]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - sys/dev/re/if_re.c
MFC r227814:
[FreeBSD/stable/9.git] / sys / dev / re / if_re.c
1 /*-
2  * Copyright (c) 1997, 1998-2003
3  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *      This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35
36 /*
37  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43
44 /*
45  * This driver is designed to support RealTek's next generation of
46  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
48  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
49  *
50  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51  * with the older 8139 family, however it also supports a special
52  * C+ mode of operation that provides several new performance enhancing
53  * features. These include:
54  *
55  *      o Descriptor based DMA mechanism. Each descriptor represents
56  *        a single packet fragment. Data buffers may be aligned on
57  *        any byte boundary.
58  *
59  *      o 64-bit DMA
60  *
61  *      o TCP/IP checksum offload for both RX and TX
62  *
63  *      o High and normal priority transmit DMA rings
64  *
65  *      o VLAN tag insertion and extraction
66  *
67  *      o TCP large send (segmentation offload)
68  *
69  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70  * programming API is fairly straightforward. The RX filtering, EEPROM
71  * access and PHY access is the same as it is on the older 8139 series
72  * chips.
73  *
74  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75  * same programming API and feature set as the 8139C+ with the following
76  * differences and additions:
77  *
78  *      o 1000Mbps mode
79  *
80  *      o Jumbo frames
81  *
82  *      o GMII and TBI ports/registers for interfacing with copper
83  *        or fiber PHYs
84  *
85  *      o RX and TX DMA rings can have up to 1024 descriptors
86  *        (the 8139C+ allows a maximum of 64)
87  *
88  *      o Slight differences in register layout from the 8139C+
89  *
90  * The TX start and timer interrupt registers are at different locations
91  * on the 8169 than they are on the 8139C+. Also, the status word in the
92  * RX descriptor has a slightly different bit layout. The 8169 does not
93  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94  * copper gigE PHY.
95  *
96  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97  * (the 'S' stands for 'single-chip'). These devices have the same
98  * programming API as the older 8169, but also have some vendor-specific
99  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101  *
102  * This driver takes advantage of the RX and TX checksum offload and
103  * VLAN tag insertion/extraction features. It also implements TX
104  * interrupt moderation using the timer interrupt registers, which
105  * significantly reduces TX interrupt load. There is also support
106  * for jumbo frames, however the 8169/8169S/8110S can not transmit
107  * jumbo frames larger than 7440, so the max MTU possible with this
108  * driver is 7422 bytes.
109  */
110
111 #ifdef HAVE_KERNEL_OPTION_HEADERS
112 #include "opt_device_polling.h"
113 #endif
114
115 #include <sys/param.h>
116 #include <sys/endian.h>
117 #include <sys/systm.h>
118 #include <sys/sockio.h>
119 #include <sys/mbuf.h>
120 #include <sys/malloc.h>
121 #include <sys/module.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/lock.h>
125 #include <sys/mutex.h>
126 #include <sys/sysctl.h>
127 #include <sys/taskqueue.h>
128
129 #include <net/if.h>
130 #include <net/if_arp.h>
131 #include <net/ethernet.h>
132 #include <net/if_dl.h>
133 #include <net/if_media.h>
134 #include <net/if_types.h>
135 #include <net/if_vlan_var.h>
136
137 #include <net/bpf.h>
138
139 #include <machine/bus.h>
140 #include <machine/resource.h>
141 #include <sys/bus.h>
142 #include <sys/rman.h>
143
144 #include <dev/mii/mii.h>
145 #include <dev/mii/miivar.h>
146
147 #include <dev/pci/pcireg.h>
148 #include <dev/pci/pcivar.h>
149
150 #include <pci/if_rlreg.h>
151
152 MODULE_DEPEND(re, pci, 1, 1, 1);
153 MODULE_DEPEND(re, ether, 1, 1, 1);
154 MODULE_DEPEND(re, miibus, 1, 1, 1);
155
156 /* "device miibus" required.  See GENERIC if you get errors here. */
157 #include "miibus_if.h"
158
159 /* Tunables. */
160 static int intr_filter = 0;
161 TUNABLE_INT("hw.re.intr_filter", &intr_filter);
162 static int msi_disable = 0;
163 TUNABLE_INT("hw.re.msi_disable", &msi_disable);
164 static int msix_disable = 0;
165 TUNABLE_INT("hw.re.msix_disable", &msix_disable);
166 static int prefer_iomap = 0;
167 TUNABLE_INT("hw.re.prefer_iomap", &prefer_iomap);
168
169 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
170
171 /*
172  * Various supported device vendors/types and their names.
