.
1532          * For a create, however, we want to fail the request if
1533          * there are any components we can't open.
1534          */
1535         error = vdev_open(vd);
1536
1537         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1538                 vdev_close(vd);
1539                 return (error ? error : ENXIO);
1540         }
1541
1542         /*
1543          * Recursively initialize all labels.
1544          */
1545         if ((error = vdev_label_init(vd, txg, isreplacing ?
1546             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1547                 vdev_close(vd);
1548                 return (error);
1549         }
1550
1551         return (0);
1552 }
1553
1554 void
1555 vdev_metaslab_set_size(vdev_t *vd)
1556 {
1557         /*
1558          * Aim for roughly 200 metaslabs per vdev.
1559          */
1560         vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1561         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1562 }
1563
1564 void
1565 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1566 {
1567         ASSERT(vd == vd->vdev_top);
1568         ASSERT(!vd->vdev_ishole);
1569         ASSERT(ISP2(flags));
1570         ASSERT(spa_writeable(vd->vdev_spa));
1571
1572         if (flags & VDD_METASLAB)
1573                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1574
1575         if (flags & VDD_DTL)
1576                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1577
1578         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1579 }
1580
1581 /*
1582  * DTLs.
1583  *
1584  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1585  * the vdev has less than perfect replication.  There are four kinds of DTL:
1586  *
1587  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1588  *
1589  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1590  *
1591  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1592  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1593  *      txgs that was scrubbed.
1594  *
1595  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1596  *      persistent errors or just some device being offline.
1597  *      Unlike the other three, the DTL_OUTAGE map is not generally
1598  *      maintained; it's only computed when needed, typically to
1599  *      determine whether a device can be detached.
1600  *
1601  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1602  * either has the data or it doesn't.
1603  *
1604  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1605  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1606  * if any child is less than fully replicated, then so is its parent.
1607  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1608  * comprising only those txgs which appear in 'maxfaults' or more children;
1609  * those are the txgs we don't have enough replication to read.  For example,
1610  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1611  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1612  * two child DTL_MISSING maps.
1613  *
1614  * It should be clear from the above that to compute the DTLs and outage maps
1615  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1616  * Therefore, that is all we keep on disk.  When loading the pool, or after
1617  * a configuration change, we generate all other DTLs from first principles.
1618  */
1619 void
1620 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1621 {
1622         space_map_t *sm = &vd->vdev_dtl[t];
1623
1624         ASSERT(t < DTL_TYPES);
1625         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1626         ASSERT(spa_writeable(vd->vdev_spa));
1627
1628         mutex_enter(sm->sm_lock);
1629         if (!space_map_contains(sm, txg, size))
1630                 space_map_add(sm, txg, size);
1631         mutex_exit(sm->sm_lock);
1632 }
1633
1634 boolean_t
1635 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1636 {
1637         space_map_t *sm = &vd->vdev_dtl[t];
1638         boolean_t dirty = B_FALSE;
1639
1640         ASSERT(t < DTL_TYPES);
1641         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1642
1643         mutex_enter(sm->sm_lock);
1644         if (sm->sm_space != 0)
1645                 dirty = space_map_contains(sm, txg, size);
1646         mutex_exit(sm->sm_lock);
1647
1648         return (dirty);
1649 }
1650
1651 boolean_t
1652 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1653 {
1654         space_map_t *sm = &vd->vdev_dtl[t];
1655         boolean_t empty;
1656
1657         mutex_enter(sm->sm_lock);
1658         empty = (sm->sm_space == 0);
1659         mutex_exit(sm->sm_lock);
1660
1661         return (empty);
1662 }
1663
1664 /*
1665  * Reassess DTLs after a config change or scrub completion.
1666  */
1667 void
1668 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1669 {
1670         spa_t *spa = vd->vdev_spa;
1671         avl_tree_t reftree;
1672         int minref;
1673
1674         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1675
1676         for (int c = 0; c < vd->vdev_children; c++)
1677                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1678                     scrub_txg, scrub_done);
1679
1680         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1681                 return;
1682
1683         if (vd->vdev_ops->vdev_op_leaf) {
1684                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1685
1686                 mutex_enter(&vd->vdev_dtl_lock);
1687                 if (scrub_txg != 0 &&
1688                     (spa->spa_scrub_started ||
1689                     (scn && scn->scn_phys.scn_errors == 0))) {
1690                         /*
1691                          * We completed a scrub up to scrub_txg.  If we
1692                          * did it without rebooting, then the scrub dtl
1693                          * will be valid, so excise the old region and
1694                          * fold in the scrub dtl.  Otherwise, leave the
1695                          * dtl as-is if there was an error.
1696                          *
1697                          * There's little trick here: to excise the beginning
1698                          * of the DTL_MISSING map, we put it into a reference
1699                          * tree and then add a segment with refcnt -1 that
1700                          * covers the range [0, scrub_txg).  This means
1701                          * that each txg in that range has refcnt -1 or 0.
1702                          * We then add DTL_SCRUB with a refcnt of 2, so that
1703                          * entries in the range [0, scrub_txg) will have a
1704                          * positive refcnt -- either 1 or 2.  We then convert
1705                          * the reference tree into the new DTL_MISSING map.
