]> CyberLeo.Net >> Repos - FreeBSD/stable/8.git/blob - sys/dev/age/if_age.c
MFC 214203:
[FreeBSD/stable/8.git] / sys / dev / age / if_age.c
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/rman.h>
41 #include <sys/module.h>
42 #include <sys/queue.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
46 #include <sys/taskqueue.h>
47
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp.h>
61
62 #include <dev/mii/mii.h>
63 #include <dev/mii/miivar.h>
64
65 #include <dev/pci/pcireg.h>
66 #include <dev/pci/pcivar.h>
67
68 #include <machine/bus.h>
69 #include <machine/in_cksum.h>
70
71 #include <dev/age/if_agereg.h>
72 #include <dev/age/if_agevar.h>
73
74 /* "device miibus" required.  See GENERIC if you get errors here. */
75 #include "miibus_if.h"
76
77 #define AGE_CSUM_FEATURES       (CSUM_TCP | CSUM_UDP)
78
79 MODULE_DEPEND(age, pci, 1, 1, 1);
80 MODULE_DEPEND(age, ether, 1, 1, 1);
81 MODULE_DEPEND(age, miibus, 1, 1, 1);
82
83 /* Tunables. */
84 static int msi_disable = 0;
85 static int msix_disable = 0;
86 TUNABLE_INT("hw.age.msi_disable", &msi_disable);
87 TUNABLE_INT("hw.age.msix_disable", &msix_disable);
88
89 /*
90  * Devices supported by this driver.
91  */
92 static struct age_dev {
93         uint16_t        age_vendorid;
94         uint16_t        age_deviceid;
95         const char      *age_name;
96 } age_devs[] = {
97         { VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
98             "Attansic Technology Corp, L1 Gigabit Ethernet" },
99 };
100
101 static int age_miibus_readreg(device_t, int, int);
102 static int age_miibus_writereg(device_t, int, int, int);
103 static void age_miibus_statchg(device_t);
104 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
105 static int age_mediachange(struct ifnet *);
106 static int age_probe(device_t);
107 static void age_get_macaddr(struct age_softc *);
108 static void age_phy_reset(struct age_softc *);
109 static int age_attach(device_t);
110 static int age_detach(device_t);
111 static void age_sysctl_node(struct age_softc *);
112 static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
113 static int age_check_boundary(struct age_softc *);
114 static int age_dma_alloc(struct age_softc *);
115 static void age_dma_free(struct age_softc *);
116 static int age_shutdown(device_t);
117 static void age_setwol(struct age_softc *);
118 static int age_suspend(device_t);
119 static int age_resume(device_t);
120 static int age_encap(struct age_softc *, struct mbuf **);
121 static void age_tx_task(void *, int);
122 static void age_start(struct ifnet *);
123 static void age_watchdog(struct age_softc *);
124 static int age_ioctl(struct ifnet *, u_long, caddr_t);
125 static void age_mac_config(struct age_softc *);
126 static void age_link_task(void *, int);
127 static void age_stats_update(struct age_softc *);
128 static int age_intr(void *);
129 static void age_int_task(void *, int);
130 static void age_txintr(struct age_softc *, int);
131 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
132 static int age_rxintr(struct age_softc *, int, int);
133 static void age_tick(void *);
134 static void age_reset(struct age_softc *);
135 static void age_init(void *);
136 static void age_init_locked(struct age_softc *);
137 static void age_stop(struct age_softc *);
138 static void age_stop_txmac(struct age_softc *);
139 static void age_stop_rxmac(struct age_softc *);
140 static void age_init_tx_ring(struct age_softc *);
141 static int age_init_rx_ring(struct age_softc *);
142 static void age_init_rr_ring(struct age_softc *);
143 static void age_init_cmb_block(struct age_softc *);
144 static void age_init_smb_block(struct age_softc *);
145 static int age_newbuf(struct age_softc *, struct age_rxdesc *);
146 static void age_rxvlan(struct age_softc *);
147 static void age_rxfilter(struct age_softc *);
148 static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
149 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
150 static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
151 static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
152
153
154 static device_method_t age_methods[] = {
155         /* Device interface. */
156         DEVMETHOD(device_probe,         age_probe),
157         DEVMETHOD(device_attach,        age_attach),
158         DEVMETHOD(device_detach,        age_detach),
159         DEVMETHOD(device_shutdown,      age_shutdown),
160         DEVMETHOD(device_suspend,       age_suspend),
161         DEVMETHOD(device_resume,        age_resume),
162
163         /* MII interface. */
164         DEVMETHOD(miibus_readreg,       age_miibus_readreg),
165         DEVMETHOD(miibus_writereg,      age_miibus_writereg),
166         DEVMETHOD(miibus_statchg,       age_miibus_statchg),
167
168         { NULL, NULL }
169 };
170
171 static driver_t age_driver = {
172         "age",
173         age_methods,
174         sizeof(struct age_softc)
175 };
176
177 static devclass_t age_devclass;
178
179 DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
180 DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
181
182 static struct resource_spec age_res_spec_mem[] = {
183         { SYS_RES_MEMORY,       PCIR_BAR(0),    RF_ACTIVE },
184         { -1,                   0,              0 }
185 };
186
187 static struct resource_spec age_irq_spec_legacy[] = {
188         { SYS_RES_IRQ,          0,              RF_ACTIVE | RF_SHAREABLE },
189         { -1,                   0,              0 }
190 };
191
192 static struct resource_spec age_irq_spec_msi[] = {
193         { SYS_RES_IRQ,          1,              RF_ACTIVE },
194         { -1,                   0,              0 }
195 };
196
197 static struct resource_spec age_irq_spec_msix[] = {
198         { SYS_RES_IRQ,          1,              RF_ACTIVE },
199         { -1,                   0,              0 }
200 };
201
202 /*
203  *      Read a PHY register on the MII of the L1.
204  */
205 static int
206 age_miibus_readreg(device_t dev, int phy, int reg)
207 {
208         struct age_softc *sc;
209         uint32_t v;
210         int i;
211
212         sc = device_get_softc(dev);
213         if (phy != sc->age_phyaddr)
214                 return (0);
215
216         CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
217             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
218         for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
219                 DELAY(1);
220                 v = CSR_READ_4(sc, AGE_MDIO);
221                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
222                         break;
223         }
224
225         if (i == 0) {
226                 device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
227                 return (0);
228         }
229
230         return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
231 }
232
233 /*
234  *      Write a PHY register on the MII of the L1.
235  */
236 static int
237 age_miibus_writereg(device_t dev, int phy, int reg, int val)
238 {
239         struct age_softc *sc;
240         uint32_t v;
241         int i;
242
243         sc = device_get_softc(dev);
244         if (phy != sc->age_phyaddr)
245                 return (0);
246
247         CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
248             (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
249             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
250         for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
251                 DELAY(1);
252                 v = CSR_READ_4(sc, AGE_MDIO);
253                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
254                         break;
255         }
256
257         if (i == 0)
258                 device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
259
260         return (0);
261 }
262
263 /*
264  *      Callback from MII layer when media changes.
265  */
266 static void
267 age_miibus_statchg(device_t dev)
268 {
269         struct age_softc *sc;
270
271         sc = device_get_softc(dev);
272         taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
273 }
274
275 /*
276  *      Get the current interface media status.
277  */
278 static void
279 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
280 {
281         struct age_softc *sc;
282         struct mii_data *mii;
283
284         sc = ifp->if_softc;
285         AGE_LOCK(sc);
286         mii = device_get_softc(sc->age_miibus);
287
288         mii_pollstat(mii);
289         AGE_UNLOCK(sc);
290         ifmr->ifm_status = mii->mii_media_status;
291         ifmr->ifm_active = mii->mii_media_active;
292 }
293
294 /*
295  *      Set hardware to newly-selected media.
296  */
297 static int
298 age_mediachange(struct ifnet *ifp)
299 {
300         struct age_softc *sc;
301         struct mii_data *mii;
302         struct mii_softc *miisc;
303         int error;
304
305         sc = ifp->if_softc;
306         AGE_LOCK(sc);
307         mii = device_get_softc(sc->age_miibus);
308         if (mii->mii_instance != 0) {
309                 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
310                         mii_phy_reset(miisc);
311         }
312         error = mii_mediachg(mii);
313         AGE_UNLOCK(sc);
314
315         return (error);
316 }
317
318 static int
319 age_probe(device_t dev)
320 {
321         struct age_dev *sp;
322         int i;
323         uint16_t vendor, devid;
324
325         vendor = pci_get_vendor(dev);
326         devid = pci_get_device(dev);
327         sp = age_devs;
328         for (i = 0; i < sizeof(age_devs) / sizeof(age_devs[0]);
329             i++, sp++) {
330                 if (vendor == sp->age_vendorid &&
331                     devid == sp->age_deviceid) {
332                         device_set_desc(dev, sp->age_name);
333                         return (BUS_PROBE_DEFAULT);
334                 }
335         }
336
337         return (ENXIO);
338 }
339
340 static void
341 age_get_macaddr(struct age_softc *sc)
342 {
343         uint32_t ea[2], reg;
344         int i, vpdc;
345
346         reg = CSR_READ_4(sc, AGE_SPI_CTRL);
347         if ((reg & SPI_VPD_ENB) != 0) {
348                 /* Get VPD stored in TWSI EEPROM. */
349                 reg &= ~SPI_VPD_ENB;
350                 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
351         }
352
353         if (pci_find_extcap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
354                 /*
355                  * PCI VPD capability found, let TWSI reload EEPROM.
356                  * This will set ethernet address of controller.
357                  */
358                 CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
359                     TWSI_CTRL_SW_LD_START);
360                 for (i = 100; i > 0; i--) {
361                         DELAY(1000);
362                         reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
363                         if ((reg & TWSI_CTRL_SW_LD_START) == 0)
364                                 break;
365                 }
366                 if (i == 0)
367                         device_printf(sc->age_dev,
368                             "reloading EEPROM timeout!\n");
369         } else {
370                 if (bootverbose)
371                         device_printf(sc->age_dev,
372                             "PCI VPD capability not found!\n");
373         }
374
375         ea[0] = CSR_READ_4(sc, AGE_PAR0);
376         ea[1] = CSR_READ_4(sc, AGE_PAR1);
377         sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
378         sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
379         sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
380         sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
381         sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
382         sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
383 }
384
385 static void
386 age_phy_reset(struct age_softc *sc)
387 {
388         uint16_t reg, pn;
389         int i, linkup;
390
391         /* Reset PHY. */
392         CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
393         DELAY(2000);
394         CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
395         DELAY(2000);
396
397 #define ATPHY_DBG_ADDR          0x1D
398 #define ATPHY_DBG_DATA          0x1E
399 #define ATPHY_CDTC              0x16
400 #define PHY_CDTC_ENB            0x0001
401 #define PHY_CDTC_POFF           8
402 #define ATPHY_CDTS              0x1C
403 #define PHY_CDTS_STAT_OK        0x0000
404 #define PHY_CDTS_STAT_SHORT     0x0100
405 #define PHY_CDTS_STAT_OPEN      0x0200
406 #define PHY_CDTS_STAT_INVAL     0x0300
407 #define PHY_CDTS_STAT_MASK      0x0300
408
409         /* Check power saving mode. Magic from Linux. */
410         age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
411         for (linkup = 0, pn = 0; pn < 4; pn++) {
412                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
413                     (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
414                 for (i = 200; i > 0; i--) {
415                         DELAY(1000);
416                         reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
417                             ATPHY_CDTC);
418                         if ((reg & PHY_CDTC_ENB) == 0)
419                                 break;
420                 }
421                 DELAY(1000);
422                 reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
423                     ATPHY_CDTS);
424                 if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
425                         linkup++;
426                         break;
427                 }
428         }
429         age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
430             BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
431         if (linkup == 0) {
432                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
433                     ATPHY_DBG_ADDR, 0);
434                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
435                     ATPHY_DBG_DATA, 0x124E);
436                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
437                     ATPHY_DBG_ADDR, 1);
438                 reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
439                     ATPHY_DBG_DATA);
440                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
441                     ATPHY_DBG_DATA, reg | 0x03);
442                 /* XXX */
443                 DELAY(1500 * 1000);
444                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
445                     ATPHY_DBG_ADDR, 0);
446                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
447                     ATPHY_DBG_DATA, 0x024E);
448     }
449
450 #undef  ATPHY_DBG_ADDR
451 #undef  ATPHY_DBG_DATA
452 #undef  ATPHY_CDTC
453 #undef  PHY_CDTC_ENB
454 #undef  PHY_CDTC_POFF
455 #undef  ATPHY_CDTS
456 #undef  PHY_CDTS_STAT_OK
457 #undef  PHY_CDTS_STAT_SHORT
458 #undef  PHY_CDTS_STAT_OPEN
459 #undef  PHY_CDTS_STAT_INVAL
460 #undef  PHY_CDTS_STAT_MASK
461 }
462
463 static int
464 age_attach(device_t dev)
465 {
466         struct age_softc *sc;
467         struct ifnet *ifp;
468         uint16_t burst;
469         int error, i, msic, msixc, pmc;
470
471         error = 0;
472         sc = device_get_softc(dev);
473         sc->age_dev = dev;
474
475         mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
476             MTX_DEF);
477         callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
478         TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
479         TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
480
481         /* Map the device. */
482         pci_enable_busmaster(dev);
483         sc->age_res_spec = age_res_spec_mem;
484         sc->age_irq_spec = age_irq_spec_legacy;
485         error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
486         if (error != 0) {
487                 device_printf(dev, "cannot allocate memory resources.\n");
488                 goto fail;
489         }
490
491         /* Set PHY address. */
492         sc->age_phyaddr = AGE_PHY_ADDR;
493
494         /* Reset PHY. */
495         age_phy_reset(sc);
496
497         /* Reset the ethernet controller. */
498         age_reset(sc);
499
500         /* Get PCI and chip id/revision. */
501         sc->age_rev = pci_get_revid(dev);
502         sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
503             MASTER_CHIP_REV_SHIFT;
504         if (bootverbose) {
505                 device_printf(dev, "PCI device revision : 0x%04x\n",
506                     sc->age_rev);
507                 device_printf(dev, "Chip id/revision : 0x%04x\n",
508                     sc->age_chip_rev);
509         }
510
511         /*
512          * XXX
513          * Unintialized hardware returns an invalid chip id/revision
514          * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
515          * unplugged cable results in putting hardware into automatic
516          * power down mode which in turn returns invalld chip revision.