173  */
174 static const struct rl_type const re_devs[] = {
175         { DLINK_VENDORID, DLINK_DEVICEID_528T, 0,
176             "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
177         { DLINK_VENDORID, DLINK_DEVICEID_530T_REVC, 0,
178             "D-Link DGE-530(T) Gigabit Ethernet Adapter" },
179         { RT_VENDORID, RT_DEVICEID_8139, 0,
180             "RealTek 8139C+ 10/100BaseTX" },
181         { RT_VENDORID, RT_DEVICEID_8101E, 0,
182             "RealTek 810xE PCIe 10/100baseTX" },
183         { RT_VENDORID, RT_DEVICEID_8168, 0,
184             "RealTek 8168/8111 B/C/CP/D/DP/E/F PCIe Gigabit Ethernet" },
185         { RT_VENDORID, RT_DEVICEID_8169, 0,
186             "RealTek 8169/8169S/8169SB(L)/8110S/8110SB(L) Gigabit Ethernet" },
187         { RT_VENDORID, RT_DEVICEID_8169SC, 0,
188             "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
189         { COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, 0,
190             "Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
191         { LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, 0,
192             "Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
193         { USR_VENDORID, USR_DEVICEID_997902, 0,
194             "US Robotics 997902 (RTL8169S) Gigabit Ethernet" }
195 };
196
197 static const struct rl_hwrev const re_hwrevs[] = {
198         { RL_HWREV_8139, RL_8139, "", RL_MTU },
199         { RL_HWREV_8139A, RL_8139, "A", RL_MTU },
200         { RL_HWREV_8139AG, RL_8139, "A-G", RL_MTU },
201         { RL_HWREV_8139B, RL_8139, "B", RL_MTU },
202         { RL_HWREV_8130, RL_8139, "8130", RL_MTU },
203         { RL_HWREV_8139C, RL_8139, "C", RL_MTU },
204         { RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C", RL_MTU },
205         { RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+", RL_MTU },
206         { RL_HWREV_8168B_SPIN1, RL_8169, "8168", RL_JUMBO_MTU },
207         { RL_HWREV_8169, RL_8169, "8169", RL_JUMBO_MTU },
208         { RL_HWREV_8169S, RL_8169, "8169S", RL_JUMBO_MTU },
209         { RL_HWREV_8110S, RL_8169, "8110S", RL_JUMBO_MTU },
210         { RL_HWREV_8169_8110SB, RL_8169, "8169SB/8110SB", RL_JUMBO_MTU },
211         { RL_HWREV_8169_8110SC, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU },
212         { RL_HWREV_8169_8110SBL, RL_8169, "8169SBL/8110SBL", RL_JUMBO_MTU },
213         { RL_HWREV_8169_8110SCE, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU },
214         { RL_HWREV_8100, RL_8139, "8100", RL_MTU },
215         { RL_HWREV_8101, RL_8139, "8101", RL_MTU },
216         { RL_HWREV_8100E, RL_8169, "8100E", RL_MTU },
217         { RL_HWREV_8101E, RL_8169, "8101E", RL_MTU },
218         { RL_HWREV_8102E, RL_8169, "8102E", RL_MTU },
219         { RL_HWREV_8102EL, RL_8169, "8102EL", RL_MTU },
220         { RL_HWREV_8102EL_SPIN1, RL_8169, "8102EL", RL_MTU },
221         { RL_HWREV_8103E, RL_8169, "8103E", RL_MTU },
222         { RL_HWREV_8401E, RL_8169, "8401E", RL_MTU },
223         { RL_HWREV_8402, RL_8169, "8402", RL_MTU },
224         { RL_HWREV_8105E, RL_8169, "8105E", RL_MTU },
225         { RL_HWREV_8105E_SPIN1, RL_8169, "8105E", RL_MTU },
226         { RL_HWREV_8168B_SPIN2, RL_8169, "8168", RL_JUMBO_MTU },
227         { RL_HWREV_8168B_SPIN3, RL_8169, "8168", RL_JUMBO_MTU },
228         { RL_HWREV_8168C, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K },
229         { RL_HWREV_8168C_SPIN2, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K },
230         { RL_HWREV_8168CP, RL_8169, "8168CP/8111CP", RL_JUMBO_MTU_6K },
231         { RL_HWREV_8168D, RL_8169, "8168D/8111D", RL_JUMBO_MTU_9K },
232         { RL_HWREV_8168DP, RL_8169, "8168DP/8111DP", RL_JUMBO_MTU_9K },
233         { RL_HWREV_8168E, RL_8169, "8168E/8111E", RL_JUMBO_MTU_9K},
234         { RL_HWREV_8168E_VL, RL_8169, "8168E/8111E-VL", RL_JUMBO_MTU_6K},
235         { RL_HWREV_8168F, RL_8169, "8168F/8111F", RL_JUMBO_MTU_9K},
236         { RL_HWREV_8411, RL_8169, "8411", RL_JUMBO_MTU_9K},
237         { 0, 0, NULL, 0 }
238 };
239
240 static int re_probe             (device_t);
241 static int re_attach            (device_t);
242 static int re_detach            (device_t);
243
244 static int re_encap             (struct rl_softc *, struct mbuf **);
245
246 static void re_dma_map_addr     (void *, bus_dma_segment_t *, int, int);
247 static int re_allocmem          (device_t, struct rl_softc *);
248 static __inline void re_discard_rxbuf
249                                 (struct rl_softc *, int);
250 static int re_newbuf            (struct rl_softc *, int);
251 static int re_jumbo_newbuf      (struct rl_softc *, int);
252 static int re_rx_list_init      (struct rl_softc *);
253 static int re_jrx_list_init     (struct rl_softc *);
254 static int re_tx_list_init      (struct rl_softc *);
255 #ifdef RE_FIXUP_RX
256 static __inline void re_fixup_rx
