]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - sys/dev/bge/if_bge.c
MFC: r260045
[FreeBSD/stable/10.git] / sys / dev / bge / if_bge.c
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 /*
38  * Broadcom BCM57xx(x)/BCM590x NetXtreme and NetLink family Ethernet driver
39  *
40  * The Broadcom BCM5700 is based on technology originally developed by
41  * Alteon Networks as part of the Tigon I and Tigon II Gigabit Ethernet
42  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45  * frames, highly configurable RX filtering, and 16 RX and TX queues
46  * (which, along with RX filter rules, can be used for QOS applications).
47  * Other features, such as TCP segmentation, may be available as part
48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49  * firmware images can be stored in hardware and need not be compiled
50  * into the driver.
51  *
52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54  *
55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57  * does not support external SSRAM.
58  *
59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
60  * brand name, which is functionally similar but lacks PCI-X support.
61  *
62  * Without external SSRAM, you can only have at most 4 TX rings,
63  * and the use of the mini RX ring is disabled. This seems to imply
64  * that these features are simply not available on the BCM5701. As a
65  * result, this driver does not implement any support for the mini RX
66  * ring.
67  */
68
69 #ifdef HAVE_KERNEL_OPTION_HEADERS
70 #include "opt_device_polling.h"
71 #endif
72
73 #include <sys/param.h>
74 #include <sys/endian.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/module.h>
81 #include <sys/socket.h>
82 #include <sys/sysctl.h>
83 #include <sys/taskqueue.h>
84
85 #include <net/if.h>
86 #include <net/if_arp.h>
87 #include <net/ethernet.h>
88 #include <net/if_dl.h>
89 #include <net/if_media.h>
90
91 #include <net/bpf.h>
92
93 #include <net/if_types.h>
94 #include <net/if_vlan_var.h>
95
96 #include <netinet/in_systm.h>
97 #include <netinet/in.h>
98 #include <netinet/ip.h>
99 #include <netinet/tcp.h>
100
101 #include <machine/bus.h>
102 #include <machine/resource.h>
103 #include <sys/bus.h>
104 #include <sys/rman.h>
105
106 #include <dev/mii/mii.h>
107 #include <dev/mii/miivar.h>
108 #include "miidevs.h"
109 #include <dev/mii/brgphyreg.h>
110
111 #ifdef __sparc64__
112 #include <dev/ofw/ofw_bus.h>
113 #include <dev/ofw/openfirm.h>
114 #include <machine/ofw_machdep.h>
115 #include <machine/ver.h>
116 #endif
117
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120
121 #include <dev/bge/if_bgereg.h>
122
123 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP)
124 #define ETHER_MIN_NOPAD         (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
125
126 MODULE_DEPEND(bge, pci, 1, 1, 1);
127 MODULE_DEPEND(bge, ether, 1, 1, 1);
128 MODULE_DEPEND(bge, miibus, 1, 1, 1);
129
130 /* "device miibus" required.  See GENERIC if you get errors here. */
131 #include "miibus_if.h"
132
133 /*
134  * Various supported device vendors/types and their names. Note: the
135  * spec seems to indicate that the hardware still has Alteon's vendor
136  * ID burned into it, though it will always be overriden by the vendor
137  * ID in the EEPROM. Just to be safe, we cover all possibilities.
138  */
139 static const struct bge_type {
140         uint16_t        bge_vid;
141         uint16_t        bge_did;
142 } bge_devs[] = {
143         { ALTEON_VENDORID,      ALTEON_DEVICEID_BCM5700 },
144         { ALTEON_VENDORID,      ALTEON_DEVICEID_BCM5701 },
145
146         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC1000 },
147         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC1002 },
148         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC9100 },
149
150         { APPLE_VENDORID,       APPLE_DEVICE_BCM5701 },
151
152         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5700 },
153         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5701 },
154         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702 },
155         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702_ALT },
156         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702X },
157         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703 },
158         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703_ALT },
159         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703X },
160         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704C },
161         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704S },
162         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704S_ALT },
163         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705 },
164         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705F },
165         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705K },
166         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705M },
167         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705M_ALT },
168         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5714C },
169         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5714S },
170         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5715 },
171         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5715S },
172         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5717 },
173         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5718 },
174         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5719 },
175         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5720 },
176         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5721 },
177         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5722 },
178         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5723 },
179         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5725 },
180         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5727 },
181         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5750 },
182         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5750M },
183         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751 },
184         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751F },
185         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751M },
186         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5752 },
187         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5752M },
188         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753 },
189         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753F },
190         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753M },
191         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5754 },
192         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5754M },
193         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5755 },
194         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5755M },
195         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5756 },
196         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761 },
197         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761E },
198         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761S },
199         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761SE },
200         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5762 },
201         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5764 },
202         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5780 },
203         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5780S },
204         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5781 },
205         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5782 },
206         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5784 },
207         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5785F },
208         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5785G },
209         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5786 },
210         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787 },
211         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787F },
212         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787M },
213         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5788 },
214         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5789 },
215         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5901 },
216         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5901A2 },
217         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5903M },
218         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5906 },
219         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5906M },
220         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57760 },
221         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57761 },
222         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57762 },
223         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57764 },
224         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57765 },
225         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57766 },
226         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57767 },
227         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57780 },
228         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57781 },
229         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57782 },
230         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57785 },
231         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57786 },
232         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57787 },
233         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57788 },
234         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57790 },
235         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57791 },
236         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57795 },
237
238         { SK_VENDORID,          SK_DEVICEID_ALTIMA },
239
240         { TC_VENDORID,          TC_DEVICEID_3C996 },
241
242         { FJTSU_VENDORID,       FJTSU_DEVICEID_PW008GE4 },
243         { FJTSU_VENDORID,       FJTSU_DEVICEID_PW008GE5 },
244         { FJTSU_VENDORID,       FJTSU_DEVICEID_PP250450 },
245
246         { 0, 0 }
247 };
248
249 static const struct bge_vendor {
250         uint16_t        v_id;
251         const char      *v_name;
252 } bge_vendors[] = {
253         { ALTEON_VENDORID,      "Alteon" },
254         { ALTIMA_VENDORID,      "Altima" },
255         { APPLE_VENDORID,       "Apple" },
256         { BCOM_VENDORID,        "Broadcom" },
257         { SK_VENDORID,          "SysKonnect" },
258         { TC_VENDORID,          "3Com" },
259         { FJTSU_VENDORID,       "Fujitsu" },
260
261         { 0, NULL }
262 };
263
264 static const struct bge_revision {
265         uint32_t        br_chipid;
266         const char      *br_name;
267 } bge_revisions[] = {
268         { BGE_CHIPID_BCM5700_A0,        "BCM5700 A0" },
269         { BGE_CHIPID_BCM5700_A1,        "BCM5700 A1" },
270         { BGE_CHIPID_BCM5700_B0,        "BCM5700 B0" },
271         { BGE_CHIPID_BCM5700_B1,        "BCM5700 B1" },
272         { BGE_CHIPID_BCM5700_B2,        "BCM5700 B2" },
273         { BGE_CHIPID_BCM5700_B3,        "BCM5700 B3" },
274         { BGE_CHIPID_BCM5700_ALTIMA,    "BCM5700 Altima" },
275         { BGE_CHIPID_BCM5700_C0,        "BCM5700 C0" },
276         { BGE_CHIPID_BCM5701_A0,        "BCM5701 A0" },
277         { BGE_CHIPID_BCM5701_B0,        "BCM5701 B0" },
278         { BGE_CHIPID_BCM5701_B2,        "BCM5701 B2" },
279         { BGE_CHIPID_BCM5701_B5,        "BCM5701 B5" },
280         { BGE_CHIPID_BCM5703_A0,        "BCM5703 A0" },
281         { BGE_CHIPID_BCM5703_A1,        "BCM5703 A1" },
282         { BGE_CHIPID_BCM5703_A2,        "BCM5703 A2" },
283         { BGE_CHIPID_BCM5703_A3,        "BCM5703 A3" },
284         { BGE_CHIPID_BCM5703_B0,        "BCM5703 B0" },
285         { BGE_CHIPID_BCM5704_A0,        "BCM5704 A0" },
286         { BGE_CHIPID_BCM5704_A1,        "BCM5704 A1" },
287         { BGE_CHIPID_BCM5704_A2,        "BCM5704 A2" },
288         { BGE_CHIPID_BCM5704_A3,        "BCM5704 A3" },
289         { BGE_CHIPID_BCM5704_B0,        "BCM5704 B0" },
290         { BGE_CHIPID_BCM5705_A0,        "BCM5705 A0" },
291         { BGE_CHIPID_BCM5705_A1,        "BCM5705 A1" },
292         { BGE_CHIPID_BCM5705_A2,        "BCM5705 A2" },
293         { BGE_CHIPID_BCM5705_A3,        "BCM5705 A3" },
294         { BGE_CHIPID_BCM5750_A0,        "BCM5750 A0" },
295         { BGE_CHIPID_BCM5750_A1,        "BCM5750 A1" },
296         { BGE_CHIPID_BCM5750_A3,        "BCM5750 A3" },
297         { BGE_CHIPID_BCM5750_B0,        "BCM5750 B0" },
298         { BGE_CHIPID_BCM5750_B1,        "BCM5750 B1" },
299         { BGE_CHIPID_BCM5750_C0,        "BCM5750 C0" },
300         { BGE_CHIPID_BCM5750_C1,        "BCM5750 C1" },
301         { BGE_CHIPID_BCM5750_C2,        "BCM5750 C2" },
302         { BGE_CHIPID_BCM5714_A0,        "BCM5714 A0" },
303         { BGE_CHIPID_BCM5752_A0,        "BCM5752 A0" },
304         { BGE_CHIPID_BCM5752_A1,        "BCM5752 A1" },
305         { BGE_CHIPID_BCM5752_A2,        "BCM5752 A2" },
306         { BGE_CHIPID_BCM5714_B0,        "BCM5714 B0" },
307         { BGE_CHIPID_BCM5714_B3,        "BCM5714 B3" },
308         { BGE_CHIPID_BCM5715_A0,        "BCM5715 A0" },
309         { BGE_CHIPID_BCM5715_A1,        "BCM5715 A1" },
310         { BGE_CHIPID_BCM5715_A3,        "BCM5715 A3" },
311         { BGE_CHIPID_BCM5717_A0,        "BCM5717 A0" },
312         { BGE_CHIPID_BCM5717_B0,        "BCM5717 B0" },
313         { BGE_CHIPID_BCM5719_A0,        "BCM5719 A0" },
314         { BGE_CHIPID_BCM5720_A0,        "BCM5720 A0" },
315         { BGE_CHIPID_BCM5755_A0,        "BCM5755 A0" },
316         { BGE_CHIPID_BCM5755_A1,        "BCM5755 A1" },
317         { BGE_CHIPID_BCM5755_A2,        "BCM5755 A2" },
318         { BGE_CHIPID_BCM5722_A0,        "BCM5722 A0" },
319         { BGE_CHIPID_BCM5761_A0,        "BCM5761 A0" },
320         { BGE_CHIPID_BCM5761_A1,        "BCM5761 A1" },
321         { BGE_CHIPID_BCM5762_A0,        "BCM5762 A0" },
322         { BGE_CHIPID_BCM5784_A0,        "BCM5784 A0" },
323         { BGE_CHIPID_BCM5784_A1,        "BCM5784 A1" },
324         /* 5754 and 5787 share the same ASIC ID */
325         { BGE_CHIPID_BCM5787_A0,        "BCM5754/5787 A0" },
326         { BGE_CHIPID_BCM5787_A1,        "BCM5754/5787 A1" },
327         { BGE_CHIPID_BCM5787_A2,        "BCM5754/5787 A2" },
328         { BGE_CHIPID_BCM5906_A1,        "BCM5906 A1" },
329         { BGE_CHIPID_BCM5906_A2,        "BCM5906 A2" },
330         { BGE_CHIPID_BCM57765_A0,       "BCM57765 A0" },
331         { BGE_CHIPID_BCM57765_B0,       "BCM57765 B0" },
332         { BGE_CHIPID_BCM57780_A0,       "BCM57780 A0" },
333         { BGE_CHIPID_BCM57780_A1,       "BCM57780 A1" },
334
335         { 0, NULL }
336 };
337
338 /*
339  * Some defaults for major revisions, so that newer steppings
340  * that we don't know about have a shot at working.
341  */
342 static const struct bge_revision bge_majorrevs[] = {
343         { BGE_ASICREV_BCM5700,          "unknown BCM5700" },
344         { BGE_ASICREV_BCM5701,          "unknown BCM5701" },
345         { BGE_ASICREV_BCM5703,          "unknown BCM5703" },
346         { BGE_ASICREV_BCM5704,          "unknown BCM5704" },
347         { BGE_ASICREV_BCM5705,          "unknown BCM5705" },
348         { BGE_ASICREV_BCM5750,          "unknown BCM5750" },
349         { BGE_ASICREV_BCM5714_A0,       "unknown BCM5714" },
350         { BGE_ASICREV_BCM5752,          "unknown BCM5752" },
351         { BGE_ASICREV_BCM5780,          "unknown BCM5780" },
352         { BGE_ASICREV_BCM5714,          "unknown BCM5714" },
353         { BGE_ASICREV_BCM5755,          "unknown BCM5755" },
354         { BGE_ASICREV_BCM5761,          "unknown BCM5761" },
355         { BGE_ASICREV_BCM5784,          "unknown BCM5784" },
356         { BGE_ASICREV_BCM5785,          "unknown BCM5785" },
357         /* 5754 and 5787 share the same ASIC ID */
358         { BGE_ASICREV_BCM5787,          "unknown BCM5754/5787" },
359         { BGE_ASICREV_BCM5906,          "unknown BCM5906" },
360         { BGE_ASICREV_BCM57765,         "unknown BCM57765" },
361         { BGE_ASICREV_BCM57766,         "unknown BCM57766" },
362         { BGE_ASICREV_BCM57780,         "unknown BCM57780" },
363         { BGE_ASICREV_BCM5717,          "unknown BCM5717" },
364         { BGE_ASICREV_BCM5719,          "unknown BCM5719" },
365         { BGE_ASICREV_BCM5720,          "unknown BCM5720" },
366         { BGE_ASICREV_BCM5762,          "unknown BCM5762" },
367
368         { 0, NULL }
369 };
370
371 #define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGE_FLAG_JUMBO)
372 #define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
373 #define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
374 #define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
375 #define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
376 #define BGE_IS_5755_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5755_PLUS)
377 #define BGE_IS_5717_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5717_PLUS)
378 #define BGE_IS_57765_PLUS(sc)           ((sc)->bge_flags & BGE_FLAG_57765_PLUS)
379
380 static uint32_t bge_chipid(device_t);
381 static const struct bge_vendor * bge_lookup_vendor(uint16_t);
382 static const struct bge_revision * bge_lookup_rev(uint32_t);
383
384 typedef int     (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
385
386 static int bge_probe(device_t);
387 static int bge_attach(device_t);
388 static int bge_detach(device_t);
389 static int bge_suspend(device_t);
390 static int bge_resume(device_t);
391 static void bge_release_resources(struct bge_softc *);
392 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
393 static int bge_dma_alloc(struct bge_softc *);
394 static void bge_dma_free(struct bge_softc *);
395 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
396     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
397
398 static void bge_devinfo(struct bge_softc *);
399 static int bge_mbox_reorder(struct bge_softc *);
400
401 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
402 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
403 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
404 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
405 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
406
407 static void bge_txeof(struct bge_softc *, uint16_t);
408 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
409 static int bge_rxeof(struct bge_softc *, uint16_t, int);
410
411 static void bge_asf_driver_up (struct bge_softc *);
412 static void bge_tick(void *);
413 static void bge_stats_clear_regs(struct bge_softc *);
414 static void bge_stats_update(struct bge_softc *);
415 static void bge_stats_update_regs(struct bge_softc *);
416 static struct mbuf *bge_check_short_dma(struct mbuf *);
417 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
418     uint16_t *, uint16_t *);
419 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
420
421 static void bge_intr(void *);
422 static int bge_msi_intr(void *);
423 static void bge_intr_task(void *, int);
424 static void bge_start_locked(struct ifnet *);
425 static void bge_start(struct ifnet *);
426 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
427 static void bge_init_locked(struct bge_softc *);
428 static void bge_init(void *);
429 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
430 static void bge_stop(struct bge_softc *);
431 static void bge_watchdog(struct bge_softc *);
432 static int bge_shutdown(device_t);
433 static int bge_ifmedia_upd_locked(struct ifnet *);
434 static int bge_ifmedia_upd(struct ifnet *);
435 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
436
437 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
438 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
439
440 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
441 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
442
443 static void bge_setpromisc(struct bge_softc *);
444 static void bge_setmulti(struct bge_softc *);
445 static void bge_setvlan(struct bge_softc *);
446
447 static __inline void bge_rxreuse_std(struct bge_softc *, int);
448 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
449 static int bge_newbuf_std(struct bge_softc *, int);
450 static int bge_newbuf_jumbo(struct bge_softc *, int);
451 static int bge_init_rx_ring_std(struct bge_softc *);
452 static void bge_free_rx_ring_std(struct bge_softc *);
453 static int bge_init_rx_ring_jumbo(struct bge_softc *);
454 static void bge_free_rx_ring_jumbo(struct bge_softc *);
455 static void bge_free_tx_ring(struct bge_softc *);
456 static int bge_init_tx_ring(struct bge_softc *);
457
458 static int bge_chipinit(struct bge_softc *);
459 static int bge_blockinit(struct bge_softc *);
460 static uint32_t bge_dma_swap_options(struct bge_softc *);
461
462 static int bge_has_eaddr(struct bge_softc *);
463 static uint32_t bge_readmem_ind(struct bge_softc *, int);
464 static void bge_writemem_ind(struct bge_softc *, int, int);
465 static void bge_writembx(struct bge_softc *, int, int);
466 #ifdef notdef
467 static uint32_t bge_readreg_ind(struct bge_softc *, int);
468 #endif
469 static void bge_writemem_direct(struct bge_softc *, int, int);
470 static void bge_writereg_ind(struct bge_softc *, int, int);
471
472 static int bge_miibus_readreg(device_t, int, int);
473 static int bge_miibus_writereg(device_t, int, int, int);
474 static void bge_miibus_statchg(device_t);
475 #ifdef DEVICE_POLLING
476 static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
477 #endif
478
479 #define BGE_RESET_SHUTDOWN      0
480 #define BGE_RESET_START         1
481 #define BGE_RESET_SUSPEND       2
482 static void bge_sig_post_reset(struct bge_softc *, int);
483 static void bge_sig_legacy(struct bge_softc *, int);
484 static void bge_sig_pre_reset(struct bge_softc *, int);
485 static void bge_stop_fw(struct bge_softc *);
486 static int bge_reset(struct bge_softc *);
487 static void bge_link_upd(struct bge_softc *);
488
489 static void bge_ape_lock_init(struct bge_softc *);
490 static void bge_ape_read_fw_ver(struct bge_softc *);
491 static int bge_ape_lock(struct bge_softc *, int);
492 static void bge_ape_unlock(struct bge_softc *, int);
493 static void bge_ape_send_event(struct bge_softc *, uint32_t);
494 static void bge_ape_driver_state_change(struct bge_softc *, int);
495
496 /*
497  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
498  * leak information to untrusted users.  It is also known to cause alignment
499  * traps on certain architectures.
500  */
501 #ifdef BGE_REGISTER_DEBUG
502 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
503 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
504 static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS);
505 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
506 #endif
507 static void bge_add_sysctls(struct bge_softc *);
508 static void bge_add_sysctl_stats_regs(struct bge_softc *,
509     struct sysctl_ctx_list *, struct sysctl_oid_list *);
510 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
511     struct sysctl_oid_list *);
512 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
513
514 static device_method_t bge_methods[] = {
515         /* Device interface */
516         DEVMETHOD(device_probe,         bge_probe),
517         DEVMETHOD(device_attach,        bge_attach),
518         DEVMETHOD(device_detach,        bge_detach),
519         DEVMETHOD(device_shutdown,      bge_shutdown),
520         DEVMETHOD(device_suspend,       bge_suspend),
521         DEVMETHOD(device_resume,        bge_resume),
522
523         /* MII interface */
524         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
525         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
526         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
527
528         DEVMETHOD_END
529 };
530
531 static driver_t bge_driver = {
532         "bge",
533         bge_methods,
534         sizeof(struct bge_softc)
535 };
536
537 static devclass_t bge_devclass;
538
539 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
540 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
541
542 static int bge_allow_asf = 1;
543
544 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
545
546 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
547 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
548         "Allow ASF mode if available");
549
550 #define SPARC64_BLADE_1500_MODEL        "SUNW,Sun-Blade-1500"
551 #define SPARC64_BLADE_1500_PATH_BGE     "/pci@1f,700000/network@2"
552 #define SPARC64_BLADE_2500_MODEL        "SUNW,Sun-Blade-2500"
553 #define SPARC64_BLADE_2500_PATH_BGE     "/pci@1c,600000/network@3"
554 #define SPARC64_OFW_SUBVENDOR           "subsystem-vendor-id"
555
556 static int
557 bge_has_eaddr(struct bge_softc *sc)
558 {
559 #ifdef __sparc64__
560         char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
561         device_t dev;
562         uint32_t subvendor;
563
564         dev = sc->bge_dev;
565
566         /*
567          * The on-board BGEs found in sun4u machines aren't fitted with
568          * an EEPROM which means that we have to obtain the MAC address
569          * via OFW and that some tests will always fail.  We distinguish
570          * such BGEs by the subvendor ID, which also has to be obtained
571          * from OFW instead of the PCI configuration space as the latter
572          * indicates Broadcom as the subvendor of the netboot interface.
573          * For early Blade 1500 and 2500 we even have to check the OFW
574          * device path as the subvendor ID always defaults to Broadcom
575          * there.
576          */
577         if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
578             &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
579             (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
580                 return (0);
581         memset(buf, 0, sizeof(buf));
582         if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
583                 if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
584                     strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
585                         return (0);
586                 if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
587                     strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
588                         return (0);
589         }
590 #endif
591         return (1);
592 }
593
594 static uint32_t
595 bge_readmem_ind(struct bge_softc *sc, int off)
596 {
597         device_t dev;
598         uint32_t val;
599
600         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
601             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
602                 return (0);
603
604         dev = sc->bge_dev;
605
606         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
607         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
608         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
609         return (val);
610 }
611
612 static void
613 bge_writemem_ind(struct bge_softc *sc, int off, int val)
614 {
615         device_t dev;
616
617         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
618             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
619                 return;
620
621         dev = sc->bge_dev;
622
623         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
624         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
625         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
626 }
627
628 #ifdef notdef
629 static uint32_t
630 bge_readreg_ind(struct bge_softc *sc, int off)
631 {
632         device_t dev;
633
634         dev = sc->bge_dev;
635
636         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
637         return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
638 }
639 #endif
640
641 static void
642 bge_writereg_ind(struct bge_softc *sc, int off, int val)
643 {
644         device_t dev;
645
646         dev = sc->bge_dev;
647
648         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
649         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
650 }
651
652 static void
653 bge_writemem_direct(struct bge_softc *sc, int off, int val)
654 {
655         CSR_WRITE_4(sc, off, val);
656 }
657
658 static void
659 bge_writembx(struct bge_softc *sc, int off, int val)
660 {
661         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
662                 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
663
664         CSR_WRITE_4(sc, off, val);
665         if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0)
666                 CSR_READ_4(sc, off);
667 }
668
669 /*
670  * Clear all stale locks and select the lock for this driver instance.
671  */
672 static void
673 bge_ape_lock_init(struct bge_softc *sc)
674 {
675         uint32_t bit, regbase;
676         int i;
677
678         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
679                 regbase = BGE_APE_LOCK_GRANT;
680         else
681                 regbase = BGE_APE_PER_LOCK_GRANT;
682
683         /* Clear any stale locks. */
684         for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
685                 switch (i) {
686                 case BGE_APE_LOCK_PHY0:
687                 case BGE_APE_LOCK_PHY1:
688                 case BGE_APE_LOCK_PHY2:
689                 case BGE_APE_LOCK_PHY3:
690                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
691                         break;
692                 default:
693                         if (sc->bge_func_addr == 0)
694                                 bit = BGE_APE_LOCK_GRANT_DRIVER0;
695                         else
696                                 bit = (1 << sc->bge_func_addr);
697                 }
698                 APE_WRITE_4(sc, regbase + 4 * i, bit);
699         }
700
701         /* Select the PHY lock based on the device's function number. */
702         switch (sc->bge_func_addr) {
703         case 0:
704                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
705                 break;
706         case 1:
707                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
708                 break;
709         case 2:
710                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
711                 break;
712         case 3:
713                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
714                 break;
715         default:
716                 device_printf(sc->bge_dev,
717                     "PHY lock not supported on this function\n");
718         }
719 }
720
721 /*
722  * Check for APE firmware, set flags, and print version info.