517          */
518         if (sc->age_chip_rev == 0xFFFF) {
519                 device_printf(dev,"invalid chip revision : 0x%04x -- "
520                     "not initialized?\n", sc->age_chip_rev);
521                 error = ENXIO;
522                 goto fail;
523         }
524
525         device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
526             CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
527             CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
528
529         /* Allocate IRQ resources. */
530         msixc = pci_msix_count(dev);
531         msic = pci_msi_count(dev);
532         if (bootverbose) {
533                 device_printf(dev, "MSIX count : %d\n", msixc);
534                 device_printf(dev, "MSI count : %d\n", msic);
535         }
536
537         /* Prefer MSIX over MSI. */
538         if (msix_disable == 0 || msi_disable == 0) {
539                 if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
540                     pci_alloc_msix(dev, &msixc) == 0) {
541                         if (msic == AGE_MSIX_MESSAGES) {
542                                 device_printf(dev, "Using %d MSIX messages.\n",
543                                     msixc);
544                                 sc->age_flags |= AGE_FLAG_MSIX;
545                                 sc->age_irq_spec = age_irq_spec_msix;
546                         } else
547                                 pci_release_msi(dev);
548                 }
549                 if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
550                     msic == AGE_MSI_MESSAGES &&
551                     pci_alloc_msi(dev, &msic) == 0) {
552                         if (msic == AGE_MSI_MESSAGES) {
553                                 device_printf(dev, "Using %d MSI messages.\n",
554                                     msic);
555                                 sc->age_flags |= AGE_FLAG_MSI;
556                                 sc->age_irq_spec = age_irq_spec_msi;
557                         } else
558                                 pci_release_msi(dev);
559                 }
560         }
561
562         error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
563         if (error != 0) {
564                 device_printf(dev, "cannot allocate IRQ resources.\n");
565                 goto fail;
566         }
567
568
569         /* Get DMA parameters from PCIe device control register. */
570         if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) {
571                 sc->age_flags |= AGE_FLAG_PCIE;
572                 burst = pci_read_config(dev, i + 0x08, 2);
573                 /* Max read request size. */
574                 sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
575                     DMA_CFG_RD_BURST_SHIFT;
576                 /* Max payload size. */
577                 sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
578                     DMA_CFG_WR_BURST_SHIFT;
579                 if (bootverbose) {
580                         device_printf(dev, "Read request size : %d bytes.\n",
581                             128 << ((burst >> 12) & 0x07));
582                         device_printf(dev, "TLP payload size : %d bytes.\n",
583                             128 << ((burst >> 5) & 0x07));
584                 }
585         } else {
586                 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
587                 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
588         }
589
590         /* Create device sysctl node. */
591         age_sysctl_node(sc);
592
593         if ((error = age_dma_alloc(sc) != 0))
594                 goto fail;
595
596         /* Load station address. */
597         age_get_macaddr(sc);
598
599         ifp = sc->age_ifp = if_alloc(IFT_ETHER);
600         if (ifp == NULL) {
601                 device_printf(dev, "cannot allocate ifnet structure.\n");
602                 error = ENXIO;
603                 goto fail;
604         }
605
606         ifp->if_softc = sc;
607         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
608         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
609         ifp->if_ioctl = age_ioctl;
610         ifp->if_start = age_start;
611         ifp->if_init = age_init;
612         ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
613         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
614         IFQ_SET_READY(&ifp->if_snd);
615         ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
616         ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
617         if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
618                 sc->age_flags |= AGE_FLAG_PMCAP;
619                 ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
620         }
621         ifp->if_capenable = ifp->if_capabilities;
622
623         /* Set up MII bus. */
624         if ((error = mii_phy_probe(dev, &sc->age_miibus, age_mediachange,
625             age_mediastatus)) != 0) {
626                 device_printf(dev, "no PHY found!\n");
627                 goto fail;
628         }
629
630         ether_ifattach(ifp, sc->age_eaddr);
631
632         /* VLAN capability setup. */
633         ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
634             IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
635         ifp->if_capenable = ifp->if_capabilities;
636
637         /* Tell the upper layer(s) we support long frames. */
638         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
639
640         /* Create local taskq. */
641         TASK_INIT(&sc->age_tx_task, 1, age_tx_task, ifp);
642         sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
643             taskqueue_thread_enqueue, &sc->age_tq);
644         if (sc->age_tq == NULL) {
645                 device_printf(dev, "could not create taskqueue.\n");
646                 ether_ifdetach(ifp);
647                 error = ENXIO;
648                 goto fail;
649         }
650         taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
651             device_get_nameunit(sc->age_dev));
652
653         if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
654                 msic = AGE_MSIX_MESSAGES;
655         else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
656                 msic = AGE_MSI_MESSAGES;
657         else
658                 msic = 1;
659         for (i = 0; i < msic; i++) {
660                 error = bus_setup_intr(dev, sc->age_irq[i],
661                     INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
662                     &sc->age_intrhand[i]);
663                 if (error != 0)
664                         break;
665         }
666         if (error != 0) {
667                 device_printf(dev, "could not set up interrupt handler.\n");
668                 taskqueue_free(sc->age_tq);
669                 sc->age_tq = NULL;
670                 ether_ifdetach(ifp);
671                 goto fail;
672         }
673
674 fail:
675         if (error != 0)
676                 age_detach(dev);
677
678         return (error);
679 }
680
681 static int
682 age_detach(device_t dev)
683 {
684         struct age_softc *sc;
685         struct ifnet *ifp;
686         int i, msic;
687
688         sc = device_get_softc(dev);
689
690         ifp = sc->age_ifp;
691         if (device_is_attached(dev)) {
692                 AGE_LOCK(sc);
693                 sc->age_flags |= AGE_FLAG_DETACH;
694                 age_stop(sc);
695                 AGE_UNLOCK(sc);
696                 callout_drain(&sc->age_tick_ch);
697                 taskqueue_drain(sc->age_tq, &sc->age_int_task);
698                 taskqueue_drain(sc->age_tq, &sc->age_tx_task);
699                 taskqueue_drain(taskqueue_swi, &sc->age_link_task);
700                 ether_ifdetach(ifp);
701         }
702
703         if (sc->age_tq != NULL) {
704                 taskqueue_drain(sc->age_tq, &sc->age_int_task);
705                 taskqueue_free(sc->age_tq);
706                 sc->age_tq = NULL;
707         }
708
709         if (sc->age_miibus != NULL) {
710                 device_delete_child(dev, sc->age_miibus);
711                 sc->age_miibus = NULL;
712         }
713         bus_generic_detach(dev);
714         age_dma_free(sc);
715
716         if (ifp != NULL) {
717                 if_free(ifp);
718                 sc->age_ifp = NULL;
719         }
720
721         if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
722                 msic = AGE_MSIX_MESSAGES;
723         else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
724                 msic = AGE_MSI_MESSAGES;
725         else
726                 msic = 1;
727         for (i = 0; i < msic; i++) {
728                 if (sc->age_intrhand[i] != NULL) {
729                         bus_teardown_intr(dev, sc->age_irq[i],
730                             sc->age_intrhand[i]);
731                         sc->age_intrhand[i] = NULL;
732                 }
733         }
734
735         bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
736         if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
737                 pci_release_msi(dev);
738         bus_release_resources(dev, sc->age_res_spec, sc->age_res);
739         mtx_destroy(&sc->age_mtx);
740
741         return (0);
742 }
743
744 static void
745 age_sysctl_node(struct age_softc *sc)
746 {
747         int error;
748
749         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
750             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
751             "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
752             "I", "Statistics");
753
754         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
755             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
756             "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
757             sysctl_hw_age_int_mod, "I", "age interrupt moderation");
758
759         /* Pull in device tunables. */
760         sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
761         error = resource_int_value(device_get_name(sc->age_dev),
762             device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
763         if (error == 0) {
764                 if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
765                     sc->age_int_mod > AGE_IM_TIMER_MAX) {
766                         device_printf(sc->age_dev,
767                             "int_mod value out of range; using default: %d\n",
768                             AGE_IM_TIMER_DEFAULT);
769                         sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
770                 }
771         }
772
773         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
774             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
775             "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit,
776             0, sysctl_hw_age_proc_limit, "I",
777             "max number of Rx events to process");
778
779         /* Pull in device tunables. */
780         sc->age_process_limit = AGE_PROC_DEFAULT;
781         error = resource_int_value(device_get_name(sc->age_dev),
782             device_get_unit(sc->age_dev), "process_limit",
783             &sc->age_process_limit);
784         if (error == 0) {
785                 if (sc->age_process_limit < AGE_PROC_MIN ||
786                     sc->age_process_limit > AGE_PROC_MAX) {
787                         device_printf(sc->age_dev,
788                             "process_limit value out of range; "
789                             "using default: %d\n", AGE_PROC_DEFAULT);
790                         sc->age_process_limit = AGE_PROC_DEFAULT;
791                 }
792         }
793 }
794
795 struct age_dmamap_arg {
796         bus_addr_t      age_busaddr;
797 };
798
799 static void
800 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
801 {
802         struct age_dmamap_arg *ctx;
803
804         if (error != 0)
805                 return;
806
807         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
808
809         ctx = (struct age_dmamap_arg *)arg;
810         ctx->age_busaddr = segs[0].ds_addr;
811 }
812
813 /*
814  * Attansic L1 controller have single register to specify high
815  * address part of DMA blocks. So all descriptor structures and
816  * DMA memory blocks should have the same high address of given
817  * 4GB address space(i.e. crossing 4GB boundary is not allowed).
