]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - sys/dev/nvme/nvme_ctrlr.c
MFC r293326:
[FreeBSD/stable/10.git] / sys / dev / nvme / nvme_ctrlr.c
1 /*-
2  * Copyright (C) 2012-2015 Intel Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/buf.h>
33 #include <sys/bus.h>
34 #include <sys/conf.h>
35 #include <sys/ioccom.h>
36 #include <sys/proc.h>
37 #include <sys/smp.h>
38 #include <sys/uio.h>
39
40 #include <dev/pci/pcireg.h>
41 #include <dev/pci/pcivar.h>
42
43 #include "nvme_private.h"
44
45 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
46                                                 struct nvme_async_event_request *aer);
47
48 static int
49 nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
50 {
51
52         ctrlr->resource_id = PCIR_BAR(0);
53
54         ctrlr->resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
55             &ctrlr->resource_id, 0, ~0, 1, RF_ACTIVE);
56
57         if(ctrlr->resource == NULL) {
58                 nvme_printf(ctrlr, "unable to allocate pci resource\n");
59                 return (ENOMEM);
60         }
61
62         ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
63         ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
64         ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
65
66         /*
67          * The NVMe spec allows for the MSI-X table to be placed behind
68          *  BAR 4/5, separate from the control/doorbell registers.  Always
69          *  try to map this bar, because it must be mapped prior to calling
70          *  pci_alloc_msix().  If the table isn't behind BAR 4/5,
71          *  bus_alloc_resource() will just return NULL which is OK.
72          */
73         ctrlr->bar4_resource_id = PCIR_BAR(4);
74         ctrlr->bar4_resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
75             &ctrlr->bar4_resource_id, 0, ~0, 1, RF_ACTIVE);
76
77         return (0);
78 }
79
80 static void
81 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
82 {
83         struct nvme_qpair       *qpair;
84         uint32_t                num_entries;
85
86         qpair = &ctrlr->adminq;
87
88         num_entries = NVME_ADMIN_ENTRIES;
89         TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
90         /*
91          * If admin_entries was overridden to an invalid value, revert it
92          *  back to our default value.
93          */
94         if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
95             num_entries > NVME_MAX_ADMIN_ENTRIES) {
96                 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
97                     "specified\n", num_entries);
98                 num_entries = NVME_ADMIN_ENTRIES;
99         }
100
101         /*
102          * The admin queue's max xfer size is treated differently than the
103          *  max I/O xfer size.  16KB is sufficient here - maybe even less?
104          */
105         nvme_qpair_construct(qpair, 
106                              0, /* qpair ID */
107                              0, /* vector */
108                              num_entries,
109                              NVME_ADMIN_TRACKERS,
110                              ctrlr);
111 }
112
113 static int
114 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
115 {
116         struct nvme_qpair       *qpair;
117         union cap_lo_register   cap_lo;
118         int                     i, num_entries, num_trackers;
119
120         num_entries = NVME_IO_ENTRIES;
121         TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
122
123         /*
124          * NVMe spec sets a hard limit of 64K max entries, but
125          *  devices may specify a smaller limit, so we need to check
126          *  the MQES field in the capabilities register.
127          */
128         cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
129         num_entries = min(num_entries, cap_lo.bits.mqes+1);
130
131         num_trackers = NVME_IO_TRACKERS;
132         TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
133
134         num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
135         num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
136         /*
137          * No need to have more trackers than entries in the submit queue.
138          *  Note also that for a queue size of N, we can only have (N-1)
139          *  commands outstanding, hence the "-1" here.
140          */
141         num_trackers = min(num_trackers, (num_entries-1));
142
143         ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
144             M_NVME, M_ZERO | M_WAITOK);
145
146         for (i = 0; i < ctrlr->num_io_queues; i++) {
147                 qpair = &ctrlr->ioq[i];
148
149                 /*
150                  * Admin queue has ID=0. IO queues start at ID=1 -
151                  *  hence the 'i+1' here.
152                  *
153                  * For I/O queues, use the controller-wide max_xfer_size
154                  *  calculated in nvme_attach().
