]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c
MFC r272507: MFV r272496:
[FreeBSD/stable/10.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
26  * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27  */
28
29 #include <sys/zfs_context.h>
30 #include <sys/fm/fs/zfs.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/uberblock_impl.h>
37 #include <sys/metaslab.h>
38 #include <sys/metaslab_impl.h>
39 #include <sys/space_map.h>
40 #include <sys/space_reftree.h>
41 #include <sys/zio.h>
42 #include <sys/zap.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/arc.h>
45 #include <sys/zil.h>
46 #include <sys/dsl_scan.h>
47 #include <sys/trim_map.h>
48
49 SYSCTL_DECL(_vfs_zfs);
50 SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
51
52 /*
53  * Virtual device management.
54  */
55
56 /*
57  * The limit for ZFS to automatically increase a top-level vdev's ashift
58  * from logical ashift to physical ashift.
59  *
60  * Example: one or more 512B emulation child vdevs
61  *          child->vdev_ashift = 9 (512 bytes)
62  *          child->vdev_physical_ashift = 12 (4096 bytes)
63  *          zfs_max_auto_ashift = 11 (2048 bytes)
64  *          zfs_min_auto_ashift = 9 (512 bytes)
65  *
66  * On pool creation or the addition of a new top-level vdev, ZFS will
67  * increase the ashift of the top-level vdev to 2048 as limited by
68  * zfs_max_auto_ashift.
69  *
70  * Example: one or more 512B emulation child vdevs
71  *          child->vdev_ashift = 9 (512 bytes)
72  *          child->vdev_physical_ashift = 12 (4096 bytes)
73  *          zfs_max_auto_ashift = 13 (8192 bytes)
74  *          zfs_min_auto_ashift = 9 (512 bytes)
75  *
76  * On pool creation or the addition of a new top-level vdev, ZFS will
77  * increase the ashift of the top-level vdev to 4096 to match the
78  * max vdev_physical_ashift.
79  *
80  * Example: one or more 512B emulation child vdevs
81  *          child->vdev_ashift = 9 (512 bytes)
82  *          child->vdev_physical_ashift = 9 (512 bytes)
83  *          zfs_max_auto_ashift = 13 (8192 bytes)
84  *          zfs_min_auto_ashift = 12 (4096 bytes)
85  *
86  * On pool creation or the addition of a new top-level vdev, ZFS will
87  * increase the ashift of the top-level vdev to 4096 to match the
88  * zfs_min_auto_ashift.
89  */
90 static uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT;
91 static uint64_t zfs_min_auto_ashift = SPA_MINASHIFT;
92
93 static int
94 sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)
95 {
96         uint64_t val;
97         int err;
98
99         val = zfs_max_auto_ashift;
100         err = sysctl_handle_64(oidp, &val, 0, req);
101         if (err != 0 || req->newptr == NULL)
102                 return (err);
103
104         if (val > SPA_MAXASHIFT || val < zfs_min_auto_ashift)
105                 return (EINVAL);
106
107         zfs_max_auto_ashift = val;
108
109         return (0);
110 }
111 SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift,
112     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
113     sysctl_vfs_zfs_max_auto_ashift, "QU",
114     "Max ashift used when optimising for logical -> physical sectors size on "
115     "new top-level vdevs.");
116
117 static int
118 sysctl_vfs_zfs_min_auto_ashift(SYSCTL_HANDLER_ARGS)
119 {
120         uint64_t val;
121         int err;
122
123         val = zfs_min_auto_ashift;
124         err = sysctl_handle_64(oidp, &val, 0, req);
125         if (err != 0 || req->newptr == NULL)
126                 return (err);
127
128         if (val < SPA_MINASHIFT || val > zfs_max_auto_ashift)
129                 return (EINVAL);
130
131         zfs_min_auto_ashift = val;
132
133         return (0);
134 }
135 SYSCTL_PROC(_vfs_zfs, OID_AUTO, min_auto_ashift,
136     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
137     sysctl_vfs_zfs_min_auto_ashift, "QU",
138     "Min ashift used when creating new top-level vdevs.");
139
140 static vdev_ops_t *vdev_ops_table[] = {
141         &vdev_root_ops,
142         &vdev_raidz_ops,
143         &vdev_mirror_ops,
144         &vdev_replacing_ops,
145         &vdev_spare_ops,
146 #ifdef _KERNEL
147         &vdev_geom_ops,
148 #else
149         &vdev_disk_ops,
150 #endif
151         &vdev_file_ops,
152         &vdev_missing_ops,
153         &vdev_hole_ops,
154         NULL
155 };
156
157
158 /*
159  * When a vdev is added, it will be divided into approximately (but no
160  * more than) this number of metaslabs.
161  */
162 int metaslabs_per_vdev = 200;
163 SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, metaslabs_per_vdev, CTLFLAG_RDTUN,
164     &metaslabs_per_vdev, 0,
165     "When a vdev is added, how many metaslabs the vdev should be divided into");
166
167 /*
168  * Given a vdev type, return the appropriate ops vector.
169  */
170 static vdev_ops_t *
171 vdev_getops(const char *type)
172 {
173         vdev_ops_t *ops, **opspp;
174
175         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
176                 if (strcmp(ops->vdev_op_type, type) == 0)
177                         break;
178
179         return (ops);
180 }
181
182 /*
183  * Default asize function: return the MAX of psize with the asize of
184  * all children.  This is what's used by anything other than RAID-Z.
185  */
186 uint64_t
187 vdev_default_asize(vdev_t *vd, uint64_t psize)
188 {
189         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
190         uint64_t csize;
191
192         for (int c = 0; c < vd->vdev_children; c++) {
193                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
194                 asize = MAX(asize, csize);
195         }
196
197         return (asize);
198 }
199
200 /*
201  * Get the minimum allocatable size. We define the allocatable size as
202  * the vdev's asize rounded to the nearest metaslab. This allows us to
203  * replace or attach devices which don't have the same physical size but
204  * can still satisfy the same number of allocations.
205  */
206 uint64_t
207 vdev_get_min_asize(vdev_t *vd)
208 {
209         vdev_t *pvd = vd->vdev_parent;
210
211         /*
212          * If our parent is NULL (inactive spare or cache) or is the root,
213          * just return our own asize.
214          */
215         if (pvd == NULL)
216                 return (vd->vdev_asize);
217
218         /*
219          * The top-level vdev just returns the allocatable size rounded
220          * to the nearest metaslab.
221          */
222         if (vd == vd->vdev_top)
223                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
224
225         /*
226          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
227          * so each child must provide at least 1/Nth of its asize.
228          */
229         if (pvd->vdev_ops == &vdev_raidz_ops)
230                 return (pvd->vdev_min_asize / pvd->vdev_children);
231
232         return (pvd->vdev_min_asize);
233 }
234
235 void
236 vdev_set_min_asize(vdev_t *vd)
237 {
238         vd->vdev_min_asize = vdev_get_min_asize(vd);
239
240         for (int c = 0; c < vd->vdev_children; c++)
241                 vdev_set_min_asize(vd->vdev_child[c]);
242 }
243
244 vdev_t *
245 vdev_lookup_top(spa_t *spa, uint64_t vdev)
246 {
247         vdev_t *rvd = spa->spa_root_vdev;
248
249         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
250
251         if (vdev < rvd->vdev_children) {
252                 ASSERT(rvd->vdev_child[vdev] != NULL);
253                 return (rvd->vdev_child[vdev]);
254         }
255
256         return (NULL);
257 }
258
259 vdev_t *
260 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
261 {
262         vdev_t *mvd;
263
264         if (vd->vdev_guid == guid)
265                 return (vd);
266
267         for (int c = 0; c < vd->vdev_children; c++)
268                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
269                     NULL)
270                         return (mvd);
271
272         return (NULL);
273 }
274
275 void
276 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
277 {
278         size_t oldsize, newsize;
279         uint64_t id = cvd->vdev_id;
280         vdev_t **newchild;
281
282         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
283         ASSERT(cvd->vdev_parent == NULL);
284
285         cvd->vdev_parent = pvd;
286
287         if (pvd == NULL)
288                 return;
289
290         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
291
292         oldsize = pvd->vdev_children * sizeof (vdev_t *);
293         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
294         newsize = pvd->vdev_children * sizeof (vdev_t *);
295
296         newchild = kmem_zalloc(newsize, KM_SLEEP);
297         if (pvd->vdev_child != NULL) {
298                 bcopy(pvd->vdev_child, newchild, oldsize);
299                 kmem_free(pvd->vdev_child, oldsize);
300         }
301
302         pvd->vdev_child = newchild;
303         pvd->vdev_child[id] = cvd;
304
305         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
306         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
307
308         /*
309          * Walk up all ancestors to update guid sum.
310          */
311         for (; pvd != NULL; pvd = pvd->vdev_parent)
312                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
313 }
314
315 void
316 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
317 {
318         int c;
319         uint_t id = cvd->vdev_id;
320
321         ASSERT(cvd->vdev_parent == pvd);
322
323         if (pvd == NULL)
324                 return;
325
326         ASSERT(id < pvd->vdev_children);
327         ASSERT(pvd->vdev_child[id] == cvd);
328
329         pvd->vdev_child[id] = NULL;
330         cvd->vdev_parent = NULL;
331
332         for (c = 0; c < pvd->vdev_children; c++)
333                 if (pvd->vdev_child[c])
334                         break;
335
336         if (c == pvd->vdev_children) {
337                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
338                 pvd->vdev_child = NULL;
339                 pvd->vdev_children = 0;
340         }
341
342         /*
343          * Walk up all ancestors to update guid sum.
344          */
345         for (; pvd != NULL; pvd = pvd->vdev_parent)
346                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
347 }
348
349 /*
350  * Remove any holes in the child array.
351  */
352 void
353 vdev_compact_children(vdev_t *pvd)
354 {
355         vdev_t **newchild, *cvd;
356         int oldc = pvd->vdev_children;
357         int newc;
358
359         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
360
361         for (int c = newc = 0; c < oldc; c++)
362                 if (pvd->vdev_child[c])
363                         newc++;
364
365         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
366
367         for (int c = newc = 0; c < oldc; c++) {
368                 if ((cvd = pvd->vdev_child[c]) != NULL) {
369                         newchild[newc] = cvd;
370                         cvd->vdev_id = newc++;
371                 }
372         }
373
374         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
375         pvd->vdev_child = newchild;
376         pvd->vdev_children = newc;
377 }
378
379 /*
380  * Allocate and minimally initialize a vdev_t.
381  */
382 vdev_t *
383 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
384 {
385         vdev_t *vd;
386
387         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
388
389         if (spa->spa_root_vdev == NULL) {
390                 ASSERT(ops == &vdev_root_ops);
391                 spa->spa_root_vdev = vd;
392                 spa->spa_load_guid = spa_generate_guid(NULL);
393         }
394
395         if (guid == 0 && ops != &vdev_hole_ops) {
396                 if (spa->spa_root_vdev == vd) {
397                         /*
398                          * The root vdev's guid will also be the pool guid,
399                          * which must be unique among all pools.
400                          */
401                         guid = spa_generate_guid(NULL);
402                 } else {
403                         /*
404                          * Any other vdev's guid must be unique within the pool.
405                          */
406                         guid = spa_generate_guid(spa);
407                 }
408                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
409         }
410
411         vd->vdev_spa = spa;
412         vd->vdev_id = id;
413         vd->vdev_guid = guid;
414         vd->vdev_guid_sum = guid;
415         vd->vdev_ops = ops;
416         vd->vdev_state = VDEV_STATE_CLOSED;
417         vd->vdev_ishole = (ops == &vdev_hole_ops);
418
419         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
420         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
421         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
422         for (int t = 0; t < DTL_TYPES; t++) {
423                 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
424                     &vd->vdev_dtl_lock);
425         }
426         txg_list_create(&vd->vdev_ms_list,
427             offsetof(struct metaslab, ms_txg_node));
428         txg_list_create(&vd->vdev_dtl_list,
429             offsetof(struct vdev, vdev_dtl_node));
430         vd->vdev_stat.vs_timestamp = gethrtime();
431         vdev_queue_init(vd);
432         vdev_cache_init(vd);
433
434         return (vd);
435 }
436
437 /*
438  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
439  * creating a new vdev or loading an existing one - the behavior is slightly
440  * different for each case.
441  */
442 int
443 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
444     int alloctype)
445 {
446         vdev_ops_t *ops;
447         char *type;
448         uint64_t guid = 0, islog, nparity;
449         vdev_t *vd;
450
451         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
452
453         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
454                 return (SET_ERROR(EINVAL));
455
456         if ((ops = vdev_getops(type)) == NULL)
457                 return (SET_ERROR(EINVAL));
458
459         /*
460          * If this is a load, get the vdev guid from the nvlist.
461          * Otherwise, vdev_alloc_common() will generate one for us.
462          */
463         if (alloctype == VDEV_ALLOC_LOAD) {
464                 uint64_t label_id;
465
466                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
467                     label_id != id)
468                         return (SET_ERROR(EINVAL));
469
470                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
471                         return (SET_ERROR(EINVAL));
472         } else if (alloctype == VDEV_ALLOC_SPARE) {
473                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
474                         return (SET_ERROR(EINVAL));
475         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
476                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
477                         return (SET_ERROR(EINVAL));
478         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
479                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
480                         return (SET_ERROR(EINVAL));
481         }
482
483         /*
484          * The first allocated vdev must be of type 'root'.