257                                 (struct mbuf *);
258 #endif
259 static int re_rxeof             (struct rl_softc *, int *);
260 static void re_txeof            (struct rl_softc *);
261 #ifdef DEVICE_POLLING
262 static int re_poll              (struct ifnet *, enum poll_cmd, int);
263 static int re_poll_locked       (struct ifnet *, enum poll_cmd, int);
264 #endif
265 static int re_intr              (void *);
266 static void re_intr_msi         (void *);
267 static void re_tick             (void *);
268 static void re_int_task         (void *, int);
269 static void re_start            (struct ifnet *);
270 static void re_start_locked     (struct ifnet *);
271 static int re_ioctl             (struct ifnet *, u_long, caddr_t);
272 static void re_init             (void *);
273 static void re_init_locked      (struct rl_softc *);
274 static void re_stop             (struct rl_softc *);
275 static void re_watchdog         (struct rl_softc *);
276 static int re_suspend           (device_t);
277 static int re_resume            (device_t);
278 static int re_shutdown          (device_t);
279 static int re_ifmedia_upd       (struct ifnet *);
280 static void re_ifmedia_sts      (struct ifnet *, struct ifmediareq *);
281
282 static void re_eeprom_putbyte   (struct rl_softc *, int);
283 static void re_eeprom_getword   (struct rl_softc *, int, u_int16_t *);
284 static void re_read_eeprom      (struct rl_softc *, caddr_t, int, int);
285 static int re_gmii_readreg      (device_t, int, int);
286 static int re_gmii_writereg     (device_t, int, int, int);
287
288 static int re_miibus_readreg    (device_t, int, int);
289 static int re_miibus_writereg   (device_t, int, int, int);
290 static void re_miibus_statchg   (device_t);
291
292 static void re_set_jumbo        (struct rl_softc *, int);
293 static void re_set_rxmode               (struct rl_softc *);
294 static void re_reset            (struct rl_softc *);
295 static void re_setwol           (struct rl_softc *);
296 static void re_clrwol           (struct rl_softc *);
297 static void re_set_linkspeed    (struct rl_softc *);
298
299 #ifdef RE_DIAG
300 static int re_diag              (struct rl_softc *);
301 #endif
302
303 static void re_add_sysctls      (struct rl_softc *);
304 static int re_sysctl_stats      (SYSCTL_HANDLER_ARGS);
305 static int sysctl_int_range     (SYSCTL_HANDLER_ARGS, int, int);
306 static int sysctl_hw_re_int_mod (SYSCTL_HANDLER_ARGS);
307
308 static device_method_t re_methods[] = {
309         /* Device interface */
310         DEVMETHOD(device_probe,         re_probe),
311         DEVMETHOD(device_attach,        re_attach),
312         DEVMETHOD(device_detach,        re_detach),
313         DEVMETHOD(device_suspend,       re_suspend),
314         DEVMETHOD(device_resume,        re_resume),
315         DEVMETHOD(device_shutdown,      re_shutdown),
316
317         /* MII interface */
318         DEVMETHOD(miibus_readreg,       re_miibus_readreg),
319         DEVMETHOD(miibus_writereg,      re_miibus_writereg),
320         DEVMETHOD(miibus_statchg,       re_miibus_statchg),
321
322         DEVMETHOD_END
323 };
324
325 static driver_t re_driver = {
326         "re",
327         re_methods,
328         sizeof(struct rl_softc)
329 };
330
331 static devclass_t re_devclass;
332
333 DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
334 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
335
336 #define EE_SET(x)                                       \
337         CSR_WRITE_1(sc, RL_EECMD,                       \
338                 CSR_READ_1(sc, RL_EECMD) | x)
339
340 #define EE_CLR(x)                                       \
341         CSR_WRITE_1(sc, RL_EECMD,                       \
342                 CSR_READ_1(sc, RL_EECMD) & ~x)
343
344 /*
345  * Send a read command and address to the EEPROM, check for ACK.
346  */
347 static void
348 re_eeprom_putbyte(struct rl_softc *sc, int addr)
349 {
350         int                     d, i;
351
352         d = addr | (RL_9346_READ << sc->rl_eewidth);
353
354         /*
355          * Feed in each bit and strobe the clock.
356          */
357
358         for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
359                 if (d & i) {
360                         EE_SET(RL_EE_DATAIN);
361                 } else {
362                         EE_CLR(RL_EE_DATAIN);
363                 }
364                 DELAY(100);
365                 EE_SET(RL_EE_CLK);
366                 DELAY(150);
367                 EE_CLR(RL_EE_CLK);
368                 DELAY(100);
369         }
370 }
371
372 /*
373  * Read a word of data stored in the EEPROM at address 'addr.'
374  */
375 static void
376 re_eeprom_getword(struct rl_softc *sc, int addr, u_int16_t *dest)
377 {
378         int                     i;
379         u_int16_t               word = 0;
380
381         /*
382          * Send address of word we want to read.
