]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - sys/dev/nvme/nvme_ctrlr.c
MFC r263277:
[FreeBSD/stable/10.git] / sys / dev / nvme / nvme_ctrlr.c
1 /*-
2  * Copyright (C) 2012-2013 Intel Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/buf.h>
33 #include <sys/bus.h>
34 #include <sys/conf.h>
35 #include <sys/ioccom.h>
36 #include <sys/proc.h>
37 #include <sys/smp.h>
38 #include <sys/uio.h>
39
40 #include <dev/pci/pcireg.h>
41 #include <dev/pci/pcivar.h>
42
43 #include "nvme_private.h"
44
45 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
46                                                 struct nvme_async_event_request *aer);
47
48 static int
49 nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
50 {
51
52         /* Chatham puts the NVMe MMRs behind BAR 2/3, not BAR 0/1. */
53         if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
54                 ctrlr->resource_id = PCIR_BAR(2);
55         else
56                 ctrlr->resource_id = PCIR_BAR(0);
57
58         ctrlr->resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
59             &ctrlr->resource_id, 0, ~0, 1, RF_ACTIVE);
60
61         if(ctrlr->resource == NULL) {
62                 nvme_printf(ctrlr, "unable to allocate pci resource\n");
63                 return (ENOMEM);
64         }
65
66         ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
67         ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
68         ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
69
70         /*
71          * The NVMe spec allows for the MSI-X table to be placed behind
72          *  BAR 4/5, separate from the control/doorbell registers.  Always
73          *  try to map this bar, because it must be mapped prior to calling
74          *  pci_alloc_msix().  If the table isn't behind BAR 4/5,
75          *  bus_alloc_resource() will just return NULL which is OK.
76          */
77         ctrlr->bar4_resource_id = PCIR_BAR(4);
78         ctrlr->bar4_resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
79             &ctrlr->bar4_resource_id, 0, ~0, 1, RF_ACTIVE);
80
81         return (0);
82 }
83
84 #ifdef CHATHAM2
85 static int
86 nvme_ctrlr_allocate_chatham_bar(struct nvme_controller *ctrlr)
87 {
88
89         ctrlr->chatham_resource_id = PCIR_BAR(CHATHAM_CONTROL_BAR);
90         ctrlr->chatham_resource = bus_alloc_resource(ctrlr->dev,
91             SYS_RES_MEMORY, &ctrlr->chatham_resource_id, 0, ~0, 1,
92             RF_ACTIVE);
93
94         if(ctrlr->chatham_resource == NULL) {
95                 nvme_printf(ctrlr, "unable to alloc pci resource\n");
96                 return (ENOMEM);
97         }
98
99         ctrlr->chatham_bus_tag = rman_get_bustag(ctrlr->chatham_resource);
100         ctrlr->chatham_bus_handle =
101             rman_get_bushandle(ctrlr->chatham_resource);
102
103         return (0);
104 }
105
106 static void
107 nvme_ctrlr_setup_chatham(struct nvme_controller *ctrlr)
108 {
109         uint64_t reg1, reg2, reg3;
110         uint64_t temp1, temp2;
111         uint32_t temp3;
112         uint32_t use_flash_timings = 0;
113
114         DELAY(10000);
115
116         temp3 = chatham_read_4(ctrlr, 0x8080);
117
118         device_printf(ctrlr->dev, "Chatham version: 0x%x\n", temp3);
119
120         ctrlr->chatham_lbas = chatham_read_4(ctrlr, 0x8068) - 0x110;
121         ctrlr->chatham_size = ctrlr->chatham_lbas * 512;
122
123         device_printf(ctrlr->dev, "Chatham size: %jd\n",
124             (intmax_t)ctrlr->chatham_size);
125
126         reg1 = reg2 = reg3 = ctrlr->chatham_size - 1;
127
128         TUNABLE_INT_FETCH("hw.nvme.use_flash_timings", &use_flash_timings);
129         if (use_flash_timings) {
130                 device_printf(ctrlr->dev, "Chatham: using flash timings\n");
131                 temp1 = 0x00001b58000007d0LL;
132                 temp2 = 0x000000cb00000131LL;
133         } else {
134                 device_printf(ctrlr->dev, "Chatham: using DDR timings\n");
135                 temp1 = temp2 = 0x0LL;
136         }
137
138         chatham_write_8(ctrlr, 0x8000, reg1);
139         chatham_write_8(ctrlr, 0x8008, reg2);
140         chatham_write_8(ctrlr, 0x8010, reg3);
141
142         chatham_write_8(ctrlr, 0x8020, temp1);
143         temp3 = chatham_read_4(ctrlr, 0x8020);
144
145         chatham_write_8(ctrlr, 0x8028, temp2);
146         temp3 = chatham_read_4(ctrlr, 0x8028);
147
148         chatham_write_8(ctrlr, 0x8030, temp1);
149         chatham_write_8(ctrlr, 0x8038, temp2);
150         chatham_write_8(ctrlr, 0x8040, temp1);
151         chatham_write_8(ctrlr, 0x8048, temp2);
152         chatham_write_8(ctrlr, 0x8050, temp1);
153         chatham_write_8(ctrlr, 0x8058, temp2);
154
155         DELAY(10000);
156 }
157
158 static void
159 nvme_chatham_populate_cdata(struct nvme_controller *ctrlr)
160 {
161         struct nvme_controller_data *cdata;
162
163         cdata = &ctrlr->cdata;
164
165         cdata->vid = 0x8086;
166         cdata->ssvid = 0x2011;
167
168         /*
169          * Chatham2 puts garbage data in these fields when we
170          *  invoke IDENTIFY_CONTROLLER, so we need to re-zero
171          *  the fields before calling bcopy().