485          */
486         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
487                 return (SET_ERROR(EINVAL));
488
489         /*
490          * Determine whether we're a log vdev.
491          */
492         islog = 0;
493         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
494         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
495                 return (SET_ERROR(ENOTSUP));
496
497         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
498                 return (SET_ERROR(ENOTSUP));
499
500         /*
501          * Set the nparity property for RAID-Z vdevs.
502          */
503         nparity = -1ULL;
504         if (ops == &vdev_raidz_ops) {
505                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
506                     &nparity) == 0) {
507                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
508                                 return (SET_ERROR(EINVAL));
509                         /*
510                          * Previous versions could only support 1 or 2 parity
511                          * device.
512                          */
513                         if (nparity > 1 &&
514                             spa_version(spa) < SPA_VERSION_RAIDZ2)
515                                 return (SET_ERROR(ENOTSUP));
516                         if (nparity > 2 &&
517                             spa_version(spa) < SPA_VERSION_RAIDZ3)
518                                 return (SET_ERROR(ENOTSUP));
519                 } else {
520                         /*
521                          * We require the parity to be specified for SPAs that
522                          * support multiple parity levels.
523                          */
524                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
525                                 return (SET_ERROR(EINVAL));
526                         /*
527                          * Otherwise, we default to 1 parity device for RAID-Z.
528                          */
529                         nparity = 1;
530                 }
531         } else {
532                 nparity = 0;
533         }
534         ASSERT(nparity != -1ULL);
535
536         vd = vdev_alloc_common(spa, id, guid, ops);
537
538         vd->vdev_islog = islog;
539         vd->vdev_nparity = nparity;
540
541         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
542                 vd->vdev_path = spa_strdup(vd->vdev_path);
543         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
544                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
545         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
546             &vd->vdev_physpath) == 0)
547                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
548         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
549                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
550
551         /*
552          * Set the whole_disk property.  If it's not specified, leave the value
553          * as -1.
554          */
555         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
556             &vd->vdev_wholedisk) != 0)
557                 vd->vdev_wholedisk = -1ULL;
558
559         /*
560          * Look for the 'not present' flag.  This will only be set if the device
561          * was not present at the time of import.
562          */
563         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
564             &vd->vdev_not_present);
565
566         /*
567          * Get the alignment requirement.
568          */
569         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
570
571         /*
572          * Retrieve the vdev creation time.
573          */
574         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
575             &vd->vdev_crtxg);
576
577         /*
578          * If we're a top-level vdev, try to load the allocation parameters.
579          */
580         if (parent && !parent->vdev_parent &&
581             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
582                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
583                     &vd->vdev_ms_array);
584                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
585                     &vd->vdev_ms_shift);
586                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
587                     &vd->vdev_asize);
588                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
589                     &vd->vdev_removing);
590         }
591
592         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
593                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
594                     alloctype == VDEV_ALLOC_ADD ||
595                     alloctype == VDEV_ALLOC_SPLIT ||
596                     alloctype == VDEV_ALLOC_ROOTPOOL);
597                 vd->vdev_mg = metaslab_group_create(islog ?
598                     spa_log_class(spa) : spa_normal_class(spa), vd);
599         }
600
601         /*
602          * If we're a leaf vdev, try to load the DTL object and other state.
603          */
604         if (vd->vdev_ops->vdev_op_leaf &&
605             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
606             alloctype == VDEV_ALLOC_ROOTPOOL)) {
607                 if (alloctype == VDEV_ALLOC_LOAD) {
608                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
609                             &vd->vdev_dtl_object);
610                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
611                             &vd->vdev_unspare);
612                 }
613
614                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
615                         uint64_t spare = 0;
616
617                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
618                             &spare) == 0 && spare)
619                                 spa_spare_add(vd);
620                 }
621
622                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
623                     &vd->vdev_offline);
624
625                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
626                     &vd->vdev_resilver_txg);
627
628                 /*
629                  * When importing a pool, we want to ignore the persistent fault
630                  * state, as the diagnosis made on another system may not be
631                  * valid in the current context.  Local vdevs will
632                  * remain in the faulted state.
633                  */
634                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
635                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
636                             &vd->vdev_faulted);
637                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
638                             &vd->vdev_degraded);
639                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
640                             &vd->vdev_removed);
641
642                         if (vd->vdev_faulted || vd->vdev_degraded) {
643                                 char *aux;
644
645                                 vd->vdev_label_aux =
646                                     VDEV_AUX_ERR_EXCEEDED;
647                                 if (nvlist_lookup_string(nv,
648                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
649                                     strcmp(aux, "external") == 0)
650                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
651                         }
652                 }
653         }
654
655         /*
656          * Add ourselves to the parent's list of children.
657          */
658         vdev_add_child(parent, vd);
659
660         *vdp = vd;
661
662         return (0);
663 }
664
665 void
666 vdev_free(vdev_t *vd)
667 {
668         spa_t *spa = vd->vdev_spa;
669
670         /*
671          * vdev_free() implies closing the vdev first.  This is simpler than
672          * trying to ensure complicated semantics for all callers.
673          */
674         vdev_close(vd);
675
676         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
677         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
678
679         /*
680          * Free all children.
681          */
682         for (int c = 0; c < vd->vdev_children; c++)
683                 vdev_free(vd->vdev_child[c]);
684
685         ASSERT(vd->vdev_child == NULL);
686         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
687
688         /*
689          * Discard allocation state.
690          */
691         if (vd->vdev_mg != NULL) {
692                 vdev_metaslab_fini(vd);
693                 metaslab_group_destroy(vd->vdev_mg);
694         }
695
696         ASSERT0(vd->vdev_stat.vs_space);
697         ASSERT0(vd->vdev_stat.vs_dspace);
698         ASSERT0(vd->vdev_stat.vs_alloc);
699
700         /*
701          * Remove this vdev from its parent's child list.
702          */
703         vdev_remove_child(vd->vdev_parent, vd);
704
705         ASSERT(vd->vdev_parent == NULL);
706
707         /*
708          * Clean up vdev structure.
709          */
710         vdev_queue_fini(vd);
711         vdev_cache_fini(vd);
712
713         if (vd->vdev_path)
714                 spa_strfree(vd->vdev_path);
715         if (vd->vdev_devid)
716                 spa_strfree(vd->vdev_devid);
717         if (vd->vdev_physpath)
718                 spa_strfree(vd->vdev_physpath);
719         if (vd->vdev_fru)
720                 spa_strfree(vd->vdev_fru);
721
722         if (vd->vdev_isspare)
723                 spa_spare_remove(vd);
724         if (vd->vdev_isl2cache)
725                 spa_l2cache_remove(vd);
726
727         txg_list_destroy(&vd->vdev_ms_list);
728         txg_list_destroy(&vd->vdev_dtl_list);
729
730         mutex_enter(&vd->vdev_dtl_lock);
731         space_map_close(vd->vdev_dtl_sm);
732         for (int t = 0; t < DTL_TYPES; t++) {
733                 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
734                 range_tree_destroy(vd->vdev_dtl[t]);
735         }
736         mutex_exit(&vd->vdev_dtl_lock);
737
738         mutex_destroy(&vd->vdev_dtl_lock);
739         mutex_destroy(&vd->vdev_stat_lock);
740         mutex_destroy(&vd->vdev_probe_lock);
741
742         if (vd == spa->spa_root_vdev)
743                 spa->spa_root_vdev = NULL;
744
745         kmem_free(vd, sizeof (vdev_t));
746 }
747
748 /*
749  * Transfer top-level vdev state from svd to tvd.
750  */
751 static void
752 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
753 {
754         spa_t *spa = svd->vdev_spa;
755         metaslab_t *msp;
756         vdev_t *vd;
757         int t;
758
759         ASSERT(tvd == tvd->vdev_top);
760
761         tvd->vdev_ms_array = svd->vdev_ms_array;
762         tvd->vdev_ms_shift = svd->vdev_ms_shift;
763         tvd->vdev_ms_count = svd->vdev_ms_count;
764
765         svd->vdev_ms_array = 0;
766         svd->vdev_ms_shift = 0;
767         svd->vdev_ms_count = 0;
768
769         if (tvd->vdev_mg)
770                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
771         tvd->vdev_mg = svd->vdev_mg;
772         tvd->vdev_ms = svd->vdev_ms;
773
774         svd->vdev_mg = NULL;
775         svd->vdev_ms = NULL;
776
777         if (tvd->vdev_mg != NULL)
778                 tvd->vdev_mg->mg_vd = tvd;
779
780         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
781         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
782         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
783
784         svd->vdev_stat.vs_alloc = 0;
785         svd->vdev_stat.vs_space = 0;
786         svd->vdev_stat.vs_dspace = 0;
787
788         for (t = 0; t < TXG_SIZE; t++) {
789                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
790                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
791                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
792                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
793                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
794                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
795         }
796
797         if (list_link_active(&svd->vdev_config_dirty_node)) {
798                 vdev_config_clean(svd);
799                 vdev_config_dirty(tvd);
800         }
801
802         if (list_link_active(&svd->vdev_state_dirty_node)) {
803                 vdev_state_clean(svd);
804                 vdev_state_dirty(tvd);
805         }
806
807         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
808         svd->vdev_deflate_ratio = 0;
809
810         tvd->vdev_islog = svd->vdev_islog;
811         svd->vdev_islog = 0;
812 }
813
814 static void
815 vdev_top_update(vdev_t *tvd, vdev_t *vd)
816 {
817         if (vd == NULL)
818                 return;
819
820         vd->vdev_top = tvd;
821
822         for (int c = 0; c < vd->vdev_children; c++)
823                 vdev_top_update(tvd, vd->vdev_child[c]);
824 }
825
826 /*
827  * Add a mirror/replacing vdev above an existing vdev.
828  */
829 vdev_t *
830 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
831 {
832         spa_t *spa = cvd->vdev_spa;
833         vdev_t *pvd = cvd->vdev_parent;
834         vdev_t *mvd;
835
836         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
837
838         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
839
840         mvd->vdev_asize = cvd->vdev_asize;
841         mvd->vdev_min_asize = cvd->vdev_min_asize;
842         mvd->vdev_max_asize = cvd->vdev_max_asize;
843         mvd->vdev_ashift = cvd->vdev_ashift;
844         mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
845         mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
846         mvd->vdev_state = cvd->vdev_state;
847         mvd->vdev_crtxg = cvd->vdev_crtxg;
848
849         vdev_remove_child(pvd, cvd);
850         vdev_add_child(pvd, mvd);
851         cvd->vdev_id = mvd->vdev_children;
852         vdev_add_child(mvd, cvd);
853         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
854
855         if (mvd == mvd->vdev_top)
856                 vdev_top_transfer(cvd, mvd);
857
858         return (mvd);
859 }
860
861 /*
862  * Remove a 1-way mirror/replacing vdev from the tree.
863  */
864 void
865 vdev_remove_parent(vdev_t *cvd)
866 {
867         vdev_t *mvd = cvd->vdev_parent;
868         vdev_t *pvd = mvd->vdev_parent;
869
870         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
871
872         ASSERT(mvd->vdev_children == 1);
873         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
874             mvd->vdev_ops == &vdev_replacing_ops ||
875             mvd->vdev_ops == &vdev_spare_ops);
876         cvd->vdev_ashift = mvd->vdev_ashift;
877         cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
878         cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
879
880         vdev_remove_child(mvd, cvd);
881         vdev_remove_child(pvd, mvd);
882
883         /*
884          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
885          * Otherwise, we could have detached an offline device, and when we
886          * go to import the pool we'll think we have two top-level vdevs,
887          * instead of a different version of the same top-level vdev.
888          */
889         if (mvd->vdev_top == mvd) {
890                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
891                 cvd->vdev_orig_guid = cvd->vdev_guid;
892                 cvd->vdev_guid += guid_delta;
893                 cvd->vdev_guid_sum += guid_delta;
894         }
895         cvd->vdev_id = mvd->vdev_id;
896         vdev_add_child(pvd, cvd);
897         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
898
899         if (cvd == cvd->vdev_top)
900                 vdev_top_transfer(mvd, cvd);
901
902         ASSERT(mvd->vdev_children == 0);
903         vdev_free(mvd);
904 }
905
906 int
907 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
908 {
909         spa_t *spa = vd->vdev_spa;
910         objset_t *mos = spa->spa_meta_objset;
911         uint64_t m;
912         uint64_t oldc = vd->vdev_ms_count;
913         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
914         metaslab_t **mspp;
915         int error;
916
917         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
918
919         /*
920          * This vdev is not being allocated from yet or is a hole.
921          */
922         if (vd->vdev_ms_shift == 0)
923                 return (0);
924
925         ASSERT(!vd->vdev_ishole);
926
927         /*
928          * Compute the raidz-deflation ratio.  Note, we hard-code
929          * in 128k (1 << 17) because it is the current "typical" blocksize.
930          * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
931          * or we will inconsistently account for existing bp's.
