]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c
MFC r236155:
[FreeBSD/stable/9.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2012 by Delphix. All rights reserved.
26  */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/zio.h>
40 #include <sys/zap.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/arc.h>
43 #include <sys/zil.h>
44 #include <sys/dsl_scan.h>
45
46 SYSCTL_DECL(_vfs_zfs);
47 SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
48
49 /*
50  * Virtual device management.
51  */
52
53 static vdev_ops_t *vdev_ops_table[] = {
54         &vdev_root_ops,
55         &vdev_raidz_ops,
56         &vdev_mirror_ops,
57         &vdev_replacing_ops,
58         &vdev_spare_ops,
59 #ifdef _KERNEL
60         &vdev_geom_ops,
61 #else
62         &vdev_disk_ops,
63 #endif
64         &vdev_file_ops,
65         &vdev_missing_ops,
66         &vdev_hole_ops,
67         NULL
68 };
69
70 /* maximum scrub/resilver I/O queue per leaf vdev */
71 int zfs_scrub_limit = 10;
72
73 TUNABLE_INT("vfs.zfs.scrub_limit", &zfs_scrub_limit);
74 SYSCTL_INT(_vfs_zfs, OID_AUTO, scrub_limit, CTLFLAG_RDTUN, &zfs_scrub_limit, 0,
75     "Maximum scrub/resilver I/O queue");
76
77 /*
78  * Given a vdev type, return the appropriate ops vector.
79  */
80 static vdev_ops_t *
81 vdev_getops(const char *type)
82 {
83         vdev_ops_t *ops, **opspp;
84
85         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
86                 if (strcmp(ops->vdev_op_type, type) == 0)
87                         break;
88
89         return (ops);
90 }
91
92 /*
93  * Default asize function: return the MAX of psize with the asize of
94  * all children.  This is what's used by anything other than RAID-Z.
95  */
96 uint64_t
97 vdev_default_asize(vdev_t *vd, uint64_t psize)
98 {
99         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
100         uint64_t csize;
101
102         for (int c = 0; c < vd->vdev_children; c++) {
103                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
104                 asize = MAX(asize, csize);
105         }
106
107         return (asize);
108 }
109
110 /*
111  * Get the minimum allocatable size. We define the allocatable size as
112  * the vdev's asize rounded to the nearest metaslab. This allows us to
113  * replace or attach devices which don't have the same physical size but
114  * can still satisfy the same number of allocations.
115  */
116 uint64_t
117 vdev_get_min_asize(vdev_t *vd)
118 {
119         vdev_t *pvd = vd->vdev_parent;
120
121         /*
122          * If our parent is NULL (inactive spare or cache) or is the root,
123          * just return our own asize.
124          */
125         if (pvd == NULL)
126                 return (vd->vdev_asize);
127
128         /*
129          * The top-level vdev just returns the allocatable size rounded
130          * to the nearest metaslab.
131          */
132         if (vd == vd->vdev_top)
133                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
134
135         /*
136          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
137          * so each child must provide at least 1/Nth of its asize.
138          */
139         if (pvd->vdev_ops == &vdev_raidz_ops)
140                 return (pvd->vdev_min_asize / pvd->vdev_children);
141
142         return (pvd->vdev_min_asize);
143 }
144
145 void
146 vdev_set_min_asize(vdev_t *vd)
147 {
148         vd->vdev_min_asize = vdev_get_min_asize(vd);
149
150         for (int c = 0; c < vd->vdev_children; c++)
151                 vdev_set_min_asize(vd->vdev_child[c]);
152 }
153
154 vdev_t *
155 vdev_lookup_top(spa_t *spa, uint64_t vdev)
156 {
157         vdev_t *rvd = spa->spa_root_vdev;
158
159         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
160
161         if (vdev < rvd->vdev_children) {
162                 ASSERT(rvd->vdev_child[vdev] != NULL);
163                 return (rvd->vdev_child[vdev]);
164         }
165
166         return (NULL);
167 }
168
169 vdev_t *
170 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
171 {
172         vdev_t *mvd;
173
174         if (vd->vdev_guid == guid)
175                 return (vd);
176
177         for (int c = 0; c < vd->vdev_children; c++)
178                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
179                     NULL)
180                         return (mvd);
181
182         return (NULL);
183 }
184
185 void
186 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
187 {
188         size_t oldsize, newsize;
189         uint64_t id = cvd->vdev_id;
190         vdev_t **newchild;
191
192         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
193         ASSERT(cvd->vdev_parent == NULL);
194
195         cvd->vdev_parent = pvd;
196
197         if (pvd == NULL)
198                 return;
199
200         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
201
202         oldsize = pvd->vdev_children * sizeof (vdev_t *);
203         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
204         newsize = pvd->vdev_children * sizeof (vdev_t *);
205
206         newchild = kmem_zalloc(newsize, KM_SLEEP);
207         if (pvd->vdev_child != NULL) {
208                 bcopy(pvd->vdev_child, newchild, oldsize);
209                 kmem_free(pvd->vdev_child, oldsize);
210         }
211
212         pvd->vdev_child = newchild;
213         pvd->vdev_child[id] = cvd;
214
215         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
216         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
217
218         /*
219          * Walk up all ancestors to update guid sum.
220          */
221         for (; pvd != NULL; pvd = pvd->vdev_parent)
222                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
223 }
224
225 void
226 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
227 {
228         int c;
229         uint_t id = cvd->vdev_id;
230
231         ASSERT(cvd->vdev_parent == pvd);
232
233         if (pvd == NULL)
234                 return;
235
236         ASSERT(id < pvd->vdev_children);
237         ASSERT(pvd->vdev_child[id] == cvd);
238
239         pvd->vdev_child[id] = NULL;
240         cvd->vdev_parent = NULL;
241
242         for (c = 0; c < pvd->vdev_children; c++)
243                 if (pvd->vdev_child[c])
244                         break;
245
246         if (c == pvd->vdev_children) {
247                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
248                 pvd->vdev_child = NULL;
249                 pvd->vdev_children = 0;
250         }
251
252         /*
253          * Walk up all ancestors to update guid sum.
254          */
255         for (; pvd != NULL; pvd = pvd->vdev_parent)
256                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
257 }
258
259 /*
260  * Remove any holes in the child array.
261  */
262 void
263 vdev_compact_children(vdev_t *pvd)
264 {
265         vdev_t **newchild, *cvd;
266         int oldc = pvd->vdev_children;
267         int newc;
268
269         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
270
271         for (int c = newc = 0; c < oldc; c++)
272                 if (pvd->vdev_child[c])
273                         newc++;
274
275         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
276
277         for (int c = newc = 0; c < oldc; c++) {
278                 if ((cvd = pvd->vdev_child[c]) != NULL) {
279                         newchild[newc] = cvd;
280                         cvd->vdev_id = newc++;
281                 }
282         }
283
284         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
285         pvd->vdev_child = newchild;
286         pvd->vdev_children = newc;
287 }
288
289 /*
290  * Allocate and minimally initialize a vdev_t.
291  */
292 vdev_t *
293 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
294 {
295         vdev_t *vd;
296
297         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
298
299         if (spa->spa_root_vdev == NULL) {
300                 ASSERT(ops == &vdev_root_ops);
301                 spa->spa_root_vdev = vd;
302                 spa->spa_load_guid = spa_generate_guid(NULL);
303         }
304
305         if (guid == 0 && ops != &vdev_hole_ops) {
306                 if (spa->spa_root_vdev == vd) {
307                         /*
308                          * The root vdev's guid will also be the pool guid,
309                          * which must be unique among all pools.
310                          */
311                         guid = spa_generate_guid(NULL);
312                 } else {
313                         /*
314                          * Any other vdev's guid must be unique within the pool.
315                          */
316                         guid = spa_generate_guid(spa);
317                 }
318                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
319         }
320
321         vd->vdev_spa = spa;
322         vd->vdev_id = id;
323         vd->vdev_guid = guid;
324         vd->vdev_guid_sum = guid;
325         vd->vdev_ops = ops;
326         vd->vdev_state = VDEV_STATE_CLOSED;
327         vd->vdev_ishole = (ops == &vdev_hole_ops);
328
329         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
330         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
331         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
332         for (int t = 0; t < DTL_TYPES; t++) {
333                 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
334                     &vd->vdev_dtl_lock);
335         }
336         txg_list_create(&vd->vdev_ms_list,
337             offsetof(struct metaslab, ms_txg_node));
338         txg_list_create(&vd->vdev_dtl_list,
339             offsetof(struct vdev, vdev_dtl_node));
340         vd->vdev_stat.vs_timestamp = gethrtime();
341         vdev_queue_init(vd);
342         vdev_cache_init(vd);
343
344         return (vd);
345 }
346
347 /*
348  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
349  * creating a new vdev or loading an existing one - the behavior is slightly
350  * different for each case.
351  */
352 int
353 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
354     int alloctype)
355 {
356         vdev_ops_t *ops;
357         char *type;
358         uint64_t guid = 0, islog, nparity;
359         vdev_t *vd;
360
361         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
362
363         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
364                 return (EINVAL);
365
366         if ((ops = vdev_getops(type)) == NULL)
367                 return (EINVAL);
368
369         /*
370          * If this is a load, get the vdev guid from the nvlist.
371          * Otherwise, vdev_alloc_common() will generate one for us.
372          */
373         if (alloctype == VDEV_ALLOC_LOAD) {
374                 uint64_t label_id;
375
376                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
377                     label_id != id)
378                         return (EINVAL);
379
380                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
381                         return (EINVAL);
382         } else if (alloctype == VDEV_ALLOC_SPARE) {
383                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
384                         return (EINVAL);
385         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
386                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
387                         return (EINVAL);
388         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
389                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
390                         return (EINVAL);
391         }
392
393         /*
394          * The first allocated vdev must be of type 'root'.
395          */
396         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
397                 return (EINVAL);
398
399         /*
400          * Determine whether we're a log vdev.
401          */
402         islog = 0;
403         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
404         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
405                 return (ENOTSUP);
406
407         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
408                 return (ENOTSUP);
409
410         /*
411          * Set the nparity property for RAID-Z vdevs.
412          */
413         nparity = -1ULL;
414         if (ops == &vdev_raidz_ops) {
415                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
416                     &nparity) == 0) {
417                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
418                                 return (EINVAL);
419                         /*
420                          * Previous versions could only support 1 or 2 parity
421                          * device.
422                          */
423                         if (nparity > 1 &&
424                             spa_version(spa) < SPA_VERSION_RAIDZ2)
425                                 return (ENOTSUP);
426                         if (nparity > 2 &&
427                             spa_version(spa) < SPA_VERSION_RAIDZ3)
428                                 return (ENOTSUP);
429                 } else {
430                         /*
431                          * We require the parity to be specified for SPAs that
432                          * support multiple parity levels.
433                          */
434                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
435                                 return (EINVAL);
436                         /*
437                          * Otherwise, we default to 1 parity device for RAID-Z.
438                          */
439                         nparity = 1;
440                 }
441         } else {
442                 nparity = 0;
443         }
444         ASSERT(nparity != -1ULL);
445
446         vd = vdev_alloc_common(spa, id, guid, ops);
447
448         vd->vdev_islog = islog;
449         vd->vdev_nparity = nparity;
450
451         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
452                 vd->vdev_path = spa_strdup(vd->vdev_path);
453         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
454                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
455         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
456             &vd->vdev_physpath) == 0)
457                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
458         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
459                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
460
461         /*
462          * Set the whole_disk property.  If it's not specified, leave the value
463          * as -1.
464          */
465         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
466             &vd->vdev_wholedisk) != 0)
467                 vd->vdev_wholedisk = -1ULL;
468
469         /*
470          * Look for the 'not present' flag.  This will only be set if the device
471          * was not present at the time of import.