172          */
173         memset(cdata->sn, 0, sizeof(cdata->sn));
174         memcpy(cdata->sn, "2012", strlen("2012"));
175         memset(cdata->mn, 0, sizeof(cdata->mn));
176         memcpy(cdata->mn, "CHATHAM2", strlen("CHATHAM2"));
177         memset(cdata->fr, 0, sizeof(cdata->fr));
178         memcpy(cdata->fr, "0", strlen("0"));
179         cdata->rab = 8;
180         cdata->aerl = 3;
181         cdata->lpa.ns_smart = 1;
182         cdata->sqes.min = 6;
183         cdata->sqes.max = 6;
184         cdata->cqes.min = 4;
185         cdata->cqes.max = 4;
186         cdata->nn = 1;
187
188         /* Chatham2 doesn't support DSM command */
189         cdata->oncs.dsm = 0;
190
191         cdata->vwc.present = 1;
192 }
193 #endif /* CHATHAM2 */
194
195 static void
196 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
197 {
198         struct nvme_qpair       *qpair;
199         uint32_t                num_entries;
200
201         qpair = &ctrlr->adminq;
202
203         num_entries = NVME_ADMIN_ENTRIES;
204         TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
205         /*
206          * If admin_entries was overridden to an invalid value, revert it
207          *  back to our default value.
208          */
209         if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
210             num_entries > NVME_MAX_ADMIN_ENTRIES) {
211                 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
212                     "specified\n", num_entries);
213                 num_entries = NVME_ADMIN_ENTRIES;
214         }
215
216         /*
217          * The admin queue's max xfer size is treated differently than the
218          *  max I/O xfer size.  16KB is sufficient here - maybe even less?
219          */
220         nvme_qpair_construct(qpair, 
221                              0, /* qpair ID */
222                              0, /* vector */
223                              num_entries,
224                              NVME_ADMIN_TRACKERS,
225                              ctrlr);
226 }
227
228 static int
229 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
230 {
231         struct nvme_qpair       *qpair;
232         union cap_lo_register   cap_lo;
233         int                     i, num_entries, num_trackers;
234
235         num_entries = NVME_IO_ENTRIES;
236         TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
237
238         /*
239          * NVMe spec sets a hard limit of 64K max entries, but
240          *  devices may specify a smaller limit, so we need to check
241          *  the MQES field in the capabilities register.
242          */
243         cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
244         num_entries = min(num_entries, cap_lo.bits.mqes+1);
245
246         num_trackers = NVME_IO_TRACKERS;
247         TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
248
249         num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
250         num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
251         /*
252          * No need to have more trackers than entries in the submit queue.
253          *  Note also that for a queue size of N, we can only have (N-1)
254          *  commands outstanding, hence the "-1" here.
255          */
256         num_trackers = min(num_trackers, (num_entries-1));
257
258         ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
259             M_NVME, M_ZERO | M_WAITOK);
260
261         for (i = 0; i < ctrlr->num_io_queues; i++) {
262                 qpair = &ctrlr->ioq[i];
263
264                 /*
265                  * Admin queue has ID=0. IO queues start at ID=1 -
266                  *  hence the 'i+1' here.
267                  *
268                  * For I/O queues, use the controller-wide max_xfer_size
269                  *  calculated in nvme_attach().