155                  */
156                 nvme_qpair_construct(qpair,
157                                      i+1, /* qpair ID */
158                                      ctrlr->msix_enabled ? i+1 : 0, /* vector */
159                                      num_entries,
160                                      num_trackers,
161                                      ctrlr);
162
163                 if (ctrlr->num_io_queues > 1)
164                         bus_bind_intr(ctrlr->dev, qpair->res, i);
165         }
166
167         return (0);
168 }
169
170 static void
171 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
172 {
173         int i;
174
175         ctrlr->is_failed = TRUE;
176         nvme_qpair_fail(&ctrlr->adminq);
177         for (i = 0; i < ctrlr->num_io_queues; i++)
178                 nvme_qpair_fail(&ctrlr->ioq[i]);
179         nvme_notify_fail_consumers(ctrlr);
180 }
181
182 void
183 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
184     struct nvme_request *req)
185 {
186
187         mtx_lock(&ctrlr->lock);
188         STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
189         mtx_unlock(&ctrlr->lock);
190         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
191 }
192
193 static void
194 nvme_ctrlr_fail_req_task(void *arg, int pending)
195 {
196         struct nvme_controller  *ctrlr = arg;
197         struct nvme_request     *req;
198
199         mtx_lock(&ctrlr->lock);
200         while (!STAILQ_EMPTY(&ctrlr->fail_req)) {
201                 req = STAILQ_FIRST(&ctrlr->fail_req);
202                 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
203                 nvme_qpair_manual_complete_request(req->qpair, req,
204                     NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE);
205         }
206         mtx_unlock(&ctrlr->lock);
207 }
208
209 static int
210 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
211 {
212         int ms_waited;
213         union cc_register cc;
214         union csts_register csts;
215
216         cc.raw = nvme_mmio_read_4(ctrlr, cc);
217         csts.raw = nvme_mmio_read_4(ctrlr, csts);
218
219         if (cc.bits.en != desired_val) {
220                 nvme_printf(ctrlr, "%s called with desired_val = %d "
221                     "but cc.en = %d\n", __func__, desired_val, cc.bits.en);
222                 return (ENXIO);
223         }
224
225         ms_waited = 0;
226
227         while (csts.bits.rdy != desired_val) {
228                 DELAY(1000);
229                 if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
230                         nvme_printf(ctrlr, "controller ready did not become %d "
231                             "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
232                         return (ENXIO);
233                 }
234                 csts.raw = nvme_mmio_read_4(ctrlr, csts);
235         }
236
237         return (0);
238 }
239
240 static void
241 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
242 {
243         union cc_register cc;
244         union csts_register csts;
245
246         cc.raw = nvme_mmio_read_4(ctrlr, cc);
247         csts.raw = nvme_mmio_read_4(ctrlr, csts);
248
249         if (cc.bits.en == 1 && csts.bits.rdy == 0)
250                 nvme_ctrlr_wait_for_ready(ctrlr, 1);
251
252         cc.bits.en = 0;
253         nvme_mmio_write_4(ctrlr, cc, cc.raw);
254         DELAY(5000);
255         nvme_ctrlr_wait_for_ready(ctrlr, 0);
256 }
257
258 static int
259 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
260 {
261         union cc_register       cc;
262         union csts_register     csts;
263         union aqa_register      aqa;
264
265         cc.raw = nvme_mmio_read_4(ctrlr, cc);
266         csts.raw = nvme_mmio_read_4(ctrlr, csts);
267
268         if (cc.bits.en == 1) {
269                 if (csts.bits.rdy == 1)
270                         return (0);
271                 else
272                         return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
273         }
274
275         nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
276         DELAY(5000);
277         nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
278         DELAY(5000);
279
280         aqa.raw = 0;
281         /* acqs and asqs are 0-based. */
282         aqa.bits.acqs = ctrlr->adminq.num_entries-1;
283         aqa.bits.asqs = ctrlr->adminq.num_entries-1;
284         nvme_mmio_write_4(ctrlr, aqa, aqa.raw);
285         DELAY(5000);
286
287         cc.bits.en = 1;
288         cc.bits.css = 0;
289         cc.bits.ams = 0;
290         cc.bits.shn = 0;
291         cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
292         cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
293
294         /* This evaluates to 0, which is according to spec. */
295         cc.bits.mps = (PAGE_SIZE >> 13);
296
297         nvme_mmio_write_4(ctrlr, cc, cc.raw);
298         DELAY(5000);
299
300         return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
301 }
302
303 int
304 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
305 {
306         int i;
307
308         nvme_admin_qpair_disable(&ctrlr->adminq);
309         for (i = 0; i < ctrlr->num_io_queues; i++)
310                 nvme_io_qpair_disable(&ctrlr->ioq[i]);
311
312         DELAY(100*1000);
313
314         nvme_ctrlr_disable(ctrlr);
315         return (nvme_ctrlr_enable(ctrlr));
316 }
317
318 void
319 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
320 {
321         int cmpset;
322
323         cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
324
325         if (cmpset == 0 || ctrlr->is_failed)
326                 /*
327                  * Controller is already resetting or has failed.  Return
328                  *  immediately since there is no need to kick off another
329                  *  reset in these cases.