1706                          */
1707                         space_map_ref_create(&reftree);
1708                         space_map_ref_add_map(&reftree,
1709                             &vd->vdev_dtl[DTL_MISSING], 1);
1710                         space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1711                         space_map_ref_add_map(&reftree,
1712                             &vd->vdev_dtl[DTL_SCRUB], 2);
1713                         space_map_ref_generate_map(&reftree,
1714                             &vd->vdev_dtl[DTL_MISSING], 1);
1715                         space_map_ref_destroy(&reftree);
1716                 }
1717                 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1718                 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1719                     space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1720                 if (scrub_done)
1721                         space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1722                 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1723                 if (!vdev_readable(vd))
1724                         space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1725                 else
1726                         space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1727                             space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1728                 mutex_exit(&vd->vdev_dtl_lock);
1729
1730                 if (txg != 0)
1731                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1732                 return;
1733         }
1734
1735         mutex_enter(&vd->vdev_dtl_lock);
1736         for (int t = 0; t < DTL_TYPES; t++) {
1737                 /* account for child's outage in parent's missing map */
1738                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1739                 if (t == DTL_SCRUB)
1740                         continue;                       /* leaf vdevs only */
1741                 if (t == DTL_PARTIAL)
1742                         minref = 1;                     /* i.e. non-zero */
1743                 else if (vd->vdev_nparity != 0)
1744                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1745                 else
1746                         minref = vd->vdev_children;     /* any kind of mirror */
1747                 space_map_ref_create(&reftree);
1748                 for (int c = 0; c < vd->vdev_children; c++) {
1749                         vdev_t *cvd = vd->vdev_child[c];
1750                         mutex_enter(&cvd->vdev_dtl_lock);
1751                         space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1752                         mutex_exit(&cvd->vdev_dtl_lock);
1753                 }
1754                 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1755                 space_map_ref_destroy(&reftree);
1756         }
1757         mutex_exit(&vd->vdev_dtl_lock);
1758 }
1759
1760 static int
1761 vdev_dtl_load(vdev_t *vd)
1762 {
1763         spa_t *spa = vd->vdev_spa;
1764         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1765         objset_t *mos = spa->spa_meta_objset;
1766         dmu_buf_t *db;
1767         int error;
1768
1769         ASSERT(vd->vdev_children == 0);
1770
1771         if (smo->smo_object == 0)
1772                 return (0);
1773
1774         ASSERT(!vd->vdev_ishole);
1775
1776         if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1777                 return (error);
1778
1779         ASSERT3U(db->db_size, >=, sizeof (*smo));
1780         bcopy(db->db_data, smo, sizeof (*smo));
1781         dmu_buf_rele(db, FTAG);
1782
1783         mutex_enter(&vd->vdev_dtl_lock);
1784         error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1785             NULL, SM_ALLOC, smo, mos);
1786         mutex_exit(&vd->vdev_dtl_lock);
1787
1788         return (error);
1789 }
1790
1791 void
1792 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1793 {
1794         spa_t *spa = vd->vdev_spa;
1795         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1796         space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1797         objset_t *mos = spa->spa_meta_objset;
1798         space_map_t smsync;
1799         kmutex_t smlock;
1800         dmu_buf_t *db;
1801         dmu_tx_t *tx;
1802
1803         ASSERT(!vd->vdev_ishole);
1804
1805         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1806
1807         if (vd->vdev_detached) {
1808                 if (smo->smo_object != 0) {
1809                         int err = dmu_object_free(mos, smo->smo_object, tx);
1810                         ASSERT0(err);
1811                         smo->smo_object = 0;
1812                 }
1813                 dmu_tx_commit(tx);
1814                 return;
1815         }
1816
1817         if (smo->smo_object == 0) {
1818                 ASSERT(smo->smo_objsize == 0);
1819                 ASSERT(smo->smo_alloc == 0);
1820                 smo->smo_object = dmu_object_alloc(mos,
1821                     DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1822                     DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1823                 ASSERT(smo->smo_object != 0);
1824                 vdev_config_dirty(vd->vdev_top);
1825         }
1826
1827         mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1828
1829         space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1830             &smlock);
1831
1832         mutex_enter(&smlock);
1833
1834         mutex_enter(&vd->vdev_dtl_lock);
1835         space_map_walk(sm, space_map_add, &smsync);
1836         mutex_exit(&vd->vdev_dtl_lock);
1837
1838         space_map_truncate(smo, mos, tx);
1839         space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1840
1841         space_map_destroy(&smsync);
1842
1843         mutex_exit(&smlock);
1844         mutex_destroy(&smlock);
1845
1846         VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1847         dmu_buf_will_dirty(db, tx);
1848         ASSERT3U(db->db_size, >=, sizeof (*smo));
1849         bcopy(smo, db->db_data, sizeof (*smo));
1850         dmu_buf_rele(db, FTAG);
1851
1852         dmu_tx_commit(tx);
1853 }
1854
1855 /*
1856  * Determine whether the specified vdev can be offlined/detached/removed
1857  * without losing data.
1858  */
1859 boolean_t
1860 vdev_dtl_required(vdev_t *vd)
1861 {
1862         spa_t *spa = vd->vdev_spa;
1863         vdev_t *tvd = vd->vdev_top;
1864         uint8_t cant_read = vd->vdev_cant_read;
1865         boolean_t required;
1866
1867         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1868
1869         if (vd == spa->spa_root_vdev || vd == tvd)
1870                 return (B_TRUE);
1871
1872         /*
1873          * Temporarily mark the device as unreadable, and then determine
1874          * whether this results in any DTL outages in the top-level vdev.
1875          * If not, we can safely offline/detach/remove the device.
1876          */
1877         vd->vdev_cant_read = B_TRUE;
1878         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1879         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1880         vd->vdev_cant_read = cant_read;
1881         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1882
1883         if (!required && zio_injection_enabled)
1884                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1885
1886         return (required);
1887 }
1888
1889 /*
1890  * Determine if resilver is needed, and if so the txg range.
1891  */
1892 boolean_t
1893 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1894 {
1895         boolean_t needed = B_FALSE;
1896         uint64_t thismin = UINT64_MAX;
1897         uint64_t thismax = 0;
1898
1899         if (vd->vdev_children == 0) {
1900                 mutex_enter(&vd->vdev_dtl_lock);
1901                 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1902                     vdev_writeable(vd)) {
1903                         space_seg_t *ss;
1904
1905                         ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1906                         thismin = ss->ss_start - 1;
1907                         ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1908                         thismax = ss->ss_end;
1909                         needed = B_TRUE;
1910                 }
1911                 mutex_exit(&vd->vdev_dtl_lock);
1912         } else {
1913                 for (int c = 0; c < vd->vdev_children; c++) {
1914                         vdev_t *cvd = vd->vdev_child[c];
1915                         uint64_t cmin, cmax;
1916
1917                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1918                                 thismin = MIN(thismin, cmin);
1919                                 thismax = MAX(thismax, cmax);
1920                                 needed = B_TRUE;
1921                         }
1922                 }
1923         }
1924
1925         if (needed && minp) {
1926                 *minp = thismin;
1927                 *maxp = thismax;
1928         }
1929         return (needed);
1930 }
1931
1932 void
1933 vdev_load(vdev_t *vd)
1934 {
1935         /*
1936          * Recursively load all children.
1937          */
1938         for (int c = 0; c < vd->vdev_children; c++)
1939                 vdev_load(vd->vdev_child[c]);
1940
1941         /*
1942          * If this is a top-level vdev, initialize its metaslabs.