932          */
933         vd->vdev_deflate_ratio = (1 << 17) /
934             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
935
936         ASSERT(oldc <= newc);
937
938         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
939
940         if (oldc != 0) {
941                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
942                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
943         }
944
945         vd->vdev_ms = mspp;
946         vd->vdev_ms_count = newc;
947
948         for (m = oldc; m < newc; m++) {
949                 uint64_t object = 0;
950
951                 if (txg == 0) {
952                         error = dmu_read(mos, vd->vdev_ms_array,
953                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
954                             DMU_READ_PREFETCH);
955                         if (error)
956                                 return (error);
957                 }
958                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, m, object, txg);
959         }
960
961         if (txg == 0)
962                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
963
964         /*
965          * If the vdev is being removed we don't activate
966          * the metaslabs since we want to ensure that no new
967          * allocations are performed on this device.
968          */
969         if (oldc == 0 && !vd->vdev_removing)
970                 metaslab_group_activate(vd->vdev_mg);
971
972         if (txg == 0)
973                 spa_config_exit(spa, SCL_ALLOC, FTAG);
974
975         return (0);
976 }
977
978 void
979 vdev_metaslab_fini(vdev_t *vd)
980 {
981         uint64_t m;
982         uint64_t count = vd->vdev_ms_count;
983
984         if (vd->vdev_ms != NULL) {
985                 metaslab_group_passivate(vd->vdev_mg);
986                 for (m = 0; m < count; m++) {
987                         metaslab_t *msp = vd->vdev_ms[m];
988
989                         if (msp != NULL)
990                                 metaslab_fini(msp);
991                 }
992                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
993                 vd->vdev_ms = NULL;
994         }
995 }
996
997 typedef struct vdev_probe_stats {
998         boolean_t       vps_readable;
999         boolean_t       vps_writeable;
1000         int             vps_flags;
1001 } vdev_probe_stats_t;
1002
1003 static void
1004 vdev_probe_done(zio_t *zio)
1005 {
1006         spa_t *spa = zio->io_spa;
1007         vdev_t *vd = zio->io_vd;
1008         vdev_probe_stats_t *vps = zio->io_private;
1009
1010         ASSERT(vd->vdev_probe_zio != NULL);
1011
1012         if (zio->io_type == ZIO_TYPE_READ) {
1013                 if (zio->io_error == 0)
1014                         vps->vps_readable = 1;
1015                 if (zio->io_error == 0 && spa_writeable(spa)) {
1016                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1017                             zio->io_offset, zio->io_size, zio->io_data,
1018                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1019                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1020                 } else {
1021                         zio_buf_free(zio->io_data, zio->io_size);
1022                 }
1023         } else if (zio->io_type == ZIO_TYPE_WRITE) {
1024                 if (zio->io_error == 0)
1025                         vps->vps_writeable = 1;
1026                 zio_buf_free(zio->io_data, zio->io_size);
1027         } else if (zio->io_type == ZIO_TYPE_NULL) {
1028                 zio_t *pio;
1029
1030                 vd->vdev_cant_read |= !vps->vps_readable;
1031                 vd->vdev_cant_write |= !vps->vps_writeable;
1032
1033                 if (vdev_readable(vd) &&
1034                     (vdev_writeable(vd) || !spa_writeable(spa))) {
1035                         zio->io_error = 0;
1036                 } else {
1037                         ASSERT(zio->io_error != 0);
1038                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1039                             spa, vd, NULL, 0, 0);
1040                         zio->io_error = SET_ERROR(ENXIO);
1041                 }
1042
1043                 mutex_enter(&vd->vdev_probe_lock);
1044                 ASSERT(vd->vdev_probe_zio == zio);
1045                 vd->vdev_probe_zio = NULL;
1046                 mutex_exit(&vd->vdev_probe_lock);
1047
1048                 while ((pio = zio_walk_parents(zio)) != NULL)
1049                         if (!vdev_accessible(vd, pio))
1050                                 pio->io_error = SET_ERROR(ENXIO);
1051
1052                 kmem_free(vps, sizeof (*vps));
1053         }
1054 }
1055
1056 /*
1057  * Determine whether this device is accessible.
1058  *
1059  * Read and write to several known locations: the pad regions of each
1060  * vdev label but the first, which we leave alone in case it contains
1061  * a VTOC.
1062  */
1063 zio_t *
1064 vdev_probe(vdev_t *vd, zio_t *zio)
1065 {
1066         spa_t *spa = vd->vdev_spa;
1067         vdev_probe_stats_t *vps = NULL;
1068         zio_t *pio;
1069
1070         ASSERT(vd->vdev_ops->vdev_op_leaf);
1071
1072         /*
1073          * Don't probe the probe.
1074          */
1075         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1076                 return (NULL);
1077
1078         /*
1079          * To prevent 'probe storms' when a device fails, we create
1080          * just one probe i/o at a time.  All zios that want to probe
1081          * this vdev will become parents of the probe io.
1082          */
1083         mutex_enter(&vd->vdev_probe_lock);
1084
1085         if ((pio = vd->vdev_probe_zio) == NULL) {
1086                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1087
1088                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1089                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1090                     ZIO_FLAG_TRYHARD;
1091
1092                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1093                         /*
1094                          * vdev_cant_read and vdev_cant_write can only
1095                          * transition from TRUE to FALSE when we have the
1096                          * SCL_ZIO lock as writer; otherwise they can only
1097                          * transition from FALSE to TRUE.  This ensures that
1098                          * any zio looking at these values can assume that
1099                          * failures persist for the life of the I/O.  That's
1100                          * important because when a device has intermittent
1101                          * connectivity problems, we want to ensure that
1102                          * they're ascribed to the device (ENXIO) and not
1103                          * the zio (EIO).
1104                          *
1105                          * Since we hold SCL_ZIO as writer here, clear both
1106                          * values so the probe can reevaluate from first
1107                          * principles.
1108                          */
1109                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1110                         vd->vdev_cant_read = B_FALSE;
1111                         vd->vdev_cant_write = B_FALSE;
1112                 }
1113
1114                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1115                     vdev_probe_done, vps,
1116                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1117
1118                 /*
1119                  * We can't change the vdev state in this context, so we
1120                  * kick off an async task to do it on our behalf.
1121                  */
1122                 if (zio != NULL) {
1123                         vd->vdev_probe_wanted = B_TRUE;
1124                         spa_async_request(spa, SPA_ASYNC_PROBE);
1125                 }
1126         }
1127
1128         if (zio != NULL)
1129                 zio_add_child(zio, pio);
1130
1131         mutex_exit(&vd->vdev_probe_lock);
1132
1133         if (vps == NULL) {
1134                 ASSERT(zio != NULL);
1135                 return (NULL);
1136         }
1137
1138         for (int l = 1; l < VDEV_LABELS; l++) {
1139                 zio_nowait(zio_read_phys(pio, vd,
1140                     vdev_label_offset(vd->vdev_psize, l,
1141                     offsetof(vdev_label_t, vl_pad2)),
1142                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1143                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1144                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1145         }
1146
1147         if (zio == NULL)
1148                 return (pio);
1149
1150         zio_nowait(pio);
1151         return (NULL);
1152 }
1153
1154 static void
1155 vdev_open_child(void *arg)
1156 {
1157         vdev_t *vd = arg;
1158
1159         vd->vdev_open_thread = curthread;
1160         vd->vdev_open_error = vdev_open(vd);
1161         vd->vdev_open_thread = NULL;
1162 }
1163
1164 boolean_t
1165 vdev_uses_zvols(vdev_t *vd)
1166 {
1167         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1168             strlen(ZVOL_DIR)) == 0)
1169                 return (B_TRUE);
1170         for (int c = 0; c < vd->vdev_children; c++)
1171                 if (vdev_uses_zvols(vd->vdev_child[c]))
1172                         return (B_TRUE);
1173         return (B_FALSE);
1174 }
1175
1176 void
1177 vdev_open_children(vdev_t *vd)
1178 {
1179         taskq_t *tq;
1180         int children = vd->vdev_children;
1181
1182         /*
1183          * in order to handle pools on top of zvols, do the opens
1184          * in a single thread so that the same thread holds the
1185          * spa_namespace_lock
1186          */
1187         if (B_TRUE || vdev_uses_zvols(vd)) {
1188                 for (int c = 0; c < children; c++)
1189                         vd->vdev_child[c]->vdev_open_error =
1190                             vdev_open(vd->vdev_child[c]);
1191                 return;
1192         }
1193         tq = taskq_create("vdev_open", children, minclsyspri,
1194             children, children, TASKQ_PREPOPULATE);
1195
1196         for (int c = 0; c < children; c++)
1197                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1198                     TQ_SLEEP) != 0);
1199
1200         taskq_destroy(tq);
1201 }
1202
1203 /*
1204  * Prepare a virtual device for access.
1205  */
1206 int
1207 vdev_open(vdev_t *vd)
1208 {
1209         spa_t *spa = vd->vdev_spa;
1210         int error;
1211         uint64_t osize = 0;
1212         uint64_t max_osize = 0;
1213         uint64_t asize, max_asize, psize;
1214         uint64_t logical_ashift = 0;
1215         uint64_t physical_ashift = 0;
1216
1217         ASSERT(vd->vdev_open_thread == curthread ||
1218             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1219         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1220             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1221             vd->vdev_state == VDEV_STATE_OFFLINE);
1222
1223         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1224         vd->vdev_cant_read = B_FALSE;
1225         vd->vdev_cant_write = B_FALSE;
1226         vd->vdev_min_asize = vdev_get_min_asize(vd);
1227
1228         /*
1229          * If this vdev is not removed, check its fault status.  If it's
1230          * faulted, bail out of the open.
1231          */
1232         if (!vd->vdev_removed && vd->vdev_faulted) {
1233                 ASSERT(vd->vdev_children == 0);
1234                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1235                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1236                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1237                     vd->vdev_label_aux);
1238                 return (SET_ERROR(ENXIO));
1239         } else if (vd->vdev_offline) {
1240                 ASSERT(vd->vdev_children == 0);
1241                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1242                 return (SET_ERROR(ENXIO));
1243         }
1244
1245         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1246             &logical_ashift, &physical_ashift);
1247
1248         /*
1249          * Reset the vdev_reopening flag so that we actually close
1250          * the vdev on error.
1251          */
1252         vd->vdev_reopening = B_FALSE;
1253         if (zio_injection_enabled && error == 0)
1254                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1255
1256         if (error) {
1257                 if (vd->vdev_removed &&
1258                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1259                         vd->vdev_removed = B_FALSE;
1260
1261                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1262                     vd->vdev_stat.vs_aux);
1263                 return (error);
1264         }
1265
1266         vd->vdev_removed = B_FALSE;
1267
1268         /*
1269          * Recheck the faulted flag now that we have confirmed that
1270          * the vdev is accessible.  If we're faulted, bail.
1271          */
1272         if (vd->vdev_faulted) {
1273                 ASSERT(vd->vdev_children == 0);
1274                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1275                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1276                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1277                     vd->vdev_label_aux);
1278                 return (SET_ERROR(ENXIO));
1279         }
1280
1281         if (vd->vdev_degraded) {
1282                 ASSERT(vd->vdev_children == 0);
1283                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1284                     VDEV_AUX_ERR_EXCEEDED);
1285         } else {
1286                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1287         }
1288
1289         /*
1290          * For hole or missing vdevs we just return success.
1291          */
1292         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1293                 return (0);
1294
1295         if (vd->vdev_ops->vdev_op_leaf) {
1296                 vd->vdev_notrim = B_FALSE;
1297                 trim_map_create(vd);
1298         }
1299
1300         for (int c = 0; c < vd->vdev_children; c++) {
1301                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1302                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1303                             VDEV_AUX_NONE);
1304                         break;
1305                 }
1306         }
1307
1308         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1309         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1310
1311         if (vd->vdev_children == 0) {
1312                 if (osize < SPA_MINDEVSIZE) {
1313                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1314                             VDEV_AUX_TOO_SMALL);
1315                         return (SET_ERROR(EOVERFLOW));
1316                 }
1317                 psize = osize;
1318                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1319                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1320                     VDEV_LABEL_END_SIZE);
1321         } else {
1322                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1323                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1324                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1325                             VDEV_AUX_TOO_SMALL);
1326                         return (SET_ERROR(EOVERFLOW));
1327                 }
1328                 psize = 0;
1329                 asize = osize;
1330                 max_asize = max_osize;
1331         }
1332
1333         vd->vdev_psize = psize;
1334
1335         /*
1336          * Make sure the allocatable size hasn't shrunk.
1337          */
1338         if (asize < vd->vdev_min_asize) {
1339                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1340                     VDEV_AUX_BAD_LABEL);
1341                 return (SET_ERROR(EINVAL));
1342         }
1343
1344         vd->vdev_physical_ashift =
1345             MAX(physical_ashift, vd->vdev_physical_ashift);
1346         vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
1347         vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
1348
1349         if (vd->vdev_logical_ashift > SPA_MAXASHIFT) {
1350                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1351                     VDEV_AUX_ASHIFT_TOO_BIG);
1352                 return (EINVAL);
1353         }
1354
1355         if (vd->vdev_asize == 0) {
1356                 /*
1357                  * This is the first-ever open, so use the computed values.
1358                  * For testing purposes, a higher ashift can be requested.
1359                  */
1360                 vd->vdev_asize = asize;
1361                 vd->vdev_max_asize = max_asize;
1362         } else {
1363                 /*
1364                  * Make sure the alignment requirement hasn't increased.