330                  */
331                 return;
332
333         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
334 }
335
336 static int
337 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
338 {
339         struct nvme_completion_poll_status      status;
340
341         status.done = FALSE;
342         nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
343             nvme_completion_poll_cb, &status);
344         while (status.done == FALSE)
345                 pause("nvme", 1);
346         if (nvme_completion_is_error(&status.cpl)) {
347                 nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
348                 return (ENXIO);
349         }
350
351         /*
352          * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
353          *  controller supports.
354          */
355         if (ctrlr->cdata.mdts > 0)
356                 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
357                     ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
358
359         return (0);
360 }
361
362 static int
363 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
364 {
365         struct nvme_completion_poll_status      status;
366         int                                     cq_allocated, i, sq_allocated;
367
368         status.done = FALSE;
369         nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
370             nvme_completion_poll_cb, &status);
371         while (status.done == FALSE)
372                 pause("nvme", 1);
373         if (nvme_completion_is_error(&status.cpl)) {
374                 nvme_printf(ctrlr, "nvme_set_num_queues failed!\n");
375                 return (ENXIO);
376         }
377
378         /*
379          * Data in cdw0 is 0-based.
380          * Lower 16-bits indicate number of submission queues allocated.
381          * Upper 16-bits indicate number of completion queues allocated.
382          */
383         sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
384         cq_allocated = (status.cpl.cdw0 >> 16) + 1;
385
386         /*
387          * Check that the controller was able to allocate the number of
388          *  queues we requested.  If not, revert to one IO queue pair.
389          */
390         if (sq_allocated < ctrlr->num_io_queues ||
391             cq_allocated < ctrlr->num_io_queues) {
392
393                 /*
394                  * Destroy extra IO queue pairs that were created at
395                  *  controller construction time but are no longer
396                  *  needed.  This will only happen when a controller
397                  *  supports fewer queues than MSI-X vectors.  This
398                  *  is not the normal case, but does occur with the
399                  *  Chatham prototype board.
400                  */
401                 for (i = 1; i < ctrlr->num_io_queues; i++)
402                         nvme_io_qpair_destroy(&ctrlr->ioq[i]);
403
404                 ctrlr->num_io_queues = 1;
405         }
406
407         return (0);
408 }
409
410 static int
411 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
412 {
413         struct nvme_completion_poll_status      status;
414         struct nvme_qpair                       *qpair;
415         int                                     i;
416
417         for (i = 0; i < ctrlr->num_io_queues; i++) {
418                 qpair = &ctrlr->ioq[i];
419
420                 status.done = FALSE;
421                 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
422                     nvme_completion_poll_cb, &status);
423                 while (status.done == FALSE)
424                         pause("nvme", 1);
425                 if (nvme_completion_is_error(&status.cpl)) {
426                         nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
427                         return (ENXIO);
428                 }
429
430                 status.done = FALSE;
431                 nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
432                     nvme_completion_poll_cb, &status);
433                 while (status.done == FALSE)
434                         pause("nvme", 1);
435                 if (nvme_completion_is_error(&status.cpl)) {
436                         nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
437                         return (ENXIO);
438                 }
439         }
440
441         return (0);
442 }
443
444 static int
445 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
446 {
447         struct nvme_namespace   *ns;
448         int                     i, status;
449
450         for (i = 0; i < ctrlr->cdata.nn; i++) {
451                 ns = &ctrlr->ns[i];
452                 status = nvme_ns_construct(ns, i+1, ctrlr);
453                 if (status != 0)
454                         return (status);
455         }
456
457         return (0);
458 }
459
460 static boolean_t
461 is_log_page_id_valid(uint8_t page_id)
462 {
463
464         switch (page_id) {
465         case NVME_LOG_ERROR:
466         case NVME_LOG_HEALTH_INFORMATION:
467         case NVME_LOG_FIRMWARE_SLOT:
468                 return (TRUE);
469         }
470
471         return (FALSE);
472 }
473
474 static uint32_t
475 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
476 {
477         uint32_t        log_page_size;
478
479         switch (page_id) {
480         case NVME_LOG_ERROR:
481                 log_page_size = min(
482                     sizeof(struct nvme_error_information_entry) *