818  */
819 static int
820 age_check_boundary(struct age_softc *sc)
821 {
822         bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
823         bus_addr_t cmb_block_end, smb_block_end;
824
825         /* Tx/Rx descriptor queue should reside within 4GB boundary. */
826         tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
827         rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
828         rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
829         cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
830         smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
831
832         if ((AGE_ADDR_HI(tx_ring_end) !=
833             AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
834             (AGE_ADDR_HI(rx_ring_end) !=
835             AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
836             (AGE_ADDR_HI(rr_ring_end) !=
837             AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
838             (AGE_ADDR_HI(cmb_block_end) !=
839             AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
840             (AGE_ADDR_HI(smb_block_end) !=
841             AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
842                 return (EFBIG);
843
844         if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
845             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
846             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
847             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
848                 return (EFBIG);
849
850         return (0);
851 }
852
853 static int
854 age_dma_alloc(struct age_softc *sc)
855 {
856         struct age_txdesc *txd;
857         struct age_rxdesc *rxd;
858         bus_addr_t lowaddr;
859         struct age_dmamap_arg ctx;
860         int error, i;
861
862         lowaddr = BUS_SPACE_MAXADDR;
863
864 again:
865         /* Create parent ring/DMA block tag. */
866         error = bus_dma_tag_create(
867             bus_get_dma_tag(sc->age_dev), /* parent */
868             1, 0,                       /* alignment, boundary */
869             lowaddr,                    /* lowaddr */
870             BUS_SPACE_MAXADDR,          /* highaddr */
871             NULL, NULL,                 /* filter, filterarg */
872             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
873             0,                          /* nsegments */
874             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
875             0,                          /* flags */
876             NULL, NULL,                 /* lockfunc, lockarg */
877             &sc->age_cdata.age_parent_tag);
878         if (error != 0) {
879                 device_printf(sc->age_dev,
880                     "could not create parent DMA tag.\n");
881                 goto fail;
882         }
883
884         /* Create tag for Tx ring. */
885         error = bus_dma_tag_create(
886             sc->age_cdata.age_parent_tag, /* parent */
887             AGE_TX_RING_ALIGN, 0,       /* alignment, boundary */
888             BUS_SPACE_MAXADDR,          /* lowaddr */
889             BUS_SPACE_MAXADDR,          /* highaddr */
890             NULL, NULL,                 /* filter, filterarg */
891             AGE_TX_RING_SZ,             /* maxsize */
892             1,                          /* nsegments */
893             AGE_TX_RING_SZ,             /* maxsegsize */
894             0,                          /* flags */
895             NULL, NULL,                 /* lockfunc, lockarg */
896             &sc->age_cdata.age_tx_ring_tag);
897         if (error != 0) {
898                 device_printf(sc->age_dev,
899                     "could not create Tx ring DMA tag.\n");
900                 goto fail;
901         }
902
903         /* Create tag for Rx ring. */
904         error = bus_dma_tag_create(
905             sc->age_cdata.age_parent_tag, /* parent */
906             AGE_RX_RING_ALIGN, 0,       /* alignment, boundary */
907             BUS_SPACE_MAXADDR,          /* lowaddr */
908             BUS_SPACE_MAXADDR,          /* highaddr */
909             NULL, NULL,                 /* filter, filterarg */
910             AGE_RX_RING_SZ,             /* maxsize */
911             1,                          /* nsegments */
912             AGE_RX_RING_SZ,             /* maxsegsize */
913             0,                          /* flags */
914             NULL, NULL,                 /* lockfunc, lockarg */
915             &sc->age_cdata.age_rx_ring_tag);
916         if (error != 0) {
917                 device_printf(sc->age_dev,
918                     "could not create Rx ring DMA tag.\n");
919                 goto fail;
920         }
921
922         /* Create tag for Rx return ring. */
923         error = bus_dma_tag_create(
924             sc->age_cdata.age_parent_tag, /* parent */
925             AGE_RR_RING_ALIGN, 0,       /* alignment, boundary */
926             BUS_SPACE_MAXADDR,          /* lowaddr */
927             BUS_SPACE_MAXADDR,          /* highaddr */
928             NULL, NULL,                 /* filter, filterarg */
929             AGE_RR_RING_SZ,             /* maxsize */
930             1,                          /* nsegments */
931             AGE_RR_RING_SZ,             /* maxsegsize */
932             0,                          /* flags */
933             NULL, NULL,                 /* lockfunc, lockarg */
934             &sc->age_cdata.age_rr_ring_tag);
935         if (error != 0) {
936                 device_printf(sc->age_dev,
937                     "could not create Rx return ring DMA tag.\n");
938                 goto fail;
939         }
940
941         /* Create tag for coalesing message block. */
942         error = bus_dma_tag_create(
943             sc->age_cdata.age_parent_tag, /* parent */
944             AGE_CMB_ALIGN, 0,           /* alignment, boundary */
945             BUS_SPACE_MAXADDR,          /* lowaddr */
946             BUS_SPACE_MAXADDR,          /* highaddr */
947             NULL, NULL,                 /* filter, filterarg */
948             AGE_CMB_BLOCK_SZ,           /* maxsize */
949             1,                          /* nsegments */
950             AGE_CMB_BLOCK_SZ,           /* maxsegsize */
951             0,                          /* flags */
952             NULL, NULL,                 /* lockfunc, lockarg */
953             &sc->age_cdata.age_cmb_block_tag);
954         if (error != 0) {
955                 device_printf(sc->age_dev,
956                     "could not create CMB DMA tag.\n");
957                 goto fail;
958         }
959
960         /* Create tag for statistics message block. */
961         error = bus_dma_tag_create(
962             sc->age_cdata.age_parent_tag, /* parent */
963             AGE_SMB_ALIGN, 0,           /* alignment, boundary */
964             BUS_SPACE_MAXADDR,          /* lowaddr */
965             BUS_SPACE_MAXADDR,          /* highaddr */
966             NULL, NULL,                 /* filter, filterarg */
967             AGE_SMB_BLOCK_SZ,           /* maxsize */
968             1,                          /* nsegments */
969             AGE_SMB_BLOCK_SZ,           /* maxsegsize */
970             0,                          /* flags */
971             NULL, NULL,                 /* lockfunc, lockarg */
972             &sc->age_cdata.age_smb_block_tag);
973         if (error != 0) {
974                 device_printf(sc->age_dev,
975                     "could not create SMB DMA tag.\n");
976                 goto fail;
977         }
978
979         /* Allocate DMA'able memory and load the DMA map. */
980         error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
981             (void **)&sc->age_rdata.age_tx_ring,
982             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
983             &sc->age_cdata.age_tx_ring_map);
984         if (error != 0) {
985                 device_printf(sc->age_dev,
986                     "could not allocate DMA'able memory for Tx ring.\n");
987                 goto fail;
988         }
989         ctx.age_busaddr = 0;
990         error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
991             sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
992             AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
993         if (error != 0 || ctx.age_busaddr == 0) {
994                 device_printf(sc->age_dev,
995                     "could not load DMA'able memory for Tx ring.\n");
996                 goto fail;
997         }
998         sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
999         /* Rx ring */
1000         error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
1001             (void **)&sc->age_rdata.age_rx_ring,
1002             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1003             &sc->age_cdata.age_rx_ring_map);
1004         if (error != 0) {
1005                 device_printf(sc->age_dev,
1006                     "could not allocate DMA'able memory for Rx ring.\n");
1007                 goto fail;
1008         }
1009         ctx.age_busaddr = 0;
1010         error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1011             sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1012             AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1013         if (error != 0 || ctx.age_busaddr == 0) {
1014                 device_printf(sc->age_dev,
1015                     "could not load DMA'able memory for Rx ring.\n");
1016                 goto fail;
1017         }
1018         sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1019         /* Rx return ring */
1020         error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1021             (void **)&sc->age_rdata.age_rr_ring,
1022             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1023             &sc->age_cdata.age_rr_ring_map);
1024         if (error != 0) {
1025                 device_printf(sc->age_dev,
1026                     "could not allocate DMA'able memory for Rx return ring.\n");
1027                 goto fail;
1028         }
1029         ctx.age_busaddr = 0;
1030         error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1031             sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1032             AGE_RR_RING_SZ, age_dmamap_cb,
1033             &ctx, 0);
1034         if (error != 0 || ctx.age_busaddr == 0) {
1035                 device_printf(sc->age_dev,
1036                     "could not load DMA'able memory for Rx return ring.\n");
1037                 goto fail;
1038         }
1039         sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1040         /* CMB block */
1041         error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1042             (void **)&sc->age_rdata.age_cmb_block,
1043             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1044             &sc->age_cdata.age_cmb_block_map);
1045         if (error != 0) {
1046                 device_printf(sc->age_dev,
1047                     "could not allocate DMA'able memory for CMB block.\n");
1048                 goto fail;
1049         }
1050         ctx.age_busaddr = 0;
1051         error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1052             sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1053             AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1054         if (error != 0 || ctx.age_busaddr == 0) {
1055                 device_printf(sc->age_dev,
1056                     "could not load DMA'able memory for CMB block.\n");
1057                 goto fail;
1058         }
1059         sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1060         /* SMB block */
1061         error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1062             (void **)&sc->age_rdata.age_smb_block,
1063             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1064             &sc->age_cdata.age_smb_block_map);
1065         if (error != 0) {
1066                 device_printf(sc->age_dev,
1067                     "could not allocate DMA'able memory for SMB block.\n");
1068                 goto fail;
1069         }
1070         ctx.age_busaddr = 0;
1071         error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1072             sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1073             AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1074         if (error != 0 || ctx.age_busaddr == 0) {
1075                 device_printf(sc->age_dev,
1076                     "could not load DMA'able memory for SMB block.\n");
1077                 goto fail;
1078         }
1079         sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1080
1081         /*
1082          * All ring buffer and DMA blocks should have the same
1083          * high address part of 64bit DMA address space.
1084          */
1085         if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1086             (error = age_check_boundary(sc)) != 0) {
1087                 device_printf(sc->age_dev, "4GB boundary crossed, "
1088                     "switching to 32bit DMA addressing mode.\n");
1089                 age_dma_free(sc);
1090                 /* Limit DMA address space to 32bit and try again. */
1091                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
1092                 goto again;
1093         }
1094
1095         /*
1096          * Create Tx/Rx buffer parent tag.
1097          * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1098          * so it needs separate parent DMA tag.
1099          */
1100         error = bus_dma_tag_create(
1101             bus_get_dma_tag(sc->age_dev), /* parent */
1102             1, 0,                       /* alignment, boundary */
1103             BUS_SPACE_MAXADDR,          /* lowaddr */
1104             BUS_SPACE_MAXADDR,          /* highaddr */
1105             NULL, NULL,                 /* filter, filterarg */
1106             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
1107             0,                          /* nsegments */
1108             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
1109             0,                          /* flags */
1110             NULL, NULL,                 /* lockfunc, lockarg */
1111             &sc->age_cdata.age_buffer_tag);
1112         if (error != 0) {
1113                 device_printf(sc->age_dev,
1114                     "could not create parent buffer DMA tag.\n");
1115                 goto fail;
1116         }
1117
1118         /* Create tag for Tx buffers. */
1119         error = bus_dma_tag_create(
1120             sc->age_cdata.age_buffer_tag, /* parent */
1121             1, 0,                       /* alignment, boundary */
1122             BUS_SPACE_MAXADDR,          /* lowaddr */
1123             BUS_SPACE_MAXADDR,          /* highaddr */
1124             NULL, NULL,                 /* filter, filterarg */
1125             AGE_TSO_MAXSIZE,            /* maxsize */
1126             AGE_MAXTXSEGS,              /* nsegments */
1127             AGE_TSO_MAXSEGSIZE,         /* maxsegsize */
1128             0,                          /* flags */
1129             NULL, NULL,                 /* lockfunc, lockarg */
1130             &sc->age_cdata.age_tx_tag);
1131         if (error != 0) {
1132                 device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1133                 goto fail;
1134         }
1135
1136         /* Create tag for Rx buffers. */
1137         error = bus_dma_tag_create(
1138             sc->age_cdata.age_buffer_tag, /* parent */
1139             1, 0,                       /* alignment, boundary */
1140             BUS_SPACE_MAXADDR,          /* lowaddr */
1141             BUS_SPACE_MAXADDR,          /* highaddr */
1142             NULL, NULL,                 /* filter, filterarg */
1143             MCLBYTES,                   /* maxsize */
1144             1,                          /* nsegments */
1145             MCLBYTES,                   /* maxsegsize */
1146             0,                          /* flags */
1147             NULL, NULL,                 /* lockfunc, lockarg */
1148             &sc->age_cdata.age_rx_tag);
1149         if (error != 0) {
1150                 device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1151                 goto fail;
1152         }
1153
1154         /* Create DMA maps for Tx buffers. */
1155         for (i = 0; i < AGE_TX_RING_CNT; i++) {
1156                 txd = &sc->age_cdata.age_txdesc[i];
1157                 txd->tx_m = NULL;
1158                 txd->tx_dmamap = NULL;
1159                 error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1160                     &txd->tx_dmamap);
1161                 if (error != 0) {
1162                         device_printf(sc->age_dev,
1163                             "could not create Tx dmamap.\n");
1164                         goto fail;
1165                 }
1166         }
1167         /* Create DMA maps for Rx buffers. */
1168         if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1169             &sc->age_cdata.age_rx_sparemap)) != 0) {
1170                 device_printf(sc->age_dev,
1171                     "could not create spare Rx dmamap.\n");
1172                 goto fail;
1173         }
1174         for (i = 0; i < AGE_RX_RING_CNT; i++) {
1175                 rxd = &sc->age_cdata.age_rxdesc[i];
1176                 rxd->rx_m = NULL;
1177                 rxd->rx_dmamap = NULL;
1178                 error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1179                     &rxd->rx_dmamap);
1180                 if (error != 0) {
1181                         device_printf(sc->age_dev,
1182                             "could not create Rx dmamap.\n");
1183                         goto fail;
1184                 }
1185         }
1186
1187 fail:
1188         return (error);
1189 }
1190
1191 static void
1192 age_dma_free(struct age_softc *sc)
1193 {
1194         struct age_txdesc *txd;
1195         struct age_rxdesc *rxd;
1196         int i;
1197
1198         /* Tx buffers */
1199         if (sc->age_cdata.age_tx_tag != NULL) {
1200                 for (i = 0; i < AGE_TX_RING_CNT; i++) {
1201                         txd = &sc->age_cdata.age_txdesc[i];
1202                         if (txd->tx_dmamap != NULL) {
1203                                 bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1204                                     txd->tx_dmamap);
1205                                 txd->tx_dmamap = NULL;
1206                         }
1207                 }
1208                 bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1209                 sc->age_cdata.age_tx_tag = NULL;
1210         }
1211         /* Rx buffers */
1212         if (sc->age_cdata.age_rx_tag != NULL) {
1213                 for (i = 0; i < AGE_RX_RING_CNT; i++) {
1214                         rxd = &sc->age_cdata.age_rxdesc[i];
1215                         if (rxd->rx_dmamap != NULL) {
1216                                 bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1217                                     rxd->rx_dmamap);
1218                                 rxd->rx_dmamap = NULL;
1219                         }
1220                 }
1221                 if (sc->age_cdata.age_rx_sparemap != NULL) {
1222                         bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1223                             sc->age_cdata.age_rx_sparemap);
1224                         sc->age_cdata.age_rx_sparemap = NULL;
1225                 }
1226                 bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1227                 sc->age_cdata.age_rx_tag = NULL;
1228         }
1229         /* Tx ring. */
1230         if (sc->age_cdata.age_tx_ring_tag != NULL) {
1231                 if (sc->age_cdata.age_tx_ring_map != NULL)
1232                         bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1233                             sc->age_cdata.age_tx_ring_map);
1234                 if (sc->age_cdata.age_tx_ring_map != NULL &&
1235                     sc->age_rdata.age_tx_ring != NULL)
1236                         bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1237                             sc->age_rdata.age_tx_ring,
1238                             sc->age_cdata.age_tx_ring_map);
1239                 sc->age_rdata.age_tx_ring = NULL;
1240                 sc->age_cdata.age_tx_ring_map = NULL;
1241                 bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1242                 sc->age_cdata.age_tx_ring_tag = NULL;
1243         }
1244         /* Rx ring. */
1245         if (sc->age_cdata.age_rx_ring_tag != NULL) {
1246                 if (sc->age_cdata.age_rx_ring_map != NULL)
1247                         bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1248                             sc->age_cdata.age_rx_ring_map);
1249                 if (sc->age_cdata.age_rx_ring_map != NULL &&
1250                     sc->age_rdata.age_rx_ring != NULL)
1251                         bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1252                             sc->age_rdata.age_rx_ring,
1253                             sc->age_cdata.age_rx_ring_map);
1254                 sc->age_rdata.age_rx_ring = NULL;
1255                 sc->age_cdata.age_rx_ring_map = NULL;
1256                 bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1257                 sc->age_cdata.age_rx_ring_tag = NULL;
1258         }
1259         /* Rx return ring. */
1260         if (sc->age_cdata.age_rr_ring_tag != NULL) {
1261                 if (sc->age_cdata.age_rr_ring_map != NULL)
1262                         bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1263                             sc->age_cdata.age_rr_ring_map);
1264                 if (sc->age_cdata.age_rr_ring_map != NULL &&
1265                     sc->age_rdata.age_rr_ring != NULL)
1266                         bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1267                             sc->age_rdata.age_rr_ring,
1268                             sc->age_cdata.age_rr_ring_map);
1269                 sc->age_rdata.age_rr_ring = NULL;
1270                 sc->age_cdata.age_rr_ring_map = NULL;
1271                 bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1272                 sc->age_cdata.age_rr_ring_tag = NULL;
1273         }
1274         /* CMB block */
1275         if (sc->age_cdata.age_cmb_block_tag != NULL) {
1276                 if (sc->age_cdata.age_cmb_block_map != NULL)
1277                         bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1278                             sc->age_cdata.age_cmb_block_map);
1279                 if (sc->age_cdata.age_cmb_block_map != NULL &&
1280                     sc->age_rdata.age_cmb_block != NULL)
1281                         bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1282                             sc->age_rdata.age_cmb_block,
1283                             sc->age_cdata.age_cmb_block_map);
1284                 sc->age_rdata.age_cmb_block = NULL;
1285                 sc->age_cdata.age_cmb_block_map = NULL;
1286                 bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1287                 sc->age_cdata.age_cmb_block_tag = NULL;
1288         }
1289         /* SMB block */
1290         if (sc->age_cdata.age_smb_block_tag != NULL) {
1291                 if (sc->age_cdata.age_smb_block_map != NULL)
1292                         bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1293                             sc->age_cdata.age_smb_block_map);
1294                 if (sc->age_cdata.age_smb_block_map != NULL &&
1295                     sc->age_rdata.age_smb_block != NULL)
1296                         bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1297                             sc->age_rdata.age_smb_block,
1298                             sc->age_cdata.age_smb_block_map);
1299                 sc->age_rdata.age_smb_block = NULL;
1300                 sc->age_cdata.age_smb_block_map = NULL;
1301                 bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1302                 sc->age_cdata.age_smb_block_tag = NULL;
1303         }
1304
1305         if (sc->age_cdata.age_buffer_tag != NULL) {
1306                 bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1307                 sc->age_cdata.age_buffer_tag = NULL;
1308         }
1309         if (sc->age_cdata.age_parent_tag != NULL) {
1310                 bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1311                 sc->age_cdata.age_parent_tag = NULL;
1312         }
1313 }
1314
1315 /*
1316  *      Make sure the interface is stopped at reboot time.