1365                  */
1366                 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1367                     vd->vdev_ops->vdev_op_leaf) {
1368                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1369                             VDEV_AUX_BAD_LABEL);
1370                         return (EINVAL);
1371                 }
1372                 vd->vdev_max_asize = max_asize;
1373         }
1374
1375         /*
1376          * If all children are healthy and the asize has increased,
1377          * then we've experienced dynamic LUN growth.  If automatic
1378          * expansion is enabled then use the additional space.
1379          */
1380         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1381             (vd->vdev_expanding || spa->spa_autoexpand))
1382                 vd->vdev_asize = asize;
1383
1384         vdev_set_min_asize(vd);
1385
1386         /*
1387          * Ensure we can issue some IO before declaring the
1388          * vdev open for business.
1389          */
1390         if (vd->vdev_ops->vdev_op_leaf &&
1391             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1392                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1393                     VDEV_AUX_ERR_EXCEEDED);
1394                 return (error);
1395         }
1396
1397         /*
1398          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1399          * resilver.  But don't do this if we are doing a reopen for a scrub,
1400          * since this would just restart the scrub we are already doing.
1401          */
1402         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1403             vdev_resilver_needed(vd, NULL, NULL))
1404                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1405
1406         return (0);
1407 }
1408
1409 /*
1410  * Called once the vdevs are all opened, this routine validates the label
1411  * contents.  This needs to be done before vdev_load() so that we don't
1412  * inadvertently do repair I/Os to the wrong device.
1413  *
1414  * If 'strict' is false ignore the spa guid check. This is necessary because
1415  * if the machine crashed during a re-guid the new guid might have been written
1416  * to all of the vdev labels, but not the cached config. The strict check
1417  * will be performed when the pool is opened again using the mos config.
1418  *
1419  * This function will only return failure if one of the vdevs indicates that it
1420  * has since been destroyed or exported.  This is only possible if
1421  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1422  * will be updated but the function will return 0.
1423  */
1424 int
1425 vdev_validate(vdev_t *vd, boolean_t strict)
1426 {
1427         spa_t *spa = vd->vdev_spa;
1428         nvlist_t *label;
1429         uint64_t guid = 0, top_guid;
1430         uint64_t state;
1431
1432         for (int c = 0; c < vd->vdev_children; c++)
1433                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1434                         return (SET_ERROR(EBADF));
1435
1436         /*
1437          * If the device has already failed, or was marked offline, don't do
1438          * any further validation.  Otherwise, label I/O will fail and we will
1439          * overwrite the previous state.
1440          */
1441         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1442                 uint64_t aux_guid = 0;
1443                 nvlist_t *nvl;
1444                 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1445                     spa_last_synced_txg(spa) : -1ULL;
1446
1447                 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1448                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1449                             VDEV_AUX_BAD_LABEL);
1450                         return (0);
1451                 }
1452
1453                 /*
1454                  * Determine if this vdev has been split off into another
1455                  * pool.  If so, then refuse to open it.
1456                  */
1457                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1458                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1459                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1460                             VDEV_AUX_SPLIT_POOL);
1461                         nvlist_free(label);
1462                         return (0);
1463                 }
1464
1465                 if (strict && (nvlist_lookup_uint64(label,
1466                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1467                     guid != spa_guid(spa))) {
1468                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1469                             VDEV_AUX_CORRUPT_DATA);
1470                         nvlist_free(label);
1471                         return (0);
1472                 }
1473
1474                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1475                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1476                     &aux_guid) != 0)
1477                         aux_guid = 0;
1478
1479                 /*
1480                  * If this vdev just became a top-level vdev because its
1481                  * sibling was detached, it will have adopted the parent's
1482                  * vdev guid -- but the label may or may not be on disk yet.
1483                  * Fortunately, either version of the label will have the
1484                  * same top guid, so if we're a top-level vdev, we can
1485                  * safely compare to that instead.
1486                  *
1487                  * If we split this vdev off instead, then we also check the
1488                  * original pool's guid.  We don't want to consider the vdev
1489                  * corrupt if it is partway through a split operation.
1490                  */
1491                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1492                     &guid) != 0 ||
1493                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1494                     &top_guid) != 0 ||
1495                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1496                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1497                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1498                             VDEV_AUX_CORRUPT_DATA);
1499                         nvlist_free(label);
1500                         return (0);
1501                 }
1502
1503                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1504                     &state) != 0) {
1505                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1506                             VDEV_AUX_CORRUPT_DATA);
1507                         nvlist_free(label);
1508                         return (0);
1509                 }
1510
1511                 nvlist_free(label);
1512
1513                 /*
1514                  * If this is a verbatim import, no need to check the
1515                  * state of the pool.
1516                  */
1517                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1518                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1519                     state != POOL_STATE_ACTIVE)
1520                         return (SET_ERROR(EBADF));
1521
1522                 /*
1523                  * If we were able to open and validate a vdev that was
1524                  * previously marked permanently unavailable, clear that state
1525                  * now.
1526                  */
1527                 if (vd->vdev_not_present)
1528                         vd->vdev_not_present = 0;
1529         }
1530
1531         return (0);
1532 }
1533
1534 /*
1535  * Close a virtual device.
1536  */
1537 void
1538 vdev_close(vdev_t *vd)
1539 {
1540         spa_t *spa = vd->vdev_spa;
1541         vdev_t *pvd = vd->vdev_parent;
1542
1543         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1544
1545         /*
1546          * If our parent is reopening, then we are as well, unless we are
1547          * going offline.
1548          */
1549         if (pvd != NULL && pvd->vdev_reopening)
1550                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1551
1552         vd->vdev_ops->vdev_op_close(vd);
1553
1554         vdev_cache_purge(vd);
1555
1556         if (vd->vdev_ops->vdev_op_leaf)
1557                 trim_map_destroy(vd);
1558
1559         /*
1560          * We record the previous state before we close it, so that if we are
1561          * doing a reopen(), we don't generate FMA ereports if we notice that
1562          * it's still faulted.
1563          */
1564         vd->vdev_prevstate = vd->vdev_state;
1565
1566         if (vd->vdev_offline)
1567                 vd->vdev_state = VDEV_STATE_OFFLINE;
1568         else
1569                 vd->vdev_state = VDEV_STATE_CLOSED;
1570         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1571 }
1572
1573 void
1574 vdev_hold(vdev_t *vd)
1575 {
1576         spa_t *spa = vd->vdev_spa;
1577
1578         ASSERT(spa_is_root(spa));
1579         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1580                 return;
1581
1582         for (int c = 0; c < vd->vdev_children; c++)
1583                 vdev_hold(vd->vdev_child[c]);
1584
1585         if (vd->vdev_ops->vdev_op_leaf)
1586                 vd->vdev_ops->vdev_op_hold(vd);
1587 }
1588
1589 void
1590 vdev_rele(vdev_t *vd)
1591 {
1592         spa_t *spa = vd->vdev_spa;
1593
1594         ASSERT(spa_is_root(spa));
1595         for (int c = 0; c < vd->vdev_children; c++)
1596                 vdev_rele(vd->vdev_child[c]);
1597
1598         if (vd->vdev_ops->vdev_op_leaf)
1599                 vd->vdev_ops->vdev_op_rele(vd);
1600 }
1601
1602 /*
1603  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1604  * reopen leaf vdevs which had previously been opened as they might deadlock
1605  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1606  * If the leaf has never been opened then open it, as usual.
1607  */
1608 void
1609 vdev_reopen(vdev_t *vd)
1610 {
1611         spa_t *spa = vd->vdev_spa;
1612
1613         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1614
1615         /* set the reopening flag unless we're taking the vdev offline */
1616         vd->vdev_reopening = !vd->vdev_offline;
1617         vdev_close(vd);
1618         (void) vdev_open(vd);
1619
1620         /*
1621          * Call vdev_validate() here to make sure we have the same device.
1622          * Otherwise, a device with an invalid label could be successfully
1623          * opened in response to vdev_reopen().
1624          */
1625         if (vd->vdev_aux) {
1626                 (void) vdev_validate_aux(vd);
1627                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1628                     vd->vdev_aux == &spa->spa_l2cache &&
1629                     !l2arc_vdev_present(vd))
1630                         l2arc_add_vdev(spa, vd);
1631         } else {
1632                 (void) vdev_validate(vd, B_TRUE);
1633         }
1634
1635         /*
1636          * Reassess parent vdev's health.
1637          */
1638         vdev_propagate_state(vd);
1639 }
1640
1641 int
1642 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1643 {
1644         int error;
1645
1646         /*
1647          * Normally, partial opens (e.g. of a mirror) are allowed.
1648          * For a create, however, we want to fail the request if
1649          * there are any components we can't open.
1650          */
1651         error = vdev_open(vd);
1652
1653         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1654                 vdev_close(vd);
1655                 return (error ? error : ENXIO);
1656         }
1657
1658         /*
1659          * Recursively load DTLs and initialize all labels.
1660          */
1661         if ((error = vdev_dtl_load(vd)) != 0 ||
1662             (error = vdev_label_init(vd, txg, isreplacing ?
1663             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1664                 vdev_close(vd);
1665                 return (error);
1666         }
1667
1668         return (0);
1669 }
1670
1671 void
1672 vdev_metaslab_set_size(vdev_t *vd)
1673 {
1674         /*
1675          * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1676          */
1677         vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1678         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1679 }
1680
1681 /*
1682  * Maximize performance by inflating the configured ashift for top level
1683  * vdevs to be as close to the physical ashift as possible while maintaining
1684  * administrator defined limits and ensuring it doesn't go below the
1685  * logical ashift.
1686  */
1687 void
1688 vdev_ashift_optimize(vdev_t *vd)
1689 {
1690         if (vd == vd->vdev_top) {
1691                 if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1692                         vd->vdev_ashift = MIN(
1693                             MAX(zfs_max_auto_ashift, vd->vdev_ashift),
1694                             MAX(zfs_min_auto_ashift, vd->vdev_physical_ashift));
1695                 } else {
1696                         /*
1697                          * Unusual case where logical ashift > physical ashift
1698                          * so we can't cap the calculated ashift based on max
1699                          * ashift as that would cause failures.
1700                          * We still check if we need to increase it to match
1701                          * the min ashift.
1702                          */
1703                         vd->vdev_ashift = MAX(zfs_min_auto_ashift,
1704                             vd->vdev_ashift);
1705                 }
1706         }
1707 }
1708
1709 void
1710 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1711 {
1712         ASSERT(vd == vd->vdev_top);
1713         ASSERT(!vd->vdev_ishole);
1714         ASSERT(ISP2(flags));
1715         ASSERT(spa_writeable(vd->vdev_spa));
1716
1717         if (flags & VDD_METASLAB)
1718                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1719
1720         if (flags & VDD_DTL)
1721                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1722
1723         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1724 }
1725
1726 void
1727 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1728 {
1729         for (int c = 0; c < vd->vdev_children; c++)
1730                 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1731
1732         if (vd->vdev_ops->vdev_op_leaf)
1733                 vdev_dirty(vd->vdev_top, flags, vd, txg);
1734 }
1735
1736 /*
1737  * DTLs.
1738  *
1739  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1740  * the vdev has less than perfect replication.  There are four kinds of DTL:
1741  *
1742  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1743  *
1744  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1745  *
1746  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1747  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1748  *      txgs that was scrubbed.
1749  *
1750  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1751  *      persistent errors or just some device being offline.
1752  *      Unlike the other three, the DTL_OUTAGE map is not generally
1753  *      maintained; it's only computed when needed, typically to
1754  *      determine whether a device can be detached.
1755  *
1756  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1757  * either has the data or it doesn't.
1758  *
1759  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1760  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1761  * if any child is less than fully replicated, then so is its parent.
1762  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1763  * comprising only those txgs which appear in 'maxfaults' or more children;
1764  * those are the txgs we don't have enough replication to read.  For example,
1765  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1766  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1767  * two child DTL_MISSING maps.
1768  *
1769  * It should be clear from the above that to compute the DTLs and outage maps
1770  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1771  * Therefore, that is all we keep on disk.  When loading the pool, or after
1772  * a configuration change, we generate all other DTLs from first principles.
1773  */
1774 void
1775 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1776 {
1777         range_tree_t *rt = vd->vdev_dtl[t];
1778
1779         ASSERT(t < DTL_TYPES);
1780         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1781         ASSERT(spa_writeable(vd->vdev_spa));
1782
1783         mutex_enter(rt->rt_lock);
1784         if (!range_tree_contains(rt, txg, size))
1785                 range_tree_add(rt, txg, size);
1786         mutex_exit(rt->rt_lock);
1787 }
1788
1789 boolean_t
1790 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1791 {
1792         range_tree_t *rt = vd->vdev_dtl[t];
1793         boolean_t dirty = B_FALSE;
1794
1795         ASSERT(t < DTL_TYPES);
1796         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1797
1798         mutex_enter(rt->rt_lock);
1799         if (range_tree_space(rt) != 0)
1800                 dirty = range_tree_contains(rt, txg, size);
1801         mutex_exit(rt->rt_lock);
1802
1803         return (dirty);
1804 }
1805
1806 boolean_t
1807 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1808 {
1809         range_tree_t *rt = vd->vdev_dtl[t];
1810         boolean_t empty;
1811
1812         mutex_enter(rt->rt_lock);
1813         empty = (range_tree_space(rt) == 0);
1814         mutex_exit(rt->rt_lock);
1815
1816         return (empty);
1817 }
1818
1819 /*
1820  * Returns the lowest txg in the DTL range.