723  */
724 static void
725 bge_ape_read_fw_ver(struct bge_softc *sc)
726 {
727         const char *fwtype;
728         uint32_t apedata, features;
729
730         /* Check for a valid APE signature in shared memory. */
731         apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
732         if (apedata != BGE_APE_SEG_SIG_MAGIC) {
733                 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
734                 return;
735         }
736
737         /* Check if APE firmware is running. */
738         apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
739         if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
740                 device_printf(sc->bge_dev, "APE signature found "
741                     "but FW status not ready! 0x%08x\n", apedata);
742                 return;
743         }
744
745         sc->bge_mfw_flags |= BGE_MFW_ON_APE;
746
747         /* Fetch the APE firwmare type and version. */
748         apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
749         features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
750         if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
751                 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
752                 fwtype = "NCSI";
753         } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
754                 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
755                 fwtype = "DASH";
756         } else
757                 fwtype = "UNKN";
758
759         /* Print the APE firmware version. */
760         device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n",
761             fwtype,
762             (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
763             (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
764             (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
765             (apedata & BGE_APE_FW_VERSION_BLDMSK));
766 }
767
768 static int
769 bge_ape_lock(struct bge_softc *sc, int locknum)
770 {
771         uint32_t bit, gnt, req, status;
772         int i, off;
773
774         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
775                 return (0);
776
777         /* Lock request/grant registers have different bases. */
778         if (sc->bge_asicrev == BGE_ASICREV_BCM5761) {
779                 req = BGE_APE_LOCK_REQ;
780                 gnt = BGE_APE_LOCK_GRANT;
781         } else {
782                 req = BGE_APE_PER_LOCK_REQ;
783                 gnt = BGE_APE_PER_LOCK_GRANT;
784         }
785
786         off = 4 * locknum;
787
788         switch (locknum) {
789         case BGE_APE_LOCK_GPIO:
790                 /* Lock required when using GPIO. */
791                 if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
792                         return (0);
793                 if (sc->bge_func_addr == 0)
794                         bit = BGE_APE_LOCK_REQ_DRIVER0;
795                 else
796                         bit = (1 << sc->bge_func_addr);
797                 break;
798         case BGE_APE_LOCK_GRC:
799                 /* Lock required to reset the device. */
800                 if (sc->bge_func_addr == 0)
801                         bit = BGE_APE_LOCK_REQ_DRIVER0;
802                 else
803                         bit = (1 << sc->bge_func_addr);
804                 break;
805         case BGE_APE_LOCK_MEM:
806                 /* Lock required when accessing certain APE memory. */
807                 if (sc->bge_func_addr == 0)
808                         bit = BGE_APE_LOCK_REQ_DRIVER0;
809                 else
810                         bit = (1 << sc->bge_func_addr);
811                 break;
812         case BGE_APE_LOCK_PHY0:
813         case BGE_APE_LOCK_PHY1:
814         case BGE_APE_LOCK_PHY2:
815         case BGE_APE_LOCK_PHY3:
816                 /* Lock required when accessing PHYs. */
817                 bit = BGE_APE_LOCK_REQ_DRIVER0;
818                 break;
819         default:
820                 return (EINVAL);
821         }
822
823         /* Request a lock. */
824         APE_WRITE_4(sc, req + off, bit);
825
826         /* Wait up to 1 second to acquire lock. */
827         for (i = 0; i < 20000; i++) {
828                 status = APE_READ_4(sc, gnt + off);
829                 if (status == bit)
830                         break;
831                 DELAY(50);
832         }
833
834         /* Handle any errors. */
835         if (status != bit) {
836                 device_printf(sc->bge_dev, "APE lock %d request failed! "
837                     "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
838                     locknum, req + off, bit & 0xFFFF, gnt + off,
839                     status & 0xFFFF);
840                 /* Revoke the lock request. */
841                 APE_WRITE_4(sc, gnt + off, bit);
842                 return (EBUSY);
843         }
844
845         return (0);
846 }
847
848 static void
849 bge_ape_unlock(struct bge_softc *sc, int locknum)
850 {
851         uint32_t bit, gnt;
852         int off;
853
854         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
855                 return;
856
857         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
858                 gnt = BGE_APE_LOCK_GRANT;
859         else
860                 gnt = BGE_APE_PER_LOCK_GRANT;
861
862         off = 4 * locknum;
863
864         switch (locknum) {
865         case BGE_APE_LOCK_GPIO:
866                 if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
867                         return;
868                 if (sc->bge_func_addr == 0)
869                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
870                 else
871                         bit = (1 << sc->bge_func_addr);
872                 break;
873         case BGE_APE_LOCK_GRC:
874                 if (sc->bge_func_addr == 0)
875                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
876                 else
877                         bit = (1 << sc->bge_func_addr);
878                 break;
879         case BGE_APE_LOCK_MEM:
880                 if (sc->bge_func_addr == 0)
881                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
882                 else
883                         bit = (1 << sc->bge_func_addr);
884                 break;
885         case BGE_APE_LOCK_PHY0:
886         case BGE_APE_LOCK_PHY1:
887         case BGE_APE_LOCK_PHY2:
888         case BGE_APE_LOCK_PHY3:
889                 bit = BGE_APE_LOCK_GRANT_DRIVER0;
890                 break;
891         default:
892                 return;
893         }
894
895         APE_WRITE_4(sc, gnt + off, bit);
896 }
897
898 /*
899  * Send an event to the APE firmware.
900  */
901 static void
902 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
903 {
904         uint32_t apedata;
905         int i;
906
907         /* NCSI does not support APE events. */
908         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
909                 return;
910
911         /* Wait up to 1ms for APE to service previous event. */
912         for (i = 10; i > 0; i--) {
913                 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
914                         break;
915                 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
916                 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
917                         APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
918                             BGE_APE_EVENT_STATUS_EVENT_PENDING);
919                         bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
920                         APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
921                         break;
922                 }
923                 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
924                 DELAY(100);
925         }
926         if (i == 0)
927                 device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n",
928                     event);
929 }
930
931 static void
932 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
933 {
934         uint32_t apedata, event;
935
936         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
937                 return;
938
939         switch (kind) {
940         case BGE_RESET_START:
941                 /* If this is the first load, clear the load counter. */
942                 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
943                 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
944                         APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
945                 else {
946                         apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
947                         APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
948                 }
949                 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
950                     BGE_APE_HOST_SEG_SIG_MAGIC);
951                 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
952                     BGE_APE_HOST_SEG_LEN_MAGIC);
953
954                 /* Add some version info if bge(4) supports it. */
955                 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
956                     BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
957                 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
958                     BGE_APE_HOST_BEHAV_NO_PHYLOCK);
959                 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
960                     BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
961                 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
962                     BGE_APE_HOST_DRVR_STATE_START);
963                 event = BGE_APE_EVENT_STATUS_STATE_START;
964                 break;
965         case BGE_RESET_SHUTDOWN:
966                 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
967                     BGE_APE_HOST_DRVR_STATE_UNLOAD);
968                 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
969                 break;
970         case BGE_RESET_SUSPEND:
971                 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
972                 break;
973         default:
974                 return;
975         }
976
977         bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
978             BGE_APE_EVENT_STATUS_STATE_CHNGE);
979 }
980
981 /*
982  * Map a single buffer address.
983  */
984
985 static void
986 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
987 {
988         struct bge_dmamap_arg *ctx;
989
990         if (error)
991                 return;
992
993         KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
994
995         ctx = arg;
996         ctx->bge_busaddr = segs->ds_addr;
997 }
998
999 static uint8_t
1000 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1001 {
1002         uint32_t access, byte = 0;
1003         int i;
1004
1005         /* Lock. */
1006         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1007         for (i = 0; i < 8000; i++) {
1008                 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1009                         break;
1010                 DELAY(20);
1011         }
1012         if (i == 8000)
1013                 return (1);
1014
1015         /* Enable access. */
1016         access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1017         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1018
1019         CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1020         CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1021         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1022                 DELAY(10);
1023                 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1024                         DELAY(10);
1025                         break;
1026                 }
1027         }
1028
1029         if (i == BGE_TIMEOUT * 10) {
1030                 if_printf(sc->bge_ifp, "nvram read timed out\n");
1031                 return (1);
1032         }
1033
1034         /* Get result. */
1035         byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1036
1037         *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1038
1039         /* Disable access. */
1040         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1041
1042         /* Unlock. */
1043         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1044         CSR_READ_4(sc, BGE_NVRAM_SWARB);
1045
1046         return (0);
1047 }
1048
1049 /*
1050  * Read a sequence of bytes from NVRAM.
1051  */
1052 static int
1053 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1054 {
1055         int err = 0, i;
1056         uint8_t byte = 0;
1057
1058         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1059                 return (1);
1060
1061         for (i = 0; i < cnt; i++) {
1062                 err = bge_nvram_getbyte(sc, off + i, &byte);
1063                 if (err)
1064                         break;
1065                 *(dest + i) = byte;
1066         }
1067
1068         return (err ? 1 : 0);
1069 }
1070
1071 /*
1072  * Read a byte of data stored in the EEPROM at address 'addr.' The
1073  * BCM570x supports both the traditional bitbang interface and an
1074  * auto access interface for reading the EEPROM. We use the auto
1075  * access method.
1076  */
1077 static uint8_t
1078 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1079 {
1080         int i;
1081         uint32_t byte = 0;
1082
1083         /*
1084          * Enable use of auto EEPROM access so we can avoid
1085          * having to use the bitbang method.
1086          */
1087         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1088
1089         /* Reset the EEPROM, load the clock period. */
1090         CSR_WRITE_4(sc, BGE_EE_ADDR,
1091             BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1092         DELAY(20);
1093
1094         /* Issue the read EEPROM command. */
1095         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1096
1097         /* Wait for completion */
1098         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
1099                 DELAY(10);
1100                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1101                         break;
1102         }
1103
1104         if (i == BGE_TIMEOUT * 10) {
1105                 device_printf(sc->bge_dev, "EEPROM read timed out\n");
1106                 return (1);
1107         }
1108
1109         /* Get result. */
1110         byte = CSR_READ_4(sc, BGE_EE_DATA);
1111
1112         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1113
1114         return (0);
1115 }
1116
1117 /*
1118  * Read a sequence of bytes from the EEPROM.
1119  */
1120 static int
1121 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1122 {
1123         int i, error = 0;
1124         uint8_t byte = 0;
1125
1126         for (i = 0; i < cnt; i++) {
1127                 error = bge_eeprom_getbyte(sc, off + i, &byte);
1128                 if (error)
1129                         break;
1130                 *(dest + i) = byte;
1131         }
1132
1133         return (error ? 1 : 0);
1134 }
1135
1136 static int
1137 bge_miibus_readreg(device_t dev, int phy, int reg)
1138 {
1139         struct bge_softc *sc;
1140         uint32_t val;
1141         int i;
1142
1143         sc = device_get_softc(dev);
1144
1145         if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1146                 return (0);
1147
1148         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1149         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1150                 CSR_WRITE_4(sc, BGE_MI_MODE,
1151                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1152                 DELAY(80);
1153         }
1154
1155         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1156             BGE_MIPHY(phy) | BGE_MIREG(reg));
1157
1158         /* Poll for the PHY register access to complete. */
1159         for (i = 0; i < BGE_TIMEOUT; i++) {
1160                 DELAY(10);
1161                 val = CSR_READ_4(sc, BGE_MI_COMM);
1162                 if ((val & BGE_MICOMM_BUSY) == 0) {
1163                         DELAY(5);
1164                         val = CSR_READ_4(sc, BGE_MI_COMM);
1165                         break;
1166                 }
1167         }
1168
1169         if (i == BGE_TIMEOUT) {
1170                 device_printf(sc->bge_dev,
1171                     "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
1172                     phy, reg, val);
1173                 val = 0;
1174         }
1175
1176         /* Restore the autopoll bit if necessary. */
1177         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1178                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1179                 DELAY(80);
1180         }
1181
1182         bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1183
1184         if (val & BGE_MICOMM_READFAIL)
1185                 return (0);
1186
1187         return (val & 0xFFFF);
1188 }
1189
1190 static int
1191 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1192 {
1193         struct bge_softc *sc;
1194         int i;
1195
1196         sc = device_get_softc(dev);
1197
1198         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1199             (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1200                 return (0);
1201
1202         if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1203                 return (0);
1204
1205         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1206         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1207                 CSR_WRITE_4(sc, BGE_MI_MODE,
1208                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1209                 DELAY(80);
1210         }
1211
1212         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1213             BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1214
1215         for (i = 0; i < BGE_TIMEOUT; i++) {
1216                 DELAY(10);
1217                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1218                         DELAY(5);
1219                         CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
1220                         break;
1221                 }
1222         }
1223
1224         /* Restore the autopoll bit if necessary. */
1225         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1226                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1227                 DELAY(80);
1228         }
1229
1230         bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1231
1232         if (i == BGE_TIMEOUT)
1233                 device_printf(sc->bge_dev,
1234                     "PHY write timed out (phy %d, reg %d, val 0x%04x)\n",
1235                     phy, reg, val);
1236
1237         return (0);
1238 }
1239
1240 static void
1241 bge_miibus_statchg(device_t dev)
1242 {
1243         struct bge_softc *sc;
1244         struct mii_data *mii;
1245         uint32_t mac_mode, rx_mode, tx_mode;
1246
1247         sc = device_get_softc(dev);
1248         if ((sc->bge_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1249                 return;
1250         mii = device_get_softc(sc->bge_miibus);
1251
1252         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1253             (IFM_ACTIVE | IFM_AVALID)) {
1254                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1255                 case IFM_10_T:
1256                 case IFM_100_TX:
1257                         sc->bge_link = 1;
1258                         break;
1259                 case IFM_1000_T:
1260                 case IFM_1000_SX:
1261                 case IFM_2500_SX:
1262                         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1263                                 sc->bge_link = 1;
1264                         else
1265                                 sc->bge_link = 0;
1266                         break;
1267                 default:
1268                         sc->bge_link = 0;
1269                         break;
1270                 }
1271         } else
1272                 sc->bge_link = 0;
1273         if (sc->bge_link == 0)
1274                 return;
1275
1276         /*
1277          * APE firmware touches these registers to keep the MAC
1278          * connected to the outside world.  Try to keep the
1279          * accesses atomic.
1280          */
1281
1282         /* Set the port mode (MII/GMII) to match the link speed. */
1283         mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1284             ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1285         tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1286         rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1287
1288         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1289             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1290                 mac_mode |= BGE_PORTMODE_GMII;
1291         else
1292                 mac_mode |= BGE_PORTMODE_MII;
1293
1294         /* Set MAC flow control behavior to match link flow control settings. */
1295         tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1296         rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1297         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1298                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1299                         tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1300                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1301                         rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1302         } else
1303                 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1304
1305         CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
1306         DELAY(40);
1307         CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1308         CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1309 }
1310
1311 /*
1312  * Intialize a standard receive ring descriptor.
1313  */
1314 static int
1315 bge_newbuf_std(struct bge_softc *sc, int i)
1316 {
1317         struct mbuf *m;
1318         struct bge_rx_bd *r;
1319         bus_dma_segment_t segs[1];
1320         bus_dmamap_t map;
1321         int error, nsegs;
1322
1323         if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
1324             (sc->bge_ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1325             ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
1326                 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1327                 if (m == NULL)
1328                         return (ENOBUFS);
1329                 m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1330         } else {
1331                 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1332                 if (m == NULL)
1333                         return (ENOBUFS);
1334                 m->m_len = m->m_pkthdr.len = MCLBYTES;
1335         }
1336         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1337                 m_adj(m, ETHER_ALIGN);
1338
1339         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
1340             sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
1341         if (error != 0) {
1342                 m_freem(m);
1343                 return (error);
1344         }
1345         if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1346                 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1347                     sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
1348                 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1349                     sc->bge_cdata.bge_rx_std_dmamap[i]);
1350         }
1351         map = sc->bge_cdata.bge_rx_std_dmamap[i];
1352         sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
1353         sc->bge_cdata.bge_rx_std_sparemap = map;
1354         sc->bge_cdata.bge_rx_std_chain[i] = m;
1355         sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
1356         r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
1357         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1358         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1359         r->bge_flags = BGE_RXBDFLAG_END;
1360         r->bge_len = segs[0].ds_len;
1361         r->bge_idx = i;
1362
1363         bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1364             sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
1365
1366         return (0);
1367 }
1368
1369 /*
1370  * Initialize a jumbo receive ring descriptor. This allocates
1371  * a jumbo buffer from the pool managed internally by the driver.
1372  */
1373 static int
1374 bge_newbuf_jumbo(struct bge_softc *sc, int i)
1375 {
1376         bus_dma_segment_t segs[BGE_NSEG_JUMBO];
1377         bus_dmamap_t map;
1378         struct bge_extrx_bd *r;
1379         struct mbuf *m;
1380         int error, nsegs;
1381
1382         MGETHDR(m, M_NOWAIT, MT_DATA);
1383         if (m == NULL)
1384                 return (ENOBUFS);
1385
1386         m_cljget(m, M_NOWAIT, MJUM9BYTES);
1387         if (!(m->m_flags & M_EXT)) {
1388                 m_freem(m);
1389                 return (ENOBUFS);
1390         }
1391         m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1392         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1393                 m_adj(m, ETHER_ALIGN);
1394
1395         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
1396             sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1397         if (error != 0) {
1398                 m_freem(m);
1399                 return (error);
1400         }
1401
1402         if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1403                 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1404                     sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1405                 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1406                     sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1407         }
1408         map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1409         sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1410             sc->bge_cdata.bge_rx_jumbo_sparemap;
1411         sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1412         sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1413         sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
1414         sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
1415         sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
1416         sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
1417
1418         /*
1419          * Fill in the extended RX buffer descriptor.
1420          */
1421         r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1422         r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1423         r->bge_idx = i;
1424         r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1425         switch (nsegs) {
1426         case 4:
1427                 r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1428                 r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1429                 r->bge_len3 = segs[3].ds_len;
1430                 sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1431         case 3:
1432                 r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1433                 r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1434                 r->bge_len2 = segs[2].ds_len;
1435                 sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1436         case 2:
1437                 r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1438                 r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1439                 r->bge_len1 = segs[1].ds_len;
1440                 sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1441         case 1:
1442                 r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1443                 r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1444                 r->bge_len0 = segs[0].ds_len;
1445                 sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1446                 break;
1447         default:
1448                 panic("%s: %d segments\n", __func__, nsegs);
1449         }
1450
1451         bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1452             sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1453
1454         return (0);
1455 }
1456
1457 static int
1458 bge_init_rx_ring_std(struct bge_softc *sc)
1459 {
1460         int error, i;
1461
1462         bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1463         sc->bge_std = 0;
1464         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1465                 if ((error = bge_newbuf_std(sc, i)) != 0)
1466                         return (error);
1467                 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1468         }
1469
1470         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1471             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1472
1473         sc->bge_std = 0;
1474         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1475
1476         return (0);
1477 }
1478
1479 static void
1480 bge_free_rx_ring_std(struct bge_softc *sc)
1481 {
1482         int i;
1483
1484         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1485                 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1486                         bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1487                             sc->bge_cdata.bge_rx_std_dmamap[i],
1488                             BUS_DMASYNC_POSTREAD);
1489                         bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1490                             sc->bge_cdata.bge_rx_std_dmamap[i]);
1491                         m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1492                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1493                 }
1494                 bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1495                     sizeof(struct bge_rx_bd));
1496         }
1497 }
1498
1499 static int
1500 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1501 {
1502         struct bge_rcb *rcb;
1503         int error, i;
1504
1505         bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1506         sc->bge_jumbo = 0;
1507         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1508                 if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1509                         return (error);
1510                 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1511         }
1512
1513         bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1514             sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1515
1516         sc->bge_jumbo = 0;
1517
1518         /* Enable the jumbo receive producer ring. */
1519         rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1520         rcb->bge_maxlen_flags =
1521             BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
1522         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1523
1524         bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1525
1526         return (0);
1527 }
1528
1529 static void
1530 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1531 {
1532         int i;
1533
1534         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1535                 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1536                         bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1537                             sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1538                             BUS_DMASYNC_POSTREAD);
1539                         bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1540                             sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1541                         m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1542                         sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1543                 }
1544                 bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1545                     sizeof(struct bge_extrx_bd));
1546         }
1547 }
1548
1549 static void
1550 bge_free_tx_ring(struct bge_softc *sc)
1551 {
1552         int i;
1553
1554         if (sc->bge_ldata.bge_tx_ring == NULL)
1555                 return;
1556
1557         for (i = 0; i < BGE_TX_RING_CNT; i++) {
1558                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1559                         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1560                             sc->bge_cdata.bge_tx_dmamap[i],
1561                             BUS_DMASYNC_POSTWRITE);
1562                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1563                             sc->bge_cdata.bge_tx_dmamap[i]);
1564                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
1565                         sc->bge_cdata.bge_tx_chain[i] = NULL;
1566                 }
1567                 bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1568                     sizeof(struct bge_tx_bd));
1569         }
1570 }
1571
1572 static int
1573 bge_init_tx_ring(struct bge_softc *sc)
1574 {
1575         sc->bge_txcnt = 0;
1576         sc->bge_tx_saved_considx = 0;
1577
1578         bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1579         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1580             sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1581
1582         /* Initialize transmit producer index for host-memory send ring. */
1583         sc->bge_tx_prodidx = 0;
1584         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1585
1586         /* 5700 b2 errata */
1587         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1588                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1589
1590         /* NIC-memory send ring not used; initialize to zero. */
1591         bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1592         /* 5700 b2 errata */
1593         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1594                 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1595
1596         return (0);
1597 }
1598
1599 static void
1600 bge_setpromisc(struct bge_softc *sc)
1601 {
1602         struct ifnet *ifp;
1603
1604         BGE_LOCK_ASSERT(sc);
1605
1606         ifp = sc->bge_ifp;
1607
1608         /* Enable or disable promiscuous mode as needed. */
1609         if (ifp->if_flags & IFF_PROMISC)
1610                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1611         else
1612                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1613 }
1614
1615 static void
1616 bge_setmulti(struct bge_softc *sc)
1617 {
1618         struct ifnet *ifp;
1619         struct ifmultiaddr *ifma;
1620         uint32_t hashes[4] = { 0, 0, 0, 0 };
1621         int h, i;
1622
1623         BGE_LOCK_ASSERT(sc);
1624
1625         ifp = sc->bge_ifp;
1626
1627         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1628                 for (i = 0; i < 4; i++)
1629                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1630                 return;
1631         }
1632
1633         /* First, zot all the existing filters. */
1634         for (i = 0; i < 4; i++)
1635                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1636
1637         /* Now program new ones. */
1638         if_maddr_rlock(ifp);
1639         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1640                 if (ifma->ifma_addr->sa_family != AF_LINK)
1641                         continue;
1642                 h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1643                     ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
1644                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1645         }
1646         if_maddr_runlock(ifp);
1647
1648         for (i = 0; i < 4; i++)
1649                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1650 }
1651
1652 static void
1653 bge_setvlan(struct bge_softc *sc)
1654 {
1655         struct ifnet *ifp;
1656
1657         BGE_LOCK_ASSERT(sc);
1658
1659         ifp = sc->bge_ifp;
1660
1661         /* Enable or disable VLAN tag stripping as needed. */
1662         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1663                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1664         else
1665                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1666 }
1667
1668 static void
1669 bge_sig_pre_reset(struct bge_softc *sc, int type)
1670 {
1671
1672         /*
1673          * Some chips don't like this so only do this if ASF is enabled
1674          */
1675         if (sc->bge_asf_mode)
1676                 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1677
1678         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1679                 switch (type) {
1680                 case BGE_RESET_START:
1681                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1682                             BGE_FW_DRV_STATE_START);
1683                         break;
1684                 case BGE_RESET_SHUTDOWN:
1685                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1686                             BGE_FW_DRV_STATE_UNLOAD);
1687                         break;
1688                 case BGE_RESET_SUSPEND:
1689                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1690                             BGE_FW_DRV_STATE_SUSPEND);
1691                         break;
1692                 }
1693         }
1694
1695         if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1696                 bge_ape_driver_state_change(sc, type);
1697 }
1698
1699 static void
1700 bge_sig_post_reset(struct bge_softc *sc, int type)
1701 {
1702
1703         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1704                 switch (type) {
1705                 case BGE_RESET_START:
1706                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1707                             BGE_FW_DRV_STATE_START_DONE);
1708                         /* START DONE */
1709                         break;
1710                 case BGE_RESET_SHUTDOWN:
1711                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1712                             BGE_FW_DRV_STATE_UNLOAD_DONE);
1713                         break;
1714                 }
1715         }
1716         if (type == BGE_RESET_SHUTDOWN)
1717                 bge_ape_driver_state_change(sc, type);
1718 }
1719
1720 static void
1721 bge_sig_legacy(struct bge_softc *sc, int type)
1722 {
1723
1724         if (sc->bge_asf_mode) {
1725                 switch (type) {
1726                 case BGE_RESET_START:
1727                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1728                             BGE_FW_DRV_STATE_START);
1729                         break;
1730                 case BGE_RESET_SHUTDOWN:
1731                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1732                             BGE_FW_DRV_STATE_UNLOAD);
1733                         break;
1734                 }
1735         }
1736 }
1737
1738 static void
1739 bge_stop_fw(struct bge_softc *sc)
1740 {
1741         int i;
1742
1743         if (sc->bge_asf_mode) {
1744                 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1745                 CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
1746                     CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1747
1748                 for (i = 0; i < 100; i++ ) {
1749                         if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1750                             BGE_RX_CPU_DRV_EVENT))
1751                                 break;
1752                         DELAY(10);
1753                 }
1754         }
1755 }
1756
1757 static uint32_t
1758 bge_dma_swap_options(struct bge_softc *sc)
1759 {
1760         uint32_t dma_options;
1761
1762         dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
1763             BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
1764 #if BYTE_ORDER == BIG_ENDIAN
1765         dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
1766 #endif
1767         return (dma_options);
1768 }
1769
1770 /*
1771  * Do endian, PCI and DMA initialization.
1772  */
1773 static int
1774 bge_chipinit(struct bge_softc *sc)
1775 {
1776         uint32_t dma_rw_ctl, misc_ctl, mode_ctl;
1777         uint16_t val;
1778         int i;
1779
1780         /* Set endianness before we access any non-PCI registers. */
1781         misc_ctl = BGE_INIT;
1782         if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
1783                 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
1784         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
1785
1786         /*
1787          * Clear the MAC statistics block in the NIC's
1788          * internal memory.