383          */
384         re_eeprom_putbyte(sc, addr);
385
386         /*
387          * Start reading bits from EEPROM.
388          */
389         for (i = 0x8000; i; i >>= 1) {
390                 EE_SET(RL_EE_CLK);
391                 DELAY(100);
392                 if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
393                         word |= i;
394                 EE_CLR(RL_EE_CLK);
395                 DELAY(100);
396         }
397
398         *dest = word;
399 }
400
401 /*
402  * Read a sequence of words from the EEPROM.
403  */
404 static void
405 re_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt)
406 {
407         int                     i;
408         u_int16_t               word = 0, *ptr;
409
410         CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
411
412         DELAY(100);
413
414         for (i = 0; i < cnt; i++) {
415                 CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
416                 re_eeprom_getword(sc, off + i, &word);
417                 CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
418                 ptr = (u_int16_t *)(dest + (i * 2));
419                 *ptr = word;
420         }
421
422         CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
423 }
424
425 static int
426 re_gmii_readreg(device_t dev, int phy, int reg)
427 {
428         struct rl_softc         *sc;
429         u_int32_t               rval;
430         int                     i;
431
432         sc = device_get_softc(dev);
433
434         /* Let the rgephy driver read the GMEDIASTAT register */
435
436         if (reg == RL_GMEDIASTAT) {
437                 rval = CSR_READ_1(sc, RL_GMEDIASTAT);
438                 return (rval);
439         }
440
441         CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
442
443         for (i = 0; i < RL_PHY_TIMEOUT; i++) {
444                 rval = CSR_READ_4(sc, RL_PHYAR);
445                 if (rval & RL_PHYAR_BUSY)
446                         break;
447                 DELAY(25);
448         }
449
450         if (i == RL_PHY_TIMEOUT) {
451                 device_printf(sc->rl_dev, "PHY read failed\n");
452                 return (0);
453         }
454
455         /*
456          * Controller requires a 20us delay to process next MDIO request.
457          */
458         DELAY(20);
459
460         return (rval & RL_PHYAR_PHYDATA);
461 }
462
463 static int
464 re_gmii_writereg(device_t dev, int phy, int reg, int data)
465 {
466         struct rl_softc         *sc;
467         u_int32_t               rval;
468         int                     i;
469
470         sc = device_get_softc(dev);
471
472         CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
473             (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
474
475         for (i = 0; i < RL_PHY_TIMEOUT; i++) {
476                 rval = CSR_READ_4(sc, RL_PHYAR);
477                 if (!(rval & RL_PHYAR_BUSY))
478                         break;
479                 DELAY(25);
480         }
481
482         if (i == RL_PHY_TIMEOUT) {
483                 device_printf(sc->rl_dev, "PHY write failed\n");
484                 return (0);
485         }
486
487         /*
488          * Controller requires a 20us delay to process next MDIO request.
489          */
490         DELAY(20);
491
492         return (0);
493 }
494
495 static int
496 re_miibus_readreg(device_t dev, int phy, int reg)
497 {
498         struct rl_softc         *sc;
499         u_int16_t               rval = 0;
500         u_int16_t               re8139_reg = 0;
501
502         sc = device_get_softc(dev);
503
504         if (sc->rl_type == RL_8169) {
505                 rval = re_gmii_readreg(dev, phy, reg);
506                 return (rval);
507         }
508
509         switch (reg) {
510         case MII_BMCR:
511                 re8139_reg = RL_BMCR;
512                 break;
513         case MII_BMSR:
514                 re8139_reg = RL_BMSR;
515                 break;
516         case MII_ANAR:
517                 re8139_reg = RL_ANAR;
518                 break;
519         case MII_ANER:
520                 re8139_reg = RL_ANER;
521                 break;
522         case MII_ANLPAR:
523                 re8139_reg = RL_LPAR;
524                 break;
525         case MII_PHYIDR1:
526         case MII_PHYIDR2:
527                 return (0);
528         /*
529          * Allow the rlphy driver to read the media status
530          * register. If we have a link partner which does not
531          * support NWAY, this is the register which will tell
532          * us the results of parallel detection.
