]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c
MFC r230514:
[FreeBSD/stable/9.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2011 by Delphix. All rights reserved.
26  */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/zio.h>
40 #include <sys/zap.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/arc.h>
43 #include <sys/zil.h>
44 #include <sys/dsl_scan.h>
45
46 SYSCTL_DECL(_vfs_zfs);
47 SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
48
49 /*
50  * Virtual device management.
51  */
52
53 static vdev_ops_t *vdev_ops_table[] = {
54         &vdev_root_ops,
55         &vdev_raidz_ops,
56         &vdev_mirror_ops,
57         &vdev_replacing_ops,
58         &vdev_spare_ops,
59 #ifdef _KERNEL
60         &vdev_geom_ops,
61 #else
62         &vdev_disk_ops,
63 #endif
64         &vdev_file_ops,
65         &vdev_missing_ops,
66         &vdev_hole_ops,
67         NULL
68 };
69
70 /* maximum scrub/resilver I/O queue per leaf vdev */
71 int zfs_scrub_limit = 10;
72
73 TUNABLE_INT("vfs.zfs.scrub_limit", &zfs_scrub_limit);
74 SYSCTL_INT(_vfs_zfs, OID_AUTO, scrub_limit, CTLFLAG_RDTUN, &zfs_scrub_limit, 0,
75     "Maximum scrub/resilver I/O queue");
76
77 /*
78  * Given a vdev type, return the appropriate ops vector.
79  */
80 static vdev_ops_t *
81 vdev_getops(const char *type)
82 {
83         vdev_ops_t *ops, **opspp;
84
85         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
86                 if (strcmp(ops->vdev_op_type, type) == 0)
87                         break;
88
89         return (ops);
90 }
91
92 /*
93  * Default asize function: return the MAX of psize with the asize of
94  * all children.  This is what's used by anything other than RAID-Z.
95  */
96 uint64_t
97 vdev_default_asize(vdev_t *vd, uint64_t psize)
98 {
99         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
100         uint64_t csize;
101
102         for (int c = 0; c < vd->vdev_children; c++) {
103                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
104                 asize = MAX(asize, csize);
105         }
106
107         return (asize);
108 }
109
110 /*
111  * Get the minimum allocatable size. We define the allocatable size as
112  * the vdev's asize rounded to the nearest metaslab. This allows us to
113  * replace or attach devices which don't have the same physical size but
114  * can still satisfy the same number of allocations.
115  */
116 uint64_t
117 vdev_get_min_asize(vdev_t *vd)
118 {
119         vdev_t *pvd = vd->vdev_parent;
120
121         /*
122          * The our parent is NULL (inactive spare or cache) or is the root,
123          * just return our own asize.
124          */
125         if (pvd == NULL)
126                 return (vd->vdev_asize);
127
128         /*
129          * The top-level vdev just returns the allocatable size rounded
130          * to the nearest metaslab.
131          */
132         if (vd == vd->vdev_top)
133                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
134
135         /*
136          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
137          * so each child must provide at least 1/Nth of its asize.
138          */
139         if (pvd->vdev_ops == &vdev_raidz_ops)
140                 return (pvd->vdev_min_asize / pvd->vdev_children);
141
142         return (pvd->vdev_min_asize);
143 }
144
145 void
146 vdev_set_min_asize(vdev_t *vd)
147 {
148         vd->vdev_min_asize = vdev_get_min_asize(vd);
149
150         for (int c = 0; c < vd->vdev_children; c++)
151                 vdev_set_min_asize(vd->vdev_child[c]);
152 }
153
154 vdev_t *
155 vdev_lookup_top(spa_t *spa, uint64_t vdev)
156 {
157         vdev_t *rvd = spa->spa_root_vdev;
158
159         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
160
161         if (vdev < rvd->vdev_children) {
162                 ASSERT(rvd->vdev_child[vdev] != NULL);
163                 return (rvd->vdev_child[vdev]);
164         }
165
166         return (NULL);
167 }
168
169 vdev_t *
170 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
171 {
172         vdev_t *mvd;
173
174         if (vd->vdev_guid == guid)
175                 return (vd);
176
177         for (int c = 0; c < vd->vdev_children; c++)
178                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
179                     NULL)
180                         return (mvd);
181
182         return (NULL);
183 }
184
185 void
186 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
187 {
188         size_t oldsize, newsize;
189         uint64_t id = cvd->vdev_id;
190         vdev_t **newchild;
191
192         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
193         ASSERT(cvd->vdev_parent == NULL);
194
195         cvd->vdev_parent = pvd;
196
197         if (pvd == NULL)
198                 return;
199
200         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
201
202         oldsize = pvd->vdev_children * sizeof (vdev_t *);
203         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
204         newsize = pvd->vdev_children * sizeof (vdev_t *);
205
206         newchild = kmem_zalloc(newsize, KM_SLEEP);
207         if (pvd->vdev_child != NULL) {
208                 bcopy(pvd->vdev_child, newchild, oldsize);
209                 kmem_free(pvd->vdev_child, oldsize);
210         }
211
212         pvd->vdev_child = newchild;
213         pvd->vdev_child[id] = cvd;
214
215         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
216         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
217
218         /*
219          * Walk up all ancestors to update guid sum.
220          */
221         for (; pvd != NULL; pvd = pvd->vdev_parent)
222                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
223 }
224
225 void
226 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
227 {
228         int c;
229         uint_t id = cvd->vdev_id;
230
231         ASSERT(cvd->vdev_parent == pvd);
232
233         if (pvd == NULL)
234                 return;
235
236         ASSERT(id < pvd->vdev_children);
237         ASSERT(pvd->vdev_child[id] == cvd);
238
239         pvd->vdev_child[id] = NULL;
240         cvd->vdev_parent = NULL;
241
242         for (c = 0; c < pvd->vdev_children; c++)
243                 if (pvd->vdev_child[c])
244                         break;
245
246         if (c == pvd->vdev_children) {
247                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
248                 pvd->vdev_child = NULL;
249                 pvd->vdev_children = 0;
250         }
251
252         /*
253          * Walk up all ancestors to update guid sum.
254          */
255         for (; pvd != NULL; pvd = pvd->vdev_parent)
256                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
257 }
258
259 /*
260  * Remove any holes in the child array.
261  */
262 void
263 vdev_compact_children(vdev_t *pvd)
264 {
265         vdev_t **newchild, *cvd;
266         int oldc = pvd->vdev_children;
267         int newc;
268
269         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
270
271         for (int c = newc = 0; c < oldc; c++)
272                 if (pvd->vdev_child[c])
273                         newc++;
274
275         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
276
277         for (int c = newc = 0; c < oldc; c++) {
278                 if ((cvd = pvd->vdev_child[c]) != NULL) {
279                         newchild[newc] = cvd;
280                         cvd->vdev_id = newc++;
281                 }
282         }
283
284         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
285         pvd->vdev_child = newchild;
286         pvd->vdev_children = newc;
287 }
288
289 /*
290  * Allocate and minimally initialize a vdev_t.
291  */
292 vdev_t *
293 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
294 {
295         vdev_t *vd;
296
297         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
298
299         if (spa->spa_root_vdev == NULL) {
300                 ASSERT(ops == &vdev_root_ops);
301                 spa->spa_root_vdev = vd;
302                 spa->spa_load_guid = spa_generate_guid(NULL);
303         }
304
305         if (guid == 0 && ops != &vdev_hole_ops) {
306                 if (spa->spa_root_vdev == vd) {
307                         /*
308                          * The root vdev's guid will also be the pool guid,
309                          * which must be unique among all pools.
310                          */
311                         guid = spa_generate_guid(NULL);
312                 } else {
313                         /*
314                          * Any other vdev's guid must be unique within the pool.
315                          */
316                         guid = spa_generate_guid(spa);
317                 }
318                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
319         }
320
321         vd->vdev_spa = spa;
322         vd->vdev_id = id;
323         vd->vdev_guid = guid;
324         vd->vdev_guid_sum = guid;
325         vd->vdev_ops = ops;
326         vd->vdev_state = VDEV_STATE_CLOSED;
327         vd->vdev_ishole = (ops == &vdev_hole_ops);
328
329         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
330         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
331         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
332         for (int t = 0; t < DTL_TYPES; t++) {
333                 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
334                     &vd->vdev_dtl_lock);
335         }
336         txg_list_create(&vd->vdev_ms_list,
337             offsetof(struct metaslab, ms_txg_node));
338         txg_list_create(&vd->vdev_dtl_list,
339             offsetof(struct vdev, vdev_dtl_node));
340         vd->vdev_stat.vs_timestamp = gethrtime();
341         vdev_queue_init(vd);
342         vdev_cache_init(vd);
343
344         return (vd);
345 }
346
347 /*
348  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
349  * creating a new vdev or loading an existing one - the behavior is slightly
350  * different for each case.
351  */
352 int
353 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
354     int alloctype)
355 {
356         vdev_ops_t *ops;
357         char *type;
358         uint64_t guid = 0, islog, nparity;
359         vdev_t *vd;
360
361         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
362
363         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
364                 return (EINVAL);
365
366         if ((ops = vdev_getops(type)) == NULL)
367                 return (EINVAL);
368
369         /*
370          * If this is a load, get the vdev guid from the nvlist.
371          * Otherwise, vdev_alloc_common() will generate one for us.
372          */
373         if (alloctype == VDEV_ALLOC_LOAD) {
374                 uint64_t label_id;
375
376                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
377                     label_id != id)
378                         return (EINVAL);
379
380                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
381                         return (EINVAL);
382         } else if (alloctype == VDEV_ALLOC_SPARE) {
383                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
384                         return (EINVAL);
385         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
386                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
387                         return (EINVAL);
388         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
389                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
390                         return (EINVAL);
391         }
392
393         /*
394          * The first allocated vdev must be of type 'root'.
395          */
396         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
397                 return (EINVAL);
398
399         /*
400          * Determine whether we're a log vdev.
401          */
402         islog = 0;
403         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
404         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
405                 return (ENOTSUP);
406
407         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
408                 return (ENOTSUP);
409
410         /*
411          * Set the nparity property for RAID-Z vdevs.
412          */
413         nparity = -1ULL;
414         if (ops == &vdev_raidz_ops) {
415                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
416                     &nparity) == 0) {
417                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
418                                 return (EINVAL);
419                         /*
420                          * Previous versions could only support 1 or 2 parity
421                          * device.
422                          */
423                         if (nparity > 1 &&
424                             spa_version(spa) < SPA_VERSION_RAIDZ2)
425                                 return (ENOTSUP);
426                         if (nparity > 2 &&
427                             spa_version(spa) < SPA_VERSION_RAIDZ3)
428                                 return (ENOTSUP);
429                 } else {
430                         /*
431                          * We require the parity to be specified for SPAs that
432                          * support multiple parity levels.
433                          */
434                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
435                                 return (EINVAL);
436                         /*
437                          * Otherwise, we default to 1 parity device for RAID-Z.
438                          */
439                         nparity = 1;
440                 }
441         } else {
442                 nparity = 0;
443         }
444         ASSERT(nparity != -1ULL);
445
446         vd = vdev_alloc_common(spa, id, guid, ops);
447
448         vd->vdev_islog = islog;
449         vd->vdev_nparity = nparity;
450
451         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
452                 vd->vdev_path = spa_strdup(vd->vdev_path);
453         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
454                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
455         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
456             &vd->vdev_physpath) == 0)
457                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
458         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
459                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
460
461         /*
462          * Set the whole_disk property.  If it's not specified, leave the value
463          * as -1.
464          */
465         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
466             &vd->vdev_wholedisk) != 0)
467                 vd->vdev_wholedisk = -1ULL;
468
469         /*
470          * Look for the 'not present' flag.  This will only be set if the device
471          * was not present at the time of import.