1789          */
1790         for (i = BGE_STATS_BLOCK;
1791             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1792                 BGE_MEMWIN_WRITE(sc, i, 0);
1793
1794         for (i = BGE_STATUS_BLOCK;
1795             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1796                 BGE_MEMWIN_WRITE(sc, i, 0);
1797
1798         if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1799                 /*
1800                  *  Fix data corruption caused by non-qword write with WB.
1801                  *  Fix master abort in PCI mode.
1802                  *  Fix PCI latency timer.
1803                  */
1804                 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1805                 val |= (1 << 10) | (1 << 12) | (1 << 13);
1806                 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1807         }
1808
1809         if (sc->bge_asicrev == BGE_ASICREV_BCM57765 ||
1810             sc->bge_asicrev == BGE_ASICREV_BCM57766) {
1811                 /*
1812                  * For the 57766 and non Ax versions of 57765, bootcode
1813                  * needs to setup the PCIE Fast Training Sequence (FTS)
1814                  * value to prevent transmit hangs.
1815                  */
1816                 if (sc->bge_chiprev != BGE_CHIPREV_57765_AX) {
1817                         CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
1818                             CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL) |
1819                             BGE_CPMU_PADRNG_CTL_RDIV2);
1820                 }
1821         }
1822
1823         /*
1824          * Set up the PCI DMA control register.
1825          */
1826         dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1827             BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1828         if (sc->bge_flags & BGE_FLAG_PCIE) {
1829                 if (sc->bge_mps >= 256)
1830                         dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1831                 else
1832                         dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1833         } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1834                 if (BGE_IS_5714_FAMILY(sc)) {
1835                         /* 256 bytes for read and write. */
1836                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1837                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1838                         dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1839                             BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1840                             BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1841                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1842                         /*
1843                          * In the BCM5703, the DMA read watermark should
1844                          * be set to less than or equal to the maximum
1845                          * memory read byte count of the PCI-X command
1846                          * register.
1847                          */
1848                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1849                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1850                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1851                         /* 1536 bytes for read, 384 bytes for write. */
1852                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1853                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1854                 } else {
1855                         /* 384 bytes for read and write. */
1856                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1857                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1858                             0x0F;
1859                 }
1860                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1861                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1862                         uint32_t tmp;
1863
1864                         /* Set ONE_DMA_AT_ONCE for hardware workaround. */
1865                         tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1866                         if (tmp == 6 || tmp == 7)
1867                                 dma_rw_ctl |=
1868                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1869
1870                         /* Set PCI-X DMA write workaround. */
1871                         dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1872                 }
1873         } else {
1874                 /* Conventional PCI bus: 256 bytes for read and write. */
1875                 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1876                     BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1877
1878                 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1879                     sc->bge_asicrev != BGE_ASICREV_BCM5750)
1880                         dma_rw_ctl |= 0x0F;
1881         }
1882         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1883             sc->bge_asicrev == BGE_ASICREV_BCM5701)
1884                 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1885                     BGE_PCIDMARWCTL_ASRT_ALL_BE;
1886         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1887             sc->bge_asicrev == BGE_ASICREV_BCM5704)
1888                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1889         if (BGE_IS_5717_PLUS(sc)) {
1890                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1891                 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
1892                         dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1893                 /*
1894                  * Enable HW workaround for controllers that misinterpret
1895                  * a status tag update and leave interrupts permanently
1896                  * disabled.
1897                  */
1898                 if (!BGE_IS_57765_PLUS(sc) &&
1899                     sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
1900                     sc->bge_asicrev != BGE_ASICREV_BCM5762)
1901                         dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1902         }
1903         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1904
1905         /*
1906          * Set up general mode register.
1907          */
1908         mode_ctl = bge_dma_swap_options(sc);
1909         if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
1910             sc->bge_asicrev == BGE_ASICREV_BCM5762) {
1911                 /* Retain Host-2-BMC settings written by APE firmware. */
1912                 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
1913                     (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
1914                     BGE_MODECTL_WORDSWAP_B2HRX_DATA |
1915                     BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
1916         }
1917         mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1918             BGE_MODECTL_TX_NO_PHDR_CSUM;
1919
1920         /*
1921          * BCM5701 B5 have a bug causing data corruption when using
1922          * 64-bit DMA reads, which can be terminated early and then
1923          * completed later as 32-bit accesses, in combination with
1924          * certain bridges.
1925          */
1926         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1927             sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1928                 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1929
1930         /*
1931          * Tell the firmware the driver is running
1932          */
1933         if (sc->bge_asf_mode & ASF_STACKUP)
1934                 mode_ctl |= BGE_MODECTL_STACKUP;
1935
1936         CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1937
1938         /*
1939          * Disable memory write invalidate.  Apparently it is not supported
1940          * properly by these devices.  Also ensure that INTx isn't disabled,
1941          * as these chips need it even when using MSI.
1942          */
1943         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1944             PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4);
1945
1946         /* Set the timer prescaler (always 66 MHz). */
1947         CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1948
1949         /* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1950         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1951                 DELAY(40);      /* XXX */
1952
1953                 /* Put PHY into ready state */
1954                 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1955                 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1956                 DELAY(40);
1957         }
1958
1959         return (0);
1960 }
1961
1962 static int
1963 bge_blockinit(struct bge_softc *sc)
1964 {
1965         struct bge_rcb *rcb;
1966         bus_size_t vrcb;
1967         bge_hostaddr taddr;
1968         uint32_t dmactl, rdmareg, val;
1969         int i, limit;
1970
1971         /*
1972          * Initialize the memory window pointer register so that
1973          * we can access the first 32K of internal NIC RAM. This will
1974          * allow us to set up the TX send ring RCBs and the RX return
1975          * ring RCBs, plus other things which live in NIC memory.
1976          */
1977         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1978
1979         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1980
1981         if (!(BGE_IS_5705_PLUS(sc))) {
1982                 /* Configure mbuf memory pool */
1983                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1984                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1985                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1986                 else
1987                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1988
1989                 /* Configure DMA resource pool */
1990                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1991                     BGE_DMA_DESCRIPTORS);
1992                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1993         }
1994
1995         /* Configure mbuf pool watermarks */
1996         if (BGE_IS_5717_PLUS(sc)) {
1997                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1998                 if (sc->bge_ifp->if_mtu > ETHERMTU) {
1999                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2000                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2001                 } else {
2002                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2003                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2004                 }
2005         } else if (!BGE_IS_5705_PLUS(sc)) {
2006                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2007                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2008                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2009         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2010                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2011                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2012                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2013         } else {
2014                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2015                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2016                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2017         }
2018
2019         /* Configure DMA resource watermarks */
2020         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2021         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2022
2023         /* Enable buffer manager */
2024         val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
2025         /*
2026          * Change the arbitration algorithm of TXMBUF read request to
2027          * round-robin instead of priority based for BCM5719.  When
2028          * TXFIFO is almost empty, RDMA will hold its request until
2029          * TXFIFO is not almost empty.
2030          */
2031         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2032                 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2033         CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2034
2035         /* Poll for buffer manager start indication */
2036         for (i = 0; i < BGE_TIMEOUT; i++) {
2037                 DELAY(10);
2038                 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2039                         break;
2040         }
2041
2042         if (i == BGE_TIMEOUT) {
2043                 device_printf(sc->bge_dev, "buffer manager failed to start\n");
2044                 return (ENXIO);
2045         }
2046
2047         /* Enable flow-through queues */
2048         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2049         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2050
2051         /* Wait until queue initialization is complete */
2052         for (i = 0; i < BGE_TIMEOUT; i++) {
2053                 DELAY(10);
2054                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2055                         break;
2056         }
2057
2058         if (i == BGE_TIMEOUT) {
2059                 device_printf(sc->bge_dev, "flow-through queue init failed\n");
2060                 return (ENXIO);
2061         }
2062
2063         /*
2064          * Summary of rings supported by the controller:
2065          *
2066          * Standard Receive Producer Ring
2067          * - This ring is used to feed receive buffers for "standard"
2068          *   sized frames (typically 1536 bytes) to the controller.
2069          *
2070          * Jumbo Receive Producer Ring
2071          * - This ring is used to feed receive buffers for jumbo sized
2072          *   frames (i.e. anything bigger than the "standard" frames)
2073          *   to the controller.
2074          *
2075          * Mini Receive Producer Ring
2076          * - This ring is used to feed receive buffers for "mini"
2077          *   sized frames to the controller.
2078          * - This feature required external memory for the controller
2079          *   but was never used in a production system.  Should always
2080          *   be disabled.
2081          *
2082          * Receive Return Ring
2083          * - After the controller has placed an incoming frame into a
2084          *   receive buffer that buffer is moved into a receive return
2085          *   ring.  The driver is then responsible to passing the
2086          *   buffer up to the stack.  Many versions of the controller
2087          *   support multiple RR rings.
2088          *
2089          * Send Ring
2090          * - This ring is used for outgoing frames.  Many versions of
2091          *   the controller support multiple send rings.
2092          */
2093
2094         /* Initialize the standard receive producer ring control block. */
2095         rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
2096         rcb->bge_hostaddr.bge_addr_lo =
2097             BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
2098         rcb->bge_hostaddr.bge_addr_hi =
2099             BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
2100         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2101             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
2102         if (BGE_IS_5717_PLUS(sc)) {
2103                 /*
2104                  * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2105                  * Bits 15-2 : Maximum RX frame size
2106                  * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
2107                  * Bit 0     : Reserved
2108                  */
2109                 rcb->bge_maxlen_flags =
2110                     BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2111         } else if (BGE_IS_5705_PLUS(sc)) {
2112                 /*
2113                  * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2114                  * Bits 15-2 : Reserved (should be 0)
2115                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2116                  * Bit 0     : Reserved
2117                  */
2118                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2119         } else {
2120                 /*
2121                  * Ring size is always XXX entries
2122                  * Bits 31-16: Maximum RX frame size
2123                  * Bits 15-2 : Reserved (should be 0)
2124                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2125                  * Bit 0     : Reserved
2126                  */
2127                 rcb->bge_maxlen_flags =
2128                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2129         }
2130         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2131             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2132             sc->bge_asicrev == BGE_ASICREV_BCM5720)
2133                 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2134         else
2135                 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2136         /* Write the standard receive producer ring control block. */
2137         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2138         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2139         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2140         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2141
2142         /* Reset the standard receive producer ring producer index. */
2143         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2144
2145         /*
2146          * Initialize the jumbo RX producer ring control
2147          * block.  We set the 'ring disabled' bit in the
2148          * flags field until we're actually ready to start
2149          * using this ring (i.e. once we set the MTU
2150          * high enough to require it).
2151          */
2152         if (BGE_IS_JUMBO_CAPABLE(sc)) {
2153                 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
2154                 /* Get the jumbo receive producer ring RCB parameters. */
2155                 rcb->bge_hostaddr.bge_addr_lo =
2156                     BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2157                 rcb->bge_hostaddr.bge_addr_hi =
2158                     BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2159                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2160                     sc->bge_cdata.bge_rx_jumbo_ring_map,
2161                     BUS_DMASYNC_PREREAD);
2162                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2163                     BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2164                 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2165                     sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2166                     sc->bge_asicrev == BGE_ASICREV_BCM5720)
2167                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2168                 else
2169                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2170                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2171                     rcb->bge_hostaddr.bge_addr_hi);
2172                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2173                     rcb->bge_hostaddr.bge_addr_lo);
2174                 /* Program the jumbo receive producer ring RCB parameters. */
2175                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2176                     rcb->bge_maxlen_flags);
2177                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2178                 /* Reset the jumbo receive producer ring producer index. */
2179                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2180         }
2181
2182         /* Disable the mini receive producer ring RCB. */
2183         if (BGE_IS_5700_FAMILY(sc)) {
2184                 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
2185                 rcb->bge_maxlen_flags =
2186                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2187                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2188                     rcb->bge_maxlen_flags);
2189                 /* Reset the mini receive producer ring producer index. */
2190                 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2191         }
2192
2193         /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2194         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2195                 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2196                     sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2197                     sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2198                         CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2199                             (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2200         }
2201         /*
2202          * The BD ring replenish thresholds control how often the
2203          * hardware fetches new BD's from the producer rings in host
2204          * memory.  Setting the value too low on a busy system can
2205          * starve the hardware and recue the throughpout.
2206          *
2207          * Set the BD ring replentish thresholds. The recommended
2208          * values are 1/8th the number of descriptors allocated to
2209          * each ring.
2210          * XXX The 5754 requires a lower threshold, so it might be a
2211          * requirement of all 575x family chips.  The Linux driver sets
2212          * the lower threshold for all 5705 family chips as well, but there
2213          * are reports that it might not need to be so strict.
2214          *
2215          * XXX Linux does some extra fiddling here for the 5906 parts as
2216          * well.
2217          */
2218         if (BGE_IS_5705_PLUS(sc))
2219                 val = 8;
2220         else
2221                 val = BGE_STD_RX_RING_CNT / 8;
2222         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
2223         if (BGE_IS_JUMBO_CAPABLE(sc))
2224                 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
2225                     BGE_JUMBO_RX_RING_CNT/8);
2226         if (BGE_IS_5717_PLUS(sc)) {
2227                 CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
2228                 CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
2229         }
2230
2231         /*
2232          * Disable all send rings by setting the 'ring disabled' bit
2233          * in the flags field of all the TX send ring control blocks,
2234          * located in NIC memory.
2235          */
2236         if (!BGE_IS_5705_PLUS(sc))
2237                 /* 5700 to 5704 had 16 send rings. */
2238                 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2239         else if (BGE_IS_57765_PLUS(sc) ||
2240             sc->bge_asicrev == BGE_ASICREV_BCM5762)
2241                 limit = 2;
2242         else if (BGE_IS_5717_PLUS(sc))
2243                 limit = 4;
2244         else
2245                 limit = 1;
2246         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2247         for (i = 0; i < limit; i++) {
2248                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2249                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2250                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2251                 vrcb += sizeof(struct bge_rcb);
2252         }
2253
2254         /* Configure send ring RCB 0 (we use only the first ring) */
2255         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2256         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
2257         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2258         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2259         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2260             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2261             sc->bge_asicrev == BGE_ASICREV_BCM5720)
2262                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
2263         else
2264                 RCB_WRITE_4(sc, vrcb, bge_nicaddr,
2265                     BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2266         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2267             BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2268
2269         /*
2270          * Disable all receive return rings by setting the
2271          * 'ring diabled' bit in the flags field of all the receive
2272          * return ring control blocks, located in NIC memory.
2273          */
2274         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2275             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2276             sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2277                 /* Should be 17, use 16 until we get an SRAM map. */
2278                 limit = 16;
2279         } else if (!BGE_IS_5705_PLUS(sc))
2280                 limit = BGE_RX_RINGS_MAX;
2281         else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2282             sc->bge_asicrev == BGE_ASICREV_BCM5762 ||
2283             BGE_IS_57765_PLUS(sc))
2284                 limit = 4;
2285         else
2286                 limit = 1;
2287         /* Disable all receive return rings. */
2288         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2289         for (i = 0; i < limit; i++) {
2290                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
2291                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
2292                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2293                     BGE_RCB_FLAG_RING_DISABLED);
2294                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2295                 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2296                     (i * (sizeof(uint64_t))), 0);
2297                 vrcb += sizeof(struct bge_rcb);
2298         }
2299
2300         /*
2301          * Set up receive return ring 0.  Note that the NIC address
2302          * for RX return rings is 0x0.  The return rings live entirely
2303          * within the host, so the nicaddr field in the RCB isn't used.
2304          */
2305         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2306         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
2307         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2308         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2309         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2310         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2311             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2312
2313         /* Set random backoff seed for TX */
2314         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2315             (IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
2316             IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
2317             IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5]) &
2318             BGE_TX_BACKOFF_SEED_MASK);
2319
2320         /* Set inter-packet gap */
2321         val = 0x2620;
2322         if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2323             sc->bge_asicrev == BGE_ASICREV_BCM5762)
2324                 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2325                     (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2326         CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2327
2328         /*
2329          * Specify which ring to use for packets that don't match
2330          * any RX rules.
2331          */
2332         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2333
2334         /*
2335          * Configure number of RX lists. One interrupt distribution
2336          * list, sixteen active lists, one bad frames class.
2337          */
2338         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2339
2340         /* Inialize RX list placement stats mask. */
2341         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2342         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2343
2344         /* Disable host coalescing until we get it set up */
2345         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2346
2347         /* Poll to make sure it's shut down. */
2348         for (i = 0; i < BGE_TIMEOUT; i++) {
2349                 DELAY(10);
2350                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2351                         break;
2352         }
2353
2354         if (i == BGE_TIMEOUT) {
2355                 device_printf(sc->bge_dev,
2356                     "host coalescing engine failed to idle\n");
2357                 return (ENXIO);
2358         }
2359
2360         /* Set up host coalescing defaults */
2361         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2362         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2363         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2364         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2365         if (!(BGE_IS_5705_PLUS(sc))) {
2366                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2367                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2368         }
2369         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
2370         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
2371
2372         /* Set up address of statistics block */
2373         if (!(BGE_IS_5705_PLUS(sc))) {
2374                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
2375                     BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
2376                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
2377                     BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
2378                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2379                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2380                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2381         }
2382
2383         /* Set up address of status block */
2384         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
2385             BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
2386         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
2387             BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
2388
2389         /* Set up status block size. */
2390         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2391             sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2392                 val = BGE_STATBLKSZ_FULL;
2393                 bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
2394         } else {
2395                 val = BGE_STATBLKSZ_32BYTE;
2396                 bzero(sc->bge_ldata.bge_status_block, 32);
2397         }
2398         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2399             sc->bge_cdata.bge_status_map,
2400             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2401
2402         /* Turn on host coalescing state machine */
2403         CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2404
2405         /* Turn on RX BD completion state machine and enable attentions */
2406         CSR_WRITE_4(sc, BGE_RBDC_MODE,
2407             BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2408
2409         /* Turn on RX list placement state machine */
2410         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2411
2412         /* Turn on RX list selector state machine. */
2413         if (!(BGE_IS_5705_PLUS(sc)))
2414                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2415
2416         /* Turn on DMA, clear stats. */
2417         val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2418             BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2419             BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2420             BGE_MACMODE_FRMHDR_DMA_ENB;
2421
2422         if (sc->bge_flags & BGE_FLAG_TBI)
2423                 val |= BGE_PORTMODE_TBI;
2424         else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
2425                 val |= BGE_PORTMODE_GMII;
2426         else
2427                 val |= BGE_PORTMODE_MII;
2428
2429         /* Allow APE to send/receive frames. */
2430         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2431                 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2432
2433         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2434         DELAY(40);
2435
2436         /* Set misc. local control, enable interrupts on attentions */
2437         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2438
2439 #ifdef notdef
2440         /* Assert GPIO pins for PHY reset */
2441         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
2442             BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
2443         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
2444             BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
2445 #endif
2446
2447         /* Turn on DMA completion state machine */
2448         if (!(BGE_IS_5705_PLUS(sc)))
2449                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2450
2451         val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2452
2453         /* Enable host coalescing bug fix. */
2454         if (BGE_IS_5755_PLUS(sc))
2455                 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2456
2457         /* Request larger DMA burst size to get better performance. */
2458         if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
2459                 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2460
2461         /* Turn on write DMA state machine */
2462         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2463         DELAY(40);
2464
2465         /* Turn on read DMA state machine */
2466         val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2467
2468         if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
2469                 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2470
2471         if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2472             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2473             sc->bge_asicrev == BGE_ASICREV_BCM57780)
2474                 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2475                     BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2476                     BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2477         if (sc->bge_flags & BGE_FLAG_PCIE)
2478                 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2479         if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2480                 val |= BGE_RDMAMODE_TSO4_ENABLE;
2481                 if (sc->bge_flags & BGE_FLAG_TSO3 ||
2482                     sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2483                     sc->bge_asicrev == BGE_ASICREV_BCM57780)
2484                         val |= BGE_RDMAMODE_TSO6_ENABLE;
2485         }
2486
2487         if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2488             sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2489                 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2490                         BGE_RDMAMODE_H2BNC_VLAN_DET;
2491                 /*
2492                  * Allow multiple outstanding read requests from
2493                  * non-LSO read DMA engine.
2494                  */
2495                 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2496         }
2497
2498         if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2499             sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2500             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2501             sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
2502             BGE_IS_5717_PLUS(sc) || BGE_IS_57765_PLUS(sc)) {
2503                 if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
2504                         rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2505                 else
2506                         rdmareg = BGE_RDMA_RSRVCTRL;
2507                 dmactl = CSR_READ_4(sc, rdmareg);
2508                 /*
2509                  * Adjust tx margin to prevent TX data corruption and
2510                  * fix internal FIFO overflow.
2511                  */
2512                 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2513                     sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2514                         dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2515                             BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2516                             BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2517                         dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2518                             BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2519                             BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2520                 }
2521                 /*
2522                  * Enable fix for read DMA FIFO overruns.
2523                  * The fix is to limit the number of RX BDs
2524                  * the hardware would fetch at a fime.
2525                  */
2526                 CSR_WRITE_4(sc, rdmareg, dmactl |
2527                     BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2528         }
2529
2530         if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2531                 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2532                     CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2533                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2534                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2535         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2536                 /*
2537                  * Allow 4KB burst length reads for non-LSO frames.
2538                  * Enable 512B burst length reads for buffer descriptors.
2539                  */
2540                 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2541                     CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2542                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2543                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2544         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2545                 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2546                     CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2547                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2548                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2549         }
2550
2551         CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2552         DELAY(40);
2553
2554         if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
2555                 for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2556                         val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2557                         if ((val & 0xFFFF) > BGE_FRAMELEN)
2558                                 break;
2559                         if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2560                                 break;
2561                 }
2562                 if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2563                         val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2564                         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2565                                 val |= BGE_RDMA_TX_LENGTH_WA_5719;
2566                         else
2567                                 val |= BGE_RDMA_TX_LENGTH_WA_5720;
2568                         CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2569                 }
2570         }
2571
2572         /* Turn on RX data completion state machine */
2573         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2574
2575         /* Turn on RX BD initiator state machine */
2576         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2577
2578         /* Turn on RX data and RX BD initiator state machine */
2579         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2580
2581         /* Turn on Mbuf cluster free state machine */
2582         if (!(BGE_IS_5705_PLUS(sc)))
2583                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2584
2585         /* Turn on send BD completion state machine */
2586         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2587
2588         /* Turn on send data completion state machine */
2589         val = BGE_SDCMODE_ENABLE;
2590         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2591                 val |= BGE_SDCMODE_CDELAY;
2592         CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2593
2594         /* Turn on send data initiator state machine */
2595         if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
2596                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2597                     BGE_SDIMODE_HW_LSO_PRE_DMA);
2598         else
2599                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2600
2601         /* Turn on send BD initiator state machine */
2602         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2603
2604         /* Turn on send BD selector state machine */
2605         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2606
2607         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2608         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2609             BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2610
2611         /* ack/clear link change events */
2612         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2613             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2614             BGE_MACSTAT_LINK_CHANGED);
2615         CSR_WRITE_4(sc, BGE_MI_STS, 0);
2616
2617         /*
2618          * Enable attention when the link has changed state for
2619          * devices that use auto polling.
2620          */
2621         if (sc->bge_flags & BGE_FLAG_TBI) {
2622                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2623         } else {
2624                 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2625                         CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
2626                         DELAY(80);
2627                 }
2628                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2629                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
2630                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2631                             BGE_EVTENB_MI_INTERRUPT);
2632         }
2633
2634         /*
2635          * Clear any pending link state attention.
2636          * Otherwise some link state change events may be lost until attention
2637          * is cleared by bge_intr() -> bge_link_upd() sequence.
2638          * It's not necessary on newer BCM chips - perhaps enabling link
2639          * state change attentions implies clearing pending attention.
2640          */
2641         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2642             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2643             BGE_MACSTAT_LINK_CHANGED);
2644
2645         /* Enable link state change attentions. */
2646         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2647
2648         return (0);
2649 }
2650
2651 static const struct bge_revision *
2652 bge_lookup_rev(uint32_t chipid)
2653 {
2654         const struct bge_revision *br;
2655
2656         for (br = bge_revisions; br->br_name != NULL; br++) {
2657                 if (br->br_chipid == chipid)
2658                         return (br);
2659         }
2660
2661         for (br = bge_majorrevs; br->br_name != NULL; br++) {
2662                 if (br->br_chipid == BGE_ASICREV(chipid))
2663                         return (br);
2664         }
2665
2666         return (NULL);
2667 }
2668
2669 static const struct bge_vendor *
2670 bge_lookup_vendor(uint16_t vid)
2671 {
2672         const struct bge_vendor *v;
2673
2674         for (v = bge_vendors; v->v_name != NULL; v++)
2675                 if (v->v_id == vid)
2676                         return (v);
2677
2678         return (NULL);
2679 }
2680
2681 static uint32_t
2682 bge_chipid(device_t dev)
2683 {
2684         uint32_t id;
2685
2686         id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2687             BGE_PCIMISCCTL_ASICREV_SHIFT;
2688         if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
2689                 /*
2690                  * Find the ASCI revision.  Different chips use different
2691                  * registers.
2692                  */
2693                 switch (pci_get_device(dev)) {
2694                 case BCOM_DEVICEID_BCM5717:
2695                 case BCOM_DEVICEID_BCM5718:
2696                 case BCOM_DEVICEID_BCM5719:
2697                 case BCOM_DEVICEID_BCM5720:
2698                 case BCOM_DEVICEID_BCM5725:
2699                 case BCOM_DEVICEID_BCM5727:
2700                 case BCOM_DEVICEID_BCM5762:
2701                 case BCOM_DEVICEID_BCM57764:
2702                 case BCOM_DEVICEID_BCM57767:
2703                 case BCOM_DEVICEID_BCM57787:
2704                         id = pci_read_config(dev,
2705                             BGE_PCI_GEN2_PRODID_ASICREV, 4);
2706                         break;
2707                 case BCOM_DEVICEID_BCM57761:
2708                 case BCOM_DEVICEID_BCM57762:
2709                 case BCOM_DEVICEID_BCM57765:
2710                 case BCOM_DEVICEID_BCM57766:
2711                 case BCOM_DEVICEID_BCM57781:
2712                 case BCOM_DEVICEID_BCM57782:
2713                 case BCOM_DEVICEID_BCM57785:
2714                 case BCOM_DEVICEID_BCM57786:
2715                 case BCOM_DEVICEID_BCM57791:
2716                 case BCOM_DEVICEID_BCM57795:
2717                         id = pci_read_config(dev,
2718                             BGE_PCI_GEN15_PRODID_ASICREV, 4);
2719                         break;
2720                 default:
2721                         id = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2722                 }
2723         }
2724         return (id);
2725 }
2726
2727 /*
2728  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2729  * against our list and return its name if we find a match.