270                  */
271                 nvme_qpair_construct(qpair,
272                                      i+1, /* qpair ID */
273                                      ctrlr->msix_enabled ? i+1 : 0, /* vector */
274                                      num_entries,
275                                      num_trackers,
276                                      ctrlr);
277
278                 if (ctrlr->per_cpu_io_queues)
279                         bus_bind_intr(ctrlr->dev, qpair->res, i);
280         }
281
282         return (0);
283 }
284
285 static void
286 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
287 {
288         int i;
289
290         ctrlr->is_failed = TRUE;
291         nvme_qpair_fail(&ctrlr->adminq);
292         for (i = 0; i < ctrlr->num_io_queues; i++)
293                 nvme_qpair_fail(&ctrlr->ioq[i]);
294         nvme_notify_fail_consumers(ctrlr);
295 }
296
297 void
298 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
299     struct nvme_request *req)
300 {
301
302         mtx_lock(&ctrlr->lock);
303         STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
304         mtx_unlock(&ctrlr->lock);
305         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
306 }
307
308 static void
309 nvme_ctrlr_fail_req_task(void *arg, int pending)
310 {
311         struct nvme_controller  *ctrlr = arg;
312         struct nvme_request     *req;
313
314         mtx_lock(&ctrlr->lock);
315         while (!STAILQ_EMPTY(&ctrlr->fail_req)) {
316                 req = STAILQ_FIRST(&ctrlr->fail_req);
317                 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
318                 nvme_qpair_manual_complete_request(req->qpair, req,
319                     NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE);
320         }
321         mtx_unlock(&ctrlr->lock);
322 }
323
324 static int
325 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr)
326 {
327         int ms_waited;
328         union cc_register cc;
329         union csts_register csts;
330
331         cc.raw = nvme_mmio_read_4(ctrlr, cc);
332         csts.raw = nvme_mmio_read_4(ctrlr, csts);
333
334         if (!cc.bits.en) {
335                 nvme_printf(ctrlr, "%s called with cc.en = 0\n", __func__);
336                 return (ENXIO);
337         }
338
339         ms_waited = 0;
340
341         while (!csts.bits.rdy) {
342                 DELAY(1000);
343                 if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
344                         nvme_printf(ctrlr, "controller did not become ready "
345                             "within %d ms\n", ctrlr->ready_timeout_in_ms);
346                         return (ENXIO);
347                 }
348                 csts.raw = nvme_mmio_read_4(ctrlr, csts);
349         }
350
351         return (0);
352 }
353
354 static void
355 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
356 {
357         union cc_register cc;
358         union csts_register csts;
359
360         cc.raw = nvme_mmio_read_4(ctrlr, cc);
361         csts.raw = nvme_mmio_read_4(ctrlr, csts);
362
363         if (cc.bits.en == 1 && csts.bits.rdy == 0)
364                 nvme_ctrlr_wait_for_ready(ctrlr);
365
366         cc.bits.en = 0;
367         nvme_mmio_write_4(ctrlr, cc, cc.raw);
368         DELAY(5000);
369 }
370
371 static int
372 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
373 {
374         union cc_register       cc;
375         union csts_register     csts;
376         union aqa_register      aqa;
377
378         cc.raw = nvme_mmio_read_4(ctrlr, cc);
379         csts.raw = nvme_mmio_read_4(ctrlr, csts);
380
381         if (cc.bits.en == 1) {
382                 if (csts.bits.rdy == 1)
383                         return (0);
384                 else
385                         return (nvme_ctrlr_wait_for_ready(ctrlr));
386         }
387
388         nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
389         DELAY(5000);
390         nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
391         DELAY(5000);
392
393         aqa.raw = 0;
394         /* acqs and asqs are 0-based. */
395         aqa.bits.acqs = ctrlr->adminq.num_entries-1;
396         aqa.bits.asqs = ctrlr->adminq.num_entries-1;
397         nvme_mmio_write_4(ctrlr, aqa, aqa.raw);
398         DELAY(5000);
399
400         cc.bits.en = 1;
401         cc.bits.css = 0;
402         cc.bits.ams = 0;
403         cc.bits.shn = 0;
404         cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
405         cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
406
407         /* This evaluates to 0, which is according to spec. */
408         cc.bits.mps = (PAGE_SIZE >> 13);
409
410         nvme_mmio_write_4(ctrlr, cc, cc.raw);
411         DELAY(5000);
412
413         return (nvme_ctrlr_wait_for_ready(ctrlr));
414 }
415
416 int
417 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
418 {
419         int i;
420
421         nvme_admin_qpair_disable(&ctrlr->adminq);
422         for (i = 0; i < ctrlr->num_io_queues; i++)
423                 nvme_io_qpair_disable(&ctrlr->ioq[i]);
424
425         DELAY(100*1000);
426
427         nvme_ctrlr_disable(ctrlr);
428         return (nvme_ctrlr_enable(ctrlr));
429 }
430
431 void
432 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
433 {
434         int cmpset;
435
436         cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
437
438         if (cmpset == 0 || ctrlr->is_failed)
439                 /*
440                  * Controller is already resetting or has failed.  Return
441                  *  immediately since there is no need to kick off another
442                  *  reset in these cases.
443                  */
444                 return;
445
446         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
447 }
448
449 static int
450 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
451 {
452         struct nvme_completion_poll_status      status;
453
454         status.done = FALSE;
455         nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
456             nvme_completion_poll_cb, &status);
457         while (status.done == FALSE)
458                 pause("nvme", 1);
459         if (nvme_completion_is_error(&status.cpl)) {
460                 nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
461                 return (ENXIO);
462         }
463
464 #ifdef CHATHAM2
465         if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
466                 nvme_chatham_populate_cdata(ctrlr);
467 #endif
468
469         /*
470          * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
471          *  controller supports.
472          */
473         if (ctrlr->cdata.mdts > 0)
474                 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
475                     ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
476
477         return (0);
478 }
479
480 static int
481 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
482 {
483         struct nvme_completion_poll_status      status;
484         int                                     cq_allocated, i, sq_allocated;
485
486         status.done = FALSE;
487         nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
488             nvme_completion_poll_cb, &status);
489         while (status.done == FALSE)
490                 pause("nvme", 1);
491         if (nvme_completion_is_error(&status.cpl)) {
492                 nvme_printf(ctrlr, "nvme_set_num_queues failed!\n");
493                 return (ENXIO);
494         }
495
496         /*
497          * Data in cdw0 is 0-based.