472          */
473         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
474             &vd->vdev_not_present);
475
476         /*
477          * Get the alignment requirement.
478          */
479         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
480
481         /*
482          * Retrieve the vdev creation time.
483          */
484         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
485             &vd->vdev_crtxg);
486
487         /*
488          * If we're a top-level vdev, try to load the allocation parameters.
489          */
490         if (parent && !parent->vdev_parent &&
491             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
492                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
493                     &vd->vdev_ms_array);
494                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
495                     &vd->vdev_ms_shift);
496                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
497                     &vd->vdev_asize);
498                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
499                     &vd->vdev_removing);
500         }
501
502         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
503                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
504                     alloctype == VDEV_ALLOC_ADD ||
505                     alloctype == VDEV_ALLOC_SPLIT ||
506                     alloctype == VDEV_ALLOC_ROOTPOOL);
507                 vd->vdev_mg = metaslab_group_create(islog ?
508                     spa_log_class(spa) : spa_normal_class(spa), vd);
509         }
510
511         /*
512          * If we're a leaf vdev, try to load the DTL object and other state.
513          */
514         if (vd->vdev_ops->vdev_op_leaf &&
515             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
516             alloctype == VDEV_ALLOC_ROOTPOOL)) {
517                 if (alloctype == VDEV_ALLOC_LOAD) {
518                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
519                             &vd->vdev_dtl_smo.smo_object);
520                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
521                             &vd->vdev_unspare);
522                 }
523
524                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
525                         uint64_t spare = 0;
526
527                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
528                             &spare) == 0 && spare)
529                                 spa_spare_add(vd);
530                 }
531
532                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
533                     &vd->vdev_offline);
534
535                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
536                     &vd->vdev_resilvering);
537
538                 /*
539                  * When importing a pool, we want to ignore the persistent fault
540                  * state, as the diagnosis made on another system may not be
541                  * valid in the current context.  Local vdevs will
542                  * remain in the faulted state.
543                  */
544                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
545                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
546                             &vd->vdev_faulted);
547                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
548                             &vd->vdev_degraded);
549                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
550                             &vd->vdev_removed);
551
552                         if (vd->vdev_faulted || vd->vdev_degraded) {
553                                 char *aux;
554
555                                 vd->vdev_label_aux =
556                                     VDEV_AUX_ERR_EXCEEDED;
557                                 if (nvlist_lookup_string(nv,
558                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
559                                     strcmp(aux, "external") == 0)
560                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
561                         }
562                 }
563         }
564
565         /*
566          * Add ourselves to the parent's list of children.
567          */
568         vdev_add_child(parent, vd);
569
570         *vdp = vd;
571
572         return (0);
573 }
574
575 void
576 vdev_free(vdev_t *vd)
577 {
578         spa_t *spa = vd->vdev_spa;
579
580         /*
581          * vdev_free() implies closing the vdev first.  This is simpler than
582          * trying to ensure complicated semantics for all callers.
583          */
584         vdev_close(vd);
585
586         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
587         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
588
589         /*
590          * Free all children.
591          */
592         for (int c = 0; c < vd->vdev_children; c++)
593                 vdev_free(vd->vdev_child[c]);
594
595         ASSERT(vd->vdev_child == NULL);
596         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
597
598         /*
599          * Discard allocation state.
600          */
601         if (vd->vdev_mg != NULL) {
602                 vdev_metaslab_fini(vd);
603                 metaslab_group_destroy(vd->vdev_mg);
604         }
605
606         ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
607         ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
608         ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
609
610         /*
611          * Remove this vdev from its parent's child list.
612          */
613         vdev_remove_child(vd->vdev_parent, vd);
614
615         ASSERT(vd->vdev_parent == NULL);
616
617         /*
618          * Clean up vdev structure.
619          */
620         vdev_queue_fini(vd);
621         vdev_cache_fini(vd);
622
623         if (vd->vdev_path)
624                 spa_strfree(vd->vdev_path);
625         if (vd->vdev_devid)
626                 spa_strfree(vd->vdev_devid);
627         if (vd->vdev_physpath)
628                 spa_strfree(vd->vdev_physpath);
629         if (vd->vdev_fru)
630                 spa_strfree(vd->vdev_fru);
631
632         if (vd->vdev_isspare)
633                 spa_spare_remove(vd);
634         if (vd->vdev_isl2cache)
635                 spa_l2cache_remove(vd);
636
637         txg_list_destroy(&vd->vdev_ms_list);
638         txg_list_destroy(&vd->vdev_dtl_list);
639
640         mutex_enter(&vd->vdev_dtl_lock);
641         for (int t = 0; t < DTL_TYPES; t++) {
642                 space_map_unload(&vd->vdev_dtl[t]);
643                 space_map_destroy(&vd->vdev_dtl[t]);
644         }
645         mutex_exit(&vd->vdev_dtl_lock);
646
647         mutex_destroy(&vd->vdev_dtl_lock);
648         mutex_destroy(&vd->vdev_stat_lock);
649         mutex_destroy(&vd->vdev_probe_lock);
650
651         if (vd == spa->spa_root_vdev)
652                 spa->spa_root_vdev = NULL;
653
654         kmem_free(vd, sizeof (vdev_t));
655 }
656
657 /*
658  * Transfer top-level vdev state from svd to tvd.
659  */
660 static void
661 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
662 {
663         spa_t *spa = svd->vdev_spa;
664         metaslab_t *msp;
665         vdev_t *vd;
666         int t;
667
668         ASSERT(tvd == tvd->vdev_top);
669
670         tvd->vdev_ms_array = svd->vdev_ms_array;
671         tvd->vdev_ms_shift = svd->vdev_ms_shift;
672         tvd->vdev_ms_count = svd->vdev_ms_count;
673
674         svd->vdev_ms_array = 0;
675         svd->vdev_ms_shift = 0;
676         svd->vdev_ms_count = 0;
677
678         if (tvd->vdev_mg)
679                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
680         tvd->vdev_mg = svd->vdev_mg;
681         tvd->vdev_ms = svd->vdev_ms;
682
683         svd->vdev_mg = NULL;
684         svd->vdev_ms = NULL;
685
686         if (tvd->vdev_mg != NULL)
687                 tvd->vdev_mg->mg_vd = tvd;
688
689         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
690         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
691         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
692
693         svd->vdev_stat.vs_alloc = 0;
694         svd->vdev_stat.vs_space = 0;
695         svd->vdev_stat.vs_dspace = 0;
696
697         for (t = 0; t < TXG_SIZE; t++) {
698                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
699                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
700                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
701                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
702                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
703                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
704         }
705
706         if (list_link_active(&svd->vdev_config_dirty_node)) {
707                 vdev_config_clean(svd);
708                 vdev_config_dirty(tvd);
709         }
710
711         if (list_link_active(&svd->vdev_state_dirty_node)) {
712                 vdev_state_clean(svd);
713                 vdev_state_dirty(tvd);
714         }
715
716         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
717         svd->vdev_deflate_ratio = 0;
718
719         tvd->vdev_islog = svd->vdev_islog;
720         svd->vdev_islog = 0;
721 }
722
723 static void
724 vdev_top_update(vdev_t *tvd, vdev_t *vd)
725 {
726         if (vd == NULL)
727                 return;
728
729         vd->vdev_top = tvd;
730
731         for (int c = 0; c < vd->vdev_children; c++)
732                 vdev_top_update(tvd, vd->vdev_child[c]);
733 }
734
735 /*
736  * Add a mirror/replacing vdev above an existing vdev.
737  */
738 vdev_t *
739 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
740 {
741         spa_t *spa = cvd->vdev_spa;
742         vdev_t *pvd = cvd->vdev_parent;
743         vdev_t *mvd;
744
745         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
746
747         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
748
749         mvd->vdev_asize = cvd->vdev_asize;
750         mvd->vdev_min_asize = cvd->vdev_min_asize;
751         mvd->vdev_max_asize = cvd->vdev_max_asize;
752         mvd->vdev_ashift = cvd->vdev_ashift;
753         mvd->vdev_state = cvd->vdev_state;
754         mvd->vdev_crtxg = cvd->vdev_crtxg;
755
756         vdev_remove_child(pvd, cvd);
757         vdev_add_child(pvd, mvd);
758         cvd->vdev_id = mvd->vdev_children;
759         vdev_add_child(mvd, cvd);
760         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
761
762         if (mvd == mvd->vdev_top)
763                 vdev_top_transfer(cvd, mvd);
764
765         return (mvd);
766 }
767
768 /*
769  * Remove a 1-way mirror/replacing vdev from the tree.
770  */
771 void
772 vdev_remove_parent(vdev_t *cvd)
773 {
774         vdev_t *mvd = cvd->vdev_parent;
775         vdev_t *pvd = mvd->vdev_parent;
776
777         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
778
779         ASSERT(mvd->vdev_children == 1);
780         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
781             mvd->vdev_ops == &vdev_replacing_ops ||
782             mvd->vdev_ops == &vdev_spare_ops);
783         cvd->vdev_ashift = mvd->vdev_ashift;
784
785         vdev_remove_child(mvd, cvd);
786         vdev_remove_child(pvd, mvd);
787
788         /*
789          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
790          * Otherwise, we could have detached an offline device, and when we
791          * go to import the pool we'll think we have two top-level vdevs,
792          * instead of a different version of the same top-level vdev.
793          */
794         if (mvd->vdev_top == mvd) {
795                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
796                 cvd->vdev_orig_guid = cvd->vdev_guid;
797                 cvd->vdev_guid += guid_delta;
798                 cvd->vdev_guid_sum += guid_delta;
799         }
800         cvd->vdev_id = mvd->vdev_id;
801         vdev_add_child(pvd, cvd);
802         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
803
804         if (cvd == cvd->vdev_top)
805                 vdev_top_transfer(mvd, cvd);
806
807         ASSERT(mvd->vdev_children == 0);
808         vdev_free(mvd);
809 }
810
811 int
812 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
813 {
814         spa_t *spa = vd->vdev_spa;
815         objset_t *mos = spa->spa_meta_objset;
816         uint64_t m;
817         uint64_t oldc = vd->vdev_ms_count;
818         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
819         metaslab_t **mspp;
820         int error;
821
822         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
823
824         /*
825          * This vdev is not being allocated from yet or is a hole.
826          */
827         if (vd->vdev_ms_shift == 0)
828                 return (0);
829
830         ASSERT(!vd->vdev_ishole);
831
832         /*
833          * Compute the raidz-deflation ratio.  Note, we hard-code
834          * in 128k (1 << 17) because it is the current "typical" blocksize.
835          * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
836          * or we will inconsistently account for existing bp's.
837          */
838         vd->vdev_deflate_ratio = (1 << 17) /
839             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
840
841         ASSERT(oldc <= newc);
842
843         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
844
845         if (oldc != 0) {
846                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
847                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
848         }
849
850         vd->vdev_ms = mspp;
851         vd->vdev_ms_count = newc;
852
853         for (m = oldc; m < newc; m++) {
854                 space_map_obj_t smo = { 0, 0, 0 };
855                 if (txg == 0) {
856                         uint64_t object = 0;
857                         error = dmu_read(mos, vd->vdev_ms_array,
858                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
859                             DMU_READ_PREFETCH);
860                         if (error)
861                                 return (error);
862                         if (object != 0) {
863                                 dmu_buf_t *db;
864                                 error = dmu_bonus_hold(mos, object, FTAG, &db);
865                                 if (error)
866                                         return (error);
867                                 ASSERT3U(db->db_size, >=, sizeof (smo));
868                                 bcopy(db->db_data, &smo, sizeof (smo));
869                                 ASSERT3U(smo.smo_object, ==, object);
870                                 dmu_buf_rele(db, FTAG);
871                         }
872                 }
873                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
874                     m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
875         }
876
877         if (txg == 0)
878                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
879
880         /*
881          * If the vdev is being removed we don't activate
882          * the metaslabs since we want to ensure that no new
883          * allocations are performed on this device.