2730  *
2731  * Note that since the Broadcom controller contains VPD support, we
2732  * try to get the device name string from the controller itself instead
2733  * of the compiled-in string. It guarantees we'll always announce the
2734  * right product name. We fall back to the compiled-in string when
2735  * VPD is unavailable or corrupt.
2736  */
2737 static int
2738 bge_probe(device_t dev)
2739 {
2740         char buf[96];
2741         char model[64];
2742         const struct bge_revision *br;
2743         const char *pname;
2744         struct bge_softc *sc;
2745         const struct bge_type *t = bge_devs;
2746         const struct bge_vendor *v;
2747         uint32_t id;
2748         uint16_t did, vid;
2749
2750         sc = device_get_softc(dev);
2751         sc->bge_dev = dev;
2752         vid = pci_get_vendor(dev);
2753         did = pci_get_device(dev);
2754         while(t->bge_vid != 0) {
2755                 if ((vid == t->bge_vid) && (did == t->bge_did)) {
2756                         id = bge_chipid(dev);
2757                         br = bge_lookup_rev(id);
2758                         if (bge_has_eaddr(sc) &&
2759                             pci_get_vpd_ident(dev, &pname) == 0)
2760                                 snprintf(model, sizeof(model), "%s", pname);
2761                         else {
2762                                 v = bge_lookup_vendor(vid);
2763                                 snprintf(model, sizeof(model), "%s %s",
2764                                     v != NULL ? v->v_name : "Unknown",
2765                                     br != NULL ? br->br_name :
2766                                     "NetXtreme/NetLink Ethernet Controller");
2767                         }
2768                         snprintf(buf, sizeof(buf), "%s, %sASIC rev. %#08x",
2769                             model, br != NULL ? "" : "unknown ", id);
2770                         device_set_desc_copy(dev, buf);
2771                         return (BUS_PROBE_DEFAULT);
2772                 }
2773                 t++;
2774         }
2775
2776         return (ENXIO);
2777 }
2778
2779 static void
2780 bge_dma_free(struct bge_softc *sc)
2781 {
2782         int i;
2783
2784         /* Destroy DMA maps for RX buffers. */
2785         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2786                 if (sc->bge_cdata.bge_rx_std_dmamap[i])
2787                         bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2788                             sc->bge_cdata.bge_rx_std_dmamap[i]);
2789         }
2790         if (sc->bge_cdata.bge_rx_std_sparemap)
2791                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2792                     sc->bge_cdata.bge_rx_std_sparemap);
2793
2794         /* Destroy DMA maps for jumbo RX buffers. */
2795         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2796                 if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2797                         bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2798                             sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2799         }
2800         if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2801                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2802                     sc->bge_cdata.bge_rx_jumbo_sparemap);
2803
2804         /* Destroy DMA maps for TX buffers. */
2805         for (i = 0; i < BGE_TX_RING_CNT; i++) {
2806                 if (sc->bge_cdata.bge_tx_dmamap[i])
2807                         bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2808                             sc->bge_cdata.bge_tx_dmamap[i]);
2809         }
2810
2811         if (sc->bge_cdata.bge_rx_mtag)
2812                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2813         if (sc->bge_cdata.bge_mtag_jumbo)
2814                 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo);
2815         if (sc->bge_cdata.bge_tx_mtag)
2816                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2817
2818         /* Destroy standard RX ring. */
2819         if (sc->bge_cdata.bge_rx_std_ring_map)
2820                 bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2821                     sc->bge_cdata.bge_rx_std_ring_map);
2822         if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
2823                 bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2824                     sc->bge_ldata.bge_rx_std_ring,
2825                     sc->bge_cdata.bge_rx_std_ring_map);
2826
2827         if (sc->bge_cdata.bge_rx_std_ring_tag)
2828                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2829
2830         /* Destroy jumbo RX ring. */
2831         if (sc->bge_cdata.bge_rx_jumbo_ring_map)
2832                 bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2833                     sc->bge_cdata.bge_rx_jumbo_ring_map);
2834
2835         if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
2836             sc->bge_ldata.bge_rx_jumbo_ring)
2837                 bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2838                     sc->bge_ldata.bge_rx_jumbo_ring,
2839                     sc->bge_cdata.bge_rx_jumbo_ring_map);
2840
2841         if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2842                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2843
2844         /* Destroy RX return ring. */
2845         if (sc->bge_cdata.bge_rx_return_ring_map)
2846                 bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2847                     sc->bge_cdata.bge_rx_return_ring_map);
2848
2849         if (sc->bge_cdata.bge_rx_return_ring_map &&
2850             sc->bge_ldata.bge_rx_return_ring)
2851                 bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2852                     sc->bge_ldata.bge_rx_return_ring,
2853                     sc->bge_cdata.bge_rx_return_ring_map);
2854
2855         if (sc->bge_cdata.bge_rx_return_ring_tag)
2856                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2857
2858         /* Destroy TX ring. */
2859         if (sc->bge_cdata.bge_tx_ring_map)
2860                 bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2861                     sc->bge_cdata.bge_tx_ring_map);
2862
2863         if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
2864                 bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2865                     sc->bge_ldata.bge_tx_ring,
2866                     sc->bge_cdata.bge_tx_ring_map);
2867
2868         if (sc->bge_cdata.bge_tx_ring_tag)
2869                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2870
2871         /* Destroy status block. */
2872         if (sc->bge_cdata.bge_status_map)
2873                 bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2874                     sc->bge_cdata.bge_status_map);
2875
2876         if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
2877                 bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2878                     sc->bge_ldata.bge_status_block,
2879                     sc->bge_cdata.bge_status_map);
2880
2881         if (sc->bge_cdata.bge_status_tag)
2882                 bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2883
2884         /* Destroy statistics block. */
2885         if (sc->bge_cdata.bge_stats_map)
2886                 bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2887                     sc->bge_cdata.bge_stats_map);
2888
2889         if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
2890                 bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2891                     sc->bge_ldata.bge_stats,
2892                     sc->bge_cdata.bge_stats_map);
2893
2894         if (sc->bge_cdata.bge_stats_tag)
2895                 bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2896
2897         if (sc->bge_cdata.bge_buffer_tag)
2898                 bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
2899
2900         /* Destroy the parent tag. */
2901         if (sc->bge_cdata.bge_parent_tag)
2902                 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2903 }
2904
2905 static int
2906 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
2907     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
2908     bus_addr_t *paddr, const char *msg)
2909 {
2910         struct bge_dmamap_arg ctx;
2911         int error;
2912
2913         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2914             alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2915             NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
2916         if (error != 0) {
2917                 device_printf(sc->bge_dev,
2918                     "could not create %s dma tag\n", msg);
2919                 return (ENOMEM);
2920         }
2921         /* Allocate DMA'able memory for ring. */
2922         error = bus_dmamem_alloc(*tag, (void **)ring,
2923             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
2924         if (error != 0) {
2925                 device_printf(sc->bge_dev,
2926                     "could not allocate DMA'able memory for %s\n", msg);
2927                 return (ENOMEM);
2928         }
2929         /* Load the address of the ring. */
2930         ctx.bge_busaddr = 0;
2931         error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
2932             &ctx, BUS_DMA_NOWAIT);
2933         if (error != 0) {
2934                 device_printf(sc->bge_dev,
2935                     "could not load DMA'able memory for %s\n", msg);
2936                 return (ENOMEM);
2937         }
2938         *paddr = ctx.bge_busaddr;
2939         return (0);
2940 }
2941
2942 static int
2943 bge_dma_alloc(struct bge_softc *sc)
2944 {
2945         bus_addr_t lowaddr;
2946         bus_size_t rxmaxsegsz, sbsz, txsegsz, txmaxsegsz;
2947         int i, error;
2948
2949         lowaddr = BUS_SPACE_MAXADDR;
2950         if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2951                 lowaddr = BGE_DMA_MAXADDR;
2952         /*
2953          * Allocate the parent bus DMA tag appropriate for PCI.
2954          */
2955         error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2956             1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2957             NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2958             0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2959         if (error != 0) {
2960                 device_printf(sc->bge_dev,
2961                     "could not allocate parent dma tag\n");
2962                 return (ENOMEM);
2963         }
2964
2965         /* Create tag for standard RX ring. */
2966         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
2967             &sc->bge_cdata.bge_rx_std_ring_tag,
2968             (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
2969             &sc->bge_cdata.bge_rx_std_ring_map,
2970             &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
2971         if (error)
2972                 return (error);
2973
2974         /* Create tag for RX return ring. */
2975         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
2976             &sc->bge_cdata.bge_rx_return_ring_tag,
2977             (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
2978             &sc->bge_cdata.bge_rx_return_ring_map,
2979             &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
2980         if (error)
2981                 return (error);
2982
2983         /* Create tag for TX ring. */
2984         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
2985             &sc->bge_cdata.bge_tx_ring_tag,
2986             (uint8_t **)&sc->bge_ldata.bge_tx_ring,
2987             &sc->bge_cdata.bge_tx_ring_map,
2988             &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
2989         if (error)
2990                 return (error);
2991
2992         /*
2993          * Create tag for status block.
2994          * Because we only use single Tx/Rx/Rx return ring, use
2995          * minimum status block size except BCM5700 AX/BX which
2996          * seems to want to see full status block size regardless
2997          * of configured number of ring.
2998          */
2999         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3000             sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
3001                 sbsz = BGE_STATUS_BLK_SZ;
3002         else
3003                 sbsz = 32;
3004         error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
3005             &sc->bge_cdata.bge_status_tag,
3006             (uint8_t **)&sc->bge_ldata.bge_status_block,
3007             &sc->bge_cdata.bge_status_map,
3008             &sc->bge_ldata.bge_status_block_paddr, "status block");
3009         if (error)
3010                 return (error);
3011
3012         /* Create tag for statistics block. */
3013         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
3014             &sc->bge_cdata.bge_stats_tag,
3015             (uint8_t **)&sc->bge_ldata.bge_stats,
3016             &sc->bge_cdata.bge_stats_map,
3017             &sc->bge_ldata.bge_stats_paddr, "statistics block");
3018         if (error)
3019                 return (error);
3020
3021         /* Create tag for jumbo RX ring. */
3022         if (BGE_IS_JUMBO_CAPABLE(sc)) {
3023                 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
3024                     &sc->bge_cdata.bge_rx_jumbo_ring_tag,
3025                     (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
3026                     &sc->bge_cdata.bge_rx_jumbo_ring_map,
3027                     &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
3028                 if (error)
3029                         return (error);
3030         }
3031
3032         /* Create parent tag for buffers. */
3033         if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
3034                 /*
3035                  * XXX
3036                  * watchdog timeout issue was observed on BCM5704 which
3037                  * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
3038                  * Both limiting DMA address space to 32bits and flushing
3039                  * mailbox write seem to address the issue.
3040                  */
3041                 if (sc->bge_pcixcap != 0)
3042                         lowaddr = BUS_SPACE_MAXADDR_32BIT;
3043         }
3044         error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 1, 0, lowaddr,
3045             BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
3046             BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3047             &sc->bge_cdata.bge_buffer_tag);
3048         if (error != 0) {
3049                 device_printf(sc->bge_dev,
3050                     "could not allocate buffer dma tag\n");
3051                 return (ENOMEM);
3052         }
3053         /* Create tag for Tx mbufs. */
3054         if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
3055                 txsegsz = BGE_TSOSEG_SZ;
3056                 txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
3057         } else {
3058                 txsegsz = MCLBYTES;
3059                 txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
3060         }
3061         error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
3062             0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
3063             txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
3064             &sc->bge_cdata.bge_tx_mtag);
3065
3066         if (error) {
3067                 device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
3068                 return (ENOMEM);
3069         }
3070
3071         /* Create tag for Rx mbufs. */
3072         if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
3073                 rxmaxsegsz = MJUM9BYTES;
3074         else
3075                 rxmaxsegsz = MCLBYTES;
3076         error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
3077             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
3078             rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
3079
3080         if (error) {
3081                 device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
3082                 return (ENOMEM);
3083         }
3084
3085         /* Create DMA maps for RX buffers. */
3086         error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3087             &sc->bge_cdata.bge_rx_std_sparemap);
3088         if (error) {
3089                 device_printf(sc->bge_dev,
3090                     "can't create spare DMA map for RX\n");
3091                 return (ENOMEM);
3092         }
3093         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3094                 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3095                             &sc->bge_cdata.bge_rx_std_dmamap[i]);
3096                 if (error) {
3097                         device_printf(sc->bge_dev,
3098                             "can't create DMA map for RX\n");
3099                         return (ENOMEM);
3100                 }
3101         }
3102
3103         /* Create DMA maps for TX buffers. */
3104         for (i = 0; i < BGE_TX_RING_CNT; i++) {
3105                 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
3106                             &sc->bge_cdata.bge_tx_dmamap[i]);
3107                 if (error) {
3108                         device_printf(sc->bge_dev,
3109                             "can't create DMA map for TX\n");
3110                         return (ENOMEM);
3111                 }
3112         }
3113
3114         /* Create tags for jumbo RX buffers. */
3115         if (BGE_IS_JUMBO_CAPABLE(sc)) {
3116                 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
3117                     1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
3118                     NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
3119                     0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
3120                 if (error) {
3121                         device_printf(sc->bge_dev,
3122                             "could not allocate jumbo dma tag\n");
3123                         return (ENOMEM);
3124                 }
3125                 /* Create DMA maps for jumbo RX buffers. */
3126                 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3127                     0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
3128                 if (error) {
3129                         device_printf(sc->bge_dev,
3130                             "can't create spare DMA map for jumbo RX\n");
3131                         return (ENOMEM);
3132                 }
3133                 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
3134                         error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3135                                     0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
3136                         if (error) {
3137                                 device_printf(sc->bge_dev,
3138                                     "can't create DMA map for jumbo RX\n");
3139                                 return (ENOMEM);
3140                         }
3141                 }
3142         }
3143
3144         return (0);
3145 }
3146
3147 /*
3148  * Return true if this device has more than one port.
3149  */
3150 static int
3151 bge_has_multiple_ports(struct bge_softc *sc)
3152 {
3153         device_t dev = sc->bge_dev;
3154         u_int b, d, f, fscan, s;
3155
3156         d = pci_get_domain(dev);
3157         b = pci_get_bus(dev);
3158         s = pci_get_slot(dev);
3159         f = pci_get_function(dev);
3160         for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
3161                 if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
3162                         return (1);
3163         return (0);
3164 }
3165
3166 /*
3167  * Return true if MSI can be used with this device.
3168  */
3169 static int
3170 bge_can_use_msi(struct bge_softc *sc)
3171 {
3172         int can_use_msi = 0;
3173
3174         if (sc->bge_msi == 0)
3175                 return (0);
3176
3177         /* Disable MSI for polling(4). */
3178 #ifdef DEVICE_POLLING
3179         return (0);
3180 #endif
3181         switch (sc->bge_asicrev) {
3182         case BGE_ASICREV_BCM5714_A0:
3183         case BGE_ASICREV_BCM5714:
3184                 /*
3185                  * Apparently, MSI doesn't work when these chips are
3186                  * configured in single-port mode.
3187                  */
3188                 if (bge_has_multiple_ports(sc))
3189                         can_use_msi = 1;
3190                 break;
3191         case BGE_ASICREV_BCM5750:
3192                 if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
3193                     sc->bge_chiprev != BGE_CHIPREV_5750_BX)
3194                         can_use_msi = 1;
3195                 break;
3196         default:
3197                 if (BGE_IS_575X_PLUS(sc))
3198                         can_use_msi = 1;
3199         }
3200         return (can_use_msi);
3201 }
3202
3203 static int
3204 bge_mbox_reorder(struct bge_softc *sc)
3205 {
3206         /* Lists of PCI bridges that are known to reorder mailbox writes. */
3207         static const struct mbox_reorder {
3208                 const uint16_t vendor;
3209                 const uint16_t device;
3210                 const char *desc;
3211         } mbox_reorder_lists[] = {
3212                 { 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" },
3213         };
3214         devclass_t pci, pcib;
3215         device_t bus, dev;
3216         int i;
3217
3218         pci = devclass_find("pci");
3219         pcib = devclass_find("pcib");
3220         dev = sc->bge_dev;
3221         bus = device_get_parent(dev);
3222         for (;;) {
3223                 dev = device_get_parent(bus);
3224                 bus = device_get_parent(dev);
3225                 if (device_get_devclass(dev) != pcib)
3226                         break;
3227                 for (i = 0; i < nitems(mbox_reorder_lists); i++) {
3228                         if (pci_get_vendor(dev) ==
3229                             mbox_reorder_lists[i].vendor &&
3230                             pci_get_device(dev) ==
3231                             mbox_reorder_lists[i].device) {
3232                                 device_printf(sc->bge_dev,
3233                                     "enabling MBOX workaround for %s\n",
3234                                     mbox_reorder_lists[i].desc);
3235                                 return (1);
3236                         }
3237                 }
3238                 if (device_get_devclass(bus) != pci)
3239                         break;
3240         }
3241         return (0);
3242 }
3243
3244 static void
3245 bge_devinfo(struct bge_softc *sc)
3246 {
3247         uint32_t cfg, clk;
3248
3249         device_printf(sc->bge_dev,
3250             "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ",
3251             sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev);
3252         if (sc->bge_flags & BGE_FLAG_PCIE)
3253                 printf("PCI-E\n");
3254         else if (sc->bge_flags & BGE_FLAG_PCIX) {
3255                 printf("PCI-X ");
3256                 cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3257                 if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE)
3258                         clk = 133;
3259                 else {
3260                         clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
3261                         switch (clk) {
3262                         case 0:
3263                                 clk = 33;
3264                                 break;
3265                         case 2:
3266                                 clk = 50;
3267                                 break;
3268                         case 4:
3269                                 clk = 66;
3270                                 break;
3271                         case 6:
3272                                 clk = 100;
3273                                 break;
3274                         case 7:
3275                                 clk = 133;
3276                                 break;
3277                         }
3278                 }
3279                 printf("%u MHz\n", clk);
3280         } else {
3281                 if (sc->bge_pcixcap != 0)
3282                         printf("PCI on PCI-X ");
3283                 else
3284                         printf("PCI ");
3285                 cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3286                 if (cfg & BGE_PCISTATE_PCI_BUSSPEED)
3287                         clk = 66;
3288                 else
3289                         clk = 33;
3290                 if (cfg & BGE_PCISTATE_32BIT_BUS)
3291                         printf("%u MHz; 32bit\n", clk);
3292                 else
3293                         printf("%u MHz; 64bit\n", clk);
3294         }
3295 }
3296
3297 static int
3298 bge_attach(device_t dev)
3299 {
3300         struct ifnet *ifp;
3301         struct bge_softc *sc;
3302         uint32_t hwcfg = 0, misccfg, pcistate;
3303         u_char eaddr[ETHER_ADDR_LEN];
3304         int capmask, error, reg, rid, trys;
3305
3306         sc = device_get_softc(dev);
3307         sc->bge_dev = dev;
3308
3309         BGE_LOCK_INIT(sc, device_get_nameunit(dev));
3310         TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
3311         callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
3312
3313         pci_enable_busmaster(dev);
3314
3315         /*
3316          * Allocate control/status registers.
3317          */
3318         rid = PCIR_BAR(0);
3319         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3320             RF_ACTIVE);
3321
3322         if (sc->bge_res == NULL) {
3323                 device_printf (sc->bge_dev, "couldn't map BAR0 memory\n");
3324                 error = ENXIO;
3325                 goto fail;
3326         }
3327
3328         /* Save various chip information. */
3329         sc->bge_func_addr = pci_get_function(dev);
3330         sc->bge_chipid = bge_chipid(dev);
3331         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
3332         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
3333
3334         /* Set default PHY address. */
3335         sc->bge_phy_addr = 1;
3336          /*
3337           * PHY address mapping for various devices.
3338           *
3339           *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
3340           * ---------+-------+-------+-------+-------+
3341           * BCM57XX  |   1   |   X   |   X   |   X   |
3342           * BCM5704  |   1   |   X   |   1   |   X   |
3343           * BCM5717  |   1   |   8   |   2   |   9   |
3344           * BCM5719  |   1   |   8   |   2   |   9   |
3345           * BCM5720  |   1   |   8   |   2   |   9   |
3346           *
3347           *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
3348           * ---------+-------+-------+-------+-------+
3349           * BCM57XX  |   X   |   X   |   X   |   X   |
3350           * BCM5704  |   X   |   X   |   X   |   X   |
3351           * BCM5717  |   X   |   X   |   X   |   X   |
3352           * BCM5719  |   3   |   10  |   4   |   11  |
3353           * BCM5720  |   X   |   X   |   X   |   X   |
3354           *
3355           * Other addresses may respond but they are not
3356           * IEEE compliant PHYs and should be ignored.
3357           */
3358         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
3359             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3360             sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3361                 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
3362                         if (CSR_READ_4(sc, BGE_SGDIG_STS) &
3363                             BGE_SGDIGSTS_IS_SERDES)
3364                                 sc->bge_phy_addr = sc->bge_func_addr + 8;
3365                         else
3366                                 sc->bge_phy_addr = sc->bge_func_addr + 1;
3367                 } else {
3368                         if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
3369                             BGE_CPMU_PHY_STRAP_IS_SERDES)
3370                                 sc->bge_phy_addr = sc->bge_func_addr + 8;
3371                         else
3372                                 sc->bge_phy_addr = sc->bge_func_addr + 1;
3373                 }
3374         }
3375
3376         if (bge_has_eaddr(sc))
3377                 sc->bge_flags |= BGE_FLAG_EADDR;
3378
3379         /* Save chipset family. */
3380         switch (sc->bge_asicrev) {
3381         case BGE_ASICREV_BCM5762:
3382         case BGE_ASICREV_BCM57765:
3383         case BGE_ASICREV_BCM57766:
3384                 sc->bge_flags |= BGE_FLAG_57765_PLUS;
3385                 /* FALLTHROUGH */
3386         case BGE_ASICREV_BCM5717:
3387         case BGE_ASICREV_BCM5719:
3388         case BGE_ASICREV_BCM5720:
3389                 sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
3390                     BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
3391                     BGE_FLAG_JUMBO_FRAME;
3392                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3393                     sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3394                         /*
3395                          * Enable work around for DMA engine miscalculation
3396                          * of TXMBUF available space.
3397                          */
3398                         sc->bge_flags |= BGE_FLAG_RDMA_BUG;
3399                         if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3400                             sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3401                                 /* Jumbo frame on BCM5719 A0 does not work. */
3402                                 sc->bge_flags &= ~BGE_FLAG_JUMBO;
3403                         }
3404                 }
3405                 break;
3406         case BGE_ASICREV_BCM5755:
3407         case BGE_ASICREV_BCM5761:
3408         case BGE_ASICREV_BCM5784:
3409         case BGE_ASICREV_BCM5785:
3410         case BGE_ASICREV_BCM5787:
3411         case BGE_ASICREV_BCM57780:
3412                 sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
3413                     BGE_FLAG_5705_PLUS;
3414                 break;
3415         case BGE_ASICREV_BCM5700:
3416         case BGE_ASICREV_BCM5701:
3417         case BGE_ASICREV_BCM5703:
3418         case BGE_ASICREV_BCM5704:
3419                 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
3420                 break;
3421         case BGE_ASICREV_BCM5714_A0:
3422         case BGE_ASICREV_BCM5780:
3423         case BGE_ASICREV_BCM5714:
3424                 sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
3425                 /* FALLTHROUGH */
3426         case BGE_ASICREV_BCM5750:
3427         case BGE_ASICREV_BCM5752:
3428         case BGE_ASICREV_BCM5906:
3429                 sc->bge_flags |= BGE_FLAG_575X_PLUS;
3430                 /* FALLTHROUGH */
3431         case BGE_ASICREV_BCM5705:
3432                 sc->bge_flags |= BGE_FLAG_5705_PLUS;
3433                 break;
3434         }
3435
3436         /* Identify chips with APE processor. */
3437         switch (sc->bge_asicrev) {
3438         case BGE_ASICREV_BCM5717:
3439         case BGE_ASICREV_BCM5719:
3440         case BGE_ASICREV_BCM5720:
3441         case BGE_ASICREV_BCM5761:
3442         case BGE_ASICREV_BCM5762:
3443                 sc->bge_flags |= BGE_FLAG_APE;
3444                 break;
3445         }
3446
3447         /* Chips with APE need BAR2 access for APE registers/memory. */
3448         if ((sc->bge_flags & BGE_FLAG_APE) != 0) {
3449                 rid = PCIR_BAR(2);
3450                 sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3451                     RF_ACTIVE);
3452                 if (sc->bge_res2 == NULL) {
3453                         device_printf (sc->bge_dev,
3454                             "couldn't map BAR2 memory\n");
3455                         error = ENXIO;
3456                         goto fail;
3457                 }
3458
3459                 /* Enable APE register/memory access by host driver. */
3460                 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3461                 pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3462                     BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3463                     BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3464                 pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
3465
3466                 bge_ape_lock_init(sc);
3467                 bge_ape_read_fw_ver(sc);
3468         }
3469
3470         /* Add SYSCTLs, requires the chipset family to be set. */
3471         bge_add_sysctls(sc);
3472
3473         /* Identify the chips that use an CPMU. */
3474         if (BGE_IS_5717_PLUS(sc) ||
3475             sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3476             sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3477             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
3478             sc->bge_asicrev == BGE_ASICREV_BCM57780)
3479                 sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
3480         if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
3481                 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
3482         else
3483                 sc->bge_mi_mode = BGE_MIMODE_BASE;
3484         /* Enable auto polling for BCM570[0-5]. */
3485         if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
3486                 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
3487
3488         /*
3489          * All Broadcom controllers have 4GB boundary DMA bug.
