]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c
MFC r228103, r228104:
[FreeBSD/stable/9.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2011 by Delphix. All rights reserved.
26  */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/zio.h>
40 #include <sys/zap.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/arc.h>
43 #include <sys/zil.h>
44 #include <sys/dsl_scan.h>
45
46 SYSCTL_DECL(_vfs_zfs);
47 SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
48
49 /*
50  * Virtual device management.
51  */
52
53 static vdev_ops_t *vdev_ops_table[] = {
54         &vdev_root_ops,
55         &vdev_raidz_ops,
56         &vdev_mirror_ops,
57         &vdev_replacing_ops,
58         &vdev_spare_ops,
59 #ifdef _KERNEL
60         &vdev_geom_ops,
61 #else
62         &vdev_disk_ops,
63 #endif
64         &vdev_file_ops,
65         &vdev_missing_ops,
66         &vdev_hole_ops,
67         NULL
68 };
69
70 /* maximum scrub/resilver I/O queue per leaf vdev */
71 int zfs_scrub_limit = 10;
72
73 TUNABLE_INT("vfs.zfs.scrub_limit", &zfs_scrub_limit);
74 SYSCTL_INT(_vfs_zfs, OID_AUTO, scrub_limit, CTLFLAG_RDTUN, &zfs_scrub_limit, 0,
75     "Maximum scrub/resilver I/O queue");
76
77 /*
78  * Given a vdev type, return the appropriate ops vector.
79  */
80 static vdev_ops_t *
81 vdev_getops(const char *type)
82 {
83         vdev_ops_t *ops, **opspp;
84
85         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
86                 if (strcmp(ops->vdev_op_type, type) == 0)
87                         break;
88
89         return (ops);
90 }
91
92 /*
93  * Default asize function: return the MAX of psize with the asize of
94  * all children.  This is what's used by anything other than RAID-Z.
95  */
96 uint64_t
97 vdev_default_asize(vdev_t *vd, uint64_t psize)
98 {
99         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
100         uint64_t csize;
101
102         for (int c = 0; c < vd->vdev_children; c++) {
103                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
104                 asize = MAX(asize, csize);
105         }
106
107         return (asize);
108 }
109
110 /*
111  * Get the minimum allocatable size. We define the allocatable size as
112  * the vdev's asize rounded to the nearest metaslab. This allows us to
113  * replace or attach devices which don't have the same physical size but
114  * can still satisfy the same number of allocations.
115  */
116 uint64_t
117 vdev_get_min_asize(vdev_t *vd)
118 {
119         vdev_t *pvd = vd->vdev_parent;
120
121         /*
122          * The our parent is NULL (inactive spare or cache) or is the root,
123          * just return our own asize.
124          */
125         if (pvd == NULL)
126                 return (vd->vdev_asize);
127
128         /*
129          * The top-level vdev just returns the allocatable size rounded
130          * to the nearest metaslab.
131          */
132         if (vd == vd->vdev_top)
133                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
134
135         /*
136          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
137          * so each child must provide at least 1/Nth of its asize.
138          */
139         if (pvd->vdev_ops == &vdev_raidz_ops)
140                 return (pvd->vdev_min_asize / pvd->vdev_children);
141
142         return (pvd->vdev_min_asize);
143 }
144
145 void
146 vdev_set_min_asize(vdev_t *vd)
147 {
148         vd->vdev_min_asize = vdev_get_min_asize(vd);
149
150         for (int c = 0; c < vd->vdev_children; c++)
151                 vdev_set_min_asize(vd->vdev_child[c]);
152 }
153
154 vdev_t *
155 vdev_lookup_top(spa_t *spa, uint64_t vdev)
156 {
157         vdev_t *rvd = spa->spa_root_vdev;
158
159         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
160
161         if (vdev < rvd->vdev_children) {
162                 ASSERT(rvd->vdev_child[vdev] != NULL);
163                 return (rvd->vdev_child[vdev]);
164         }
165
166         return (NULL);
167 }
168
169 vdev_t *
170 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
171 {
172         vdev_t *mvd;
173
174         if (vd->vdev_guid == guid)
175                 return (vd);
176
177         for (int c = 0; c < vd->vdev_children; c++)
178                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
179                     NULL)
180                         return (mvd);
181
182         return (NULL);
183 }
184
185 void
186 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
187 {
188         size_t oldsize, newsize;
189         uint64_t id = cvd->vdev_id;
190         vdev_t **newchild;
191
192         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
193         ASSERT(cvd->vdev_parent == NULL);
194
195         cvd->vdev_parent = pvd;
196
197         if (pvd == NULL)
198                 return;
199
200         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
201
202         oldsize = pvd->vdev_children * sizeof (vdev_t *);
203         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
204         newsize = pvd->vdev_children * sizeof (vdev_t *);
205
206         newchild = kmem_zalloc(newsize, KM_SLEEP);
207         if (pvd->vdev_child != NULL) {
208                 bcopy(pvd->vdev_child, newchild, oldsize);
209                 kmem_free(pvd->vdev_child, oldsize);
210         }
211
212         pvd->vdev_child = newchild;
213         pvd->vdev_child[id] = cvd;
214
215         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
216         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
217
218         /*
219          * Walk up all ancestors to update guid sum.
220          */
221         for (; pvd != NULL; pvd = pvd->vdev_parent)
222                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
223 }
224
225 void
226 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
227 {
228         int c;
229         uint_t id = cvd->vdev_id;
230
231         ASSERT(cvd->vdev_parent == pvd);
232
233         if (pvd == NULL)
234                 return;
235
236         ASSERT(id < pvd->vdev_children);
237         ASSERT(pvd->vdev_child[id] == cvd);
238
239         pvd->vdev_child[id] = NULL;
240         cvd->vdev_parent = NULL;
241
242         for (c = 0; c < pvd->vdev_children; c++)
243                 if (pvd->vdev_child[c])
244                         break;
245
246         if (c == pvd->vdev_children) {
247                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
248                 pvd->vdev_child = NULL;
249                 pvd->vdev_children = 0;
250         }
251
252         /*
253          * Walk up all ancestors to update guid sum.
254          */
255         for (; pvd != NULL; pvd = pvd->vdev_parent)
256                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
257 }
258
259 /*
260  * Remove any holes in the child array.
261  */
262 void
263 vdev_compact_children(vdev_t *pvd)
264 {
265         vdev_t **newchild, *cvd;
266         int oldc = pvd->vdev_children;
267         int newc;
268
269         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
270
271         for (int c = newc = 0; c < oldc; c++)
272                 if (pvd->vdev_child[c])
273                         newc++;
274
275         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
276
277         for (int c = newc = 0; c < oldc; c++) {
278                 if ((cvd = pvd->vdev_child[c]) != NULL) {
279                         newchild[newc] = cvd;
280                         cvd->vdev_id = newc++;
281                 }
282         }
283
284         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
285         pvd->vdev_child = newchild;
286         pvd->vdev_children = newc;
287 }
288
289 /*
290  * Allocate and minimally initialize a vdev_t.
291  */
292 vdev_t *
293 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
294 {
295         vdev_t *vd;
296
297         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
298
299         if (spa->spa_root_vdev == NULL) {
300                 ASSERT(ops == &vdev_root_ops);
301                 spa->spa_root_vdev = vd;
302                 spa->spa_load_guid = spa_generate_guid(NULL);
303         }
304
305         if (guid == 0 && ops != &vdev_hole_ops) {
306                 if (spa->spa_root_vdev == vd) {
307                         /*
308                          * The root vdev's guid will also be the pool guid,
309                          * which must be unique among all pools.
310                          */
311                         guid = spa_generate_guid(NULL);
312                 } else {
313                         /*
314                          * Any other vdev's guid must be unique within the pool.
315                          */
316                         guid = spa_generate_guid(spa);
317                 }
318                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
319         }
320
321         vd->vdev_spa = spa;
322         vd->vdev_id = id;
323         vd->vdev_guid = guid;
324         vd->vdev_guid_sum = guid;
325         vd->vdev_ops = ops;
326         vd->vdev_state = VDEV_STATE_CLOSED;
327         vd->vdev_ishole = (ops == &vdev_hole_ops);
328
329         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
330         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
331         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
332         for (int t = 0; t < DTL_TYPES; t++) {
333                 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
334                     &vd->vdev_dtl_lock);
335         }
336         txg_list_create(&vd->vdev_ms_list,
337             offsetof(struct metaslab, ms_txg_node));
338         txg_list_create(&vd->vdev_dtl_list,
339             offsetof(struct vdev, vdev_dtl_node));
340         vd->vdev_stat.vs_timestamp = gethrtime();
341         vdev_queue_init(vd);
342         vdev_cache_init(vd);
343
344         return (vd);
345 }
346
347 /*
348  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
349  * creating a new vdev or loading an existing one - the behavior is slightly
350  * different for each case.
351  */
352 int
353 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
354     int alloctype)
355 {
356         vdev_ops_t *ops;
357         char *type;
358         uint64_t guid = 0, islog, nparity;
359         vdev_t *vd;
360
361         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
362
363         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
364                 return (EINVAL);
365
366         if ((ops = vdev_getops(type)) == NULL)
367                 return (EINVAL);
368
369         /*
370          * If this is a load, get the vdev guid from the nvlist.
371          * Otherwise, vdev_alloc_common() will generate one for us.
372          */
373         if (alloctype == VDEV_ALLOC_LOAD) {
374                 uint64_t label_id;
375
376                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
377                     label_id != id)
378                         return (EINVAL);
379
380                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
381                         return (EINVAL);
382         } else if (alloctype == VDEV_ALLOC_SPARE) {
383                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
384                         return (EINVAL);
385         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
386                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
387                         return (EINVAL);
388         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
389                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
390                         return (EINVAL);
391         }
392
393         /*
394          * The first allocated vdev must be of type 'root'.
395          */
396         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
397                 return (EINVAL);
398
399         /*
400          * Determine whether we're a log vdev.
401          */
402         islog = 0;
403         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
404         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
405                 return (ENOTSUP);
406
407         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
408                 return (ENOTSUP);
409
410         /*
411          * Set the nparity property for RAID-Z vdevs.
412          */
413         nparity = -1ULL;
414         if (ops == &vdev_raidz_ops) {
415                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
416                     &nparity) == 0) {
417                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
418                                 return (EINVAL);
419                         /*
420                          * Previous versions could only support 1 or 2 parity
421                          * device.
422                          */
423                         if (nparity > 1 &&
424                             spa_version(spa) < SPA_VERSION_RAIDZ2)
425                                 return (ENOTSUP);
426                         if (nparity > 2 &&
427                             spa_version(spa) < SPA_VERSION_RAIDZ3)
428                                 return (ENOTSUP);
429                 } else {
430                         /*
431                          * We require the parity to be specified for SPAs that
432                          * support multiple parity levels.
433                          */
434                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
435                                 return (EINVAL);
436                         /*
437                          * Otherwise, we default to 1 parity device for RAID-Z.
438                          */
439                         nparity = 1;
440                 }
441         } else {
442                 nparity = 0;
443         }
444         ASSERT(nparity != -1ULL);
445
446         vd = vdev_alloc_common(spa, id, guid, ops);
447
448         vd->vdev_islog = islog;
449         vd->vdev_nparity = nparity;
450
451         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
452                 vd->vdev_path = spa_strdup(vd->vdev_path);
453         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
454                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
455         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
456             &vd->vdev_physpath) == 0)
457                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
458         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
459                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
460
461         /*
462          * Set the whole_disk property.  If it's not specified, leave the value
463          * as -1.
464          */
465         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
466             &vd->vdev_wholedisk) != 0)
467                 vd->vdev_wholedisk = -1ULL;
468
469         /*
470          * Look for the 'not present' flag.  This will only be set if the device
471          * was not present at the time of import.