498          * Lower 16-bits indicate number of submission queues allocated.
499          * Upper 16-bits indicate number of completion queues allocated.
500          */
501         sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
502         cq_allocated = (status.cpl.cdw0 >> 16) + 1;
503
504         /*
505          * Check that the controller was able to allocate the number of
506          *  queues we requested.  If not, revert to one IO queue pair.
507          */
508         if (sq_allocated < ctrlr->num_io_queues ||
509             cq_allocated < ctrlr->num_io_queues) {
510
511                 /*
512                  * Destroy extra IO queue pairs that were created at
513                  *  controller construction time but are no longer
514                  *  needed.  This will only happen when a controller
515                  *  supports fewer queues than MSI-X vectors.  This
516                  *  is not the normal case, but does occur with the
517                  *  Chatham prototype board.
518                  */
519                 for (i = 1; i < ctrlr->num_io_queues; i++)
520                         nvme_io_qpair_destroy(&ctrlr->ioq[i]);
521
522                 ctrlr->num_io_queues = 1;
523                 ctrlr->per_cpu_io_queues = 0;
524         }
525
526         return (0);
527 }
528
529 static int
530 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
531 {
532         struct nvme_completion_poll_status      status;
533         struct nvme_qpair                       *qpair;
534         int                                     i;
535
536         for (i = 0; i < ctrlr->num_io_queues; i++) {
537                 qpair = &ctrlr->ioq[i];
538
539                 status.done = FALSE;
540                 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
541                     nvme_completion_poll_cb, &status);
542                 while (status.done == FALSE)
543                         pause("nvme", 1);
544                 if (nvme_completion_is_error(&status.cpl)) {
545                         nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
546                         return (ENXIO);
547                 }
548
549                 status.done = FALSE;
550                 nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
551                     nvme_completion_poll_cb, &status);
552                 while (status.done == FALSE)
553                         pause("nvme", 1);
554                 if (nvme_completion_is_error(&status.cpl)) {
555                         nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
556                         return (ENXIO);
557                 }
558         }
559
560         return (0);
561 }
562
563 static int
564 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
565 {
566         struct nvme_namespace   *ns;
567         int                     i, status;
568
569         for (i = 0; i < ctrlr->cdata.nn; i++) {
570                 ns = &ctrlr->ns[i];
571                 status = nvme_ns_construct(ns, i+1, ctrlr);
572                 if (status != 0)
573                         return (status);
574         }
575
576         return (0);
577 }
578
579 static boolean_t
580 is_log_page_id_valid(uint8_t page_id)
581 {
582
583         switch (page_id) {
584         case NVME_LOG_ERROR:
585         case NVME_LOG_HEALTH_INFORMATION:
586         case NVME_LOG_FIRMWARE_SLOT:
587                 return (TRUE);
588         }
589
590         return (FALSE);
591 }
592
593 static uint32_t
594 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
595 {
596         uint32_t        log_page_size;
597
598         switch (page_id) {
599         case NVME_LOG_ERROR:
600                 log_page_size = min(
601                     sizeof(struct nvme_error_information_entry) *
602                     ctrlr->cdata.elpe,
603                     NVME_MAX_AER_LOG_SIZE);
604                 break;
605         case NVME_LOG_HEALTH_INFORMATION:
606                 log_page_size = sizeof(struct nvme_health_information_page);
607                 break;
608         case NVME_LOG_FIRMWARE_SLOT:
609                 log_page_size = sizeof(struct nvme_firmware_page);
610                 break;
611         default:
612                 log_page_size = 0;
613                 break;
614         }
615
616         return (log_page_size);
617 }
618
619 static void
620 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
621     union nvme_critical_warning_state state)
622 {
623
624         if (state.bits.available_spare == 1)
625                 nvme_printf(ctrlr, "available spare space below threshold\n");
626
627         if (state.bits.temperature == 1)
628                 nvme_printf(ctrlr, "temperature above threshold\n");
629
630         if (state.bits.device_reliability == 1)
631                 nvme_printf(ctrlr, "device reliability degraded\n");
632
633         if (state.bits.read_only == 1)
634                 nvme_printf(ctrlr, "media placed in read only mode\n");
635
636         if (state.bits.volatile_memory_backup == 1)
637                 nvme_printf(ctrlr, "volatile memory backup device failed\n");
638
639         if (state.bits.reserved != 0)
640                 nvme_printf(ctrlr,
641                     "unknown critical warning(s): state = 0x%02x\n", state.raw);
642 }
643
644 static void
645 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
646 {
647         struct nvme_async_event_request         *aer = arg;
648         struct nvme_health_information_page     *health_info;
649
650         /*
651          * If the log page fetch for some reason completed with an error,
652          *  don't pass log page data to the consumers.  In practice, this case
653          *  should never happen.