3490          * Whenever an address crosses a multiple of the 4GB boundary
3491          * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
3492          * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
3493          * state machine will lockup and cause the device to hang.
3494          */
3495         sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
3496
3497         /* BCM5755 or higher and BCM5906 have short DMA bug. */
3498         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3499                 sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
3500
3501         /*
3502          * BCM5719 cannot handle DMA requests for DMA segments that
3503          * have larger than 4KB in size.  However the maximum DMA
3504          * segment size created in DMA tag is 4KB for TSO, so we
3505          * wouldn't encounter the issue here.
3506          */
3507         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
3508                 sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
3509
3510         misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3511         if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
3512                 if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3513                     misccfg == BGE_MISCCFG_BOARD_ID_5788M)
3514                         sc->bge_flags |= BGE_FLAG_5788;
3515         }
3516
3517         capmask = BMSR_DEFCAPMASK;
3518         if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
3519             (misccfg == 0x4000 || misccfg == 0x8000)) ||
3520             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3521             pci_get_vendor(dev) == BCOM_VENDORID &&
3522             (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
3523             pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
3524             pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
3525             (pci_get_vendor(dev) == BCOM_VENDORID &&
3526             (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
3527             pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
3528             pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
3529             pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
3530             pci_get_device(dev) == BCOM_DEVICEID_BCM57791 ||
3531             pci_get_device(dev) == BCOM_DEVICEID_BCM57795 ||
3532             sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3533                 /* These chips are 10/100 only. */
3534                 capmask &= ~BMSR_EXTSTAT;
3535                 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3536         }
3537
3538         /*
3539          * Some controllers seem to require a special firmware to use
3540          * TSO. But the firmware is not available to FreeBSD and Linux
3541          * claims that the TSO performed by the firmware is slower than
3542          * hardware based TSO. Moreover the firmware based TSO has one
3543          * known bug which can't handle TSO if Ethernet header + IP/TCP
3544          * header is greater than 80 bytes. A workaround for the TSO
3545          * bug exist but it seems it's too expensive than not using
3546          * TSO at all. Some hardwares also have the TSO bug so limit
3547          * the TSO to the controllers that are not affected TSO issues
3548          * (e.g. 5755 or higher).
3549          */
3550         if (BGE_IS_5717_PLUS(sc)) {
3551                 /* BCM5717 requires different TSO configuration. */
3552                 sc->bge_flags |= BGE_FLAG_TSO3;
3553                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3554                     sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3555                         /* TSO on BCM5719 A0 does not work. */
3556                         sc->bge_flags &= ~BGE_FLAG_TSO3;
3557                 }
3558         } else if (BGE_IS_5755_PLUS(sc)) {
3559                 /*
3560                  * BCM5754 and BCM5787 shares the same ASIC id so
3561                  * explicit device id check is required.
3562                  * Due to unknown reason TSO does not work on BCM5755M.
3563                  */
3564                 if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
3565                     pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
3566                     pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
3567                         sc->bge_flags |= BGE_FLAG_TSO;
3568         }
3569
3570         /*
3571          * Check if this is a PCI-X or PCI Express device.
3572          */
3573         if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
3574                 /*
3575                  * Found a PCI Express capabilities register, this
3576                  * must be a PCI Express device.
3577                  */
3578                 sc->bge_flags |= BGE_FLAG_PCIE;
3579                 sc->bge_expcap = reg;
3580                 /* Extract supported maximum payload size. */
3581                 sc->bge_mps = pci_read_config(dev, sc->bge_expcap +
3582                     PCIER_DEVICE_CAP, 2);
3583                 sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD);
3584                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3585                     sc->bge_asicrev == BGE_ASICREV_BCM5720)
3586                         sc->bge_expmrq = 2048;
3587                 else
3588                         sc->bge_expmrq = 4096;
3589                 pci_set_max_read_req(dev, sc->bge_expmrq);
3590         } else {
3591                 /*
3592                  * Check if the device is in PCI-X Mode.
3593                  * (This bit is not valid on PCI Express controllers.)
3594                  */
3595                 if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
3596                         sc->bge_pcixcap = reg;
3597                 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
3598                     BGE_PCISTATE_PCI_BUSMODE) == 0)
3599                         sc->bge_flags |= BGE_FLAG_PCIX;
3600         }
3601
3602         /*
3603          * The 40bit DMA bug applies to the 5714/5715 controllers and is
3604          * not actually a MAC controller bug but an issue with the embedded
3605          * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3606          */
3607         if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
3608                 sc->bge_flags |= BGE_FLAG_40BIT_BUG;
3609         /*
3610          * Some PCI-X bridges are known to trigger write reordering to
3611          * the mailbox registers. Typical phenomena is watchdog timeouts
3612          * caused by out-of-order TX completions.  Enable workaround for
3613          * PCI-X devices that live behind these bridges.
3614          * Note, PCI-X controllers can run in PCI mode so we can't use
3615          * BGE_FLAG_PCIX flag to detect PCI-X controllers.
3616          */
3617         if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0)
3618                 sc->bge_flags |= BGE_FLAG_MBOX_REORDER;
3619         /*
3620          * Allocate the interrupt, using MSI if possible.  These devices
3621          * support 8 MSI messages, but only the first one is used in
3622          * normal operation.
3623          */
3624         rid = 0;
3625         if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
3626                 sc->bge_msicap = reg;
3627                 reg = 1;
3628                 if (bge_can_use_msi(sc) && pci_alloc_msi(dev, &reg) == 0) {
3629                         rid = 1;
3630                         sc->bge_flags |= BGE_FLAG_MSI;
3631                 }
3632         }
3633
3634         /*
3635          * All controllers except BCM5700 supports tagged status but
3636          * we use tagged status only for MSI case on BCM5717. Otherwise
3637          * MSI on BCM5717 does not work.
3638          */
3639 #ifndef DEVICE_POLLING
3640         if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
3641                 sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
3642 #endif
3643
3644         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
3645             RF_ACTIVE | (rid != 0 ? 0 : RF_SHAREABLE));
3646
3647         if (sc->bge_irq == NULL) {
3648                 device_printf(sc->bge_dev, "couldn't map interrupt\n");
3649                 error = ENXIO;
3650                 goto fail;
3651         }
3652
3653         bge_devinfo(sc);
3654
3655         sc->bge_asf_mode = 0;
3656         /* No ASF if APE present. */
3657         if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
3658                 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3659                     BGE_SRAM_DATA_SIG_MAGIC)) {
3660                         if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3661                             BGE_HWCFG_ASF) {
3662                                 sc->bge_asf_mode |= ASF_ENABLE;
3663                                 sc->bge_asf_mode |= ASF_STACKUP;
3664                                 if (BGE_IS_575X_PLUS(sc))
3665                                         sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3666                         }
3667                 }
3668         }
3669
3670         bge_stop_fw(sc);
3671         bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
3672         if (bge_reset(sc)) {
3673                 device_printf(sc->bge_dev, "chip reset failed\n");
3674                 error = ENXIO;
3675                 goto fail;
3676         }
3677
3678         bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
3679         bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
3680
3681         if (bge_chipinit(sc)) {
3682                 device_printf(sc->bge_dev, "chip initialization failed\n");
3683                 error = ENXIO;
3684                 goto fail;
3685         }
3686
3687         error = bge_get_eaddr(sc, eaddr);
3688         if (error) {
3689                 device_printf(sc->bge_dev,
3690                     "failed to read station address\n");
3691                 error = ENXIO;
3692                 goto fail;
3693         }
3694
3695         /* 5705 limits RX return ring to 512 entries. */
3696         if (BGE_IS_5717_PLUS(sc))
3697                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3698         else if (BGE_IS_5705_PLUS(sc))
3699                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3700         else
3701                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3702
3703         if (bge_dma_alloc(sc)) {
3704                 device_printf(sc->bge_dev,
3705                     "failed to allocate DMA resources\n");
3706                 error = ENXIO;
3707                 goto fail;
3708         }
3709
3710         /* Set default tuneable values. */
3711         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3712         sc->bge_rx_coal_ticks = 150;
3713         sc->bge_tx_coal_ticks = 150;
3714         sc->bge_rx_max_coal_bds = 10;
3715         sc->bge_tx_max_coal_bds = 10;
3716
3717         /* Initialize checksum features to use. */
3718         sc->bge_csum_features = BGE_CSUM_FEATURES;
3719         if (sc->bge_forced_udpcsum != 0)
3720                 sc->bge_csum_features |= CSUM_UDP;
3721
3722         /* Set up ifnet structure */
3723         ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
3724         if (ifp == NULL) {
3725                 device_printf(sc->bge_dev, "failed to if_alloc()\n");
3726                 error = ENXIO;
3727                 goto fail;
3728         }
3729         ifp->if_softc = sc;
3730         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
3731         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3732         ifp->if_ioctl = bge_ioctl;
3733         ifp->if_start = bge_start;
3734         ifp->if_init = bge_init;
3735         ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
3736         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
3737         IFQ_SET_READY(&ifp->if_snd);
3738         ifp->if_hwassist = sc->bge_csum_features;
3739         ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
3740             IFCAP_VLAN_MTU;
3741         if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
3742                 ifp->if_hwassist |= CSUM_TSO;
3743                 ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO;
3744         }
3745 #ifdef IFCAP_VLAN_HWCSUM
3746         ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
3747 #endif
3748         ifp->if_capenable = ifp->if_capabilities;
3749 #ifdef DEVICE_POLLING
3750         ifp->if_capabilities |= IFCAP_POLLING;
3751 #endif
3752
3753         /*
3754          * 5700 B0 chips do not support checksumming correctly due
3755          * to hardware bugs.
3756          */
3757         if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
3758                 ifp->if_capabilities &= ~IFCAP_HWCSUM;
3759                 ifp->if_capenable &= ~IFCAP_HWCSUM;
3760                 ifp->if_hwassist = 0;
3761         }
3762
3763         /*
3764          * Figure out what sort of media we have by checking the
3765          * hardware config word in the first 32k of NIC internal memory,
3766          * or fall back to examining the EEPROM if necessary.
3767          * Note: on some BCM5700 cards, this value appears to be unset.
3768          * If that's the case, we have to rely on identifying the NIC
3769          * by its PCI subsystem ID, as we do below for the SysKonnect
3770          * SK-9D41.
3771          */
3772         if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
3773                 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3774         else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
3775             (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3776                 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
3777                     sizeof(hwcfg))) {
3778                         device_printf(sc->bge_dev, "failed to read EEPROM\n");
3779                         error = ENXIO;
3780                         goto fail;
3781                 }
3782                 hwcfg = ntohl(hwcfg);
3783         }
3784
3785         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
3786         if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
3787             SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3788                 if (BGE_IS_5705_PLUS(sc)) {
3789                         sc->bge_flags |= BGE_FLAG_MII_SERDES;
3790                         sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3791                 } else
3792                         sc->bge_flags |= BGE_FLAG_TBI;
3793         }
3794
3795         /* Set various PHY bug flags. */
3796         if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3797             sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3798                 sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
3799         if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
3800             sc->bge_chiprev == BGE_CHIPREV_5704_AX)
3801                 sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
3802         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3803                 sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
3804         if (pci_get_subvendor(dev) == DELL_VENDORID)
3805                 sc->bge_phy_flags |= BGE_PHY_NO_3LED;
3806         if ((BGE_IS_5705_PLUS(sc)) &&
3807             sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
3808             sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
3809             sc->bge_asicrev != BGE_ASICREV_BCM57780 &&
3810             !BGE_IS_5717_PLUS(sc)) {
3811                 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
3812                     sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3813                     sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3814                     sc->bge_asicrev == BGE_ASICREV_BCM5787) {
3815                         if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
3816                             pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
3817                                 sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
3818                         if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
3819                                 sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
3820                 } else
3821                         sc->bge_phy_flags |= BGE_PHY_BER_BUG;
3822         }
3823
3824         /*
3825          * Don't enable Ethernet@WireSpeed for the 5700 or the
3826          * 5705 A0 and A1 chips.
3827          */
3828         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3829             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3830             (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3831             sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3832                 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3833
3834         if (sc->bge_flags & BGE_FLAG_TBI) {
3835                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3836                     bge_ifmedia_sts);
3837                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
3838                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
3839                     0, NULL);
3840                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3841                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3842                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3843         } else {
3844                 /*
3845                  * Do transceiver setup and tell the firmware the
3846                  * driver is down so we can try to get access the
3847                  * probe if ASF is running.  Retry a couple of times
3848                  * if we get a conflict with the ASF firmware accessing
3849                  * the PHY.
3850                  */
3851                 trys = 0;
3852                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3853 again:
3854                 bge_asf_driver_up(sc);
3855
3856                 error = mii_attach(dev, &sc->bge_miibus, ifp, bge_ifmedia_upd,
3857                     bge_ifmedia_sts, capmask, sc->bge_phy_addr, MII_OFFSET_ANY,
3858                     MIIF_DOPAUSE);
3859                 if (error != 0) {
3860                         if (trys++ < 4) {
3861                                 device_printf(sc->bge_dev, "Try again\n");
3862                                 bge_miibus_writereg(sc->bge_dev,
3863                                     sc->bge_phy_addr, MII_BMCR, BMCR_RESET);
3864                                 goto again;
3865                         }
3866                         device_printf(sc->bge_dev, "attaching PHYs failed\n");
3867                         goto fail;
3868                 }
3869
3870                 /*
3871                  * Now tell the firmware we are going up after probing the PHY
3872                  */
3873                 if (sc->bge_asf_mode & ASF_STACKUP)
3874                         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3875         }
3876
3877         /*
3878          * When using the BCM5701 in PCI-X mode, data corruption has
3879          * been observed in the first few bytes of some received packets.
3880          * Aligning the packet buffer in memory eliminates the corruption.
3881          * Unfortunately, this misaligns the packet payloads.  On platforms
3882          * which do not support unaligned accesses, we will realign the
3883          * payloads by copying the received packets.
3884          */
3885         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
3886             sc->bge_flags & BGE_FLAG_PCIX)
3887                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
3888
3889         /*
3890          * Call MI attach routine.
3891          */
3892         ether_ifattach(ifp, eaddr);
3893
3894         /* Tell upper layer we support long frames. */
3895         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
3896
3897         /*
3898          * Hookup IRQ last.
3899          */
3900         if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
3901                 /* Take advantage of single-shot MSI. */
3902                 CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
3903                     ~BGE_MSIMODE_ONE_SHOT_DISABLE);
3904                 sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
3905                     taskqueue_thread_enqueue, &sc->bge_tq);
3906                 if (sc->bge_tq == NULL) {
3907                         device_printf(dev, "could not create taskqueue.\n");
3908                         ether_ifdetach(ifp);
3909                         error = ENOMEM;
3910                         goto fail;
3911                 }
3912                 error = taskqueue_start_threads(&sc->bge_tq, 1, PI_NET,
3913                     "%s taskq", device_get_nameunit(sc->bge_dev));
3914                 if (error != 0) {
3915                         device_printf(dev, "could not start threads.\n");
3916                         ether_ifdetach(ifp);
3917                         goto fail;
3918                 }
3919                 error = bus_setup_intr(dev, sc->bge_irq,
3920                     INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
3921                     &sc->bge_intrhand);
3922         } else
3923                 error = bus_setup_intr(dev, sc->bge_irq,
3924                     INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
3925                     &sc->bge_intrhand);
3926
3927         if (error) {
3928                 ether_ifdetach(ifp);
3929                 device_printf(sc->bge_dev, "couldn't set up irq\n");
3930         }
3931
3932 fail:
3933         if (error)
3934                 bge_detach(dev);
3935         return (error);
3936 }
3937
3938 static int
3939 bge_detach(device_t dev)
3940 {
3941         struct bge_softc *sc;
3942         struct ifnet *ifp;
3943
3944         sc = device_get_softc(dev);
3945         ifp = sc->bge_ifp;
3946
3947 #ifdef DEVICE_POLLING
3948         if (ifp->if_capenable & IFCAP_POLLING)
3949                 ether_poll_deregister(ifp);
3950 #endif
3951
3952         if (device_is_attached(dev)) {
3953                 ether_ifdetach(ifp);
3954                 BGE_LOCK(sc);
3955                 bge_stop(sc);
3956                 BGE_UNLOCK(sc);
3957                 callout_drain(&sc->bge_stat_ch);
3958         }
3959
3960         if (sc->bge_tq)
3961                 taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3962
3963         if (sc->bge_flags & BGE_FLAG_TBI)
3964                 ifmedia_removeall(&sc->bge_ifmedia);
3965         else if (sc->bge_miibus != NULL) {
3966                 bus_generic_detach(dev);
3967                 device_delete_child(dev, sc->bge_miibus);
3968         }
3969
3970         bge_release_resources(sc);
3971
3972         return (0);
3973 }
3974
3975 static void
3976 bge_release_resources(struct bge_softc *sc)
3977 {
3978         device_t dev;
3979
3980         dev = sc->bge_dev;
3981
3982         if (sc->bge_tq != NULL)
3983                 taskqueue_free(sc->bge_tq);
3984
3985         if (sc->bge_intrhand != NULL)
3986                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3987
3988         if (sc->bge_irq != NULL) {
3989                 bus_release_resource(dev, SYS_RES_IRQ,
3990                     rman_get_rid(sc->bge_irq), sc->bge_irq);
3991                 pci_release_msi(dev);
3992         }
3993
3994         if (sc->bge_res != NULL)
3995                 bus_release_resource(dev, SYS_RES_MEMORY,
3996                     rman_get_rid(sc->bge_res), sc->bge_res);
3997
3998         if (sc->bge_res2 != NULL)
3999                 bus_release_resource(dev, SYS_RES_MEMORY,
4000                     rman_get_rid(sc->bge_res2), sc->bge_res2);
4001
4002         if (sc->bge_ifp != NULL)
4003                 if_free(sc->bge_ifp);
4004
4005         bge_dma_free(sc);
4006
4007         if (mtx_initialized(&sc->bge_mtx))      /* XXX */
4008                 BGE_LOCK_DESTROY(sc);
4009 }
4010
4011 static int
4012 bge_reset(struct bge_softc *sc)
4013 {
4014         device_t dev;
4015         uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val;
4016         void (*write_op)(struct bge_softc *, int, int);
4017         uint16_t devctl;
4018         int i;
4019
4020         dev = sc->bge_dev;
4021
4022         mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4023         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4024                 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4025         mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4026
4027         if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4028             (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
4029                 if (sc->bge_flags & BGE_FLAG_PCIE)
4030                         write_op = bge_writemem_direct;
4031                 else
4032                         write_op = bge_writemem_ind;
4033         } else
4034                 write_op = bge_writereg_ind;
4035
4036         if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
4037             sc->bge_asicrev != BGE_ASICREV_BCM5701) {
4038                 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4039                 for (i = 0; i < 8000; i++) {
4040                         if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4041                             BGE_NVRAMSWARB_GNT1)
4042                                 break;
4043                         DELAY(20);
4044                 }
4045                 if (i == 8000) {
4046                         if (bootverbose)
4047                                 device_printf(dev, "NVRAM lock timedout!\n");
4048                 }
4049         }
4050         /* Take APE lock when performing reset. */
4051         bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4052
4053         /* Save some important PCI state. */
4054         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
4055         command = pci_read_config(dev, BGE_PCI_CMD, 4);
4056
4057         pci_write_config(dev, BGE_PCI_MISC_CTL,
4058             BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4059             BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4060
4061         /* Disable fastboot on controllers that support it. */
4062         if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
4063             BGE_IS_5755_PLUS(sc)) {
4064                 if (bootverbose)
4065                         device_printf(dev, "Disabling fastboot\n");
4066                 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
4067         }
4068
4069         /*
4070          * Write the magic number to SRAM at offset 0xB50.
4071          * When firmware finishes its initialization it will
4072          * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
4073          */
4074         bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4075
4076         reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4077
4078         /* XXX: Broadcom Linux driver. */
4079         if (sc->bge_flags & BGE_FLAG_PCIE) {
4080                 if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
4081                     (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) {
4082                         if (CSR_READ_4(sc, 0x7E2C) == 0x60)     /* PCIE 1.0 */
4083                                 CSR_WRITE_4(sc, 0x7E2C, 0x20);
4084                 }
4085                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4086                         /* Prevent PCIE link training during global reset */
4087                         CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4088                         reset |= 1 << 29;
4089                 }
4090         }
4091
4092         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4093                 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4094                 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4095                     val | BGE_VCPU_STATUS_DRV_RESET);
4096                 val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4097                 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4098                     val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4099         }
4100
4101         /*
4102          * Set GPHY Power Down Override to leave GPHY
4103          * powered up in D0 uninitialized.
4104          */
4105         if (BGE_IS_5705_PLUS(sc) &&
4106             (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
4107                 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4108
4109         /* Issue global reset */
4110         write_op(sc, BGE_MISC_CFG, reset);
4111
4112         if (sc->bge_flags & BGE_FLAG_PCIE)
4113                 DELAY(100 * 1000);
4114         else
4115                 DELAY(1000);
4116
4117         /* XXX: Broadcom Linux driver. */
4118         if (sc->bge_flags & BGE_FLAG_PCIE) {
4119                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4120                         DELAY(500000); /* wait for link training to complete */
4121                         val = pci_read_config(dev, 0xC4, 4);
4122                         pci_write_config(dev, 0xC4, val | (1 << 15), 4);
4123                 }
4124                 devctl = pci_read_config(dev,
4125                     sc->bge_expcap + PCIER_DEVICE_CTL, 2);
4126                 /* Clear enable no snoop and disable relaxed ordering. */
4127                 devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE |
4128                     PCIEM_CTL_NOSNOOP_ENABLE);
4129                 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL,
4130                     devctl, 2);
4131                 pci_set_max_read_req(dev, sc->bge_expmrq);
4132                 /* Clear error status. */
4133                 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA,
4134                     PCIEM_STA_CORRECTABLE_ERROR |
4135                     PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
4136                     PCIEM_STA_UNSUPPORTED_REQ, 2);
4137         }
4138
4139         /* Reset some of the PCI state that got zapped by reset. */
4140         pci_write_config(dev, BGE_PCI_MISC_CTL,
4141             BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4142             BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4143         val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4144         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4145             (sc->bge_flags & BGE_FLAG_PCIX) != 0)
4146                 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4147         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4148                 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4149                     BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4150                     BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4151         pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
4152         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
4153         pci_write_config(dev, BGE_PCI_CMD, command, 4);
4154         /*
4155          * Disable PCI-X relaxed ordering to ensure status block update
4156          * comes first then packet buffer DMA. Otherwise driver may
4157          * read stale status block.
4158          */
4159         if (sc->bge_flags & BGE_FLAG_PCIX) {
4160                 devctl = pci_read_config(dev,
4161                     sc->bge_pcixcap + PCIXR_COMMAND, 2);
4162                 devctl &= ~PCIXM_COMMAND_ERO;
4163                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
4164                         devctl &= ~PCIXM_COMMAND_MAX_READ;
4165                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
4166                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4167                         devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
4168                             PCIXM_COMMAND_MAX_READ);
4169                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
4170                 }
4171                 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
4172                     devctl, 2);
4173         }
4174         /* Re-enable MSI, if necessary, and enable the memory arbiter. */
4175         if (BGE_IS_5714_FAMILY(sc)) {
4176                 /* This chip disables MSI on reset. */
4177                 if (sc->bge_flags & BGE_FLAG_MSI) {
4178                         val = pci_read_config(dev,
4179                             sc->bge_msicap + PCIR_MSI_CTRL, 2);
4180                         pci_write_config(dev,
4181                             sc->bge_msicap + PCIR_MSI_CTRL,
4182                             val | PCIM_MSICTRL_MSI_ENABLE, 2);
4183                         val = CSR_READ_4(sc, BGE_MSI_MODE);
4184                         CSR_WRITE_4(sc, BGE_MSI_MODE,
4185                             val | BGE_MSIMODE_ENABLE);
4186                 }
4187                 val = CSR_READ_4(sc, BGE_MARB_MODE);
4188                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4189         } else
4190                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4191
4192         /* Fix up byte swapping. */
4193         CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
4194
4195         val = CSR_READ_4(sc, BGE_MAC_MODE);
4196         val = (val & ~mac_mode_mask) | mac_mode;
4197         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
4198         DELAY(40);
4199
4200         bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4201
4202         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4203                 for (i = 0; i < BGE_TIMEOUT; i++) {
4204                         val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4205                         if (val & BGE_VCPU_STATUS_INIT_DONE)
4206                                 break;
4207                         DELAY(100);
4208                 }
4209                 if (i == BGE_TIMEOUT) {
4210                         device_printf(dev, "reset timed out\n");
4211                         return (1);
4212                 }
4213         } else {
4214                 /*
4215                  * Poll until we see the 1's complement of the magic number.
4216                  * This indicates that the firmware initialization is complete.
4217                  * We expect this to fail if no chip containing the Ethernet
4218                  * address is fitted though.