472          */
473         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
474             &vd->vdev_not_present);
475
476         /*
477          * Get the alignment requirement.
478          */
479         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
480
481         /*
482          * Retrieve the vdev creation time.
483          */
484         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
485             &vd->vdev_crtxg);
486
487         /*
488          * If we're a top-level vdev, try to load the allocation parameters.
489          */
490         if (parent && !parent->vdev_parent &&
491             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
492                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
493                     &vd->vdev_ms_array);
494                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
495                     &vd->vdev_ms_shift);
496                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
497                     &vd->vdev_asize);
498                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
499                     &vd->vdev_removing);
500         }
501
502         if (parent && !parent->vdev_parent) {
503                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
504                     alloctype == VDEV_ALLOC_ADD ||
505                     alloctype == VDEV_ALLOC_SPLIT ||
506                     alloctype == VDEV_ALLOC_ROOTPOOL);
507                 vd->vdev_mg = metaslab_group_create(islog ?
508                     spa_log_class(spa) : spa_normal_class(spa), vd);
509         }
510
511         /*
512          * If we're a leaf vdev, try to load the DTL object and other state.
513          */
514         if (vd->vdev_ops->vdev_op_leaf &&
515             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
516             alloctype == VDEV_ALLOC_ROOTPOOL)) {
517                 if (alloctype == VDEV_ALLOC_LOAD) {
518                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
519                             &vd->vdev_dtl_smo.smo_object);
520                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
521                             &vd->vdev_unspare);
522                 }
523
524                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
525                         uint64_t spare = 0;
526
527                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
528                             &spare) == 0 && spare)
529                                 spa_spare_add(vd);
530                 }
531
532                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
533                     &vd->vdev_offline);
534
535                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
536                     &vd->vdev_resilvering);
537
538                 /*
539                  * When importing a pool, we want to ignore the persistent fault
540                  * state, as the diagnosis made on another system may not be
541                  * valid in the current context.  Local vdevs will
542                  * remain in the faulted state.
543                  */
544                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
545                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
546                             &vd->vdev_faulted);
547                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
548                             &vd->vdev_degraded);
549                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
550                             &vd->vdev_removed);
551
552                         if (vd->vdev_faulted || vd->vdev_degraded) {
553                                 char *aux;
554
555                                 vd->vdev_label_aux =
556                                     VDEV_AUX_ERR_EXCEEDED;
557                                 if (nvlist_lookup_string(nv,
558                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
559                                     strcmp(aux, "external") == 0)
560                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
561                         }
562                 }
563         }
564
565         /*
566          * Add ourselves to the parent's list of children.
567          */
568         vdev_add_child(parent, vd);
569
570         *vdp = vd;
571
572         return (0);
573 }
574
575 void
576 vdev_free(vdev_t *vd)
577 {
578         spa_t *spa = vd->vdev_spa;
579
580         /*
581          * vdev_free() implies closing the vdev first.  This is simpler than
582          * trying to ensure complicated semantics for all callers.
583          */
584         vdev_close(vd);
585
586         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
587         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
588
589         /*
590          * Free all children.
591          */
592         for (int c = 0; c < vd->vdev_children; c++)
593                 vdev_free(vd->vdev_child[c]);
594
595         ASSERT(vd->vdev_child == NULL);
596         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
597
598         /*
599          * Discard allocation state.
600          */
601         if (vd->vdev_mg != NULL) {
602                 vdev_metaslab_fini(vd);
603                 metaslab_group_destroy(vd->vdev_mg);
604         }
605
606         ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
607         ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
608         ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
609
610         /*
611          * Remove this vdev from its parent's child list.
612          */
613         vdev_remove_child(vd->vdev_parent, vd);
614
615         ASSERT(vd->vdev_parent == NULL);
616
617         /*
618          * Clean up vdev structure.
619          */
620         vdev_queue_fini(vd);
621         vdev_cache_fini(vd);
622
623         if (vd->vdev_path)
624                 spa_strfree(vd->vdev_path);
625         if (vd->vdev_devid)
626                 spa_strfree(vd->vdev_devid);
627         if (vd->vdev_physpath)
628                 spa_strfree(vd->vdev_physpath);
629         if (vd->vdev_fru)
630                 spa_strfree(vd->vdev_fru);
631
632         if (vd->vdev_isspare)
633                 spa_spare_remove(vd);
634         if (vd->vdev_isl2cache)
635                 spa_l2cache_remove(vd);
636
637         txg_list_destroy(&vd->vdev_ms_list);
638         txg_list_destroy(&vd->vdev_dtl_list);
639
640         mutex_enter(&vd->vdev_dtl_lock);
641         for (int t = 0; t < DTL_TYPES; t++) {
642                 space_map_unload(&vd->vdev_dtl[t]);
643                 space_map_destroy(&vd->vdev_dtl[t]);
644         }
645         mutex_exit(&vd->vdev_dtl_lock);
646
647         mutex_destroy(&vd->vdev_dtl_lock);
648         mutex_destroy(&vd->vdev_stat_lock);
649         mutex_destroy(&vd->vdev_probe_lock);
650
651         if (vd == spa->spa_root_vdev)
652                 spa->spa_root_vdev = NULL;
653
654         kmem_free(vd, sizeof (vdev_t));
655 }
656
657 /*
658  * Transfer top-level vdev state from svd to tvd.
659  */
660 static void
661 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
662 {
663         spa_t *spa = svd->vdev_spa;
664         metaslab_t *msp;
665         vdev_t *vd;
666         int t;
667
668         ASSERT(tvd == tvd->vdev_top);
669
670         tvd->vdev_ms_array = svd->vdev_ms_array;
671         tvd->vdev_ms_shift = svd->vdev_ms_shift;
672         tvd->vdev_ms_count = svd->vdev_ms_count;
673
674         svd->vdev_ms_array = 0;
675         svd->vdev_ms_shift = 0;
676         svd->vdev_ms_count = 0;
677
678         tvd->vdev_mg = svd->vdev_mg;
679         tvd->vdev_ms = svd->vdev_ms;
680
681         svd->vdev_mg = NULL;
682         svd->vdev_ms = NULL;
683
684         if (tvd->vdev_mg != NULL)
685                 tvd->vdev_mg->mg_vd = tvd;
686
687         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
688         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
689         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
690
691         svd->vdev_stat.vs_alloc = 0;
692         svd->vdev_stat.vs_space = 0;
693         svd->vdev_stat.vs_dspace = 0;
694
695         for (t = 0; t < TXG_SIZE; t++) {
696                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
697                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
698                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
699                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
700                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
701                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
702         }
703
704         if (list_link_active(&svd->vdev_config_dirty_node)) {
705                 vdev_config_clean(svd);
706                 vdev_config_dirty(tvd);
707         }
708
709         if (list_link_active(&svd->vdev_state_dirty_node)) {
710                 vdev_state_clean(svd);
711                 vdev_state_dirty(tvd);
712         }
713
714         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
715         svd->vdev_deflate_ratio = 0;
716
717         tvd->vdev_islog = svd->vdev_islog;
718         svd->vdev_islog = 0;
719 }
720
721 static void
722 vdev_top_update(vdev_t *tvd, vdev_t *vd)
723 {
724         if (vd == NULL)
725                 return;
726
727         vd->vdev_top = tvd;
728
729         for (int c = 0; c < vd->vdev_children; c++)
730                 vdev_top_update(tvd, vd->vdev_child[c]);
731 }
732
733 /*
734  * Add a mirror/replacing vdev above an existing vdev.
735  */
736 vdev_t *
737 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
738 {
739         spa_t *spa = cvd->vdev_spa;
740         vdev_t *pvd = cvd->vdev_parent;
741         vdev_t *mvd;
742
743         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
744
745         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
746
747         mvd->vdev_asize = cvd->vdev_asize;
748         mvd->vdev_min_asize = cvd->vdev_min_asize;
749         mvd->vdev_ashift = cvd->vdev_ashift;
750         mvd->vdev_state = cvd->vdev_state;
751         mvd->vdev_crtxg = cvd->vdev_crtxg;
752
753         vdev_remove_child(pvd, cvd);
754         vdev_add_child(pvd, mvd);
755         cvd->vdev_id = mvd->vdev_children;
756         vdev_add_child(mvd, cvd);
757         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
758
759         if (mvd == mvd->vdev_top)
760                 vdev_top_transfer(cvd, mvd);
761
762         return (mvd);
763 }
764
765 /*
766  * Remove a 1-way mirror/replacing vdev from the tree.
767  */
768 void
769 vdev_remove_parent(vdev_t *cvd)
770 {
771         vdev_t *mvd = cvd->vdev_parent;
772         vdev_t *pvd = mvd->vdev_parent;
773
774         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
775
776         ASSERT(mvd->vdev_children == 1);
777         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
778             mvd->vdev_ops == &vdev_replacing_ops ||
779             mvd->vdev_ops == &vdev_spare_ops);
780         cvd->vdev_ashift = mvd->vdev_ashift;
781
782         vdev_remove_child(mvd, cvd);
783         vdev_remove_child(pvd, mvd);
784
785         /*
786          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
787          * Otherwise, we could have detached an offline device, and when we
788          * go to import the pool we'll think we have two top-level vdevs,
789          * instead of a different version of the same top-level vdev.
790          */
791         if (mvd->vdev_top == mvd) {
792                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
793                 cvd->vdev_orig_guid = cvd->vdev_guid;
794                 cvd->vdev_guid += guid_delta;
795                 cvd->vdev_guid_sum += guid_delta;
796         }
797         cvd->vdev_id = mvd->vdev_id;
798         vdev_add_child(pvd, cvd);
799         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
800
801         if (cvd == cvd->vdev_top)
802                 vdev_top_transfer(mvd, cvd);
803
804         ASSERT(mvd->vdev_children == 0);
805         vdev_free(mvd);
806 }
807
808 int
809 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
810 {
811         spa_t *spa = vd->vdev_spa;
812         objset_t *mos = spa->spa_meta_objset;
813         uint64_t m;
814         uint64_t oldc = vd->vdev_ms_count;
815         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
816         metaslab_t **mspp;
817         int error;
818
819         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
820
821         /*
822          * This vdev is not being allocated from yet or is a hole.
823          */
824         if (vd->vdev_ms_shift == 0)
825                 return (0);
826
827         ASSERT(!vd->vdev_ishole);
828
829         /*
830          * Compute the raidz-deflation ratio.  Note, we hard-code
831          * in 128k (1 << 17) because it is the current "typical" blocksize.
832          * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
833          * or we will inconsistently account for existing bp's.
834          */
835         vd->vdev_deflate_ratio = (1 << 17) /
836             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
837
838         ASSERT(oldc <= newc);
839
840         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
841
842         if (oldc != 0) {
843                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
844                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
845         }
846
847         vd->vdev_ms = mspp;
848         vd->vdev_ms_count = newc;
849
850         for (m = oldc; m < newc; m++) {
851                 space_map_obj_t smo = { 0, 0, 0 };
852                 if (txg == 0) {
853                         uint64_t object = 0;
854                         error = dmu_read(mos, vd->vdev_ms_array,
855                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
856                             DMU_READ_PREFETCH);
857                         if (error)
858                                 return (error);
859                         if (object != 0) {
860                                 dmu_buf_t *db;
861                                 error = dmu_bonus_hold(mos, object, FTAG, &db);
862                                 if (error)
863                                         return (error);
864                                 ASSERT3U(db->db_size, >=, sizeof (smo));
865                                 bcopy(db->db_data, &smo, sizeof (smo));
866                                 ASSERT3U(smo.smo_object, ==, object);
867                                 dmu_buf_rele(db, FTAG);
868                         }
869                 }
870                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
871                     m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
872         }
873
874         if (txg == 0)
875                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
876
877         /*
878          * If the vdev is being removed we don't activate
879          * the metaslabs since we want to ensure that no new
880          * allocations are performed on this device.