1943          */
1944         if (vd == vd->vdev_top && !vd->vdev_ishole &&
1945             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1946             vdev_metaslab_init(vd, 0) != 0))
1947                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1948                     VDEV_AUX_CORRUPT_DATA);
1949
1950         /*
1951          * If this is a leaf vdev, load its DTL.
1952          */
1953         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1954                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1955                     VDEV_AUX_CORRUPT_DATA);
1956 }
1957
1958 /*
1959  * The special vdev case is used for hot spares and l2cache devices.  Its
1960  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1961  * we make sure that we can open the underlying device, then try to read the
1962  * label, and make sure that the label is sane and that it hasn't been
1963  * repurposed to another pool.
1964  */
1965 int
1966 vdev_validate_aux(vdev_t *vd)
1967 {
1968         nvlist_t *label;
1969         uint64_t guid, version;
1970         uint64_t state;
1971
1972         if (!vdev_readable(vd))
1973                 return (0);
1974
1975         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
1976                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1977                     VDEV_AUX_CORRUPT_DATA);
1978                 return (-1);
1979         }
1980
1981         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1982             !SPA_VERSION_IS_SUPPORTED(version) ||
1983             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1984             guid != vd->vdev_guid ||
1985             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1986                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1987                     VDEV_AUX_CORRUPT_DATA);
1988                 nvlist_free(label);
1989                 return (-1);
1990         }
1991
1992         /*
1993          * We don't actually check the pool state here.  If it's in fact in
1994          * use by another pool, we update this fact on the fly when requested.
1995          */
1996         nvlist_free(label);
1997         return (0);
1998 }
1999
2000 void
2001 vdev_remove(vdev_t *vd, uint64_t txg)
2002 {
2003         spa_t *spa = vd->vdev_spa;
2004         objset_t *mos = spa->spa_meta_objset;
2005         dmu_tx_t *tx;
2006
2007         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2008
2009         if (vd->vdev_dtl_smo.smo_object) {
2010                 ASSERT0(vd->vdev_dtl_smo.smo_alloc);
2011                 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2012                 vd->vdev_dtl_smo.smo_object = 0;
2013         }
2014
2015         if (vd->vdev_ms != NULL) {
2016                 for (int m = 0; m < vd->vdev_ms_count; m++) {
2017                         metaslab_t *msp = vd->vdev_ms[m];
2018
2019                         if (msp == NULL || msp->ms_smo.smo_object == 0)
2020                                 continue;
2021
2022                         ASSERT0(msp->ms_smo.smo_alloc);
2023                         (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2024                         msp->ms_smo.smo_object = 0;
2025                 }
2026         }
2027
2028         if (vd->vdev_ms_array) {
2029                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2030                 vd->vdev_ms_array = 0;
2031                 vd->vdev_ms_shift = 0;
2032         }
2033         dmu_tx_commit(tx);
2034 }
2035
2036 void
2037 vdev_sync_done(vdev_t *vd, uint64_t txg)
2038 {
2039         metaslab_t *msp;
2040         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2041
2042         ASSERT(!vd->vdev_ishole);
2043
2044         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2045                 metaslab_sync_done(msp, txg);
2046
2047         if (reassess)
2048                 metaslab_sync_reassess(vd->vdev_mg);
2049 }
2050
2051 void
2052 vdev_sync(vdev_t *vd, uint64_t txg)
2053 {
2054         spa_t *spa = vd->vdev_spa;
2055         vdev_t *lvd;
2056         metaslab_t *msp;
2057         dmu_tx_t *tx;
2058
2059         ASSERT(!vd->vdev_ishole);
2060
2061         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2062                 ASSERT(vd == vd->vdev_top);
2063                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2064                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2065                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2066                 ASSERT(vd->vdev_ms_array != 0);
2067                 vdev_config_dirty(vd);
2068                 dmu_tx_commit(tx);
2069         }
2070
2071         /*
2072          * Remove the metadata associated with this vdev once it's empty.
2073          */
2074         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2075                 vdev_remove(vd, txg);
2076
2077         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2078                 metaslab_sync(msp, txg);
2079                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2080         }
2081
2082         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2083                 vdev_dtl_sync(lvd, txg);
2084
2085         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2086 }
2087
2088 uint64_t
2089 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2090 {
2091         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2092 }
2093
2094 /*
2095  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2096  * not be opened, and no I/O is attempted.
2097  */
2098 int
2099 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2100 {
2101         vdev_t *vd, *tvd;
2102
2103         spa_vdev_state_enter(spa, SCL_NONE);
2104
2105         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2106                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2107
2108         if (!vd->vdev_ops->vdev_op_leaf)
2109                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2110
2111         tvd = vd->vdev_top;
2112
2113         /*
2114          * We don't directly use the aux state here, but if we do a
2115          * vdev_reopen(), we need this value to be present to remember why we
2116          * were faulted.
2117          */
2118         vd->vdev_label_aux = aux;
2119
2120         /*
2121          * Faulted state takes precedence over degraded.
2122          */
2123         vd->vdev_delayed_close = B_FALSE;
2124         vd->vdev_faulted = 1ULL;
2125         vd->vdev_degraded = 0ULL;
2126         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2127
2128         /*
2129          * If this device has the only valid copy of the data, then
2130          * back off and simply mark the vdev as degraded instead.
2131          */
2132         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2133                 vd->vdev_degraded = 1ULL;
2134                 vd->vdev_faulted = 0ULL;
2135
2136                 /*
2137                  * If we reopen the device and it's not dead, only then do we
2138                  * mark it degraded.
2139                  */
2140                 vdev_reopen(tvd);
2141
2142                 if (vdev_readable(vd))
2143                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2144         }
2145
2146         return (spa_vdev_state_exit(spa, vd, 0));
2147 }
2148
2149 /*
2150  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2151  * user that something is wrong.  The vdev continues to operate as normal as far
2152  * as I/O is concerned.
2153  */
2154 int
2155 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2156 {
2157         vdev_t *vd;
2158
2159         spa_vdev_state_enter(spa, SCL_NONE);
2160
2161         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2162                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2163
2164         if (!vd->vdev_ops->vdev_op_leaf)
2165                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2166
2167         /*
2168          * If the vdev is already faulted, then don't do anything.
2169          */
2170         if (vd->vdev_faulted || vd->vdev_degraded)
2171                 return (spa_vdev_state_exit(spa, NULL, 0));
2172
2173         vd->vdev_degraded = 1ULL;
2174         if (!vdev_is_dead(vd))
2175                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2176                     aux);
2177
2178         return (spa_vdev_state_exit(spa, vd, 0));
2179 }
2180
2181 /*
2182  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2183  * any attached spare device should be detached when the device finishes
2184  * resilvering.  Second, the online should be treated like a 'test' online case,
2185  * so no FMA events are generated if the device fails to open.