4219                  */
4220                 for (i = 0; i < BGE_TIMEOUT; i++) {
4221                         DELAY(10);
4222                         val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
4223                         if (val == ~BGE_SRAM_FW_MB_MAGIC)
4224                                 break;
4225                 }
4226
4227                 if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
4228                         device_printf(dev,
4229                             "firmware handshake timed out, found 0x%08x\n",
4230                             val);
4231                 /* BCM57765 A0 needs additional time before accessing. */
4232                 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
4233                         DELAY(10 * 1000);       /* XXX */
4234         }
4235
4236         /*
4237          * The 5704 in TBI mode apparently needs some special
4238          * adjustment to insure the SERDES drive level is set
4239          * to 1.2V.
4240          */
4241         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
4242             sc->bge_flags & BGE_FLAG_TBI) {
4243                 val = CSR_READ_4(sc, BGE_SERDES_CFG);
4244                 val = (val & ~0xFFF) | 0x880;
4245                 CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
4246         }
4247
4248         /* XXX: Broadcom Linux driver. */
4249         if (sc->bge_flags & BGE_FLAG_PCIE &&
4250             !BGE_IS_5717_PLUS(sc) &&
4251             sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4252             sc->bge_asicrev != BGE_ASICREV_BCM5785) {
4253                 /* Enable Data FIFO protection. */
4254                 val = CSR_READ_4(sc, 0x7C00);
4255                 CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
4256         }
4257
4258         if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
4259                 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4260                     CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4261
4262         return (0);
4263 }
4264
4265 static __inline void
4266 bge_rxreuse_std(struct bge_softc *sc, int i)
4267 {
4268         struct bge_rx_bd *r;
4269
4270         r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
4271         r->bge_flags = BGE_RXBDFLAG_END;
4272         r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
4273         r->bge_idx = i;
4274         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4275 }
4276
4277 static __inline void
4278 bge_rxreuse_jumbo(struct bge_softc *sc, int i)
4279 {
4280         struct bge_extrx_bd *r;
4281
4282         r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
4283         r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
4284         r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
4285         r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
4286         r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
4287         r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
4288         r->bge_idx = i;
4289         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4290 }
4291
4292 /*
4293  * Frame reception handling. This is called if there's a frame
4294  * on the receive return list.
4295  *
4296  * Note: we have to be able to handle two possibilities here:
4297  * 1) the frame is from the jumbo receive ring
4298  * 2) the frame is from the standard receive ring
4299  */
4300
4301 static int
4302 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
4303 {
4304         struct ifnet *ifp;
4305         int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
4306         uint16_t rx_cons;
4307
4308         rx_cons = sc->bge_rx_saved_considx;
4309
4310         /* Nothing to do. */
4311         if (rx_cons == rx_prod)
4312                 return (rx_npkts);
4313
4314         ifp = sc->bge_ifp;
4315
4316         bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4317             sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
4318         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4319             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
4320         if (BGE_IS_JUMBO_CAPABLE(sc) &&
4321             ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
4322             (MCLBYTES - ETHER_ALIGN))
4323                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4324                     sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
4325
4326         while (rx_cons != rx_prod) {
4327                 struct bge_rx_bd        *cur_rx;
4328                 uint32_t                rxidx;
4329                 struct mbuf             *m = NULL;
4330                 uint16_t                vlan_tag = 0;
4331                 int                     have_tag = 0;
4332
4333 #ifdef DEVICE_POLLING
4334                 if (ifp->if_capenable & IFCAP_POLLING) {
4335                         if (sc->rxcycles <= 0)
4336                                 break;
4337                         sc->rxcycles--;
4338                 }
4339 #endif
4340
4341                 cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
4342
4343                 rxidx = cur_rx->bge_idx;
4344                 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4345
4346                 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING &&
4347                     cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4348                         have_tag = 1;
4349                         vlan_tag = cur_rx->bge_vlan_tag;
4350                 }
4351
4352                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4353                         jumbocnt++;
4354                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4355                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4356                                 bge_rxreuse_jumbo(sc, rxidx);
4357                                 continue;
4358                         }
4359                         if (bge_newbuf_jumbo(sc, rxidx) != 0) {
4360                                 bge_rxreuse_jumbo(sc, rxidx);
4361                                 ifp->if_iqdrops++;
4362                                 continue;
4363                         }
4364                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4365                 } else {
4366                         stdcnt++;
4367                         m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4368                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4369                                 bge_rxreuse_std(sc, rxidx);
4370                                 continue;
4371                         }
4372                         if (bge_newbuf_std(sc, rxidx) != 0) {
4373                                 bge_rxreuse_std(sc, rxidx);
4374                                 ifp->if_iqdrops++;
4375                                 continue;
4376                         }
4377                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4378                 }
4379
4380                 ifp->if_ipackets++;
4381 #ifndef __NO_STRICT_ALIGNMENT
4382                 /*
4383                  * For architectures with strict alignment we must make sure
4384                  * the payload is aligned.
4385                  */
4386                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
4387                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
4388                             cur_rx->bge_len);
4389                         m->m_data += ETHER_ALIGN;
4390                 }
4391 #endif
4392                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4393                 m->m_pkthdr.rcvif = ifp;
4394
4395                 if (ifp->if_capenable & IFCAP_RXCSUM)
4396                         bge_rxcsum(sc, cur_rx, m);
4397
4398                 /*
4399                  * If we received a packet with a vlan tag,
4400                  * attach that information to the packet.
4401                  */
4402                 if (have_tag) {
4403                         m->m_pkthdr.ether_vtag = vlan_tag;
4404                         m->m_flags |= M_VLANTAG;
4405                 }
4406
4407                 if (holdlck != 0) {
4408                         BGE_UNLOCK(sc);
4409                         (*ifp->if_input)(ifp, m);
4410                         BGE_LOCK(sc);
4411                 } else
4412                         (*ifp->if_input)(ifp, m);
4413                 rx_npkts++;
4414
4415                 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
4416                         return (rx_npkts);
4417         }
4418
4419         bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4420             sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
4421         if (stdcnt > 0)
4422                 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4423                     sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
4424
4425         if (jumbocnt > 0)
4426                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4427                     sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
4428
4429         sc->bge_rx_saved_considx = rx_cons;
4430         bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4431         if (stdcnt)
4432                 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
4433                     BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
4434         if (jumbocnt)
4435                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
4436                     BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
4437 #ifdef notyet
4438         /*
4439          * This register wraps very quickly under heavy packet drops.
4440          * If you need correct statistics, you can enable this check.
4441          */
4442         if (BGE_IS_5705_PLUS(sc))
4443                 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4444 #endif
4445         return (rx_npkts);
4446 }
4447
4448 static void
4449 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4450 {
4451
4452         if (BGE_IS_5717_PLUS(sc)) {
4453                 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4454                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4455                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4456                                 if ((cur_rx->bge_error_flag &
4457                                     BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
4458                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4459                         }
4460                         if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4461                                 m->m_pkthdr.csum_data =
4462                                     cur_rx->bge_tcp_udp_csum;
4463                                 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4464                                     CSUM_PSEUDO_HDR;
4465                         }
4466                 }
4467         } else {
4468                 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4469                         m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4470                         if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
4471                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4472                 }
4473                 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4474                     m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
4475                         m->m_pkthdr.csum_data =
4476                             cur_rx->bge_tcp_udp_csum;
4477                         m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4478                             CSUM_PSEUDO_HDR;
4479                 }
4480         }
4481 }
4482
4483 static void
4484 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
4485 {
4486         struct bge_tx_bd *cur_tx;
4487         struct ifnet *ifp;
4488
4489         BGE_LOCK_ASSERT(sc);
4490
4491         /* Nothing to do. */
4492         if (sc->bge_tx_saved_considx == tx_cons)
4493                 return;
4494
4495         ifp = sc->bge_ifp;
4496
4497         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4498             sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
4499         /*
4500          * Go through our tx ring and free mbufs for those
4501          * frames that have been sent.
4502          */
4503         while (sc->bge_tx_saved_considx != tx_cons) {
4504                 uint32_t                idx;
4505
4506                 idx = sc->bge_tx_saved_considx;
4507                 cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
4508                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4509                         ifp->if_opackets++;
4510                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
4511                         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
4512                             sc->bge_cdata.bge_tx_dmamap[idx],
4513                             BUS_DMASYNC_POSTWRITE);
4514                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
4515                             sc->bge_cdata.bge_tx_dmamap[idx]);
4516                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
4517                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
4518                 }
4519                 sc->bge_txcnt--;
4520                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4521         }
4522
4523         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4524         if (sc->bge_txcnt == 0)
4525                 sc->bge_timer = 0;
4526 }
4527
4528 #ifdef DEVICE_POLLING
4529 static int
4530 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
4531 {
4532         struct bge_softc *sc = ifp->if_softc;
4533         uint16_t rx_prod, tx_cons;
4534         uint32_t statusword;
4535         int rx_npkts = 0;
4536
4537         BGE_LOCK(sc);
4538         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4539                 BGE_UNLOCK(sc);
4540                 return (rx_npkts);
4541         }
4542
4543         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4544             sc->bge_cdata.bge_status_map,
4545             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4546         /* Fetch updates from the status block. */
4547         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4548         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4549
4550         statusword = sc->bge_ldata.bge_status_block->bge_status;
4551         /* Clear the status so the next pass only sees the changes. */
4552         sc->bge_ldata.bge_status_block->bge_status = 0;
4553
4554         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4555             sc->bge_cdata.bge_status_map,
4556             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4557
4558         /* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
4559         if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
4560                 sc->bge_link_evt++;
4561
4562         if (cmd == POLL_AND_CHECK_STATUS)
4563                 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4564                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4565                     sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
4566                         bge_link_upd(sc);
4567
4568         sc->rxcycles = count;
4569         rx_npkts = bge_rxeof(sc, rx_prod, 1);
4570         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4571                 BGE_UNLOCK(sc);
4572                 return (rx_npkts);
4573         }
4574         bge_txeof(sc, tx_cons);
4575         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4576                 bge_start_locked(ifp);
4577
4578         BGE_UNLOCK(sc);
4579         return (rx_npkts);
4580 }
4581 #endif /* DEVICE_POLLING */
4582
4583 static int
4584 bge_msi_intr(void *arg)
4585 {
4586         struct bge_softc *sc;
4587
4588         sc = (struct bge_softc *)arg;
4589         /*
4590          * This interrupt is not shared and controller already
4591          * disabled further interrupt.
4592          */
4593         taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
4594         return (FILTER_HANDLED);
4595 }
4596
4597 static void
4598 bge_intr_task(void *arg, int pending)
4599 {
4600         struct bge_softc *sc;
4601         struct ifnet *ifp;
4602         uint32_t status, status_tag;
4603         uint16_t rx_prod, tx_cons;
4604
4605         sc = (struct bge_softc *)arg;
4606         ifp = sc->bge_ifp;
4607
4608         BGE_LOCK(sc);
4609         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4610                 BGE_UNLOCK(sc);
4611                 return;
4612         }
4613
4614         /* Get updated status block. */
4615         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4616             sc->bge_cdata.bge_status_map,
4617             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4618
4619         /* Save producer/consumer indices. */
4620         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4621         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4622         status = sc->bge_ldata.bge_status_block->bge_status;
4623         status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
4624         /* Dirty the status flag. */
4625         sc->bge_ldata.bge_status_block->bge_status = 0;
4626         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4627             sc->bge_cdata.bge_status_map,
4628             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4629         if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
4630                 status_tag = 0;
4631
4632         if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
4633                 bge_link_upd(sc);
4634
4635         /* Let controller work. */
4636         bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
4637
4638         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
4639             sc->bge_rx_saved_considx != rx_prod) {
4640                 /* Check RX return ring producer/consumer. */
4641                 BGE_UNLOCK(sc);
4642                 bge_rxeof(sc, rx_prod, 0);
4643                 BGE_LOCK(sc);
4644         }
4645         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4646                 /* Check TX ring producer/consumer. */
4647                 bge_txeof(sc, tx_cons);
4648                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4649                         bge_start_locked(ifp);
4650         }
4651         BGE_UNLOCK(sc);
4652 }
4653
4654 static void
4655 bge_intr(void *xsc)
4656 {
4657         struct bge_softc *sc;
4658         struct ifnet *ifp;
4659         uint32_t statusword;
4660         uint16_t rx_prod, tx_cons;
4661
4662         sc = xsc;
4663
4664         BGE_LOCK(sc);
4665
4666         ifp = sc->bge_ifp;
4667
4668 #ifdef DEVICE_POLLING
4669         if (ifp->if_capenable & IFCAP_POLLING) {
4670                 BGE_UNLOCK(sc);
4671                 return;
4672         }
4673 #endif
4674
4675         /*
4676          * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
4677          * disable interrupts by writing nonzero like we used to, since with
4678          * our current organization this just gives complications and
4679          * pessimizations for re-enabling interrupts.  We used to have races
4680          * instead of the necessary complications.  Disabling interrupts
4681          * would just reduce the chance of a status update while we are
4682          * running (by switching to the interrupt-mode coalescence
4683          * parameters), but this chance is already very low so it is more
4684          * efficient to get another interrupt than prevent it.
4685          *
4686          * We do the ack first to ensure another interrupt if there is a
4687          * status update after the ack.  We don't check for the status
4688          * changing later because it is more efficient to get another
4689          * interrupt than prevent it, not quite as above (not checking is
4690          * a smaller optimization than not toggling the interrupt enable,
4691          * since checking doesn't involve PCI accesses and toggling require
4692          * the status check).  So toggling would probably be a pessimization
4693          * even with MSI.  It would only be needed for using a task queue.
4694          */
4695         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4696
4697         /*
4698          * Do the mandatory PCI flush as well as get the link status.
4699          */
4700         statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
4701
4702         /* Make sure the descriptor ring indexes are coherent. */
4703         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4704             sc->bge_cdata.bge_status_map,
4705             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4706         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4707         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4708         sc->bge_ldata.bge_status_block->bge_status = 0;
4709         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4710             sc->bge_cdata.bge_status_map,
4711             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4712
4713         if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4714             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4715             statusword || sc->bge_link_evt)
4716                 bge_link_upd(sc);
4717
4718         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4719                 /* Check RX return ring producer/consumer. */
4720                 bge_rxeof(sc, rx_prod, 1);
4721         }
4722
4723         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4724                 /* Check TX ring producer/consumer. */
4725                 bge_txeof(sc, tx_cons);
4726         }
4727
4728         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
4729             !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4730                 bge_start_locked(ifp);
4731
4732         BGE_UNLOCK(sc);
4733 }
4734
4735 static void
4736 bge_asf_driver_up(struct bge_softc *sc)
4737 {
4738         if (sc->bge_asf_mode & ASF_STACKUP) {
4739                 /* Send ASF heartbeat aprox. every 2s */
4740                 if (sc->bge_asf_count)
4741                         sc->bge_asf_count --;
4742                 else {
4743                         sc->bge_asf_count = 2;
4744                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4745                             BGE_FW_CMD_DRV_ALIVE);
4746                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4747                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4748                             BGE_FW_HB_TIMEOUT_SEC);
4749                         CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
4750                             CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4751                             BGE_RX_CPU_DRV_EVENT);
4752                 }
4753         }
4754 }
4755
4756 static void
4757 bge_tick(void *xsc)
4758 {
4759         struct bge_softc *sc = xsc;
4760         struct mii_data *mii = NULL;
4761
4762         BGE_LOCK_ASSERT(sc);
4763
4764         /* Synchronize with possible callout reset/stop. */
4765         if (callout_pending(&sc->bge_stat_ch) ||
4766             !callout_active(&sc->bge_stat_ch))
4767                 return;
4768
4769         if (BGE_IS_5705_PLUS(sc))
4770                 bge_stats_update_regs(sc);
4771         else
4772                 bge_stats_update(sc);
4773
4774         /* XXX Add APE heartbeat check here? */
4775
4776         if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4777                 mii = device_get_softc(sc->bge_miibus);
4778                 /*
4779                  * Do not touch PHY if we have link up. This could break
4780                  * IPMI/ASF mode or produce extra input errors
4781                  * (extra errors was reported for bcm5701 & bcm5704).
4782                  */
4783                 if (!sc->bge_link)
4784                         mii_tick(mii);
4785         } else {
4786                 /*
4787                  * Since in TBI mode auto-polling can't be used we should poll
4788                  * link status manually. Here we register pending link event
4789                  * and trigger interrupt.
4790                  */
4791 #ifdef DEVICE_POLLING
4792                 /* In polling mode we poll link state in bge_poll(). */
4793                 if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
4794 #endif
4795                 {
4796                 sc->bge_link_evt++;
4797                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4798                     sc->bge_flags & BGE_FLAG_5788)
4799                         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4800                 else
4801                         BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4802                 }
4803         }
4804
4805         bge_asf_driver_up(sc);
4806         bge_watchdog(sc);
4807
4808         callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4809 }
4810
4811 static void
4812 bge_stats_update_regs(struct bge_softc *sc)
4813 {
4814         struct ifnet *ifp;
4815         struct bge_mac_stats *stats;
4816         uint32_t val;
4817
4818         ifp = sc->bge_ifp;
4819         stats = &sc->bge_mac_stats;
4820
4821         stats->ifHCOutOctets +=
4822             CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4823         stats->etherStatsCollisions +=
4824             CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4825         stats->outXonSent +=
4826             CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4827         stats->outXoffSent +=
4828             CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4829         stats->dot3StatsInternalMacTransmitErrors +=
4830             CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4831         stats->dot3StatsSingleCollisionFrames +=
4832             CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4833         stats->dot3StatsMultipleCollisionFrames +=
4834             CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4835         stats->dot3StatsDeferredTransmissions +=
4836             CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4837         stats->dot3StatsExcessiveCollisions +=
4838             CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4839         stats->dot3StatsLateCollisions +=
4840             CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4841         stats->ifHCOutUcastPkts +=
4842             CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4843         stats->ifHCOutMulticastPkts +=
4844             CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4845         stats->ifHCOutBroadcastPkts +=
4846             CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4847
4848         stats->ifHCInOctets +=
4849             CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4850         stats->etherStatsFragments +=
4851             CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4852         stats->ifHCInUcastPkts +=
4853             CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4854         stats->ifHCInMulticastPkts +=
4855             CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4856         stats->ifHCInBroadcastPkts +=
4857             CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4858         stats->dot3StatsFCSErrors +=
4859             CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4860         stats->dot3StatsAlignmentErrors +=
4861             CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4862         stats->xonPauseFramesReceived +=
4863             CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4864         stats->xoffPauseFramesReceived +=
4865             CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4866         stats->macControlFramesReceived +=
4867             CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4868         stats->xoffStateEntered +=
4869             CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4870         stats->dot3StatsFramesTooLong +=
4871             CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4872         stats->etherStatsJabbers +=
4873             CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4874         stats->etherStatsUndersizePkts +=
4875             CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4876
4877         stats->FramesDroppedDueToFilters +=
4878             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4879         stats->DmaWriteQueueFull +=
4880             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4881         stats->DmaWriteHighPriQueueFull +=
4882             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4883         stats->NoMoreRxBDs +=
4884             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4885         /*
4886          * XXX
4887          * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS
4888          * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0
4889          * includes number of unwanted multicast frames.  This comes
4890          * from silicon bug and known workaround to get rough(not
4891          * exact) counter is to enable interrupt on MBUF low water
4892          * attention.  This can be accomplished by setting
4893          * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE,
4894          * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and
4895          * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL.
4896          * However that change would generate more interrupts and
4897          * there are still possibilities of losing multiple frames
4898          * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling.
4899          * Given that the workaround still would not get correct
4900          * counter I don't think it's worth to implement it.  So
4901          * ignore reading the counter on controllers that have the
4902          * silicon bug.
4903          */
4904         if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
4905             sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4906             sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
4907                 stats->InputDiscards +=
4908                     CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4909         stats->InputErrors +=
4910             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4911         stats->RecvThresholdHit +=
4912             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4913
4914         ifp->if_collisions = (u_long)stats->etherStatsCollisions;
4915         ifp->if_ierrors = (u_long)(stats->NoMoreRxBDs + stats->InputDiscards +
4916             stats->InputErrors);
4917
4918         if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
4919                 /*
4920                  * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4921                  * frames, it's safe to disable workaround for DMA engine's
4922                  * miscalculation of TXMBUF space.
4923                  */
4924                 if (stats->ifHCOutUcastPkts + stats->ifHCOutMulticastPkts +
4925                     stats->ifHCOutBroadcastPkts > BGE_NUM_RDMA_CHANNELS) {
4926                         val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4927                         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
4928                                 val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4929                         else
4930                                 val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4931                         CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4932                         sc->bge_flags &= ~BGE_FLAG_RDMA_BUG;
4933                 }
4934         }
4935 }
4936
4937 static void
4938 bge_stats_clear_regs(struct bge_softc *sc)
4939 {
4940
4941         CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4942         CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4943         CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4944         CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4945         CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4946         CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4947         CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4948         CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4949         CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4950         CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4951         CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4952         CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4953         CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4954
4955         CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4956         CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4957         CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4958         CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4959         CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4960         CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4961         CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4962         CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4963         CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4964         CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4965         CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4966         CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4967         CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4968         CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4969
4970         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4971         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4972         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4973         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4974         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4975         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4976         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4977 }
4978
4979 static void
4980 bge_stats_update(struct bge_softc *sc)
4981 {
4982         struct ifnet *ifp;
4983         bus_size_t stats;
4984         uint32_t cnt;   /* current register value */
4985
4986         ifp = sc->bge_ifp;
4987
4988         stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4989
4990 #define READ_STAT(sc, stats, stat) \
4991         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4992
4993         cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
4994         ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
4995         sc->bge_tx_collisions = cnt;
4996
4997         cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
4998         ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_nobds);
4999         sc->bge_rx_nobds = cnt;
5000         cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
5001         ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_inerrs);
5002         sc->bge_rx_inerrs = cnt;
5003         cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
5004         ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
5005         sc->bge_rx_discards = cnt;
5006
5007         cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
5008         ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
5009         sc->bge_tx_discards = cnt;
5010
5011 #undef  READ_STAT
5012 }
5013
5014 /*
5015  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
5016  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
5017  * but when such padded frames employ the bge IP/TCP checksum offload,
5018  * the hardware checksum assist gives incorrect results (possibly
5019  * from incorporating its own padding into the UDP/TCP checksum; who knows).
5020  * If we pad such runts with zeros, the onboard checksum comes out correct.
5021  */
5022 static __inline int
5023 bge_cksum_pad(struct mbuf *m)
5024 {
5025         int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
5026         struct mbuf *last;
5027
5028         /* If there's only the packet-header and we can pad there, use it. */
5029         if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
5030             M_TRAILINGSPACE(m) >= padlen) {
5031                 last = m;
5032         } else {
5033                 /*
5034                  * Walk packet chain to find last mbuf. We will either
5035                  * pad there, or append a new mbuf and pad it.
5036                  */
5037                 for (last = m; last->m_next != NULL; last = last->m_next);
5038                 if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
5039                         /* Allocate new empty mbuf, pad it. Compact later. */
5040                         struct mbuf *n;
5041
5042                         MGET(n, M_NOWAIT, MT_DATA);
5043                         if (n == NULL)
5044                                 return (ENOBUFS);
5045                         n->m_len = 0;
5046                         last->m_next = n;
5047                         last = n;
5048                 }
5049         }
5050
5051         /* Now zero the pad area, to avoid the bge cksum-assist bug. */
5052         memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
5053         last->m_len += padlen;
5054         m->m_pkthdr.len += padlen;
5055
5056         return (0);
5057 }
5058
5059 static struct mbuf *
5060 bge_check_short_dma(struct mbuf *m)
5061 {
5062         struct mbuf *n;
5063         int found;
5064
5065         /*
5066          * If device receive two back-to-back send BDs with less than
5067          * or equal to 8 total bytes then the device may hang.  The two
5068          * back-to-back send BDs must in the same frame for this failure
5069          * to occur.  Scan mbuf chains and see whether two back-to-back
5070          * send BDs are there. If this is the case, allocate new mbuf
5071          * and copy the frame to workaround the silicon bug.
5072          */
5073         for (n = m, found = 0; n != NULL; n = n->m_next) {
5074                 if (n->m_len < 8) {
5075                         found++;
5076                         if (found > 1)
5077                                 break;
5078                         continue;
5079                 }
5080                 found = 0;
5081         }
5082
5083         if (found > 1) {
5084                 n = m_defrag(m, M_NOWAIT);
5085                 if (n == NULL)
5086                         m_freem(m);
5087         } else
5088                 n = m;
5089         return (n);
5090 }
5091
5092 static struct mbuf *
5093 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
5094     uint16_t *flags)
5095 {
5096         struct ip *ip;
5097         struct tcphdr *tcp;
5098         struct mbuf *n;
5099         uint16_t hlen;
5100         uint32_t poff;
5101
5102         if (M_WRITABLE(m) == 0) {
5103                 /* Get a writable copy. */
5104                 n = m_dup(m, M_NOWAIT);
5105                 m_freem(m);
5106                 if (n == NULL)
5107                         return (NULL);
5108                 m = n;
5109         }
5110         m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
5111         if (m == NULL)
5112                 return (NULL);
5113         ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5114         poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
5115         m = m_pullup(m, poff + sizeof(struct tcphdr));
5116         if (m == NULL)
5117                 return (NULL);
5118         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5119         m = m_pullup(m, poff + (tcp->th_off << 2));
5120         if (m == NULL)
5121                 return (NULL);
5122         /*
5123          * It seems controller doesn't modify IP length and TCP pseudo
5124          * checksum. These checksum computed by upper stack should be 0.
5125          */
5126         *mss = m->m_pkthdr.tso_segsz;
5127         ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5128         ip->ip_sum = 0;
5129         ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
5130         /* Clear pseudo checksum computed by TCP stack. */
5131         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5132         tcp->th_sum = 0;
5133         /*
5134          * Broadcom controllers uses different descriptor format for
5135          * TSO depending on ASIC revision. Due to TSO-capable firmware
5136          * license issue and lower performance of firmware based TSO
5137          * we only support hardware based TSO.