472          */
473         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
474             &vd->vdev_not_present);
475
476         /*
477          * Get the alignment requirement.
478          */
479         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
480
481         /*
482          * Retrieve the vdev creation time.
483          */
484         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
485             &vd->vdev_crtxg);
486
487         /*
488          * If we're a top-level vdev, try to load the allocation parameters.
489          */
490         if (parent && !parent->vdev_parent &&
491             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
492                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
493                     &vd->vdev_ms_array);
494                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
495                     &vd->vdev_ms_shift);
496                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
497                     &vd->vdev_asize);
498                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
499                     &vd->vdev_removing);
500         }
501
502         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
503                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
504                     alloctype == VDEV_ALLOC_ADD ||
505                     alloctype == VDEV_ALLOC_SPLIT ||
506                     alloctype == VDEV_ALLOC_ROOTPOOL);
507                 vd->vdev_mg = metaslab_group_create(islog ?
508                     spa_log_class(spa) : spa_normal_class(spa), vd);
509         }
510
511         /*
512          * If we're a leaf vdev, try to load the DTL object and other state.
513          */
514         if (vd->vdev_ops->vdev_op_leaf &&
515             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
516             alloctype == VDEV_ALLOC_ROOTPOOL)) {
517                 if (alloctype == VDEV_ALLOC_LOAD) {
518                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
519                             &vd->vdev_dtl_smo.smo_object);
520                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
521                             &vd->vdev_unspare);
522                 }
523
524                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
525                         uint64_t spare = 0;
526
527                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
528                             &spare) == 0 && spare)
529                                 spa_spare_add(vd);
530                 }
531
532                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
533                     &vd->vdev_offline);
534
535                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
536                     &vd->vdev_resilvering);
537
538                 /*
539                  * When importing a pool, we want to ignore the persistent fault
540                  * state, as the diagnosis made on another system may not be
541                  * valid in the current context.  Local vdevs will
542                  * remain in the faulted state.
543                  */
544                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
545                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
546                             &vd->vdev_faulted);
547                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
548                             &vd->vdev_degraded);
549                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
550                             &vd->vdev_removed);
551
552                         if (vd->vdev_faulted || vd->vdev_degraded) {
553                                 char *aux;
554
555                                 vd->vdev_label_aux =
556                                     VDEV_AUX_ERR_EXCEEDED;
557                                 if (nvlist_lookup_string(nv,
558                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
559                                     strcmp(aux, "external") == 0)
560                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
561                         }
562                 }
563         }
564
565         /*
566          * Add ourselves to the parent's list of children.
567          */
568         vdev_add_child(parent, vd);
569
570         *vdp = vd;
571
572         return (0);
573 }
574
575 void
576 vdev_free(vdev_t *vd)
577 {
578         spa_t *spa = vd->vdev_spa;
579
580         /*
581          * vdev_free() implies closing the vdev first.  This is simpler than
582          * trying to ensure complicated semantics for all callers.
583          */
584         vdev_close(vd);
585
586         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
587         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
588
589         /*
590          * Free all children.
591          */
592         for (int c = 0; c < vd->vdev_children; c++)
593                 vdev_free(vd->vdev_child[c]);
594
595         ASSERT(vd->vdev_child == NULL);
596         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
597
598         /*
599          * Discard allocation state.
600          */
601         if (vd->vdev_mg != NULL) {
602                 vdev_metaslab_fini(vd);
603                 metaslab_group_destroy(vd->vdev_mg);
604         }
605
606         ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
607         ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
608         ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
609
610         /*
611          * Remove this vdev from its parent's child list.
612          */
613         vdev_remove_child(vd->vdev_parent, vd);
614
615         ASSERT(vd->vdev_parent == NULL);
616
617         /*
618          * Clean up vdev structure.
619          */
620         vdev_queue_fini(vd);
621         vdev_cache_fini(vd);
622
623         if (vd->vdev_path)
624                 spa_strfree(vd->vdev_path);
625         if (vd->vdev_devid)
626                 spa_strfree(vd->vdev_devid);
627         if (vd->vdev_physpath)
628                 spa_strfree(vd->vdev_physpath);
629         if (vd->vdev_fru)
630                 spa_strfree(vd->vdev_fru);
631
632         if (vd->vdev_isspare)
633                 spa_spare_remove(vd);
634         if (vd->vdev_isl2cache)
635                 spa_l2cache_remove(vd);
636
637         txg_list_destroy(&vd->vdev_ms_list);
638         txg_list_destroy(&vd->vdev_dtl_list);
639
640         mutex_enter(&vd->vdev_dtl_lock);
641         for (int t = 0; t < DTL_TYPES; t++) {
642                 space_map_unload(&vd->vdev_dtl[t]);
643                 space_map_destroy(&vd->vdev_dtl[t]);
644         }
645         mutex_exit(&vd->vdev_dtl_lock);
646
647         mutex_destroy(&vd->vdev_dtl_lock);
648         mutex_destroy(&vd->vdev_stat_lock);
649         mutex_destroy(&vd->vdev_probe_lock);
650
651         if (vd == spa->spa_root_vdev)
652                 spa->spa_root_vdev = NULL;
653
654         kmem_free(vd, sizeof (vdev_t));
655 }
656
657 /*
658  * Transfer top-level vdev state from svd to tvd.
659  */
660 static void
661 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
662 {
663         spa_t *spa = svd->vdev_spa;
664         metaslab_t *msp;
665         vdev_t *vd;
666         int t;
667
668         ASSERT(tvd == tvd->vdev_top);
669
670         tvd->vdev_ms_array = svd->vdev_ms_array;
671         tvd->vdev_ms_shift = svd->vdev_ms_shift;
672         tvd->vdev_ms_count = svd->vdev_ms_count;
673
674         svd->vdev_ms_array = 0;
675         svd->vdev_ms_shift = 0;
676         svd->vdev_ms_count = 0;
677
678         if (tvd->vdev_mg)
679                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
680         tvd->vdev_mg = svd->vdev_mg;
681         tvd->vdev_ms = svd->vdev_ms;
682
683         svd->vdev_mg = NULL;
684         svd->vdev_ms = NULL;
685
686         if (tvd->vdev_mg != NULL)
687                 tvd->vdev_mg->mg_vd = tvd;
688
689         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
690         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
691         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
692
693         svd->vdev_stat.vs_alloc = 0;
694         svd->vdev_stat.vs_space = 0;
695         svd->vdev_stat.vs_dspace = 0;
696
697         for (t = 0; t < TXG_SIZE; t++) {
698                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
699                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
700                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
701                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
702                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
703                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
704         }
705
706         if (list_link_active(&svd->vdev_config_dirty_node)) {
707                 vdev_config_clean(svd);
708                 vdev_config_dirty(tvd);
709         }
710
711         if (list_link_active(&svd->vdev_state_dirty_node)) {
712                 vdev_state_clean(svd);
713                 vdev_state_dirty(tvd);
714         }
715
716         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
717         svd->vdev_deflate_ratio = 0;
718
719         tvd->vdev_islog = svd->vdev_islog;
720         svd->vdev_islog = 0;
721 }
722
723 static void
724 vdev_top_update(vdev_t *tvd, vdev_t *vd)
725 {
726         if (vd == NULL)
727                 return;
728
729         vd->vdev_top = tvd;
730
731         for (int c = 0; c < vd->vdev_children; c++)
732                 vdev_top_update(tvd, vd->vdev_child[c]);
733 }
734
735 /*
736  * Add a mirror/replacing vdev above an existing vdev.
737  */
738 vdev_t *
739 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
740 {
741         spa_t *spa = cvd->vdev_spa;
742         vdev_t *pvd = cvd->vdev_parent;
743         vdev_t *mvd;
744
745         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
746
747         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
748
749         mvd->vdev_asize = cvd->vdev_asize;
750         mvd->vdev_min_asize = cvd->vdev_min_asize;
751         mvd->vdev_ashift = cvd->vdev_ashift;
752         mvd->vdev_state = cvd->vdev_state;
753         mvd->vdev_crtxg = cvd->vdev_crtxg;
754
755         vdev_remove_child(pvd, cvd);
756         vdev_add_child(pvd, mvd);
757         cvd->vdev_id = mvd->vdev_children;
758         vdev_add_child(mvd, cvd);
759         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
760
761         if (mvd == mvd->vdev_top)
762                 vdev_top_transfer(cvd, mvd);
763
764         return (mvd);
765 }
766
767 /*
768  * Remove a 1-way mirror/replacing vdev from the tree.
769  */
770 void
771 vdev_remove_parent(vdev_t *cvd)
772 {
773         vdev_t *mvd = cvd->vdev_parent;
774         vdev_t *pvd = mvd->vdev_parent;
775
776         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
777
778         ASSERT(mvd->vdev_children == 1);
779         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
780             mvd->vdev_ops == &vdev_replacing_ops ||
781             mvd->vdev_ops == &vdev_spare_ops);
782         cvd->vdev_ashift = mvd->vdev_ashift;
783
784         vdev_remove_child(mvd, cvd);
785         vdev_remove_child(pvd, mvd);
786
787         /*
788          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
789          * Otherwise, we could have detached an offline device, and when we
790          * go to import the pool we'll think we have two top-level vdevs,
791          * instead of a different version of the same top-level vdev.
792          */
793         if (mvd->vdev_top == mvd) {
794                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
795                 cvd->vdev_orig_guid = cvd->vdev_guid;
796                 cvd->vdev_guid += guid_delta;
797                 cvd->vdev_guid_sum += guid_delta;
798         }
799         cvd->vdev_id = mvd->vdev_id;
800         vdev_add_child(pvd, cvd);
801         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
802
803         if (cvd == cvd->vdev_top)
804                 vdev_top_transfer(mvd, cvd);
805
806         ASSERT(mvd->vdev_children == 0);
807         vdev_free(mvd);
808 }
809
810 int
811 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
812 {
813         spa_t *spa = vd->vdev_spa;
814         objset_t *mos = spa->spa_meta_objset;
815         uint64_t m;
816         uint64_t oldc = vd->vdev_ms_count;
817         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
818         metaslab_t **mspp;
819         int error;
820
821         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
822
823         /*
824          * This vdev is not being allocated from yet or is a hole.
825          */
826         if (vd->vdev_ms_shift == 0)
827                 return (0);
828
829         ASSERT(!vd->vdev_ishole);
830
831         /*
832          * Compute the raidz-deflation ratio.  Note, we hard-code
833          * in 128k (1 << 17) because it is the current "typical" blocksize.
834          * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
835          * or we will inconsistently account for existing bp's.
836          */
837         vd->vdev_deflate_ratio = (1 << 17) /
838             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
839
840         ASSERT(oldc <= newc);
841
842         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
843
844         if (oldc != 0) {
845                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
846                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
847         }
848
849         vd->vdev_ms = mspp;
850         vd->vdev_ms_count = newc;
851
852         for (m = oldc; m < newc; m++) {
853                 space_map_obj_t smo = { 0, 0, 0 };
854                 if (txg == 0) {
855                         uint64_t object = 0;
856                         error = dmu_read(mos, vd->vdev_ms_array,
857                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
858                             DMU_READ_PREFETCH);
859                         if (error)
860                                 return (error);
861                         if (object != 0) {
862                                 dmu_buf_t *db;
863                                 error = dmu_bonus_hold(mos, object, FTAG, &db);
864                                 if (error)
865                                         return (error);
866                                 ASSERT3U(db->db_size, >=, sizeof (smo));
867                                 bcopy(db->db_data, &smo, sizeof (smo));
868                                 ASSERT3U(smo.smo_object, ==, object);
869                                 dmu_buf_rele(db, FTAG);
870                         }
871                 }
872                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
873                     m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
874         }
875
876         if (txg == 0)
877                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
878
879         /*
880          * If the vdev is being removed we don't activate
881          * the metaslabs since we want to ensure that no new
882          * allocations are performed on this device.