2186  */
2187 int
2188 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2189 {
2190         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2191
2192         spa_vdev_state_enter(spa, SCL_NONE);
2193
2194         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2195                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2196
2197         if (!vd->vdev_ops->vdev_op_leaf)
2198                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2199
2200         tvd = vd->vdev_top;
2201         vd->vdev_offline = B_FALSE;
2202         vd->vdev_tmpoffline = B_FALSE;
2203         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2204         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2205
2206         /* XXX - L2ARC 1.0 does not support expansion */
2207         if (!vd->vdev_aux) {
2208                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2209                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2210         }
2211
2212         vdev_reopen(tvd);
2213         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2214
2215         if (!vd->vdev_aux) {
2216                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2217                         pvd->vdev_expanding = B_FALSE;
2218         }
2219
2220         if (newstate)
2221                 *newstate = vd->vdev_state;
2222         if ((flags & ZFS_ONLINE_UNSPARE) &&
2223             !vdev_is_dead(vd) && vd->vdev_parent &&
2224             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2225             vd->vdev_parent->vdev_child[0] == vd)
2226                 vd->vdev_unspare = B_TRUE;
2227
2228         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2229
2230                 /* XXX - L2ARC 1.0 does not support expansion */
2231                 if (vd->vdev_aux)
2232                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2233                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2234         }
2235         return (spa_vdev_state_exit(spa, vd, 0));
2236 }
2237
2238 static int
2239 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2240 {
2241         vdev_t *vd, *tvd;
2242         int error = 0;
2243         uint64_t generation;
2244         metaslab_group_t *mg;
2245
2246 top:
2247         spa_vdev_state_enter(spa, SCL_ALLOC);
2248
2249         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2250                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2251
2252         if (!vd->vdev_ops->vdev_op_leaf)
2253                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2254
2255         tvd = vd->vdev_top;
2256         mg = tvd->vdev_mg;
2257         generation = spa->spa_config_generation + 1;
2258
2259         /*
2260          * If the device isn't already offline, try to offline it.
2261          */
2262         if (!vd->vdev_offline) {
2263                 /*
2264                  * If this device has the only valid copy of some data,
2265                  * don't allow it to be offlined. Log devices are always
2266                  * expendable.
2267                  */
2268                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2269                     vdev_dtl_required(vd))
2270                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2271
2272                 /*
2273                  * If the top-level is a slog and it has had allocations
2274                  * then proceed.  We check that the vdev's metaslab group
2275                  * is not NULL since it's possible that we may have just
2276                  * added this vdev but not yet initialized its metaslabs.
2277                  */
2278                 if (tvd->vdev_islog && mg != NULL) {
2279                         /*
2280                          * Prevent any future allocations.
2281                          */
2282                         metaslab_group_passivate(mg);
2283                         (void) spa_vdev_state_exit(spa, vd, 0);
2284
2285                         error = spa_offline_log(spa);
2286
2287                         spa_vdev_state_enter(spa, SCL_ALLOC);
2288
2289                         /*
2290                          * Check to see if the config has changed.
2291                          */
2292                         if (error || generation != spa->spa_config_generation) {
2293                                 metaslab_group_activate(mg);
2294                                 if (error)
2295                                         return (spa_vdev_state_exit(spa,
2296                                             vd, error));
2297                                 (void) spa_vdev_state_exit(spa, vd, 0);
2298                                 goto top;
2299                         }
2300                         ASSERT0(tvd->vdev_stat.vs_alloc);
2301                 }
2302
2303                 /*
2304                  * Offline this device and reopen its top-level vdev.
2305                  * If the top-level vdev is a log device then just offline
2306                  * it. Otherwise, if this action results in the top-level
2307                  * vdev becoming unusable, undo it and fail the request.
2308                  */
2309                 vd->vdev_offline = B_TRUE;
2310                 vdev_reopen(tvd);
2311
2312                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2313                     vdev_is_dead(tvd)) {
2314                         vd->vdev_offline = B_FALSE;
2315                         vdev_reopen(tvd);
2316                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2317                 }
2318
2319                 /*
2320                  * Add the device back into the metaslab rotor so that
2321                  * once we online the device it's open for business.
2322                  */
2323                 if (tvd->vdev_islog && mg != NULL)
2324                         metaslab_group_activate(mg);
2325         }
2326
2327         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2328
2329         return (spa_vdev_state_exit(spa, vd, 0));
2330 }
2331
2332 int
2333 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2334 {
2335         int error;
2336
2337         mutex_enter(&spa->spa_vdev_top_lock);
2338         error = vdev_offline_locked(spa, guid, flags);
2339         mutex_exit(&spa->spa_vdev_top_lock);
2340
2341         return (error);
2342 }
2343
2344 /*
2345  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2346  * vdev_offline(), we assume the spa config is locked.  We also clear all
2347  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2348  */
2349 void
2350 vdev_clear(spa_t *spa, vdev_t *vd)
2351 {
2352         vdev_t *rvd = spa->spa_root_vdev;
2353
2354         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2355
2356         if (vd == NULL)
2357                 vd = rvd;
2358
2359         vd->vdev_stat.vs_read_errors = 0;
2360         vd->vdev_stat.vs_write_errors = 0;
2361         vd->vdev_stat.vs_checksum_errors = 0;
2362
2363         for (int c = 0; c < vd->vdev_children; c++)
2364                 vdev_clear(spa, vd->vdev_child[c]);
2365
2366         /*
2367          * If we're in the FAULTED state or have experienced failed I/O, then
2368          * clear the persistent state and attempt to reopen the device.  We
2369          * also mark the vdev config dirty, so that the new faulted state is
2370          * written out to disk.
2371          */
2372         if (vd->vdev_faulted || vd->vdev_degraded ||
2373             !vdev_readable(vd) || !vdev_writeable(vd)) {
2374
2375                 /*
2376                  * When reopening in reponse to a clear event, it may be due to
2377                  * a fmadm repair request.  In this case, if the device is
2378                  * still broken, we want to still post the ereport again.