5138          */
5139         /* Calculate header length, incl. TCP/IP options, in 32 bit units. */
5140         hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
5141         if (sc->bge_flags & BGE_FLAG_TSO3) {
5142                 /*
5143                  * For BCM5717 and newer controllers, hardware based TSO
5144                  * uses the 14 lower bits of the bge_mss field to store the
5145                  * MSS and the upper 2 bits to store the lowest 2 bits of
5146                  * the IP/TCP header length.  The upper 6 bits of the header
5147                  * length are stored in the bge_flags[14:10,4] field.  Jumbo
5148                  * frames are supported.
5149                  */
5150                 *mss |= ((hlen & 0x3) << 14);
5151                 *flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
5152         } else {
5153                 /*
5154                  * For BCM5755 and newer controllers, hardware based TSO uses
5155                  * the lower 11 bits to store the MSS and the upper 5 bits to
5156                  * store the IP/TCP header length. Jumbo frames are not
5157                  * supported.
5158                  */
5159                 *mss |= (hlen << 11);
5160         }
5161         return (m);
5162 }
5163
5164 /*
5165  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
5166  * pointers to descriptors.
5167  */
5168 static int
5169 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
5170 {
5171         bus_dma_segment_t       segs[BGE_NSEG_NEW];
5172         bus_dmamap_t            map;
5173         struct bge_tx_bd        *d;
5174         struct mbuf             *m = *m_head;
5175         uint32_t                idx = *txidx;
5176         uint16_t                csum_flags, mss, vlan_tag;
5177         int                     nsegs, i, error;
5178
5179         csum_flags = 0;
5180         mss = 0;
5181         vlan_tag = 0;
5182         if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
5183             m->m_next != NULL) {
5184                 *m_head = bge_check_short_dma(m);
5185                 if (*m_head == NULL)
5186                         return (ENOBUFS);
5187                 m = *m_head;
5188         }
5189         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5190                 *m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
5191                 if (*m_head == NULL)
5192                         return (ENOBUFS);
5193                 csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
5194                     BGE_TXBDFLAG_CPU_POST_DMA;
5195         } else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
5196                 if (m->m_pkthdr.csum_flags & CSUM_IP)
5197                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5198                 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
5199                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5200                         if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
5201                             (error = bge_cksum_pad(m)) != 0) {
5202                                 m_freem(m);
5203                                 *m_head = NULL;
5204                                 return (error);
5205                         }
5206                 }
5207         }
5208
5209         if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
5210                 if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
5211                     m->m_pkthdr.len > ETHER_MAX_LEN)
5212                         csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
5213                 if (sc->bge_forced_collapse > 0 &&
5214                     (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
5215                         /*
5216                          * Forcedly collapse mbuf chains to overcome hardware
5217                          * limitation which only support a single outstanding
5218                          * DMA read operation.
5219                          */
5220                         if (sc->bge_forced_collapse == 1)
5221                                 m = m_defrag(m, M_NOWAIT);
5222                         else
5223                                 m = m_collapse(m, M_NOWAIT,
5224                                     sc->bge_forced_collapse);
5225                         if (m == NULL)
5226                                 m = *m_head;
5227                         *m_head = m;
5228                 }
5229         }
5230
5231         map = sc->bge_cdata.bge_tx_dmamap[idx];
5232         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
5233             &nsegs, BUS_DMA_NOWAIT);
5234         if (error == EFBIG) {
5235                 m = m_collapse(m, M_NOWAIT, BGE_NSEG_NEW);
5236                 if (m == NULL) {
5237                         m_freem(*m_head);
5238                         *m_head = NULL;
5239                         return (ENOBUFS);
5240                 }
5241                 *m_head = m;
5242                 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
5243                     m, segs, &nsegs, BUS_DMA_NOWAIT);
5244                 if (error) {
5245                         m_freem(m);
5246                         *m_head = NULL;
5247                         return (error);
5248                 }
5249         } else if (error != 0)
5250                 return (error);
5251
5252         /* Check if we have enough free send BDs. */
5253         if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
5254                 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5255                 return (ENOBUFS);
5256         }
5257
5258         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
5259
5260         if (m->m_flags & M_VLANTAG) {
5261                 csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
5262                 vlan_tag = m->m_pkthdr.ether_vtag;
5263         }
5264
5265         if (sc->bge_asicrev == BGE_ASICREV_BCM5762 &&
5266             (m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5267                 /*
5268                  * 5725 family of devices corrupts TSO packets when TSO DMA
5269                  * buffers cross into regions which are within MSS bytes of
5270                  * a 4GB boundary.  If we encounter the condition, drop the
5271                  * packet.
5272                  */
5273                 for (i = 0; ; i++) {
5274                         d = &sc->bge_ldata.bge_tx_ring[idx];
5275                         d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5276                         d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5277                         d->bge_len = segs[i].ds_len;
5278                         if (d->bge_addr.bge_addr_lo + segs[i].ds_len + mss <
5279                             d->bge_addr.bge_addr_lo)
5280                                 break;
5281                         d->bge_flags = csum_flags;
5282                         d->bge_vlan_tag = vlan_tag;
5283                         d->bge_mss = mss;
5284                         if (i == nsegs - 1)
5285                                 break;
5286                         BGE_INC(idx, BGE_TX_RING_CNT);
5287                 }
5288                 if (i != nsegs - 1) {
5289                         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map,
5290                             BUS_DMASYNC_POSTWRITE);
5291                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5292                         m_freem(*m_head);
5293                         *m_head = NULL;
5294                         return (EIO);
5295                 }
5296         } else {
5297                 for (i = 0; ; i++) {
5298                         d = &sc->bge_ldata.bge_tx_ring[idx];
5299                         d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5300                         d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5301                         d->bge_len = segs[i].ds_len;
5302                         d->bge_flags = csum_flags;
5303                         d->bge_vlan_tag = vlan_tag;
5304                         d->bge_mss = mss;
5305                         if (i == nsegs - 1)
5306                                 break;
5307                         BGE_INC(idx, BGE_TX_RING_CNT);
5308                 }
5309         }
5310
5311         /* Mark the last segment as end of packet... */
5312         d->bge_flags |= BGE_TXBDFLAG_END;
5313
5314         /*
5315          * Insure that the map for this transmission
5316          * is placed at the array index of the last descriptor
5317          * in this chain.
5318          */
5319         sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
5320         sc->bge_cdata.bge_tx_dmamap[idx] = map;
5321         sc->bge_cdata.bge_tx_chain[idx] = m;
5322         sc->bge_txcnt += nsegs;
5323
5324         BGE_INC(idx, BGE_TX_RING_CNT);
5325         *txidx = idx;
5326
5327         return (0);
5328 }
5329
5330 /*
5331  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5332  * to the mbuf data regions directly in the transmit descriptors.
5333  */
5334 static void
5335 bge_start_locked(struct ifnet *ifp)
5336 {
5337         struct bge_softc *sc;
5338         struct mbuf *m_head;
5339         uint32_t prodidx;
5340         int count;
5341
5342         sc = ifp->if_softc;
5343         BGE_LOCK_ASSERT(sc);
5344
5345         if (!sc->bge_link ||
5346             (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
5347             IFF_DRV_RUNNING)
5348                 return;
5349
5350         prodidx = sc->bge_tx_prodidx;
5351
5352         for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
5353                 if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
5354                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5355                         break;
5356                 }
5357                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
5358                 if (m_head == NULL)
5359                         break;
5360
5361                 /*
5362                  * Pack the data into the transmit ring. If we
5363                  * don't have room, set the OACTIVE flag and wait
5364                  * for the NIC to drain the ring.
5365                  */
5366                 if (bge_encap(sc, &m_head, &prodidx)) {
5367                         if (m_head == NULL)
5368                                 break;
5369                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
5370                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5371                         break;
5372                 }
5373                 ++count;
5374
5375                 /*
5376                  * If there's a BPF listener, bounce a copy of this frame
5377                  * to him.
5378                  */
5379 #ifdef ETHER_BPF_MTAP
5380                 ETHER_BPF_MTAP(ifp, m_head);
5381 #else
5382                 BPF_MTAP(ifp, m_head);
5383 #endif
5384         }
5385
5386         if (count > 0) {
5387                 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
5388                     sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
5389                 /* Transmit. */
5390                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5391                 /* 5700 b2 errata */
5392                 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
5393                         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5394
5395                 sc->bge_tx_prodidx = prodidx;
5396
5397                 /*
5398                  * Set a timeout in case the chip goes out to lunch.
5399                  */
5400                 sc->bge_timer = BGE_TX_TIMEOUT;
5401         }
5402 }
5403
5404 /*
5405  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5406  * to the mbuf data regions directly in the transmit descriptors.
5407  */
5408 static void
5409 bge_start(struct ifnet *ifp)
5410 {
5411         struct bge_softc *sc;
5412
5413         sc = ifp->if_softc;
5414         BGE_LOCK(sc);
5415         bge_start_locked(ifp);
5416         BGE_UNLOCK(sc);
5417 }
5418
5419 static void
5420 bge_init_locked(struct bge_softc *sc)
5421 {
5422         struct ifnet *ifp;
5423         uint16_t *m;
5424         uint32_t mode;
5425
5426         BGE_LOCK_ASSERT(sc);
5427
5428         ifp = sc->bge_ifp;
5429
5430         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5431                 return;
5432
5433         /* Cancel pending I/O and flush buffers. */
5434         bge_stop(sc);
5435
5436         bge_stop_fw(sc);
5437         bge_sig_pre_reset(sc, BGE_RESET_START);
5438         bge_reset(sc);
5439         bge_sig_legacy(sc, BGE_RESET_START);
5440         bge_sig_post_reset(sc, BGE_RESET_START);
5441
5442         bge_chipinit(sc);
5443
5444         /*
5445          * Init the various state machines, ring
5446          * control blocks and firmware.
5447          */
5448         if (bge_blockinit(sc)) {
5449                 device_printf(sc->bge_dev, "initialization failure\n");
5450                 return;
5451         }
5452
5453         ifp = sc->bge_ifp;
5454
5455         /* Specify MTU. */
5456         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5457             ETHER_HDR_LEN + ETHER_CRC_LEN +
5458             (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
5459
5460         /* Load our MAC address. */
5461         m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
5462         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5463         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5464
5465         /* Program promiscuous mode. */
5466         bge_setpromisc(sc);
5467
5468         /* Program multicast filter. */
5469         bge_setmulti(sc);
5470
5471         /* Program VLAN tag stripping. */
5472         bge_setvlan(sc);
5473
5474         /* Override UDP checksum offloading. */
5475         if (sc->bge_forced_udpcsum == 0)
5476                 sc->bge_csum_features &= ~CSUM_UDP;
5477         else
5478                 sc->bge_csum_features |= CSUM_UDP;
5479         if (ifp->if_capabilities & IFCAP_TXCSUM &&
5480             ifp->if_capenable & IFCAP_TXCSUM) {
5481                 ifp->if_hwassist &= ~(BGE_CSUM_FEATURES | CSUM_UDP);
5482                 ifp->if_hwassist |= sc->bge_csum_features;
5483         }
5484
5485         /* Init RX ring. */
5486         if (bge_init_rx_ring_std(sc) != 0) {
5487                 device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
5488                 bge_stop(sc);
5489                 return;
5490         }
5491
5492         /*
5493          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5494          * memory to insure that the chip has in fact read the first
5495          * entry of the ring.
5496          */
5497         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5498                 uint32_t                v, i;
5499                 for (i = 0; i < 10; i++) {
5500                         DELAY(20);
5501                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5502                         if (v == (MCLBYTES - ETHER_ALIGN))
5503                                 break;
5504                 }
5505                 if (i == 10)
5506                         device_printf (sc->bge_dev,
5507                             "5705 A0 chip failed to load RX ring\n");
5508         }
5509
5510         /* Init jumbo RX ring. */
5511         if (BGE_IS_JUMBO_CAPABLE(sc) &&
5512             ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
5513             (MCLBYTES - ETHER_ALIGN)) {
5514                 if (bge_init_rx_ring_jumbo(sc) != 0) {
5515                         device_printf(sc->bge_dev,
5516                             "no memory for jumbo Rx buffers.\n");
5517                         bge_stop(sc);
5518                         return;
5519                 }
5520         }
5521
5522         /* Init our RX return ring index. */
5523         sc->bge_rx_saved_considx = 0;
5524
5525         /* Init our RX/TX stat counters. */
5526         sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
5527
5528         /* Init TX ring. */
5529         bge_init_tx_ring(sc);
5530
5531         /* Enable TX MAC state machine lockup fix. */
5532         mode = CSR_READ_4(sc, BGE_TX_MODE);
5533         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
5534                 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5535         if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
5536             sc->bge_asicrev == BGE_ASICREV_BCM5762) {
5537                 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5538                 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5539                     (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5540         }
5541         /* Turn on transmitter. */
5542         CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5543         DELAY(100);
5544
5545         /* Turn on receiver. */
5546         mode = CSR_READ_4(sc, BGE_RX_MODE);
5547         if (BGE_IS_5755_PLUS(sc))
5548                 mode |= BGE_RXMODE_IPV6_ENABLE;
5549         if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
5550                 mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5551         CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5552         DELAY(10);
5553
5554         /*
5555          * Set the number of good frames to receive after RX MBUF
5556          * Low Watermark has been reached. After the RX MAC receives
5557          * this number of frames, it will drop subsequent incoming
5558          * frames until the MBUF High Watermark is reached.
5559          */
5560         if (BGE_IS_57765_PLUS(sc))
5561                 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
5562         else
5563                 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5564
5565         /* Clear MAC statistics. */
5566         if (BGE_IS_5705_PLUS(sc))
5567                 bge_stats_clear_regs(sc);
5568
5569         /* Tell firmware we're alive. */
5570         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5571
5572 #ifdef DEVICE_POLLING
5573         /* Disable interrupts if we are polling. */
5574         if (ifp->if_capenable & IFCAP_POLLING) {
5575                 BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5576                     BGE_PCIMISCCTL_MASK_PCI_INTR);
5577                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5578         } else
5579 #endif
5580
5581         /* Enable host interrupts. */
5582         {
5583         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5584         BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5585         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5586         }
5587
5588         ifp->if_drv_flags |= IFF_DRV_RUNNING;
5589         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5590
5591         bge_ifmedia_upd_locked(ifp);
5592
5593         callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
5594 }
5595
5596 static void
5597 bge_init(void *xsc)
5598 {
5599         struct bge_softc *sc = xsc;
5600
5601         BGE_LOCK(sc);
5602         bge_init_locked(sc);
5603         BGE_UNLOCK(sc);
5604 }
5605
5606 /*
5607  * Set media options.
5608  */
5609 static int
5610 bge_ifmedia_upd(struct ifnet *ifp)
5611 {
5612         struct bge_softc *sc = ifp->if_softc;
5613         int res;
5614
5615         BGE_LOCK(sc);
5616         res = bge_ifmedia_upd_locked(ifp);
5617         BGE_UNLOCK(sc);
5618
5619         return (res);
5620 }
5621
5622 static int
5623 bge_ifmedia_upd_locked(struct ifnet *ifp)
5624 {
5625         struct bge_softc *sc = ifp->if_softc;
5626         struct mii_data *mii;
5627         struct mii_softc *miisc;
5628         struct ifmedia *ifm;
5629
5630         BGE_LOCK_ASSERT(sc);
5631
5632         ifm = &sc->bge_ifmedia;
5633
5634         /* If this is a 1000baseX NIC, enable the TBI port. */
5635         if (sc->bge_flags & BGE_FLAG_TBI) {
5636                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5637                         return (EINVAL);
5638                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
5639                 case IFM_AUTO:
5640                         /*
5641                          * The BCM5704 ASIC appears to have a special
5642                          * mechanism for programming the autoneg
5643                          * advertisement registers in TBI mode.
5644                          */
5645                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
5646                                 uint32_t sgdig;
5647                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5648                                 if (sgdig & BGE_SGDIGSTS_DONE) {
5649                                         CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5650                                         sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5651                                         sgdig |= BGE_SGDIGCFG_AUTO |
5652                                             BGE_SGDIGCFG_PAUSE_CAP |
5653                                             BGE_SGDIGCFG_ASYM_PAUSE;
5654                                         CSR_WRITE_4(sc, BGE_SGDIG_CFG,
5655                                             sgdig | BGE_SGDIGCFG_SEND);
5656                                         DELAY(5);
5657                                         CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
5658                                 }
5659                         }
5660                         break;
5661                 case IFM_1000_SX:
5662                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5663                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
5664                                     BGE_MACMODE_HALF_DUPLEX);
5665                         } else {
5666                                 BGE_SETBIT(sc, BGE_MAC_MODE,
5667                                     BGE_MACMODE_HALF_DUPLEX);
5668                         }
5669                         DELAY(40);
5670                         break;
5671                 default:
5672                         return (EINVAL);
5673                 }
5674                 return (0);
5675         }
5676
5677         sc->bge_link_evt++;
5678         mii = device_get_softc(sc->bge_miibus);
5679         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5680                 PHY_RESET(miisc);
5681         mii_mediachg(mii);
5682
5683         /*
5684          * Force an interrupt so that we will call bge_link_upd
5685          * if needed and clear any pending link state attention.
5686          * Without this we are not getting any further interrupts
5687          * for link state changes and thus will not UP the link and
5688          * not be able to send in bge_start_locked. The only
5689          * way to get things working was to receive a packet and
5690          * get an RX intr.
5691          * bge_tick should help for fiber cards and we might not
5692          * need to do this here if BGE_FLAG_TBI is set but as
5693          * we poll for fiber anyway it should not harm.
5694          */
5695         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
5696             sc->bge_flags & BGE_FLAG_5788)
5697                 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5698         else
5699                 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5700
5701         return (0);
5702 }
5703
5704 /*
5705  * Report current media status.
5706  */
5707 static void
5708 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5709 {
5710         struct bge_softc *sc = ifp->if_softc;
5711         struct mii_data *mii;
5712
5713         BGE_LOCK(sc);
5714
5715         if ((ifp->if_flags & IFF_UP) == 0) {
5716                 BGE_UNLOCK(sc);
5717                 return;
5718         }
5719         if (sc->bge_flags & BGE_FLAG_TBI) {
5720                 ifmr->ifm_status = IFM_AVALID;
5721                 ifmr->ifm_active = IFM_ETHER;
5722                 if (CSR_READ_4(sc, BGE_MAC_STS) &
5723                     BGE_MACSTAT_TBI_PCS_SYNCHED)
5724                         ifmr->ifm_status |= IFM_ACTIVE;
5725                 else {
5726                         ifmr->ifm_active |= IFM_NONE;
5727                         BGE_UNLOCK(sc);
5728                         return;
5729                 }
5730                 ifmr->ifm_active |= IFM_1000_SX;
5731                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5732                         ifmr->ifm_active |= IFM_HDX;
5733                 else
5734                         ifmr->ifm_active |= IFM_FDX;
5735                 BGE_UNLOCK(sc);
5736                 return;
5737         }
5738
5739         mii = device_get_softc(sc->bge_miibus);
5740         mii_pollstat(mii);
5741         ifmr->ifm_active = mii->mii_media_active;
5742         ifmr->ifm_status = mii->mii_media_status;
5743
5744         BGE_UNLOCK(sc);
5745 }
5746
5747 static int
5748 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
5749 {
5750         struct bge_softc *sc = ifp->if_softc;
5751         struct ifreq *ifr = (struct ifreq *) data;
5752         struct mii_data *mii;
5753         int flags, mask, error = 0;
5754
5755         switch (command) {
5756         case SIOCSIFMTU:
5757                 if (BGE_IS_JUMBO_CAPABLE(sc) ||
5758                     (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
5759                         if (ifr->ifr_mtu < ETHERMIN ||
5760                             ifr->ifr_mtu > BGE_JUMBO_MTU) {
5761                                 error = EINVAL;
5762                                 break;
5763                         }
5764                 } else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
5765                         error = EINVAL;
5766                         break;
5767                 }
5768                 BGE_LOCK(sc);
5769                 if (ifp->if_mtu != ifr->ifr_mtu) {
5770                         ifp->if_mtu = ifr->ifr_mtu;
5771                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5772                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5773                                 bge_init_locked(sc);
5774                         }
5775                 }
5776                 BGE_UNLOCK(sc);
5777                 break;
5778         case SIOCSIFFLAGS:
5779                 BGE_LOCK(sc);
5780                 if (ifp->if_flags & IFF_UP) {
5781                         /*
5782                          * If only the state of the PROMISC flag changed,
5783                          * then just use the 'set promisc mode' command
5784                          * instead of reinitializing the entire NIC. Doing
5785                          * a full re-init means reloading the firmware and
5786                          * waiting for it to start up, which may take a
5787                          * second or two.  Similarly for ALLMULTI.
5788                          */
5789                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5790                                 flags = ifp->if_flags ^ sc->bge_if_flags;
5791                                 if (flags & IFF_PROMISC)
5792                                         bge_setpromisc(sc);
5793                                 if (flags & IFF_ALLMULTI)
5794                                         bge_setmulti(sc);
5795                         } else
5796                                 bge_init_locked(sc);
5797                 } else {
5798                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5799                                 bge_stop(sc);
5800                         }
5801                 }
5802                 sc->bge_if_flags = ifp->if_flags;
5803                 BGE_UNLOCK(sc);
5804                 error = 0;
5805                 break;
5806         case SIOCADDMULTI:
5807         case SIOCDELMULTI:
5808                 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5809                         BGE_LOCK(sc);
5810                         bge_setmulti(sc);
5811                         BGE_UNLOCK(sc);
5812                         error = 0;
5813                 }
5814                 break;
5815         case SIOCSIFMEDIA:
5816         case SIOCGIFMEDIA:
5817                 if (sc->bge_flags & BGE_FLAG_TBI) {
5818                         error = ifmedia_ioctl(ifp, ifr,
5819                             &sc->bge_ifmedia, command);
5820                 } else {
5821                         mii = device_get_softc(sc->bge_miibus);
5822                         error = ifmedia_ioctl(ifp, ifr,
5823                             &mii->mii_media, command);
5824                 }
5825                 break;
5826         case SIOCSIFCAP:
5827                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
5828 #ifdef DEVICE_POLLING
5829                 if (mask & IFCAP_POLLING) {
5830                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
5831                                 error = ether_poll_register(bge_poll, ifp);
5832                                 if (error)
5833                                         return (error);
5834                                 BGE_LOCK(sc);
5835                                 BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5836                                     BGE_PCIMISCCTL_MASK_PCI_INTR);
5837                                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5838                                 ifp->if_capenable |= IFCAP_POLLING;
5839                                 BGE_UNLOCK(sc);
5840                         } else {
5841                                 error = ether_poll_deregister(ifp);
5842                                 /* Enable interrupt even in error case */
5843                                 BGE_LOCK(sc);
5844                                 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
5845                                     BGE_PCIMISCCTL_MASK_PCI_INTR);
5846                                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5847                                 ifp->if_capenable &= ~IFCAP_POLLING;
5848                                 BGE_UNLOCK(sc);
5849                         }
5850                 }
5851 #endif
5852                 if ((mask & IFCAP_TXCSUM) != 0 &&
5853                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
5854                         ifp->if_capenable ^= IFCAP_TXCSUM;
5855                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
5856                                 ifp->if_hwassist |= sc->bge_csum_features;
5857                         else
5858                                 ifp->if_hwassist &= ~sc->bge_csum_features;
5859                 }
5860
5861                 if ((mask & IFCAP_RXCSUM) != 0 &&
5862                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
5863                         ifp->if_capenable ^= IFCAP_RXCSUM;
5864
5865                 if ((mask & IFCAP_TSO4) != 0 &&
5866                     (ifp->if_capabilities & IFCAP_TSO4) != 0) {
5867                         ifp->if_capenable ^= IFCAP_TSO4;
5868                         if ((ifp->if_capenable & IFCAP_TSO4) != 0)
5869                                 ifp->if_hwassist |= CSUM_TSO;
5870                         else
5871                                 ifp->if_hwassist &= ~CSUM_TSO;
5872                 }
5873
5874                 if (mask & IFCAP_VLAN_MTU) {
5875                         ifp->if_capenable ^= IFCAP_VLAN_MTU;
5876                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5877                         bge_init(sc);
5878                 }
5879
5880                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
5881                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
5882                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
5883                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
5884                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
5885                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
5886                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
5887                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
5888                         BGE_LOCK(sc);
5889                         bge_setvlan(sc);
5890                         BGE_UNLOCK(sc);
5891                 }
5892 #ifdef VLAN_CAPABILITIES
5893                 VLAN_CAPABILITIES(ifp);
5894 #endif
5895                 break;
5896         default:
5897                 error = ether_ioctl(ifp, command, data);
5898                 break;
5899         }
5900
5901         return (error);
5902 }
5903
5904 static void
5905 bge_watchdog(struct bge_softc *sc)
5906 {
5907         struct ifnet *ifp;
5908         uint32_t status;
5909
5910         BGE_LOCK_ASSERT(sc);
5911
5912         if (sc->bge_timer == 0 || --sc->bge_timer)
5913                 return;
5914
5915         /* If pause frames are active then don't reset the hardware. */
5916         if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5917                 status = CSR_READ_4(sc, BGE_RX_STS);
5918                 if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5919                         /*
5920                          * If link partner has us in XOFF state then wait for
5921                          * the condition to clear.
5922                          */
5923                         CSR_WRITE_4(sc, BGE_RX_STS, status);
5924                         sc->bge_timer = BGE_TX_TIMEOUT;
5925                         return;
5926                 } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5927                     (status & BGE_RXSTAT_RCVD_XON) != 0) {
5928                         /*
5929                          * If link partner has us in XOFF state then wait for
5930                          * the condition to clear.