1821  */
1822 static uint64_t
1823 vdev_dtl_min(vdev_t *vd)
1824 {
1825         range_seg_t *rs;
1826
1827         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1828         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1829         ASSERT0(vd->vdev_children);
1830
1831         rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1832         return (rs->rs_start - 1);
1833 }
1834
1835 /*
1836  * Returns the highest txg in the DTL.
1837  */
1838 static uint64_t
1839 vdev_dtl_max(vdev_t *vd)
1840 {
1841         range_seg_t *rs;
1842
1843         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1844         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1845         ASSERT0(vd->vdev_children);
1846
1847         rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1848         return (rs->rs_end);
1849 }
1850
1851 /*
1852  * Determine if a resilvering vdev should remove any DTL entries from
1853  * its range. If the vdev was resilvering for the entire duration of the
1854  * scan then it should excise that range from its DTLs. Otherwise, this
1855  * vdev is considered partially resilvered and should leave its DTL
1856  * entries intact. The comment in vdev_dtl_reassess() describes how we
1857  * excise the DTLs.
1858  */
1859 static boolean_t
1860 vdev_dtl_should_excise(vdev_t *vd)
1861 {
1862         spa_t *spa = vd->vdev_spa;
1863         dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1864
1865         ASSERT0(scn->scn_phys.scn_errors);
1866         ASSERT0(vd->vdev_children);
1867
1868         if (vd->vdev_resilver_txg == 0 ||
1869             range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1870                 return (B_TRUE);
1871
1872         /*
1873          * When a resilver is initiated the scan will assign the scn_max_txg
1874          * value to the highest txg value that exists in all DTLs. If this
1875          * device's max DTL is not part of this scan (i.e. it is not in
1876          * the range (scn_min_txg, scn_max_txg] then it is not eligible
1877          * for excision.
1878          */
1879         if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1880                 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1881                 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1882                 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1883                 return (B_TRUE);
1884         }
1885         return (B_FALSE);
1886 }
1887
1888 /*
1889  * Reassess DTLs after a config change or scrub completion.
1890  */
1891 void
1892 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1893 {
1894         spa_t *spa = vd->vdev_spa;
1895         avl_tree_t reftree;
1896         int minref;
1897
1898         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1899
1900         for (int c = 0; c < vd->vdev_children; c++)
1901                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1902                     scrub_txg, scrub_done);
1903
1904         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1905                 return;
1906
1907         if (vd->vdev_ops->vdev_op_leaf) {
1908                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1909
1910                 mutex_enter(&vd->vdev_dtl_lock);
1911
1912                 /*
1913                  * If we've completed a scan cleanly then determine
1914                  * if this vdev should remove any DTLs. We only want to
1915                  * excise regions on vdevs that were available during
1916                  * the entire duration of this scan.
1917                  */
1918                 if (scrub_txg != 0 &&
1919                     (spa->spa_scrub_started ||
1920                     (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1921                     vdev_dtl_should_excise(vd)) {
1922                         /*
1923                          * We completed a scrub up to scrub_txg.  If we
1924                          * did it without rebooting, then the scrub dtl
1925                          * will be valid, so excise the old region and
1926                          * fold in the scrub dtl.  Otherwise, leave the
1927                          * dtl as-is if there was an error.
1928                          *
1929                          * There's little trick here: to excise the beginning
1930                          * of the DTL_MISSING map, we put it into a reference
1931                          * tree and then add a segment with refcnt -1 that
1932                          * covers the range [0, scrub_txg).  This means
1933                          * that each txg in that range has refcnt -1 or 0.
1934                          * We then add DTL_SCRUB with a refcnt of 2, so that
1935                          * entries in the range [0, scrub_txg) will have a
1936                          * positive refcnt -- either 1 or 2.  We then convert
1937                          * the reference tree into the new DTL_MISSING map.
1938                          */
1939                         space_reftree_create(&reftree);
1940                         space_reftree_add_map(&reftree,
1941                             vd->vdev_dtl[DTL_MISSING], 1);
1942                         space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1943                         space_reftree_add_map(&reftree,
1944                             vd->vdev_dtl[DTL_SCRUB], 2);
1945                         space_reftree_generate_map(&reftree,
1946                             vd->vdev_dtl[DTL_MISSING], 1);
1947                         space_reftree_destroy(&reftree);
1948                 }
1949                 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1950                 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1951                     range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1952                 if (scrub_done)
1953                         range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1954                 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1955                 if (!vdev_readable(vd))
1956                         range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1957                 else
1958                         range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1959                             range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1960
1961                 /*
1962                  * If the vdev was resilvering and no longer has any
1963                  * DTLs then reset its resilvering flag and dirty
1964                  * the top level so that we persist the change.
1965                  */
1966                 if (vd->vdev_resilver_txg != 0 &&
1967                     range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1968                     range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
1969                         vd->vdev_resilver_txg = 0;
1970                         vdev_config_dirty(vd->vdev_top);
1971                 }
1972
1973                 mutex_exit(&vd->vdev_dtl_lock);
1974
1975                 if (txg != 0)
1976                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1977                 return;
1978         }
1979
1980         mutex_enter(&vd->vdev_dtl_lock);
1981         for (int t = 0; t < DTL_TYPES; t++) {
1982                 /* account for child's outage in parent's missing map */
1983                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1984                 if (t == DTL_SCRUB)
1985                         continue;                       /* leaf vdevs only */
1986                 if (t == DTL_PARTIAL)
1987                         minref = 1;                     /* i.e. non-zero */
1988                 else if (vd->vdev_nparity != 0)
1989                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1990                 else
1991                         minref = vd->vdev_children;     /* any kind of mirror */
1992                 space_reftree_create(&reftree);
1993                 for (int c = 0; c < vd->vdev_children; c++) {
1994                         vdev_t *cvd = vd->vdev_child[c];
1995                         mutex_enter(&cvd->vdev_dtl_lock);
1996                         space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1997                         mutex_exit(&cvd->vdev_dtl_lock);
1998                 }
1999                 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2000                 space_reftree_destroy(&reftree);
2001         }
2002         mutex_exit(&vd->vdev_dtl_lock);
2003 }
2004
2005 int
2006 vdev_dtl_load(vdev_t *vd)
2007 {
2008         spa_t *spa = vd->vdev_spa;
2009         objset_t *mos = spa->spa_meta_objset;
2010         int error = 0;
2011
2012         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2013                 ASSERT(!vd->vdev_ishole);
2014
2015                 error = space_map_open(&vd->vdev_dtl_sm, mos,
2016                     vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
2017                 if (error)
2018                         return (error);
2019                 ASSERT(vd->vdev_dtl_sm != NULL);
2020
2021                 mutex_enter(&vd->vdev_dtl_lock);
2022
2023                 /*
2024                  * Now that we've opened the space_map we need to update
2025                  * the in-core DTL.
2026                  */
2027                 space_map_update(vd->vdev_dtl_sm);
2028
2029                 error = space_map_load(vd->vdev_dtl_sm,
2030                     vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2031                 mutex_exit(&vd->vdev_dtl_lock);
2032
2033                 return (error);
2034         }
2035
2036         for (int c = 0; c < vd->vdev_children; c++) {
2037                 error = vdev_dtl_load(vd->vdev_child[c]);
2038                 if (error != 0)
2039                         break;
2040         }
2041
2042         return (error);
2043 }
2044
2045 void
2046 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2047 {
2048         spa_t *spa = vd->vdev_spa;
2049         range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2050         objset_t *mos = spa->spa_meta_objset;
2051         range_tree_t *rtsync;
2052         kmutex_t rtlock;
2053         dmu_tx_t *tx;
2054         uint64_t object = space_map_object(vd->vdev_dtl_sm);
2055
2056         ASSERT(!vd->vdev_ishole);
2057         ASSERT(vd->vdev_ops->vdev_op_leaf);
2058
2059         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2060
2061         if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2062                 mutex_enter(&vd->vdev_dtl_lock);
2063                 space_map_free(vd->vdev_dtl_sm, tx);
2064                 space_map_close(vd->vdev_dtl_sm);
2065                 vd->vdev_dtl_sm = NULL;
2066                 mutex_exit(&vd->vdev_dtl_lock);
2067                 dmu_tx_commit(tx);
2068                 return;
2069         }
2070
2071         if (vd->vdev_dtl_sm == NULL) {
2072                 uint64_t new_object;
2073
2074                 new_object = space_map_alloc(mos, tx);
2075                 VERIFY3U(new_object, !=, 0);
2076
2077                 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2078                     0, -1ULL, 0, &vd->vdev_dtl_lock));
2079                 ASSERT(vd->vdev_dtl_sm != NULL);
2080         }
2081
2082         bzero(&rtlock, sizeof(rtlock));
2083         mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2084
2085         rtsync = range_tree_create(NULL, NULL, &rtlock);
2086
2087         mutex_enter(&rtlock);
2088
2089         mutex_enter(&vd->vdev_dtl_lock);
2090         range_tree_walk(rt, range_tree_add, rtsync);
2091         mutex_exit(&vd->vdev_dtl_lock);
2092
2093         space_map_truncate(vd->vdev_dtl_sm, tx);
2094         space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2095         range_tree_vacate(rtsync, NULL, NULL);
2096
2097         range_tree_destroy(rtsync);
2098
2099         mutex_exit(&rtlock);
2100         mutex_destroy(&rtlock);
2101
2102         /*
2103          * If the object for the space map has changed then dirty
2104          * the top level so that we update the config.
2105          */
2106         if (object != space_map_object(vd->vdev_dtl_sm)) {
2107                 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2108                     "new object %llu", txg, spa_name(spa), object,
2109                     space_map_object(vd->vdev_dtl_sm));
2110                 vdev_config_dirty(vd->vdev_top);
2111         }
2112
2113         dmu_tx_commit(tx);
2114
2115         mutex_enter(&vd->vdev_dtl_lock);
2116         space_map_update(vd->vdev_dtl_sm);
2117         mutex_exit(&vd->vdev_dtl_lock);
2118 }
2119
2120 /*
2121  * Determine whether the specified vdev can be offlined/detached/removed
2122  * without losing data.
2123  */
2124 boolean_t
2125 vdev_dtl_required(vdev_t *vd)
2126 {
2127         spa_t *spa = vd->vdev_spa;
2128         vdev_t *tvd = vd->vdev_top;
2129         uint8_t cant_read = vd->vdev_cant_read;
2130         boolean_t required;
2131
2132         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2133
2134         if (vd == spa->spa_root_vdev || vd == tvd)
2135                 return (B_TRUE);
2136
2137         /*
2138          * Temporarily mark the device as unreadable, and then determine
2139          * whether this results in any DTL outages in the top-level vdev.
2140          * If not, we can safely offline/detach/remove the device.
2141          */
2142         vd->vdev_cant_read = B_TRUE;
2143         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2144         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2145         vd->vdev_cant_read = cant_read;
2146         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2147
2148         if (!required && zio_injection_enabled)
2149                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2150
2151         return (required);
2152 }
2153
2154 /*
2155  * Determine if resilver is needed, and if so the txg range.
2156  */
2157 boolean_t
2158 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2159 {
2160         boolean_t needed = B_FALSE;
2161         uint64_t thismin = UINT64_MAX;
2162         uint64_t thismax = 0;
2163
2164         if (vd->vdev_children == 0) {
2165                 mutex_enter(&vd->vdev_dtl_lock);
2166                 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2167                     vdev_writeable(vd)) {
2168
2169                         thismin = vdev_dtl_min(vd);
2170                         thismax = vdev_dtl_max(vd);
2171                         needed = B_TRUE;
2172                 }
2173                 mutex_exit(&vd->vdev_dtl_lock);
2174         } else {
2175                 for (int c = 0; c < vd->vdev_children; c++) {
2176                         vdev_t *cvd = vd->vdev_child[c];
2177                         uint64_t cmin, cmax;
2178
2179                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2180                                 thismin = MIN(thismin, cmin);
2181                                 thismax = MAX(thismax, cmax);
2182                                 needed = B_TRUE;
2183                         }
2184                 }
2185         }
2186
2187         if (needed && minp) {
2188                 *minp = thismin;
2189                 *maxp = thismax;
2190         }
2191         return (needed);
2192 }
2193
2194 void
2195 vdev_load(vdev_t *vd)
2196 {
2197         /*
2198          * Recursively load all children.
2199          */
2200         for (int c = 0; c < vd->vdev_children; c++)
2201                 vdev_load(vd->vdev_child[c]);
2202
2203         /*
2204          * If this is a top-level vdev, initialize its metaslabs.
2205          */
2206         if (vd == vd->vdev_top && !vd->vdev_ishole &&
2207             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2208             vdev_metaslab_init(vd, 0) != 0))
2209                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2210                     VDEV_AUX_CORRUPT_DATA);
2211
2212         /*
2213          * If this is a leaf vdev, load its DTL.
2214          */
2215         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2216                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2217                     VDEV_AUX_CORRUPT_DATA);
2218 }
2219
2220 /*
2221  * The special vdev case is used for hot spares and l2cache devices.  Its
2222  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2223  * we make sure that we can open the underlying device, then try to read the
2224  * label, and make sure that the label is sane and that it hasn't been
2225  * repurposed to another pool.