881          */
882         if (oldc == 0 && !vd->vdev_removing)
883                 metaslab_group_activate(vd->vdev_mg);
884
885         if (txg == 0)
886                 spa_config_exit(spa, SCL_ALLOC, FTAG);
887
888         return (0);
889 }
890
891 void
892 vdev_metaslab_fini(vdev_t *vd)
893 {
894         uint64_t m;
895         uint64_t count = vd->vdev_ms_count;
896
897         if (vd->vdev_ms != NULL) {
898                 metaslab_group_passivate(vd->vdev_mg);
899                 for (m = 0; m < count; m++)
900                         if (vd->vdev_ms[m] != NULL)
901                                 metaslab_fini(vd->vdev_ms[m]);
902                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
903                 vd->vdev_ms = NULL;
904         }
905 }
906
907 typedef struct vdev_probe_stats {
908         boolean_t       vps_readable;
909         boolean_t       vps_writeable;
910         int             vps_flags;
911 } vdev_probe_stats_t;
912
913 static void
914 vdev_probe_done(zio_t *zio)
915 {
916         spa_t *spa = zio->io_spa;
917         vdev_t *vd = zio->io_vd;
918         vdev_probe_stats_t *vps = zio->io_private;
919
920         ASSERT(vd->vdev_probe_zio != NULL);
921
922         if (zio->io_type == ZIO_TYPE_READ) {
923                 if (zio->io_error == 0)
924                         vps->vps_readable = 1;
925                 if (zio->io_error == 0 && spa_writeable(spa)) {
926                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
927                             zio->io_offset, zio->io_size, zio->io_data,
928                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
929                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
930                 } else {
931                         zio_buf_free(zio->io_data, zio->io_size);
932                 }
933         } else if (zio->io_type == ZIO_TYPE_WRITE) {
934                 if (zio->io_error == 0)
935                         vps->vps_writeable = 1;
936                 zio_buf_free(zio->io_data, zio->io_size);
937         } else if (zio->io_type == ZIO_TYPE_NULL) {
938                 zio_t *pio;
939
940                 vd->vdev_cant_read |= !vps->vps_readable;
941                 vd->vdev_cant_write |= !vps->vps_writeable;
942
943                 if (vdev_readable(vd) &&
944                     (vdev_writeable(vd) || !spa_writeable(spa))) {
945                         zio->io_error = 0;
946                 } else {
947                         ASSERT(zio->io_error != 0);
948                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
949                             spa, vd, NULL, 0, 0);
950                         zio->io_error = ENXIO;
951                 }
952
953                 mutex_enter(&vd->vdev_probe_lock);
954                 ASSERT(vd->vdev_probe_zio == zio);
955                 vd->vdev_probe_zio = NULL;
956                 mutex_exit(&vd->vdev_probe_lock);
957
958                 while ((pio = zio_walk_parents(zio)) != NULL)
959                         if (!vdev_accessible(vd, pio))
960                                 pio->io_error = ENXIO;
961
962                 kmem_free(vps, sizeof (*vps));
963         }
964 }
965
966 /*
967  * Determine whether this device is accessible by reading and writing
968  * to several known locations: the pad regions of each vdev label
969  * but the first (which we leave alone in case it contains a VTOC).
970  */
971 zio_t *
972 vdev_probe(vdev_t *vd, zio_t *zio)
973 {
974         spa_t *spa = vd->vdev_spa;
975         vdev_probe_stats_t *vps = NULL;
976         zio_t *pio;
977
978         ASSERT(vd->vdev_ops->vdev_op_leaf);
979
980         /*
981          * Don't probe the probe.
982          */
983         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
984                 return (NULL);
985
986         /*
987          * To prevent 'probe storms' when a device fails, we create
988          * just one probe i/o at a time.  All zios that want to probe
989          * this vdev will become parents of the probe io.
990          */
991         mutex_enter(&vd->vdev_probe_lock);
992
993         if ((pio = vd->vdev_probe_zio) == NULL) {
994                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
995
996                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
997                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
998                     ZIO_FLAG_TRYHARD;
999
1000                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1001                         /*
1002                          * vdev_cant_read and vdev_cant_write can only
1003                          * transition from TRUE to FALSE when we have the
1004                          * SCL_ZIO lock as writer; otherwise they can only
1005                          * transition from FALSE to TRUE.  This ensures that
1006                          * any zio looking at these values can assume that
1007                          * failures persist for the life of the I/O.  That's
1008                          * important because when a device has intermittent
1009                          * connectivity problems, we want to ensure that
1010                          * they're ascribed to the device (ENXIO) and not
1011                          * the zio (EIO).
1012                          *
1013                          * Since we hold SCL_ZIO as writer here, clear both
1014                          * values so the probe can reevaluate from first
1015                          * principles.
1016                          */
1017                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1018                         vd->vdev_cant_read = B_FALSE;
1019                         vd->vdev_cant_write = B_FALSE;
1020                 }
1021
1022                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1023                     vdev_probe_done, vps,
1024                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1025
1026                 /*
1027                  * We can't change the vdev state in this context, so we
1028                  * kick off an async task to do it on our behalf.
1029                  */
1030                 if (zio != NULL) {
1031                         vd->vdev_probe_wanted = B_TRUE;
1032                         spa_async_request(spa, SPA_ASYNC_PROBE);
1033                 }
1034         }
1035
1036         if (zio != NULL)
1037                 zio_add_child(zio, pio);
1038
1039         mutex_exit(&vd->vdev_probe_lock);
1040
1041         if (vps == NULL) {
1042                 ASSERT(zio != NULL);
1043                 return (NULL);
1044         }
1045
1046         for (int l = 1; l < VDEV_LABELS; l++) {
1047                 zio_nowait(zio_read_phys(pio, vd,
1048                     vdev_label_offset(vd->vdev_psize, l,
1049                     offsetof(vdev_label_t, vl_pad2)),
1050                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1051                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1052                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1053         }
1054
1055         if (zio == NULL)
1056                 return (pio);
1057
1058         zio_nowait(pio);
1059         return (NULL);
1060 }
1061
1062 static void
1063 vdev_open_child(void *arg)
1064 {
1065         vdev_t *vd = arg;
1066
1067         vd->vdev_open_thread = curthread;
1068         vd->vdev_open_error = vdev_open(vd);
1069         vd->vdev_open_thread = NULL;
1070 }
1071
1072 boolean_t
1073 vdev_uses_zvols(vdev_t *vd)
1074 {
1075         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1076             strlen(ZVOL_DIR)) == 0)
1077                 return (B_TRUE);
1078         for (int c = 0; c < vd->vdev_children; c++)
1079                 if (vdev_uses_zvols(vd->vdev_child[c]))
1080                         return (B_TRUE);
1081         return (B_FALSE);
1082 }
1083
1084 void
1085 vdev_open_children(vdev_t *vd)
1086 {
1087         taskq_t *tq;
1088         int children = vd->vdev_children;
1089
1090         /*
1091          * in order to handle pools on top of zvols, do the opens
1092          * in a single thread so that the same thread holds the
1093          * spa_namespace_lock
1094          */
1095         if (B_TRUE || vdev_uses_zvols(vd)) {
1096                 for (int c = 0; c < children; c++)
1097                         vd->vdev_child[c]->vdev_open_error =
1098                             vdev_open(vd->vdev_child[c]);
1099                 return;
1100         }
1101         tq = taskq_create("vdev_open", children, minclsyspri,
1102             children, children, TASKQ_PREPOPULATE);
1103
1104         for (int c = 0; c < children; c++)
1105                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1106                     TQ_SLEEP) != 0);
1107
1108         taskq_destroy(tq);
1109 }
1110
1111 /*
1112  * Prepare a virtual device for access.
1113  */
1114 int
1115 vdev_open(vdev_t *vd)
1116 {
1117         spa_t *spa = vd->vdev_spa;
1118         int error;
1119         uint64_t osize = 0;
1120         uint64_t asize, psize;
1121         uint64_t ashift = 0;
1122
1123         ASSERT(vd->vdev_open_thread == curthread ||
1124             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1125         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1126             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1127             vd->vdev_state == VDEV_STATE_OFFLINE);
1128
1129         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1130         vd->vdev_cant_read = B_FALSE;
1131         vd->vdev_cant_write = B_FALSE;
1132         vd->vdev_min_asize = vdev_get_min_asize(vd);
1133
1134         /*
1135          * If this vdev is not removed, check its fault status.  If it's
1136          * faulted, bail out of the open.
1137          */
1138         if (!vd->vdev_removed && vd->vdev_faulted) {
1139                 ASSERT(vd->vdev_children == 0);
1140                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1141                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1142                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1143                     vd->vdev_label_aux);
1144                 return (ENXIO);
1145         } else if (vd->vdev_offline) {
1146                 ASSERT(vd->vdev_children == 0);
1147                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1148                 return (ENXIO);
1149         }
1150
1151         error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1152
1153         /*
1154          * Reset the vdev_reopening flag so that we actually close
1155          * the vdev on error.
1156          */
1157         vd->vdev_reopening = B_FALSE;
1158         if (zio_injection_enabled && error == 0)
1159                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1160
1161         if (error) {
1162                 if (vd->vdev_removed &&
1163                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1164                         vd->vdev_removed = B_FALSE;
1165
1166                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1167                     vd->vdev_stat.vs_aux);
1168                 return (error);
1169         }
1170
1171         vd->vdev_removed = B_FALSE;
1172
1173         /*
1174          * Recheck the faulted flag now that we have confirmed that
1175          * the vdev is accessible.  If we're faulted, bail.
1176          */
1177         if (vd->vdev_faulted) {
1178                 ASSERT(vd->vdev_children == 0);
1179                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1180                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1181                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1182                     vd->vdev_label_aux);
1183                 return (ENXIO);
1184         }
1185
1186         if (vd->vdev_degraded) {
1187                 ASSERT(vd->vdev_children == 0);
1188                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1189                     VDEV_AUX_ERR_EXCEEDED);
1190         } else {
1191                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1192         }
1193
1194         /*
1195          * For hole or missing vdevs we just return success.
1196          */
1197         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1198                 return (0);
1199
1200         for (int c = 0; c < vd->vdev_children; c++) {
1201                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1202                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1203                             VDEV_AUX_NONE);
1204                         break;
1205                 }
1206         }
1207
1208         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1209
1210         if (vd->vdev_children == 0) {
1211                 if (osize < SPA_MINDEVSIZE) {
1212                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1213                             VDEV_AUX_TOO_SMALL);
1214                         return (EOVERFLOW);
1215                 }
1216                 psize = osize;
1217                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1218         } else {
1219                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1220                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1221                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1222                             VDEV_AUX_TOO_SMALL);
1223                         return (EOVERFLOW);
1224                 }
1225                 psize = 0;
1226                 asize = osize;
1227         }
1228
1229         vd->vdev_psize = psize;
1230
1231         /*
1232          * Make sure the allocatable size hasn't shrunk.
1233          */
1234         if (asize < vd->vdev_min_asize) {
1235                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1236                     VDEV_AUX_BAD_LABEL);
1237                 return (EINVAL);
1238         }
1239
1240         if (vd->vdev_asize == 0) {
1241                 /*
1242                  * This is the first-ever open, so use the computed values.
1243                  * For testing purposes, a higher ashift can be requested.
1244                  */
1245                 vd->vdev_asize = asize;
1246                 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1247         } else {
1248                 /*
1249                  * Make sure the alignment requirement hasn't increased.