883          */
884         if (oldc == 0 && !vd->vdev_removing)
885                 metaslab_group_activate(vd->vdev_mg);
886
887         if (txg == 0)
888                 spa_config_exit(spa, SCL_ALLOC, FTAG);
889
890         return (0);
891 }
892
893 void
894 vdev_metaslab_fini(vdev_t *vd)
895 {
896         uint64_t m;
897         uint64_t count = vd->vdev_ms_count;
898
899         if (vd->vdev_ms != NULL) {
900                 metaslab_group_passivate(vd->vdev_mg);
901                 for (m = 0; m < count; m++)
902                         if (vd->vdev_ms[m] != NULL)
903                                 metaslab_fini(vd->vdev_ms[m]);
904                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
905                 vd->vdev_ms = NULL;
906         }
907 }
908
909 typedef struct vdev_probe_stats {
910         boolean_t       vps_readable;
911         boolean_t       vps_writeable;
912         int             vps_flags;
913 } vdev_probe_stats_t;
914
915 static void
916 vdev_probe_done(zio_t *zio)
917 {
918         spa_t *spa = zio->io_spa;
919         vdev_t *vd = zio->io_vd;
920         vdev_probe_stats_t *vps = zio->io_private;
921
922         ASSERT(vd->vdev_probe_zio != NULL);
923
924         if (zio->io_type == ZIO_TYPE_READ) {
925                 if (zio->io_error == 0)
926                         vps->vps_readable = 1;
927                 if (zio->io_error == 0 && spa_writeable(spa)) {
928                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
929                             zio->io_offset, zio->io_size, zio->io_data,
930                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
931                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
932                 } else {
933                         zio_buf_free(zio->io_data, zio->io_size);
934                 }
935         } else if (zio->io_type == ZIO_TYPE_WRITE) {
936                 if (zio->io_error == 0)
937                         vps->vps_writeable = 1;
938                 zio_buf_free(zio->io_data, zio->io_size);
939         } else if (zio->io_type == ZIO_TYPE_NULL) {
940                 zio_t *pio;
941
942                 vd->vdev_cant_read |= !vps->vps_readable;
943                 vd->vdev_cant_write |= !vps->vps_writeable;
944
945                 if (vdev_readable(vd) &&
946                     (vdev_writeable(vd) || !spa_writeable(spa))) {
947                         zio->io_error = 0;
948                 } else {
949                         ASSERT(zio->io_error != 0);
950                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
951                             spa, vd, NULL, 0, 0);
952                         zio->io_error = ENXIO;
953                 }
954
955                 mutex_enter(&vd->vdev_probe_lock);
956                 ASSERT(vd->vdev_probe_zio == zio);
957                 vd->vdev_probe_zio = NULL;
958                 mutex_exit(&vd->vdev_probe_lock);
959
960                 while ((pio = zio_walk_parents(zio)) != NULL)
961                         if (!vdev_accessible(vd, pio))
962                                 pio->io_error = ENXIO;
963
964                 kmem_free(vps, sizeof (*vps));
965         }
966 }
967
968 /*
969  * Determine whether this device is accessible by reading and writing
970  * to several known locations: the pad regions of each vdev label
971  * but the first (which we leave alone in case it contains a VTOC).
972  */
973 zio_t *
974 vdev_probe(vdev_t *vd, zio_t *zio)
975 {
976         spa_t *spa = vd->vdev_spa;
977         vdev_probe_stats_t *vps = NULL;
978         zio_t *pio;
979
980         ASSERT(vd->vdev_ops->vdev_op_leaf);
981
982         /*
983          * Don't probe the probe.
984          */
985         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
986                 return (NULL);
987
988         /*
989          * To prevent 'probe storms' when a device fails, we create
990          * just one probe i/o at a time.  All zios that want to probe
991          * this vdev will become parents of the probe io.
992          */
993         mutex_enter(&vd->vdev_probe_lock);
994
995         if ((pio = vd->vdev_probe_zio) == NULL) {
996                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
997
998                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
999                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1000                     ZIO_FLAG_TRYHARD;
1001
1002                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1003                         /*
1004                          * vdev_cant_read and vdev_cant_write can only
1005                          * transition from TRUE to FALSE when we have the
1006                          * SCL_ZIO lock as writer; otherwise they can only
1007                          * transition from FALSE to TRUE.  This ensures that
1008                          * any zio looking at these values can assume that
1009                          * failures persist for the life of the I/O.  That's
1010                          * important because when a device has intermittent
1011                          * connectivity problems, we want to ensure that
1012                          * they're ascribed to the device (ENXIO) and not
1013                          * the zio (EIO).
1014                          *
1015                          * Since we hold SCL_ZIO as writer here, clear both
1016                          * values so the probe can reevaluate from first
1017                          * principles.
1018                          */
1019                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1020                         vd->vdev_cant_read = B_FALSE;
1021                         vd->vdev_cant_write = B_FALSE;
1022                 }
1023
1024                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1025                     vdev_probe_done, vps,
1026                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1027
1028                 /*
1029                  * We can't change the vdev state in this context, so we
1030                  * kick off an async task to do it on our behalf.
1031                  */
1032                 if (zio != NULL) {
1033                         vd->vdev_probe_wanted = B_TRUE;
1034                         spa_async_request(spa, SPA_ASYNC_PROBE);
1035                 }
1036         }
1037
1038         if (zio != NULL)
1039                 zio_add_child(zio, pio);
1040
1041         mutex_exit(&vd->vdev_probe_lock);
1042
1043         if (vps == NULL) {
1044                 ASSERT(zio != NULL);
1045                 return (NULL);
1046         }
1047
1048         for (int l = 1; l < VDEV_LABELS; l++) {
1049                 zio_nowait(zio_read_phys(pio, vd,
1050                     vdev_label_offset(vd->vdev_psize, l,
1051                     offsetof(vdev_label_t, vl_pad2)),
1052                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1053                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1054                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1055         }
1056
1057         if (zio == NULL)
1058                 return (pio);
1059
1060         zio_nowait(pio);
1061         return (NULL);
1062 }
1063
1064 static void
1065 vdev_open_child(void *arg)
1066 {
1067         vdev_t *vd = arg;
1068
1069         vd->vdev_open_thread = curthread;
1070         vd->vdev_open_error = vdev_open(vd);
1071         vd->vdev_open_thread = NULL;
1072 }
1073
1074 boolean_t
1075 vdev_uses_zvols(vdev_t *vd)
1076 {
1077         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1078             strlen(ZVOL_DIR)) == 0)
1079                 return (B_TRUE);
1080         for (int c = 0; c < vd->vdev_children; c++)
1081                 if (vdev_uses_zvols(vd->vdev_child[c]))
1082                         return (B_TRUE);
1083         return (B_FALSE);
1084 }
1085
1086 void
1087 vdev_open_children(vdev_t *vd)
1088 {
1089         taskq_t *tq;
1090         int children = vd->vdev_children;
1091
1092         /*
1093          * in order to handle pools on top of zvols, do the opens
1094          * in a single thread so that the same thread holds the
1095          * spa_namespace_lock
1096          */
1097         if (B_TRUE || vdev_uses_zvols(vd)) {
1098                 for (int c = 0; c < children; c++)
1099                         vd->vdev_child[c]->vdev_open_error =
1100                             vdev_open(vd->vdev_child[c]);
1101                 return;
1102         }
1103         tq = taskq_create("vdev_open", children, minclsyspri,
1104             children, children, TASKQ_PREPOPULATE);
1105
1106         for (int c = 0; c < children; c++)
1107                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1108                     TQ_SLEEP) != 0);
1109
1110         taskq_destroy(tq);
1111 }
1112
1113 /*
1114  * Prepare a virtual device for access.
1115  */
1116 int
1117 vdev_open(vdev_t *vd)
1118 {
1119         spa_t *spa = vd->vdev_spa;
1120         int error;
1121         uint64_t osize = 0;
1122         uint64_t asize, psize;
1123         uint64_t ashift = 0;
1124
1125         ASSERT(vd->vdev_open_thread == curthread ||
1126             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1127         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1128             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1129             vd->vdev_state == VDEV_STATE_OFFLINE);
1130
1131         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1132         vd->vdev_cant_read = B_FALSE;
1133         vd->vdev_cant_write = B_FALSE;
1134         vd->vdev_min_asize = vdev_get_min_asize(vd);
1135
1136         /*
1137          * If this vdev is not removed, check its fault status.  If it's
1138          * faulted, bail out of the open.
1139          */
1140         if (!vd->vdev_removed && vd->vdev_faulted) {
1141                 ASSERT(vd->vdev_children == 0);
1142                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1143                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1144                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1145                     vd->vdev_label_aux);
1146                 return (ENXIO);
1147         } else if (vd->vdev_offline) {
1148                 ASSERT(vd->vdev_children == 0);
1149                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1150                 return (ENXIO);
1151         }
1152
1153         error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1154
1155         /*
1156          * Reset the vdev_reopening flag so that we actually close
1157          * the vdev on error.
1158          */
1159         vd->vdev_reopening = B_FALSE;
1160         if (zio_injection_enabled && error == 0)
1161                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1162
1163         if (error) {
1164                 if (vd->vdev_removed &&
1165                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1166                         vd->vdev_removed = B_FALSE;
1167
1168                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1169                     vd->vdev_stat.vs_aux);
1170                 return (error);
1171         }
1172
1173         vd->vdev_removed = B_FALSE;
1174
1175         /*
1176          * Recheck the faulted flag now that we have confirmed that
1177          * the vdev is accessible.  If we're faulted, bail.
1178          */
1179         if (vd->vdev_faulted) {
1180                 ASSERT(vd->vdev_children == 0);
1181                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1182                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1183                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1184                     vd->vdev_label_aux);
1185                 return (ENXIO);
1186         }
1187
1188         if (vd->vdev_degraded) {
1189                 ASSERT(vd->vdev_children == 0);
1190                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1191                     VDEV_AUX_ERR_EXCEEDED);
1192         } else {
1193                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1194         }
1195
1196         /*
1197          * For hole or missing vdevs we just return success.
1198          */
1199         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1200                 return (0);
1201
1202         for (int c = 0; c < vd->vdev_children; c++) {
1203                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1204                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1205                             VDEV_AUX_NONE);
1206                         break;
1207                 }
1208         }
1209
1210         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1211
1212         if (vd->vdev_children == 0) {
1213                 if (osize < SPA_MINDEVSIZE) {
1214                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1215                             VDEV_AUX_TOO_SMALL);
1216                         return (EOVERFLOW);
1217                 }
1218                 psize = osize;
1219                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1220         } else {
1221                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1222                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1223                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1224                             VDEV_AUX_TOO_SMALL);
1225                         return (EOVERFLOW);
1226                 }
1227                 psize = 0;
1228                 asize = osize;
1229         }
1230
1231         vd->vdev_psize = psize;
1232
1233         /*
1234          * Make sure the allocatable size hasn't shrunk.
1235          */
1236         if (asize < vd->vdev_min_asize) {
1237                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1238                     VDEV_AUX_BAD_LABEL);
1239                 return (EINVAL);
1240         }
1241
1242         if (vd->vdev_asize == 0) {
1243                 /*
1244                  * This is the first-ever open, so use the computed values.
1245                  * For testing purposes, a higher ashift can be requested.
1246                  */
1247                 vd->vdev_asize = asize;
1248                 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1249         } else {
1250                 /*
1251                  * Make sure the alignment requirement hasn't increased.
1252                  */
1253                 if (ashift > vd->vdev_top->vdev_ashift) {
1254                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1255                             VDEV_AUX_BAD_LABEL);
1256                         return (EINVAL);
1257                 }
1258         }
1259
1260         /*
1261          * If all children are healthy and the asize has increased,
1262          * then we've experienced dynamic LUN growth.  If automatic
1263          * expansion is enabled then use the additional space.