2379                  */
2380                 vd->vdev_forcefault = B_TRUE;
2381
2382                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2383                 vd->vdev_cant_read = B_FALSE;
2384                 vd->vdev_cant_write = B_FALSE;
2385
2386                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2387
2388                 vd->vdev_forcefault = B_FALSE;
2389
2390                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2391                         vdev_state_dirty(vd->vdev_top);
2392
2393                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2394                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2395
2396                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2397         }
2398
2399         /*
2400          * When clearing a FMA-diagnosed fault, we always want to
2401          * unspare the device, as we assume that the original spare was
2402          * done in response to the FMA fault.
2403          */
2404         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2405             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2406             vd->vdev_parent->vdev_child[0] == vd)
2407                 vd->vdev_unspare = B_TRUE;
2408 }
2409
2410 boolean_t
2411 vdev_is_dead(vdev_t *vd)
2412 {
2413         /*
2414          * Holes and missing devices are always considered "dead".
2415          * This simplifies the code since we don't have to check for
2416          * these types of devices in the various code paths.
2417          * Instead we rely on the fact that we skip over dead devices
2418          * before issuing I/O to them.
2419          */
2420         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2421             vd->vdev_ops == &vdev_missing_ops);
2422 }
2423
2424 boolean_t
2425 vdev_readable(vdev_t *vd)
2426 {
2427         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2428 }
2429
2430 boolean_t
2431 vdev_writeable(vdev_t *vd)
2432 {
2433         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2434 }
2435
2436 boolean_t
2437 vdev_allocatable(vdev_t *vd)
2438 {
2439         uint64_t state = vd->vdev_state;
2440
2441         /*
2442          * We currently allow allocations from vdevs which may be in the
2443          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2444          * fails to reopen then we'll catch it later when we're holding
2445          * the proper locks.  Note that we have to get the vdev state
2446          * in a local variable because although it changes atomically,
2447          * we're asking two separate questions about it.
2448          */
2449         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2450             !vd->vdev_cant_write && !vd->vdev_ishole);
2451 }
2452
2453 boolean_t
2454 vdev_accessible(vdev_t *vd, zio_t *zio)
2455 {
2456         ASSERT(zio->io_vd == vd);
2457
2458         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2459                 return (B_FALSE);
2460
2461         if (zio->io_type == ZIO_TYPE_READ)
2462                 return (!vd->vdev_cant_read);
2463
2464         if (zio->io_type == ZIO_TYPE_WRITE)
2465                 return (!vd->vdev_cant_write);
2466
2467         return (B_TRUE);
2468 }
2469
2470 /*
2471  * Get statistics for the given vdev.
2472  */
2473 void
2474 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2475 {
2476         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2477
2478         mutex_enter(&vd->vdev_stat_lock);
2479         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2480         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2481         vs->vs_state = vd->vdev_state;
2482         vs->vs_rsize = vdev_get_min_asize(vd);
2483         if (vd->vdev_ops->vdev_op_leaf)
2484                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2485         vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2486         mutex_exit(&vd->vdev_stat_lock);
2487
2488         /*
2489          * If we're getting stats on the root vdev, aggregate the I/O counts
2490          * over all top-level vdevs (i.e. the direct children of the root).
2491          */
2492         if (vd == rvd) {
2493                 for (int c = 0; c < rvd->vdev_children; c++) {
2494                         vdev_t *cvd = rvd->vdev_child[c];
2495                         vdev_stat_t *cvs = &cvd->vdev_stat;
2496
2497                         mutex_enter(&vd->vdev_stat_lock);
2498                         for (int t = 0; t < ZIO_TYPES; t++) {
2499                                 vs->vs_ops[t] += cvs->vs_ops[t];
2500                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2501                         }
2502                         cvs->vs_scan_removing = cvd->vdev_removing;
2503                         mutex_exit(&vd->vdev_stat_lock);
2504                 }
2505         }
2506 }
2507
2508 void
2509 vdev_clear_stats(vdev_t *vd)
2510 {
2511         mutex_enter(&vd->vdev_stat_lock);
2512         vd->vdev_stat.vs_space = 0;
2513         vd->vdev_stat.vs_dspace = 0;
2514         vd->vdev_stat.vs_alloc = 0;
2515         mutex_exit(&vd->vdev_stat_lock);
2516 }
2517
2518 void
2519 vdev_scan_stat_init(vdev_t *vd)
2520 {
2521         vdev_stat_t *vs = &vd->vdev_stat;
2522
2523         for (int c = 0; c < vd->vdev_children; c++)
2524                 vdev_scan_stat_init(vd->vdev_child[c]);
2525
2526         mutex_enter(&vd->vdev_stat_lock);
2527         vs->vs_scan_processed = 0;
2528         mutex_exit(&vd->vdev_stat_lock);
2529 }
2530
2531 void
2532 vdev_stat_update(zio_t *zio, uint64_t psize)
2533 {
2534         spa_t *spa = zio->io_spa;
2535         vdev_t *rvd = spa->spa_root_vdev;
2536         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2537         vdev_t *pvd;
2538         uint64_t txg = zio->io_txg;
2539         vdev_stat_t *vs = &vd->vdev_stat;
2540         zio_type_t type = zio->io_type;
2541         int flags = zio->io_flags;
2542
2543         /*
2544          * If this i/o is a gang leader, it didn't do any actual work.
2545          */
2546         if (zio->io_gang_tree)
2547                 return;
2548
2549         if (zio->io_error == 0) {
2550                 /*
2551                  * If this is a root i/o, don't count it -- we've already
2552                  * counted the top-level vdevs, and vdev_get_stats() will
2553                  * aggregate them when asked.  This reduces contention on
2554                  * the root vdev_stat_lock and implicitly handles blocks
2555                  * that compress away to holes, for which there is no i/o.
2556                  * (Holes never create vdev children, so all the counters
2557                  * remain zero, which is what we want.)
2558                  *
2559                  * Note: this only applies to successful i/o (io_error == 0)
2560                  * because unlike i/o counts, errors are not additive.
2561                  * When reading a ditto block, for example, failure of
2562                  * one top-level vdev does not imply a root-level error.