5931                          */
5932                         CSR_WRITE_4(sc, BGE_RX_STS, status);
5933                         sc->bge_timer = BGE_TX_TIMEOUT;
5934                         return;
5935                 }
5936                 /*
5937                  * Any other condition is unexpected and the controller
5938                  * should be reset.
5939                  */
5940         }
5941
5942         ifp = sc->bge_ifp;
5943
5944         if_printf(ifp, "watchdog timeout -- resetting\n");
5945
5946         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5947         bge_init_locked(sc);
5948
5949         ifp->if_oerrors++;
5950 }
5951
5952 static void
5953 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5954 {
5955         int i;
5956
5957         BGE_CLRBIT(sc, reg, bit);
5958
5959         for (i = 0; i < BGE_TIMEOUT; i++) {
5960                 if ((CSR_READ_4(sc, reg) & bit) == 0)
5961                         return;
5962                 DELAY(100);
5963         }
5964 }
5965
5966 /*
5967  * Stop the adapter and free any mbufs allocated to the
5968  * RX and TX lists.
5969  */
5970 static void
5971 bge_stop(struct bge_softc *sc)
5972 {
5973         struct ifnet *ifp;
5974
5975         BGE_LOCK_ASSERT(sc);
5976
5977         ifp = sc->bge_ifp;
5978
5979         callout_stop(&sc->bge_stat_ch);
5980
5981         /* Disable host interrupts. */
5982         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5983         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5984
5985         /*
5986          * Tell firmware we're shutting down.
5987          */
5988         bge_stop_fw(sc);
5989         bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5990
5991         /*
5992          * Disable all of the receiver blocks.
5993          */
5994         bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5995         bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5996         bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5997         if (BGE_IS_5700_FAMILY(sc))
5998                 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5999         bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
6000         bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
6001         bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
6002
6003         /*
6004          * Disable all of the transmit blocks.
6005          */
6006         bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6007         bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6008         bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6009         bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6010         bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6011         if (BGE_IS_5700_FAMILY(sc))
6012                 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6013         bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6014
6015         /*
6016          * Shut down all of the memory managers and related
6017          * state machines.
6018          */
6019         bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6020         bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6021         if (BGE_IS_5700_FAMILY(sc))
6022                 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6023
6024         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6025         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6026         if (!(BGE_IS_5705_PLUS(sc))) {
6027                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6028                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6029         }
6030         /* Update MAC statistics. */
6031         if (BGE_IS_5705_PLUS(sc))
6032                 bge_stats_update_regs(sc);
6033
6034         bge_reset(sc);
6035         bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6036         bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6037
6038         /*
6039          * Keep the ASF firmware running if up.
6040          */
6041         if (sc->bge_asf_mode & ASF_STACKUP)
6042                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6043         else
6044                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6045
6046         /* Free the RX lists. */
6047         bge_free_rx_ring_std(sc);
6048
6049         /* Free jumbo RX list. */
6050         if (BGE_IS_JUMBO_CAPABLE(sc))
6051                 bge_free_rx_ring_jumbo(sc);
6052
6053         /* Free TX buffers. */
6054         bge_free_tx_ring(sc);
6055
6056         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6057
6058         /* Clear MAC's link state (PHY may still have link UP). */
6059         if (bootverbose && sc->bge_link)
6060                 if_printf(sc->bge_ifp, "link DOWN\n");
6061         sc->bge_link = 0;
6062
6063         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
6064 }
6065
6066 /*
6067  * Stop all chip I/O so that the kernel's probe routines don't
6068  * get confused by errant DMAs when rebooting.
6069  */
6070 static int
6071 bge_shutdown(device_t dev)
6072 {
6073         struct bge_softc *sc;
6074
6075         sc = device_get_softc(dev);
6076         BGE_LOCK(sc);
6077         bge_stop(sc);
6078         BGE_UNLOCK(sc);
6079
6080         return (0);
6081 }
6082
6083 static int
6084 bge_suspend(device_t dev)
6085 {
6086         struct bge_softc *sc;
6087
6088         sc = device_get_softc(dev);
6089         BGE_LOCK(sc);
6090         bge_stop(sc);
6091         BGE_UNLOCK(sc);
6092
6093         return (0);
6094 }
6095
6096 static int
6097 bge_resume(device_t dev)
6098 {
6099         struct bge_softc *sc;
6100         struct ifnet *ifp;
6101
6102         sc = device_get_softc(dev);
6103         BGE_LOCK(sc);
6104         ifp = sc->bge_ifp;
6105         if (ifp->if_flags & IFF_UP) {
6106                 bge_init_locked(sc);
6107                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6108                         bge_start_locked(ifp);
6109         }
6110         BGE_UNLOCK(sc);
6111
6112         return (0);
6113 }
6114
6115 static void
6116 bge_link_upd(struct bge_softc *sc)
6117 {
6118         struct mii_data *mii;
6119         uint32_t link, status;
6120
6121         BGE_LOCK_ASSERT(sc);
6122
6123         /* Clear 'pending link event' flag. */
6124         sc->bge_link_evt = 0;
6125
6126         /*
6127          * Process link state changes.
6128          * Grrr. The link status word in the status block does
6129          * not work correctly on the BCM5700 rev AX and BX chips,
6130          * according to all available information. Hence, we have
6131          * to enable MII interrupts in order to properly obtain
6132          * async link changes. Unfortunately, this also means that
6133          * we have to read the MAC status register to detect link
6134          * changes, thereby adding an additional register access to
6135          * the interrupt handler.
6136          *
6137          * XXX: perhaps link state detection procedure used for
6138          * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
6139          */
6140
6141         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6142             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
6143                 status = CSR_READ_4(sc, BGE_MAC_STS);
6144                 if (status & BGE_MACSTAT_MI_INTERRUPT) {
6145                         mii = device_get_softc(sc->bge_miibus);
6146                         mii_pollstat(mii);
6147                         if (!sc->bge_link &&
6148                             mii->mii_media_status & IFM_ACTIVE &&
6149                             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6150                                 sc->bge_link++;
6151                                 if (bootverbose)
6152                                         if_printf(sc->bge_ifp, "link UP\n");
6153                         } else if (sc->bge_link &&
6154                             (!(mii->mii_media_status & IFM_ACTIVE) ||
6155                             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6156                                 sc->bge_link = 0;
6157                                 if (bootverbose)
6158                                         if_printf(sc->bge_ifp, "link DOWN\n");
6159                         }
6160
6161                         /* Clear the interrupt. */
6162                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6163                             BGE_EVTENB_MI_INTERRUPT);
6164                         bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6165                             BRGPHY_MII_ISR);
6166                         bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6167                             BRGPHY_MII_IMR, BRGPHY_INTRS);
6168                 }
6169                 return;
6170         }
6171
6172         if (sc->bge_flags & BGE_FLAG_TBI) {
6173                 status = CSR_READ_4(sc, BGE_MAC_STS);
6174                 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6175                         if (!sc->bge_link) {
6176                                 sc->bge_link++;
6177                                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
6178                                         BGE_CLRBIT(sc, BGE_MAC_MODE,
6179                                             BGE_MACMODE_TBI_SEND_CFGS);
6180                                         DELAY(40);
6181                                 }
6182                                 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6183                                 if (bootverbose)
6184                                         if_printf(sc->bge_ifp, "link UP\n");
6185                                 if_link_state_change(sc->bge_ifp,
6186                                     LINK_STATE_UP);
6187                         }
6188                 } else if (sc->bge_link) {
6189                         sc->bge_link = 0;
6190                         if (bootverbose)
6191                                 if_printf(sc->bge_ifp, "link DOWN\n");
6192                         if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
6193                 }
6194         } else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
6195                 /*
6196                  * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
6197                  * in status word always set. Workaround this bug by reading
6198                  * PHY link status directly.
6199                  */
6200                 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
6201
6202                 if (link != sc->bge_link ||
6203                     sc->bge_asicrev == BGE_ASICREV_BCM5700) {
6204                         mii = device_get_softc(sc->bge_miibus);
6205                         mii_pollstat(mii);
6206                         if (!sc->bge_link &&
6207                             mii->mii_media_status & IFM_ACTIVE &&
6208                             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6209                                 sc->bge_link++;
6210                                 if (bootverbose)
6211                                         if_printf(sc->bge_ifp, "link UP\n");
6212                         } else if (sc->bge_link &&
6213                             (!(mii->mii_media_status & IFM_ACTIVE) ||
6214                             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6215                                 sc->bge_link = 0;
6216                                 if (bootverbose)
6217                                         if_printf(sc->bge_ifp, "link DOWN\n");
6218                         }
6219                 }
6220         } else {
6221                 /*
6222                  * For controllers that call mii_tick, we have to poll
6223                  * link status.
6224                  */
6225                 mii = device_get_softc(sc->bge_miibus);
6226                 mii_pollstat(mii);
6227                 bge_miibus_statchg(sc->bge_dev);
6228         }
6229
6230         /* Disable MAC attention when link is up. */
6231         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6232             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6233             BGE_MACSTAT_LINK_CHANGED);
6234 }
6235
6236 static void
6237 bge_add_sysctls(struct bge_softc *sc)
6238 {
6239         struct sysctl_ctx_list *ctx;
6240         struct sysctl_oid_list *children;
6241         char tn[32];
6242         int unit;
6243
6244         ctx = device_get_sysctl_ctx(sc->bge_dev);
6245         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
6246
6247 #ifdef BGE_REGISTER_DEBUG
6248         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
6249             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
6250             "Debug Information");
6251
6252         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
6253             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
6254             "MAC Register Read");
6255
6256         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read",
6257             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_ape_read, "I",
6258             "APE Register Read");
6259
6260         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
6261             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
6262             "Memory Read");
6263
6264 #endif
6265
6266         unit = device_get_unit(sc->bge_dev);
6267         /*
6268          * A common design characteristic for many Broadcom client controllers
6269          * is that they only support a single outstanding DMA read operation
6270          * on the PCIe bus. This means that it will take twice as long to fetch
6271          * a TX frame that is split into header and payload buffers as it does
6272          * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
6273          * these controllers, coalescing buffers to reduce the number of memory
6274          * reads is effective way to get maximum performance(about 940Mbps).
6275          * Without collapsing TX buffers the maximum TCP bulk transfer
6276          * performance is about 850Mbps. However forcing coalescing mbufs
6277          * consumes a lot of CPU cycles, so leave it off by default.
6278          */
6279         sc->bge_forced_collapse = 0;
6280         snprintf(tn, sizeof(tn), "dev.bge.%d.forced_collapse", unit);
6281         TUNABLE_INT_FETCH(tn, &sc->bge_forced_collapse);
6282         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
6283             CTLFLAG_RW, &sc->bge_forced_collapse, 0,
6284             "Number of fragmented TX buffers of a frame allowed before "
6285             "forced collapsing");
6286
6287         sc->bge_msi = 1;
6288         snprintf(tn, sizeof(tn), "dev.bge.%d.msi", unit);
6289         TUNABLE_INT_FETCH(tn, &sc->bge_msi);
6290         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi",
6291             CTLFLAG_RD, &sc->bge_msi, 0, "Enable MSI");
6292
6293         /*
6294          * It seems all Broadcom controllers have a bug that can generate UDP
6295          * datagrams with checksum value 0 when TX UDP checksum offloading is
6296          * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
6297          * Even though the probability of generating such UDP datagrams is
6298          * low, I don't want to see FreeBSD boxes to inject such datagrams
6299          * into network so disable UDP checksum offloading by default.  Users
6300          * still override this behavior by setting a sysctl variable,
6301          * dev.bge.0.forced_udpcsum.
6302          */
6303         sc->bge_forced_udpcsum = 0;
6304         snprintf(tn, sizeof(tn), "dev.bge.%d.bge_forced_udpcsum", unit);
6305         TUNABLE_INT_FETCH(tn, &sc->bge_forced_udpcsum);
6306         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
6307             CTLFLAG_RW, &sc->bge_forced_udpcsum, 0,
6308             "Enable UDP checksum offloading even if controller can "
6309             "generate UDP checksum value 0");
6310
6311         if (BGE_IS_5705_PLUS(sc))
6312                 bge_add_sysctl_stats_regs(sc, ctx, children);
6313         else
6314                 bge_add_sysctl_stats(sc, ctx, children);
6315 }
6316
6317 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
6318         SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
6319             sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
6320             desc)
6321
6322 static void
6323 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6324     struct sysctl_oid_list *parent)
6325 {
6326         struct sysctl_oid *tree;
6327         struct sysctl_oid_list *children, *schildren;
6328
6329         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6330             NULL, "BGE Statistics");
6331         schildren = children = SYSCTL_CHILDREN(tree);
6332         BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
6333             children, COSFramesDroppedDueToFilters,
6334             "FramesDroppedDueToFilters");
6335         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
6336             children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
6337         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
6338             children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
6339         BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
6340             children, nicNoMoreRxBDs, "NoMoreRxBDs");
6341         BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
6342             children, ifInDiscards, "InputDiscards");
6343         BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
6344             children, ifInErrors, "InputErrors");
6345         BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
6346             children, nicRecvThresholdHit, "RecvThresholdHit");
6347         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
6348             children, nicDmaReadQueueFull, "DmaReadQueueFull");
6349         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
6350             children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
6351         BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
6352             children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
6353         BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
6354             children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
6355         BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
6356             children, nicRingStatusUpdate, "RingStatusUpdate");
6357         BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
6358             children, nicInterrupts, "Interrupts");
6359         BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
6360             children, nicAvoidedInterrupts, "AvoidedInterrupts");
6361         BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
6362             children, nicSendThresholdHit, "SendThresholdHit");
6363
6364         tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
6365             NULL, "BGE RX Statistics");
6366         children = SYSCTL_CHILDREN(tree);
6367         BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
6368             children, rxstats.ifHCInOctets, "ifHCInOctets");
6369         BGE_SYSCTL_STAT(sc, ctx, "Fragments",
6370             children, rxstats.etherStatsFragments, "Fragments");
6371         BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
6372             children, rxstats.ifHCInUcastPkts, "UnicastPkts");
6373         BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
6374             children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
6375         BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
6376             children, rxstats.dot3StatsFCSErrors, "FCSErrors");
6377         BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
6378             children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
6379         BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
6380             children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
6381         BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
6382             children, rxstats.xoffPauseFramesReceived,
6383             "xoffPauseFramesReceived");
6384         BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
6385             children, rxstats.macControlFramesReceived,
6386             "ControlFramesReceived");
6387         BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
6388             children, rxstats.xoffStateEntered, "xoffStateEntered");
6389         BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
6390             children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
6391         BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
6392             children, rxstats.etherStatsJabbers, "Jabbers");
6393         BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
6394             children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
6395         BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
6396             children, rxstats.inRangeLengthError, "inRangeLengthError");
6397         BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
6398             children, rxstats.outRangeLengthError, "outRangeLengthError");
6399
6400         tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
6401             NULL, "BGE TX Statistics");
6402         children = SYSCTL_CHILDREN(tree);
6403         BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
6404             children, txstats.ifHCOutOctets, "ifHCOutOctets");
6405         BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
6406             children, txstats.etherStatsCollisions, "Collisions");
6407         BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
6408             children, txstats.outXonSent, "XonSent");
6409         BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
6410             children, txstats.outXoffSent, "XoffSent");
6411         BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
6412             children, txstats.flowControlDone, "flowControlDone");
6413         BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
6414             children, txstats.dot3StatsInternalMacTransmitErrors,
6415             "InternalMacTransmitErrors");
6416         BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
6417             children, txstats.dot3StatsSingleCollisionFrames,
6418             "SingleCollisionFrames");
6419         BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
6420             children, txstats.dot3StatsMultipleCollisionFrames,
6421             "MultipleCollisionFrames");
6422         BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
6423             children, txstats.dot3StatsDeferredTransmissions,
6424             "DeferredTransmissions");
6425         BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
6426             children, txstats.dot3StatsExcessiveCollisions,
6427             "ExcessiveCollisions");
6428         BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
6429             children, txstats.dot3StatsLateCollisions,
6430             "LateCollisions");
6431         BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
6432             children, txstats.ifHCOutUcastPkts, "UnicastPkts");
6433         BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
6434             children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
6435         BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
6436             children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
6437         BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
6438             children, txstats.dot3StatsCarrierSenseErrors,
6439             "CarrierSenseErrors");
6440         BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
6441             children, txstats.ifOutDiscards, "Discards");
6442         BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
6443             children, txstats.ifOutErrors, "Errors");
6444 }
6445
6446 #undef BGE_SYSCTL_STAT
6447
6448 #define BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)    \
6449             SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
6450
6451 static void
6452 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6453     struct sysctl_oid_list *parent)
6454 {
6455         struct sysctl_oid *tree;
6456         struct sysctl_oid_list *child, *schild;
6457         struct bge_mac_stats *stats;
6458
6459         stats = &sc->bge_mac_stats;
6460         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6461             NULL, "BGE Statistics");
6462         schild = child = SYSCTL_CHILDREN(tree);
6463         BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
6464             &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
6465         BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
6466             &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
6467         BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
6468             &stats->DmaWriteHighPriQueueFull,
6469             "NIC DMA Write High Priority Queue Full");
6470         BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
6471             &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
6472         BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
6473             &stats->InputDiscards, "Discarded Input Frames");
6474         BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
6475             &stats->InputErrors, "Input Errors");
6476         BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
6477             &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
6478
6479         tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
6480             NULL, "BGE RX Statistics");
6481         child = SYSCTL_CHILDREN(tree);
6482         BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
6483             &stats->ifHCInOctets, "Inbound Octets");
6484         BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
6485             &stats->etherStatsFragments, "Fragments");
6486         BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6487             &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
6488         BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6489             &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
6490         BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6491             &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
6492         BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
6493             &stats->dot3StatsFCSErrors, "FCS Errors");
6494         BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
6495             &stats->dot3StatsAlignmentErrors, "Alignment Errors");
6496         BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
6497             &stats->xonPauseFramesReceived, "XON Pause Frames Received");
6498         BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
6499             &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
6500         BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
6501             &stats->macControlFramesReceived, "MAC Control Frames Received");
6502         BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
6503             &stats->xoffStateEntered, "XOFF State Entered");
6504         BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
6505             &stats->dot3StatsFramesTooLong, "Frames Too Long");
6506         BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
6507             &stats->etherStatsJabbers, "Jabbers");
6508         BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
6509             &stats->etherStatsUndersizePkts, "Undersized Packets");
6510
6511         tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
6512             NULL, "BGE TX Statistics");
6513         child = SYSCTL_CHILDREN(tree);
6514         BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
6515             &stats->ifHCOutOctets, "Outbound Octets");
6516         BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
6517             &stats->etherStatsCollisions, "TX Collisions");
6518         BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
6519             &stats->outXonSent, "XON Sent");
6520         BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
6521             &stats->outXoffSent, "XOFF Sent");
6522         BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
6523             &stats->dot3StatsInternalMacTransmitErrors,
6524             "Internal MAC TX Errors");
6525         BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
6526             &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
6527         BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
6528             &stats->dot3StatsMultipleCollisionFrames,
6529             "Multiple Collision Frames");
6530         BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
6531             &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
6532         BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
6533             &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
6534         BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
6535             &stats->dot3StatsLateCollisions, "Late Collisions");
6536         BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6537             &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
6538         BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6539             &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
6540         BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6541             &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
6542 }
6543
6544 #undef  BGE_SYSCTL_STAT_ADD64
6545
6546 static int
6547 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
6548 {
6549         struct bge_softc *sc;
6550         uint32_t result;
6551         int offset;
6552
6553         sc = (struct bge_softc *)arg1;
6554         offset = arg2;
6555         result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
6556             offsetof(bge_hostaddr, bge_addr_lo));
6557         return (sysctl_handle_int(oidp, &result, 0, req));
6558 }
6559
6560 #ifdef BGE_REGISTER_DEBUG
6561 static int
6562 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
6563 {
6564         struct bge_softc *sc;
6565         uint16_t *sbdata;
6566         int error, result, sbsz;
6567         int i, j;
6568
6569         result = -1;
6570         error = sysctl_handle_int(oidp, &result, 0, req);
6571         if (error || (req->newptr == NULL))
6572                 return (error);
6573
6574         if (result == 1) {
6575                 sc = (struct bge_softc *)arg1;
6576
6577                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6578                     sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
6579                         sbsz = BGE_STATUS_BLK_SZ;
6580                 else
6581                         sbsz = 32;
6582                 sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
6583                 printf("Status Block:\n");
6584                 BGE_LOCK(sc);
6585                 bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6586                     sc->bge_cdata.bge_status_map,
6587                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6588                 for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
6589                         printf("%06x:", i);
6590                         for (j = 0; j < 8; j++)
6591                                 printf(" %04x", sbdata[i++]);
6592                         printf("\n");
6593                 }
6594
6595                 printf("Registers:\n");
6596                 for (i = 0x800; i < 0xA00; ) {
6597                         printf("%06x:", i);
6598                         for (j = 0; j < 8; j++) {
6599                                 printf(" %08x", CSR_READ_4(sc, i));
6600                                 i += 4;
6601                         }
6602                         printf("\n");
6603                 }
6604                 BGE_UNLOCK(sc);
6605
6606                 printf("Hardware Flags:\n");
6607                 if (BGE_IS_5717_PLUS(sc))
6608                         printf(" - 5717 Plus\n");
6609                 if (BGE_IS_5755_PLUS(sc))
6610                         printf(" - 5755 Plus\n");
6611                 if (BGE_IS_575X_PLUS(sc))
6612                         printf(" - 575X Plus\n");
6613                 if (BGE_IS_5705_PLUS(sc))
6614                         printf(" - 5705 Plus\n");
6615                 if (BGE_IS_5714_FAMILY(sc))
6616                         printf(" - 5714 Family\n");
6617                 if (BGE_IS_5700_FAMILY(sc))
6618                         printf(" - 5700 Family\n");
6619                 if (sc->bge_flags & BGE_FLAG_JUMBO)
6620                         printf(" - Supports Jumbo Frames\n");
6621                 if (sc->bge_flags & BGE_FLAG_PCIX)
6622                         printf(" - PCI-X Bus\n");
6623                 if (sc->bge_flags & BGE_FLAG_PCIE)
6624                         printf(" - PCI Express Bus\n");
6625                 if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
6626                         printf(" - No 3 LEDs\n");
6627                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
6628                         printf(" - RX Alignment Bug\n");
6629         }
6630
6631         return (error);
6632 }
6633
6634 static int
6635 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
6636 {
6637         struct bge_softc *sc;
6638         int error;
6639         uint16_t result;
6640         uint32_t val;
6641
6642         result = -1;
6643         error = sysctl_handle_int(oidp, &result, 0, req);
6644         if (error || (req->newptr == NULL))
6645                 return (error);
6646
6647         if (result < 0x8000) {
6648                 sc = (struct bge_softc *)arg1;
6649                 val = CSR_READ_4(sc, result);
6650                 printf("reg 0x%06X = 0x%08X\n", result, val);
6651         }
6652
6653         return (error);
6654 }
6655
6656 static int
6657 bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS)
6658 {
6659         struct bge_softc *sc;
6660         int error;
6661         uint16_t result;
6662         uint32_t val;
6663
6664         result = -1;
6665         error = sysctl_handle_int(oidp, &result, 0, req);
6666         if (error || (req->newptr == NULL))
6667                 return (error);
6668
6669         if (result < 0x8000) {
6670                 sc = (struct bge_softc *)arg1;
6671                 val = APE_READ_4(sc, result);
6672                 printf("reg 0x%06X = 0x%08X\n", result, val);
6673         }
6674
6675         return (error);
6676 }
6677
6678 static int
6679 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
6680 {
6681         struct bge_softc *sc;
6682         int error;
6683         uint16_t result;
6684         uint32_t val;
6685
6686         result = -1;
6687         error = sysctl_handle_int(oidp, &result, 0, req);
6688         if (error || (req->newptr == NULL))
6689                 return (error);
6690
6691         if (result < 0x8000) {
6692                 sc = (struct bge_softc *)arg1;
6693                 val = bge_readmem_ind(sc, result);
6694                 printf("mem 0x%06X = 0x%08X\n", result, val);
6695         }
6696
6697         return (error);
6698 }
6699 #endif
6700
6701 static int
6702 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6703 {
6704
6705         if (sc->bge_flags & BGE_FLAG_EADDR)
6706                 return (1);
6707
6708 #ifdef __sparc64__
6709         OF_getetheraddr(sc->bge_dev, ether_addr);
6710         return (0);
6711 #endif
6712         return (1);
6713 }
6714
6715 static int
6716 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6717 {
6718         uint32_t mac_addr;
6719
6720         mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6721         if ((mac_addr >> 16) == 0x484b) {
6722                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6723                 ether_addr[1] = (uint8_t)mac_addr;
6724                 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6725                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6726                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6727                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6728                 ether_addr[5] = (uint8_t)mac_addr;
6729                 return (0);
6730         }
6731         return (1);
6732 }
6733
6734 static int
6735 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6736 {
6737         int mac_offset = BGE_EE_MAC_OFFSET;
6738
6739         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6740                 mac_offset = BGE_EE_MAC_OFFSET_5906;
6741
6742         return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6743             ETHER_ADDR_LEN));
6744 }
6745
6746 static int
6747 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6748 {
6749
6750         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6751                 return (1);
6752
6753         return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6754            ETHER_ADDR_LEN));
6755 }
6756
6757 static int
6758 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6759 {
6760         static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6761                 /* NOTE: Order is critical */
6762                 bge_get_eaddr_fw,
6763                 bge_get_eaddr_mem,
6764                 bge_get_eaddr_nvram,
6765                 bge_get_eaddr_eeprom,
6766                 NULL
6767         };
6768         const bge_eaddr_fcn_t *func;
6769
6770         for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6771                 if ((*func)(sc, eaddr) == 0)
6772                         break;
6773         }
6774         return (*func == NULL ? ENXIO : 0);
6775 }