533          */
534         case RL_MEDIASTAT:
535                 rval = CSR_READ_1(sc, RL_MEDIASTAT);
536                 return (rval);
537         default:
538                 device_printf(sc->rl_dev, "bad phy register\n");
539                 return (0);
540         }
541         rval = CSR_READ_2(sc, re8139_reg);
542         if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) {
543                 /* 8139C+ has different bit layout. */
544                 rval &= ~(BMCR_LOOP | BMCR_ISO);
545         }
546         return (rval);
547 }
548
549 static int
550 re_miibus_writereg(device_t dev, int phy, int reg, int data)
551 {
552         struct rl_softc         *sc;
553         u_int16_t               re8139_reg = 0;
554         int                     rval = 0;
555
556         sc = device_get_softc(dev);
557
558         if (sc->rl_type == RL_8169) {
559                 rval = re_gmii_writereg(dev, phy, reg, data);
560                 return (rval);
561         }
562
563         switch (reg) {
564         case MII_BMCR:
565                 re8139_reg = RL_BMCR;
566                 if (sc->rl_type == RL_8139CPLUS) {
567                         /* 8139C+ has different bit layout. */
568                         data &= ~(BMCR_LOOP | BMCR_ISO);
569                 }
570                 break;
571         case MII_BMSR:
572                 re8139_reg = RL_BMSR;
573                 break;
574         case MII_ANAR:
575                 re8139_reg = RL_ANAR;
576                 break;
577         case MII_ANER:
578                 re8139_reg = RL_ANER;
579                 break;
580         case MII_ANLPAR:
581                 re8139_reg = RL_LPAR;
582                 break;
583         case MII_PHYIDR1:
584         case MII_PHYIDR2:
585                 return (0);
586                 break;
587         default:
588                 device_printf(sc->rl_dev, "bad phy register\n");
589                 return (0);
590         }
591         CSR_WRITE_2(sc, re8139_reg, data);
592         return (0);
593 }
594
595 static void
596 re_miibus_statchg(device_t dev)
597 {
598         struct rl_softc         *sc;
599         struct ifnet            *ifp;
600         struct mii_data         *mii;
601
602         sc = device_get_softc(dev);
603         mii = device_get_softc(sc->rl_miibus);
604         ifp = sc->rl_ifp;
605         if (mii == NULL || ifp == NULL ||
606             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
607                 return;
608
609         sc->rl_flags &= ~RL_FLAG_LINK;
610         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
611             (IFM_ACTIVE | IFM_AVALID)) {
612                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
613                 case IFM_10_T:
614                 case IFM_100_TX:
615                         sc->rl_flags |= RL_FLAG_LINK;
616                         break;
617                 case IFM_1000_T:
618                         if ((sc->rl_flags & RL_FLAG_FASTETHER) != 0)
619                                 break;
620                         sc->rl_flags |= RL_FLAG_LINK;
621                         break;
622                 default:
623                         break;
624                 }
625         }
626         /*
627          * RealTek controllers does not provide any interface to
628          * Tx/Rx MACs for resolved speed, duplex and flow-control
629          * parameters.
630          */
631 }
632
633 /*
634  * Set the RX configuration and 64-bit multicast hash filter.
635  */
636 static void
637 re_set_rxmode(struct rl_softc *sc)
638 {
639         struct ifnet            *ifp;
640         struct ifmultiaddr      *ifma;
641         uint32_t                hashes[2] = { 0, 0 };
642         uint32_t                h, rxfilt;
643
644         RL_LOCK_ASSERT(sc);
645
646         ifp = sc->rl_ifp;
647
648         rxfilt = RL_RXCFG_CONFIG | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_BROAD;
649
650         if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
651                 if (ifp->if_flags & IFF_PROMISC)
652                         rxfilt |= RL_RXCFG_RX_ALLPHYS;
653                 /*
654                  * Unlike other hardwares, we have to explicitly set
655                  * RL_RXCFG_RX_MULTI to receive multicast frames in
656                  * promiscuous mode.
657                  */
658                 rxfilt |= RL_RXCFG_RX_MULTI;
659                 hashes[0] = hashes[1] = 0xffffffff;
660                 goto done;
661         }
662
663         if_maddr_rlock(ifp);
664         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
665                 if (ifma->ifma_addr->sa_family != AF_LINK)
666                         continue;
667                 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
668                     ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
669                 if (h < 32)
670                         hashes[0] |= (1 << h);
671                 else
672                         hashes[1] |= (1 << (h - 32));
673         }
674         if_maddr_runlock(ifp);
675
676         if (hashes[0] != 0 || hashes[1] != 0) {
677                 /*
678                  * For some unfathomable reason, RealTek decided to
679                  * reverse the order of the multicast hash registers
680                  * in the PCI Express parts.  This means we have to
681                  * write the hash pattern in reverse order for those
682                  * devices.
683                  */
684                 if ((sc->rl_flags & RL_FLAG_PCIE) != 0) {
685                         h = bswap32(hashes[0]);
686                         hashes[0] = bswap32(hashes[1]);
687                         hashes[1] = h;
688                 }
689                 rxfilt |= RL_RXCFG_RX_MULTI;
690         }
691
692 done:
693         CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
694         CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
695         CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
696 }
697
698 static void
699 re_reset(struct rl_softc *sc)
700 {
701         int                     i;
702
703         RL_LOCK_ASSERT(sc);
704
705         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
706
707         for (i = 0; i < RL_TIMEOUT; i++) {
708                 DELAY(10);
709                 if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
710                         break;
711         }
712         if (i == RL_TIMEOUT)
713                 device_printf(sc->rl_dev, "reset never completed!\n");
714
715         if ((sc->rl_flags & RL_FLAG_MACRESET) != 0)
716                 CSR_WRITE_1(sc, 0x82, 1);
717         if (sc->rl_hwrev->rl_rev == RL_HWREV_8169S)
718                 re_gmii_writereg(sc->rl_dev, 1, 0x0b, 0);
719 }
720
721 #ifdef RE_DIAG
722
723 /*
724  * The following routine is designed to test for a defect on some
725  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
726  * lines connected to the bus, however for a 32-bit only card, they
727  * should be pulled high. The result of this defect is that the
728  * NIC will not work right if you plug it into a 64-bit slot: DMA
729  * operations will be done with 64-bit transfers, which will fail
730  * because the 64-bit data lines aren't connected.