1317  */
1318 static int
1319 age_shutdown(device_t dev)
1320 {
1321
1322         return (age_suspend(dev));
1323 }
1324
1325 static void
1326 age_setwol(struct age_softc *sc)
1327 {
1328         struct ifnet *ifp;
1329         struct mii_data *mii;
1330         uint32_t reg, pmcs;
1331         uint16_t pmstat;
1332         int aneg, i, pmc;
1333
1334         AGE_LOCK_ASSERT(sc);
1335
1336         if (pci_find_extcap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1337                 CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1338                 /*
1339                  * No PME capability, PHY power down.
1340                  * XXX
1341                  * Due to an unknown reason powering down PHY resulted
1342                  * in unexpected results such as inaccessbility of
1343                  * hardware of freshly rebooted system. Disable
1344                  * powering down PHY until I got more information for
1345                  * Attansic/Atheros PHY hardwares.
1346                  */
1347 #ifdef notyet
1348                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1349                     MII_BMCR, BMCR_PDOWN);
1350 #endif
1351                 return;
1352         }
1353
1354         ifp = sc->age_ifp;
1355         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1356                 /*
1357                  * Note, this driver resets the link speed to 10/100Mbps with
1358                  * auto-negotiation but we don't know whether that operation
1359                  * would succeed or not as it have no control after powering
1360                  * off. If the renegotiation fail WOL may not work. Running
1361                  * at 1Gbps will draw more power than 375mA at 3.3V which is
1362                  * specified in PCI specification and that would result in
1363                  * complete shutdowning power to ethernet controller.
1364                  *
1365                  * TODO
1366                  *  Save current negotiated media speed/duplex/flow-control
1367                  *  to softc and restore the same link again after resuming.
1368                  *  PHY handling such as power down/resetting to 100Mbps
1369                  *  may be better handled in suspend method in phy driver.
1370                  */
1371                 mii = device_get_softc(sc->age_miibus);
1372                 mii_pollstat(mii);
1373                 aneg = 0;
1374                 if ((mii->mii_media_status & IFM_AVALID) != 0) {
1375                         switch IFM_SUBTYPE(mii->mii_media_active) {
1376                         case IFM_10_T:
1377                         case IFM_100_TX:
1378                                 goto got_link;
1379                         case IFM_1000_T:
1380                                 aneg++;
1381                         default:
1382                                 break;
1383                         }
1384                 }
1385                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1386                     MII_100T2CR, 0);
1387                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1388                     MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1389                     ANAR_10 | ANAR_CSMA);
1390                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1391                     MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1392                 DELAY(1000);
1393                 if (aneg != 0) {
1394                         /* Poll link state until age(4) get a 10/100 link. */
1395                         for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1396                                 mii_pollstat(mii);
1397                                 if ((mii->mii_media_status & IFM_AVALID) != 0) {
1398                                         switch (IFM_SUBTYPE(
1399                                             mii->mii_media_active)) {
1400                                         case IFM_10_T:
1401                                         case IFM_100_TX:
1402                                                 age_mac_config(sc);
1403                                                 goto got_link;
1404                                         default:
1405                                                 break;
1406                                         }
1407                                 }
1408                                 AGE_UNLOCK(sc);
1409                                 pause("agelnk", hz);
1410                                 AGE_LOCK(sc);
1411                         }
1412                         if (i == MII_ANEGTICKS_GIGE)
1413                                 device_printf(sc->age_dev,
1414                                     "establishing link failed, "
1415                                     "WOL may not work!");
1416                 }
1417                 /*
1418                  * No link, force MAC to have 100Mbps, full-duplex link.
1419                  * This is the last resort and may/may not work.
1420                  */
1421                 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1422                 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1423                 age_mac_config(sc);
1424         }
1425
1426 got_link:
1427         pmcs = 0;
1428         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1429                 pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1430         CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1431         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1432         reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1433         reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1434         if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1435                 reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1436         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1437                 reg |= MAC_CFG_RX_ENB;
1438                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1439         }
1440
1441         /* Request PME. */
1442         pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1443         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1444         if ((ifp->if_capenable & IFCAP_WOL) != 0)
1445                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1446         pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1447 #ifdef notyet
1448         /* See above for powering down PHY issues. */
1449         if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1450                 /* No WOL, PHY power down. */
1451                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1452                     MII_BMCR, BMCR_PDOWN);
1453         }
1454 #endif
1455 }
1456
1457 static int
1458 age_suspend(device_t dev)
1459 {
1460         struct age_softc *sc;
1461
1462         sc = device_get_softc(dev);
1463
1464         AGE_LOCK(sc);
1465         age_stop(sc);
1466         age_setwol(sc);
1467         AGE_UNLOCK(sc);
1468
1469         return (0);
1470 }
1471
1472 static int
1473 age_resume(device_t dev)
1474 {
1475         struct age_softc *sc;
1476         struct ifnet *ifp;
1477
1478         sc = device_get_softc(dev);
1479
1480         AGE_LOCK(sc);
1481         age_phy_reset(sc);
1482         ifp = sc->age_ifp;
1483         if ((ifp->if_flags & IFF_UP) != 0)
1484                 age_init_locked(sc);
1485
1486         AGE_UNLOCK(sc);
1487
1488         return (0);
1489 }
1490
1491 static int
1492 age_encap(struct age_softc *sc, struct mbuf **m_head)
1493 {
1494         struct age_txdesc *txd, *txd_last;
1495         struct tx_desc *desc;
1496         struct mbuf *m;
1497         struct ip *ip;
1498         struct tcphdr *tcp;
1499         bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1500         bus_dmamap_t map;
1501         uint32_t cflags, ip_off, poff, vtag;
1502         int error, i, nsegs, prod, si;
1503
1504         AGE_LOCK_ASSERT(sc);
1505
1506         M_ASSERTPKTHDR((*m_head));
1507
1508         m = *m_head;
1509         ip = NULL;
1510         tcp = NULL;
1511         cflags = vtag = 0;
1512         ip_off = poff = 0;
1513         if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1514                 /*
1515                  * L1 requires offset of TCP/UDP payload in its Tx
1516                  * descriptor to perform hardware Tx checksum offload.
1517                  * Additionally, TSO requires IP/TCP header size and
1518                  * modification of IP/TCP header in order to make TSO
1519                  * engine work. This kind of operation takes many CPU
1520                  * cycles on FreeBSD so fast host CPU is needed to get
1521                  * smooth TSO performance.
1522                  */
1523                 struct ether_header *eh;
1524
1525                 if (M_WRITABLE(m) == 0) {
1526                         /* Get a writable copy. */
1527                         m = m_dup(*m_head, M_DONTWAIT);
1528                         /* Release original mbufs. */
1529                         m_freem(*m_head);
1530                         if (m == NULL) {
1531                                 *m_head = NULL;
1532                                 return (ENOBUFS);
1533                         }
1534                         *m_head = m;
1535                 }
1536                 ip_off = sizeof(struct ether_header);
1537                 m = m_pullup(m, ip_off);
1538                 if (m == NULL) {
1539                         *m_head = NULL;
1540                         return (ENOBUFS);
1541                 }
1542                 eh = mtod(m, struct ether_header *);
1543                 /*
1544                  * Check if hardware VLAN insertion is off.
1545                  * Additional check for LLC/SNAP frame?
1546                  */
1547                 if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1548                         ip_off = sizeof(struct ether_vlan_header);
1549                         m = m_pullup(m, ip_off);
1550                         if (m == NULL) {
1551                                 *m_head = NULL;
1552                                 return (ENOBUFS);
1553                         }
1554                 }
1555                 m = m_pullup(m, ip_off + sizeof(struct ip));
1556                 if (m == NULL) {
1557                         *m_head = NULL;
1558                         return (ENOBUFS);
1559                 }
1560                 ip = (struct ip *)(mtod(m, char *) + ip_off);
1561                 poff = ip_off + (ip->ip_hl << 2);
1562                 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1563                         m = m_pullup(m, poff + sizeof(struct tcphdr));
1564                         if (m == NULL) {
1565                                 *m_head = NULL;
1566                                 return (ENOBUFS);
1567                         }
1568                         ip = (struct ip *)(mtod(m, char *) + ip_off);
1569                         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1570                         /*
1571                          * L1 requires IP/TCP header size and offset as
1572                          * well as TCP pseudo checksum which complicates
1573                          * TSO configuration. I guess this comes from the
1574                          * adherence to Microsoft NDIS Large Send
1575                          * specification which requires insertion of
1576                          * pseudo checksum by upper stack. The pseudo
1577                          * checksum that NDIS refers to doesn't include
1578                          * TCP payload length so age(4) should recompute
1579                          * the pseudo checksum here. Hopefully this wouldn't
1580                          * be much burden on modern CPUs.
1581                          * Reset IP checksum and recompute TCP pseudo
1582                          * checksum as NDIS specification said.