1264          */
1265         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1266             (vd->vdev_expanding || spa->spa_autoexpand))
1267                 vd->vdev_asize = asize;
1268
1269         vdev_set_min_asize(vd);
1270
1271         /*
1272          * Ensure we can issue some IO before declaring the
1273          * vdev open for business.
1274          */
1275         if (vd->vdev_ops->vdev_op_leaf &&
1276             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1277                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1278                     VDEV_AUX_ERR_EXCEEDED);
1279                 return (error);
1280         }
1281
1282         /*
1283          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1284          * resilver.  But don't do this if we are doing a reopen for a scrub,
1285          * since this would just restart the scrub we are already doing.
1286          */
1287         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1288             vdev_resilver_needed(vd, NULL, NULL))
1289                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1290
1291         return (0);
1292 }
1293
1294 /*
1295  * Called once the vdevs are all opened, this routine validates the label
1296  * contents.  This needs to be done before vdev_load() so that we don't
1297  * inadvertently do repair I/Os to the wrong device.
1298  *
1299  * If 'strict' is false ignore the spa guid check. This is necessary because
1300  * if the machine crashed during a re-guid the new guid might have been written
1301  * to all of the vdev labels, but not the cached config. The strict check
1302  * will be performed when the pool is opened again using the mos config.
1303  *
1304  * This function will only return failure if one of the vdevs indicates that it
1305  * has since been destroyed or exported.  This is only possible if
1306  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1307  * will be updated but the function will return 0.
1308  */
1309 int
1310 vdev_validate(vdev_t *vd, boolean_t strict)
1311 {
1312         spa_t *spa = vd->vdev_spa;
1313         nvlist_t *label;
1314         uint64_t guid = 0, top_guid;
1315         uint64_t state;
1316
1317         for (int c = 0; c < vd->vdev_children; c++)
1318                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1319                         return (EBADF);
1320
1321         /*
1322          * If the device has already failed, or was marked offline, don't do
1323          * any further validation.  Otherwise, label I/O will fail and we will
1324          * overwrite the previous state.
1325          */
1326         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1327                 uint64_t aux_guid = 0;
1328                 nvlist_t *nvl;
1329
1330                 if ((label = vdev_label_read_config(vd)) == NULL) {
1331                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1332                             VDEV_AUX_BAD_LABEL);
1333                         return (0);
1334                 }
1335
1336                 /*
1337                  * Determine if this vdev has been split off into another
1338                  * pool.  If so, then refuse to open it.
1339                  */
1340                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1341                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1342                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1343                             VDEV_AUX_SPLIT_POOL);
1344                         nvlist_free(label);
1345                         return (0);
1346                 }
1347
1348                 if (strict && (nvlist_lookup_uint64(label,
1349                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1350                     guid != spa_guid(spa))) {
1351                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1352                             VDEV_AUX_CORRUPT_DATA);
1353                         nvlist_free(label);
1354                         return (0);
1355                 }
1356
1357                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1358                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1359                     &aux_guid) != 0)
1360                         aux_guid = 0;
1361
1362                 /*
1363                  * If this vdev just became a top-level vdev because its
1364                  * sibling was detached, it will have adopted the parent's
1365                  * vdev guid -- but the label may or may not be on disk yet.
1366                  * Fortunately, either version of the label will have the
1367                  * same top guid, so if we're a top-level vdev, we can
1368                  * safely compare to that instead.
1369                  *
1370                  * If we split this vdev off instead, then we also check the
1371                  * original pool's guid.  We don't want to consider the vdev
1372                  * corrupt if it is partway through a split operation.
1373                  */
1374                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1375                     &guid) != 0 ||
1376                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1377                     &top_guid) != 0 ||
1378                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1379                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1380                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1381                             VDEV_AUX_CORRUPT_DATA);
1382                         nvlist_free(label);
1383                         return (0);
1384                 }
1385
1386                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1387                     &state) != 0) {
1388                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1389                             VDEV_AUX_CORRUPT_DATA);
1390                         nvlist_free(label);
1391                         return (0);
1392                 }
1393
1394                 nvlist_free(label);
1395
1396                 /*
1397                  * If this is a verbatim import, no need to check the
1398                  * state of the pool.
1399                  */
1400                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1401                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1402                     state != POOL_STATE_ACTIVE)
1403                         return (EBADF);
1404
1405                 /*
1406                  * If we were able to open and validate a vdev that was
1407                  * previously marked permanently unavailable, clear that state
1408                  * now.
1409                  */
1410                 if (vd->vdev_not_present)
1411                         vd->vdev_not_present = 0;
1412         }
1413
1414         return (0);
1415 }
1416
1417 /*
1418  * Close a virtual device.
1419  */
1420 void
1421 vdev_close(vdev_t *vd)
1422 {
1423         spa_t *spa = vd->vdev_spa;
1424         vdev_t *pvd = vd->vdev_parent;
1425
1426         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1427
1428         /*
1429          * If our parent is reopening, then we are as well, unless we are
1430          * going offline.
1431          */
1432         if (pvd != NULL && pvd->vdev_reopening)
1433                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1434
1435         vd->vdev_ops->vdev_op_close(vd);
1436
1437         vdev_cache_purge(vd);
1438
1439         /*
1440          * We record the previous state before we close it, so that if we are
1441          * doing a reopen(), we don't generate FMA ereports if we notice that
1442          * it's still faulted.
1443          */
1444         vd->vdev_prevstate = vd->vdev_state;
1445
1446         if (vd->vdev_offline)
1447                 vd->vdev_state = VDEV_STATE_OFFLINE;
1448         else
1449                 vd->vdev_state = VDEV_STATE_CLOSED;
1450         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1451 }
1452
1453 void
1454 vdev_hold(vdev_t *vd)
1455 {
1456         spa_t *spa = vd->vdev_spa;
1457
1458         ASSERT(spa_is_root(spa));
1459         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1460                 return;
1461
1462         for (int c = 0; c < vd->vdev_children; c++)
1463                 vdev_hold(vd->vdev_child[c]);
1464
1465         if (vd->vdev_ops->vdev_op_leaf)
1466                 vd->vdev_ops->vdev_op_hold(vd);
1467 }
1468
1469 void
1470 vdev_rele(vdev_t *vd)
1471 {
1472         spa_t *spa = vd->vdev_spa;
1473
1474         ASSERT(spa_is_root(spa));
1475         for (int c = 0; c < vd->vdev_children; c++)
1476                 vdev_rele(vd->vdev_child[c]);
1477
1478         if (vd->vdev_ops->vdev_op_leaf)
1479                 vd->vdev_ops->vdev_op_rele(vd);
1480 }
1481
1482 /*
1483  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1484  * reopen leaf vdevs which had previously been opened as they might deadlock
1485  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1486  * If the leaf has never been opened then open it, as usual.
1487  */
1488 void
1489 vdev_reopen(vdev_t *vd)
1490 {
1491         spa_t *spa = vd->vdev_spa;
1492
1493         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1494
1495         /* set the reopening flag unless we're taking the vdev offline */
1496         vd->vdev_reopening = !vd->vdev_offline;
1497         vdev_close(vd);
1498         (void) vdev_open(vd);
1499
1500         /*
1501          * Call vdev_validate() here to make sure we have the same device.
1502          * Otherwise, a device with an invalid label could be successfully
1503          * opened in response to vdev_reopen().
1504          */
1505         if (vd->vdev_aux) {
1506                 (void) vdev_validate_aux(vd);
1507                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1508                     vd->vdev_aux == &spa->spa_l2cache &&
1509                     !l2arc_vdev_present(vd))
1510                         l2arc_add_vdev(spa, vd);
1511         } else {
1512                 (void) vdev_validate(vd, B_TRUE);
1513         }
1514
1515         /*
1516          * Reassess parent vdev's health.
1517          */
1518         vdev_propagate_state(vd);
1519 }
1520
1521 int
1522 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1523 {
1524         int error;
1525
1526         /*
1527          * Normally, partial opens (e.g. of a mirror) are allowed.
1528          * For a create, however, we want to fail the request if
1529          * there are any components we can't open.
1530          */
1531         error = vdev_open(vd);
1532
1533         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1534                 vdev_close(vd);
1535                 return (error ? error : ENXIO);
1536         }
1537
1538         /*
1539          * Recursively initialize all labels.
1540          */
1541         if ((error = vdev_label_init(vd, txg, isreplacing ?
1542             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1543                 vdev_close(vd);
1544                 return (error);
1545         }
1546
1547         return (0);
1548 }
1549
1550 void
1551 vdev_metaslab_set_size(vdev_t *vd)
1552 {
1553         /*
1554          * Aim for roughly 200 metaslabs per vdev.
1555          */
1556         vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1557         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1558 }
1559
1560 void
1561 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1562 {
1563         ASSERT(vd == vd->vdev_top);
1564         ASSERT(!vd->vdev_ishole);
1565         ASSERT(ISP2(flags));
1566         ASSERT(spa_writeable(vd->vdev_spa));
1567
1568         if (flags & VDD_METASLAB)
1569                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1570
1571         if (flags & VDD_DTL)
1572                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1573
1574         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1575 }
1576
1577 /*
1578  * DTLs.
1579  *
1580  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1581  * the vdev has less than perfect replication.  There are four kinds of DTL:
1582  *
1583  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1584  *
1585  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1586  *
1587  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1588  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1589  *      txgs that was scrubbed.
1590  *
1591  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1592  *      persistent errors or just some device being offline.
1593  *      Unlike the other three, the DTL_OUTAGE map is not generally
1594  *      maintained; it's only computed when needed, typically to
1595  *      determine whether a device can be detached.
1596  *
1597  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1598  * either has the data or it doesn't.
1599  *
1600  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1601  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1602  * if any child is less than fully replicated, then so is its parent.
1603  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1604  * comprising only those txgs which appear in 'maxfaults' or more children;
1605  * those are the txgs we don't have enough replication to read.  For example,
1606  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1607  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1608  * two child DTL_MISSING maps.
1609  *
1610  * It should be clear from the above that to compute the DTLs and outage maps
1611  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1612  * Therefore, that is all we keep on disk.  When loading the pool, or after
1613  * a configuration change, we generate all other DTLs from first principles.
1614  */
1615 void
1616 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1617 {
1618         space_map_t *sm = &vd->vdev_dtl[t];
1619
1620         ASSERT(t < DTL_TYPES);
1621         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1622         ASSERT(spa_writeable(vd->vdev_spa));
1623
1624         mutex_enter(sm->sm_lock);
1625         if (!space_map_contains(sm, txg, size))
1626                 space_map_add(sm, txg, size);
1627         mutex_exit(sm->sm_lock);
1628 }
1629
1630 boolean_t
1631 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1632 {
1633         space_map_t *sm = &vd->vdev_dtl[t];
1634         boolean_t dirty = B_FALSE;
1635
1636         ASSERT(t < DTL_TYPES);
1637         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1638
1639         mutex_enter(sm->sm_lock);
1640         if (sm->sm_space != 0)
1641                 dirty = space_map_contains(sm, txg, size);
1642         mutex_exit(sm->sm_lock);
1643
1644         return (dirty);
1645 }
1646
1647 boolean_t
1648 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1649 {
1650         space_map_t *sm = &vd->vdev_dtl[t];
1651         boolean_t empty;
1652
1653         mutex_enter(sm->sm_lock);
1654         empty = (sm->sm_space == 0);
1655         mutex_exit(sm->sm_lock);
1656
1657         return (empty);
1658 }
1659
1660 /*
1661  * Reassess DTLs after a config change or scrub completion.