483                     ctrlr->cdata.elpe,
484                     NVME_MAX_AER_LOG_SIZE);
485                 break;
486         case NVME_LOG_HEALTH_INFORMATION:
487                 log_page_size = sizeof(struct nvme_health_information_page);
488                 break;
489         case NVME_LOG_FIRMWARE_SLOT:
490                 log_page_size = sizeof(struct nvme_firmware_page);
491                 break;
492         default:
493                 log_page_size = 0;
494                 break;
495         }
496
497         return (log_page_size);
498 }
499
500 static void
501 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
502     union nvme_critical_warning_state state)
503 {
504
505         if (state.bits.available_spare == 1)
506                 nvme_printf(ctrlr, "available spare space below threshold\n");
507
508         if (state.bits.temperature == 1)
509                 nvme_printf(ctrlr, "temperature above threshold\n");
510
511         if (state.bits.device_reliability == 1)
512                 nvme_printf(ctrlr, "device reliability degraded\n");
513
514         if (state.bits.read_only == 1)
515                 nvme_printf(ctrlr, "media placed in read only mode\n");
516
517         if (state.bits.volatile_memory_backup == 1)
518                 nvme_printf(ctrlr, "volatile memory backup device failed\n");
519
520         if (state.bits.reserved != 0)
521                 nvme_printf(ctrlr,
522                     "unknown critical warning(s): state = 0x%02x\n", state.raw);
523 }
524
525 static void
526 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
527 {
528         struct nvme_async_event_request         *aer = arg;
529         struct nvme_health_information_page     *health_info;
530
531         /*
532          * If the log page fetch for some reason completed with an error,
533          *  don't pass log page data to the consumers.  In practice, this case
534          *  should never happen.
535          */
536         if (nvme_completion_is_error(cpl))
537                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
538                     aer->log_page_id, NULL, 0);
539         else {
540                 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
541                         health_info = (struct nvme_health_information_page *)
542                             aer->log_page_buffer;
543                         nvme_ctrlr_log_critical_warnings(aer->ctrlr,
544                             health_info->critical_warning);
545                         /*
546                          * Critical warnings reported through the
547                          *  SMART/health log page are persistent, so
548                          *  clear the associated bits in the async event
549                          *  config so that we do not receive repeated
550                          *  notifications for the same event.
551                          */
552                         aer->ctrlr->async_event_config.raw &=
553                             ~health_info->critical_warning.raw;
554                         nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
555                             aer->ctrlr->async_event_config, NULL, NULL);
556                 }
557
558
559                 /*
560                  * Pass the cpl data from the original async event completion,
561                  *  not the log page fetch.
562                  */
563                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
564                     aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
565         }
566
567         /*
568          * Repost another asynchronous event request to replace the one
569          *  that just completed.
570          */
571         nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
572 }
573
574 static void
575 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
576 {
577         struct nvme_async_event_request *aer = arg;
578
579         if (nvme_completion_is_error(cpl)) {
580                 /*
581                  *  Do not retry failed async event requests.  This avoids
582                  *  infinite loops where a new async event request is submitted
583                  *  to replace the one just failed, only to fail again and
584                  *  perpetuate the loop.
585                  */
586                 return;
587         }
588
589         /* Associated log page is in bits 23:16 of completion entry dw0. */
590         aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
591
592         nvme_printf(aer->ctrlr, "async event occurred (log page id=0x%x)\n",
593             aer->log_page_id);
594
595         if (is_log_page_id_valid(aer->log_page_id)) {
596                 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
597                     aer->log_page_id);
598                 memcpy(&aer->cpl, cpl, sizeof(*cpl));
599                 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
600                     NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
601                     aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
602                     aer);
603                 /* Wait to notify consumers until after log page is fetched. */
604         } else {
605                 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
606                     NULL, 0);
607
608                 /*
609                  * Repost another asynchronous event request to replace the one
610                  *  that just completed.