1250                  */
1251                 if (ashift > vd->vdev_top->vdev_ashift) {
1252                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1253                             VDEV_AUX_BAD_LABEL);
1254                         return (EINVAL);
1255                 }
1256         }
1257
1258         /*
1259          * If all children are healthy and the asize has increased,
1260          * then we've experienced dynamic LUN growth.  If automatic
1261          * expansion is enabled then use the additional space.
1262          */
1263         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1264             (vd->vdev_expanding || spa->spa_autoexpand))
1265                 vd->vdev_asize = asize;
1266
1267         vdev_set_min_asize(vd);
1268
1269         /*
1270          * Ensure we can issue some IO before declaring the
1271          * vdev open for business.
1272          */
1273         if (vd->vdev_ops->vdev_op_leaf &&
1274             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1275                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1276                     VDEV_AUX_ERR_EXCEEDED);
1277                 return (error);
1278         }
1279
1280         /*
1281          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1282          * resilver.  But don't do this if we are doing a reopen for a scrub,
1283          * since this would just restart the scrub we are already doing.
1284          */
1285         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1286             vdev_resilver_needed(vd, NULL, NULL))
1287                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1288
1289         return (0);
1290 }
1291
1292 /*
1293  * Called once the vdevs are all opened, this routine validates the label
1294  * contents.  This needs to be done before vdev_load() so that we don't
1295  * inadvertently do repair I/Os to the wrong device.
1296  *
1297  * This function will only return failure if one of the vdevs indicates that it
1298  * has since been destroyed or exported.  This is only possible if
1299  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1300  * will be updated but the function will return 0.
1301  */
1302 int
1303 vdev_validate(vdev_t *vd)
1304 {
1305         spa_t *spa = vd->vdev_spa;
1306         nvlist_t *label;
1307         uint64_t guid = 0, top_guid;
1308         uint64_t state;
1309
1310         for (int c = 0; c < vd->vdev_children; c++)
1311                 if (vdev_validate(vd->vdev_child[c]) != 0)
1312                         return (EBADF);
1313
1314         /*
1315          * If the device has already failed, or was marked offline, don't do
1316          * any further validation.  Otherwise, label I/O will fail and we will
1317          * overwrite the previous state.
1318          */
1319         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1320                 uint64_t aux_guid = 0;
1321                 nvlist_t *nvl;
1322
1323                 if ((label = vdev_label_read_config(vd)) == NULL) {
1324                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1325                             VDEV_AUX_BAD_LABEL);
1326                         return (0);
1327                 }
1328
1329                 /*
1330                  * Determine if this vdev has been split off into another
1331                  * pool.  If so, then refuse to open it.
1332                  */
1333                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1334                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1335                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1336                             VDEV_AUX_SPLIT_POOL);
1337                         nvlist_free(label);
1338                         return (0);
1339                 }
1340
1341                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1342                     &guid) != 0 || guid != spa_guid(spa)) {
1343                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1344                             VDEV_AUX_CORRUPT_DATA);
1345                         nvlist_free(label);
1346                         return (0);
1347                 }
1348
1349                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1350                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1351                     &aux_guid) != 0)
1352                         aux_guid = 0;
1353
1354                 /*
1355                  * If this vdev just became a top-level vdev because its
1356                  * sibling was detached, it will have adopted the parent's
1357                  * vdev guid -- but the label may or may not be on disk yet.
1358                  * Fortunately, either version of the label will have the
1359                  * same top guid, so if we're a top-level vdev, we can
1360                  * safely compare to that instead.
1361                  *
1362                  * If we split this vdev off instead, then we also check the
1363                  * original pool's guid.  We don't want to consider the vdev
1364                  * corrupt if it is partway through a split operation.
1365                  */
1366                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1367                     &guid) != 0 ||
1368                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1369                     &top_guid) != 0 ||
1370                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1371                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1372                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1373                             VDEV_AUX_CORRUPT_DATA);
1374                         nvlist_free(label);
1375                         return (0);
1376                 }
1377
1378                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1379                     &state) != 0) {
1380                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1381                             VDEV_AUX_CORRUPT_DATA);
1382                         nvlist_free(label);
1383                         return (0);
1384                 }
1385
1386                 nvlist_free(label);
1387
1388                 /*
1389                  * If this is a verbatim import, no need to check the
1390                  * state of the pool.
1391                  */
1392                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1393                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1394                     state != POOL_STATE_ACTIVE)
1395                         return (EBADF);
1396
1397                 /*
1398                  * If we were able to open and validate a vdev that was
1399                  * previously marked permanently unavailable, clear that state
1400                  * now.
1401                  */
1402                 if (vd->vdev_not_present)
1403                         vd->vdev_not_present = 0;
1404         }
1405
1406         return (0);
1407 }
1408
1409 /*
1410  * Close a virtual device.
1411  */
1412 void
1413 vdev_close(vdev_t *vd)
1414 {
1415         spa_t *spa = vd->vdev_spa;
1416         vdev_t *pvd = vd->vdev_parent;
1417
1418         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1419
1420         /*
1421          * If our parent is reopening, then we are as well, unless we are
1422          * going offline.
1423          */
1424         if (pvd != NULL && pvd->vdev_reopening)
1425                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1426
1427         vd->vdev_ops->vdev_op_close(vd);
1428
1429         vdev_cache_purge(vd);
1430
1431         /*
1432          * We record the previous state before we close it, so that if we are
1433          * doing a reopen(), we don't generate FMA ereports if we notice that
1434          * it's still faulted.
1435          */
1436         vd->vdev_prevstate = vd->vdev_state;
1437
1438         if (vd->vdev_offline)
1439                 vd->vdev_state = VDEV_STATE_OFFLINE;
1440         else
1441                 vd->vdev_state = VDEV_STATE_CLOSED;
1442         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1443 }
1444
1445 void
1446 vdev_hold(vdev_t *vd)
1447 {
1448         spa_t *spa = vd->vdev_spa;
1449
1450         ASSERT(spa_is_root(spa));
1451         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1452                 return;
1453
1454         for (int c = 0; c < vd->vdev_children; c++)
1455                 vdev_hold(vd->vdev_child[c]);
1456
1457         if (vd->vdev_ops->vdev_op_leaf)
1458                 vd->vdev_ops->vdev_op_hold(vd);
1459 }
1460
1461 void
1462 vdev_rele(vdev_t *vd)
1463 {
1464         spa_t *spa = vd->vdev_spa;
1465
1466         ASSERT(spa_is_root(spa));
1467         for (int c = 0; c < vd->vdev_children; c++)
1468                 vdev_rele(vd->vdev_child[c]);
1469
1470         if (vd->vdev_ops->vdev_op_leaf)
1471                 vd->vdev_ops->vdev_op_rele(vd);
1472 }
1473
1474 /*
1475  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1476  * reopen leaf vdevs which had previously been opened as they might deadlock
1477  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1478  * If the leaf has never been opened then open it, as usual.
1479  */
1480 void
1481 vdev_reopen(vdev_t *vd)
1482 {
1483         spa_t *spa = vd->vdev_spa;
1484
1485         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1486
1487         /* set the reopening flag unless we're taking the vdev offline */
1488         vd->vdev_reopening = !vd->vdev_offline;
1489         vdev_close(vd);
1490         (void) vdev_open(vd);
1491
1492         /*
1493          * Call vdev_validate() here to make sure we have the same device.
1494          * Otherwise, a device with an invalid label could be successfully
1495          * opened in response to vdev_reopen().
1496          */
1497         if (vd->vdev_aux) {
1498                 (void) vdev_validate_aux(vd);
1499                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1500                     vd->vdev_aux == &spa->spa_l2cache &&
1501                     !l2arc_vdev_present(vd))
1502                         l2arc_add_vdev(spa, vd);
1503         } else {
1504                 (void) vdev_validate(vd);
1505         }
1506
1507         /*
1508          * Reassess parent vdev's health.
1509          */
1510         vdev_propagate_state(vd);
1511 }
1512
1513 int
1514 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1515 {
1516         int error;
1517
1518         /*
1519          * Normally, partial opens (e.g. of a mirror) are allowed.
1520          * For a create, however, we want to fail the request if
1521          * there are any components we can't open.
1522          */
1523         error = vdev_open(vd);
1524
1525         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1526                 vdev_close(vd);
1527                 return (error ? error : ENXIO);
1528         }
1529
1530         /*
1531          * Recursively initialize all labels.
1532          */
1533         if ((error = vdev_label_init(vd, txg, isreplacing ?
1534             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1535                 vdev_close(vd);
1536                 return (error);
1537         }
1538
1539         return (0);
1540 }
1541
1542 void
1543 vdev_metaslab_set_size(vdev_t *vd)
1544 {
1545         /*
1546          * Aim for roughly 200 metaslabs per vdev.
1547          */
1548         vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1549         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1550 }
1551
1552 void
1553 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1554 {
1555         ASSERT(vd == vd->vdev_top);
1556         ASSERT(!vd->vdev_ishole);
1557         ASSERT(ISP2(flags));
1558         ASSERT(spa_writeable(vd->vdev_spa));
1559
1560         if (flags & VDD_METASLAB)
1561                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1562
1563         if (flags & VDD_DTL)
1564                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1565
1566         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1567 }
1568
1569 /*
1570  * DTLs.
1571  *
1572  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1573  * the vdev has less than perfect replication.  There are four kinds of DTL:
1574  *
1575  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1576  *
1577  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1578  *
1579  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1580  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1581  *      txgs that was scrubbed.
1582  *
1583  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1584  *      persistent errors or just some device being offline.
1585  *      Unlike the other three, the DTL_OUTAGE map is not generally
1586  *      maintained; it's only computed when needed, typically to
1587  *      determine whether a device can be detached.
1588  *
1589  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1590  * either has the data or it doesn't.
1591  *
1592  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1593  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1594  * if any child is less than fully replicated, then so is its parent.
1595  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1596  * comprising only those txgs which appear in 'maxfaults' or more children;
1597  * those are the txgs we don't have enough replication to read.  For example,
1598  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1599  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1600  * two child DTL_MISSING maps.
1601  *
1602  * It should be clear from the above that to compute the DTLs and outage maps
1603  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1604  * Therefore, that is all we keep on disk.  When loading the pool, or after
1605  * a configuration change, we generate all other DTLs from first principles.
1606  */
1607 void
1608 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1609 {
1610         space_map_t *sm = &vd->vdev_dtl[t];
1611
1612         ASSERT(t < DTL_TYPES);
1613         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1614         ASSERT(spa_writeable(vd->vdev_spa));
1615
1616         mutex_enter(sm->sm_lock);
1617         if (!space_map_contains(sm, txg, size))
1618                 space_map_add(sm, txg, size);
1619         mutex_exit(sm->sm_lock);
1620 }
1621
1622 boolean_t
1623 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1624 {
1625         space_map_t *sm = &vd->vdev_dtl[t];
1626         boolean_t dirty = B_FALSE;
1627
1628         ASSERT(t < DTL_TYPES);
1629         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1630
1631         mutex_enter(sm->sm_lock);
1632         if (sm->sm_space != 0)
1633                 dirty = space_map_contains(sm, txg, size);
1634         mutex_exit(sm->sm_lock);
1635
1636         return (dirty);
1637 }
1638
1639 boolean_t
1640 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1641 {
1642         space_map_t *sm = &vd->vdev_dtl[t];
1643         boolean_t empty;
1644
1645         mutex_enter(sm->sm_lock);
1646         empty = (sm->sm_space == 0);
1647         mutex_exit(sm->sm_lock);
1648
1649         return (empty);
1650 }
1651
1652 /*
1653  * Reassess DTLs after a config change or scrub completion.