1662  */
1663 void
1664 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1665 {
1666         spa_t *spa = vd->vdev_spa;
1667         avl_tree_t reftree;
1668         int minref;
1669
1670         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1671
1672         for (int c = 0; c < vd->vdev_children; c++)
1673                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1674                     scrub_txg, scrub_done);
1675
1676         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1677                 return;
1678
1679         if (vd->vdev_ops->vdev_op_leaf) {
1680                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1681
1682                 mutex_enter(&vd->vdev_dtl_lock);
1683                 if (scrub_txg != 0 &&
1684                     (spa->spa_scrub_started ||
1685                     (scn && scn->scn_phys.scn_errors == 0))) {
1686                         /*
1687                          * We completed a scrub up to scrub_txg.  If we
1688                          * did it without rebooting, then the scrub dtl
1689                          * will be valid, so excise the old region and
1690                          * fold in the scrub dtl.  Otherwise, leave the
1691                          * dtl as-is if there was an error.
1692                          *
1693                          * There's little trick here: to excise the beginning
1694                          * of the DTL_MISSING map, we put it into a reference
1695                          * tree and then add a segment with refcnt -1 that
1696                          * covers the range [0, scrub_txg).  This means
1697                          * that each txg in that range has refcnt -1 or 0.
1698                          * We then add DTL_SCRUB with a refcnt of 2, so that
1699                          * entries in the range [0, scrub_txg) will have a
1700                          * positive refcnt -- either 1 or 2.  We then convert
1701                          * the reference tree into the new DTL_MISSING map.
1702                          */
1703                         space_map_ref_create(&reftree);
1704                         space_map_ref_add_map(&reftree,
1705                             &vd->vdev_dtl[DTL_MISSING], 1);
1706                         space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1707                         space_map_ref_add_map(&reftree,
1708                             &vd->vdev_dtl[DTL_SCRUB], 2);
1709                         space_map_ref_generate_map(&reftree,
1710                             &vd->vdev_dtl[DTL_MISSING], 1);
1711                         space_map_ref_destroy(&reftree);
1712                 }
1713                 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1714                 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1715                     space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1716                 if (scrub_done)
1717                         space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1718                 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1719                 if (!vdev_readable(vd))
1720                         space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1721                 else
1722                         space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1723                             space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1724                 mutex_exit(&vd->vdev_dtl_lock);
1725
1726                 if (txg != 0)
1727                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1728                 return;
1729         }
1730
1731         mutex_enter(&vd->vdev_dtl_lock);
1732         for (int t = 0; t < DTL_TYPES; t++) {
1733                 /* account for child's outage in parent's missing map */
1734                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1735                 if (t == DTL_SCRUB)
1736                         continue;                       /* leaf vdevs only */
1737                 if (t == DTL_PARTIAL)
1738                         minref = 1;                     /* i.e. non-zero */
1739                 else if (vd->vdev_nparity != 0)
1740                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1741                 else
1742                         minref = vd->vdev_children;     /* any kind of mirror */
1743                 space_map_ref_create(&reftree);
1744                 for (int c = 0; c < vd->vdev_children; c++) {
1745                         vdev_t *cvd = vd->vdev_child[c];
1746                         mutex_enter(&cvd->vdev_dtl_lock);
1747                         space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1748                         mutex_exit(&cvd->vdev_dtl_lock);
1749                 }
1750                 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1751                 space_map_ref_destroy(&reftree);
1752         }
1753         mutex_exit(&vd->vdev_dtl_lock);
1754 }
1755
1756 static int
1757 vdev_dtl_load(vdev_t *vd)
1758 {
1759         spa_t *spa = vd->vdev_spa;
1760         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1761         objset_t *mos = spa->spa_meta_objset;
1762         dmu_buf_t *db;
1763         int error;
1764
1765         ASSERT(vd->vdev_children == 0);
1766
1767         if (smo->smo_object == 0)
1768                 return (0);
1769
1770         ASSERT(!vd->vdev_ishole);
1771
1772         if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1773                 return (error);
1774
1775         ASSERT3U(db->db_size, >=, sizeof (*smo));
1776         bcopy(db->db_data, smo, sizeof (*smo));
1777         dmu_buf_rele(db, FTAG);
1778
1779         mutex_enter(&vd->vdev_dtl_lock);
1780         error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1781             NULL, SM_ALLOC, smo, mos);
1782         mutex_exit(&vd->vdev_dtl_lock);
1783
1784         return (error);
1785 }
1786
1787 void
1788 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1789 {
1790         spa_t *spa = vd->vdev_spa;
1791         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1792         space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1793         objset_t *mos = spa->spa_meta_objset;
1794         space_map_t smsync;
1795         kmutex_t smlock;
1796         dmu_buf_t *db;
1797         dmu_tx_t *tx;
1798
1799         ASSERT(!vd->vdev_ishole);
1800
1801         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1802
1803         if (vd->vdev_detached) {
1804                 if (smo->smo_object != 0) {
1805                         int err = dmu_object_free(mos, smo->smo_object, tx);
1806                         ASSERT3U(err, ==, 0);
1807                         smo->smo_object = 0;
1808                 }
1809                 dmu_tx_commit(tx);
1810                 return;
1811         }
1812
1813         if (smo->smo_object == 0) {
1814                 ASSERT(smo->smo_objsize == 0);
1815                 ASSERT(smo->smo_alloc == 0);
1816                 smo->smo_object = dmu_object_alloc(mos,
1817                     DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1818                     DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1819                 ASSERT(smo->smo_object != 0);
1820                 vdev_config_dirty(vd->vdev_top);
1821         }
1822
1823         mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1824
1825         space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1826             &smlock);
1827
1828         mutex_enter(&smlock);
1829
1830         mutex_enter(&vd->vdev_dtl_lock);
1831         space_map_walk(sm, space_map_add, &smsync);
1832         mutex_exit(&vd->vdev_dtl_lock);
1833
1834         space_map_truncate(smo, mos, tx);
1835         space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1836
1837         space_map_destroy(&smsync);
1838
1839         mutex_exit(&smlock);
1840         mutex_destroy(&smlock);
1841
1842         VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1843         dmu_buf_will_dirty(db, tx);
1844         ASSERT3U(db->db_size, >=, sizeof (*smo));
1845         bcopy(smo, db->db_data, sizeof (*smo));
1846         dmu_buf_rele(db, FTAG);
1847
1848         dmu_tx_commit(tx);
1849 }
1850
1851 /*
1852  * Determine whether the specified vdev can be offlined/detached/removed
1853  * without losing data.
1854  */
1855 boolean_t
1856 vdev_dtl_required(vdev_t *vd)
1857 {
1858         spa_t *spa = vd->vdev_spa;
1859         vdev_t *tvd = vd->vdev_top;
1860         uint8_t cant_read = vd->vdev_cant_read;
1861         boolean_t required;
1862
1863         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1864
1865         if (vd == spa->spa_root_vdev || vd == tvd)
1866                 return (B_TRUE);
1867
1868         /*
1869          * Temporarily mark the device as unreadable, and then determine
1870          * whether this results in any DTL outages in the top-level vdev.
1871          * If not, we can safely offline/detach/remove the device.
1872          */
1873         vd->vdev_cant_read = B_TRUE;
1874         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1875         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1876         vd->vdev_cant_read = cant_read;
1877         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1878
1879         if (!required && zio_injection_enabled)
1880                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1881
1882         return (required);
1883 }
1884
1885 /*
1886  * Determine if resilver is needed, and if so the txg range.
1887  */
1888 boolean_t
1889 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1890 {
1891         boolean_t needed = B_FALSE;
1892         uint64_t thismin = UINT64_MAX;
1893         uint64_t thismax = 0;
1894
1895         if (vd->vdev_children == 0) {
1896                 mutex_enter(&vd->vdev_dtl_lock);
1897                 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1898                     vdev_writeable(vd)) {
1899                         space_seg_t *ss;
1900
1901                         ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1902                         thismin = ss->ss_start - 1;
1903                         ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1904                         thismax = ss->ss_end;
1905                         needed = B_TRUE;
1906                 }
1907                 mutex_exit(&vd->vdev_dtl_lock);
1908         } else {
1909                 for (int c = 0; c < vd->vdev_children; c++) {
1910                         vdev_t *cvd = vd->vdev_child[c];
1911                         uint64_t cmin, cmax;
1912
1913                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1914                                 thismin = MIN(thismin, cmin);
1915                                 thismax = MAX(thismax, cmax);
1916                                 needed = B_TRUE;
1917                         }
1918                 }
1919         }
1920
1921         if (needed && minp) {
1922                 *minp = thismin;
1923                 *maxp = thismax;
1924         }
1925         return (needed);
1926 }
1927
1928 void
1929 vdev_load(vdev_t *vd)
1930 {
1931         /*
1932          * Recursively load all children.
1933          */
1934         for (int c = 0; c < vd->vdev_children; c++)
1935                 vdev_load(vd->vdev_child[c]);
1936
1937         /*
1938          * If this is a top-level vdev, initialize its metaslabs.
1939          */
1940         if (vd == vd->vdev_top && !vd->vdev_ishole &&
1941             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1942             vdev_metaslab_init(vd, 0) != 0))
1943                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1944                     VDEV_AUX_CORRUPT_DATA);
1945
1946         /*
1947          * If this is a leaf vdev, load its DTL.
1948          */
1949         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1950                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1951                     VDEV_AUX_CORRUPT_DATA);
1952 }
1953
1954 /*
1955  * The special vdev case is used for hot spares and l2cache devices.  Its
1956  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1957  * we make sure that we can open the underlying device, then try to read the
1958  * label, and make sure that the label is sane and that it hasn't been
1959  * repurposed to another pool.
1960  */
1961 int
1962 vdev_validate_aux(vdev_t *vd)
1963 {
1964         nvlist_t *label;
1965         uint64_t guid, version;
1966         uint64_t state;
1967
1968         if (!vdev_readable(vd))
1969                 return (0);
1970
1971         if ((label = vdev_label_read_config(vd)) == NULL) {
1972                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1973                     VDEV_AUX_CORRUPT_DATA);
1974                 return (-1);
1975         }
1976
1977         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1978             version > SPA_VERSION ||
1979             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1980             guid != vd->vdev_guid ||
1981             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1982                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1983                     VDEV_AUX_CORRUPT_DATA);
1984                 nvlist_free(label);
1985                 return (-1);
1986         }
1987
1988         /*
1989          * We don't actually check the pool state here.  If it's in fact in
1990          * use by another pool, we update this fact on the fly when requested.
1991          */
1992         nvlist_free(label);
1993         return (0);
1994 }
1995
1996 void
1997 vdev_remove(vdev_t *vd, uint64_t txg)
1998 {
1999         spa_t *spa = vd->vdev_spa;
2000         objset_t *mos = spa->spa_meta_objset;
2001         dmu_tx_t *tx;
2002
2003         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2004
2005         if (vd->vdev_dtl_smo.smo_object) {
2006                 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
2007                 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2008                 vd->vdev_dtl_smo.smo_object = 0;
2009         }
2010
2011         if (vd->vdev_ms != NULL) {
2012                 for (int m = 0; m < vd->vdev_ms_count; m++) {
2013                         metaslab_t *msp = vd->vdev_ms[m];
2014
2015                         if (msp == NULL || msp->ms_smo.smo_object == 0)
2016                                 continue;
2017
2018                         ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
2019                         (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2020                         msp->ms_smo.smo_object = 0;
2021                 }
2022         }
2023
2024         if (vd->vdev_ms_array) {
2025                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2026                 vd->vdev_ms_array = 0;
2027                 vd->vdev_ms_shift = 0;
2028         }
2029         dmu_tx_commit(tx);
2030 }
2031
2032 void
2033 vdev_sync_done(vdev_t *vd, uint64_t txg)
2034 {
2035         metaslab_t *msp;
2036         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2037
2038         ASSERT(!vd->vdev_ishole);
2039
2040         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2041                 metaslab_sync_done(msp, txg);
2042
2043         if (reassess)
2044                 metaslab_sync_reassess(vd->vdev_mg);
2045 }
2046
2047 void
2048 vdev_sync(vdev_t *vd, uint64_t txg)
2049 {
2050         spa_t *spa = vd->vdev_spa;
2051         vdev_t *lvd;
2052         metaslab_t *msp;
2053         dmu_tx_t *tx;
2054
2055         ASSERT(!vd->vdev_ishole);
2056
2057         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2058                 ASSERT(vd == vd->vdev_top);
2059                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2060                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2061                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2062                 ASSERT(vd->vdev_ms_array != 0);
2063                 vdev_config_dirty(vd);
2064                 dmu_tx_commit(tx);
2065         }
2066
2067         /*
2068          * Remove the metadata associated with this vdev once it's empty.