731  *
732  * There's no way to work around this (short of talking a soldering
733  * iron to the board), however we can detect it. The method we use
734  * here is to put the NIC into digital loopback mode, set the receiver
735  * to promiscuous mode, and then try to send a frame. We then compare
736  * the frame data we sent to what was received. If the data matches,
737  * then the NIC is working correctly, otherwise we know the user has
738  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
739  * slot. In the latter case, there's no way the NIC can work correctly,
740  * so we print out a message on the console and abort the device attach.
741  */
742
743 static int
744 re_diag(struct rl_softc *sc)
745 {
746         struct ifnet            *ifp = sc->rl_ifp;
747         struct mbuf             *m0;
748         struct ether_header     *eh;
749         struct rl_desc          *cur_rx;
750         u_int16_t               status;
751         u_int32_t               rxstat;
752         int                     total_len, i, error = 0, phyaddr;
753         u_int8_t                dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
754         u_int8_t                src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
755
756         /* Allocate a single mbuf */
757         MGETHDR(m0, M_DONTWAIT, MT_DATA);
758         if (m0 == NULL)
759                 return (ENOBUFS);
760
761         RL_LOCK(sc);
762
763         /*
764          * Initialize the NIC in test mode. This sets the chip up
765          * so that it can send and receive frames, but performs the
766          * following special functions:
767          * - Puts receiver in promiscuous mode
768          * - Enables digital loopback mode
769          * - Leaves interrupts turned off
770          */
771
772         ifp->if_flags |= IFF_PROMISC;
773         sc->rl_testmode = 1;
774         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
775         re_init_locked(sc);
776         sc->rl_flags |= RL_FLAG_LINK;
777         if (sc->rl_type == RL_8169)
778                 phyaddr = 1;
779         else
780                 phyaddr = 0;
781
782         re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
783         for (i = 0; i < RL_TIMEOUT; i++) {
784                 status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
785                 if (!(status & BMCR_RESET))
786                         break;
787         }
788
789         re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
790         CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
791
792         DELAY(100000);
793
794         /* Put some data in the mbuf */
795
796         eh = mtod(m0, struct ether_header *);
797         bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
798         bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
799         eh->ether_type = htons(ETHERTYPE_IP);
800         m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
801
802         /*
803          * Queue the packet, start transmission.
804          * Note: IF_HANDOFF() ultimately calls re_start() for us.
805          */
806
807         CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
808         RL_UNLOCK(sc);
809         /* XXX: re_diag must not be called when in ALTQ mode */
810         IF_HANDOFF(&ifp->if_snd, m0, ifp);
811         RL_LOCK(sc);
812         m0 = NULL;
813
814         /* Wait for it to propagate through the chip */
815
816         DELAY(100000);
817         for (i = 0; i < RL_TIMEOUT; i++) {
818                 status = CSR_READ_2(sc, RL_ISR);
819                 CSR_WRITE_2(sc, RL_ISR, status);
820                 if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
821                     (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
822                         break;
823                 DELAY(10);
824         }
825
826         if (i == RL_TIMEOUT) {
827                 device_printf(sc->rl_dev,
828                     "diagnostic failed, failed to receive packet in"
829                     " loopback mode\n");
830                 error = EIO;
831                 goto done;
832         }
833
834         /*
835          * The packet should have been dumped into the first
836          * entry in the RX DMA ring. Grab it from there.
837          */
838
839         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
840             sc->rl_ldata.rl_rx_list_map,
841             BUS_DMASYNC_POSTREAD);
842         bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
843             sc->rl_ldata.rl_rx_desc[0].rx_dmamap,
844             BUS_DMASYNC_POSTREAD);
845         bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
846             sc->rl_ldata.rl_rx_desc[0].rx_dmamap);
847
848         m0 = sc->rl_ldata.rl_rx_desc[0].rx_m;
849         sc->rl_ldata.rl_rx_desc[0].rx_m = NULL;
850         eh = mtod(m0, struct ether_header *);
851
852         cur_rx = &sc->rl_ldata.rl_rx_list[0];
853         total_len = RL_RXBYTES(cur_rx);
854         rxstat = le32toh(cur_rx->rl_cmdstat);
855
856         if (total_len != ETHER_MIN_LEN) {
857                 device_printf(sc->rl_dev,
858                     "diagnostic failed, received short packet\n");
859                 error = EIO;
860                 goto done;
861         }
862
863         /* Test that the received packet data matches what we sent. */
864
865         if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
866             bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
867             ntohs(eh->ether_type) != ETHERTYPE_IP) {
868                 device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n");
869                 device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n",
870                     dst, ":", src, ":", ETHERTYPE_IP);
871                 device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n",
872                     eh->ether_dhost, ":", eh->ether_shost, ":",
873                     ntohs(eh->ether_type));
874                 device_printf(sc->rl_dev, "You may have a defective 32-bit "
875                     "NIC plugged into a 64-bit PCI slot.\n");
876                 device_printf(sc->rl_dev, "Please re-install the NIC in a "
877                     "32-bit slot for proper operation.\n");
878                 device_printf(sc->rl_dev, "Read the re(4) man page for more "
879                     "details.\n");
880                 error = EIO;
881         }
882
883 done:
884         /* Turn interface off, release resources */
885
886         sc->rl_testmode = 0;
887         sc->rl_flags &= ~RL_FLAG_LINK;
888         ifp->if_flags &= ~IFF_PROMISC;
889         re_stop(sc);
890         if (m0 != NULL)
891                 m_freem(m0);
892
893         RL_UNLOCK(sc);
894
895         return (error);
896 }
897
898 #endif
899
900 /*
901  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
902  * IDs against our list and return a device name if we find a match.