1583                          */
1584                         ip->ip_sum = 0;
1585                         if (poff + (tcp->th_off << 2) == m->m_pkthdr.len)
1586                                 tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1587                                     ip->ip_dst.s_addr,
1588                                     htons((tcp->th_off << 2) + IPPROTO_TCP));
1589                         else
1590                                 tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1591                                     ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1592                 }
1593                 *m_head = m;
1594         }
1595
1596         si = prod = sc->age_cdata.age_tx_prod;
1597         txd = &sc->age_cdata.age_txdesc[prod];
1598         txd_last = txd;
1599         map = txd->tx_dmamap;
1600
1601         error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1602             *m_head, txsegs, &nsegs, 0);
1603         if (error == EFBIG) {
1604                 m = m_collapse(*m_head, M_DONTWAIT, AGE_MAXTXSEGS);
1605                 if (m == NULL) {
1606                         m_freem(*m_head);
1607                         *m_head = NULL;
1608                         return (ENOMEM);
1609                 }
1610                 *m_head = m;
1611                 error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1612                     *m_head, txsegs, &nsegs, 0);
1613                 if (error != 0) {
1614                         m_freem(*m_head);
1615                         *m_head = NULL;
1616                         return (error);
1617                 }
1618         } else if (error != 0)
1619                 return (error);
1620         if (nsegs == 0) {
1621                 m_freem(*m_head);
1622                 *m_head = NULL;
1623                 return (EIO);
1624         }
1625
1626         /* Check descriptor overrun. */
1627         if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1628                 bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1629                 return (ENOBUFS);
1630         }
1631
1632         m = *m_head;
1633         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1634                 /* Configure TSO. */
1635                 if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1636                         /* Not TSO but IP/TCP checksum offload. */
1637                         cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1638                         /* Clear TSO in order not to set AGE_TD_TSO_HDR. */
1639                         m->m_pkthdr.csum_flags &= ~CSUM_TSO;
1640                 } else {
1641                         /* Request TSO and set MSS. */
1642                         cflags |= AGE_TD_TSO_IPV4;
1643                         cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1644                         cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1645                             AGE_TD_TSO_MSS_SHIFT);
1646                 }
1647                 /* Set IP/TCP header size. */
1648                 cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1649                 cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1650         } else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1651                 /* Configure Tx IP/TCP/UDP checksum offload. */
1652                 cflags |= AGE_TD_CSUM;
1653                 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1654                         cflags |= AGE_TD_TCPCSUM;
1655                 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1656                         cflags |= AGE_TD_UDPCSUM;
1657                 /* Set checksum start offset. */
1658                 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1659                 /* Set checksum insertion position of TCP/UDP. */
1660                 cflags |= ((poff + m->m_pkthdr.csum_data) <<
1661                     AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1662         }
1663
1664         /* Configure VLAN hardware tag insertion. */
1665         if ((m->m_flags & M_VLANTAG) != 0) {
1666                 vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1667                 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1668                 cflags |= AGE_TD_INSERT_VLAN_TAG;
1669         }
1670
1671         desc = NULL;
1672         for (i = 0; i < nsegs; i++) {
1673                 desc = &sc->age_rdata.age_tx_ring[prod];
1674                 desc->addr = htole64(txsegs[i].ds_addr);
1675                 desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1676                 desc->flags = htole32(cflags);
1677                 sc->age_cdata.age_tx_cnt++;
1678                 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1679         }
1680         /* Update producer index. */
1681         sc->age_cdata.age_tx_prod = prod;
1682
1683         /* Set EOP on the last descriptor. */
1684         prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1685         desc = &sc->age_rdata.age_tx_ring[prod];
1686         desc->flags |= htole32(AGE_TD_EOP);
1687
1688         /* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1689         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1690                 desc = &sc->age_rdata.age_tx_ring[si];
1691                 desc->flags |= htole32(AGE_TD_TSO_HDR);
1692         }
1693
1694         /* Swap dmamap of the first and the last. */
1695         txd = &sc->age_cdata.age_txdesc[prod];
1696         map = txd_last->tx_dmamap;
1697         txd_last->tx_dmamap = txd->tx_dmamap;
1698         txd->tx_dmamap = map;
1699         txd->tx_m = m;
1700
1701         /* Sync descriptors. */
1702         bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1703         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1704             sc->age_cdata.age_tx_ring_map,
1705             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1706
1707         return (0);
1708 }
1709
1710 static void
1711 age_tx_task(void *arg, int pending)
1712 {
1713         struct ifnet *ifp;
1714
1715         ifp = (struct ifnet *)arg;
1716         age_start(ifp);
1717 }
1718
1719 static void
1720 age_start(struct ifnet *ifp)
1721 {
1722         struct age_softc *sc;
1723         struct mbuf *m_head;
1724         int enq;
1725
1726         sc = ifp->if_softc;
1727
1728         AGE_LOCK(sc);
1729
1730         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1731             IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0) {
1732                 AGE_UNLOCK(sc);
1733                 return;
1734         }
1735
1736         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1737                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1738                 if (m_head == NULL)
1739                         break;
1740                 /*
1741                  * Pack the data into the transmit ring. If we
1742                  * don't have room, set the OACTIVE flag and wait
1743                  * for the NIC to drain the ring.
1744                  */
1745                 if (age_encap(sc, &m_head)) {
1746                         if (m_head == NULL)
1747                                 break;
1748                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1749                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1750                         break;
1751                 }
1752
1753                 enq++;
1754                 /*
1755                  * If there's a BPF listener, bounce a copy of this frame
1756                  * to him.
1757                  */
1758                 ETHER_BPF_MTAP(ifp, m_head);
1759         }
1760
1761         if (enq > 0) {
1762                 /* Update mbox. */
1763                 AGE_COMMIT_MBOX(sc);
1764                 /* Set a timeout in case the chip goes out to lunch. */
1765                 sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1766         }
1767
1768         AGE_UNLOCK(sc);
1769 }
1770
1771 static void
1772 age_watchdog(struct age_softc *sc)
1773 {
1774         struct ifnet *ifp;
1775
1776         AGE_LOCK_ASSERT(sc);
1777
1778         if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1779                 return;
1780
1781         ifp = sc->age_ifp;
1782         if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1783                 if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1784                 ifp->if_oerrors++;
1785                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1786                 age_init_locked(sc);
1787                 return;
1788         }
1789         if (sc->age_cdata.age_tx_cnt == 0) {
1790                 if_printf(sc->age_ifp,
1791                     "watchdog timeout (missed Tx interrupts) -- recovering\n");
1792                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1793                         taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
1794                 return;
1795         }
1796         if_printf(sc->age_ifp, "watchdog timeout\n");
1797         ifp->if_oerrors++;
1798         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1799         age_init_locked(sc);
1800         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1801                 taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
1802 }
1803
1804 static int
1805 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1806 {
1807         struct age_softc *sc;
1808         struct ifreq *ifr;
1809         struct mii_data *mii;
1810         uint32_t reg;
1811         int error, mask;
1812
1813         sc = ifp->if_softc;
1814         ifr = (struct ifreq *)data;
1815         error = 0;
1816         switch (cmd) {
1817         case SIOCSIFMTU:
1818                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1819                         error = EINVAL;
1820                 else if (ifp->if_mtu != ifr->ifr_mtu) {
1821                         AGE_LOCK(sc);
1822                         ifp->if_mtu = ifr->ifr_mtu;
1823                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1824                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1825                                 age_init_locked(sc);
1826                         }
1827                         AGE_UNLOCK(sc);
1828                 }
1829                 break;
1830         case SIOCSIFFLAGS:
1831                 AGE_LOCK(sc);
1832                 if ((ifp->if_flags & IFF_UP) != 0) {
1833                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1834                                 if (((ifp->if_flags ^ sc->age_if_flags)
1835                                     & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1836                                         age_rxfilter(sc);
1837                         } else {
1838                                 if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1839                                         age_init_locked(sc);
1840                         }
1841                 } else {
1842                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1843                                 age_stop(sc);
1844                 }
1845                 sc->age_if_flags = ifp->if_flags;
1846                 AGE_UNLOCK(sc);
1847                 break;
1848         case SIOCADDMULTI:
1849         case SIOCDELMULTI:
1850                 AGE_LOCK(sc);
1851                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1852                         age_rxfilter(sc);
1853                 AGE_UNLOCK(sc);
1854                 break;
1855         case SIOCSIFMEDIA:
1856         case SIOCGIFMEDIA:
1857                 mii = device_get_softc(sc->age_miibus);
1858                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1859                 break;
1860         case SIOCSIFCAP:
1861                 AGE_LOCK(sc);
1862                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1863                 if ((mask & IFCAP_TXCSUM) != 0 &&
1864                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1865                         ifp->if_capenable ^= IFCAP_TXCSUM;
1866                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1867                                 ifp->if_hwassist |= AGE_CSUM_FEATURES;
1868                         else
1869                                 ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1870                 }
1871                 if ((mask & IFCAP_RXCSUM) != 0 &&
1872                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1873                         ifp->if_capenable ^= IFCAP_RXCSUM;
1874                         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1875                         reg &= ~MAC_CFG_RXCSUM_ENB;
1876                         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1877                                 reg |= MAC_CFG_RXCSUM_ENB;
1878                         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1879                 }
1880                 if ((mask & IFCAP_TSO4) != 0 &&
1881                     (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1882                         ifp->if_capenable ^= IFCAP_TSO4;
1883                         if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1884                                 ifp->if_hwassist |= CSUM_TSO;
1885                         else
1886                                 ifp->if_hwassist &= ~CSUM_TSO;
1887                 }
1888
1889                 if ((mask & IFCAP_WOL_MCAST) != 0 &&
1890                     (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1891                         ifp->if_capenable ^= IFCAP_WOL_MCAST;
1892                 if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1893                     (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1894                         ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1895                 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1896                     (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1897                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1898                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1899                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1900                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1901                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1902                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1903                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1904                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1905                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1906                         age_rxvlan(sc);
1907                 }
1908                 AGE_UNLOCK(sc);
1909                 VLAN_CAPABILITIES(ifp);
1910                 break;
1911         default:
1912                 error = ether_ioctl(ifp, cmd, data);
1913                 break;
1914         }
1915
1916         return (error);
1917 }
1918
1919 static void
1920 age_mac_config(struct age_softc *sc)
1921 {
1922         struct mii_data *mii;
1923         uint32_t reg;
1924
1925         AGE_LOCK_ASSERT(sc);
1926
1927         mii = device_get_softc(sc->age_miibus);
1928         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1929         reg &= ~MAC_CFG_FULL_DUPLEX;
1930         reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1931         reg &= ~MAC_CFG_SPEED_MASK;
1932         /* Reprogram MAC with resolved speed/duplex. */
1933         switch (IFM_SUBTYPE(mii->mii_media_active)) {
1934         case IFM_10_T:
1935         case IFM_100_TX:
1936                 reg |= MAC_CFG_SPEED_10_100;
1937                 break;
1938         case IFM_1000_T:
1939                 reg |= MAC_CFG_SPEED_1000;
1940                 break;
1941         }
1942         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1943                 reg |= MAC_CFG_FULL_DUPLEX;
1944 #ifdef notyet
1945                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1946                         reg |= MAC_CFG_TX_FC;
1947                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1948                         reg |= MAC_CFG_RX_FC;
1949 #endif
1950         }
1951
1952         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1953 }
1954
1955 static void
1956 age_link_task(void *arg, int pending)
1957 {
1958         struct age_softc *sc;
1959         struct mii_data *mii;
1960         struct ifnet *ifp;
1961         uint32_t reg;
1962
1963         sc = (struct age_softc *)arg;
1964
1965         AGE_LOCK(sc);
1966         mii = device_get_softc(sc->age_miibus);
1967         ifp = sc->age_ifp;
1968         if (mii == NULL || ifp == NULL ||
1969             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1970                 AGE_UNLOCK(sc);
1971                 return;
1972         }
1973
1974         sc->age_flags &= ~AGE_FLAG_LINK;
1975         if ((mii->mii_media_status & IFM_AVALID) != 0) {
1976                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1977                 case IFM_10_T:
1978                 case IFM_100_TX:
1979                 case IFM_1000_T:
1980                         sc->age_flags |= AGE_FLAG_LINK;
1981                         break;
1982                 default:
1983                         break;
1984                 }
1985         }
1986
1987         /* Stop Rx/Tx MACs. */
1988         age_stop_rxmac(sc);
1989         age_stop_txmac(sc);
1990
1991         /* Program MACs with resolved speed/duplex/flow-control. */
1992         if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
1993                 age_mac_config(sc);
1994                 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1995                 /* Restart DMA engine and Tx/Rx MAC. */
1996                 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
1997                     DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
1998                 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
1999                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2000         }
2001
2002         AGE_UNLOCK(sc);
2003 }
2004
2005 static void
2006 age_stats_update(struct age_softc *sc)
2007 {
2008         struct age_stats *stat;
2009         struct smb *smb;
2010         struct ifnet *ifp;
2011
2012         AGE_LOCK_ASSERT(sc);
2013
2014         stat = &sc->age_stat;
2015
2016         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2017             sc->age_cdata.age_smb_block_map,
2018             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2019
2020         smb = sc->age_rdata.age_smb_block;
2021         if (smb->updated == 0)
2022                 return;
2023
2024         ifp = sc->age_ifp;
2025         /* Rx stats. */
2026         stat->rx_frames += smb->rx_frames;
2027         stat->rx_bcast_frames += smb->rx_bcast_frames;
2028         stat->rx_mcast_frames += smb->rx_mcast_frames;
2029         stat->rx_pause_frames += smb->rx_pause_frames;