2069          */
2070         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2071                 vdev_remove(vd, txg);
2072
2073         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2074                 metaslab_sync(msp, txg);
2075                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2076         }
2077
2078         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2079                 vdev_dtl_sync(lvd, txg);
2080
2081         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2082 }
2083
2084 uint64_t
2085 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2086 {
2087         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2088 }
2089
2090 /*
2091  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2092  * not be opened, and no I/O is attempted.
2093  */
2094 int
2095 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2096 {
2097         vdev_t *vd, *tvd;
2098
2099         spa_vdev_state_enter(spa, SCL_NONE);
2100
2101         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2102                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2103
2104         if (!vd->vdev_ops->vdev_op_leaf)
2105                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2106
2107         tvd = vd->vdev_top;
2108
2109         /*
2110          * We don't directly use the aux state here, but if we do a
2111          * vdev_reopen(), we need this value to be present to remember why we
2112          * were faulted.
2113          */
2114         vd->vdev_label_aux = aux;
2115
2116         /*
2117          * Faulted state takes precedence over degraded.
2118          */
2119         vd->vdev_delayed_close = B_FALSE;
2120         vd->vdev_faulted = 1ULL;
2121         vd->vdev_degraded = 0ULL;
2122         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2123
2124         /*
2125          * If this device has the only valid copy of the data, then
2126          * back off and simply mark the vdev as degraded instead.
2127          */
2128         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2129                 vd->vdev_degraded = 1ULL;
2130                 vd->vdev_faulted = 0ULL;
2131
2132                 /*
2133                  * If we reopen the device and it's not dead, only then do we
2134                  * mark it degraded.
2135                  */
2136                 vdev_reopen(tvd);
2137
2138                 if (vdev_readable(vd))
2139                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2140         }
2141
2142         return (spa_vdev_state_exit(spa, vd, 0));
2143 }
2144
2145 /*
2146  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2147  * user that something is wrong.  The vdev continues to operate as normal as far
2148  * as I/O is concerned.
2149  */
2150 int
2151 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2152 {
2153         vdev_t *vd;
2154
2155         spa_vdev_state_enter(spa, SCL_NONE);
2156
2157         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2158                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2159
2160         if (!vd->vdev_ops->vdev_op_leaf)
2161                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2162
2163         /*
2164          * If the vdev is already faulted, then don't do anything.
2165          */
2166         if (vd->vdev_faulted || vd->vdev_degraded)
2167                 return (spa_vdev_state_exit(spa, NULL, 0));
2168
2169         vd->vdev_degraded = 1ULL;
2170         if (!vdev_is_dead(vd))
2171                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2172                     aux);
2173
2174         return (spa_vdev_state_exit(spa, vd, 0));
2175 }
2176
2177 /*
2178  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2179  * any attached spare device should be detached when the device finishes
2180  * resilvering.  Second, the online should be treated like a 'test' online case,
2181  * so no FMA events are generated if the device fails to open.
2182  */
2183 int
2184 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2185 {
2186         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2187
2188         spa_vdev_state_enter(spa, SCL_NONE);
2189
2190         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2191                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2192
2193         if (!vd->vdev_ops->vdev_op_leaf)
2194                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2195
2196         tvd = vd->vdev_top;
2197         vd->vdev_offline = B_FALSE;
2198         vd->vdev_tmpoffline = B_FALSE;
2199         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2200         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2201
2202         /* XXX - L2ARC 1.0 does not support expansion */
2203         if (!vd->vdev_aux) {
2204                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2205                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2206         }
2207
2208         vdev_reopen(tvd);
2209         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2210
2211         if (!vd->vdev_aux) {
2212                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2213                         pvd->vdev_expanding = B_FALSE;
2214         }
2215
2216         if (newstate)
2217                 *newstate = vd->vdev_state;
2218         if ((flags & ZFS_ONLINE_UNSPARE) &&
2219             !vdev_is_dead(vd) && vd->vdev_parent &&
2220             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2221             vd->vdev_parent->vdev_child[0] == vd)
2222                 vd->vdev_unspare = B_TRUE;
2223
2224         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2225
2226                 /* XXX - L2ARC 1.0 does not support expansion */
2227                 if (vd->vdev_aux)
2228                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2229                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2230         }
2231         return (spa_vdev_state_exit(spa, vd, 0));
2232 }
2233
2234 static int
2235 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2236 {
2237         vdev_t *vd, *tvd;
2238         int error = 0;
2239         uint64_t generation;
2240         metaslab_group_t *mg;
2241
2242 top:
2243         spa_vdev_state_enter(spa, SCL_ALLOC);
2244
2245         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2246                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2247
2248         if (!vd->vdev_ops->vdev_op_leaf)
2249                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2250
2251         tvd = vd->vdev_top;
2252         mg = tvd->vdev_mg;
2253         generation = spa->spa_config_generation + 1;
2254
2255         /*
2256          * If the device isn't already offline, try to offline it.
2257          */
2258         if (!vd->vdev_offline) {
2259                 /*
2260                  * If this device has the only valid copy of some data,
2261                  * don't allow it to be offlined. Log devices are always
2262                  * expendable.
2263                  */
2264                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2265                     vdev_dtl_required(vd))
2266                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2267
2268                 /*
2269                  * If the top-level is a slog and it has had allocations
2270                  * then proceed.  We check that the vdev's metaslab group
2271                  * is not NULL since it's possible that we may have just
2272                  * added this vdev but not yet initialized its metaslabs.
2273                  */
2274                 if (tvd->vdev_islog && mg != NULL) {
2275                         /*
2276                          * Prevent any future allocations.
2277                          */
2278                         metaslab_group_passivate(mg);
2279                         (void) spa_vdev_state_exit(spa, vd, 0);
2280
2281                         error = spa_offline_log(spa);
2282
2283                         spa_vdev_state_enter(spa, SCL_ALLOC);
2284
2285                         /*
2286                          * Check to see if the config has changed.
2287                          */
2288                         if (error || generation != spa->spa_config_generation) {
2289                                 metaslab_group_activate(mg);
2290                                 if (error)
2291                                         return (spa_vdev_state_exit(spa,
2292                                             vd, error));
2293                                 (void) spa_vdev_state_exit(spa, vd, 0);
2294                                 goto top;
2295                         }
2296                         ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2297                 }
2298
2299                 /*
2300                  * Offline this device and reopen its top-level vdev.
2301                  * If the top-level vdev is a log device then just offline
2302                  * it. Otherwise, if this action results in the top-level
2303                  * vdev becoming unusable, undo it and fail the request.
2304                  */
2305                 vd->vdev_offline = B_TRUE;
2306                 vdev_reopen(tvd);
2307
2308                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2309                     vdev_is_dead(tvd)) {
2310                         vd->vdev_offline = B_FALSE;
2311                         vdev_reopen(tvd);
2312                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2313                 }
2314
2315                 /*
2316                  * Add the device back into the metaslab rotor so that
2317                  * once we online the device it's open for business.
2318                  */
2319                 if (tvd->vdev_islog && mg != NULL)
2320                         metaslab_group_activate(mg);
2321         }
2322
2323         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2324
2325         return (spa_vdev_state_exit(spa, vd, 0));
2326 }
2327
2328 int
2329 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2330 {
2331         int error;
2332
2333         mutex_enter(&spa->spa_vdev_top_lock);
2334         error = vdev_offline_locked(spa, guid, flags);
2335         mutex_exit(&spa->spa_vdev_top_lock);
2336
2337         return (error);
2338 }
2339
2340 /*
2341  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2342  * vdev_offline(), we assume the spa config is locked.  We also clear all
2343  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2344  */
2345 void
2346 vdev_clear(spa_t *spa, vdev_t *vd)
2347 {
2348         vdev_t *rvd = spa->spa_root_vdev;
2349
2350         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2351
2352         if (vd == NULL)
2353                 vd = rvd;
2354
2355         vd->vdev_stat.vs_read_errors = 0;
2356         vd->vdev_stat.vs_write_errors = 0;
2357         vd->vdev_stat.vs_checksum_errors = 0;
2358
2359         for (int c = 0; c < vd->vdev_children; c++)
2360                 vdev_clear(spa, vd->vdev_child[c]);
2361
2362         /*
2363          * If we're in the FAULTED state or have experienced failed I/O, then
2364          * clear the persistent state and attempt to reopen the device.  We
2365          * also mark the vdev config dirty, so that the new faulted state is
2366          * written out to disk.
2367          */
2368         if (vd->vdev_faulted || vd->vdev_degraded ||
2369             !vdev_readable(vd) || !vdev_writeable(vd)) {
2370
2371                 /*
2372                  * When reopening in reponse to a clear event, it may be due to
2373                  * a fmadm repair request.  In this case, if the device is
2374                  * still broken, we want to still post the ereport again.
2375                  */
2376                 vd->vdev_forcefault = B_TRUE;
2377
2378                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2379                 vd->vdev_cant_read = B_FALSE;
2380                 vd->vdev_cant_write = B_FALSE;
2381
2382                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2383
2384                 vd->vdev_forcefault = B_FALSE;
2385
2386                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2387                         vdev_state_dirty(vd->vdev_top);
2388
2389                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2390                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2391
2392                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2393         }
2394
2395         /*
2396          * When clearing a FMA-diagnosed fault, we always want to
2397          * unspare the device, as we assume that the original spare was
2398          * done in response to the FMA fault.
2399          */
2400         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2401             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2402             vd->vdev_parent->vdev_child[0] == vd)
2403                 vd->vdev_unspare = B_TRUE;
2404 }
2405
2406 boolean_t
2407 vdev_is_dead(vdev_t *vd)
2408 {
2409         /*
2410          * Holes and missing devices are always considered "dead".
2411          * This simplifies the code since we don't have to check for
2412          * these types of devices in the various code paths.
2413          * Instead we rely on the fact that we skip over dead devices
2414          * before issuing I/O to them.
2415          */
2416         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2417             vd->vdev_ops == &vdev_missing_ops);
2418 }
2419
2420 boolean_t
2421 vdev_readable(vdev_t *vd)
2422 {
2423         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2424 }
2425
2426 boolean_t
2427 vdev_writeable(vdev_t *vd)
2428 {
2429         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2430 }
2431
2432 boolean_t
2433 vdev_allocatable(vdev_t *vd)
2434 {
2435         uint64_t state = vd->vdev_state;
2436
2437         /*
2438          * We currently allow allocations from vdevs which may be in the
2439          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2440          * fails to reopen then we'll catch it later when we're holding
2441          * the proper locks.  Note that we have to get the vdev state
2442          * in a local variable because although it changes atomically,
2443          * we're asking two separate questions about it.