2226  */
2227 int
2228 vdev_validate_aux(vdev_t *vd)
2229 {
2230         nvlist_t *label;
2231         uint64_t guid, version;
2232         uint64_t state;
2233
2234         if (!vdev_readable(vd))
2235                 return (0);
2236
2237         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2238                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2239                     VDEV_AUX_CORRUPT_DATA);
2240                 return (-1);
2241         }
2242
2243         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2244             !SPA_VERSION_IS_SUPPORTED(version) ||
2245             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2246             guid != vd->vdev_guid ||
2247             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2248                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2249                     VDEV_AUX_CORRUPT_DATA);
2250                 nvlist_free(label);
2251                 return (-1);
2252         }
2253
2254         /*
2255          * We don't actually check the pool state here.  If it's in fact in
2256          * use by another pool, we update this fact on the fly when requested.
2257          */
2258         nvlist_free(label);
2259         return (0);
2260 }
2261
2262 void
2263 vdev_remove(vdev_t *vd, uint64_t txg)
2264 {
2265         spa_t *spa = vd->vdev_spa;
2266         objset_t *mos = spa->spa_meta_objset;
2267         dmu_tx_t *tx;
2268
2269         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2270
2271         if (vd->vdev_ms != NULL) {
2272                 metaslab_group_t *mg = vd->vdev_mg;
2273
2274                 metaslab_group_histogram_verify(mg);
2275                 metaslab_class_histogram_verify(mg->mg_class);
2276
2277                 for (int m = 0; m < vd->vdev_ms_count; m++) {
2278                         metaslab_t *msp = vd->vdev_ms[m];
2279
2280                         if (msp == NULL || msp->ms_sm == NULL)
2281                                 continue;
2282
2283                         mutex_enter(&msp->ms_lock);
2284                         /*
2285                          * If the metaslab was not loaded when the vdev
2286                          * was removed then the histogram accounting may
2287                          * not be accurate. Update the histogram information
2288                          * here so that we ensure that the metaslab group
2289                          * and metaslab class are up-to-date.
2290                          */
2291                         metaslab_group_histogram_remove(mg, msp);
2292
2293                         VERIFY0(space_map_allocated(msp->ms_sm));
2294                         space_map_free(msp->ms_sm, tx);
2295                         space_map_close(msp->ms_sm);
2296                         msp->ms_sm = NULL;
2297                         mutex_exit(&msp->ms_lock);
2298                 }
2299
2300                 metaslab_group_histogram_verify(mg);
2301                 metaslab_class_histogram_verify(mg->mg_class);
2302                 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2303                         ASSERT0(mg->mg_histogram[i]);
2304
2305         }
2306
2307         if (vd->vdev_ms_array) {
2308                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2309                 vd->vdev_ms_array = 0;
2310         }
2311         dmu_tx_commit(tx);
2312 }
2313
2314 void
2315 vdev_sync_done(vdev_t *vd, uint64_t txg)
2316 {
2317         metaslab_t *msp;
2318         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2319
2320         ASSERT(!vd->vdev_ishole);
2321
2322         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2323                 metaslab_sync_done(msp, txg);
2324
2325         if (reassess)
2326                 metaslab_sync_reassess(vd->vdev_mg);
2327 }
2328
2329 void
2330 vdev_sync(vdev_t *vd, uint64_t txg)
2331 {
2332         spa_t *spa = vd->vdev_spa;
2333         vdev_t *lvd;
2334         metaslab_t *msp;
2335         dmu_tx_t *tx;
2336
2337         ASSERT(!vd->vdev_ishole);
2338
2339         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2340                 ASSERT(vd == vd->vdev_top);
2341                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2342                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2343                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2344                 ASSERT(vd->vdev_ms_array != 0);
2345                 vdev_config_dirty(vd);
2346                 dmu_tx_commit(tx);
2347         }
2348
2349         /*
2350          * Remove the metadata associated with this vdev once it's empty.
2351          */
2352         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2353                 vdev_remove(vd, txg);
2354
2355         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2356                 metaslab_sync(msp, txg);
2357                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2358         }
2359
2360         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2361                 vdev_dtl_sync(lvd, txg);
2362
2363         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2364 }
2365
2366 uint64_t
2367 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2368 {
2369         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2370 }
2371
2372 /*
2373  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2374  * not be opened, and no I/O is attempted.
2375  */
2376 int
2377 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2378 {
2379         vdev_t *vd, *tvd;
2380
2381         spa_vdev_state_enter(spa, SCL_NONE);
2382
2383         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2384                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2385
2386         if (!vd->vdev_ops->vdev_op_leaf)
2387                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2388
2389         tvd = vd->vdev_top;
2390
2391         /*
2392          * We don't directly use the aux state here, but if we do a
2393          * vdev_reopen(), we need this value to be present to remember why we
2394          * were faulted.
2395          */
2396         vd->vdev_label_aux = aux;
2397
2398         /*
2399          * Faulted state takes precedence over degraded.
2400          */
2401         vd->vdev_delayed_close = B_FALSE;
2402         vd->vdev_faulted = 1ULL;
2403         vd->vdev_degraded = 0ULL;
2404         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2405
2406         /*
2407          * If this device has the only valid copy of the data, then
2408          * back off and simply mark the vdev as degraded instead.
2409          */
2410         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2411                 vd->vdev_degraded = 1ULL;
2412                 vd->vdev_faulted = 0ULL;
2413
2414                 /*
2415                  * If we reopen the device and it's not dead, only then do we
2416                  * mark it degraded.
2417                  */
2418                 vdev_reopen(tvd);
2419
2420                 if (vdev_readable(vd))
2421                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2422         }
2423
2424         return (spa_vdev_state_exit(spa, vd, 0));
2425 }
2426
2427 /*
2428  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2429  * user that something is wrong.  The vdev continues to operate as normal as far
2430  * as I/O is concerned.
2431  */
2432 int
2433 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2434 {
2435         vdev_t *vd;
2436
2437         spa_vdev_state_enter(spa, SCL_NONE);
2438
2439         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2440                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2441
2442         if (!vd->vdev_ops->vdev_op_leaf)
2443                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2444
2445         /*
2446          * If the vdev is already faulted, then don't do anything.
2447          */
2448         if (vd->vdev_faulted || vd->vdev_degraded)
2449                 return (spa_vdev_state_exit(spa, NULL, 0));
2450
2451         vd->vdev_degraded = 1ULL;
2452         if (!vdev_is_dead(vd))
2453                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2454                     aux);
2455
2456         return (spa_vdev_state_exit(spa, vd, 0));
2457 }
2458
2459 /*
2460  * Online the given vdev.
2461  *
2462  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2463  * spare device should be detached when the device finishes resilvering.
2464  * Second, the online should be treated like a 'test' online case, so no FMA
2465  * events are generated if the device fails to open.
2466  */
2467 int
2468 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2469 {
2470         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2471
2472         spa_vdev_state_enter(spa, SCL_NONE);
2473
2474         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2475                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2476
2477         if (!vd->vdev_ops->vdev_op_leaf)
2478                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2479
2480         tvd = vd->vdev_top;
2481         vd->vdev_offline = B_FALSE;
2482         vd->vdev_tmpoffline = B_FALSE;
2483         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2484         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2485
2486         /* XXX - L2ARC 1.0 does not support expansion */
2487         if (!vd->vdev_aux) {
2488                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2489                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2490         }
2491
2492         vdev_reopen(tvd);
2493         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2494
2495         if (!vd->vdev_aux) {
2496                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2497                         pvd->vdev_expanding = B_FALSE;
2498         }
2499
2500         if (newstate)
2501                 *newstate = vd->vdev_state;
2502         if ((flags & ZFS_ONLINE_UNSPARE) &&
2503             !vdev_is_dead(vd) && vd->vdev_parent &&
2504             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2505             vd->vdev_parent->vdev_child[0] == vd)
2506                 vd->vdev_unspare = B_TRUE;
2507
2508         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2509
2510                 /* XXX - L2ARC 1.0 does not support expansion */
2511                 if (vd->vdev_aux)
2512                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2513                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2514         }
2515         return (spa_vdev_state_exit(spa, vd, 0));
2516 }
2517
2518 static int
2519 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2520 {
2521         vdev_t *vd, *tvd;
2522         int error = 0;
2523         uint64_t generation;
2524         metaslab_group_t *mg;
2525
2526 top:
2527         spa_vdev_state_enter(spa, SCL_ALLOC);
2528
2529         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2530                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2531
2532         if (!vd->vdev_ops->vdev_op_leaf)
2533                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2534
2535         tvd = vd->vdev_top;
2536         mg = tvd->vdev_mg;
2537         generation = spa->spa_config_generation + 1;
2538
2539         /*
2540          * If the device isn't already offline, try to offline it.
2541          */
2542         if (!vd->vdev_offline) {
2543                 /*
2544                  * If this device has the only valid copy of some data,
2545                  * don't allow it to be offlined. Log devices are always
2546                  * expendable.
2547                  */
2548                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2549                     vdev_dtl_required(vd))
2550                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2551
2552                 /*
2553                  * If the top-level is a slog and it has had allocations
2554                  * then proceed.  We check that the vdev's metaslab group
2555                  * is not NULL since it's possible that we may have just
2556                  * added this vdev but not yet initialized its metaslabs.
2557                  */
2558                 if (tvd->vdev_islog && mg != NULL) {
2559                         /*
2560                          * Prevent any future allocations.
2561                          */
2562                         metaslab_group_passivate(mg);
2563                         (void) spa_vdev_state_exit(spa, vd, 0);
2564
2565                         error = spa_offline_log(spa);
2566
2567                         spa_vdev_state_enter(spa, SCL_ALLOC);
2568
2569                         /*
2570                          * Check to see if the config has changed.
2571                          */
2572                         if (error || generation != spa->spa_config_generation) {
2573                                 metaslab_group_activate(mg);
2574                                 if (error)
2575                                         return (spa_vdev_state_exit(spa,
2576                                             vd, error));
2577                                 (void) spa_vdev_state_exit(spa, vd, 0);
2578                                 goto top;
2579                         }
2580                         ASSERT0(tvd->vdev_stat.vs_alloc);
2581                 }
2582
2583                 /*
2584                  * Offline this device and reopen its top-level vdev.
2585                  * If the top-level vdev is a log device then just offline
2586                  * it. Otherwise, if this action results in the top-level
2587                  * vdev becoming unusable, undo it and fail the request.
2588                  */
2589                 vd->vdev_offline = B_TRUE;
2590                 vdev_reopen(tvd);
2591
2592                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2593                     vdev_is_dead(tvd)) {
2594                         vd->vdev_offline = B_FALSE;
2595                         vdev_reopen(tvd);
2596                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2597                 }
2598
2599                 /*
2600                  * Add the device back into the metaslab rotor so that
2601                  * once we online the device it's open for business.
2602                  */
2603                 if (tvd->vdev_islog && mg != NULL)
2604                         metaslab_group_activate(mg);
2605         }
2606
2607         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2608
2609         return (spa_vdev_state_exit(spa, vd, 0));
2610 }
2611
2612 int
2613 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2614 {
2615         int error;
2616
2617         mutex_enter(&spa->spa_vdev_top_lock);
2618         error = vdev_offline_locked(spa, guid, flags);
2619         mutex_exit(&spa->spa_vdev_top_lock);
2620
2621         return (error);
2622 }
2623
2624 /*
2625  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2626  * vdev_offline(), we assume the spa config is locked.  We also clear all
2627  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2628  */
2629 void
2630 vdev_clear(spa_t *spa, vdev_t *vd)
2631 {
2632         vdev_t *rvd = spa->spa_root_vdev;
2633
2634         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2635
2636         if (vd == NULL)
2637                 vd = rvd;
2638
2639         vd->vdev_stat.vs_read_errors = 0;
2640         vd->vdev_stat.vs_write_errors = 0;
2641         vd->vdev_stat.vs_checksum_errors = 0;
2642
2643         for (int c = 0; c < vd->vdev_children; c++)
2644                 vdev_clear(spa, vd->vdev_child[c]);
2645
2646         if (vd == rvd) {
2647                 for (int c = 0; c < spa->spa_l2cache.sav_count; c++)
2648                         vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
2649
2650                 for (int c = 0; c < spa->spa_spares.sav_count; c++)
2651                         vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
2652         }
2653
2654         /*
2655          * If we're in the FAULTED state or have experienced failed I/O, then
2656          * clear the persistent state and attempt to reopen the device.  We
2657          * also mark the vdev config dirty, so that the new faulted state is
2658          * written out to disk.
2659          */
2660         if (vd->vdev_faulted || vd->vdev_degraded ||
2661             !vdev_readable(vd) || !vdev_writeable(vd)) {
2662
2663                 /*
2664                  * When reopening in reponse to a clear event, it may be due to
2665                  * a fmadm repair request.  In this case, if the device is
2666                  * still broken, we want to still post the ereport again.
2667                  */
2668                 vd->vdev_forcefault = B_TRUE;
2669
2670                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2671                 vd->vdev_cant_read = B_FALSE;
2672                 vd->vdev_cant_write = B_FALSE;
2673
2674                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2675
2676                 vd->vdev_forcefault = B_FALSE;
2677
2678                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2679                         vdev_state_dirty(vd->vdev_top);
2680
2681                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2682                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2683
2684                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2685         }
2686
2687         /*
2688          * When clearing a FMA-diagnosed fault, we always want to
2689          * unspare the device, as we assume that the original spare was
2690          * done in response to the FMA fault.