1654  */
1655 void
1656 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1657 {
1658         spa_t *spa = vd->vdev_spa;
1659         avl_tree_t reftree;
1660         int minref;
1661
1662         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1663
1664         for (int c = 0; c < vd->vdev_children; c++)
1665                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1666                     scrub_txg, scrub_done);
1667
1668         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1669                 return;
1670
1671         if (vd->vdev_ops->vdev_op_leaf) {
1672                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1673
1674                 mutex_enter(&vd->vdev_dtl_lock);
1675                 if (scrub_txg != 0 &&
1676                     (spa->spa_scrub_started ||
1677                     (scn && scn->scn_phys.scn_errors == 0))) {
1678                         /*
1679                          * We completed a scrub up to scrub_txg.  If we
1680                          * did it without rebooting, then the scrub dtl
1681                          * will be valid, so excise the old region and
1682                          * fold in the scrub dtl.  Otherwise, leave the
1683                          * dtl as-is if there was an error.
1684                          *
1685                          * There's little trick here: to excise the beginning
1686                          * of the DTL_MISSING map, we put it into a reference
1687                          * tree and then add a segment with refcnt -1 that
1688                          * covers the range [0, scrub_txg).  This means
1689                          * that each txg in that range has refcnt -1 or 0.
1690                          * We then add DTL_SCRUB with a refcnt of 2, so that
1691                          * entries in the range [0, scrub_txg) will have a
1692                          * positive refcnt -- either 1 or 2.  We then convert
1693                          * the reference tree into the new DTL_MISSING map.
1694                          */
1695                         space_map_ref_create(&reftree);
1696                         space_map_ref_add_map(&reftree,
1697                             &vd->vdev_dtl[DTL_MISSING], 1);
1698                         space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1699                         space_map_ref_add_map(&reftree,
1700                             &vd->vdev_dtl[DTL_SCRUB], 2);
1701                         space_map_ref_generate_map(&reftree,
1702                             &vd->vdev_dtl[DTL_MISSING], 1);
1703                         space_map_ref_destroy(&reftree);
1704                 }
1705                 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1706                 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1707                     space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1708                 if (scrub_done)
1709                         space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1710                 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1711                 if (!vdev_readable(vd))
1712                         space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1713                 else
1714                         space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1715                             space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1716                 mutex_exit(&vd->vdev_dtl_lock);
1717
1718                 if (txg != 0)
1719                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1720                 return;
1721         }
1722
1723         mutex_enter(&vd->vdev_dtl_lock);
1724         for (int t = 0; t < DTL_TYPES; t++) {
1725                 /* account for child's outage in parent's missing map */
1726                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1727                 if (t == DTL_SCRUB)
1728                         continue;                       /* leaf vdevs only */
1729                 if (t == DTL_PARTIAL)
1730                         minref = 1;                     /* i.e. non-zero */
1731                 else if (vd->vdev_nparity != 0)
1732                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1733                 else
1734                         minref = vd->vdev_children;     /* any kind of mirror */
1735                 space_map_ref_create(&reftree);
1736                 for (int c = 0; c < vd->vdev_children; c++) {
1737                         vdev_t *cvd = vd->vdev_child[c];
1738                         mutex_enter(&cvd->vdev_dtl_lock);
1739                         space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1740                         mutex_exit(&cvd->vdev_dtl_lock);
1741                 }
1742                 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1743                 space_map_ref_destroy(&reftree);
1744         }
1745         mutex_exit(&vd->vdev_dtl_lock);
1746 }
1747
1748 static int
1749 vdev_dtl_load(vdev_t *vd)
1750 {
1751         spa_t *spa = vd->vdev_spa;
1752         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1753         objset_t *mos = spa->spa_meta_objset;
1754         dmu_buf_t *db;
1755         int error;
1756
1757         ASSERT(vd->vdev_children == 0);
1758
1759         if (smo->smo_object == 0)
1760                 return (0);
1761
1762         ASSERT(!vd->vdev_ishole);
1763
1764         if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1765                 return (error);
1766
1767         ASSERT3U(db->db_size, >=, sizeof (*smo));
1768         bcopy(db->db_data, smo, sizeof (*smo));
1769         dmu_buf_rele(db, FTAG);
1770
1771         mutex_enter(&vd->vdev_dtl_lock);
1772         error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1773             NULL, SM_ALLOC, smo, mos);
1774         mutex_exit(&vd->vdev_dtl_lock);
1775
1776         return (error);
1777 }
1778
1779 void
1780 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1781 {
1782         spa_t *spa = vd->vdev_spa;
1783         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1784         space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1785         objset_t *mos = spa->spa_meta_objset;
1786         space_map_t smsync;
1787         kmutex_t smlock;
1788         dmu_buf_t *db;
1789         dmu_tx_t *tx;
1790
1791         ASSERT(!vd->vdev_ishole);
1792
1793         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1794
1795         if (vd->vdev_detached) {
1796                 if (smo->smo_object != 0) {
1797                         int err = dmu_object_free(mos, smo->smo_object, tx);
1798                         ASSERT3U(err, ==, 0);
1799                         smo->smo_object = 0;
1800                 }
1801                 dmu_tx_commit(tx);
1802                 return;
1803         }
1804
1805         if (smo->smo_object == 0) {
1806                 ASSERT(smo->smo_objsize == 0);
1807                 ASSERT(smo->smo_alloc == 0);
1808                 smo->smo_object = dmu_object_alloc(mos,
1809                     DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1810                     DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1811                 ASSERT(smo->smo_object != 0);
1812                 vdev_config_dirty(vd->vdev_top);
1813         }
1814
1815         mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1816
1817         space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1818             &smlock);
1819
1820         mutex_enter(&smlock);
1821
1822         mutex_enter(&vd->vdev_dtl_lock);
1823         space_map_walk(sm, space_map_add, &smsync);
1824         mutex_exit(&vd->vdev_dtl_lock);
1825
1826         space_map_truncate(smo, mos, tx);
1827         space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1828
1829         space_map_destroy(&smsync);
1830
1831         mutex_exit(&smlock);
1832         mutex_destroy(&smlock);
1833
1834         VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1835         dmu_buf_will_dirty(db, tx);
1836         ASSERT3U(db->db_size, >=, sizeof (*smo));
1837         bcopy(smo, db->db_data, sizeof (*smo));
1838         dmu_buf_rele(db, FTAG);
1839
1840         dmu_tx_commit(tx);
1841 }
1842
1843 /*
1844  * Determine whether the specified vdev can be offlined/detached/removed
1845  * without losing data.
1846  */
1847 boolean_t
1848 vdev_dtl_required(vdev_t *vd)
1849 {
1850         spa_t *spa = vd->vdev_spa;
1851         vdev_t *tvd = vd->vdev_top;
1852         uint8_t cant_read = vd->vdev_cant_read;
1853         boolean_t required;
1854
1855         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1856
1857         if (vd == spa->spa_root_vdev || vd == tvd)
1858                 return (B_TRUE);
1859
1860         /*
1861          * Temporarily mark the device as unreadable, and then determine
1862          * whether this results in any DTL outages in the top-level vdev.
1863          * If not, we can safely offline/detach/remove the device.
1864          */
1865         vd->vdev_cant_read = B_TRUE;
1866         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1867         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1868         vd->vdev_cant_read = cant_read;
1869         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1870
1871         if (!required && zio_injection_enabled)
1872                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1873
1874         return (required);
1875 }
1876
1877 /*
1878  * Determine if resilver is needed, and if so the txg range.
1879  */
1880 boolean_t
1881 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1882 {
1883         boolean_t needed = B_FALSE;
1884         uint64_t thismin = UINT64_MAX;
1885         uint64_t thismax = 0;
1886
1887         if (vd->vdev_children == 0) {
1888                 mutex_enter(&vd->vdev_dtl_lock);
1889                 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1890                     vdev_writeable(vd)) {
1891                         space_seg_t *ss;
1892
1893                         ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1894                         thismin = ss->ss_start - 1;
1895                         ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1896                         thismax = ss->ss_end;
1897                         needed = B_TRUE;
1898                 }
1899                 mutex_exit(&vd->vdev_dtl_lock);
1900         } else {
1901                 for (int c = 0; c < vd->vdev_children; c++) {
1902                         vdev_t *cvd = vd->vdev_child[c];
1903                         uint64_t cmin, cmax;
1904
1905                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1906                                 thismin = MIN(thismin, cmin);
1907                                 thismax = MAX(thismax, cmax);
1908                                 needed = B_TRUE;
1909                         }
1910                 }
1911         }
1912
1913         if (needed && minp) {
1914                 *minp = thismin;
1915                 *maxp = thismax;
1916         }
1917         return (needed);
1918 }
1919
1920 void
1921 vdev_load(vdev_t *vd)
1922 {
1923         /*
1924          * Recursively load all children.
1925          */
1926         for (int c = 0; c < vd->vdev_children; c++)
1927                 vdev_load(vd->vdev_child[c]);
1928
1929         /*
1930          * If this is a top-level vdev, initialize its metaslabs.
1931          */
1932         if (vd == vd->vdev_top && !vd->vdev_ishole &&
1933             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1934             vdev_metaslab_init(vd, 0) != 0))
1935                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1936                     VDEV_AUX_CORRUPT_DATA);
1937
1938         /*
1939          * If this is a leaf vdev, load its DTL.
1940          */
1941         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1942                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1943                     VDEV_AUX_CORRUPT_DATA);
1944 }
1945
1946 /*
1947  * The special vdev case is used for hot spares and l2cache devices.  Its
1948  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1949  * we make sure that we can open the underlying device, then try to read the
1950  * label, and make sure that the label is sane and that it hasn't been
1951  * repurposed to another pool.
1952  */
1953 int
1954 vdev_validate_aux(vdev_t *vd)
1955 {
1956         nvlist_t *label;
1957         uint64_t guid, version;
1958         uint64_t state;
1959
1960         if (!vdev_readable(vd))
1961                 return (0);
1962
1963         if ((label = vdev_label_read_config(vd)) == NULL) {
1964                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1965                     VDEV_AUX_CORRUPT_DATA);
1966                 return (-1);
1967         }
1968
1969         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1970             version > SPA_VERSION ||
1971             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1972             guid != vd->vdev_guid ||
1973             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1974                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1975                     VDEV_AUX_CORRUPT_DATA);
1976                 nvlist_free(label);
1977                 return (-1);
1978         }
1979
1980         /*
1981          * We don't actually check the pool state here.  If it's in fact in
1982          * use by another pool, we update this fact on the fly when requested.
1983          */
1984         nvlist_free(label);
1985         return (0);
1986 }
1987
1988 void
1989 vdev_remove(vdev_t *vd, uint64_t txg)
1990 {
1991         spa_t *spa = vd->vdev_spa;
1992         objset_t *mos = spa->spa_meta_objset;
1993         dmu_tx_t *tx;
1994
1995         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
1996
1997         if (vd->vdev_dtl_smo.smo_object) {
1998                 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
1999                 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2000                 vd->vdev_dtl_smo.smo_object = 0;
2001         }
2002
2003         if (vd->vdev_ms != NULL) {
2004                 for (int m = 0; m < vd->vdev_ms_count; m++) {
2005                         metaslab_t *msp = vd->vdev_ms[m];
2006
2007                         if (msp == NULL || msp->ms_smo.smo_object == 0)
2008                                 continue;
2009
2010                         ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
2011                         (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2012                         msp->ms_smo.smo_object = 0;
2013                 }
2014         }
2015
2016         if (vd->vdev_ms_array) {
2017                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2018                 vd->vdev_ms_array = 0;
2019                 vd->vdev_ms_shift = 0;
2020         }
2021         dmu_tx_commit(tx);
2022 }
2023
2024 void
2025 vdev_sync_done(vdev_t *vd, uint64_t txg)
2026 {
2027         metaslab_t *msp;
2028         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2029
2030         ASSERT(!vd->vdev_ishole);
2031
2032         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2033                 metaslab_sync_done(msp, txg);
2034
2035         if (reassess)
2036                 metaslab_sync_reassess(vd->vdev_mg);
2037 }
2038
2039 void
2040 vdev_sync(vdev_t *vd, uint64_t txg)
2041 {
2042         spa_t *spa = vd->vdev_spa;
2043         vdev_t *lvd;
2044         metaslab_t *msp;
2045         dmu_tx_t *tx;
2046
2047         ASSERT(!vd->vdev_ishole);
2048
2049         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2050                 ASSERT(vd == vd->vdev_top);
2051                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2052                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2053                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2054                 ASSERT(vd->vdev_ms_array != 0);
2055                 vdev_config_dirty(vd);
2056                 dmu_tx_commit(tx);
2057         }
2058
2059         /*
2060          * Remove the metadata associated with this vdev once it's empty.