2444          */
2445         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2446             !vd->vdev_cant_write && !vd->vdev_ishole);
2447 }
2448
2449 boolean_t
2450 vdev_accessible(vdev_t *vd, zio_t *zio)
2451 {
2452         ASSERT(zio->io_vd == vd);
2453
2454         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2455                 return (B_FALSE);
2456
2457         if (zio->io_type == ZIO_TYPE_READ)
2458                 return (!vd->vdev_cant_read);
2459
2460         if (zio->io_type == ZIO_TYPE_WRITE)
2461                 return (!vd->vdev_cant_write);
2462
2463         return (B_TRUE);
2464 }
2465
2466 /*
2467  * Get statistics for the given vdev.
2468  */
2469 void
2470 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2471 {
2472         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2473
2474         mutex_enter(&vd->vdev_stat_lock);
2475         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2476         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2477         vs->vs_state = vd->vdev_state;
2478         vs->vs_rsize = vdev_get_min_asize(vd);
2479         if (vd->vdev_ops->vdev_op_leaf)
2480                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2481         mutex_exit(&vd->vdev_stat_lock);
2482
2483         /*
2484          * If we're getting stats on the root vdev, aggregate the I/O counts
2485          * over all top-level vdevs (i.e. the direct children of the root).
2486          */
2487         if (vd == rvd) {
2488                 for (int c = 0; c < rvd->vdev_children; c++) {
2489                         vdev_t *cvd = rvd->vdev_child[c];
2490                         vdev_stat_t *cvs = &cvd->vdev_stat;
2491
2492                         mutex_enter(&vd->vdev_stat_lock);
2493                         for (int t = 0; t < ZIO_TYPES; t++) {
2494                                 vs->vs_ops[t] += cvs->vs_ops[t];
2495                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2496                         }
2497                         cvs->vs_scan_removing = cvd->vdev_removing;
2498                         mutex_exit(&vd->vdev_stat_lock);
2499                 }
2500         }
2501 }
2502
2503 void
2504 vdev_clear_stats(vdev_t *vd)
2505 {
2506         mutex_enter(&vd->vdev_stat_lock);
2507         vd->vdev_stat.vs_space = 0;
2508         vd->vdev_stat.vs_dspace = 0;
2509         vd->vdev_stat.vs_alloc = 0;
2510         mutex_exit(&vd->vdev_stat_lock);
2511 }
2512
2513 void
2514 vdev_scan_stat_init(vdev_t *vd)
2515 {
2516         vdev_stat_t *vs = &vd->vdev_stat;
2517
2518         for (int c = 0; c < vd->vdev_children; c++)
2519                 vdev_scan_stat_init(vd->vdev_child[c]);
2520
2521         mutex_enter(&vd->vdev_stat_lock);
2522         vs->vs_scan_processed = 0;
2523         mutex_exit(&vd->vdev_stat_lock);
2524 }
2525
2526 void
2527 vdev_stat_update(zio_t *zio, uint64_t psize)
2528 {
2529         spa_t *spa = zio->io_spa;
2530         vdev_t *rvd = spa->spa_root_vdev;
2531         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2532         vdev_t *pvd;
2533         uint64_t txg = zio->io_txg;
2534         vdev_stat_t *vs = &vd->vdev_stat;
2535         zio_type_t type = zio->io_type;
2536         int flags = zio->io_flags;
2537
2538         /*
2539          * If this i/o is a gang leader, it didn't do any actual work.
2540          */
2541         if (zio->io_gang_tree)
2542                 return;
2543
2544         if (zio->io_error == 0) {
2545                 /*
2546                  * If this is a root i/o, don't count it -- we've already
2547                  * counted the top-level vdevs, and vdev_get_stats() will
2548                  * aggregate them when asked.  This reduces contention on
2549                  * the root vdev_stat_lock and implicitly handles blocks
2550                  * that compress away to holes, for which there is no i/o.
2551                  * (Holes never create vdev children, so all the counters
2552                  * remain zero, which is what we want.)
2553                  *
2554                  * Note: this only applies to successful i/o (io_error == 0)
2555                  * because unlike i/o counts, errors are not additive.
2556                  * When reading a ditto block, for example, failure of
2557                  * one top-level vdev does not imply a root-level error.
2558                  */
2559                 if (vd == rvd)
2560                         return;
2561
2562                 ASSERT(vd == zio->io_vd);
2563
2564                 if (flags & ZIO_FLAG_IO_BYPASS)
2565                         return;
2566
2567                 mutex_enter(&vd->vdev_stat_lock);
2568
2569                 if (flags & ZIO_FLAG_IO_REPAIR) {
2570                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2571                                 dsl_scan_phys_t *scn_phys =
2572                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2573                                 uint64_t *processed = &scn_phys->scn_processed;
2574
2575                                 /* XXX cleanup? */
2576                                 if (vd->vdev_ops->vdev_op_leaf)
2577                                         atomic_add_64(processed, psize);
2578                                 vs->vs_scan_processed += psize;
2579                         }
2580
2581                         if (flags & ZIO_FLAG_SELF_HEAL)
2582                                 vs->vs_self_healed += psize;
2583                 }
2584
2585                 vs->vs_ops[type]++;
2586                 vs->vs_bytes[type] += psize;
2587
2588                 mutex_exit(&vd->vdev_stat_lock);
2589                 return;
2590         }
2591
2592         if (flags & ZIO_FLAG_SPECULATIVE)
2593                 return;
2594
2595         /*
2596          * If this is an I/O error that is going to be retried, then ignore the
2597          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2598          * hard errors, when in reality they can happen for any number of
2599          * innocuous reasons (bus resets, MPxIO link failure, etc).
2600          */
2601         if (zio->io_error == EIO &&
2602             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2603                 return;
2604
2605         /*
2606          * Intent logs writes won't propagate their error to the root
2607          * I/O so don't mark these types of failures as pool-level
2608          * errors.
2609          */
2610         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2611                 return;
2612
2613         mutex_enter(&vd->vdev_stat_lock);
2614         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2615                 if (zio->io_error == ECKSUM)
2616                         vs->vs_checksum_errors++;
2617                 else
2618                         vs->vs_read_errors++;
2619         }
2620         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2621                 vs->vs_write_errors++;
2622         mutex_exit(&vd->vdev_stat_lock);
2623
2624         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2625             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2626             (flags & ZIO_FLAG_SCAN_THREAD) ||
2627             spa->spa_claiming)) {
2628                 /*
2629                  * This is either a normal write (not a repair), or it's
2630                  * a repair induced by the scrub thread, or it's a repair
2631                  * made by zil_claim() during spa_load() in the first txg.
2632                  * In the normal case, we commit the DTL change in the same
2633                  * txg as the block was born.  In the scrub-induced repair
2634                  * case, we know that scrubs run in first-pass syncing context,
2635                  * so we commit the DTL change in spa_syncing_txg(spa).
2636                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2637                  *
2638                  * We currently do not make DTL entries for failed spontaneous
2639                  * self-healing writes triggered by normal (non-scrubbing)
2640                  * reads, because we have no transactional context in which to
2641                  * do so -- and it's not clear that it'd be desirable anyway.
2642                  */
2643                 if (vd->vdev_ops->vdev_op_leaf) {
2644                         uint64_t commit_txg = txg;
2645                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2646                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2647                                 ASSERT(spa_sync_pass(spa) == 1);
2648                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2649                                 commit_txg = spa_syncing_txg(spa);
2650                         } else if (spa->spa_claiming) {
2651                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2652                                 commit_txg = spa_first_txg(spa);
2653                         }
2654                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2655                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2656                                 return;
2657                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2658                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2659                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2660                 }
2661                 if (vd != rvd)
2662                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2663         }
2664 }
2665
2666 /*
2667  * Update the in-core space usage stats for this vdev, its metaslab class,
2668  * and the root vdev.
2669  */
2670 void
2671 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2672     int64_t space_delta)
2673 {
2674         int64_t dspace_delta = space_delta;
2675         spa_t *spa = vd->vdev_spa;
2676         vdev_t *rvd = spa->spa_root_vdev;
2677         metaslab_group_t *mg = vd->vdev_mg;
2678         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2679
2680         ASSERT(vd == vd->vdev_top);
2681
2682         /*
2683          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2684          * factor.  We must calculate this here and not at the root vdev
2685          * because the root vdev's psize-to-asize is simply the max of its
2686          * childrens', thus not accurate enough for us.
2687          */
2688         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2689         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2690         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2691             vd->vdev_deflate_ratio;
2692
2693         mutex_enter(&vd->vdev_stat_lock);
2694         vd->vdev_stat.vs_alloc += alloc_delta;
2695         vd->vdev_stat.vs_space += space_delta;
2696         vd->vdev_stat.vs_dspace += dspace_delta;
2697         mutex_exit(&vd->vdev_stat_lock);
2698
2699         if (mc == spa_normal_class(spa)) {
2700                 mutex_enter(&rvd->vdev_stat_lock);
2701                 rvd->vdev_stat.vs_alloc += alloc_delta;
2702                 rvd->vdev_stat.vs_space += space_delta;
2703                 rvd->vdev_stat.vs_dspace += dspace_delta;
2704                 mutex_exit(&rvd->vdev_stat_lock);
2705         }
2706
2707         if (mc != NULL) {
2708                 ASSERT(rvd == vd->vdev_parent);
2709                 ASSERT(vd->vdev_ms_count != 0);
2710
2711                 metaslab_class_space_update(mc,
2712                     alloc_delta, defer_delta, space_delta, dspace_delta);
2713         }
2714 }
2715
2716 /*
2717  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2718  * so that it will be written out next time the vdev configuration is synced.
2719  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2720  */
2721 void
2722 vdev_config_dirty(vdev_t *vd)
2723 {
2724         spa_t *spa = vd->vdev_spa;
2725         vdev_t *rvd = spa->spa_root_vdev;
2726         int c;
2727
2728         ASSERT(spa_writeable(spa));
2729
2730         /*
2731          * If this is an aux vdev (as with l2cache and spare devices), then we
2732          * update the vdev config manually and set the sync flag.
2733          */
2734         if (vd->vdev_aux != NULL) {
2735                 spa_aux_vdev_t *sav = vd->vdev_aux;
2736                 nvlist_t **aux;
2737                 uint_t naux;
2738
2739                 for (c = 0; c < sav->sav_count; c++) {
2740                         if (sav->sav_vdevs[c] == vd)
2741                                 break;
2742                 }
2743
2744                 if (c == sav->sav_count) {
2745                         /*
2746                          * We're being removed.  There's nothing more to do.
2747                          */
2748                         ASSERT(sav->sav_sync == B_TRUE);
2749                         return;
2750                 }
2751
2752                 sav->sav_sync = B_TRUE;
2753
2754                 if (nvlist_lookup_nvlist_array(sav->sav_config,
2755                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2756                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2757                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2758                 }
2759
2760                 ASSERT(c < naux);
2761
2762                 /*
2763                  * Setting the nvlist in the middle if the array is a little
2764                  * sketchy, but it will work.
2765                  */
2766                 nvlist_free(aux[c]);
2767                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2768
2769                 return;
2770         }
2771
2772         /*
2773          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2774          * must either hold SCL_CONFIG as writer, or must be the sync thread
2775          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2776          * so this is sufficient to ensure mutual exclusion.
2777          */
2778         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2779             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2780             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2781
2782         if (vd == rvd) {
2783                 for (c = 0; c < rvd->vdev_children; c++)
2784                         vdev_config_dirty(rvd->vdev_child[c]);
2785         } else {
2786                 ASSERT(vd == vd->vdev_top);
2787
2788                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2789                     !vd->vdev_ishole)
2790                         list_insert_head(&spa->spa_config_dirty_list, vd);
2791         }
2792 }
2793
2794 void
2795 vdev_config_clean(vdev_t *vd)
2796 {
2797         spa_t *spa = vd->vdev_spa;
2798
2799         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2800             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2801             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2802
2803         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2804         list_remove(&spa->spa_config_dirty_list, vd);
2805 }
2806
2807 /*
2808  * Mark a top-level vdev's state as dirty, so that the next pass of
2809  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2810  * the state changes from larger config changes because they require
2811  * much less locking, and are often needed for administrative actions.