611                  */
612                 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
613         }
614 }
615
616 static void
617 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
618     struct nvme_async_event_request *aer)
619 {
620         struct nvme_request *req;
621
622         aer->ctrlr = ctrlr;
623         req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
624         aer->req = req;
625
626         /*
627          * Disable timeout here, since asynchronous event requests should by
628          *  nature never be timed out.
629          */
630         req->timeout = FALSE;
631         req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
632         nvme_ctrlr_submit_admin_request(ctrlr, req);
633 }
634
635 static void
636 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
637 {
638         struct nvme_completion_poll_status      status;
639         struct nvme_async_event_request         *aer;
640         uint32_t                                i;
641
642         ctrlr->async_event_config.raw = 0xFF;
643         ctrlr->async_event_config.bits.reserved = 0;
644
645         status.done = FALSE;
646         nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
647             0, NULL, 0, nvme_completion_poll_cb, &status);
648         while (status.done == FALSE)
649                 pause("nvme", 1);
650         if (nvme_completion_is_error(&status.cpl) ||
651             (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
652             (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
653                 nvme_printf(ctrlr, "temperature threshold not supported\n");
654                 ctrlr->async_event_config.bits.temperature = 0;
655         }
656
657         nvme_ctrlr_cmd_set_async_event_config(ctrlr,
658             ctrlr->async_event_config, NULL, NULL);
659
660         /* aerl is a zero-based value, so we need to add 1 here. */
661         ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
662
663         for (i = 0; i < ctrlr->num_aers; i++) {
664                 aer = &ctrlr->aer[i];
665                 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
666         }
667 }
668
669 static void
670 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
671 {
672
673         ctrlr->int_coal_time = 0;
674         TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
675             &ctrlr->int_coal_time);
676
677         ctrlr->int_coal_threshold = 0;
678         TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
679             &ctrlr->int_coal_threshold);
680
681         nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
682             ctrlr->int_coal_threshold, NULL, NULL);
683 }
684
685 static void
686 nvme_ctrlr_start(void *ctrlr_arg)
687 {
688         struct nvme_controller *ctrlr = ctrlr_arg;
689         int i;
690
691         nvme_qpair_reset(&ctrlr->adminq);
692         for (i = 0; i < ctrlr->num_io_queues; i++)
693                 nvme_qpair_reset(&ctrlr->ioq[i]);
694
695         nvme_admin_qpair_enable(&ctrlr->adminq);
696
697         if (nvme_ctrlr_identify(ctrlr) != 0) {
698                 nvme_ctrlr_fail(ctrlr);
699                 return;
700         }
701
702         if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
703                 nvme_ctrlr_fail(ctrlr);
704                 return;
705         }
706
707         if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
708                 nvme_ctrlr_fail(ctrlr);
709                 return;
710         }
711
712         if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
713                 nvme_ctrlr_fail(ctrlr);
714                 return;
715         }
716
717         nvme_ctrlr_configure_aer(ctrlr);
718         nvme_ctrlr_configure_int_coalescing(ctrlr);
719
720         for (i = 0; i < ctrlr->num_io_queues; i++)
721                 nvme_io_qpair_enable(&ctrlr->ioq[i]);
722 }
723
724 void
725 nvme_ctrlr_start_config_hook(void *arg)
726 {
727         struct nvme_controller *ctrlr = arg;
728
729         nvme_ctrlr_start(ctrlr);
730         config_intrhook_disestablish(&ctrlr->config_hook);
731
732         ctrlr->is_initialized = 1;
733         nvme_notify_new_controller(ctrlr);
734 }
735
736 static void
737 nvme_ctrlr_reset_task(void *arg, int pending)
738 {
739         struct nvme_controller  *ctrlr = arg;
740         int                     status;
741
742         nvme_printf(ctrlr, "resetting controller\n");
743         status = nvme_ctrlr_hw_reset(ctrlr);
744         /*
745          * Use pause instead of DELAY, so that we yield to any nvme interrupt
746          *  handlers on this CPU that were blocked on a qpair lock. We want
747          *  all nvme interrupts completed before proceeding with restarting the
748          *  controller.
749          *
750          * XXX - any way to guarantee the interrupt handlers have quiesced?