2061          */
2062         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2063                 vdev_remove(vd, txg);
2064
2065         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2066                 metaslab_sync(msp, txg);
2067                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2068         }
2069
2070         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2071                 vdev_dtl_sync(lvd, txg);
2072
2073         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2074 }
2075
2076 uint64_t
2077 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2078 {
2079         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2080 }
2081
2082 /*
2083  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2084  * not be opened, and no I/O is attempted.
2085  */
2086 int
2087 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2088 {
2089         vdev_t *vd, *tvd;
2090
2091         spa_vdev_state_enter(spa, SCL_NONE);
2092
2093         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2094                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2095
2096         if (!vd->vdev_ops->vdev_op_leaf)
2097                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2098
2099         tvd = vd->vdev_top;
2100
2101         /*
2102          * We don't directly use the aux state here, but if we do a
2103          * vdev_reopen(), we need this value to be present to remember why we
2104          * were faulted.
2105          */
2106         vd->vdev_label_aux = aux;
2107
2108         /*
2109          * Faulted state takes precedence over degraded.
2110          */
2111         vd->vdev_delayed_close = B_FALSE;
2112         vd->vdev_faulted = 1ULL;
2113         vd->vdev_degraded = 0ULL;
2114         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2115
2116         /*
2117          * If this device has the only valid copy of the data, then
2118          * back off and simply mark the vdev as degraded instead.
2119          */
2120         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2121                 vd->vdev_degraded = 1ULL;
2122                 vd->vdev_faulted = 0ULL;
2123
2124                 /*
2125                  * If we reopen the device and it's not dead, only then do we
2126                  * mark it degraded.
2127                  */
2128                 vdev_reopen(tvd);
2129
2130                 if (vdev_readable(vd))
2131                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2132         }
2133
2134         return (spa_vdev_state_exit(spa, vd, 0));
2135 }
2136
2137 /*
2138  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2139  * user that something is wrong.  The vdev continues to operate as normal as far
2140  * as I/O is concerned.
2141  */
2142 int
2143 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2144 {
2145         vdev_t *vd;
2146
2147         spa_vdev_state_enter(spa, SCL_NONE);
2148
2149         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2150                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2151
2152         if (!vd->vdev_ops->vdev_op_leaf)
2153                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2154
2155         /*
2156          * If the vdev is already faulted, then don't do anything.
2157          */
2158         if (vd->vdev_faulted || vd->vdev_degraded)
2159                 return (spa_vdev_state_exit(spa, NULL, 0));
2160
2161         vd->vdev_degraded = 1ULL;
2162         if (!vdev_is_dead(vd))
2163                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2164                     aux);
2165
2166         return (spa_vdev_state_exit(spa, vd, 0));
2167 }
2168
2169 /*
2170  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2171  * any attached spare device should be detached when the device finishes
2172  * resilvering.  Second, the online should be treated like a 'test' online case,
2173  * so no FMA events are generated if the device fails to open.
2174  */
2175 int
2176 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2177 {
2178         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2179
2180         spa_vdev_state_enter(spa, SCL_NONE);
2181
2182         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2183                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2184
2185         if (!vd->vdev_ops->vdev_op_leaf)
2186                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2187
2188         tvd = vd->vdev_top;
2189         vd->vdev_offline = B_FALSE;
2190         vd->vdev_tmpoffline = B_FALSE;
2191         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2192         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2193
2194         /* XXX - L2ARC 1.0 does not support expansion */
2195         if (!vd->vdev_aux) {
2196                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2197                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2198         }
2199
2200         vdev_reopen(tvd);
2201         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2202
2203         if (!vd->vdev_aux) {
2204                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2205                         pvd->vdev_expanding = B_FALSE;
2206         }
2207
2208         if (newstate)
2209                 *newstate = vd->vdev_state;
2210         if ((flags & ZFS_ONLINE_UNSPARE) &&
2211             !vdev_is_dead(vd) && vd->vdev_parent &&
2212             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2213             vd->vdev_parent->vdev_child[0] == vd)
2214                 vd->vdev_unspare = B_TRUE;
2215
2216         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2217
2218                 /* XXX - L2ARC 1.0 does not support expansion */
2219                 if (vd->vdev_aux)
2220                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2221                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2222         }
2223         return (spa_vdev_state_exit(spa, vd, 0));
2224 }
2225
2226 static int
2227 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2228 {
2229         vdev_t *vd, *tvd;
2230         int error = 0;
2231         uint64_t generation;
2232         metaslab_group_t *mg;
2233
2234 top:
2235         spa_vdev_state_enter(spa, SCL_ALLOC);
2236
2237         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2238                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2239
2240         if (!vd->vdev_ops->vdev_op_leaf)
2241                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2242
2243         tvd = vd->vdev_top;
2244         mg = tvd->vdev_mg;
2245         generation = spa->spa_config_generation + 1;
2246
2247         /*
2248          * If the device isn't already offline, try to offline it.
2249          */
2250         if (!vd->vdev_offline) {
2251                 /*
2252                  * If this device has the only valid copy of some data,
2253                  * don't allow it to be offlined. Log devices are always
2254                  * expendable.
2255                  */
2256                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2257                     vdev_dtl_required(vd))
2258                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2259
2260                 /*
2261                  * If the top-level is a slog and it has had allocations
2262                  * then proceed.  We check that the vdev's metaslab group
2263                  * is not NULL since it's possible that we may have just
2264                  * added this vdev but not yet initialized its metaslabs.
2265                  */
2266                 if (tvd->vdev_islog && mg != NULL) {
2267                         /*
2268                          * Prevent any future allocations.
2269                          */
2270                         metaslab_group_passivate(mg);
2271                         (void) spa_vdev_state_exit(spa, vd, 0);
2272
2273                         error = spa_offline_log(spa);
2274
2275                         spa_vdev_state_enter(spa, SCL_ALLOC);
2276
2277                         /*
2278                          * Check to see if the config has changed.
2279                          */
2280                         if (error || generation != spa->spa_config_generation) {
2281                                 metaslab_group_activate(mg);
2282                                 if (error)
2283                                         return (spa_vdev_state_exit(spa,
2284                                             vd, error));
2285                                 (void) spa_vdev_state_exit(spa, vd, 0);
2286                                 goto top;
2287                         }
2288                         ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2289                 }
2290
2291                 /*
2292                  * Offline this device and reopen its top-level vdev.
2293                  * If the top-level vdev is a log device then just offline
2294                  * it. Otherwise, if this action results in the top-level
2295                  * vdev becoming unusable, undo it and fail the request.
2296                  */
2297                 vd->vdev_offline = B_TRUE;
2298                 vdev_reopen(tvd);
2299
2300                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2301                     vdev_is_dead(tvd)) {
2302                         vd->vdev_offline = B_FALSE;
2303                         vdev_reopen(tvd);
2304                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2305                 }
2306
2307                 /*
2308                  * Add the device back into the metaslab rotor so that
2309                  * once we online the device it's open for business.
2310                  */
2311                 if (tvd->vdev_islog && mg != NULL)
2312                         metaslab_group_activate(mg);
2313         }
2314
2315         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2316
2317         return (spa_vdev_state_exit(spa, vd, 0));
2318 }
2319
2320 int
2321 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2322 {
2323         int error;
2324
2325         mutex_enter(&spa->spa_vdev_top_lock);
2326         error = vdev_offline_locked(spa, guid, flags);
2327         mutex_exit(&spa->spa_vdev_top_lock);
2328
2329         return (error);
2330 }
2331
2332 /*
2333  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2334  * vdev_offline(), we assume the spa config is locked.  We also clear all
2335  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2336  */
2337 void
2338 vdev_clear(spa_t *spa, vdev_t *vd)
2339 {
2340         vdev_t *rvd = spa->spa_root_vdev;
2341
2342         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2343
2344         if (vd == NULL)
2345                 vd = rvd;
2346
2347         vd->vdev_stat.vs_read_errors = 0;
2348         vd->vdev_stat.vs_write_errors = 0;
2349         vd->vdev_stat.vs_checksum_errors = 0;
2350
2351         for (int c = 0; c < vd->vdev_children; c++)
2352                 vdev_clear(spa, vd->vdev_child[c]);
2353
2354         /*
2355          * If we're in the FAULTED state or have experienced failed I/O, then
2356          * clear the persistent state and attempt to reopen the device.  We
2357          * also mark the vdev config dirty, so that the new faulted state is
2358          * written out to disk.
2359          */
2360         if (vd->vdev_faulted || vd->vdev_degraded ||
2361             !vdev_readable(vd) || !vdev_writeable(vd)) {
2362
2363                 /*
2364                  * When reopening in reponse to a clear event, it may be due to
2365                  * a fmadm repair request.  In this case, if the device is
2366                  * still broken, we want to still post the ereport again.
2367                  */
2368                 vd->vdev_forcefault = B_TRUE;
2369
2370                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2371                 vd->vdev_cant_read = B_FALSE;
2372                 vd->vdev_cant_write = B_FALSE;
2373
2374                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2375
2376                 vd->vdev_forcefault = B_FALSE;
2377
2378                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2379                         vdev_state_dirty(vd->vdev_top);
2380
2381                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2382                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2383
2384                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2385         }
2386
2387         /*
2388          * When clearing a FMA-diagnosed fault, we always want to
2389          * unspare the device, as we assume that the original spare was
2390          * done in response to the FMA fault.
2391          */
2392         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2393             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2394             vd->vdev_parent->vdev_child[0] == vd)
2395                 vd->vdev_unspare = B_TRUE;
2396 }
2397
2398 boolean_t
2399 vdev_is_dead(vdev_t *vd)
2400 {
2401         /*
2402          * Holes and missing devices are always considered "dead".
2403          * This simplifies the code since we don't have to check for
2404          * these types of devices in the various code paths.
2405          * Instead we rely on the fact that we skip over dead devices
2406          * before issuing I/O to them.
2407          */
2408         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2409             vd->vdev_ops == &vdev_missing_ops);
2410 }
2411
2412 boolean_t
2413 vdev_readable(vdev_t *vd)
2414 {
2415         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2416 }
2417
2418 boolean_t
2419 vdev_writeable(vdev_t *vd)
2420 {
2421         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2422 }
2423
2424 boolean_t
2425 vdev_allocatable(vdev_t *vd)
2426 {
2427         uint64_t state = vd->vdev_state;
2428
2429         /*
2430          * We currently allow allocations from vdevs which may be in the
2431          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2432          * fails to reopen then we'll catch it later when we're holding
2433          * the proper locks.  Note that we have to get the vdev state
2434          * in a local variable because although it changes atomically,
2435          * we're asking two separate questions about it.