2030         stat->rx_control_frames += smb->rx_control_frames;
2031         stat->rx_crcerrs += smb->rx_crcerrs;
2032         stat->rx_lenerrs += smb->rx_lenerrs;
2033         stat->rx_bytes += smb->rx_bytes;
2034         stat->rx_runts += smb->rx_runts;
2035         stat->rx_fragments += smb->rx_fragments;
2036         stat->rx_pkts_64 += smb->rx_pkts_64;
2037         stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2038         stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2039         stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2040         stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2041         stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2042         stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2043         stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2044         stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2045         stat->rx_desc_oflows += smb->rx_desc_oflows;
2046         stat->rx_alignerrs += smb->rx_alignerrs;
2047         stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2048         stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2049         stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2050
2051         /* Tx stats. */
2052         stat->tx_frames += smb->tx_frames;
2053         stat->tx_bcast_frames += smb->tx_bcast_frames;
2054         stat->tx_mcast_frames += smb->tx_mcast_frames;
2055         stat->tx_pause_frames += smb->tx_pause_frames;
2056         stat->tx_excess_defer += smb->tx_excess_defer;
2057         stat->tx_control_frames += smb->tx_control_frames;
2058         stat->tx_deferred += smb->tx_deferred;
2059         stat->tx_bytes += smb->tx_bytes;
2060         stat->tx_pkts_64 += smb->tx_pkts_64;
2061         stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2062         stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2063         stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2064         stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2065         stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2066         stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2067         stat->tx_single_colls += smb->tx_single_colls;
2068         stat->tx_multi_colls += smb->tx_multi_colls;
2069         stat->tx_late_colls += smb->tx_late_colls;
2070         stat->tx_excess_colls += smb->tx_excess_colls;
2071         stat->tx_underrun += smb->tx_underrun;
2072         stat->tx_desc_underrun += smb->tx_desc_underrun;
2073         stat->tx_lenerrs += smb->tx_lenerrs;
2074         stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2075         stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2076         stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2077
2078         /* Update counters in ifnet. */
2079         ifp->if_opackets += smb->tx_frames;
2080
2081         ifp->if_collisions += smb->tx_single_colls +
2082             smb->tx_multi_colls + smb->tx_late_colls +
2083             smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2084
2085         ifp->if_oerrors += smb->tx_excess_colls +
2086             smb->tx_late_colls + smb->tx_underrun +
2087             smb->tx_pkts_truncated;
2088
2089         ifp->if_ipackets += smb->rx_frames;
2090
2091         ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2092             smb->rx_runts + smb->rx_pkts_truncated +
2093             smb->rx_fifo_oflows + smb->rx_desc_oflows +
2094             smb->rx_alignerrs;
2095
2096         /* Update done, clear. */
2097         smb->updated = 0;
2098
2099         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2100             sc->age_cdata.age_smb_block_map,
2101             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2102 }
2103
2104 static int
2105 age_intr(void *arg)
2106 {
2107         struct age_softc *sc;
2108         uint32_t status;
2109
2110         sc = (struct age_softc *)arg;
2111
2112         status = CSR_READ_4(sc, AGE_INTR_STATUS);
2113         if (status == 0 || (status & AGE_INTRS) == 0)
2114                 return (FILTER_STRAY);
2115         /* Disable interrupts. */
2116         CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2117         taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2118
2119         return (FILTER_HANDLED);
2120 }
2121
2122 static void
2123 age_int_task(void *arg, int pending)
2124 {
2125         struct age_softc *sc;
2126         struct ifnet *ifp;
2127         struct cmb *cmb;
2128         uint32_t status;
2129
2130         sc = (struct age_softc *)arg;
2131
2132         AGE_LOCK(sc);
2133
2134         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2135             sc->age_cdata.age_cmb_block_map,
2136             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2137         cmb = sc->age_rdata.age_cmb_block;
2138         status = le32toh(cmb->intr_status);
2139         if (sc->age_morework != 0)
2140                 status |= INTR_CMB_RX;
2141         if ((status & AGE_INTRS) == 0)
2142                 goto done;
2143
2144         sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2145             TPD_CONS_SHIFT;
2146         sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2147             RRD_PROD_SHIFT;
2148         /* Let hardware know CMB was served. */
2149         cmb->intr_status = 0;
2150         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2151             sc->age_cdata.age_cmb_block_map,
2152             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2153
2154 #if 0
2155         printf("INTR: 0x%08x\n", status);
2156         status &= ~INTR_DIS_DMA;
2157         CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2158 #endif
2159         ifp = sc->age_ifp;
2160         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2161                 if ((status & INTR_CMB_RX) != 0)
2162                         sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2163                             sc->age_process_limit);
2164                 if ((status & INTR_CMB_TX) != 0)
2165                         age_txintr(sc, sc->age_tpd_cons);
2166                 if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2167                         if ((status & INTR_DMA_RD_TO_RST) != 0)
2168                                 device_printf(sc->age_dev,
2169                                     "DMA read error! -- resetting\n");
2170                         if ((status & INTR_DMA_WR_TO_RST) != 0)
2171                                 device_printf(sc->age_dev,
2172                                     "DMA write error! -- resetting\n");
2173                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2174                         age_init_locked(sc);
2175                 }
2176                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2177                         taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
2178                 if ((status & INTR_SMB) != 0)
2179                         age_stats_update(sc);
2180         }
2181
2182         /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2183         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2184             sc->age_cdata.age_cmb_block_map,
2185             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2186         status = le32toh(cmb->intr_status);
2187         if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2188                 taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2189                 AGE_UNLOCK(sc);
2190                 return;
2191         }
2192
2193 done:
2194         /* Re-enable interrupts. */
2195         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2196         AGE_UNLOCK(sc);
2197 }
2198
2199 static void
2200 age_txintr(struct age_softc *sc, int tpd_cons)
2201 {
2202         struct ifnet *ifp;
2203         struct age_txdesc *txd;
2204         int cons, prog;
2205
2206         AGE_LOCK_ASSERT(sc);
2207
2208         ifp = sc->age_ifp;
2209
2210         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2211             sc->age_cdata.age_tx_ring_map,
2212             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2213
2214         /*
2215          * Go through our Tx list and free mbufs for those
2216          * frames which have been transmitted.
2217          */
2218         cons = sc->age_cdata.age_tx_cons;
2219         for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2220                 if (sc->age_cdata.age_tx_cnt <= 0)
2221                         break;
2222                 prog++;
2223                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2224                 sc->age_cdata.age_tx_cnt--;
2225                 txd = &sc->age_cdata.age_txdesc[cons];
2226                 /*
2227                  * Clear Tx descriptors, it's not required but would
2228                  * help debugging in case of Tx issues.
2229                  */
2230                 txd->tx_desc->addr = 0;
2231                 txd->tx_desc->len = 0;
2232                 txd->tx_desc->flags = 0;
2233
2234                 if (txd->tx_m == NULL)
2235                         continue;
2236                 /* Reclaim transmitted mbufs. */
2237                 bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2238                     BUS_DMASYNC_POSTWRITE);
2239                 bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2240                 m_freem(txd->tx_m);
2241                 txd->tx_m = NULL;
2242         }
2243
2244         if (prog > 0) {
2245                 sc->age_cdata.age_tx_cons = cons;
2246
2247                 /*
2248                  * Unarm watchdog timer only when there are no pending
2249                  * Tx descriptors in queue.
2250                  */
2251                 if (sc->age_cdata.age_tx_cnt == 0)
2252                         sc->age_watchdog_timer = 0;
2253                 bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2254                     sc->age_cdata.age_tx_ring_map,
2255                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2256         }
2257 }
2258
2259 /* Receive a frame. */
2260 static void
2261 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2262 {
2263         struct age_rxdesc *rxd;
2264         struct rx_desc *desc;
2265         struct ifnet *ifp;
2266         struct mbuf *mp, *m;
2267         uint32_t status, index, vtag;
2268         int count, nsegs, pktlen;
2269         int rx_cons;
2270
2271         AGE_LOCK_ASSERT(sc);
2272
2273         ifp = sc->age_ifp;
2274         status = le32toh(rxrd->flags);
2275         index = le32toh(rxrd->index);
2276         rx_cons = AGE_RX_CONS(index);
2277         nsegs = AGE_RX_NSEGS(index);
2278
2279         sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2280         if ((status & AGE_RRD_ERROR) != 0 &&
2281             (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2282             AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
2283                 /*
2284                  * We want to pass the following frames to upper
2285                  * layer regardless of error status of Rx return
2286                  * ring.
2287                  *
2288                  *  o IP/TCP/UDP checksum is bad.
2289                  *  o frame length and protocol specific length
2290                  *     does not match.
2291                  */
2292                 sc->age_cdata.age_rx_cons += nsegs;
2293                 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2294                 return;
2295         }
2296
2297         pktlen = 0;
2298         for (count = 0; count < nsegs; count++,
2299             AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2300                 rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2301                 mp = rxd->rx_m;
2302                 desc = rxd->rx_desc;
2303                 /* Add a new receive buffer to the ring. */
2304                 if (age_newbuf(sc, rxd) != 0) {
2305                         ifp->if_iqdrops++;
2306                         /* Reuse Rx buffers. */
2307                         if (sc->age_cdata.age_rxhead != NULL) {
2308                                 m_freem(sc->age_cdata.age_rxhead);
2309                                 AGE_RXCHAIN_RESET(sc);
2310                         }
2311                         break;
2312                 }
2313
2314                 /* The length of the first mbuf is computed last. */
2315                 if (count != 0) {
2316                         mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
2317                         pktlen += mp->m_len;
2318                 }
2319
2320                 /* Chain received mbufs. */
2321                 if (sc->age_cdata.age_rxhead == NULL) {
2322                         sc->age_cdata.age_rxhead = mp;
2323                         sc->age_cdata.age_rxtail = mp;
2324                 } else {
2325                         mp->m_flags &= ~M_PKTHDR;
2326                         sc->age_cdata.age_rxprev_tail =
2327                             sc->age_cdata.age_rxtail;
2328                         sc->age_cdata.age_rxtail->m_next = mp;
2329                         sc->age_cdata.age_rxtail = mp;
2330                 }
2331
2332                 if (count == nsegs - 1) {
2333                         /*
2334                          * It seems that L1 controller has no way
2335                          * to tell hardware to strip CRC bytes.
2336                          */
2337                         sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
2338                         if (nsegs > 1) {
2339                                 /* Remove the CRC bytes in chained mbufs. */
2340                                 pktlen -= ETHER_CRC_LEN;
2341                                 if (mp->m_len <= ETHER_CRC_LEN) {
2342                                         sc->age_cdata.age_rxtail =
2343                                             sc->age_cdata.age_rxprev_tail;
2344                                         sc->age_cdata.age_rxtail->m_len -=
2345                                             (ETHER_CRC_LEN - mp->m_len);
2346                                         sc->age_cdata.age_rxtail->m_next = NULL;
2347                                         m_freem(mp);
2348                                 } else {
2349                                         mp->m_len -= ETHER_CRC_LEN;
2350                                 }
2351                         }
2352
2353                         m = sc->age_cdata.age_rxhead;
2354                         m->m_flags |= M_PKTHDR;
2355                         m->m_pkthdr.rcvif = ifp;
2356                         m->m_pkthdr.len = sc->age_cdata.age_rxlen;
2357                         /* Set the first mbuf length. */
2358                         m->m_len = sc->age_cdata.age_rxlen - pktlen;
2359
2360                         /*
2361                          * Set checksum information.
2362                          * It seems that L1 controller can compute partial
2363                          * checksum. The partial checksum value can be used
2364                          * to accelerate checksum computation for fragmented
2365                          * TCP/UDP packets. Upper network stack already
2366                          * takes advantage of the partial checksum value in
2367                          * IP reassembly stage. But I'm not sure the
2368                          * correctness of the partial hardware checksum
2369                          * assistance due to lack of data sheet. If it is
2370                          * proven to work on L1 I'll enable it.
2371                          */
2372                         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2373                             (status & AGE_RRD_IPV4) != 0) {
2374                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2375                                 if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2376                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2377                                 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2378                                     (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2379                                         m->m_pkthdr.csum_flags |=
2380                                             CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2381                                         m->m_pkthdr.csum_data = 0xffff;
2382                                 }
2383                                 /*
2384                                  * Don't mark bad checksum for TCP/UDP frames
2385                                  * as fragmented frames may always have set
2386                                  * bad checksummed bit of descriptor status.
2387                                  */
2388                         }
2389
2390                         /* Check for VLAN tagged frames. */
2391                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2392                             (status & AGE_RRD_VLAN) != 0) {
2393                                 vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2394                                 m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2395                                 m->m_flags |= M_VLANTAG;
2396                         }
2397
2398                         /* Pass it on. */
2399                         AGE_UNLOCK(sc);
2400                         (*ifp->if_input)(ifp, m);
2401                         AGE_LOCK(sc);
2402
2403                         /* Reset mbuf chains. */
2404                         AGE_RXCHAIN_RESET(sc);
2405                 }
2406         }
2407
2408         if (count != nsegs) {
2409                 sc->age_cdata.age_rx_cons += nsegs;
2410                 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2411         } else
2412                 sc->age_cdata.age_rx_cons = rx_cons;
2413 }
2414
2415 static int
2416 age_rxintr(struct age_softc *sc, int rr_prod, int count)
2417 {
2418         struct rx_rdesc *rxrd;
2419         int rr_cons, nsegs, pktlen, prog;
2420
2421         AGE_LOCK_ASSERT(sc);
2422
2423         rr_cons = sc->age_cdata.age_rr_cons;
2424         if (rr_cons == rr_prod)
2425                 return (0);
2426
2427         bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2428             sc->age_cdata.age_rr_ring_map,
2429             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2430
2431         for (prog = 0; rr_cons != rr_prod; prog++) {
2432                 if (count <= 0)
2433                         break;
2434                 rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2435                 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2436                 if (nsegs == 0)
2437                         break;
2438                 /*
2439                  * Check number of segments against received bytes.
2440                  * Non-matching value would indicate that hardware
2441                  * is still trying to update Rx return descriptors.
2442                  * I'm not sure whether this check is really needed.