2812  */
2813 void
2814 vdev_state_dirty(vdev_t *vd)
2815 {
2816         spa_t *spa = vd->vdev_spa;
2817
2818         ASSERT(spa_writeable(spa));
2819         ASSERT(vd == vd->vdev_top);
2820
2821         /*
2822          * The state list is protected by the SCL_STATE lock.  The caller
2823          * must either hold SCL_STATE as writer, or must be the sync thread
2824          * (which holds SCL_STATE as reader).  There's only one sync thread,
2825          * so this is sufficient to ensure mutual exclusion.
2826          */
2827         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2828             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2829             spa_config_held(spa, SCL_STATE, RW_READER)));
2830
2831         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2832                 list_insert_head(&spa->spa_state_dirty_list, vd);
2833 }
2834
2835 void
2836 vdev_state_clean(vdev_t *vd)
2837 {
2838         spa_t *spa = vd->vdev_spa;
2839
2840         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2841             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2842             spa_config_held(spa, SCL_STATE, RW_READER)));
2843
2844         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2845         list_remove(&spa->spa_state_dirty_list, vd);
2846 }
2847
2848 /*
2849  * Propagate vdev state up from children to parent.
2850  */
2851 void
2852 vdev_propagate_state(vdev_t *vd)
2853 {
2854         spa_t *spa = vd->vdev_spa;
2855         vdev_t *rvd = spa->spa_root_vdev;
2856         int degraded = 0, faulted = 0;
2857         int corrupted = 0;
2858         vdev_t *child;
2859
2860         if (vd->vdev_children > 0) {
2861                 for (int c = 0; c < vd->vdev_children; c++) {
2862                         child = vd->vdev_child[c];
2863
2864                         /*
2865                          * Don't factor holes into the decision.
2866                          */
2867                         if (child->vdev_ishole)
2868                                 continue;
2869
2870                         if (!vdev_readable(child) ||
2871                             (!vdev_writeable(child) && spa_writeable(spa))) {
2872                                 /*
2873                                  * Root special: if there is a top-level log
2874                                  * device, treat the root vdev as if it were
2875                                  * degraded.
2876                                  */
2877                                 if (child->vdev_islog && vd == rvd)
2878                                         degraded++;
2879                                 else
2880                                         faulted++;
2881                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2882                                 degraded++;
2883                         }
2884
2885                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2886                                 corrupted++;
2887                 }
2888
2889                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2890
2891                 /*
2892                  * Root special: if there is a top-level vdev that cannot be
2893                  * opened due to corrupted metadata, then propagate the root
2894                  * vdev's aux state as 'corrupt' rather than 'insufficient
2895                  * replicas'.
2896                  */
2897                 if (corrupted && vd == rvd &&
2898                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2899                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2900                             VDEV_AUX_CORRUPT_DATA);
2901         }
2902
2903         if (vd->vdev_parent)
2904                 vdev_propagate_state(vd->vdev_parent);
2905 }
2906
2907 /*
2908  * Set a vdev's state.  If this is during an open, we don't update the parent
2909  * state, because we're in the process of opening children depth-first.
2910  * Otherwise, we propagate the change to the parent.
2911  *
2912  * If this routine places a device in a faulted state, an appropriate ereport is
2913  * generated.
2914  */
2915 void
2916 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2917 {
2918         uint64_t save_state;
2919         spa_t *spa = vd->vdev_spa;
2920
2921         if (state == vd->vdev_state) {
2922                 vd->vdev_stat.vs_aux = aux;
2923                 return;
2924         }
2925
2926         save_state = vd->vdev_state;
2927
2928         vd->vdev_state = state;
2929         vd->vdev_stat.vs_aux = aux;
2930
2931         /*
2932          * If we are setting the vdev state to anything but an open state, then
2933          * always close the underlying device unless the device has requested
2934          * a delayed close (i.e. we're about to remove or fault the device).
2935          * Otherwise, we keep accessible but invalid devices open forever.
2936          * We don't call vdev_close() itself, because that implies some extra
2937          * checks (offline, etc) that we don't want here.  This is limited to
2938          * leaf devices, because otherwise closing the device will affect other
2939          * children.
2940          */
2941         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2942             vd->vdev_ops->vdev_op_leaf)
2943                 vd->vdev_ops->vdev_op_close(vd);
2944
2945         /*
2946          * If we have brought this vdev back into service, we need
2947          * to notify fmd so that it can gracefully repair any outstanding
2948          * cases due to a missing device.  We do this in all cases, even those
2949          * that probably don't correlate to a repaired fault.  This is sure to
2950          * catch all cases, and we let the zfs-retire agent sort it out.  If
2951          * this is a transient state it's OK, as the retire agent will
2952          * double-check the state of the vdev before repairing it.
2953          */
2954         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2955             vd->vdev_prevstate != state)
2956                 zfs_post_state_change(spa, vd);
2957
2958         if (vd->vdev_removed &&
2959             state == VDEV_STATE_CANT_OPEN &&
2960             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2961                 /*
2962                  * If the previous state is set to VDEV_STATE_REMOVED, then this
2963                  * device was previously marked removed and someone attempted to
2964                  * reopen it.  If this failed due to a nonexistent device, then
2965                  * keep the device in the REMOVED state.  We also let this be if
2966                  * it is one of our special test online cases, which is only
2967                  * attempting to online the device and shouldn't generate an FMA
2968                  * fault.
2969                  */
2970                 vd->vdev_state = VDEV_STATE_REMOVED;
2971                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2972         } else if (state == VDEV_STATE_REMOVED) {
2973                 vd->vdev_removed = B_TRUE;
2974         } else if (state == VDEV_STATE_CANT_OPEN) {
2975                 /*
2976                  * If we fail to open a vdev during an import or recovery, we
2977                  * mark it as "not available", which signifies that it was
2978                  * never there to begin with.  Failure to open such a device
2979                  * is not considered an error.
2980                  */
2981                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
2982                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
2983                     vd->vdev_ops->vdev_op_leaf)
2984                         vd->vdev_not_present = 1;
2985
2986                 /*
2987                  * Post the appropriate ereport.  If the 'prevstate' field is
2988                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
2989                  * that this is part of a vdev_reopen().  In this case, we don't
2990                  * want to post the ereport if the device was already in the
2991                  * CANT_OPEN state beforehand.
2992                  *
2993                  * If the 'checkremove' flag is set, then this is an attempt to
2994                  * online the device in response to an insertion event.  If we
2995                  * hit this case, then we have detected an insertion event for a
2996                  * faulted or offline device that wasn't in the removed state.
2997                  * In this scenario, we don't post an ereport because we are
2998                  * about to replace the device, or attempt an online with
2999                  * vdev_forcefault, which will generate the fault for us.
3000                  */
3001                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3002                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3003                     vd != spa->spa_root_vdev) {
3004                         const char *class;
3005
3006                         switch (aux) {
3007                         case VDEV_AUX_OPEN_FAILED:
3008                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3009                                 break;
3010                         case VDEV_AUX_CORRUPT_DATA:
3011                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3012                                 break;
3013                         case VDEV_AUX_NO_REPLICAS:
3014                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3015                                 break;
3016                         case VDEV_AUX_BAD_GUID_SUM:
3017                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3018                                 break;
3019                         case VDEV_AUX_TOO_SMALL:
3020                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3021                                 break;
3022                         case VDEV_AUX_BAD_LABEL:
3023                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3024                                 break;
3025                         default:
3026                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3027                         }
3028
3029                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3030                 }
3031
3032                 /* Erase any notion of persistent removed state */
3033                 vd->vdev_removed = B_FALSE;
3034         } else {
3035                 vd->vdev_removed = B_FALSE;
3036         }
3037
3038         if (!isopen && vd->vdev_parent)
3039                 vdev_propagate_state(vd->vdev_parent);
3040 }
3041
3042 /*
3043  * Check the vdev configuration to ensure that it's capable of supporting
3044  * a root pool.
3045  *
3046  * On Solaris, we do not support RAID-Z or partial configuration.  In
3047  * addition, only a single top-level vdev is allowed and none of the
3048  * leaves can be wholedisks.
3049  *
3050  * For FreeBSD, we can boot from any configuration. There is a
3051  * limitation that the boot filesystem must be either uncompressed or
3052  * compresses with lzjb compression but I'm not sure how to enforce
3053  * that here.
3054  */
3055 boolean_t
3056 vdev_is_bootable(vdev_t *vd)
3057 {
3058 #ifdef sun
3059         if (!vd->vdev_ops->vdev_op_leaf) {
3060                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3061
3062                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3063                     vd->vdev_children > 1) {
3064                         return (B_FALSE);
3065                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3066                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3067                         return (B_FALSE);
3068                 }
3069         } else if (vd->vdev_wholedisk == 1) {
3070                 return (B_FALSE);
3071         }
3072
3073         for (int c = 0; c < vd->vdev_children; c++) {
3074                 if (!vdev_is_bootable(vd->vdev_child[c]))
3075                         return (B_FALSE);
3076         }
3077 #endif  /* sun */
3078         return (B_TRUE);
3079 }
3080
3081 /*
3082  * Load the state from the original vdev tree (ovd) which
3083  * we've retrieved from the MOS config object. If the original
3084  * vdev was offline or faulted then we transfer that state to the
3085  * device in the current vdev tree (nvd).
3086  */
3087 void
3088 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3089 {
3090         spa_t *spa = nvd->vdev_spa;
3091
3092         ASSERT(nvd->vdev_top->vdev_islog);
3093         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3094         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3095
3096         for (int c = 0; c < nvd->vdev_children; c++)
3097                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3098
3099         if (nvd->vdev_ops->vdev_op_leaf) {
3100                 /*
3101                  * Restore the persistent vdev state
3102                  */
3103                 nvd->vdev_offline = ovd->vdev_offline;
3104                 nvd->vdev_faulted = ovd->vdev_faulted;
3105                 nvd->vdev_degraded = ovd->vdev_degraded;
3106                 nvd->vdev_removed = ovd->vdev_removed;
3107         }
3108 }
3109
3110 /*
3111  * Determine if a log device has valid content.  If the vdev was
3112  * removed or faulted in the MOS config then we know that
3113  * the content on the log device has already been written to the pool.
3114  */
3115 boolean_t
3116 vdev_log_state_valid(vdev_t *vd)
3117 {
3118         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3119             !vd->vdev_removed)
3120                 return (B_TRUE);
3121
3122         for (int c = 0; c < vd->vdev_children; c++)
3123                 if (vdev_log_state_valid(vd->vdev_child[c]))
3124                         return (B_TRUE);
3125
3126         return (B_FALSE);
3127 }
3128
3129 /*
3130  * Expand a vdev if possible.
3131  */
3132 void
3133 vdev_expand(vdev_t *vd, uint64_t txg)
3134 {
3135         ASSERT(vd->vdev_top == vd);
3136         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3137
3138         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3139                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3140                 vdev_config_dirty(vd);
3141         }
3142 }
3143
3144 /*
3145  * Split a vdev.
3146  */
3147 void
3148 vdev_split(vdev_t *vd)
3149 {
3150         vdev_t *cvd, *pvd = vd->vdev_parent;
3151
3152         vdev_remove_child(pvd, vd);
3153         vdev_compact_children(pvd);
3154
3155         cvd = pvd->vdev_child[0];
3156         if (pvd->vdev_children == 1) {
3157                 vdev_remove_parent(cvd);
3158                 cvd->vdev_splitting = B_TRUE;
3159         }
3160         vdev_propagate_state(cvd);
3161 }