903  */
904 static int
905 re_probe(device_t dev)
906 {
907         const struct rl_type    *t;
908         uint16_t                devid, vendor;
909         uint16_t                revid, sdevid;
910         int                     i;
911
912         vendor = pci_get_vendor(dev);
913         devid = pci_get_device(dev);
914         revid = pci_get_revid(dev);
915         sdevid = pci_get_subdevice(dev);
916
917         if (vendor == LINKSYS_VENDORID && devid == LINKSYS_DEVICEID_EG1032) {
918                 if (sdevid != LINKSYS_SUBDEVICE_EG1032_REV3) {
919                         /*
920                          * Only attach to rev. 3 of the Linksys EG1032 adapter.
921                          * Rev. 2 is supported by sk(4).
922                          */
923                         return (ENXIO);
924                 }
925         }
926
927         if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
928                 if (revid != 0x20) {
929                         /* 8139, let rl(4) take care of this device. */
930                         return (ENXIO);
931                 }
932         }
933
934         t = re_devs;
935         for (i = 0; i < sizeof(re_devs) / sizeof(re_devs[0]); i++, t++) {
936                 if (vendor == t->rl_vid && devid == t->rl_did) {
937                         device_set_desc(dev, t->rl_name);
938                         return (BUS_PROBE_DEFAULT);
939                 }
940         }
941
942         return (ENXIO);
943 }
944
945 /*
946  * Map a single buffer address.
947  */
948
949 static void
950 re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
951 {
952         bus_addr_t              *addr;
953
954         if (error)
955                 return;
956
957         KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
958         addr = arg;
959         *addr = segs->ds_addr;
960 }
961
962 static int
963 re_allocmem(device_t dev, struct rl_softc *sc)
964 {
965         bus_addr_t              lowaddr;
966         bus_size_t              rx_list_size, tx_list_size;
967         int                     error;
968         int                     i;
969
970         rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc);
971         tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc);
972
973         /*
974          * Allocate the parent bus DMA tag appropriate for PCI.
975          * In order to use DAC, RL_CPLUSCMD_PCI_DAC bit of RL_CPLUS_CMD
976          * register should be set. However some RealTek chips are known
977          * to be buggy on DAC handling, therefore disable DAC by limiting
978          * DMA address space to 32bit. PCIe variants of RealTek chips
979          * may not have the limitation.
980          */
981         lowaddr = BUS_SPACE_MAXADDR;
982         if ((sc->rl_flags & RL_FLAG_PCIE) == 0)
983                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
984         error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
985             lowaddr, BUS_SPACE_MAXADDR, NULL, NULL,
986             BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
987             NULL, NULL, &sc->rl_parent_tag);
988         if (error) {
989                 device_printf(dev, "could not allocate parent DMA tag\n");
990                 return (error);
991         }
992
993         /*
994          * Allocate map for TX mbufs.
995          */
996         error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0,
997             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
998             NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0,
999             NULL, NULL, &sc->rl_ldata.rl_tx_mtag);
1000         if (error) {
1001                 device_printf(dev, "could not allocate TX DMA tag\n");
1002                 return (error);
1003         }
1004
1005         /*
1006          * Allocate map for RX mbufs.
1007          */
1008
1009         if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
1010                 error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t),
1011                     0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1012                     MJUM9BYTES, 1, MJUM9BYTES, 0, NULL, NULL,
1013                     &sc->rl_ldata.rl_jrx_mtag);
1014                 if (error) {
1015                         device_printf(dev,
1016                             "could not allocate jumbo RX DMA tag\n");
1017                         return (error);
1018                 }
1019         }
1020         error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0,
1021             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1022             MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag);
1023         if (error) {
1024                 device_printf(dev, "could not allocate RX DMA tag\n");
1025                 return (error);
1026         }
1027
1028         /*
1029          * Allocate map for TX descriptor list.