2563                  */
2564                 if (vd == rvd)
2565                         return;
2566
2567                 ASSERT(vd == zio->io_vd);
2568
2569                 if (flags & ZIO_FLAG_IO_BYPASS)
2570                         return;
2571
2572                 mutex_enter(&vd->vdev_stat_lock);
2573
2574                 if (flags & ZIO_FLAG_IO_REPAIR) {
2575                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2576                                 dsl_scan_phys_t *scn_phys =
2577                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2578                                 uint64_t *processed = &scn_phys->scn_processed;
2579
2580                                 /* XXX cleanup? */
2581                                 if (vd->vdev_ops->vdev_op_leaf)
2582                                         atomic_add_64(processed, psize);
2583                                 vs->vs_scan_processed += psize;
2584                         }
2585
2586                         if (flags & ZIO_FLAG_SELF_HEAL)
2587                                 vs->vs_self_healed += psize;
2588                 }
2589
2590                 vs->vs_ops[type]++;
2591                 vs->vs_bytes[type] += psize;
2592
2593                 mutex_exit(&vd->vdev_stat_lock);
2594                 return;
2595         }
2596
2597         if (flags & ZIO_FLAG_SPECULATIVE)
2598                 return;
2599
2600         /*
2601          * If this is an I/O error that is going to be retried, then ignore the
2602          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2603          * hard errors, when in reality they can happen for any number of
2604          * innocuous reasons (bus resets, MPxIO link failure, etc).
2605          */
2606         if (zio->io_error == EIO &&
2607             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2608                 return;
2609
2610         /*
2611          * Intent logs writes won't propagate their error to the root
2612          * I/O so don't mark these types of failures as pool-level
2613          * errors.
2614          */
2615         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2616                 return;
2617
2618         mutex_enter(&vd->vdev_stat_lock);
2619         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2620                 if (zio->io_error == ECKSUM)
2621                         vs->vs_checksum_errors++;
2622                 else
2623                         vs->vs_read_errors++;
2624         }
2625         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2626                 vs->vs_write_errors++;
2627         mutex_exit(&vd->vdev_stat_lock);
2628
2629         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2630             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2631             (flags & ZIO_FLAG_SCAN_THREAD) ||
2632             spa->spa_claiming)) {
2633                 /*
2634                  * This is either a normal write (not a repair), or it's
2635                  * a repair induced by the scrub thread, or it's a repair
2636                  * made by zil_claim() during spa_load() in the first txg.
2637                  * In the normal case, we commit the DTL change in the same
2638                  * txg as the block was born.  In the scrub-induced repair
2639                  * case, we know that scrubs run in first-pass syncing context,
2640                  * so we commit the DTL change in spa_syncing_txg(spa).
2641                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2642                  *
2643                  * We currently do not make DTL entries for failed spontaneous
2644                  * self-healing writes triggered by normal (non-scrubbing)
2645                  * reads, because we have no transactional context in which to
2646                  * do so -- and it's not clear that it'd be desirable anyway.
2647                  */
2648                 if (vd->vdev_ops->vdev_op_leaf) {
2649                         uint64_t commit_txg = txg;
2650                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2651                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2652                                 ASSERT(spa_sync_pass(spa) == 1);
2653                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2654                                 commit_txg = spa_syncing_txg(spa);
2655                         } else if (spa->spa_claiming) {
2656                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2657                                 commit_txg = spa_first_txg(spa);
2658                         }
2659                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2660                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2661                                 return;
2662                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2663                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2664                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2665                 }
2666                 if (vd != rvd)
2667                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2668         }
2669 }
2670
2671 /*
2672  * Update the in-core space usage stats for this vdev, its metaslab class,
2673  * and the root vdev.
2674  */
2675 void
2676 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2677     int64_t space_delta)
2678 {
2679         int64_t dspace_delta = space_delta;
2680         spa_t *spa = vd->vdev_spa;
2681         vdev_t *rvd = spa->spa_root_vdev;
2682         metaslab_group_t *mg = vd->vdev_mg;
2683         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2684
2685         ASSERT(vd == vd->vdev_top);
2686
2687         /*
2688          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2689          * factor.  We must calculate this here and not at the root vdev
2690          * because the root vdev's psize-to-asize is simply the max of its
2691          * childrens', thus not accurate enough for us.
2692          */
2693         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2694         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2695         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2696             vd->vdev_deflate_ratio;
2697
2698         mutex_enter(&vd->vdev_stat_lock);
2699         vd->vdev_stat.vs_alloc += alloc_delta;
2700         vd->vdev_stat.vs_space += space_delta;
2701         vd->vdev_stat.vs_dspace += dspace_delta;
2702         mutex_exit(&vd->vdev_stat_lock);
2703
2704         if (mc == spa_normal_class(spa)) {
2705                 mutex_enter(&rvd->vdev_stat_lock);
2706                 rvd->vdev_stat.vs_alloc += alloc_delta;
2707                 rvd->vdev_stat.vs_space += space_delta;
2708                 rvd->vdev_stat.vs_dspace += dspace_delta;
2709                 mutex_exit(&rvd->vdev_stat_lock);
2710         }
2711
2712         if (mc != NULL) {
2713                 ASSERT(rvd == vd->vdev_parent);
2714                 ASSERT(vd->vdev_ms_count != 0);
2715
2716                 metaslab_class_space_update(mc,
2717                     alloc_delta, defer_delta, space_delta, dspace_delta);
2718         }
2719 }
2720
2721 /*
2722  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2723  * so that it will be written out next time the vdev configuration is synced.
2724  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2725  */
2726 void
2727 vdev_config_dirty(vdev_t *vd)
2728 {
2729         spa_t *spa = vd->vdev_spa;
2730         vdev_t *rvd = spa->spa_root_vdev;
2731         int c;
2732
2733         ASSERT(spa_writeable(spa));
2734
2735         /*
2736          * If this is an aux vdev (as with l2cache and spare devices), then we
2737          * update the vdev config manually and set the sync flag.
2738          */
2739         if (vd->vdev_aux != NULL) {
2740                 spa_aux_vdev_t *sav = vd->vdev_aux;
2741                 nvlist_t **aux;
2742                 uint_t naux;
2743
2744                 for (c = 0; c < sav->sav_count; c++) {
2745                         if (sav->sav_vdevs[c] == vd)
2746                                 break;
2747                 }
2748
2749                 if (c == sav->sav_count) {
2750                         /*
2751                          * We're being removed.  There's nothing more to do.
2752                          */
2753                         ASSERT(sav->sav_sync == B_TRUE);
2754                         return;
2755                 }
2756
2757                 sav->sav_sync = B_TRUE;
2758
2759                 if (nvlist_lookup_nvlist_array(sav->sav_config,
2760                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2761                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2762                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2763                 }
2764
2765                 ASSERT(c < naux);
2766
2767                 /*
2768                  * Setting the nvlist in the middle if the array is a little
2769                  * sketchy, but it will work.