751          */
752         pause("nvmereset", hz / 10);
753         if (status == 0)
754                 nvme_ctrlr_start(ctrlr);
755         else
756                 nvme_ctrlr_fail(ctrlr);
757
758         atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
759 }
760
761 static void
762 nvme_ctrlr_intx_handler(void *arg)
763 {
764         struct nvme_controller *ctrlr = arg;
765
766         nvme_mmio_write_4(ctrlr, intms, 1);
767
768         nvme_qpair_process_completions(&ctrlr->adminq);
769
770         if (ctrlr->ioq[0].cpl)
771                 nvme_qpair_process_completions(&ctrlr->ioq[0]);
772
773         nvme_mmio_write_4(ctrlr, intmc, 1);
774 }
775
776 static int
777 nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
778 {
779
780         ctrlr->num_io_queues = 1;
781         ctrlr->rid = 0;
782         ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
783             &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
784
785         if (ctrlr->res == NULL) {
786                 nvme_printf(ctrlr, "unable to allocate shared IRQ\n");
787                 return (ENOMEM);
788         }
789
790         bus_setup_intr(ctrlr->dev, ctrlr->res,
791             INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
792             ctrlr, &ctrlr->tag);
793
794         if (ctrlr->tag == NULL) {
795                 nvme_printf(ctrlr, "unable to setup intx handler\n");
796                 return (ENOMEM);
797         }
798
799         return (0);
800 }
801
802 static void
803 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
804 {
805         struct nvme_pt_command *pt = arg;
806
807         bzero(&pt->cpl, sizeof(pt->cpl));
808         pt->cpl.cdw0 = cpl->cdw0;
809         pt->cpl.status = cpl->status;
810         pt->cpl.status.p = 0;
811
812         mtx_lock(pt->driver_lock);
813         wakeup(pt);
814         mtx_unlock(pt->driver_lock);
815 }
816
817 int
818 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
819     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
820     int is_admin_cmd)
821 {
822         struct nvme_request     *req;
823         struct mtx              *mtx;
824         struct buf              *buf = NULL;
825         int                     ret = 0;
826
827         if (pt->len > 0) {
828                 if (pt->len > ctrlr->max_xfer_size) {
829                         nvme_printf(ctrlr, "pt->len (%d) "
830                             "exceeds max_xfer_size (%d)\n", pt->len,
831                             ctrlr->max_xfer_size);
832                         return EIO;
833                 }
834                 if (is_user_buffer) {
835                         /*
836                          * Ensure the user buffer is wired for the duration of
837                          *  this passthrough command.
838                          */
839                         PHOLD(curproc);
840                         buf = getpbuf(NULL);
841                         buf->b_saveaddr = buf->b_data;
842                         buf->b_data = pt->buf;
843                         buf->b_bufsize = pt->len;
844                         buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
845 #ifdef NVME_UNMAPPED_BIO_SUPPORT
846                         if (vmapbuf(buf, 1) < 0) {
847 #else
848                         if (vmapbuf(buf) < 0) {
849 #endif
850                                 ret = EFAULT;
851                                 goto err;
852                         }
853                         req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 
854                             nvme_pt_done, pt);
855                 } else
856                         req = nvme_allocate_request_vaddr(pt->buf, pt->len,
857                             nvme_pt_done, pt);
858         } else
859                 req = nvme_allocate_request_null(nvme_pt_done, pt);
860
861         req->cmd.opc    = pt->cmd.opc;
862         req->cmd.cdw10  = pt->cmd.cdw10;
863         req->cmd.cdw11  = pt->cmd.cdw11;
864         req->cmd.cdw12  = pt->cmd.cdw12;
865         req->cmd.cdw13  = pt->cmd.cdw13;
866         req->cmd.cdw14  = pt->cmd.cdw14;
867         req->cmd.cdw15  = pt->cmd.cdw15;
868
869         req->cmd.nsid = nsid;
870
871         if (is_admin_cmd)
872                 mtx = &ctrlr->lock;
873         else
874                 mtx = &ctrlr->ns[nsid-1].lock;
875
876         mtx_lock(mtx);
877         pt->driver_lock = mtx;
878
879         if (is_admin_cmd)
880                 nvme_ctrlr_submit_admin_request(ctrlr, req);
881         else
882                 nvme_ctrlr_submit_io_request(ctrlr, req);
883
884         mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
885         mtx_unlock(mtx);
886
887         pt->driver_lock = NULL;
888
889 err:
890         if (buf != NULL) {
891                 relpbuf(buf, NULL);