884          */
885         if (oldc == 0 && !vd->vdev_removing)
886                 metaslab_group_activate(vd->vdev_mg);
887
888         if (txg == 0)
889                 spa_config_exit(spa, SCL_ALLOC, FTAG);
890
891         return (0);
892 }
893
894 void
895 vdev_metaslab_fini(vdev_t *vd)
896 {
897         uint64_t m;
898         uint64_t count = vd->vdev_ms_count;
899
900         if (vd->vdev_ms != NULL) {
901                 metaslab_group_passivate(vd->vdev_mg);
902                 for (m = 0; m < count; m++)
903                         if (vd->vdev_ms[m] != NULL)
904                                 metaslab_fini(vd->vdev_ms[m]);
905                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
906                 vd->vdev_ms = NULL;
907         }
908 }
909
910 typedef struct vdev_probe_stats {
911         boolean_t       vps_readable;
912         boolean_t       vps_writeable;
913         int             vps_flags;
914 } vdev_probe_stats_t;
915
916 static void
917 vdev_probe_done(zio_t *zio)
918 {
919         spa_t *spa = zio->io_spa;
920         vdev_t *vd = zio->io_vd;
921         vdev_probe_stats_t *vps = zio->io_private;
922
923         ASSERT(vd->vdev_probe_zio != NULL);
924
925         if (zio->io_type == ZIO_TYPE_READ) {
926                 if (zio->io_error == 0)
927                         vps->vps_readable = 1;
928                 if (zio->io_error == 0 && spa_writeable(spa)) {
929                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
930                             zio->io_offset, zio->io_size, zio->io_data,
931                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
932                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
933                 } else {
934                         zio_buf_free(zio->io_data, zio->io_size);
935                 }
936         } else if (zio->io_type == ZIO_TYPE_WRITE) {
937                 if (zio->io_error == 0)
938                         vps->vps_writeable = 1;
939                 zio_buf_free(zio->io_data, zio->io_size);
940         } else if (zio->io_type == ZIO_TYPE_NULL) {
941                 zio_t *pio;
942
943                 vd->vdev_cant_read |= !vps->vps_readable;
944                 vd->vdev_cant_write |= !vps->vps_writeable;
945
946                 if (vdev_readable(vd) &&
947                     (vdev_writeable(vd) || !spa_writeable(spa))) {
948                         zio->io_error = 0;
949                 } else {
950                         ASSERT(zio->io_error != 0);
951                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
952                             spa, vd, NULL, 0, 0);
953                         zio->io_error = ENXIO;
954                 }
955
956                 mutex_enter(&vd->vdev_probe_lock);
957                 ASSERT(vd->vdev_probe_zio == zio);
958                 vd->vdev_probe_zio = NULL;
959                 mutex_exit(&vd->vdev_probe_lock);
960
961                 while ((pio = zio_walk_parents(zio)) != NULL)
962                         if (!vdev_accessible(vd, pio))
963                                 pio->io_error = ENXIO;
964
965                 kmem_free(vps, sizeof (*vps));
966         }
967 }
968
969 /*
970  * Determine whether this device is accessible by reading and writing
971  * to several known locations: the pad regions of each vdev label
972  * but the first (which we leave alone in case it contains a VTOC).
973  */
974 zio_t *
975 vdev_probe(vdev_t *vd, zio_t *zio)
976 {
977         spa_t *spa = vd->vdev_spa;
978         vdev_probe_stats_t *vps = NULL;
979         zio_t *pio;
980
981         ASSERT(vd->vdev_ops->vdev_op_leaf);
982
983         /*
984          * Don't probe the probe.
985          */
986         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
987                 return (NULL);
988
989         /*
990          * To prevent 'probe storms' when a device fails, we create
991          * just one probe i/o at a time.  All zios that want to probe
992          * this vdev will become parents of the probe io.
993          */
994         mutex_enter(&vd->vdev_probe_lock);
995
996         if ((pio = vd->vdev_probe_zio) == NULL) {
997                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
998
999                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1000                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1001                     ZIO_FLAG_TRYHARD;
1002
1003                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1004                         /*
1005                          * vdev_cant_read and vdev_cant_write can only
1006                          * transition from TRUE to FALSE when we have the
1007                          * SCL_ZIO lock as writer; otherwise they can only
1008                          * transition from FALSE to TRUE.  This ensures that
1009                          * any zio looking at these values can assume that
1010                          * failures persist for the life of the I/O.  That's
1011                          * important because when a device has intermittent
1012                          * connectivity problems, we want to ensure that
1013                          * they're ascribed to the device (ENXIO) and not
1014                          * the zio (EIO).
1015                          *
1016                          * Since we hold SCL_ZIO as writer here, clear both
1017                          * values so the probe can reevaluate from first
1018                          * principles.
1019                          */
1020                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1021                         vd->vdev_cant_read = B_FALSE;
1022                         vd->vdev_cant_write = B_FALSE;
1023                 }
1024
1025                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1026                     vdev_probe_done, vps,
1027                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1028
1029                 /*
1030                  * We can't change the vdev state in this context, so we
1031                  * kick off an async task to do it on our behalf.
1032                  */
1033                 if (zio != NULL) {
1034                         vd->vdev_probe_wanted = B_TRUE;
1035                         spa_async_request(spa, SPA_ASYNC_PROBE);
1036                 }
1037         }
1038
1039         if (zio != NULL)
1040                 zio_add_child(zio, pio);
1041
1042         mutex_exit(&vd->vdev_probe_lock);
1043
1044         if (vps == NULL) {
1045                 ASSERT(zio != NULL);
1046                 return (NULL);
1047         }
1048
1049         for (int l = 1; l < VDEV_LABELS; l++) {
1050                 zio_nowait(zio_read_phys(pio, vd,
1051                     vdev_label_offset(vd->vdev_psize, l,
1052                     offsetof(vdev_label_t, vl_pad2)),
1053                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1054                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1055                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1056         }
1057
1058         if (zio == NULL)
1059                 return (pio);
1060
1061         zio_nowait(pio);
1062         return (NULL);
1063 }
1064
1065 static void
1066 vdev_open_child(void *arg)
1067 {
1068         vdev_t *vd = arg;
1069
1070         vd->vdev_open_thread = curthread;
1071         vd->vdev_open_error = vdev_open(vd);
1072         vd->vdev_open_thread = NULL;
1073 }
1074
1075 boolean_t
1076 vdev_uses_zvols(vdev_t *vd)
1077 {
1078         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1079             strlen(ZVOL_DIR)) == 0)
1080                 return (B_TRUE);
1081         for (int c = 0; c < vd->vdev_children; c++)
1082                 if (vdev_uses_zvols(vd->vdev_child[c]))
1083                         return (B_TRUE);
1084         return (B_FALSE);
1085 }
1086
1087 void
1088 vdev_open_children(vdev_t *vd)
1089 {
1090         taskq_t *tq;
1091         int children = vd->vdev_children;
1092
1093         /*
1094          * in order to handle pools on top of zvols, do the opens
1095          * in a single thread so that the same thread holds the
1096          * spa_namespace_lock
1097          */
1098         if (B_TRUE || vdev_uses_zvols(vd)) {
1099                 for (int c = 0; c < children; c++)
1100                         vd->vdev_child[c]->vdev_open_error =
1101                             vdev_open(vd->vdev_child[c]);
1102                 return;
1103         }
1104         tq = taskq_create("vdev_open", children, minclsyspri,
1105             children, children, TASKQ_PREPOPULATE);
1106
1107         for (int c = 0; c < children; c++)
1108                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1109                     TQ_SLEEP) != 0);
1110
1111         taskq_destroy(tq);
1112 }
1113
1114 /*
1115  * Prepare a virtual device for access.
1116  */
1117 int
1118 vdev_open(vdev_t *vd)
1119 {
1120         spa_t *spa = vd->vdev_spa;
1121         int error;
1122         uint64_t osize = 0;
1123         uint64_t max_osize = 0;
1124         uint64_t asize, max_asize, psize;
1125         uint64_t ashift = 0;
1126
1127         ASSERT(vd->vdev_open_thread == curthread ||
1128             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1129         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1130             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1131             vd->vdev_state == VDEV_STATE_OFFLINE);
1132
1133         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1134         vd->vdev_cant_read = B_FALSE;
1135         vd->vdev_cant_write = B_FALSE;
1136         vd->vdev_min_asize = vdev_get_min_asize(vd);
1137
1138         /*
1139          * If this vdev is not removed, check its fault status.  If it's
1140          * faulted, bail out of the open.
1141          */
1142         if (!vd->vdev_removed && vd->vdev_faulted) {
1143                 ASSERT(vd->vdev_children == 0);
1144                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1145                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1146                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1147                     vd->vdev_label_aux);
1148                 return (ENXIO);
1149         } else if (vd->vdev_offline) {
1150                 ASSERT(vd->vdev_children == 0);
1151                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1152                 return (ENXIO);
1153         }
1154
1155         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1156
1157         /*
1158          * Reset the vdev_reopening flag so that we actually close
1159          * the vdev on error.
1160          */
1161         vd->vdev_reopening = B_FALSE;
1162         if (zio_injection_enabled && error == 0)
1163                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1164
1165         if (error) {
1166                 if (vd->vdev_removed &&
1167                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1168                         vd->vdev_removed = B_FALSE;
1169
1170                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1171                     vd->vdev_stat.vs_aux);
1172                 return (error);
1173         }
1174
1175         vd->vdev_removed = B_FALSE;
1176
1177         /*
1178          * Recheck the faulted flag now that we have confirmed that
1179          * the vdev is accessible.  If we're faulted, bail.
1180          */
1181         if (vd->vdev_faulted) {
1182                 ASSERT(vd->vdev_children == 0);
1183                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1184                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1185                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1186                     vd->vdev_label_aux);
1187                 return (ENXIO);
1188         }
1189
1190         if (vd->vdev_degraded) {
1191                 ASSERT(vd->vdev_children == 0);
1192                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1193                     VDEV_AUX_ERR_EXCEEDED);
1194         } else {
1195                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1196         }
1197
1198         /*
1199          * For hole or missing vdevs we just return success.
1200          */
1201         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1202                 return (0);
1203
1204         for (int c = 0; c < vd->vdev_children; c++) {
1205                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1206                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1207                             VDEV_AUX_NONE);
1208                         break;
1209                 }
1210         }
1211
1212         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1213         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1214
1215         if (vd->vdev_children == 0) {
1216                 if (osize < SPA_MINDEVSIZE) {
1217                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1218                             VDEV_AUX_TOO_SMALL);
1219                         return (EOVERFLOW);
1220                 }
1221                 psize = osize;
1222                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1223                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1224                     VDEV_LABEL_END_SIZE);
1225         } else {
1226                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1227                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1228                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1229                             VDEV_AUX_TOO_SMALL);
1230                         return (EOVERFLOW);
1231                 }
1232                 psize = 0;
1233                 asize = osize;
1234                 max_asize = max_osize;
1235         }
1236
1237         vd->vdev_psize = psize;
1238
1239         /*
1240          * Make sure the allocatable size hasn't shrunk.
1241          */
1242         if (asize < vd->vdev_min_asize) {
1243                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1244                     VDEV_AUX_BAD_LABEL);
1245                 return (EINVAL);
1246         }
1247
1248         if (vd->vdev_asize == 0) {
1249                 /*
1250                  * This is the first-ever open, so use the computed values.
1251                  * For testing purposes, a higher ashift can be requested.
1252                  */
1253                 vd->vdev_asize = asize;
1254                 vd->vdev_max_asize = max_asize;
1255                 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1256         } else {
1257                 /*
1258                  * Make sure the alignment requirement hasn't increased.