2443                  */
2444                 pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2445                 if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
2446                     (MCLBYTES - ETHER_ALIGN)))
2447                         break;
2448
2449                 prog++;
2450                 /* Received a frame. */
2451                 age_rxeof(sc, rxrd);
2452                 /* Clear return ring. */
2453                 rxrd->index = 0;
2454                 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2455         }
2456
2457         if (prog > 0) {
2458                 /* Update the consumer index. */
2459                 sc->age_cdata.age_rr_cons = rr_cons;
2460
2461                 /* Sync descriptors. */
2462                 bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2463                     sc->age_cdata.age_rr_ring_map,
2464                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2465
2466                 /* Notify hardware availability of new Rx buffers. */
2467                 AGE_COMMIT_MBOX(sc);
2468         }
2469
2470         return (count > 0 ? 0 : EAGAIN);
2471 }
2472
2473 static void
2474 age_tick(void *arg)
2475 {
2476         struct age_softc *sc;
2477         struct mii_data *mii;
2478
2479         sc = (struct age_softc *)arg;
2480
2481         AGE_LOCK_ASSERT(sc);
2482
2483         mii = device_get_softc(sc->age_miibus);
2484         mii_tick(mii);
2485         age_watchdog(sc);
2486         callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2487 }
2488
2489 static void
2490 age_reset(struct age_softc *sc)
2491 {
2492         uint32_t reg;
2493         int i;
2494
2495         CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2496         CSR_READ_4(sc, AGE_MASTER_CFG);
2497         DELAY(1000);
2498         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2499                 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2500                         break;
2501                 DELAY(10);
2502         }
2503
2504         if (i == 0)
2505                 device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2506         /* Initialize PCIe module. From Linux. */
2507         CSR_WRITE_4(sc, 0x12FC, 0x6500);
2508         CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2509 }
2510
2511 static void
2512 age_init(void *xsc)
2513 {
2514         struct age_softc *sc;
2515
2516         sc = (struct age_softc *)xsc;
2517         AGE_LOCK(sc);
2518         age_init_locked(sc);
2519         AGE_UNLOCK(sc);
2520 }
2521
2522 static void
2523 age_init_locked(struct age_softc *sc)
2524 {
2525         struct ifnet *ifp;
2526         struct mii_data *mii;
2527         uint8_t eaddr[ETHER_ADDR_LEN];
2528         bus_addr_t paddr;
2529         uint32_t reg, fsize;
2530         uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2531         int error;
2532
2533         AGE_LOCK_ASSERT(sc);
2534
2535         ifp = sc->age_ifp;
2536         mii = device_get_softc(sc->age_miibus);
2537
2538         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2539                 return;
2540
2541         /*
2542          * Cancel any pending I/O.
2543          */
2544         age_stop(sc);
2545
2546         /*
2547          * Reset the chip to a known state.
2548          */
2549         age_reset(sc);
2550
2551         /* Initialize descriptors. */
2552         error = age_init_rx_ring(sc);
2553         if (error != 0) {
2554                 device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2555                 age_stop(sc);
2556                 return;
2557         }
2558         age_init_rr_ring(sc);
2559         age_init_tx_ring(sc);
2560         age_init_cmb_block(sc);
2561         age_init_smb_block(sc);
2562
2563         /* Reprogram the station address. */
2564         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2565         CSR_WRITE_4(sc, AGE_PAR0,
2566             eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2567         CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2568
2569         /* Set descriptor base addresses. */
2570         paddr = sc->age_rdata.age_tx_ring_paddr;
2571         CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2572         paddr = sc->age_rdata.age_rx_ring_paddr;
2573         CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2574         paddr = sc->age_rdata.age_rr_ring_paddr;
2575         CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2576         paddr = sc->age_rdata.age_tx_ring_paddr;
2577         CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2578         paddr = sc->age_rdata.age_cmb_block_paddr;
2579         CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2580         paddr = sc->age_rdata.age_smb_block_paddr;
2581         CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2582         /* Set Rx/Rx return descriptor counter. */
2583         CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2584             ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2585             DESC_RRD_CNT_MASK) |
2586             ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2587         /* Set Tx descriptor counter. */
2588         CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2589             (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2590
2591         /* Tell hardware that we're ready to load descriptors. */
2592         CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2593
2594         /*
2595          * Initialize mailbox register.
2596          * Updated producer/consumer index information is exchanged
2597          * through this mailbox register. However Tx producer and
2598          * Rx return consumer/Rx producer are all shared such that
2599          * it's hard to separate code path between Tx and Rx without
2600          * locking. If L1 hardware have a separate mail box register
2601          * for Tx and Rx consumer/producer management we could have
2602          * indepent Tx/Rx handler which in turn Rx handler could have
2603          * been run without any locking.
2604          */
2605         AGE_COMMIT_MBOX(sc);
2606
2607         /* Configure IPG/IFG parameters. */
2608         CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2609             ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2610             ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2611             ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2612             ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2613
2614         /* Set parameters for half-duplex media. */
2615         CSR_WRITE_4(sc, AGE_HDPX_CFG,
2616             ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2617             HDPX_CFG_LCOL_MASK) |
2618             ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2619             HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2620             ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2621             HDPX_CFG_ABEBT_MASK) |
2622             ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2623             HDPX_CFG_JAMIPG_MASK));
2624
2625         /* Configure interrupt moderation timer. */
2626         CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2627         reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2628         reg &= ~MASTER_MTIMER_ENB;
2629         if (AGE_USECS(sc->age_int_mod) == 0)
2630                 reg &= ~MASTER_ITIMER_ENB;
2631         else
2632                 reg |= MASTER_ITIMER_ENB;
2633         CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2634         if (bootverbose)
2635                 device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2636                     sc->age_int_mod);
2637         CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2638
2639         /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2640         if (ifp->if_mtu < ETHERMTU)
2641                 sc->age_max_frame_size = ETHERMTU;
2642         else
2643                 sc->age_max_frame_size = ifp->if_mtu;
2644         sc->age_max_frame_size += ETHER_HDR_LEN +
2645             sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2646         CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2647         /* Configure jumbo frame. */
2648         fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2649         CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2650             (((fsize / sizeof(uint64_t)) <<
2651             RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2652             ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2653             RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2654             ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2655             RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2656
2657         /* Configure flow-control parameters. From Linux. */
2658         if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2659                 /*
2660                  * Magic workaround for old-L1.
2661                  * Don't know which hw revision requires this magic.
2662                  */
2663                 CSR_WRITE_4(sc, 0x12FC, 0x6500);
2664                 /*
2665                  * Another magic workaround for flow-control mode
2666                  * change. From Linux.
2667                  */
2668                 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2669         }
2670         /*
2671          * TODO
2672          *  Should understand pause parameter relationships between FIFO
2673          *  size and number of Rx descriptors and Rx return descriptors.
2674          *
2675          *  Magic parameters came from Linux.
2676          */
2677         switch (sc->age_chip_rev) {
2678         case 0x8001:
2679         case 0x9001:
2680         case 0x9002:
2681         case 0x9003:
2682                 rxf_hi = AGE_RX_RING_CNT / 16;
2683                 rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2684                 rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2685                 rrd_lo = AGE_RR_RING_CNT / 16;
2686                 break;
2687         default:
2688                 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2689                 rxf_lo = reg / 16;
2690                 if (rxf_lo < 192)
2691                         rxf_lo = 192;
2692                 rxf_hi = (reg * 7) / 8;
2693                 if (rxf_hi < rxf_lo)
2694                         rxf_hi = rxf_lo + 16;
2695                 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2696                 rrd_lo = reg / 8;
2697                 rrd_hi = (reg * 7) / 8;
2698                 if (rrd_lo < 2)
2699                         rrd_lo = 2;
2700                 if (rrd_hi < rrd_lo)
2701                         rrd_hi = rrd_lo + 3;
2702                 break;
2703         }
2704         CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2705             ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2706             RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2707             ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2708             RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2709         CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2710             ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2711             RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2712             ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2713             RXQ_RRD_PAUSE_THRESH_HI_MASK));
2714
2715         /* Configure RxQ. */
2716         CSR_WRITE_4(sc, AGE_RXQ_CFG,
2717             ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2718             RXQ_CFG_RD_BURST_MASK) |
2719             ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2720             RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2721             ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2722             RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2723             RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2724
2725         /* Configure TxQ. */
2726         CSR_WRITE_4(sc, AGE_TXQ_CFG,
2727             ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2728             TXQ_CFG_TPD_BURST_MASK) |
2729             ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2730             TXQ_CFG_TX_FIFO_BURST_MASK) |
2731             ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2732             TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2733             TXQ_CFG_ENB);
2734
2735         CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2736             (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2737             TX_JUMBO_TPD_TH_MASK) |
2738             ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2739             TX_JUMBO_TPD_IPG_MASK));
2740         /* Configure DMA parameters. */
2741         CSR_WRITE_4(sc, AGE_DMA_CFG,
2742             DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2743             sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2744             sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2745
2746         /* Configure CMB DMA write threshold. */
2747         CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2748             ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2749             CMB_WR_THRESH_RRD_MASK) |
2750             ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2751             CMB_WR_THRESH_TPD_MASK));
2752
2753         /* Set CMB/SMB timer and enable them. */
2754         CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2755             ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2756             ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2757         /* Request SMB updates for every seconds. */
2758         CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2759         CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2760
2761         /*
2762          * Disable all WOL bits as WOL can interfere normal Rx
2763          * operation.
2764          */
2765         CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2766
2767         /*
2768          * Configure Tx/Rx MACs.
2769          *  - Auto-padding for short frames.
2770          *  - Enable CRC generation.
2771          *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2772          *  of MAC is followed after link establishment.
2773          */
2774         CSR_WRITE_4(sc, AGE_MAC_CFG,
2775             MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2776             MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2777             ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2778             MAC_CFG_PREAMBLE_MASK));
2779         /* Set up the receive filter. */
2780         age_rxfilter(sc);
2781         age_rxvlan(sc);
2782
2783         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2784         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2785                 reg |= MAC_CFG_RXCSUM_ENB;
2786
2787         /* Ack all pending interrupts and clear it. */
2788         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2789         CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2790
2791         /* Finally enable Tx/Rx MAC. */
2792         CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2793
2794         sc->age_flags &= ~AGE_FLAG_LINK;
2795         /* Switch to the current media. */
2796         mii_mediachg(mii);
2797
2798         callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2799
2800         ifp->if_drv_flags |= IFF_DRV_RUNNING;
2801         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2802 }
2803
2804 static void
2805 age_stop(struct age_softc *sc)
2806 {
2807         struct ifnet *ifp;
2808         struct age_txdesc *txd;
2809         struct age_rxdesc *rxd;
2810         uint32_t reg;
2811         int i;
2812
2813         AGE_LOCK_ASSERT(sc);
2814         /*
2815          * Mark the interface down and cancel the watchdog timer.
2816          */
2817         ifp = sc->age_ifp;
2818         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2819         sc->age_flags &= ~AGE_FLAG_LINK;
2820         callout_stop(&sc->age_tick_ch);
2821         sc->age_watchdog_timer = 0;
2822
2823         /*
2824          * Disable interrupts.
2825          */
2826         CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2827         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2828         /* Stop CMB/SMB updates. */
2829         CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2830         /* Stop Rx/Tx MAC. */
2831         age_stop_rxmac(sc);
2832         age_stop_txmac(sc);
2833         /* Stop DMA. */
2834         CSR_WRITE_4(sc, AGE_DMA_CFG,
2835             CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2836         /* Stop TxQ/RxQ. */
2837         CSR_WRITE_4(sc, AGE_TXQ_CFG,
2838             CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2839         CSR_WRITE_4(sc, AGE_RXQ_CFG,
2840             CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2841         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2842                 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2843                         break;
2844                 DELAY(10);
2845         }
2846         if (i == 0)
2847                 device_printf(sc->age_dev,
2848                     "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2849
2850          /* Reclaim Rx buffers that have been processed. */
2851         if (sc->age_cdata.age_rxhead != NULL)
2852                 m_freem(sc->age_cdata.age_rxhead);
2853         AGE_RXCHAIN_RESET(sc);
2854         /*
2855          * Free RX and TX mbufs still in the queues.