2436          */
2437         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2438             !vd->vdev_cant_write && !vd->vdev_ishole);
2439 }
2440
2441 boolean_t
2442 vdev_accessible(vdev_t *vd, zio_t *zio)
2443 {
2444         ASSERT(zio->io_vd == vd);
2445
2446         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2447                 return (B_FALSE);
2448
2449         if (zio->io_type == ZIO_TYPE_READ)
2450                 return (!vd->vdev_cant_read);
2451
2452         if (zio->io_type == ZIO_TYPE_WRITE)
2453                 return (!vd->vdev_cant_write);
2454
2455         return (B_TRUE);
2456 }
2457
2458 /*
2459  * Get statistics for the given vdev.
2460  */
2461 void
2462 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2463 {
2464         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2465
2466         mutex_enter(&vd->vdev_stat_lock);
2467         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2468         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2469         vs->vs_state = vd->vdev_state;
2470         vs->vs_rsize = vdev_get_min_asize(vd);
2471         if (vd->vdev_ops->vdev_op_leaf)
2472                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2473         mutex_exit(&vd->vdev_stat_lock);
2474
2475         /*
2476          * If we're getting stats on the root vdev, aggregate the I/O counts
2477          * over all top-level vdevs (i.e. the direct children of the root).
2478          */
2479         if (vd == rvd) {
2480                 for (int c = 0; c < rvd->vdev_children; c++) {
2481                         vdev_t *cvd = rvd->vdev_child[c];
2482                         vdev_stat_t *cvs = &cvd->vdev_stat;
2483
2484                         mutex_enter(&vd->vdev_stat_lock);
2485                         for (int t = 0; t < ZIO_TYPES; t++) {
2486                                 vs->vs_ops[t] += cvs->vs_ops[t];
2487                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2488                         }
2489                         cvs->vs_scan_removing = cvd->vdev_removing;
2490                         mutex_exit(&vd->vdev_stat_lock);
2491                 }
2492         }
2493 }
2494
2495 void
2496 vdev_clear_stats(vdev_t *vd)
2497 {
2498         mutex_enter(&vd->vdev_stat_lock);
2499         vd->vdev_stat.vs_space = 0;
2500         vd->vdev_stat.vs_dspace = 0;
2501         vd->vdev_stat.vs_alloc = 0;
2502         mutex_exit(&vd->vdev_stat_lock);
2503 }
2504
2505 void
2506 vdev_scan_stat_init(vdev_t *vd)
2507 {
2508         vdev_stat_t *vs = &vd->vdev_stat;
2509
2510         for (int c = 0; c < vd->vdev_children; c++)
2511                 vdev_scan_stat_init(vd->vdev_child[c]);
2512
2513         mutex_enter(&vd->vdev_stat_lock);
2514         vs->vs_scan_processed = 0;
2515         mutex_exit(&vd->vdev_stat_lock);
2516 }
2517
2518 void
2519 vdev_stat_update(zio_t *zio, uint64_t psize)
2520 {
2521         spa_t *spa = zio->io_spa;
2522         vdev_t *rvd = spa->spa_root_vdev;
2523         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2524         vdev_t *pvd;
2525         uint64_t txg = zio->io_txg;
2526         vdev_stat_t *vs = &vd->vdev_stat;
2527         zio_type_t type = zio->io_type;
2528         int flags = zio->io_flags;
2529
2530         /*
2531          * If this i/o is a gang leader, it didn't do any actual work.
2532          */
2533         if (zio->io_gang_tree)
2534                 return;
2535
2536         if (zio->io_error == 0) {
2537                 /*
2538                  * If this is a root i/o, don't count it -- we've already
2539                  * counted the top-level vdevs, and vdev_get_stats() will
2540                  * aggregate them when asked.  This reduces contention on
2541                  * the root vdev_stat_lock and implicitly handles blocks
2542                  * that compress away to holes, for which there is no i/o.
2543                  * (Holes never create vdev children, so all the counters
2544                  * remain zero, which is what we want.)
2545                  *
2546                  * Note: this only applies to successful i/o (io_error == 0)
2547                  * because unlike i/o counts, errors are not additive.
2548                  * When reading a ditto block, for example, failure of
2549                  * one top-level vdev does not imply a root-level error.
2550                  */
2551                 if (vd == rvd)
2552                         return;
2553
2554                 ASSERT(vd == zio->io_vd);
2555
2556                 if (flags & ZIO_FLAG_IO_BYPASS)
2557                         return;
2558
2559                 mutex_enter(&vd->vdev_stat_lock);
2560
2561                 if (flags & ZIO_FLAG_IO_REPAIR) {
2562                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2563                                 dsl_scan_phys_t *scn_phys =
2564                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2565                                 uint64_t *processed = &scn_phys->scn_processed;
2566
2567                                 /* XXX cleanup? */
2568                                 if (vd->vdev_ops->vdev_op_leaf)
2569                                         atomic_add_64(processed, psize);
2570                                 vs->vs_scan_processed += psize;
2571                         }
2572
2573                         if (flags & ZIO_FLAG_SELF_HEAL)
2574                                 vs->vs_self_healed += psize;
2575                 }
2576
2577                 vs->vs_ops[type]++;
2578                 vs->vs_bytes[type] += psize;
2579
2580                 mutex_exit(&vd->vdev_stat_lock);
2581                 return;
2582         }
2583
2584         if (flags & ZIO_FLAG_SPECULATIVE)
2585                 return;
2586
2587         /*
2588          * If this is an I/O error that is going to be retried, then ignore the
2589          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2590          * hard errors, when in reality they can happen for any number of
2591          * innocuous reasons (bus resets, MPxIO link failure, etc).
2592          */
2593         if (zio->io_error == EIO &&
2594             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2595                 return;
2596
2597         /*
2598          * Intent logs writes won't propagate their error to the root
2599          * I/O so don't mark these types of failures as pool-level
2600          * errors.
2601          */
2602         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2603                 return;
2604
2605         mutex_enter(&vd->vdev_stat_lock);
2606         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2607                 if (zio->io_error == ECKSUM)
2608                         vs->vs_checksum_errors++;
2609                 else
2610                         vs->vs_read_errors++;
2611         }
2612         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2613                 vs->vs_write_errors++;
2614         mutex_exit(&vd->vdev_stat_lock);
2615
2616         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2617             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2618             (flags & ZIO_FLAG_SCAN_THREAD) ||
2619             spa->spa_claiming)) {
2620                 /*
2621                  * This is either a normal write (not a repair), or it's
2622                  * a repair induced by the scrub thread, or it's a repair
2623                  * made by zil_claim() during spa_load() in the first txg.
2624                  * In the normal case, we commit the DTL change in the same
2625                  * txg as the block was born.  In the scrub-induced repair
2626                  * case, we know that scrubs run in first-pass syncing context,
2627                  * so we commit the DTL change in spa_syncing_txg(spa).
2628                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2629                  *
2630                  * We currently do not make DTL entries for failed spontaneous
2631                  * self-healing writes triggered by normal (non-scrubbing)
2632                  * reads, because we have no transactional context in which to
2633                  * do so -- and it's not clear that it'd be desirable anyway.
2634                  */
2635                 if (vd->vdev_ops->vdev_op_leaf) {
2636                         uint64_t commit_txg = txg;
2637                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2638                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2639                                 ASSERT(spa_sync_pass(spa) == 1);
2640                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2641                                 commit_txg = spa_syncing_txg(spa);
2642                         } else if (spa->spa_claiming) {
2643                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2644                                 commit_txg = spa_first_txg(spa);
2645                         }
2646                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2647                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2648                                 return;
2649                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2650                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2651                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2652                 }
2653                 if (vd != rvd)
2654                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2655         }
2656 }
2657
2658 /*
2659  * Update the in-core space usage stats for this vdev, its metaslab class,
2660  * and the root vdev.
2661  */
2662 void
2663 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2664     int64_t space_delta)
2665 {
2666         int64_t dspace_delta = space_delta;
2667         spa_t *spa = vd->vdev_spa;
2668         vdev_t *rvd = spa->spa_root_vdev;
2669         metaslab_group_t *mg = vd->vdev_mg;
2670         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2671
2672         ASSERT(vd == vd->vdev_top);
2673
2674         /*
2675          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2676          * factor.  We must calculate this here and not at the root vdev
2677          * because the root vdev's psize-to-asize is simply the max of its
2678          * childrens', thus not accurate enough for us.
2679          */
2680         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2681         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2682         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2683             vd->vdev_deflate_ratio;
2684
2685         mutex_enter(&vd->vdev_stat_lock);
2686         vd->vdev_stat.vs_alloc += alloc_delta;
2687         vd->vdev_stat.vs_space += space_delta;
2688         vd->vdev_stat.vs_dspace += dspace_delta;
2689         mutex_exit(&vd->vdev_stat_lock);
2690
2691         if (mc == spa_normal_class(spa)) {
2692                 mutex_enter(&rvd->vdev_stat_lock);
2693                 rvd->vdev_stat.vs_alloc += alloc_delta;
2694                 rvd->vdev_stat.vs_space += space_delta;
2695                 rvd->vdev_stat.vs_dspace += dspace_delta;
2696                 mutex_exit(&rvd->vdev_stat_lock);
2697         }
2698
2699         if (mc != NULL) {
2700                 ASSERT(rvd == vd->vdev_parent);
2701                 ASSERT(vd->vdev_ms_count != 0);
2702
2703                 metaslab_class_space_update(mc,
2704                     alloc_delta, defer_delta, space_delta, dspace_delta);
2705         }
2706 }
2707
2708 /*
2709  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2710  * so that it will be written out next time the vdev configuration is synced.
2711  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2712  */
2713 void
2714 vdev_config_dirty(vdev_t *vd)
2715 {
2716         spa_t *spa = vd->vdev_spa;
2717         vdev_t *rvd = spa->spa_root_vdev;
2718         int c;
2719
2720         ASSERT(spa_writeable(spa));
2721
2722         /*
2723          * If this is an aux vdev (as with l2cache and spare devices), then we
2724          * update the vdev config manually and set the sync flag.
2725          */
2726         if (vd->vdev_aux != NULL) {
2727                 spa_aux_vdev_t *sav = vd->vdev_aux;
2728                 nvlist_t **aux;
2729                 uint_t naux;
2730
2731                 for (c = 0; c < sav->sav_count; c++) {
2732                         if (sav->sav_vdevs[c] == vd)
2733                                 break;
2734                 }
2735
2736                 if (c == sav->sav_count) {
2737                         /*
2738                          * We're being removed.  There's nothing more to do.
2739                          */
2740                         ASSERT(sav->sav_sync == B_TRUE);
2741                         return;
2742                 }
2743
2744                 sav->sav_sync = B_TRUE;
2745
2746                 if (nvlist_lookup_nvlist_array(sav->sav_config,
2747                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2748                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2749                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2750                 }
2751
2752                 ASSERT(c < naux);
2753
2754                 /*
2755                  * Setting the nvlist in the middle if the array is a little
2756                  * sketchy, but it will work.
2757                  */
2758                 nvlist_free(aux[c]);
2759                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2760
2761                 return;
2762         }
2763
2764         /*
2765          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2766          * must either hold SCL_CONFIG as writer, or must be the sync thread
2767          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2768          * so this is sufficient to ensure mutual exclusion.
2769          */
2770         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2771             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2772             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2773
2774         if (vd == rvd) {
2775                 for (c = 0; c < rvd->vdev_children; c++)
2776                         vdev_config_dirty(rvd->vdev_child[c]);
2777         } else {
2778                 ASSERT(vd == vd->vdev_top);
2779
2780                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2781                     !vd->vdev_ishole)
2782                         list_insert_head(&spa->spa_config_dirty_list, vd);
2783         }
2784 }
2785
2786 void
2787 vdev_config_clean(vdev_t *vd)
2788 {
2789         spa_t *spa = vd->vdev_spa;
2790
2791         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2792             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2793             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2794
2795         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2796         list_remove(&spa->spa_config_dirty_list, vd);
2797 }
2798
2799 /*
2800  * Mark a top-level vdev's state as dirty, so that the next pass of
2801  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2802  * the state changes from larger config changes because they require
2803  * much less locking, and are often needed for administrative actions.