1259                  */
1260                 if (ashift > vd->vdev_top->vdev_ashift) {
1261                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1262                             VDEV_AUX_BAD_LABEL);
1263                         return (EINVAL);
1264                 }
1265                 vd->vdev_max_asize = max_asize;
1266         }
1267
1268         /*
1269          * If all children are healthy and the asize has increased,
1270          * then we've experienced dynamic LUN growth.  If automatic
1271          * expansion is enabled then use the additional space.
1272          */
1273         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1274             (vd->vdev_expanding || spa->spa_autoexpand))
1275                 vd->vdev_asize = asize;
1276
1277         vdev_set_min_asize(vd);
1278
1279         /*
1280          * Ensure we can issue some IO before declaring the
1281          * vdev open for business.
1282          */
1283         if (vd->vdev_ops->vdev_op_leaf &&
1284             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1285                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1286                     VDEV_AUX_ERR_EXCEEDED);
1287                 return (error);
1288         }
1289
1290         /*
1291          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1292          * resilver.  But don't do this if we are doing a reopen for a scrub,
1293          * since this would just restart the scrub we are already doing.
1294          */
1295         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1296             vdev_resilver_needed(vd, NULL, NULL))
1297                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1298
1299         return (0);
1300 }
1301
1302 /*
1303  * Called once the vdevs are all opened, this routine validates the label
1304  * contents.  This needs to be done before vdev_load() so that we don't
1305  * inadvertently do repair I/Os to the wrong device.
1306  *
1307  * If 'strict' is false ignore the spa guid check. This is necessary because
1308  * if the machine crashed during a re-guid the new guid might have been written
1309  * to all of the vdev labels, but not the cached config. The strict check
1310  * will be performed when the pool is opened again using the mos config.
1311  *
1312  * This function will only return failure if one of the vdevs indicates that it
1313  * has since been destroyed or exported.  This is only possible if
1314  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1315  * will be updated but the function will return 0.
1316  */
1317 int
1318 vdev_validate(vdev_t *vd, boolean_t strict)
1319 {
1320         spa_t *spa = vd->vdev_spa;
1321         nvlist_t *label;
1322         uint64_t guid = 0, top_guid;
1323         uint64_t state;
1324
1325         for (int c = 0; c < vd->vdev_children; c++)
1326                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1327                         return (EBADF);
1328
1329         /*
1330          * If the device has already failed, or was marked offline, don't do
1331          * any further validation.  Otherwise, label I/O will fail and we will
1332          * overwrite the previous state.
1333          */
1334         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1335                 uint64_t aux_guid = 0;
1336                 nvlist_t *nvl;
1337
1338                 if ((label = vdev_label_read_config(vd)) == NULL) {
1339                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1340                             VDEV_AUX_BAD_LABEL);
1341                         return (0);
1342                 }
1343
1344                 /*
1345                  * Determine if this vdev has been split off into another
1346                  * pool.  If so, then refuse to open it.
1347                  */
1348                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1349                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1350                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1351                             VDEV_AUX_SPLIT_POOL);
1352                         nvlist_free(label);
1353                         return (0);
1354                 }
1355
1356                 if (strict && (nvlist_lookup_uint64(label,
1357                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1358                     guid != spa_guid(spa))) {
1359                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1360                             VDEV_AUX_CORRUPT_DATA);
1361                         nvlist_free(label);
1362                         return (0);
1363                 }
1364
1365                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1366                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1367                     &aux_guid) != 0)
1368                         aux_guid = 0;
1369
1370                 /*
1371                  * If this vdev just became a top-level vdev because its
1372                  * sibling was detached, it will have adopted the parent's
1373                  * vdev guid -- but the label may or may not be on disk yet.
1374                  * Fortunately, either version of the label will have the
1375                  * same top guid, so if we're a top-level vdev, we can
1376                  * safely compare to that instead.
1377                  *
1378                  * If we split this vdev off instead, then we also check the
1379                  * original pool's guid.  We don't want to consider the vdev
1380                  * corrupt if it is partway through a split operation.
1381                  */
1382                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1383                     &guid) != 0 ||
1384                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1385                     &top_guid) != 0 ||
1386                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1387                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1388                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1389                             VDEV_AUX_CORRUPT_DATA);
1390                         nvlist_free(label);
1391                         return (0);
1392                 }
1393
1394                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1395                     &state) != 0) {
1396                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1397                             VDEV_AUX_CORRUPT_DATA);
1398                         nvlist_free(label);
1399                         return (0);
1400                 }
1401
1402                 nvlist_free(label);
1403
1404                 /*
1405                  * If this is a verbatim import, no need to check the
1406                  * state of the pool.
1407                  */
1408                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1409                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1410                     state != POOL_STATE_ACTIVE)
1411                         return (EBADF);
1412
1413                 /*
1414                  * If we were able to open and validate a vdev that was
1415                  * previously marked permanently unavailable, clear that state
1416                  * now.
1417                  */
1418                 if (vd->vdev_not_present)
1419                         vd->vdev_not_present = 0;
1420         }
1421
1422         return (0);
1423 }
1424
1425 /*
1426  * Close a virtual device.
1427  */
1428 void
1429 vdev_close(vdev_t *vd)
1430 {
1431         spa_t *spa = vd->vdev_spa;
1432         vdev_t *pvd = vd->vdev_parent;
1433
1434         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1435
1436         /*
1437          * If our parent is reopening, then we are as well, unless we are
1438          * going offline.
1439          */
1440         if (pvd != NULL && pvd->vdev_reopening)
1441                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1442
1443         vd->vdev_ops->vdev_op_close(vd);
1444
1445         vdev_cache_purge(vd);
1446
1447         /*
1448          * We record the previous state before we close it, so that if we are
1449          * doing a reopen(), we don't generate FMA ereports if we notice that
1450          * it's still faulted.
1451          */
1452         vd->vdev_prevstate = vd->vdev_state;
1453
1454         if (vd->vdev_offline)
1455                 vd->vdev_state = VDEV_STATE_OFFLINE;
1456         else
1457                 vd->vdev_state = VDEV_STATE_CLOSED;
1458         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1459 }
1460
1461 void
1462 vdev_hold(vdev_t *vd)
1463 {
1464         spa_t *spa = vd->vdev_spa;
1465
1466         ASSERT(spa_is_root(spa));
1467         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1468                 return;
1469
1470         for (int c = 0; c < vd->vdev_children; c++)
1471                 vdev_hold(vd->vdev_child[c]);
1472
1473         if (vd->vdev_ops->vdev_op_leaf)
1474                 vd->vdev_ops->vdev_op_hold(vd);
1475 }
1476
1477 void
1478 vdev_rele(vdev_t *vd)
1479 {
1480         spa_t *spa = vd->vdev_spa;
1481
1482         ASSERT(spa_is_root(spa));
1483         for (int c = 0; c < vd->vdev_children; c++)
1484                 vdev_rele(vd->vdev_child[c]);
1485
1486         if (vd->vdev_ops->vdev_op_leaf)
1487                 vd->vdev_ops->vdev_op_rele(vd);
1488 }
1489
1490 /*
1491  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1492  * reopen leaf vdevs which had previously been opened as they might deadlock
1493  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1494  * If the leaf has never been opened then open it, as usual.
1495  */
1496 void
1497 vdev_reopen(vdev_t *vd)
1498 {
1499         spa_t *spa = vd->vdev_spa;
1500
1501         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1502
1503         /* set the reopening flag unless we're taking the vdev offline */
1504         vd->vdev_reopening = !vd->vdev_offline;
1505         vdev_close(vd);
1506         (void) vdev_open(vd);
1507
1508         /*
1509          * Call vdev_validate() here to make sure we have the same device.
1510          * Otherwise, a device with an invalid label could be successfully
1511          * opened in response to vdev_reopen().
1512          */
1513         if (vd->vdev_aux) {
1514                 (void) vdev_validate_aux(vd);
1515                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1516                     vd->vdev_aux == &spa->spa_l2cache &&
1517                     !l2arc_vdev_present(vd))
1518                         l2arc_add_vdev(spa, vd);
1519         } else {
1520                 (void) vdev_validate(vd, B_TRUE);
1521         }
1522
1523         /*
1524          * Reassess parent vdev's health.
1525          */
1526         vdev_propagate_state(vd);
1527 }
1528
1529 int
1530 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1531 {
1532         int error;
1533
1534         /*
1535          * Normally, partial opens (e.g. of a mirror) are allowed.
1536          * For a create, however, we want to fail the request if
1537          * there are any components we can't open.
1538          */
1539         error = vdev_open(vd);
1540
1541         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1542                 vdev_close(vd);
1543                 return (error ? error : ENXIO);
1544         }
1545
1546         /*
1547          * Recursively initialize all labels.
1548          */
1549         if ((error = vdev_label_init(vd, txg, isreplacing ?
1550             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1551                 vdev_close(vd);
1552                 return (error);
1553         }
1554
1555         return (0);
1556 }
1557
1558 void
1559 vdev_metaslab_set_size(vdev_t *vd)
1560 {
1561         /*
1562          * Aim for roughly 200 metaslabs per vdev.
1563          */
1564         vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1565         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1566 }
1567
1568 void
1569 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1570 {
1571         ASSERT(vd == vd->vdev_top);
1572         ASSERT(!vd->vdev_ishole);
1573         ASSERT(ISP2(flags));
1574         ASSERT(spa_writeable(vd->vdev_spa));
1575
1576         if (flags & VDD_METASLAB)
1577                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1578
1579         if (flags & VDD_DTL)
1580                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1581
1582         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1583 }
1584
1585 /*
1586  * DTLs.
1587  *
1588  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1589  * the vdev has less than perfect replication.  There are four kinds of DTL:
1590  *
1591  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1592  *
1593  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1594  *
1595  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1596  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1597  *      txgs that was scrubbed.
1598  *
1599  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1600  *      persistent errors or just some device being offline.
1601  *      Unlike the other three, the DTL_OUTAGE map is not generally
1602  *      maintained; it's only computed when needed, typically to
1603  *      determine whether a device can be detached.
1604  *
1605  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1606  * either has the data or it doesn't.
1607  *
1608  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1609  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1610  * if any child is less than fully replicated, then so is its parent.
1611  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1612  * comprising only those txgs which appear in 'maxfaults' or more children;
1613  * those are the txgs we don't have enough replication to read.  For example,
1614  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1615  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1616  * two child DTL_MISSING maps.
1617  *
1618  * It should be clear from the above that to compute the DTLs and outage maps
1619  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1620  * Therefore, that is all we keep on disk.  When loading the pool, or after
1621  * a configuration change, we generate all other DTLs from first principles.
1622  */
1623 void
1624 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1625 {
1626         space_map_t *sm = &vd->vdev_dtl[t];
1627
1628         ASSERT(t < DTL_TYPES);
1629         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1630         ASSERT(spa_writeable(vd->vdev_spa));
1631
1632         mutex_enter(sm->sm_lock);
1633         if (!space_map_contains(sm, txg, size))
1634                 space_map_add(sm, txg, size);
1635         mutex_exit(sm->sm_lock);
1636 }
1637
1638 boolean_t
1639 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1640 {
1641         space_map_t *sm = &vd->vdev_dtl[t];
1642         boolean_t dirty = B_FALSE;
1643
1644         ASSERT(t < DTL_TYPES);
1645         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1646
1647         mutex_enter(sm->sm_lock);
1648         if (sm->sm_space != 0)
1649                 dirty = space_map_contains(sm, txg, size);
1650         mutex_exit(sm->sm_lock);
1651
1652         return (dirty);
1653 }
1654
1655 boolean_t
1656 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1657 {
1658         space_map_t *sm = &vd->vdev_dtl[t];
1659         boolean_t empty;
1660
1661         mutex_enter(sm->sm_lock);
1662         empty = (sm->sm_space == 0);
1663         mutex_exit(sm->sm_lock);
1664
1665         return (empty);
1666 }
1667
1668 /*
1669  * Reassess DTLs after a config change or scrub completion.