654          */
655         if (nvme_completion_is_error(cpl))
656                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
657                     aer->log_page_id, NULL, 0);
658         else {
659                 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
660                         health_info = (struct nvme_health_information_page *)
661                             aer->log_page_buffer;
662                         nvme_ctrlr_log_critical_warnings(aer->ctrlr,
663                             health_info->critical_warning);
664                         /*
665                          * Critical warnings reported through the
666                          *  SMART/health log page are persistent, so
667                          *  clear the associated bits in the async event
668                          *  config so that we do not receive repeated
669                          *  notifications for the same event.
670                          */
671                         aer->ctrlr->async_event_config.raw &=
672                             ~health_info->critical_warning.raw;
673                         nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
674                             aer->ctrlr->async_event_config, NULL, NULL);
675                 }
676
677
678                 /*
679                  * Pass the cpl data from the original async event completion,
680                  *  not the log page fetch.
681                  */
682                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
683                     aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
684         }
685
686         /*
687          * Repost another asynchronous event request to replace the one
688          *  that just completed.
689          */
690         nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
691 }
692
693 static void
694 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
695 {
696         struct nvme_async_event_request *aer = arg;
697
698         if (nvme_completion_is_error(cpl)) {
699                 /*
700                  *  Do not retry failed async event requests.  This avoids
701                  *  infinite loops where a new async event request is submitted
702                  *  to replace the one just failed, only to fail again and
703                  *  perpetuate the loop.
704                  */
705                 return;
706         }
707
708         /* Associated log page is in bits 23:16 of completion entry dw0. */
709         aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
710
711         nvme_printf(aer->ctrlr, "async event occurred (log page id=0x%x)\n",
712             aer->log_page_id);
713
714         if (is_log_page_id_valid(aer->log_page_id)) {
715                 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
716                     aer->log_page_id);
717                 memcpy(&aer->cpl, cpl, sizeof(*cpl));
718                 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
719                     NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
720                     aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
721                     aer);
722                 /* Wait to notify consumers until after log page is fetched. */
723         } else {
724                 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
725                     NULL, 0);
726
727                 /*
728                  * Repost another asynchronous event request to replace the one
729                  *  that just completed.
730                  */
731                 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
732         }
733 }
734
735 static void
736 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
737     struct nvme_async_event_request *aer)
738 {
739         struct nvme_request *req;
740
741         aer->ctrlr = ctrlr;
742         req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
743         aer->req = req;
744
745         /*
746          * Disable timeout here, since asynchronous event requests should by
747          *  nature never be timed out.
748          */
749         req->timeout = FALSE;
750         req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
751         nvme_ctrlr_submit_admin_request(ctrlr, req);
752 }
753
754 static void
755 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
756 {
757         struct nvme_completion_poll_status      status;
758         struct nvme_async_event_request         *aer;
759         uint32_t                                i;
760
761         ctrlr->async_event_config.raw = 0xFF;
762         ctrlr->async_event_config.bits.reserved = 0;
763
764         status.done = FALSE;
765         nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
766             0, NULL, 0, nvme_completion_poll_cb, &status);
767         while (status.done == FALSE)
768                 pause("nvme", 1);
769         if (nvme_completion_is_error(&status.cpl) ||
770             (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
771             (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
772                 nvme_printf(ctrlr, "temperature threshold not supported\n");
773                 ctrlr->async_event_config.bits.temperature = 0;
774         }
775
776         nvme_ctrlr_cmd_set_async_event_config(ctrlr,
777             ctrlr->async_event_config, NULL, NULL);
778
779         /* aerl is a zero-based value, so we need to add 1 here. */
780         ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
781
782         /* Chatham doesn't support AERs. */
783         if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
784                 ctrlr->num_aers = 0;
785
786         for (i = 0; i < ctrlr->num_aers; i++) {
787                 aer = &ctrlr->aer[i];
788                 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
789         }
790 }
791
792 static void
793 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
794 {
795
796         ctrlr->int_coal_time = 0;
797         TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
798             &ctrlr->int_coal_time);
799
800         ctrlr->int_coal_threshold = 0;
801         TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
802             &ctrlr->int_coal_threshold);
803
804         nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
805             ctrlr->int_coal_threshold, NULL, NULL);
806 }
807
808 static void
809 nvme_ctrlr_start(void *ctrlr_arg)
810 {
811         struct nvme_controller *ctrlr = ctrlr_arg;
812         int i;
813
814         nvme_qpair_reset(&ctrlr->adminq);
815         for (i = 0; i < ctrlr->num_io_queues; i++)
816                 nvme_qpair_reset(&ctrlr->ioq[i]);
817
818         nvme_admin_qpair_enable(&ctrlr->adminq);
819
820         if (nvme_ctrlr_identify(ctrlr) != 0) {
821                 nvme_ctrlr_fail(ctrlr);
822                 return;
823         }
824
825         if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
826                 nvme_ctrlr_fail(ctrlr);
827                 return;
828         }
829
830         if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
831                 nvme_ctrlr_fail(ctrlr);
832                 return;
833         }
834
835         if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
836                 nvme_ctrlr_fail(ctrlr);
837                 return;
838         }
839
840         nvme_ctrlr_configure_aer(ctrlr);
841         nvme_ctrlr_configure_int_coalescing(ctrlr);
842
843         for (i = 0; i < ctrlr->num_io_queues; i++)
844                 nvme_io_qpair_enable(&ctrlr->ioq[i]);
845 }
846
847 void
848 nvme_ctrlr_start_config_hook(void *arg)
849 {
850         struct nvme_controller *ctrlr = arg;
851
852         nvme_ctrlr_start(ctrlr);
853         config_intrhook_disestablish(&ctrlr->config_hook);
854 }
855
856 static void
857 nvme_ctrlr_reset_task(void *arg, int pending)
858 {
859         struct nvme_controller  *ctrlr = arg;
860         int                     status;
861
862         nvme_printf(ctrlr, "resetting controller\n");
863         status = nvme_ctrlr_hw_reset(ctrlr);
864         /*
865          * Use pause instead of DELAY, so that we yield to any nvme interrupt
866          *  handlers on this CPU that were blocked on a qpair lock. We want
867          *  all nvme interrupts completed before proceeding with restarting the
868          *  controller.