2804  */
2805 void
2806 vdev_state_dirty(vdev_t *vd)
2807 {
2808         spa_t *spa = vd->vdev_spa;
2809
2810         ASSERT(spa_writeable(spa));
2811         ASSERT(vd == vd->vdev_top);
2812
2813         /*
2814          * The state list is protected by the SCL_STATE lock.  The caller
2815          * must either hold SCL_STATE as writer, or must be the sync thread
2816          * (which holds SCL_STATE as reader).  There's only one sync thread,
2817          * so this is sufficient to ensure mutual exclusion.
2818          */
2819         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2820             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2821             spa_config_held(spa, SCL_STATE, RW_READER)));
2822
2823         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2824                 list_insert_head(&spa->spa_state_dirty_list, vd);
2825 }
2826
2827 void
2828 vdev_state_clean(vdev_t *vd)
2829 {
2830         spa_t *spa = vd->vdev_spa;
2831
2832         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2833             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2834             spa_config_held(spa, SCL_STATE, RW_READER)));
2835
2836         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2837         list_remove(&spa->spa_state_dirty_list, vd);
2838 }
2839
2840 /*
2841  * Propagate vdev state up from children to parent.
2842  */
2843 void
2844 vdev_propagate_state(vdev_t *vd)
2845 {
2846         spa_t *spa = vd->vdev_spa;
2847         vdev_t *rvd = spa->spa_root_vdev;
2848         int degraded = 0, faulted = 0;
2849         int corrupted = 0;
2850         vdev_t *child;
2851
2852         if (vd->vdev_children > 0) {
2853                 for (int c = 0; c < vd->vdev_children; c++) {
2854                         child = vd->vdev_child[c];
2855
2856                         /*
2857                          * Don't factor holes into the decision.
2858                          */
2859                         if (child->vdev_ishole)
2860                                 continue;
2861
2862                         if (!vdev_readable(child) ||
2863                             (!vdev_writeable(child) && spa_writeable(spa))) {
2864                                 /*
2865                                  * Root special: if there is a top-level log
2866                                  * device, treat the root vdev as if it were
2867                                  * degraded.
2868                                  */
2869                                 if (child->vdev_islog && vd == rvd)
2870                                         degraded++;
2871                                 else
2872                                         faulted++;
2873                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2874                                 degraded++;
2875                         }
2876
2877                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2878                                 corrupted++;
2879                 }
2880
2881                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2882
2883                 /*
2884                  * Root special: if there is a top-level vdev that cannot be
2885                  * opened due to corrupted metadata, then propagate the root
2886                  * vdev's aux state as 'corrupt' rather than 'insufficient
2887                  * replicas'.
2888                  */
2889                 if (corrupted && vd == rvd &&
2890                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2891                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2892                             VDEV_AUX_CORRUPT_DATA);
2893         }
2894
2895         if (vd->vdev_parent)
2896                 vdev_propagate_state(vd->vdev_parent);
2897 }
2898
2899 /*
2900  * Set a vdev's state.  If this is during an open, we don't update the parent
2901  * state, because we're in the process of opening children depth-first.
2902  * Otherwise, we propagate the change to the parent.
2903  *
2904  * If this routine places a device in a faulted state, an appropriate ereport is
2905  * generated.
2906  */
2907 void
2908 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2909 {
2910         uint64_t save_state;
2911         spa_t *spa = vd->vdev_spa;
2912
2913         if (state == vd->vdev_state) {
2914                 vd->vdev_stat.vs_aux = aux;
2915                 return;
2916         }
2917
2918         save_state = vd->vdev_state;
2919
2920         vd->vdev_state = state;
2921         vd->vdev_stat.vs_aux = aux;
2922
2923         /*
2924          * If we are setting the vdev state to anything but an open state, then
2925          * always close the underlying device unless the device has requested
2926          * a delayed close (i.e. we're about to remove or fault the device).
2927          * Otherwise, we keep accessible but invalid devices open forever.
2928          * We don't call vdev_close() itself, because that implies some extra
2929          * checks (offline, etc) that we don't want here.  This is limited to
2930          * leaf devices, because otherwise closing the device will affect other
2931          * children.
2932          */
2933         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2934             vd->vdev_ops->vdev_op_leaf)
2935                 vd->vdev_ops->vdev_op_close(vd);
2936
2937         /*
2938          * If we have brought this vdev back into service, we need
2939          * to notify fmd so that it can gracefully repair any outstanding
2940          * cases due to a missing device.  We do this in all cases, even those
2941          * that probably don't correlate to a repaired fault.  This is sure to
2942          * catch all cases, and we let the zfs-retire agent sort it out.  If
2943          * this is a transient state it's OK, as the retire agent will
2944          * double-check the state of the vdev before repairing it.
2945          */
2946         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2947             vd->vdev_prevstate != state)
2948                 zfs_post_state_change(spa, vd);
2949
2950         if (vd->vdev_removed &&
2951             state == VDEV_STATE_CANT_OPEN &&
2952             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2953                 /*
2954                  * If the previous state is set to VDEV_STATE_REMOVED, then this
2955                  * device was previously marked removed and someone attempted to
2956                  * reopen it.  If this failed due to a nonexistent device, then
2957                  * keep the device in the REMOVED state.  We also let this be if
2958                  * it is one of our special test online cases, which is only
2959                  * attempting to online the device and shouldn't generate an FMA
2960                  * fault.
2961                  */
2962                 vd->vdev_state = VDEV_STATE_REMOVED;
2963                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2964         } else if (state == VDEV_STATE_REMOVED) {
2965                 vd->vdev_removed = B_TRUE;
2966         } else if (state == VDEV_STATE_CANT_OPEN) {
2967                 /*
2968                  * If we fail to open a vdev during an import or recovery, we
2969                  * mark it as "not available", which signifies that it was
2970                  * never there to begin with.  Failure to open such a device
2971                  * is not considered an error.
2972                  */
2973                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
2974                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
2975                     vd->vdev_ops->vdev_op_leaf)
2976                         vd->vdev_not_present = 1;
2977
2978                 /*
2979                  * Post the appropriate ereport.  If the 'prevstate' field is
2980                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
2981                  * that this is part of a vdev_reopen().  In this case, we don't
2982                  * want to post the ereport if the device was already in the
2983                  * CANT_OPEN state beforehand.
2984                  *
2985                  * If the 'checkremove' flag is set, then this is an attempt to
2986                  * online the device in response to an insertion event.  If we
2987                  * hit this case, then we have detected an insertion event for a
2988                  * faulted or offline device that wasn't in the removed state.
2989                  * In this scenario, we don't post an ereport because we are
2990                  * about to replace the device, or attempt an online with
2991                  * vdev_forcefault, which will generate the fault for us.
2992                  */
2993                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2994                     !vd->vdev_not_present && !vd->vdev_checkremove &&
2995                     vd != spa->spa_root_vdev) {
2996                         const char *class;
2997
2998                         switch (aux) {
2999                         case VDEV_AUX_OPEN_FAILED:
3000                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3001                                 break;
3002                         case VDEV_AUX_CORRUPT_DATA:
3003                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3004                                 break;
3005                         case VDEV_AUX_NO_REPLICAS:
3006                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3007                                 break;
3008                         case VDEV_AUX_BAD_GUID_SUM:
3009                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3010                                 break;
3011                         case VDEV_AUX_TOO_SMALL:
3012                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3013                                 break;
3014                         case VDEV_AUX_BAD_LABEL:
3015                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3016                                 break;
3017                         default:
3018                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3019                         }
3020
3021                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3022                 }
3023
3024                 /* Erase any notion of persistent removed state */
3025                 vd->vdev_removed = B_FALSE;
3026         } else {
3027                 vd->vdev_removed = B_FALSE;
3028         }
3029
3030         if (!isopen && vd->vdev_parent)
3031                 vdev_propagate_state(vd->vdev_parent);
3032 }
3033
3034 /*
3035  * Check the vdev configuration to ensure that it's capable of supporting
3036  * a root pool.
3037  *
3038  * On Solaris, we do not support RAID-Z or partial configuration.  In
3039  * addition, only a single top-level vdev is allowed and none of the
3040  * leaves can be wholedisks.
3041  *
3042  * For FreeBSD, we can boot from any configuration. There is a
3043  * limitation that the boot filesystem must be either uncompressed or
3044  * compresses with lzjb compression but I'm not sure how to enforce
3045  * that here.
3046  */
3047 boolean_t
3048 vdev_is_bootable(vdev_t *vd)
3049 {
3050 #ifdef sun
3051         if (!vd->vdev_ops->vdev_op_leaf) {
3052                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3053
3054                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3055                     vd->vdev_children > 1) {
3056                         return (B_FALSE);
3057                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3058                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3059                         return (B_FALSE);
3060                 }
3061         } else if (vd->vdev_wholedisk == 1) {
3062                 return (B_FALSE);
3063         }
3064
3065         for (int c = 0; c < vd->vdev_children; c++) {
3066                 if (!vdev_is_bootable(vd->vdev_child[c]))
3067                         return (B_FALSE);
3068         }
3069 #endif  /* sun */
3070         return (B_TRUE);
3071 }
3072
3073 /*
3074  * Load the state from the original vdev tree (ovd) which
3075  * we've retrieved from the MOS config object. If the original
3076  * vdev was offline or faulted then we transfer that state to the
3077  * device in the current vdev tree (nvd).
3078  */
3079 void
3080 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3081 {
3082         spa_t *spa = nvd->vdev_spa;
3083
3084         ASSERT(nvd->vdev_top->vdev_islog);
3085         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3086         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3087
3088         for (int c = 0; c < nvd->vdev_children; c++)
3089                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3090
3091         if (nvd->vdev_ops->vdev_op_leaf) {
3092                 /*
3093                  * Restore the persistent vdev state
3094                  */
3095                 nvd->vdev_offline = ovd->vdev_offline;
3096                 nvd->vdev_faulted = ovd->vdev_faulted;
3097                 nvd->vdev_degraded = ovd->vdev_degraded;
3098                 nvd->vdev_removed = ovd->vdev_removed;
3099         }
3100 }
3101
3102 /*
3103  * Determine if a log device has valid content.  If the vdev was
3104  * removed or faulted in the MOS config then we know that
3105  * the content on the log device has already been written to the pool.
3106  */
3107 boolean_t
3108 vdev_log_state_valid(vdev_t *vd)
3109 {
3110         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3111             !vd->vdev_removed)
3112                 return (B_TRUE);
3113
3114         for (int c = 0; c < vd->vdev_children; c++)
3115                 if (vdev_log_state_valid(vd->vdev_child[c]))
3116                         return (B_TRUE);
3117
3118         return (B_FALSE);
3119 }
3120
3121 /*
3122  * Expand a vdev if possible.
3123  */
3124 void
3125 vdev_expand(vdev_t *vd, uint64_t txg)
3126 {
3127         ASSERT(vd->vdev_top == vd);
3128         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3129
3130         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3131                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3132                 vdev_config_dirty(vd);
3133         }
3134 }
3135
3136 /*
3137  * Split a vdev.
3138  */
3139 void
3140 vdev_split(vdev_t *vd)
3141 {
3142         vdev_t *cvd, *pvd = vd->vdev_parent;
3143
3144         vdev_remove_child(pvd, vd);
3145         vdev_compact_children(pvd);
3146
3147         cvd = pvd->vdev_child[0];
3148         if (pvd->vdev_children == 1) {
3149                 vdev_remove_parent(cvd);
3150                 cvd->vdev_splitting = B_TRUE;
3151         }
3152         vdev_propagate_state(cvd);
3153 }