1670  */
1671 void
1672 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1673 {
1674         spa_t *spa = vd->vdev_spa;
1675         avl_tree_t reftree;
1676         int minref;
1677
1678         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1679
1680         for (int c = 0; c < vd->vdev_children; c++)
1681                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1682                     scrub_txg, scrub_done);
1683
1684         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1685                 return;
1686
1687         if (vd->vdev_ops->vdev_op_leaf) {
1688                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1689
1690                 mutex_enter(&vd->vdev_dtl_lock);
1691                 if (scrub_txg != 0 &&
1692                     (spa->spa_scrub_started ||
1693                     (scn && scn->scn_phys.scn_errors == 0))) {
1694                         /*
1695                          * We completed a scrub up to scrub_txg.  If we
1696                          * did it without rebooting, then the scrub dtl
1697                          * will be valid, so excise the old region and
1698                          * fold in the scrub dtl.  Otherwise, leave the
1699                          * dtl as-is if there was an error.
1700                          *
1701                          * There's little trick here: to excise the beginning
1702                          * of the DTL_MISSING map, we put it into a reference
1703                          * tree and then add a segment with refcnt -1 that
1704                          * covers the range [0, scrub_txg).  This means
1705                          * that each txg in that range has refcnt -1 or 0.
1706                          * We then add DTL_SCRUB with a refcnt of 2, so that
1707                          * entries in the range [0, scrub_txg) will have a
1708                          * positive refcnt -- either 1 or 2.  We then convert
1709                          * the reference tree into the new DTL_MISSING map.
1710                          */
1711                         space_map_ref_create(&reftree);
1712                         space_map_ref_add_map(&reftree,
1713                             &vd->vdev_dtl[DTL_MISSING], 1);
1714                         space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1715                         space_map_ref_add_map(&reftree,
1716                             &vd->vdev_dtl[DTL_SCRUB], 2);
1717                         space_map_ref_generate_map(&reftree,
1718                             &vd->vdev_dtl[DTL_MISSING], 1);
1719                         space_map_ref_destroy(&reftree);
1720                 }
1721                 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1722                 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1723                     space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1724                 if (scrub_done)
1725                         space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1726                 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1727                 if (!vdev_readable(vd))
1728                         space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1729                 else
1730                         space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1731                             space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1732                 mutex_exit(&vd->vdev_dtl_lock);
1733
1734                 if (txg != 0)
1735                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1736                 return;
1737         }
1738
1739         mutex_enter(&vd->vdev_dtl_lock);
1740         for (int t = 0; t < DTL_TYPES; t++) {
1741                 /* account for child's outage in parent's missing map */
1742                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1743                 if (t == DTL_SCRUB)
1744                         continue;                       /* leaf vdevs only */
1745                 if (t == DTL_PARTIAL)
1746                         minref = 1;                     /* i.e. non-zero */
1747                 else if (vd->vdev_nparity != 0)
1748                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1749                 else
1750                         minref = vd->vdev_children;     /* any kind of mirror */
1751                 space_map_ref_create(&reftree);
1752                 for (int c = 0; c < vd->vdev_children; c++) {
1753                         vdev_t *cvd = vd->vdev_child[c];
1754                         mutex_enter(&cvd->vdev_dtl_lock);
1755                         space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1756                         mutex_exit(&cvd->vdev_dtl_lock);
1757                 }
1758                 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1759                 space_map_ref_destroy(&reftree);
1760         }
1761         mutex_exit(&vd->vdev_dtl_lock);
1762 }
1763
1764 static int
1765 vdev_dtl_load(vdev_t *vd)
1766 {
1767         spa_t *spa = vd->vdev_spa;
1768         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1769         objset_t *mos = spa->spa_meta_objset;
1770         dmu_buf_t *db;
1771         int error;
1772
1773         ASSERT(vd->vdev_children == 0);
1774
1775         if (smo->smo_object == 0)
1776                 return (0);
1777
1778         ASSERT(!vd->vdev_ishole);
1779
1780         if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1781                 return (error);
1782
1783         ASSERT3U(db->db_size, >=, sizeof (*smo));
1784         bcopy(db->db_data, smo, sizeof (*smo));
1785         dmu_buf_rele(db, FTAG);
1786
1787         mutex_enter(&vd->vdev_dtl_lock);
1788         error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1789             NULL, SM_ALLOC, smo, mos);
1790         mutex_exit(&vd->vdev_dtl_lock);
1791
1792         return (error);
1793 }
1794
1795 void
1796 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1797 {
1798         spa_t *spa = vd->vdev_spa;
1799         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1800         space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1801         objset_t *mos = spa->spa_meta_objset;
1802         space_map_t smsync;
1803         kmutex_t smlock;
1804         dmu_buf_t *db;
1805         dmu_tx_t *tx;
1806
1807         ASSERT(!vd->vdev_ishole);
1808
1809         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1810
1811         if (vd->vdev_detached) {
1812                 if (smo->smo_object != 0) {
1813                         int err = dmu_object_free(mos, smo->smo_object, tx);
1814                         ASSERT3U(err, ==, 0);
1815                         smo->smo_object = 0;
1816                 }
1817                 dmu_tx_commit(tx);
1818                 return;
1819         }
1820
1821         if (smo->smo_object == 0) {
1822                 ASSERT(smo->smo_objsize == 0);
1823                 ASSERT(smo->smo_alloc == 0);
1824                 smo->smo_object = dmu_object_alloc(mos,
1825                     DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1826                     DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1827                 ASSERT(smo->smo_object != 0);
1828                 vdev_config_dirty(vd->vdev_top);
1829         }
1830
1831         mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1832
1833         space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1834             &smlock);
1835
1836         mutex_enter(&smlock);
1837
1838         mutex_enter(&vd->vdev_dtl_lock);
1839         space_map_walk(sm, space_map_add, &smsync);
1840         mutex_exit(&vd->vdev_dtl_lock);
1841
1842         space_map_truncate(smo, mos, tx);
1843         space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1844
1845         space_map_destroy(&smsync);
1846
1847         mutex_exit(&smlock);
1848         mutex_destroy(&smlock);
1849
1850         VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1851         dmu_buf_will_dirty(db, tx);
1852         ASSERT3U(db->db_size, >=, sizeof (*smo));
1853         bcopy(smo, db->db_data, sizeof (*smo));
1854         dmu_buf_rele(db, FTAG);
1855
1856         dmu_tx_commit(tx);
1857 }
1858
1859 /*
1860  * Determine whether the specified vdev can be offlined/detached/removed
1861  * without losing data.
1862  */
1863 boolean_t
1864 vdev_dtl_required(vdev_t *vd)
1865 {
1866         spa_t *spa = vd->vdev_spa;
1867         vdev_t *tvd = vd->vdev_top;
1868         uint8_t cant_read = vd->vdev_cant_read;
1869         boolean_t required;
1870
1871         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1872
1873         if (vd == spa->spa_root_vdev || vd == tvd)
1874                 return (B_TRUE);
1875
1876         /*
1877          * Temporarily mark the device as unreadable, and then determine
1878          * whether this results in any DTL outages in the top-level vdev.
1879          * If not, we can safely offline/detach/remove the device.
1880          */
1881         vd->vdev_cant_read = B_TRUE;
1882         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1883         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1884         vd->vdev_cant_read = cant_read;
1885         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1886
1887         if (!required && zio_injection_enabled)
1888                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1889
1890         return (required);
1891 }
1892
1893 /*
1894  * Determine if resilver is needed, and if so the txg range.
1895  */
1896 boolean_t
1897 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1898 {
1899         boolean_t needed = B_FALSE;
1900         uint64_t thismin = UINT64_MAX;
1901         uint64_t thismax = 0;
1902
1903         if (vd->vdev_children == 0) {
1904                 mutex_enter(&vd->vdev_dtl_lock);
1905                 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1906                     vdev_writeable(vd)) {
1907                         space_seg_t *ss;
1908
1909                         ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1910                         thismin = ss->ss_start - 1;
1911                         ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1912                         thismax = ss->ss_end;
1913                         needed = B_TRUE;
1914                 }
1915                 mutex_exit(&vd->vdev_dtl_lock);
1916         } else {
1917                 for (int c = 0; c < vd->vdev_children; c++) {
1918                         vdev_t *cvd = vd->vdev_child[c];
1919                         uint64_t cmin, cmax;
1920
1921                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1922                                 thismin = MIN(thismin, cmin);
1923                                 thismax = MAX(thismax, cmax);
1924                                 needed = B_TRUE;
1925                         }
1926                 }
1927         }
1928
1929         if (needed && minp) {
1930                 *minp = thismin;
1931                 *maxp = thismax;
1932         }
1933         return (needed);
1934 }
1935
1936 void
1937 vdev_load(vdev_t *vd)
1938 {
1939         /*
1940          * Recursively load all children.
1941          */
1942         for (int c = 0; c < vd->vdev_children; c++)
1943                 vdev_load(vd->vdev_child[c]);
1944
1945         /*
1946          * If this is a top-level vdev, initialize its metaslabs.
1947          */
1948         if (vd == vd->vdev_top && !vd->vdev_ishole &&
1949             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1950             vdev_metaslab_init(vd, 0) != 0))
1951                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1952                     VDEV_AUX_CORRUPT_DATA);
1953
1954         /*
1955          * If this is a leaf vdev, load its DTL.
1956          */
1957         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1958                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1959                     VDEV_AUX_CORRUPT_DATA);
1960 }
1961
1962 /*
1963  * The special vdev case is used for hot spares and l2cache devices.  Its
1964  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1965  * we make sure that we can open the underlying device, then try to read the
1966  * label, and make sure that the label is sane and that it hasn't been
1967  * repurposed to another pool.
1968  */
1969 int
1970 vdev_validate_aux(vdev_t *vd)
1971 {
1972         nvlist_t *label;
1973         uint64_t guid, version;
1974         uint64_t state;
1975
1976         if (!vdev_readable(vd))
1977                 return (0);
1978
1979         if ((label = vdev_label_read_config(vd)) == NULL) {
1980                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1981                     VDEV_AUX_CORRUPT_DATA);
1982                 return (-1);
1983         }
1984
1985         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1986             version > SPA_VERSION ||
1987             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1988             guid != vd->vdev_guid ||
1989             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1990                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1991                     VDEV_AUX_CORRUPT_DATA);
1992                 nvlist_free(label);
1993                 return (-1);
1994         }
1995
1996         /*
1997          * We don't actually check the pool state here.  If it's in fact in
1998          * use by another pool, we update this fact on the fly when requested.
1999          */
2000         nvlist_free(label);
2001         return (0);
2002 }
2003
2004 void
2005 vdev_remove(vdev_t *vd, uint64_t txg)
2006 {
2007         spa_t *spa = vd->vdev_spa;
2008         objset_t *mos = spa->spa_meta_objset;
2009         dmu_tx_t *tx;
2010
2011         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2012
2013         if (vd->vdev_dtl_smo.smo_object) {
2014                 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
2015                 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2016                 vd->vdev_dtl_smo.smo_object = 0;
2017         }
2018
2019         if (vd->vdev_ms != NULL) {
2020                 for (int m = 0; m < vd->vdev_ms_count; m++) {
2021                         metaslab_t *msp = vd->vdev_ms[m];
2022
2023                         if (msp == NULL || msp->ms_smo.smo_object == 0)
2024                                 continue;
2025
2026                         ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
2027                         (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2028                         msp->ms_smo.smo_object = 0;
2029                 }
2030         }
2031
2032         if (vd->vdev_ms_array) {
2033                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2034                 vd->vdev_ms_array = 0;
2035                 vd->vdev_ms_shift = 0;
2036         }
2037         dmu_tx_commit(tx);
2038 }
2039
2040 void
2041 vdev_sync_done(vdev_t *vd, uint64_t txg)
2042 {
2043         metaslab_t *msp;
2044         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2045
2046         ASSERT(!vd->vdev_ishole);
2047
2048         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2049                 metaslab_sync_done(msp, txg);
2050
2051         if (reassess)
2052                 metaslab_sync_reassess(vd->vdev_mg);
2053 }
2054
2055 void
2056 vdev_sync(vdev_t *vd, uint64_t txg)
2057 {
2058         spa_t *spa = vd->vdev_spa;
2059         vdev_t *lvd;
2060         metaslab_t *msp;
2061         dmu_tx_t *tx;
2062
2063         ASSERT(!vd->vdev_ishole);
2064
2065         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2066                 ASSERT(vd == vd->vdev_top);
2067                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2068                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2069                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2070                 ASSERT(vd->vdev_ms_array != 0);
2071                 vdev_config_dirty(vd);
2072                 dmu_tx_commit(tx);
2073         }
2074
2075         /*
2076          * Remove the metadata associated with this vdev once it's empty.