2691          */
2692         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2693             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2694             vd->vdev_parent->vdev_child[0] == vd)
2695                 vd->vdev_unspare = B_TRUE;
2696 }
2697
2698 boolean_t
2699 vdev_is_dead(vdev_t *vd)
2700 {
2701         /*
2702          * Holes and missing devices are always considered "dead".
2703          * This simplifies the code since we don't have to check for
2704          * these types of devices in the various code paths.
2705          * Instead we rely on the fact that we skip over dead devices
2706          * before issuing I/O to them.
2707          */
2708         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2709             vd->vdev_ops == &vdev_missing_ops);
2710 }
2711
2712 boolean_t
2713 vdev_readable(vdev_t *vd)
2714 {
2715         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2716 }
2717
2718 boolean_t
2719 vdev_writeable(vdev_t *vd)
2720 {
2721         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2722 }
2723
2724 boolean_t
2725 vdev_allocatable(vdev_t *vd)
2726 {
2727         uint64_t state = vd->vdev_state;
2728
2729         /*
2730          * We currently allow allocations from vdevs which may be in the
2731          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2732          * fails to reopen then we'll catch it later when we're holding
2733          * the proper locks.  Note that we have to get the vdev state
2734          * in a local variable because although it changes atomically,
2735          * we're asking two separate questions about it.
2736          */
2737         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2738             !vd->vdev_cant_write && !vd->vdev_ishole);
2739 }
2740
2741 boolean_t
2742 vdev_accessible(vdev_t *vd, zio_t *zio)
2743 {
2744         ASSERT(zio->io_vd == vd);
2745
2746         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2747                 return (B_FALSE);
2748
2749         if (zio->io_type == ZIO_TYPE_READ)
2750                 return (!vd->vdev_cant_read);
2751
2752         if (zio->io_type == ZIO_TYPE_WRITE)
2753                 return (!vd->vdev_cant_write);
2754
2755         return (B_TRUE);
2756 }
2757
2758 /*
2759  * Get statistics for the given vdev.
2760  */
2761 void
2762 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2763 {
2764         spa_t *spa = vd->vdev_spa;
2765         vdev_t *rvd = spa->spa_root_vdev;
2766
2767         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2768
2769         mutex_enter(&vd->vdev_stat_lock);
2770         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2771         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2772         vs->vs_state = vd->vdev_state;
2773         vs->vs_rsize = vdev_get_min_asize(vd);
2774         if (vd->vdev_ops->vdev_op_leaf)
2775                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2776         vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2777         vs->vs_configured_ashift = vd->vdev_top != NULL
2778             ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
2779         vs->vs_logical_ashift = vd->vdev_logical_ashift;
2780         vs->vs_physical_ashift = vd->vdev_physical_ashift;
2781         if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2782                 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2783         }
2784
2785         /*
2786          * If we're getting stats on the root vdev, aggregate the I/O counts
2787          * over all top-level vdevs (i.e. the direct children of the root).
2788          */
2789         if (vd == rvd) {
2790                 for (int c = 0; c < rvd->vdev_children; c++) {
2791                         vdev_t *cvd = rvd->vdev_child[c];
2792                         vdev_stat_t *cvs = &cvd->vdev_stat;
2793
2794                         for (int t = 0; t < ZIO_TYPES; t++) {
2795                                 vs->vs_ops[t] += cvs->vs_ops[t];
2796                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2797                         }
2798                         cvs->vs_scan_removing = cvd->vdev_removing;
2799                 }
2800         }
2801         mutex_exit(&vd->vdev_stat_lock);
2802 }
2803
2804 void
2805 vdev_clear_stats(vdev_t *vd)
2806 {
2807         mutex_enter(&vd->vdev_stat_lock);
2808         vd->vdev_stat.vs_space = 0;
2809         vd->vdev_stat.vs_dspace = 0;
2810         vd->vdev_stat.vs_alloc = 0;
2811         mutex_exit(&vd->vdev_stat_lock);
2812 }
2813
2814 void
2815 vdev_scan_stat_init(vdev_t *vd)
2816 {
2817         vdev_stat_t *vs = &vd->vdev_stat;
2818
2819         for (int c = 0; c < vd->vdev_children; c++)
2820                 vdev_scan_stat_init(vd->vdev_child[c]);
2821
2822         mutex_enter(&vd->vdev_stat_lock);
2823         vs->vs_scan_processed = 0;
2824         mutex_exit(&vd->vdev_stat_lock);
2825 }
2826
2827 void
2828 vdev_stat_update(zio_t *zio, uint64_t psize)
2829 {
2830         spa_t *spa = zio->io_spa;
2831         vdev_t *rvd = spa->spa_root_vdev;
2832         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2833         vdev_t *pvd;
2834         uint64_t txg = zio->io_txg;
2835         vdev_stat_t *vs = &vd->vdev_stat;
2836         zio_type_t type = zio->io_type;
2837         int flags = zio->io_flags;
2838
2839         /*
2840          * If this i/o is a gang leader, it didn't do any actual work.
2841          */
2842         if (zio->io_gang_tree)
2843                 return;
2844
2845         if (zio->io_error == 0) {
2846                 /*
2847                  * If this is a root i/o, don't count it -- we've already
2848                  * counted the top-level vdevs, and vdev_get_stats() will
2849                  * aggregate them when asked.  This reduces contention on
2850                  * the root vdev_stat_lock and implicitly handles blocks
2851                  * that compress away to holes, for which there is no i/o.
2852                  * (Holes never create vdev children, so all the counters
2853                  * remain zero, which is what we want.)
2854                  *
2855                  * Note: this only applies to successful i/o (io_error == 0)
2856                  * because unlike i/o counts, errors are not additive.
2857                  * When reading a ditto block, for example, failure of
2858                  * one top-level vdev does not imply a root-level error.
2859                  */
2860                 if (vd == rvd)
2861                         return;
2862
2863                 ASSERT(vd == zio->io_vd);
2864
2865                 if (flags & ZIO_FLAG_IO_BYPASS)
2866                         return;
2867
2868                 mutex_enter(&vd->vdev_stat_lock);
2869
2870                 if (flags & ZIO_FLAG_IO_REPAIR) {
2871                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2872                                 dsl_scan_phys_t *scn_phys =
2873                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2874                                 uint64_t *processed = &scn_phys->scn_processed;
2875
2876                                 /* XXX cleanup? */
2877                                 if (vd->vdev_ops->vdev_op_leaf)
2878                                         atomic_add_64(processed, psize);
2879                                 vs->vs_scan_processed += psize;
2880                         }
2881
2882                         if (flags & ZIO_FLAG_SELF_HEAL)
2883                                 vs->vs_self_healed += psize;
2884                 }
2885
2886                 vs->vs_ops[type]++;
2887                 vs->vs_bytes[type] += psize;
2888
2889                 mutex_exit(&vd->vdev_stat_lock);
2890                 return;
2891         }
2892
2893         if (flags & ZIO_FLAG_SPECULATIVE)
2894                 return;
2895
2896         /*
2897          * If this is an I/O error that is going to be retried, then ignore the
2898          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2899          * hard errors, when in reality they can happen for any number of
2900          * innocuous reasons (bus resets, MPxIO link failure, etc).
2901          */
2902         if (zio->io_error == EIO &&
2903             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2904                 return;
2905
2906         /*
2907          * Intent logs writes won't propagate their error to the root
2908          * I/O so don't mark these types of failures as pool-level
2909          * errors.
2910          */
2911         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2912                 return;
2913
2914         mutex_enter(&vd->vdev_stat_lock);
2915         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2916                 if (zio->io_error == ECKSUM)
2917                         vs->vs_checksum_errors++;
2918                 else
2919                         vs->vs_read_errors++;
2920         }
2921         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2922                 vs->vs_write_errors++;
2923         mutex_exit(&vd->vdev_stat_lock);
2924
2925         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2926             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2927             (flags & ZIO_FLAG_SCAN_THREAD) ||
2928             spa->spa_claiming)) {
2929                 /*
2930                  * This is either a normal write (not a repair), or it's
2931                  * a repair induced by the scrub thread, or it's a repair
2932                  * made by zil_claim() during spa_load() in the first txg.
2933                  * In the normal case, we commit the DTL change in the same
2934                  * txg as the block was born.  In the scrub-induced repair
2935                  * case, we know that scrubs run in first-pass syncing context,
2936                  * so we commit the DTL change in spa_syncing_txg(spa).
2937                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2938                  *
2939                  * We currently do not make DTL entries for failed spontaneous
2940                  * self-healing writes triggered by normal (non-scrubbing)
2941                  * reads, because we have no transactional context in which to
2942                  * do so -- and it's not clear that it'd be desirable anyway.
2943                  */
2944                 if (vd->vdev_ops->vdev_op_leaf) {
2945                         uint64_t commit_txg = txg;
2946                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2947                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2948                                 ASSERT(spa_sync_pass(spa) == 1);
2949                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2950                                 commit_txg = spa_syncing_txg(spa);
2951                         } else if (spa->spa_claiming) {
2952                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2953                                 commit_txg = spa_first_txg(spa);
2954                         }
2955                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2956                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2957                                 return;
2958                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2959                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2960                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2961                 }
2962                 if (vd != rvd)
2963                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2964         }
2965 }
2966
2967 /*
2968  * Update the in-core space usage stats for this vdev, its metaslab class,
2969  * and the root vdev.
2970  */
2971 void
2972 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2973     int64_t space_delta)
2974 {
2975         int64_t dspace_delta = space_delta;
2976         spa_t *spa = vd->vdev_spa;
2977         vdev_t *rvd = spa->spa_root_vdev;
2978         metaslab_group_t *mg = vd->vdev_mg;
2979         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2980
2981         ASSERT(vd == vd->vdev_top);
2982
2983         /*
2984          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2985          * factor.  We must calculate this here and not at the root vdev
2986          * because the root vdev's psize-to-asize is simply the max of its
2987          * childrens', thus not accurate enough for us.
2988          */
2989         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2990         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2991         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2992             vd->vdev_deflate_ratio;
2993
2994         mutex_enter(&vd->vdev_stat_lock);
2995         vd->vdev_stat.vs_alloc += alloc_delta;
2996         vd->vdev_stat.vs_space += space_delta;
2997         vd->vdev_stat.vs_dspace += dspace_delta;
2998         mutex_exit(&vd->vdev_stat_lock);
2999
3000         if (mc == spa_normal_class(spa)) {
3001                 mutex_enter(&rvd->vdev_stat_lock);
3002                 rvd->vdev_stat.vs_alloc += alloc_delta;
3003                 rvd->vdev_stat.vs_space += space_delta;
3004                 rvd->vdev_stat.vs_dspace += dspace_delta;
3005                 mutex_exit(&rvd->vdev_stat_lock);
3006         }
3007
3008         if (mc != NULL) {
3009                 ASSERT(rvd == vd->vdev_parent);
3010                 ASSERT(vd->vdev_ms_count != 0);
3011
3012                 metaslab_class_space_update(mc,
3013                     alloc_delta, defer_delta, space_delta, dspace_delta);
3014         }
3015 }
3016
3017 /*
3018  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3019  * so that it will be written out next time the vdev configuration is synced.
3020  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3021  */
3022 void
3023 vdev_config_dirty(vdev_t *vd)
3024 {
3025         spa_t *spa = vd->vdev_spa;
3026         vdev_t *rvd = spa->spa_root_vdev;
3027         int c;
3028
3029         ASSERT(spa_writeable(spa));
3030
3031         /*
3032          * If this is an aux vdev (as with l2cache and spare devices), then we
3033          * update the vdev config manually and set the sync flag.
3034          */
3035         if (vd->vdev_aux != NULL) {
3036                 spa_aux_vdev_t *sav = vd->vdev_aux;
3037                 nvlist_t **aux;
3038                 uint_t naux;
3039
3040                 for (c = 0; c < sav->sav_count; c++) {
3041                         if (sav->sav_vdevs[c] == vd)
3042                                 break;
3043                 }
3044
3045                 if (c == sav->sav_count) {
3046                         /*
3047                          * We're being removed.  There's nothing more to do.
3048                          */
3049                         ASSERT(sav->sav_sync == B_TRUE);
3050                         return;
3051                 }
3052
3053                 sav->sav_sync = B_TRUE;
3054
3055                 if (nvlist_lookup_nvlist_array(sav->sav_config,
3056                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3057                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3058                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3059                 }
3060
3061                 ASSERT(c < naux);
3062
3063                 /*
3064                  * Setting the nvlist in the middle if the array is a little
3065                  * sketchy, but it will work.
3066                  */
3067                 nvlist_free(aux[c]);
3068                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3069
3070                 return;
3071         }
3072
3073         /*
3074          * The dirty list is protected by the SCL_CONFIG lock.  The caller
3075          * must either hold SCL_CONFIG as writer, or must be the sync thread
3076          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3077          * so this is sufficient to ensure mutual exclusion.
3078          */
3079         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3080             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3081             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3082
3083         if (vd == rvd) {
3084                 for (c = 0; c < rvd->vdev_children; c++)
3085                         vdev_config_dirty(rvd->vdev_child[c]);
3086         } else {
3087                 ASSERT(vd == vd->vdev_top);
3088
3089                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3090                     !vd->vdev_ishole)
3091                         list_insert_head(&spa->spa_config_dirty_list, vd);
3092         }
3093 }
3094
3095 void
3096 vdev_config_clean(vdev_t *vd)
3097 {
3098         spa_t *spa = vd->vdev_spa;
3099
3100         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3101             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3102             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3103
3104         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3105         list_remove(&spa->spa_config_dirty_list, vd);
3106 }
3107
3108 /*
3109  * Mark a top-level vdev's state as dirty, so that the next pass of
3110  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3111  * the state changes from larger config changes because they require
3112  * much less locking, and are often needed for administrative actions.