2770                  */
2771                 nvlist_free(aux[c]);
2772                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2773
2774                 return;
2775         }
2776
2777         /*
2778          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2779          * must either hold SCL_CONFIG as writer, or must be the sync thread
2780          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2781          * so this is sufficient to ensure mutual exclusion.
2782          */
2783         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2784             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2785             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2786
2787         if (vd == rvd) {
2788                 for (c = 0; c < rvd->vdev_children; c++)
2789                         vdev_config_dirty(rvd->vdev_child[c]);
2790         } else {
2791                 ASSERT(vd == vd->vdev_top);
2792
2793                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2794                     !vd->vdev_ishole)
2795                         list_insert_head(&spa->spa_config_dirty_list, vd);
2796         }
2797 }
2798
2799 void
2800 vdev_config_clean(vdev_t *vd)
2801 {
2802         spa_t *spa = vd->vdev_spa;
2803
2804         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2805             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2806             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2807
2808         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2809         list_remove(&spa->spa_config_dirty_list, vd);
2810 }
2811
2812 /*
2813  * Mark a top-level vdev's state as dirty, so that the next pass of
2814  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2815  * the state changes from larger config changes because they require
2816  * much less locking, and are often needed for administrative actions.
2817  */
2818 void
2819 vdev_state_dirty(vdev_t *vd)
2820 {
2821         spa_t *spa = vd->vdev_spa;
2822
2823         ASSERT(spa_writeable(spa));
2824         ASSERT(vd == vd->vdev_top);
2825
2826         /*
2827          * The state list is protected by the SCL_STATE lock.  The caller
2828          * must either hold SCL_STATE as writer, or must be the sync thread
2829          * (which holds SCL_STATE as reader).  There's only one sync thread,
2830          * so this is sufficient to ensure mutual exclusion.
2831          */
2832         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2833             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2834             spa_config_held(spa, SCL_STATE, RW_READER)));
2835
2836         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2837                 list_insert_head(&spa->spa_state_dirty_list, vd);
2838 }
2839
2840 void
2841 vdev_state_clean(vdev_t *vd)
2842 {
2843         spa_t *spa = vd->vdev_spa;
2844
2845         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2846             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2847             spa_config_held(spa, SCL_STATE, RW_READER)));
2848
2849         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2850         list_remove(&spa->spa_state_dirty_list, vd);
2851 }
2852
2853 /*
2854  * Propagate vdev state up from children to parent.
2855  */
2856 void
2857 vdev_propagate_state(vdev_t *vd)
2858 {
2859         spa_t *spa = vd->vdev_spa;
2860         vdev_t *rvd = spa->spa_root_vdev;
2861         int degraded = 0, faulted = 0;
2862         int corrupted = 0;
2863         vdev_t *child;
2864
2865         if (vd->vdev_children > 0) {
2866                 for (int c = 0; c < vd->vdev_children; c++) {
2867                         child = vd->vdev_child[c];
2868
2869                         /*
2870                          * Don't factor holes into the decision.
2871                          */
2872                         if (child->vdev_ishole)
2873                                 continue;
2874
2875                         if (!vdev_readable(child) ||
2876                             (!vdev_writeable(child) && spa_writeable(spa))) {
2877                                 /*
2878                                  * Root special: if there is a top-level log
2879                                  * device, treat the root vdev as if it were
2880                                  * degraded.
2881                                  */
2882                                 if (child->vdev_islog && vd == rvd)
2883                                         degraded++;
2884                                 else
2885                                         faulted++;
2886                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2887                                 degraded++;
2888                         }
2889
2890                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2891                                 corrupted++;
2892                 }
2893
2894                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2895
2896                 /*
2897                  * Root special: if there is a top-level vdev that cannot be
2898                  * opened due to corrupted metadata, then propagate the root
2899                  * vdev's aux state as 'corrupt' rather than 'insufficient
2900                  * replicas'.
2901                  */
2902                 if (corrupted && vd == rvd &&
2903                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2904                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2905                             VDEV_AUX_CORRUPT_DATA);
2906         }
2907
2908         if (vd->vdev_parent)
2909                 vdev_propagate_state(vd->vdev_parent);
2910 }
2911
2912 /*
2913  * Set a vdev's state.  If this is during an open, we don't update the parent
2914  * state, because we're in the process of opening children depth-first.
2915  * Otherwise, we propagate the change to the parent.
2916  *
2917  * If this routine places a device in a faulted state, an appropriate ereport is
2918  * generated.
2919  */
2920 void
2921 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2922 {
2923         uint64_t save_state;
2924         spa_t *spa = vd->vdev_spa;
2925
2926         if (state == vd->vdev_state) {
2927                 vd->vdev_stat.vs_aux = aux;
2928                 return;
2929         }
2930
2931         save_state = vd->vdev_state;
2932
2933         vd->vdev_state = state;
2934         vd->vdev_stat.vs_aux = aux;
2935
2936         /*
2937          * If we are setting the vdev state to anything but an open state, then
2938          * always close the underlying device unless the device has requested
2939          * a delayed close (i.e. we're about to remove or fault the device).
2940          * Otherwise, we keep accessible but invalid devices open forever.
2941          * We don't call vdev_close() itself, because that implies some extra
2942          * checks (offline, etc) that we don't want here.  This is limited to
2943          * leaf devices, because otherwise closing the device will affect other
2944          * children.
2945          */
2946         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2947             vd->vdev_ops->vdev_op_leaf)
2948                 vd->vdev_ops->vdev_op_close(vd);
2949
2950         /*
2951          * If we have brought this vdev back into service, we need
2952          * to notify fmd so that it can gracefully repair any outstanding
2953          * cases due to a missing device.  We do this in all cases, even those
2954          * that probably don't correlate to a repaired fault.  This is sure to
2955          * catch all cases, and we let the zfs-retire agent sort it out.  If
2956          * this is a transient state it's OK, as the retire agent will
2957          * double-check the state of the vdev before repairing it.
2958          */
2959         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2960             vd->vdev_prevstate != state)
2961                 zfs_post_state_change(spa, vd);
2962
2963         if (vd->vdev_removed &&
2964             state == VDEV_STATE_CANT_OPEN &&
2965             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2966                 /*
2967                  * If the previous state is set to VDEV_STATE_REMOVED, then this
2968                  * device was previously marked removed and someone attempted to
2969                  * reopen it.  If this failed due to a nonexistent device, then
2970                  * keep the device in the REMOVED state.  We also let this be if
2971                  * it is one of our special test online cases, which is only
2972                  * attempting to online the device and shouldn't generate an FMA
2973                  * fault.