2077          */
2078         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2079                 vdev_remove(vd, txg);
2080
2081         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2082                 metaslab_sync(msp, txg);
2083                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2084         }
2085
2086         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2087                 vdev_dtl_sync(lvd, txg);
2088
2089         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2090 }
2091
2092 uint64_t
2093 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2094 {
2095         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2096 }
2097
2098 /*
2099  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2100  * not be opened, and no I/O is attempted.
2101  */
2102 int
2103 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2104 {
2105         vdev_t *vd, *tvd;
2106
2107         spa_vdev_state_enter(spa, SCL_NONE);
2108
2109         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2110                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2111
2112         if (!vd->vdev_ops->vdev_op_leaf)
2113                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2114
2115         tvd = vd->vdev_top;
2116
2117         /*
2118          * We don't directly use the aux state here, but if we do a
2119          * vdev_reopen(), we need this value to be present to remember why we
2120          * were faulted.
2121          */
2122         vd->vdev_label_aux = aux;
2123
2124         /*
2125          * Faulted state takes precedence over degraded.
2126          */
2127         vd->vdev_delayed_close = B_FALSE;
2128         vd->vdev_faulted = 1ULL;
2129         vd->vdev_degraded = 0ULL;
2130         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2131
2132         /*
2133          * If this device has the only valid copy of the data, then
2134          * back off and simply mark the vdev as degraded instead.
2135          */
2136         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2137                 vd->vdev_degraded = 1ULL;
2138                 vd->vdev_faulted = 0ULL;
2139
2140                 /*
2141                  * If we reopen the device and it's not dead, only then do we
2142                  * mark it degraded.
2143                  */
2144                 vdev_reopen(tvd);
2145
2146                 if (vdev_readable(vd))
2147                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2148         }
2149
2150         return (spa_vdev_state_exit(spa, vd, 0));
2151 }
2152
2153 /*
2154  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2155  * user that something is wrong.  The vdev continues to operate as normal as far
2156  * as I/O is concerned.
2157  */
2158 int
2159 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2160 {
2161         vdev_t *vd;
2162
2163         spa_vdev_state_enter(spa, SCL_NONE);
2164
2165         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2166                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2167
2168         if (!vd->vdev_ops->vdev_op_leaf)
2169                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2170
2171         /*
2172          * If the vdev is already faulted, then don't do anything.
2173          */
2174         if (vd->vdev_faulted || vd->vdev_degraded)
2175                 return (spa_vdev_state_exit(spa, NULL, 0));
2176
2177         vd->vdev_degraded = 1ULL;
2178         if (!vdev_is_dead(vd))
2179                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2180                     aux);
2181
2182         return (spa_vdev_state_exit(spa, vd, 0));
2183 }
2184
2185 /*
2186  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2187  * any attached spare device should be detached when the device finishes
2188  * resilvering.  Second, the online should be treated like a 'test' online case,
2189  * so no FMA events are generated if the device fails to open.
2190  */
2191 int
2192 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2193 {
2194         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2195
2196         spa_vdev_state_enter(spa, SCL_NONE);
2197
2198         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2199                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2200
2201         if (!vd->vdev_ops->vdev_op_leaf)
2202                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2203
2204         tvd = vd->vdev_top;
2205         vd->vdev_offline = B_FALSE;
2206         vd->vdev_tmpoffline = B_FALSE;
2207         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2208         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2209
2210         /* XXX - L2ARC 1.0 does not support expansion */
2211         if (!vd->vdev_aux) {
2212                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2213                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2214         }
2215
2216         vdev_reopen(tvd);
2217         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2218
2219         if (!vd->vdev_aux) {
2220                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2221                         pvd->vdev_expanding = B_FALSE;
2222         }
2223
2224         if (newstate)
2225                 *newstate = vd->vdev_state;
2226         if ((flags & ZFS_ONLINE_UNSPARE) &&
2227             !vdev_is_dead(vd) && vd->vdev_parent &&
2228             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2229             vd->vdev_parent->vdev_child[0] == vd)
2230                 vd->vdev_unspare = B_TRUE;
2231
2232         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2233
2234                 /* XXX - L2ARC 1.0 does not support expansion */
2235                 if (vd->vdev_aux)
2236                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2237                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2238         }
2239         return (spa_vdev_state_exit(spa, vd, 0));
2240 }
2241
2242 static int
2243 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2244 {
2245         vdev_t *vd, *tvd;
2246         int error = 0;
2247         uint64_t generation;
2248         metaslab_group_t *mg;
2249
2250 top:
2251         spa_vdev_state_enter(spa, SCL_ALLOC);
2252
2253         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2254                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2255
2256         if (!vd->vdev_ops->vdev_op_leaf)
2257                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2258
2259         tvd = vd->vdev_top;
2260         mg = tvd->vdev_mg;
2261         generation = spa->spa_config_generation + 1;
2262
2263         /*
2264          * If the device isn't already offline, try to offline it.
2265          */
2266         if (!vd->vdev_offline) {
2267                 /*
2268                  * If this device has the only valid copy of some data,
2269                  * don't allow it to be offlined. Log devices are always
2270                  * expendable.
2271                  */
2272                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2273                     vdev_dtl_required(vd))
2274                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2275
2276                 /*
2277                  * If the top-level is a slog and it has had allocations
2278                  * then proceed.  We check that the vdev's metaslab group
2279                  * is not NULL since it's possible that we may have just
2280                  * added this vdev but not yet initialized its metaslabs.
2281                  */
2282                 if (tvd->vdev_islog && mg != NULL) {
2283                         /*
2284                          * Prevent any future allocations.
2285                          */
2286                         metaslab_group_passivate(mg);
2287                         (void) spa_vdev_state_exit(spa, vd, 0);
2288
2289                         error = spa_offline_log(spa);
2290
2291                         spa_vdev_state_enter(spa, SCL_ALLOC);
2292
2293                         /*
2294                          * Check to see if the config has changed.
2295                          */
2296                         if (error || generation != spa->spa_config_generation) {
2297                                 metaslab_group_activate(mg);
2298                                 if (error)
2299                                         return (spa_vdev_state_exit(spa,
2300                                             vd, error));
2301                                 (void) spa_vdev_state_exit(spa, vd, 0);
2302                                 goto top;
2303                         }
2304                         ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2305                 }
2306
2307                 /*
2308                  * Offline this device and reopen its top-level vdev.
2309                  * If the top-level vdev is a log device then just offline
2310                  * it. Otherwise, if this action results in the top-level
2311                  * vdev becoming unusable, undo it and fail the request.
2312                  */
2313                 vd->vdev_offline = B_TRUE;
2314                 vdev_reopen(tvd);
2315
2316                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2317                     vdev_is_dead(tvd)) {
2318                         vd->vdev_offline = B_FALSE;
2319                         vdev_reopen(tvd);
2320                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2321                 }
2322
2323                 /*
2324                  * Add the device back into the metaslab rotor so that
2325                  * once we online the device it's open for business.
2326                  */
2327                 if (tvd->vdev_islog && mg != NULL)
2328                         metaslab_group_activate(mg);
2329         }
2330
2331         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2332
2333         return (spa_vdev_state_exit(spa, vd, 0));
2334 }
2335
2336 int
2337 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2338 {
2339         int error;
2340
2341         mutex_enter(&spa->spa_vdev_top_lock);
2342         error = vdev_offline_locked(spa, guid, flags);
2343         mutex_exit(&spa->spa_vdev_top_lock);
2344
2345         return (error);
2346 }
2347
2348 /*
2349  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2350  * vdev_offline(), we assume the spa config is locked.  We also clear all
2351  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2352  */
2353 void
2354 vdev_clear(spa_t *spa, vdev_t *vd)
2355 {
2356         vdev_t *rvd = spa->spa_root_vdev;
2357
2358         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2359
2360         if (vd == NULL)
2361                 vd = rvd;
2362
2363         vd->vdev_stat.vs_read_errors = 0;
2364         vd->vdev_stat.vs_write_errors = 0;
2365         vd->vdev_stat.vs_checksum_errors = 0;
2366
2367         for (int c = 0; c < vd->vdev_children; c++)
2368                 vdev_clear(spa, vd->vdev_child[c]);
2369
2370         /*
2371          * If we're in the FAULTED state or have experienced failed I/O, then
2372          * clear the persistent state and attempt to reopen the device.  We
2373          * also mark the vdev config dirty, so that the new faulted state is
2374          * written out to disk.
2375          */
2376         if (vd->vdev_faulted || vd->vdev_degraded ||
2377             !vdev_readable(vd) || !vdev_writeable(vd)) {
2378
2379                 /*
2380                  * When reopening in reponse to a clear event, it may be due to
2381                  * a fmadm repair request.  In this case, if the device is
2382                  * still broken, we want to still post the ereport again.
2383                  */
2384                 vd->vdev_forcefault = B_TRUE;
2385
2386                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2387                 vd->vdev_cant_read = B_FALSE;
2388                 vd->vdev_cant_write = B_FALSE;
2389
2390                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2391
2392                 vd->vdev_forcefault = B_FALSE;
2393
2394                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2395                         vdev_state_dirty(vd->vdev_top);
2396
2397                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2398                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2399
2400                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2401         }
2402
2403         /*
2404          * When clearing a FMA-diagnosed fault, we always want to
2405          * unspare the device, as we assume that the original spare was
2406          * done in response to the FMA fault.
2407          */
2408         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2409             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2410             vd->vdev_parent->vdev_child[0] == vd)
2411                 vd->vdev_unspare = B_TRUE;
2412 }
2413
2414 boolean_t
2415 vdev_is_dead(vdev_t *vd)
2416 {
2417         /*
2418          * Holes and missing devices are always considered "dead".
2419          * This simplifies the code since we don't have to check for
2420          * these types of devices in the various code paths.
2421          * Instead we rely on the fact that we skip over dead devices
2422          * before issuing I/O to them.
2423          */
2424         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2425             vd->vdev_ops == &vdev_missing_ops);
2426 }
2427
2428 boolean_t
2429 vdev_readable(vdev_t *vd)
2430 {
2431         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2432 }
2433
2434 boolean_t
2435 vdev_writeable(vdev_t *vd)
2436 {
2437         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2438 }
2439
2440 boolean_t
2441 vdev_allocatable(vdev_t *vd)
2442 {
2443         uint64_t state = vd->vdev_state;
2444
2445         /*
2446          * We currently allow allocations from vdevs which may be in the
2447          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2448          * fails to reopen then we'll catch it later when we're holding
2449          * the proper locks.  Note that we have to get the vdev state
2450          * in a local variable because although it changes atomically,
2451          * we're asking two separate questions about it.