892                 PRELE(curproc);
893         }
894
895         return (ret);
896 }
897
898 static int
899 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
900     struct thread *td)
901 {
902         struct nvme_controller                  *ctrlr;
903         struct nvme_pt_command                  *pt;
904
905         ctrlr = cdev->si_drv1;
906
907         switch (cmd) {
908         case NVME_RESET_CONTROLLER:
909                 nvme_ctrlr_reset(ctrlr);
910                 break;
911         case NVME_PASSTHROUGH_CMD:
912                 pt = (struct nvme_pt_command *)arg;
913                 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, pt->cmd.nsid,
914                     1 /* is_user_buffer */, 1 /* is_admin_cmd */));
915         default:
916                 return (ENOTTY);
917         }
918
919         return (0);
920 }
921
922 static struct cdevsw nvme_ctrlr_cdevsw = {
923         .d_version =    D_VERSION,
924         .d_flags =      0,
925         .d_ioctl =      nvme_ctrlr_ioctl
926 };
927
928 int
929 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
930 {
931         union cap_lo_register   cap_lo;
932         union cap_hi_register   cap_hi;
933         int                     per_cpu_io_queues;
934         int                     num_vectors_requested, num_vectors_allocated;
935         int                     status, timeout_period;
936
937         ctrlr->dev = dev;
938
939         mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
940
941         status = nvme_ctrlr_allocate_bar(ctrlr);
942
943         if (status != 0)
944                 return (status);
945
946         /*
947          * Software emulators may set the doorbell stride to something
948          *  other than zero, but this driver is not set up to handle that.
949          */
950         cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi);
951         if (cap_hi.bits.dstrd != 0)
952                 return (ENXIO);
953
954         ctrlr->min_page_size = 1 << (12 + cap_hi.bits.mpsmin);
955
956         /* Get ready timeout value from controller, in units of 500ms. */
957         cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
958         ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500;
959
960         timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
961         TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
962         timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
963         timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
964         ctrlr->timeout_period = timeout_period;
965
966         nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
967         TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
968
969         per_cpu_io_queues = 1;
970         TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
971
972         if (per_cpu_io_queues)
973                 ctrlr->num_io_queues = mp_ncpus;
974         else
975                 ctrlr->num_io_queues = 1;
976
977         ctrlr->force_intx = 0;
978         TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
979
980         ctrlr->enable_aborts = 0;
981         TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
982
983         ctrlr->msix_enabled = 1;
984
985         if (ctrlr->force_intx) {
986                 ctrlr->msix_enabled = 0;
987                 goto intx;
988         }
989
990         /* One vector per IO queue, plus one vector for admin queue. */
991         num_vectors_requested = ctrlr->num_io_queues + 1;
992
993         /*
994          * If we cannot even allocate 2 vectors (one for admin, one for
995          *  I/O), then revert to INTx.
996          */
997         if (pci_msix_count(dev) < 2) {
998                 ctrlr->msix_enabled = 0;
999                 goto intx;
1000         }
1001
1002         if (pci_msix_count(dev) < num_vectors_requested) {
1003                 ctrlr->num_io_queues = 1;
1004                 num_vectors_requested = 2; /* one for admin, one for I/O */
1005         }
1006
1007         num_vectors_allocated = num_vectors_requested;
1008         if (pci_alloc_msix(dev, &num_vectors_allocated) != 0) {
1009                 ctrlr->msix_enabled = 0;
1010                 goto intx;
1011         }
1012
1013         if (num_vectors_allocated < num_vectors_requested) {
1014                 if (num_vectors_allocated < 2) {
1015                         pci_release_msi(dev);
1016                         ctrlr->msix_enabled = 0;
1017                         goto intx;
1018                 }
1019
1020                 ctrlr->num_io_queues = 1;
1021                 /*
1022                  * Release whatever vectors were allocated, and just
1023                  *  reallocate the two needed for the admin and single
1024                  *  I/O qpair.