869          *
870          * XXX - any way to guarantee the interrupt handlers have quiesced?
871          */
872         pause("nvmereset", hz / 10);
873         if (status == 0)
874                 nvme_ctrlr_start(ctrlr);
875         else
876                 nvme_ctrlr_fail(ctrlr);
877
878         atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
879 }
880
881 static void
882 nvme_ctrlr_intx_handler(void *arg)
883 {
884         struct nvme_controller *ctrlr = arg;
885
886         nvme_mmio_write_4(ctrlr, intms, 1);
887
888         nvme_qpair_process_completions(&ctrlr->adminq);
889
890         if (ctrlr->ioq[0].cpl)
891                 nvme_qpair_process_completions(&ctrlr->ioq[0]);
892
893         nvme_mmio_write_4(ctrlr, intmc, 1);
894 }
895
896 static int
897 nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
898 {
899
900         ctrlr->num_io_queues = 1;
901         ctrlr->per_cpu_io_queues = 0;
902         ctrlr->rid = 0;
903         ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
904             &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
905
906         if (ctrlr->res == NULL) {
907                 nvme_printf(ctrlr, "unable to allocate shared IRQ\n");
908                 return (ENOMEM);
909         }
910
911         bus_setup_intr(ctrlr->dev, ctrlr->res,
912             INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
913             ctrlr, &ctrlr->tag);
914
915         if (ctrlr->tag == NULL) {
916                 nvme_printf(ctrlr, "unable to setup intx handler\n");
917                 return (ENOMEM);
918         }
919
920         return (0);
921 }
922
923 static void
924 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
925 {
926         struct nvme_pt_command *pt = arg;
927
928         bzero(&pt->cpl, sizeof(pt->cpl));
929         pt->cpl.cdw0 = cpl->cdw0;
930         pt->cpl.status = cpl->status;
931         pt->cpl.status.p = 0;
932
933         mtx_lock(pt->driver_lock);
934         wakeup(pt);
935         mtx_unlock(pt->driver_lock);
936 }
937
938 int
939 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
940     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
941     int is_admin_cmd)
942 {
943         struct nvme_request     *req;
944         struct mtx              *mtx;
945         struct buf              *buf = NULL;
946         int                     ret = 0;
947
948         if (pt->len > 0) {
949                 if (pt->len > ctrlr->max_xfer_size) {
950                         nvme_printf(ctrlr, "pt->len (%d) "
951                             "exceeds max_xfer_size (%d)\n", pt->len,
952                             ctrlr->max_xfer_size);
953                         return EIO;
954                 }
955                 if (is_user_buffer) {
956                         /*
957                          * Ensure the user buffer is wired for the duration of
958                          *  this passthrough command.
959                          */
960                         PHOLD(curproc);
961                         buf = getpbuf(NULL);
962                         buf->b_saveaddr = buf->b_data;
963                         buf->b_data = pt->buf;
964                         buf->b_bufsize = pt->len;
965                         buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
966 #ifdef NVME_UNMAPPED_BIO_SUPPORT
967                         if (vmapbuf(buf, 1) < 0) {
968 #else
969                         if (vmapbuf(buf) < 0) {
970 #endif
971                                 ret = EFAULT;
972                                 goto err;
973                         }
974                         req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 
975                             nvme_pt_done, pt);
976                 } else
977                         req = nvme_allocate_request_vaddr(pt->buf, pt->len,
978                             nvme_pt_done, pt);
979         } else
980                 req = nvme_allocate_request_null(nvme_pt_done, pt);
981
982         req->cmd.opc    = pt->cmd.opc;
983         req->cmd.cdw10  = pt->cmd.cdw10;
984         req->cmd.cdw11  = pt->cmd.cdw11;
985         req->cmd.cdw12  = pt->cmd.cdw12;
986         req->cmd.cdw13  = pt->cmd.cdw13;
987         req->cmd.cdw14  = pt->cmd.cdw14;
988         req->cmd.cdw15  = pt->cmd.cdw15;
989
990         req->cmd.nsid = nsid;
991
992         if (is_admin_cmd)
993                 mtx = &ctrlr->lock;
994         else
995                 mtx = &ctrlr->ns[nsid-1].lock;
996
997         mtx_lock(mtx);
998         pt->driver_lock = mtx;
999
1000         if (is_admin_cmd)
1001                 nvme_ctrlr_submit_admin_request(ctrlr, req);
1002         else
1003                 nvme_ctrlr_submit_io_request(ctrlr, req);
1004
1005         mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
1006         mtx_unlock(mtx);
1007
1008         pt->driver_lock = NULL;
1009
1010 err:
1011         if (buf != NULL) {
1012                 relpbuf(buf, NULL);
1013                 PRELE(curproc);
1014         }
1015
1016         return (ret);
1017 }
1018
1019 static int
1020 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
1021     struct thread *td)
1022 {
1023         struct nvme_controller                  *ctrlr;
1024         struct nvme_pt_command                  *pt;
1025
1026         ctrlr = cdev->si_drv1;
1027
1028         switch (cmd) {
1029         case NVME_RESET_CONTROLLER:
1030                 nvme_ctrlr_reset(ctrlr);
1031                 break;
1032         case NVME_PASSTHROUGH_CMD:
1033                 pt = (struct nvme_pt_command *)arg;
1034 #ifdef CHATHAM2
1035                 /*
1036                  * Chatham IDENTIFY data is spoofed, so copy the spoofed data
1037                  *  rather than issuing the command to the Chatham controller.