2452          */
2453         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2454             !vd->vdev_cant_write && !vd->vdev_ishole);
2455 }
2456
2457 boolean_t
2458 vdev_accessible(vdev_t *vd, zio_t *zio)
2459 {
2460         ASSERT(zio->io_vd == vd);
2461
2462         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2463                 return (B_FALSE);
2464
2465         if (zio->io_type == ZIO_TYPE_READ)
2466                 return (!vd->vdev_cant_read);
2467
2468         if (zio->io_type == ZIO_TYPE_WRITE)
2469                 return (!vd->vdev_cant_write);
2470
2471         return (B_TRUE);
2472 }
2473
2474 /*
2475  * Get statistics for the given vdev.
2476  */
2477 void
2478 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2479 {
2480         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2481
2482         mutex_enter(&vd->vdev_stat_lock);
2483         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2484         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2485         vs->vs_state = vd->vdev_state;
2486         vs->vs_rsize = vdev_get_min_asize(vd);
2487         if (vd->vdev_ops->vdev_op_leaf)
2488                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2489         vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2490         mutex_exit(&vd->vdev_stat_lock);
2491
2492         /*
2493          * If we're getting stats on the root vdev, aggregate the I/O counts
2494          * over all top-level vdevs (i.e. the direct children of the root).
2495          */
2496         if (vd == rvd) {
2497                 for (int c = 0; c < rvd->vdev_children; c++) {
2498                         vdev_t *cvd = rvd->vdev_child[c];
2499                         vdev_stat_t *cvs = &cvd->vdev_stat;
2500
2501                         mutex_enter(&vd->vdev_stat_lock);
2502                         for (int t = 0; t < ZIO_TYPES; t++) {
2503                                 vs->vs_ops[t] += cvs->vs_ops[t];
2504                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2505                         }
2506                         cvs->vs_scan_removing = cvd->vdev_removing;
2507                         mutex_exit(&vd->vdev_stat_lock);
2508                 }
2509         }
2510 }
2511
2512 void
2513 vdev_clear_stats(vdev_t *vd)
2514 {
2515         mutex_enter(&vd->vdev_stat_lock);
2516         vd->vdev_stat.vs_space = 0;
2517         vd->vdev_stat.vs_dspace = 0;
2518         vd->vdev_stat.vs_alloc = 0;
2519         mutex_exit(&vd->vdev_stat_lock);
2520 }
2521
2522 void
2523 vdev_scan_stat_init(vdev_t *vd)
2524 {
2525         vdev_stat_t *vs = &vd->vdev_stat;
2526
2527         for (int c = 0; c < vd->vdev_children; c++)
2528                 vdev_scan_stat_init(vd->vdev_child[c]);
2529
2530         mutex_enter(&vd->vdev_stat_lock);
2531         vs->vs_scan_processed = 0;
2532         mutex_exit(&vd->vdev_stat_lock);
2533 }
2534
2535 void
2536 vdev_stat_update(zio_t *zio, uint64_t psize)
2537 {
2538         spa_t *spa = zio->io_spa;
2539         vdev_t *rvd = spa->spa_root_vdev;
2540         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2541         vdev_t *pvd;
2542         uint64_t txg = zio->io_txg;
2543         vdev_stat_t *vs = &vd->vdev_stat;
2544         zio_type_t type = zio->io_type;
2545         int flags = zio->io_flags;
2546
2547         /*
2548          * If this i/o is a gang leader, it didn't do any actual work.
2549          */
2550         if (zio->io_gang_tree)
2551                 return;
2552
2553         if (zio->io_error == 0) {
2554                 /*
2555                  * If this is a root i/o, don't count it -- we've already
2556                  * counted the top-level vdevs, and vdev_get_stats() will
2557                  * aggregate them when asked.  This reduces contention on
2558                  * the root vdev_stat_lock and implicitly handles blocks
2559                  * that compress away to holes, for which there is no i/o.
2560                  * (Holes never create vdev children, so all the counters
2561                  * remain zero, which is what we want.)
2562                  *
2563                  * Note: this only applies to successful i/o (io_error == 0)
2564                  * because unlike i/o counts, errors are not additive.
2565                  * When reading a ditto block, for example, failure of
2566                  * one top-level vdev does not imply a root-level error.
2567                  */
2568                 if (vd == rvd)
2569                         return;
2570
2571                 ASSERT(vd == zio->io_vd);
2572
2573                 if (flags & ZIO_FLAG_IO_BYPASS)
2574                         return;
2575
2576                 mutex_enter(&vd->vdev_stat_lock);
2577
2578                 if (flags & ZIO_FLAG_IO_REPAIR) {
2579                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2580                                 dsl_scan_phys_t *scn_phys =
2581                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2582                                 uint64_t *processed = &scn_phys->scn_processed;
2583
2584                                 /* XXX cleanup? */
2585                                 if (vd->vdev_ops->vdev_op_leaf)
2586                                         atomic_add_64(processed, psize);
2587                                 vs->vs_scan_processed += psize;
2588                         }
2589
2590                         if (flags & ZIO_FLAG_SELF_HEAL)
2591                                 vs->vs_self_healed += psize;
2592                 }
2593
2594                 vs->vs_ops[type]++;
2595                 vs->vs_bytes[type] += psize;
2596
2597                 mutex_exit(&vd->vdev_stat_lock);
2598                 return;
2599         }
2600
2601         if (flags & ZIO_FLAG_SPECULATIVE)
2602                 return;
2603
2604         /*
2605          * If this is an I/O error that is going to be retried, then ignore the
2606          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2607          * hard errors, when in reality they can happen for any number of
2608          * innocuous reasons (bus resets, MPxIO link failure, etc).
2609          */
2610         if (zio->io_error == EIO &&
2611             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2612                 return;
2613
2614         /*
2615          * Intent logs writes won't propagate their error to the root
2616          * I/O so don't mark these types of failures as pool-level
2617          * errors.
2618          */
2619         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2620                 return;
2621
2622         mutex_enter(&vd->vdev_stat_lock);
2623         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2624                 if (zio->io_error == ECKSUM)
2625                         vs->vs_checksum_errors++;
2626                 else
2627                         vs->vs_read_errors++;
2628         }
2629         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2630                 vs->vs_write_errors++;
2631         mutex_exit(&vd->vdev_stat_lock);
2632
2633         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2634             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2635             (flags & ZIO_FLAG_SCAN_THREAD) ||
2636             spa->spa_claiming)) {
2637                 /*
2638                  * This is either a normal write (not a repair), or it's
2639                  * a repair induced by the scrub thread, or it's a repair
2640                  * made by zil_claim() during spa_load() in the first txg.
2641                  * In the normal case, we commit the DTL change in the same
2642                  * txg as the block was born.  In the scrub-induced repair
2643                  * case, we know that scrubs run in first-pass syncing context,
2644                  * so we commit the DTL change in spa_syncing_txg(spa).
2645                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2646                  *
2647                  * We currently do not make DTL entries for failed spontaneous
2648                  * self-healing writes triggered by normal (non-scrubbing)
2649                  * reads, because we have no transactional context in which to
2650                  * do so -- and it's not clear that it'd be desirable anyway.
2651                  */
2652                 if (vd->vdev_ops->vdev_op_leaf) {
2653                         uint64_t commit_txg = txg;
2654                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2655                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2656                                 ASSERT(spa_sync_pass(spa) == 1);
2657                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2658                                 commit_txg = spa_syncing_txg(spa);
2659                         } else if (spa->spa_claiming) {
2660                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2661                                 commit_txg = spa_first_txg(spa);
2662                         }
2663                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2664                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2665                                 return;
2666                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2667                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2668                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2669                 }
2670                 if (vd != rvd)
2671                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2672         }
2673 }
2674
2675 /*
2676  * Update the in-core space usage stats for this vdev, its metaslab class,
2677  * and the root vdev.
2678  */
2679 void
2680 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2681     int64_t space_delta)
2682 {
2683         int64_t dspace_delta = space_delta;
2684         spa_t *spa = vd->vdev_spa;
2685         vdev_t *rvd = spa->spa_root_vdev;
2686         metaslab_group_t *mg = vd->vdev_mg;
2687         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2688
2689         ASSERT(vd == vd->vdev_top);
2690
2691         /*
2692          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2693          * factor.  We must calculate this here and not at the root vdev
2694          * because the root vdev's psize-to-asize is simply the max of its
2695          * childrens', thus not accurate enough for us.
2696          */
2697         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2698         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2699         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2700             vd->vdev_deflate_ratio;
2701
2702         mutex_enter(&vd->vdev_stat_lock);
2703         vd->vdev_stat.vs_alloc += alloc_delta;
2704         vd->vdev_stat.vs_space += space_delta;
2705         vd->vdev_stat.vs_dspace += dspace_delta;
2706         mutex_exit(&vd->vdev_stat_lock);
2707
2708         if (mc == spa_normal_class(spa)) {
2709                 mutex_enter(&rvd->vdev_stat_lock);
2710                 rvd->vdev_stat.vs_alloc += alloc_delta;
2711                 rvd->vdev_stat.vs_space += space_delta;
2712                 rvd->vdev_stat.vs_dspace += dspace_delta;
2713                 mutex_exit(&rvd->vdev_stat_lock);
2714         }
2715
2716         if (mc != NULL) {
2717                 ASSERT(rvd == vd->vdev_parent);
2718                 ASSERT(vd->vdev_ms_count != 0);
2719
2720                 metaslab_class_space_update(mc,
2721                     alloc_delta, defer_delta, space_delta, dspace_delta);
2722         }
2723 }
2724
2725 /*
2726  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2727  * so that it will be written out next time the vdev configuration is synced.
2728  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2729  */
2730 void
2731 vdev_config_dirty(vdev_t *vd)
2732 {
2733         spa_t *spa = vd->vdev_spa;
2734         vdev_t *rvd = spa->spa_root_vdev;
2735         int c;
2736
2737         ASSERT(spa_writeable(spa));
2738
2739         /*
2740          * If this is an aux vdev (as with l2cache and spare devices), then we
2741          * update the vdev config manually and set the sync flag.
2742          */
2743         if (vd->vdev_aux != NULL) {
2744                 spa_aux_vdev_t *sav = vd->vdev_aux;
2745                 nvlist_t **aux;
2746                 uint_t naux;
2747
2748                 for (c = 0; c < sav->sav_count; c++) {
2749                         if (sav->sav_vdevs[c] == vd)
2750                                 break;
2751                 }
2752
2753                 if (c == sav->sav_count) {
2754                         /*
2755                          * We're being removed.  There's nothing more to do.
2756                          */
2757                         ASSERT(sav->sav_sync == B_TRUE);
2758                         return;
2759                 }
2760
2761                 sav->sav_sync = B_TRUE;
2762
2763                 if (nvlist_lookup_nvlist_array(sav->sav_config,
2764                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2765                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2766                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2767                 }
2768
2769                 ASSERT(c < naux);
2770
2771                 /*
2772                  * Setting the nvlist in the middle if the array is a little
2773                  * sketchy, but it will work.
2774                  */
2775                 nvlist_free(aux[c]);
2776                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2777
2778                 return;
2779         }
2780
2781         /*
2782          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2783          * must either hold SCL_CONFIG as writer, or must be the sync thread
2784          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2785          * so this is sufficient to ensure mutual exclusion.
2786          */
2787         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2788             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2789             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2790
2791         if (vd == rvd) {
2792                 for (c = 0; c < rvd->vdev_children; c++)
2793                         vdev_config_dirty(rvd->vdev_child[c]);
2794         } else {
2795                 ASSERT(vd == vd->vdev_top);
2796
2797                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2798                     !vd->vdev_ishole)
2799                         list_insert_head(&spa->spa_config_dirty_list, vd);
2800         }
2801 }
2802
2803 void
2804 vdev_config_clean(vdev_t *vd)
2805 {
2806         spa_t *spa = vd->vdev_spa;
2807
2808         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2809             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2810             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2811
2812         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2813         list_remove(&spa->spa_config_dirty_list, vd);
2814 }
2815
2816 /*
2817  * Mark a top-level vdev's state as dirty, so that the next pass of
2818  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2819  * the state changes from larger config changes because they require
2820  * much less locking, and are often needed for administrative actions.