3113  */
3114 void
3115 vdev_state_dirty(vdev_t *vd)
3116 {
3117         spa_t *spa = vd->vdev_spa;
3118
3119         ASSERT(spa_writeable(spa));
3120         ASSERT(vd == vd->vdev_top);
3121
3122         /*
3123          * The state list is protected by the SCL_STATE lock.  The caller
3124          * must either hold SCL_STATE as writer, or must be the sync thread
3125          * (which holds SCL_STATE as reader).  There's only one sync thread,
3126          * so this is sufficient to ensure mutual exclusion.
3127          */
3128         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3129             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3130             spa_config_held(spa, SCL_STATE, RW_READER)));
3131
3132         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3133                 list_insert_head(&spa->spa_state_dirty_list, vd);
3134 }
3135
3136 void
3137 vdev_state_clean(vdev_t *vd)
3138 {
3139         spa_t *spa = vd->vdev_spa;
3140
3141         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3142             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3143             spa_config_held(spa, SCL_STATE, RW_READER)));
3144
3145         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3146         list_remove(&spa->spa_state_dirty_list, vd);
3147 }
3148
3149 /*
3150  * Propagate vdev state up from children to parent.
3151  */
3152 void
3153 vdev_propagate_state(vdev_t *vd)
3154 {
3155         spa_t *spa = vd->vdev_spa;
3156         vdev_t *rvd = spa->spa_root_vdev;
3157         int degraded = 0, faulted = 0;
3158         int corrupted = 0;
3159         vdev_t *child;
3160
3161         if (vd->vdev_children > 0) {
3162                 for (int c = 0; c < vd->vdev_children; c++) {
3163                         child = vd->vdev_child[c];
3164
3165                         /*
3166                          * Don't factor holes into the decision.
3167                          */
3168                         if (child->vdev_ishole)
3169                                 continue;
3170
3171                         if (!vdev_readable(child) ||
3172                             (!vdev_writeable(child) && spa_writeable(spa))) {
3173                                 /*
3174                                  * Root special: if there is a top-level log
3175                                  * device, treat the root vdev as if it were
3176                                  * degraded.
3177                                  */
3178                                 if (child->vdev_islog && vd == rvd)
3179                                         degraded++;
3180                                 else
3181                                         faulted++;
3182                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3183                                 degraded++;
3184                         }
3185
3186                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3187                                 corrupted++;
3188                 }
3189
3190                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3191
3192                 /*
3193                  * Root special: if there is a top-level vdev that cannot be
3194                  * opened due to corrupted metadata, then propagate the root
3195                  * vdev's aux state as 'corrupt' rather than 'insufficient
3196                  * replicas'.
3197                  */
3198                 if (corrupted && vd == rvd &&
3199                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3200                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3201                             VDEV_AUX_CORRUPT_DATA);
3202         }
3203
3204         if (vd->vdev_parent)
3205                 vdev_propagate_state(vd->vdev_parent);
3206 }
3207
3208 /*
3209  * Set a vdev's state.  If this is during an open, we don't update the parent
3210  * state, because we're in the process of opening children depth-first.
3211  * Otherwise, we propagate the change to the parent.
3212  *
3213  * If this routine places a device in a faulted state, an appropriate ereport is
3214  * generated.
3215  */
3216 void
3217 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3218 {
3219         uint64_t save_state;
3220         spa_t *spa = vd->vdev_spa;
3221
3222         if (state == vd->vdev_state) {
3223                 vd->vdev_stat.vs_aux = aux;
3224                 return;
3225         }
3226
3227         save_state = vd->vdev_state;
3228
3229         vd->vdev_state = state;
3230         vd->vdev_stat.vs_aux = aux;
3231
3232         /*
3233          * If we are setting the vdev state to anything but an open state, then
3234          * always close the underlying device unless the device has requested
3235          * a delayed close (i.e. we're about to remove or fault the device).
3236          * Otherwise, we keep accessible but invalid devices open forever.
3237          * We don't call vdev_close() itself, because that implies some extra
3238          * checks (offline, etc) that we don't want here.  This is limited to
3239          * leaf devices, because otherwise closing the device will affect other
3240          * children.
3241          */
3242         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3243             vd->vdev_ops->vdev_op_leaf)
3244                 vd->vdev_ops->vdev_op_close(vd);
3245
3246         /*
3247          * If we have brought this vdev back into service, we need
3248          * to notify fmd so that it can gracefully repair any outstanding
3249          * cases due to a missing device.  We do this in all cases, even those
3250          * that probably don't correlate to a repaired fault.  This is sure to
3251          * catch all cases, and we let the zfs-retire agent sort it out.  If
3252          * this is a transient state it's OK, as the retire agent will
3253          * double-check the state of the vdev before repairing it.
3254          */
3255         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3256             vd->vdev_prevstate != state)
3257                 zfs_post_state_change(spa, vd);
3258
3259         if (vd->vdev_removed &&
3260             state == VDEV_STATE_CANT_OPEN &&
3261             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3262                 /*
3263                  * If the previous state is set to VDEV_STATE_REMOVED, then this
3264                  * device was previously marked removed and someone attempted to
3265                  * reopen it.  If this failed due to a nonexistent device, then
3266                  * keep the device in the REMOVED state.  We also let this be if
3267                  * it is one of our special test online cases, which is only
3268                  * attempting to online the device and shouldn't generate an FMA
3269                  * fault.
3270                  */
3271                 vd->vdev_state = VDEV_STATE_REMOVED;
3272                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3273         } else if (state == VDEV_STATE_REMOVED) {
3274                 vd->vdev_removed = B_TRUE;
3275         } else if (state == VDEV_STATE_CANT_OPEN) {
3276                 /*
3277                  * If we fail to open a vdev during an import or recovery, we
3278                  * mark it as "not available", which signifies that it was
3279                  * never there to begin with.  Failure to open such a device
3280                  * is not considered an error.
3281                  */
3282                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3283                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3284                     vd->vdev_ops->vdev_op_leaf)
3285                         vd->vdev_not_present = 1;
3286
3287                 /*
3288                  * Post the appropriate ereport.  If the 'prevstate' field is
3289                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
3290                  * that this is part of a vdev_reopen().  In this case, we don't
3291                  * want to post the ereport if the device was already in the
3292                  * CANT_OPEN state beforehand.
3293                  *
3294                  * If the 'checkremove' flag is set, then this is an attempt to
3295                  * online the device in response to an insertion event.  If we
3296                  * hit this case, then we have detected an insertion event for a
3297                  * faulted or offline device that wasn't in the removed state.
3298                  * In this scenario, we don't post an ereport because we are
3299                  * about to replace the device, or attempt an online with
3300                  * vdev_forcefault, which will generate the fault for us.
3301                  */
3302                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3303                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3304                     vd != spa->spa_root_vdev) {
3305                         const char *class;
3306
3307                         switch (aux) {
3308                         case VDEV_AUX_OPEN_FAILED:
3309                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3310                                 break;
3311                         case VDEV_AUX_CORRUPT_DATA:
3312                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3313                                 break;
3314                         case VDEV_AUX_NO_REPLICAS:
3315                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3316                                 break;
3317                         case VDEV_AUX_BAD_GUID_SUM:
3318                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3319                                 break;
3320                         case VDEV_AUX_TOO_SMALL:
3321                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3322                                 break;
3323                         case VDEV_AUX_BAD_LABEL:
3324                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3325                                 break;
3326                         default:
3327                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3328                         }
3329
3330                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3331                 }
3332
3333                 /* Erase any notion of persistent removed state */
3334                 vd->vdev_removed = B_FALSE;
3335         } else {
3336                 vd->vdev_removed = B_FALSE;
3337         }
3338
3339         if (!isopen && vd->vdev_parent)
3340                 vdev_propagate_state(vd->vdev_parent);
3341 }
3342
3343 /*
3344  * Check the vdev configuration to ensure that it's capable of supporting
3345  * a root pool.
3346  *
3347  * On Solaris, we do not support RAID-Z or partial configuration.  In
3348  * addition, only a single top-level vdev is allowed and none of the
3349  * leaves can be wholedisks.
3350  *
3351  * For FreeBSD, we can boot from any configuration. There is a
3352  * limitation that the boot filesystem must be either uncompressed or
3353  * compresses with lzjb compression but I'm not sure how to enforce
3354  * that here.
3355  */
3356 boolean_t
3357 vdev_is_bootable(vdev_t *vd)
3358 {
3359 #ifdef sun
3360         if (!vd->vdev_ops->vdev_op_leaf) {
3361                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3362
3363                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3364                     vd->vdev_children > 1) {
3365                         return (B_FALSE);
3366                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3367                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3368                         return (B_FALSE);
3369                 }
3370         } else if (vd->vdev_wholedisk == 1) {
3371                 return (B_FALSE);
3372         }
3373
3374         for (int c = 0; c < vd->vdev_children; c++) {
3375                 if (!vdev_is_bootable(vd->vdev_child[c]))
3376                         return (B_FALSE);
3377         }
3378 #endif  /* sun */
3379         return (B_TRUE);
3380 }
3381
3382 /*
3383  * Load the state from the original vdev tree (ovd) which
3384  * we've retrieved from the MOS config object. If the original
3385  * vdev was offline or faulted then we transfer that state to the
3386  * device in the current vdev tree (nvd).
3387  */
3388 void
3389 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3390 {
3391         spa_t *spa = nvd->vdev_spa;
3392
3393         ASSERT(nvd->vdev_top->vdev_islog);
3394         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3395         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3396
3397         for (int c = 0; c < nvd->vdev_children; c++)
3398                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3399
3400         if (nvd->vdev_ops->vdev_op_leaf) {
3401                 /*
3402                  * Restore the persistent vdev state
3403                  */
3404                 nvd->vdev_offline = ovd->vdev_offline;
3405                 nvd->vdev_faulted = ovd->vdev_faulted;
3406                 nvd->vdev_degraded = ovd->vdev_degraded;
3407                 nvd->vdev_removed = ovd->vdev_removed;
3408         }
3409 }
3410
3411 /*
3412  * Determine if a log device has valid content.  If the vdev was
3413  * removed or faulted in the MOS config then we know that
3414  * the content on the log device has already been written to the pool.
3415  */
3416 boolean_t
3417 vdev_log_state_valid(vdev_t *vd)
3418 {
3419         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3420             !vd->vdev_removed)
3421                 return (B_TRUE);
3422
3423         for (int c = 0; c < vd->vdev_children; c++)
3424                 if (vdev_log_state_valid(vd->vdev_child[c]))
3425                         return (B_TRUE);
3426
3427         return (B_FALSE);
3428 }
3429
3430 /*
3431  * Expand a vdev if possible.
3432  */
3433 void
3434 vdev_expand(vdev_t *vd, uint64_t txg)
3435 {
3436         ASSERT(vd->vdev_top == vd);
3437         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3438
3439         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3440                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3441                 vdev_config_dirty(vd);
3442         }
3443 }
3444
3445 /*
3446  * Split a vdev.
3447  */
3448 void
3449 vdev_split(vdev_t *vd)
3450 {
3451         vdev_t *cvd, *pvd = vd->vdev_parent;
3452
3453         vdev_remove_child(pvd, vd);
3454         vdev_compact_children(pvd);
3455
3456         cvd = pvd->vdev_child[0];
3457         if (pvd->vdev_children == 1) {
3458                 vdev_remove_parent(cvd);
3459                 cvd->vdev_splitting = B_TRUE;
3460         }
3461         vdev_propagate_state(cvd);
3462 }
3463
3464 void
3465 vdev_deadman(vdev_t *vd)
3466 {
3467         for (int c = 0; c < vd->vdev_children; c++) {
3468                 vdev_t *cvd = vd->vdev_child[c];
3469
3470                 vdev_deadman(cvd);
3471         }
3472
3473         if (vd->vdev_ops->vdev_op_leaf) {
3474                 vdev_queue_t *vq = &vd->vdev_queue;
3475
3476                 mutex_enter(&vq->vq_lock);
3477                 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3478                         spa_t *spa = vd->vdev_spa;
3479                         zio_t *fio;
3480                         uint64_t delta;
3481
3482                         /*
3483                          * Look at the head of all the pending queues,
3484                          * if any I/O has been outstanding for longer than
3485                          * the spa_deadman_synctime we panic the system.
3486                          */
3487                         fio = avl_first(&vq->vq_active_tree);
3488                         delta = gethrtime() - fio->io_timestamp;
3489                         if (delta > spa_deadman_synctime(spa)) {
3490                                 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3491                                     "delta %lluns, last io %lluns",
3492                                     fio->io_timestamp, delta,
3493                                     vq->vq_io_complete_ts);
3494                                 fm_panic("I/O to pool '%s' appears to be "
3495                                     "hung on vdev guid %llu at '%s'.",
3496                                     spa_name(spa),
3497                                     (long long unsigned int) vd->vdev_guid,
3498                                     vd->vdev_path);
3499                         }
3500                 }
3501                 mutex_exit(&vq->vq_lock);
3502         }
3503 }