1038                  */
1039                 if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID &&
1040                     pt->cmd.opc == NVME_OPC_IDENTIFY) {
1041                         if (pt->cmd.cdw10 == 1) {
1042                                 if (pt->len != sizeof(ctrlr->cdata))
1043                                         return (EINVAL);
1044                                 return (copyout(&ctrlr->cdata, pt->buf,
1045                                     pt->len));
1046                         } else {
1047                                 if (pt->len != sizeof(ctrlr->ns[0].data) ||
1048                                     pt->cmd.nsid != 1)
1049                                         return (EINVAL);
1050                                 return (copyout(&ctrlr->ns[0].data, pt->buf,
1051                                     pt->len));
1052                         }
1053                 }
1054 #endif
1055                 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, pt->cmd.nsid,
1056                     1 /* is_user_buffer */, 1 /* is_admin_cmd */));
1057         default:
1058                 return (ENOTTY);
1059         }
1060
1061         return (0);
1062 }
1063
1064 static struct cdevsw nvme_ctrlr_cdevsw = {
1065         .d_version =    D_VERSION,
1066         .d_flags =      0,
1067         .d_ioctl =      nvme_ctrlr_ioctl
1068 };
1069
1070 int
1071 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1072 {
1073         union cap_lo_register   cap_lo;
1074         union cap_hi_register   cap_hi;
1075         int                     num_vectors, per_cpu_io_queues, status = 0;
1076         int                     timeout_period;
1077
1078         ctrlr->dev = dev;
1079
1080         mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1081
1082         status = nvme_ctrlr_allocate_bar(ctrlr);
1083
1084         if (status != 0)
1085                 return (status);
1086
1087 #ifdef CHATHAM2
1088         if (pci_get_devid(dev) == CHATHAM_PCI_ID) {
1089                 status = nvme_ctrlr_allocate_chatham_bar(ctrlr);
1090                 if (status != 0)
1091                         return (status);
1092                 nvme_ctrlr_setup_chatham(ctrlr);
1093         }
1094 #endif
1095
1096         /*
1097          * Software emulators may set the doorbell stride to something
1098          *  other than zero, but this driver is not set up to handle that.
1099          */
1100         cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi);
1101         if (cap_hi.bits.dstrd != 0)
1102                 return (ENXIO);
1103
1104         ctrlr->min_page_size = 1 << (12 + cap_hi.bits.mpsmin);
1105
1106         /* Get ready timeout value from controller, in units of 500ms. */
1107         cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
1108         ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500;
1109
1110         timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1111         TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1112         timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1113         timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1114         ctrlr->timeout_period = timeout_period;
1115
1116         nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1117         TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1118
1119         per_cpu_io_queues = 1;
1120         TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
1121         ctrlr->per_cpu_io_queues = per_cpu_io_queues ? TRUE : FALSE;
1122
1123         if (ctrlr->per_cpu_io_queues)
1124                 ctrlr->num_io_queues = mp_ncpus;
1125         else
1126                 ctrlr->num_io_queues = 1;
1127
1128         ctrlr->force_intx = 0;
1129         TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
1130
1131         ctrlr->enable_aborts = 0;
1132         TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1133
1134         ctrlr->msix_enabled = 1;
1135
1136         if (ctrlr->force_intx) {
1137                 ctrlr->msix_enabled = 0;
1138                 goto intx;
1139         }
1140
1141         /* One vector per IO queue, plus one vector for admin queue. */
1142         num_vectors = ctrlr->num_io_queues + 1;
1143
1144         if (pci_msix_count(dev) < num_vectors) {
1145                 ctrlr->msix_enabled = 0;
1146                 goto intx;
1147         }
1148
1149         if (pci_alloc_msix(dev, &num_vectors) != 0)
1150                 ctrlr->msix_enabled = 0;
1151
1152 intx:
1153
1154         if (!ctrlr->msix_enabled)
1155                 nvme_ctrlr_configure_intx(ctrlr);
1156
1157         ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
1158         nvme_ctrlr_construct_admin_qpair(ctrlr);
1159         status = nvme_ctrlr_construct_io_qpairs(ctrlr);
1160
1161         if (status != 0)
1162                 return (status);
1163
1164         ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, device_get_unit(dev),
1165             UID_ROOT, GID_WHEEL, 0600, "nvme%d", device_get_unit(dev));
1166
1167         if (ctrlr->cdev == NULL)
1168                 return (ENXIO);
1169
1170         ctrlr->cdev->si_drv1 = (void *)ctrlr;
1171
1172         ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1173             taskqueue_thread_enqueue, &ctrlr->taskqueue);
1174         taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");
1175
1176         ctrlr->is_resetting = 0;
1177         TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1178
1179         TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1180         STAILQ_INIT(&ctrlr->fail_req);
1181         ctrlr->is_failed = FALSE;
1182
1183         return (0);
1184 }
1185
1186 void
1187 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1188 {
1189         int                             i;
1190
1191         /*
1192          *  Notify the controller of a shutdown, even though this is due to
1193          *   a driver unload, not a system shutdown (this path is not invoked
1194          *   during shutdown).  This ensures the controller receives a
1195          *   shutdown notification in case the system is shutdown before
1196          *   reloading the driver.