2821  */
2822 void
2823 vdev_state_dirty(vdev_t *vd)
2824 {
2825         spa_t *spa = vd->vdev_spa;
2826
2827         ASSERT(spa_writeable(spa));
2828         ASSERT(vd == vd->vdev_top);
2829
2830         /*
2831          * The state list is protected by the SCL_STATE lock.  The caller
2832          * must either hold SCL_STATE as writer, or must be the sync thread
2833          * (which holds SCL_STATE as reader).  There's only one sync thread,
2834          * so this is sufficient to ensure mutual exclusion.
2835          */
2836         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2837             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2838             spa_config_held(spa, SCL_STATE, RW_READER)));
2839
2840         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2841                 list_insert_head(&spa->spa_state_dirty_list, vd);
2842 }
2843
2844 void
2845 vdev_state_clean(vdev_t *vd)
2846 {
2847         spa_t *spa = vd->vdev_spa;
2848
2849         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2850             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2851             spa_config_held(spa, SCL_STATE, RW_READER)));
2852
2853         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2854         list_remove(&spa->spa_state_dirty_list, vd);
2855 }
2856
2857 /*
2858  * Propagate vdev state up from children to parent.
2859  */
2860 void
2861 vdev_propagate_state(vdev_t *vd)
2862 {
2863         spa_t *spa = vd->vdev_spa;
2864         vdev_t *rvd = spa->spa_root_vdev;
2865         int degraded = 0, faulted = 0;
2866         int corrupted = 0;
2867         vdev_t *child;
2868
2869         if (vd->vdev_children > 0) {
2870                 for (int c = 0; c < vd->vdev_children; c++) {
2871                         child = vd->vdev_child[c];
2872
2873                         /*
2874                          * Don't factor holes into the decision.
2875                          */
2876                         if (child->vdev_ishole)
2877                                 continue;
2878
2879                         if (!vdev_readable(child) ||
2880                             (!vdev_writeable(child) && spa_writeable(spa))) {
2881                                 /*
2882                                  * Root special: if there is a top-level log
2883                                  * device, treat the root vdev as if it were
2884                                  * degraded.
2885                                  */
2886                                 if (child->vdev_islog && vd == rvd)
2887                                         degraded++;
2888                                 else
2889                                         faulted++;
2890                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2891                                 degraded++;
2892                         }
2893
2894                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2895                                 corrupted++;
2896                 }
2897
2898                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2899
2900                 /*
2901                  * Root special: if there is a top-level vdev that cannot be
2902                  * opened due to corrupted metadata, then propagate the root
2903                  * vdev's aux state as 'corrupt' rather than 'insufficient
2904                  * replicas'.
2905                  */
2906                 if (corrupted && vd == rvd &&
2907                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2908                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2909                             VDEV_AUX_CORRUPT_DATA);
2910         }
2911
2912         if (vd->vdev_parent)
2913                 vdev_propagate_state(vd->vdev_parent);
2914 }
2915
2916 /*
2917  * Set a vdev's state.  If this is during an open, we don't update the parent
2918  * state, because we're in the process of opening children depth-first.
2919  * Otherwise, we propagate the change to the parent.
2920  *
2921  * If this routine places a device in a faulted state, an appropriate ereport is
2922  * generated.
2923  */
2924 void
2925 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2926 {
2927         uint64_t save_state;
2928         spa_t *spa = vd->vdev_spa;
2929
2930         if (state == vd->vdev_state) {
2931                 vd->vdev_stat.vs_aux = aux;
2932                 return;
2933         }
2934
2935         save_state = vd->vdev_state;
2936
2937         vd->vdev_state = state;
2938         vd->vdev_stat.vs_aux = aux;
2939
2940         /*
2941          * If we are setting the vdev state to anything but an open state, then
2942          * always close the underlying device unless the device has requested
2943          * a delayed close (i.e. we're about to remove or fault the device).
2944          * Otherwise, we keep accessible but invalid devices open forever.
2945          * We don't call vdev_close() itself, because that implies some extra
2946          * checks (offline, etc) that we don't want here.  This is limited to
2947          * leaf devices, because otherwise closing the device will affect other
2948          * children.
2949          */
2950         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2951             vd->vdev_ops->vdev_op_leaf)
2952                 vd->vdev_ops->vdev_op_close(vd);
2953
2954         /*
2955          * If we have brought this vdev back into service, we need
2956          * to notify fmd so that it can gracefully repair any outstanding
2957          * cases due to a missing device.  We do this in all cases, even those
2958          * that probably don't correlate to a repaired fault.  This is sure to
2959          * catch all cases, and we let the zfs-retire agent sort it out.  If
2960          * this is a transient state it's OK, as the retire agent will
2961          * double-check the state of the vdev before repairing it.
2962          */
2963         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2964             vd->vdev_prevstate != state)
2965                 zfs_post_state_change(spa, vd);
2966
2967         if (vd->vdev_removed &&
2968             state == VDEV_STATE_CANT_OPEN &&
2969             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2970                 /*
2971                  * If the previous state is set to VDEV_STATE_REMOVED, then this
2972                  * device was previously marked removed and someone attempted to
2973                  * reopen it.  If this failed due to a nonexistent device, then
2974                  * keep the device in the REMOVED state.  We also let this be if
2975                  * it is one of our special test online cases, which is only
2976                  * attempting to online the device and shouldn't generate an FMA
2977                  * fault.
2978                  */
2979                 vd->vdev_state = VDEV_STATE_REMOVED;
2980                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2981         } else if (state == VDEV_STATE_REMOVED) {
2982                 vd->vdev_removed = B_TRUE;
2983         } else if (state == VDEV_STATE_CANT_OPEN) {
2984                 /*
2985                  * If we fail to open a vdev during an import or recovery, we
2986                  * mark it as "not available", which signifies that it was
2987                  * never there to begin with.  Failure to open such a device
2988                  * is not considered an error.
2989                  */
2990                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
2991                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
2992                     vd->vdev_ops->vdev_op_leaf)
2993                         vd->vdev_not_present = 1;
2994
2995                 /*
2996                  * Post the appropriate ereport.  If the 'prevstate' field is
2997                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
2998                  * that this is part of a vdev_reopen().  In this case, we don't
2999                  * want to post the ereport if the device was already in the
3000                  * CANT_OPEN state beforehand.
3001                  *
3002                  * If the 'checkremove' flag is set, then this is an attempt to
3003                  * online the device in response to an insertion event.  If we
3004                  * hit this case, then we have detected an insertion event for a
3005                  * faulted or offline device that wasn't in the removed state.
3006                  * In this scenario, we don't post an ereport because we are
3007                  * about to replace the device, or attempt an online with
3008                  * vdev_forcefault, which will generate the fault for us.
3009                  */
3010                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3011                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3012                     vd != spa->spa_root_vdev) {
3013                         const char *class;
3014
3015                         switch (aux) {
3016                         case VDEV_AUX_OPEN_FAILED:
3017                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3018                                 break;
3019                         case VDEV_AUX_CORRUPT_DATA:
3020                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3021                                 break;
3022                         case VDEV_AUX_NO_REPLICAS:
3023                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3024                                 break;
3025                         case VDEV_AUX_BAD_GUID_SUM:
3026                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3027                                 break;
3028                         case VDEV_AUX_TOO_SMALL:
3029                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3030                                 break;
3031                         case VDEV_AUX_BAD_LABEL:
3032                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3033                                 break;
3034                         default:
3035                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3036                         }
3037
3038                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3039                 }
3040
3041                 /* Erase any notion of persistent removed state */
3042                 vd->vdev_removed = B_FALSE;
3043         } else {
3044                 vd->vdev_removed = B_FALSE;
3045         }
3046
3047         if (!isopen && vd->vdev_parent)
3048                 vdev_propagate_state(vd->vdev_parent);
3049 }
3050
3051 /*
3052  * Check the vdev configuration to ensure that it's capable of supporting
3053  * a root pool.
3054  *
3055  * On Solaris, we do not support RAID-Z or partial configuration.  In
3056  * addition, only a single top-level vdev is allowed and none of the
3057  * leaves can be wholedisks.
3058  *
3059  * For FreeBSD, we can boot from any configuration. There is a
3060  * limitation that the boot filesystem must be either uncompressed or
3061  * compresses with lzjb compression but I'm not sure how to enforce
3062  * that here.
3063  */
3064 boolean_t
3065 vdev_is_bootable(vdev_t *vd)
3066 {
3067 #ifdef sun
3068         if (!vd->vdev_ops->vdev_op_leaf) {
3069                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3070
3071                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3072                     vd->vdev_children > 1) {
3073                         return (B_FALSE);
3074                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3075                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3076                         return (B_FALSE);
3077                 }
3078         } else if (vd->vdev_wholedisk == 1) {
3079                 return (B_FALSE);
3080         }
3081
3082         for (int c = 0; c < vd->vdev_children; c++) {
3083                 if (!vdev_is_bootable(vd->vdev_child[c]))
3084                         return (B_FALSE);
3085         }
3086 #endif  /* sun */
3087         return (B_TRUE);
3088 }
3089
3090 /*
3091  * Load the state from the original vdev tree (ovd) which
3092  * we've retrieved from the MOS config object. If the original
3093  * vdev was offline or faulted then we transfer that state to the
3094  * device in the current vdev tree (nvd).
3095  */
3096 void
3097 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3098 {
3099         spa_t *spa = nvd->vdev_spa;
3100
3101         ASSERT(nvd->vdev_top->vdev_islog);
3102         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3103         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3104
3105         for (int c = 0; c < nvd->vdev_children; c++)
3106                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3107
3108         if (nvd->vdev_ops->vdev_op_leaf) {
3109                 /*
3110                  * Restore the persistent vdev state
3111                  */
3112                 nvd->vdev_offline = ovd->vdev_offline;
3113                 nvd->vdev_faulted = ovd->vdev_faulted;
3114                 nvd->vdev_degraded = ovd->vdev_degraded;
3115                 nvd->vdev_removed = ovd->vdev_removed;
3116         }
3117 }
3118
3119 /*
3120  * Determine if a log device has valid content.  If the vdev was
3121  * removed or faulted in the MOS config then we know that
3122  * the content on the log device has already been written to the pool.
3123  */
3124 boolean_t
3125 vdev_log_state_valid(vdev_t *vd)
3126 {
3127         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3128             !vd->vdev_removed)
3129                 return (B_TRUE);
3130
3131         for (int c = 0; c < vd->vdev_children; c++)
3132                 if (vdev_log_state_valid(vd->vdev_child[c]))
3133                         return (B_TRUE);
3134
3135         return (B_FALSE);
3136 }
3137
3138 /*
3139  * Expand a vdev if possible.
3140  */
3141 void
3142 vdev_expand(vdev_t *vd, uint64_t txg)
3143 {
3144         ASSERT(vd->vdev_top == vd);
3145         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3146
3147         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3148                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3149                 vdev_config_dirty(vd);
3150         }
3151 }
3152
3153 /*
3154  * Split a vdev.
3155  */
3156 void
3157 vdev_split(vdev_t *vd)
3158 {
3159         vdev_t *cvd, *pvd = vd->vdev_parent;
3160
3161         vdev_remove_child(pvd, vd);
3162         vdev_compact_children(pvd);
3163
3164         cvd = pvd->vdev_child[0];
3165         if (pvd->vdev_children == 1) {
3166                 vdev_remove_parent(cvd);
3167                 cvd->vdev_splitting = B_TRUE;
3168         }
3169         vdev_propagate_state(cvd);
3170 }