2856          */
2857         for (i = 0; i < AGE_RX_RING_CNT; i++) {
2858                 rxd = &sc->age_cdata.age_rxdesc[i];
2859                 if (rxd->rx_m != NULL) {
2860                         bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2861                             rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2862                         bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2863                             rxd->rx_dmamap);
2864                         m_freem(rxd->rx_m);
2865                         rxd->rx_m = NULL;
2866                 }
2867         }
2868         for (i = 0; i < AGE_TX_RING_CNT; i++) {
2869                 txd = &sc->age_cdata.age_txdesc[i];
2870                 if (txd->tx_m != NULL) {
2871                         bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2872                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2873                         bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2874                             txd->tx_dmamap);
2875                         m_freem(txd->tx_m);
2876                         txd->tx_m = NULL;
2877                 }
2878         }
2879 }
2880
2881 static void
2882 age_stop_txmac(struct age_softc *sc)
2883 {
2884         uint32_t reg;
2885         int i;
2886
2887         AGE_LOCK_ASSERT(sc);
2888
2889         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2890         if ((reg & MAC_CFG_TX_ENB) != 0) {
2891                 reg &= ~MAC_CFG_TX_ENB;
2892                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2893         }
2894         /* Stop Tx DMA engine. */
2895         reg = CSR_READ_4(sc, AGE_DMA_CFG);
2896         if ((reg & DMA_CFG_RD_ENB) != 0) {
2897                 reg &= ~DMA_CFG_RD_ENB;
2898                 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2899         }
2900         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2901                 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2902                     (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2903                         break;
2904                 DELAY(10);
2905         }
2906         if (i == 0)
2907                 device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2908 }
2909
2910 static void
2911 age_stop_rxmac(struct age_softc *sc)
2912 {
2913         uint32_t reg;
2914         int i;
2915
2916         AGE_LOCK_ASSERT(sc);
2917
2918         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2919         if ((reg & MAC_CFG_RX_ENB) != 0) {
2920                 reg &= ~MAC_CFG_RX_ENB;
2921                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2922         }
2923         /* Stop Rx DMA engine. */
2924         reg = CSR_READ_4(sc, AGE_DMA_CFG);
2925         if ((reg & DMA_CFG_WR_ENB) != 0) {
2926                 reg &= ~DMA_CFG_WR_ENB;
2927                 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2928         }
2929         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2930                 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2931                     (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2932                         break;
2933                 DELAY(10);
2934         }
2935         if (i == 0)
2936                 device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2937 }
2938
2939 static void
2940 age_init_tx_ring(struct age_softc *sc)
2941 {
2942         struct age_ring_data *rd;
2943         struct age_txdesc *txd;
2944         int i;
2945
2946         AGE_LOCK_ASSERT(sc);
2947
2948         sc->age_cdata.age_tx_prod = 0;
2949         sc->age_cdata.age_tx_cons = 0;
2950         sc->age_cdata.age_tx_cnt = 0;
2951
2952         rd = &sc->age_rdata;
2953         bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2954         for (i = 0; i < AGE_TX_RING_CNT; i++) {
2955                 txd = &sc->age_cdata.age_txdesc[i];
2956                 txd->tx_desc = &rd->age_tx_ring[i];
2957                 txd->tx_m = NULL;
2958         }
2959
2960         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2961             sc->age_cdata.age_tx_ring_map,
2962             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2963 }
2964
2965 static int
2966 age_init_rx_ring(struct age_softc *sc)
2967 {
2968         struct age_ring_data *rd;
2969         struct age_rxdesc *rxd;
2970         int i;
2971
2972         AGE_LOCK_ASSERT(sc);
2973
2974         sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2975         sc->age_morework = 0;
2976         rd = &sc->age_rdata;
2977         bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2978         for (i = 0; i < AGE_RX_RING_CNT; i++) {
2979                 rxd = &sc->age_cdata.age_rxdesc[i];
2980                 rxd->rx_m = NULL;
2981                 rxd->rx_desc = &rd->age_rx_ring[i];
2982                 if (age_newbuf(sc, rxd) != 0)
2983                         return (ENOBUFS);
2984         }
2985
2986         bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2987             sc->age_cdata.age_rx_ring_map,
2988             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2989
2990         return (0);
2991 }
2992
2993 static void
2994 age_init_rr_ring(struct age_softc *sc)
2995 {
2996         struct age_ring_data *rd;
2997
2998         AGE_LOCK_ASSERT(sc);
2999
3000         sc->age_cdata.age_rr_cons = 0;
3001         AGE_RXCHAIN_RESET(sc);
3002
3003         rd = &sc->age_rdata;
3004         bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3005         bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3006             sc->age_cdata.age_rr_ring_map,
3007             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3008 }
3009
3010 static void
3011 age_init_cmb_block(struct age_softc *sc)
3012 {
3013         struct age_ring_data *rd;
3014
3015         AGE_LOCK_ASSERT(sc);
3016
3017         rd = &sc->age_rdata;
3018         bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3019         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3020             sc->age_cdata.age_cmb_block_map,
3021             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3022 }
3023
3024 static void
3025 age_init_smb_block(struct age_softc *sc)
3026 {
3027         struct age_ring_data *rd;
3028
3029         AGE_LOCK_ASSERT(sc);
3030
3031         rd = &sc->age_rdata;
3032         bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3033         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3034             sc->age_cdata.age_smb_block_map,
3035             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3036 }
3037
3038 static int
3039 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3040 {
3041         struct rx_desc *desc;
3042         struct mbuf *m;
3043         bus_dma_segment_t segs[1];
3044         bus_dmamap_t map;
3045         int nsegs;
3046
3047         AGE_LOCK_ASSERT(sc);
3048
3049         m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3050         if (m == NULL)
3051                 return (ENOBUFS);
3052         m->m_len = m->m_pkthdr.len = MCLBYTES;
3053         m_adj(m, ETHER_ALIGN);
3054
3055         if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3056             sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3057                 m_freem(m);
3058                 return (ENOBUFS);
3059         }
3060         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3061
3062         if (rxd->rx_m != NULL) {
3063                 bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3064                     BUS_DMASYNC_POSTREAD);
3065                 bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3066         }
3067         map = rxd->rx_dmamap;
3068         rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3069         sc->age_cdata.age_rx_sparemap = map;
3070         bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3071             BUS_DMASYNC_PREREAD);
3072         rxd->rx_m = m;
3073
3074         desc = rxd->rx_desc;
3075         desc->addr = htole64(segs[0].ds_addr);
3076         desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3077             AGE_RD_LEN_SHIFT);
3078         return (0);
3079 }
3080
3081 static void
3082 age_rxvlan(struct age_softc *sc)
3083 {
3084         struct ifnet *ifp;
3085         uint32_t reg;
3086
3087         AGE_LOCK_ASSERT(sc);
3088
3089         ifp = sc->age_ifp;
3090         reg = CSR_READ_4(sc, AGE_MAC_CFG);
3091         reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3092         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3093                 reg |= MAC_CFG_VLAN_TAG_STRIP;
3094         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3095 }
3096
3097 static void
3098 age_rxfilter(struct age_softc *sc)
3099 {
3100         struct ifnet *ifp;
3101         struct ifmultiaddr *ifma;
3102         uint32_t crc;
3103         uint32_t mchash[2];
3104         uint32_t rxcfg;
3105
3106         AGE_LOCK_ASSERT(sc);
3107
3108         ifp = sc->age_ifp;
3109
3110         rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3111         rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3112         if ((ifp->if_flags & IFF_BROADCAST) != 0)
3113                 rxcfg |= MAC_CFG_BCAST;
3114         if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3115                 if ((ifp->if_flags & IFF_PROMISC) != 0)
3116                         rxcfg |= MAC_CFG_PROMISC;
3117                 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3118                         rxcfg |= MAC_CFG_ALLMULTI;
3119                 CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3120                 CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3121                 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3122                 return;
3123         }
3124
3125         /* Program new filter. */
3126         bzero(mchash, sizeof(mchash));
3127
3128         if_maddr_rlock(ifp);
3129         TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) {
3130                 if (ifma->ifma_addr->sa_family != AF_LINK)
3131                         continue;
3132                 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3133                     ifma->ifma_addr), ETHER_ADDR_LEN);
3134                 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3135         }
3136         if_maddr_runlock(ifp);
3137
3138         CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3139         CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3140         CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3141 }
3142
3143 static int
3144 sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3145 {
3146         struct age_softc *sc;
3147         struct age_stats *stats;
3148         int error, result;
3149
3150         result = -1;
3151         error = sysctl_handle_int(oidp, &result, 0, req);
3152
3153         if (error != 0 || req->newptr == NULL)
3154                 return (error);
3155
3156         if (result != 1)
3157                 return (error);
3158
3159         sc = (struct age_softc *)arg1;
3160         stats = &sc->age_stat;
3161         printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3162         printf("Transmit good frames : %ju\n",
3163             (uintmax_t)stats->tx_frames);
3164         printf("Transmit good broadcast frames : %ju\n",
3165             (uintmax_t)stats->tx_bcast_frames);
3166         printf("Transmit good multicast frames : %ju\n",
3167             (uintmax_t)stats->tx_mcast_frames);
3168         printf("Transmit pause control frames : %u\n",
3169             stats->tx_pause_frames);
3170         printf("Transmit control frames : %u\n",
3171             stats->tx_control_frames);
3172         printf("Transmit frames with excessive deferrals : %u\n",
3173             stats->tx_excess_defer);
3174         printf("Transmit deferrals : %u\n",
3175             stats->tx_deferred);
3176         printf("Transmit good octets : %ju\n",
3177             (uintmax_t)stats->tx_bytes);
3178         printf("Transmit good broadcast octets : %ju\n",
3179             (uintmax_t)stats->tx_bcast_bytes);
3180         printf("Transmit good multicast octets : %ju\n",
3181             (uintmax_t)stats->tx_mcast_bytes);
3182         printf("Transmit frames 64 bytes : %ju\n",
3183             (uintmax_t)stats->tx_pkts_64);
3184         printf("Transmit frames 65 to 127 bytes : %ju\n",
3185             (uintmax_t)stats->tx_pkts_65_127);
3186         printf("Transmit frames 128 to 255 bytes : %ju\n",
3187             (uintmax_t)stats->tx_pkts_128_255);
3188         printf("Transmit frames 256 to 511 bytes : %ju\n",
3189             (uintmax_t)stats->tx_pkts_256_511);
3190         printf("Transmit frames 512 to 1024 bytes : %ju\n",
3191             (uintmax_t)stats->tx_pkts_512_1023);
3192         printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3193             (uintmax_t)stats->tx_pkts_1024_1518);
3194         printf("Transmit frames 1519 to MTU bytes : %ju\n",
3195             (uintmax_t)stats->tx_pkts_1519_max);
3196         printf("Transmit single collisions : %u\n",
3197             stats->tx_single_colls);
3198         printf("Transmit multiple collisions : %u\n",
3199             stats->tx_multi_colls);
3200         printf("Transmit late collisions : %u\n",
3201             stats->tx_late_colls);
3202         printf("Transmit abort due to excessive collisions : %u\n",
3203             stats->tx_excess_colls);
3204         printf("Transmit underruns due to FIFO underruns : %u\n",
3205             stats->tx_underrun);
3206         printf("Transmit descriptor write-back errors : %u\n",
3207             stats->tx_desc_underrun);
3208         printf("Transmit frames with length mismatched frame size : %u\n",
3209             stats->tx_lenerrs);
3210         printf("Transmit frames with truncated due to MTU size : %u\n",
3211             stats->tx_lenerrs);
3212
3213         printf("Receive good frames : %ju\n",
3214             (uintmax_t)stats->rx_frames);
3215         printf("Receive good broadcast frames : %ju\n",
3216             (uintmax_t)stats->rx_bcast_frames);
3217         printf("Receive good multicast frames : %ju\n",
3218             (uintmax_t)stats->rx_mcast_frames);
3219         printf("Receive pause control frames : %u\n",
3220             stats->rx_pause_frames);
3221         printf("Receive control frames : %u\n",
3222             stats->rx_control_frames);
3223         printf("Receive CRC errors : %u\n",
3224             stats->rx_crcerrs);
3225         printf("Receive frames with length errors : %u\n",
3226             stats->rx_lenerrs);
3227         printf("Receive good octets : %ju\n",
3228             (uintmax_t)stats->rx_bytes);
3229         printf("Receive good broadcast octets : %ju\n",
3230             (uintmax_t)stats->rx_bcast_bytes);
3231         printf("Receive good multicast octets : %ju\n",
3232             (uintmax_t)stats->rx_mcast_bytes);
3233         printf("Receive frames too short : %u\n",
3234             stats->rx_runts);
3235         printf("Receive fragmented frames : %ju\n",
3236             (uintmax_t)stats->rx_fragments);
3237         printf("Receive frames 64 bytes : %ju\n",
3238             (uintmax_t)stats->rx_pkts_64);
3239         printf("Receive frames 65 to 127 bytes : %ju\n",
3240             (uintmax_t)stats->rx_pkts_65_127);
3241         printf("Receive frames 128 to 255 bytes : %ju\n",
3242             (uintmax_t)stats->rx_pkts_128_255);
3243         printf("Receive frames 256 to 511 bytes : %ju\n",
3244             (uintmax_t)stats->rx_pkts_256_511);
3245         printf("Receive frames 512 to 1024 bytes : %ju\n",
3246             (uintmax_t)stats->rx_pkts_512_1023);
3247         printf("Receive frames 1024 to 1518 bytes : %ju\n",
3248             (uintmax_t)stats->rx_pkts_1024_1518);
3249         printf("Receive frames 1519 to MTU bytes : %ju\n",
3250             (uintmax_t)stats->rx_pkts_1519_max);
3251         printf("Receive frames too long : %ju\n",
3252             (uint64_t)stats->rx_pkts_truncated);
3253         printf("Receive frames with FIFO overflow : %u\n",
3254             stats->rx_fifo_oflows);
3255         printf("Receive frames with return descriptor overflow : %u\n",
3256             stats->rx_desc_oflows);
3257         printf("Receive frames with alignment errors : %u\n",
3258             stats->rx_alignerrs);
3259         printf("Receive frames dropped due to address filtering : %ju\n",
3260             (uint64_t)stats->rx_pkts_filtered);
3261
3262         return (error);
3263 }
3264
3265 static int
3266 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3267 {
3268         int error, value;
3269
3270         if (arg1 == NULL)
3271                 return (EINVAL);
3272         value = *(int *)arg1;
3273         error = sysctl_handle_int(oidp, &value, 0, req);
3274         if (error || req->newptr == NULL)
3275                 return (error);
3276         if (value < low || value > high)
3277                 return (EINVAL);
3278         *(int *)arg1 = value;
3279
3280         return (0);
3281 }
3282
3283 static int
3284 sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3285 {
3286         return (sysctl_int_range(oidp, arg1, arg2, req,
3287             AGE_PROC_MIN, AGE_PROC_MAX));
3288 }
3289
3290 static int
3291 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3292 {
3293
3294         return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3295             AGE_IM_TIMER_MAX));
3296 }