1197          *
1198          *  Chatham does not let you re-enable the controller after shutdown
1199          *   notification has been received, so do not send it in this case.
1200          *   This is OK because Chatham does not depend on the shutdown
1201          *   notification anyways.
1202          */
1203         if (pci_get_devid(ctrlr->dev) != CHATHAM_PCI_ID)
1204                 nvme_ctrlr_shutdown(ctrlr);
1205
1206         nvme_ctrlr_disable(ctrlr);
1207         taskqueue_free(ctrlr->taskqueue);
1208
1209         for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1210                 nvme_ns_destruct(&ctrlr->ns[i]);
1211
1212         if (ctrlr->cdev)
1213                 destroy_dev(ctrlr->cdev);
1214
1215         for (i = 0; i < ctrlr->num_io_queues; i++) {
1216                 nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1217         }
1218
1219         free(ctrlr->ioq, M_NVME);
1220
1221         nvme_admin_qpair_destroy(&ctrlr->adminq);
1222
1223         if (ctrlr->resource != NULL) {
1224                 bus_release_resource(dev, SYS_RES_MEMORY,
1225                     ctrlr->resource_id, ctrlr->resource);
1226         }
1227
1228         if (ctrlr->bar4_resource != NULL) {
1229                 bus_release_resource(dev, SYS_RES_MEMORY,
1230                     ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1231         }
1232
1233 #ifdef CHATHAM2
1234         if (ctrlr->chatham_resource != NULL) {
1235                 bus_release_resource(dev, SYS_RES_MEMORY,
1236                     ctrlr->chatham_resource_id, ctrlr->chatham_resource);
1237         }
1238 #endif
1239
1240         if (ctrlr->tag)
1241                 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1242
1243         if (ctrlr->res)
1244                 bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1245                     rman_get_rid(ctrlr->res), ctrlr->res);
1246
1247         if (ctrlr->msix_enabled)
1248                 pci_release_msi(dev);
1249 }
1250
1251 void
1252 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1253 {
1254         union cc_register       cc;
1255         union csts_register     csts;
1256         int                     ticks = 0;
1257
1258         cc.raw = nvme_mmio_read_4(ctrlr, cc);
1259         cc.bits.shn = NVME_SHN_NORMAL;
1260         nvme_mmio_write_4(ctrlr, cc, cc.raw);
1261         csts.raw = nvme_mmio_read_4(ctrlr, csts);
1262         while ((csts.bits.shst != NVME_SHST_COMPLETE) && (ticks++ < 5*hz)) {
1263                 pause("nvme shn", 1);
1264                 csts.raw = nvme_mmio_read_4(ctrlr, csts);
1265         }
1266         if (csts.bits.shst != NVME_SHST_COMPLETE)
1267                 nvme_printf(ctrlr, "did not complete shutdown within 5 seconds "
1268                     "of notification\n");
1269 }
1270
1271 void
1272 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1273     struct nvme_request *req)
1274 {
1275
1276         nvme_qpair_submit_request(&ctrlr->adminq, req);
1277 }
1278
1279 void
1280 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1281     struct nvme_request *req)
1282 {
1283         struct nvme_qpair       *qpair;
1284
1285         if (ctrlr->per_cpu_io_queues)
1286                 qpair = &ctrlr->ioq[curcpu];
1287         else
1288                 qpair = &ctrlr->ioq[0];
1289
1290         nvme_qpair_submit_request(qpair, req);
1291 }
1292
1293 device_t
1294 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1295 {
1296
1297         return (ctrlr->dev);
1298 }
1299
1300 const struct nvme_controller_data *
1301 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1302 {
1303
1304         return (&ctrlr->cdata);
1305 }