1025                  */
1026                 num_vectors_allocated = 2;
1027                 pci_release_msi(dev);
1028                 if (pci_alloc_msix(dev, &num_vectors_allocated) != 0)
1029                         panic("could not reallocate any vectors\n");
1030                 if (num_vectors_allocated != 2)
1031                         panic("could not reallocate 2 vectors\n");
1032         }
1033
1034 intx:
1035
1036         if (!ctrlr->msix_enabled)
1037                 nvme_ctrlr_configure_intx(ctrlr);
1038
1039         ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
1040         nvme_ctrlr_construct_admin_qpair(ctrlr);
1041         status = nvme_ctrlr_construct_io_qpairs(ctrlr);
1042
1043         if (status != 0)
1044                 return (status);
1045
1046         ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, device_get_unit(dev),
1047             UID_ROOT, GID_WHEEL, 0600, "nvme%d", device_get_unit(dev));
1048
1049         if (ctrlr->cdev == NULL)
1050                 return (ENXIO);
1051
1052         ctrlr->cdev->si_drv1 = (void *)ctrlr;
1053
1054         ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1055             taskqueue_thread_enqueue, &ctrlr->taskqueue);
1056         taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");
1057
1058         ctrlr->is_resetting = 0;
1059         ctrlr->is_initialized = 0;
1060         ctrlr->notification_sent = 0;
1061         TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1062
1063         TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1064         STAILQ_INIT(&ctrlr->fail_req);
1065         ctrlr->is_failed = FALSE;
1066
1067         return (0);
1068 }
1069
1070 void
1071 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1072 {
1073         int                             i;
1074
1075         /*
1076          *  Notify the controller of a shutdown, even though this is due to
1077          *   a driver unload, not a system shutdown (this path is not invoked
1078          *   during shutdown).  This ensures the controller receives a
1079          *   shutdown notification in case the system is shutdown before
1080          *   reloading the driver.
1081          */
1082         nvme_ctrlr_shutdown(ctrlr);
1083
1084         nvme_ctrlr_disable(ctrlr);
1085         taskqueue_free(ctrlr->taskqueue);
1086
1087         for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1088                 nvme_ns_destruct(&ctrlr->ns[i]);
1089
1090         if (ctrlr->cdev)
1091                 destroy_dev(ctrlr->cdev);
1092
1093         for (i = 0; i < ctrlr->num_io_queues; i++) {
1094                 nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1095         }
1096
1097         free(ctrlr->ioq, M_NVME);
1098
1099         nvme_admin_qpair_destroy(&ctrlr->adminq);
1100
1101         if (ctrlr->resource != NULL) {
1102                 bus_release_resource(dev, SYS_RES_MEMORY,
1103                     ctrlr->resource_id, ctrlr->resource);
1104         }
1105
1106         if (ctrlr->bar4_resource != NULL) {
1107                 bus_release_resource(dev, SYS_RES_MEMORY,
1108                     ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1109         }
1110
1111         if (ctrlr->tag)
1112                 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1113
1114         if (ctrlr->res)
1115                 bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1116                     rman_get_rid(ctrlr->res), ctrlr->res);
1117
1118         if (ctrlr->msix_enabled)
1119                 pci_release_msi(dev);
1120 }
1121
1122 void
1123 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1124 {
1125         union cc_register       cc;
1126         union csts_register     csts;
1127         int                     ticks = 0;
1128
1129         cc.raw = nvme_mmio_read_4(ctrlr, cc);
1130         cc.bits.shn = NVME_SHN_NORMAL;
1131         nvme_mmio_write_4(ctrlr, cc, cc.raw);
1132         csts.raw = nvme_mmio_read_4(ctrlr, csts);
1133         while ((csts.bits.shst != NVME_SHST_COMPLETE) && (ticks++ < 5*hz)) {
1134                 pause("nvme shn", 1);
1135                 csts.raw = nvme_mmio_read_4(ctrlr, csts);
1136         }
1137         if (csts.bits.shst != NVME_SHST_COMPLETE)
1138                 nvme_printf(ctrlr, "did not complete shutdown within 5 seconds "
1139                     "of notification\n");
1140 }
1141
1142 void
1143 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1144     struct nvme_request *req)
1145 {
1146
1147         nvme_qpair_submit_request(&ctrlr->adminq, req);
1148 }
1149
1150 void
1151 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1152     struct nvme_request *req)
1153 {
1154         struct nvme_qpair       *qpair;
1155
1156         if (ctrlr->num_io_queues > 1)
1157                 qpair = &ctrlr->ioq[curcpu];
1158         else
1159                 qpair = &ctrlr->ioq[0];
1160
1161         nvme_qpair_submit_request(qpair, req);
1162 }
1163
1164 device_t
1165 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1166 {
1167
1168         return (ctrlr->dev);
1169 }
1170
1171 const struct nvme_controller_data *
1172 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1173 {
1174
1175         return (&ctrlr->cdata);
1176 }