2974                  */
2975                 vd->vdev_state = VDEV_STATE_REMOVED;
2976                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2977         } else if (state == VDEV_STATE_REMOVED) {
2978                 vd->vdev_removed = B_TRUE;
2979         } else if (state == VDEV_STATE_CANT_OPEN) {
2980                 /*
2981                  * If we fail to open a vdev during an import or recovery, we
2982                  * mark it as "not available", which signifies that it was
2983                  * never there to begin with.  Failure to open such a device
2984                  * is not considered an error.
2985                  */
2986                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
2987                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
2988                     vd->vdev_ops->vdev_op_leaf)
2989                         vd->vdev_not_present = 1;
2990
2991                 /*
2992                  * Post the appropriate ereport.  If the 'prevstate' field is
2993                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
2994                  * that this is part of a vdev_reopen().  In this case, we don't
2995                  * want to post the ereport if the device was already in the
2996                  * CANT_OPEN state beforehand.
2997                  *
2998                  * If the 'checkremove' flag is set, then this is an attempt to
2999                  * online the device in response to an insertion event.  If we
3000                  * hit this case, then we have detected an insertion event for a
3001                  * faulted or offline device that wasn't in the removed state.
3002                  * In this scenario, we don't post an ereport because we are
3003                  * about to replace the device, or attempt an online with
3004                  * vdev_forcefault, which will generate the fault for us.
3005                  */
3006                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3007                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3008                     vd != spa->spa_root_vdev) {
3009                         const char *class;
3010
3011                         switch (aux) {
3012                         case VDEV_AUX_OPEN_FAILED:
3013                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3014                                 break;
3015                         case VDEV_AUX_CORRUPT_DATA:
3016                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3017                                 break;
3018                         case VDEV_AUX_NO_REPLICAS:
3019                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3020                                 break;
3021                         case VDEV_AUX_BAD_GUID_SUM:
3022                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3023                                 break;
3024                         case VDEV_AUX_TOO_SMALL:
3025                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3026                                 break;
3027                         case VDEV_AUX_BAD_LABEL:
3028                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3029                                 break;
3030                         default:
3031                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3032                         }
3033
3034                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3035                 }
3036
3037                 /* Erase any notion of persistent removed state */
3038                 vd->vdev_removed = B_FALSE;
3039         } else {
3040                 vd->vdev_removed = B_FALSE;
3041         }
3042
3043         if (!isopen && vd->vdev_parent)
3044                 vdev_propagate_state(vd->vdev_parent);
3045 }
3046
3047 /*
3048  * Check the vdev configuration to ensure that it's capable of supporting
3049  * a root pool.
3050  *
3051  * On Solaris, we do not support RAID-Z or partial configuration.  In
3052  * addition, only a single top-level vdev is allowed and none of the
3053  * leaves can be wholedisks.
3054  *
3055  * For FreeBSD, we can boot from any configuration. There is a
3056  * limitation that the boot filesystem must be either uncompressed or
3057  * compresses with lzjb compression but I'm not sure how to enforce
3058  * that here.
3059  */
3060 boolean_t
3061 vdev_is_bootable(vdev_t *vd)
3062 {
3063 #ifdef sun
3064         if (!vd->vdev_ops->vdev_op_leaf) {
3065                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3066
3067                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3068                     vd->vdev_children > 1) {
3069                         return (B_FALSE);
3070                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3071                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3072                         return (B_FALSE);
3073                 }
3074         } else if (vd->vdev_wholedisk == 1) {
3075                 return (B_FALSE);
3076         }
3077
3078         for (int c = 0; c < vd->vdev_children; c++) {
3079                 if (!vdev_is_bootable(vd->vdev_child[c]))
3080                         return (B_FALSE);
3081         }
3082 #endif  /* sun */
3083         return (B_TRUE);
3084 }
3085
3086 /*
3087  * Load the state from the original vdev tree (ovd) which
3088  * we've retrieved from the MOS config object. If the original
3089  * vdev was offline or faulted then we transfer that state to the
3090  * device in the current vdev tree (nvd).
3091  */
3092 void
3093 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3094 {
3095         spa_t *spa = nvd->vdev_spa;
3096
3097         ASSERT(nvd->vdev_top->vdev_islog);
3098         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3099         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3100
3101         for (int c = 0; c < nvd->vdev_children; c++)
3102                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3103
3104         if (nvd->vdev_ops->vdev_op_leaf) {
3105                 /*
3106                  * Restore the persistent vdev state
3107                  */
3108                 nvd->vdev_offline = ovd->vdev_offline;
3109                 nvd->vdev_faulted = ovd->vdev_faulted;
3110                 nvd->vdev_degraded = ovd->vdev_degraded;
3111                 nvd->vdev_removed = ovd->vdev_removed;
3112         }
3113 }
3114
3115 /*
3116  * Determine if a log device has valid content.  If the vdev was
3117  * removed or faulted in the MOS config then we know that
3118  * the content on the log device has already been written to the pool.
3119  */
3120 boolean_t
3121 vdev_log_state_valid(vdev_t *vd)
3122 {
3123         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3124             !vd->vdev_removed)
3125                 return (B_TRUE);
3126
3127         for (int c = 0; c < vd->vdev_children; c++)
3128                 if (vdev_log_state_valid(vd->vdev_child[c]))
3129                         return (B_TRUE);
3130
3131         return (B_FALSE);
3132 }
3133
3134 /*
3135  * Expand a vdev if possible.
3136  */
3137 void
3138 vdev_expand(vdev_t *vd, uint64_t txg)
3139 {
3140         ASSERT(vd->vdev_top == vd);
3141         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3142
3143         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3144                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3145                 vdev_config_dirty(vd);
3146         }
3147 }
3148
3149 /*
3150  * Split a vdev.
3151  */
3152 void
3153 vdev_split(vdev_t *vd)
3154 {
3155         vdev_t *cvd, *pvd = vd->vdev_parent;
3156
3157         vdev_remove_child(pvd, vd);
3158         vdev_compact_children(pvd);
3159
3160         cvd = pvd->vdev_child[0];
3161         if (pvd->vdev_children == 1) {
3162                 vdev_remove_parent(cvd);
3163                 cvd->vdev_splitting = B_TRUE;
3164         }
3165         vdev_propagate_state(cvd);
3166 }