1030          */
1031         error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1032             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1033             NULL, tx_list_size, 1, tx_list_size, 0,
1034             NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1035         if (error) {
1036                 device_printf(dev, "could not allocate TX DMA ring tag\n");
1037                 return (error);
1038         }
1039
1040         /* Allocate DMA'able memory for the TX ring */
1041
1042         error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1043             (void **)&sc->rl_ldata.rl_tx_list,
1044             BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1045             &sc->rl_ldata.rl_tx_list_map);
1046         if (error) {
1047                 device_printf(dev, "could not allocate TX DMA ring\n");
1048                 return (error);
1049         }
1050
1051         /* Load the map for the TX ring. */
1052
1053         sc->rl_ldata.rl_tx_list_addr = 0;
1054         error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1055              sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1056              tx_list_size, re_dma_map_addr,
1057              &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1058         if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) {
1059                 device_printf(dev, "could not load TX DMA ring\n");
1060                 return (ENOMEM);
1061         }
1062
1063         /* Create DMA maps for TX buffers */
1064
1065         for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1066                 error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0,
1067                     &sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1068                 if (error) {
1069                         device_printf(dev, "could not create DMA map for TX\n");
1070                         return (error);
1071                 }
1072         }
1073
1074         /*
1075          * Allocate map for RX descriptor list.
1076          */
1077         error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1078             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1079             NULL, rx_list_size, 1, rx_list_size, 0,
1080             NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1081         if (error) {
1082                 device_printf(dev, "could not create RX DMA ring tag\n");
1083                 return (error);
1084         }
1085
1086         /* Allocate DMA'able memory for the RX ring */
1087
1088         error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1089             (void **)&sc->rl_ldata.rl_rx_list,
1090             BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1091             &sc->rl_ldata.rl_rx_list_map);
1092         if (error) {
1093                 device_printf(dev, "could not allocate RX DMA ring\n");
1094                 return (error);
1095         }
1096
1097         /* Load the map for the RX ring. */
1098
1099         sc->rl_ldata.rl_rx_list_addr = 0;
1100         error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1101              sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1102              rx_list_size, re_dma_map_addr,
1103              &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1104         if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) {
1105                 device_printf(dev, "could not load RX DMA ring\n");
1106                 return (ENOMEM);
1107         }
1108
1109         /* Create DMA maps for RX buffers */
1110
1111         if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
1112                 error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0,
1113                     &sc->rl_ldata.rl_jrx_sparemap);
1114                 if (error) {
1115                         device_printf(dev,
1116                             "could not create spare DMA map for jumbo RX\n");
1117                         return (error);
1118                 }
1119                 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1120                         error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0,
1121                             &sc->rl_ldata.rl_jrx_desc[i].rx_dmamap);
1122                         if (error) {
1123                                 device_printf(dev,
1124                                     "could not create DMA map for jumbo RX\n");
1125                                 return (error);
1126                         }
1127                 }
1128         }
1129         error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1130             &sc->rl_ldata.rl_rx_sparemap);
1131         if (error) {
1132                 device_printf(dev, "could not create spare DMA map for RX\n");
1133                 return (error);
1134         }
1135         for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1136                 error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1137                     &sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1138                 if (error) {
1139                         device_printf(dev, "could not create DMA map for RX\n");
1140                         return (error);
1141                 }
1142         }
1143
1144         /* Create DMA map for statistics. */
1145         error = bus_dma_tag_create(sc->rl_parent_tag, RL_DUMP_ALIGN, 0,
1146             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1147             sizeof(struct rl_stats), 1, sizeof(struct rl_stats), 0, NULL, NULL,
1148             &sc->rl_ldata.rl_stag);
1149         if (error) {
1150                 device_printf(dev, "could not create statistics DMA tag\n");
1151                 return (error);
1152         }
1153         /* Allocate DMA'able memory for statistics. */
1154         error = bus_dmamem_alloc(sc->rl_ldata.rl_stag,
1155             (void **)&sc->rl_ldata.rl_stats,
1156             BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1157             &sc->rl_ldata.rl_smap);
1158         if (error) {
1159                 device_printf(dev,
1160                     "could not allocate statistics DMA memory\n");
1161                 return (error);
1162         }
1163         /* Load the map for statistics. */
1164         sc->rl_ldata.rl_stats_addr = 0;
1165         error = bus_dmamap_load(sc->rl_ldata.rl_stag, sc->rl_ldata.rl_smap,
1166             sc->rl_ldata.rl_stats, sizeof(struct rl_stats), re_dma_map_addr,
1167              &sc->rl_ldata.rl_stats_addr, BUS_DMA_NOWAIT);
1168         if (error != 0 || sc->rl_ldata.rl_stats_addr == 0) {
1169                 device_printf(dev, "could not load statistics DMA memory\n");
1170                 return (ENOMEM);
1171         }
1172
1173         return (0);
1174 }
1175
1176 /*
1177  * Attach the interface. Allocate softc structures, do ifmedia
1178  * setup and ethernet/BPF attach.
1179  */
1180 static int
1181 re_attach(device_t dev)
1182 {
1183         u_char                  eaddr[ETHER_ADDR_LEN];
1184         u_int16_t               as[ETHER_ADDR_LEN / 2];
1185         struct rl_softc         *sc;
1186         struct ifnet            *ifp;
1187         const struct rl_hwrev   *hw_rev;
1188         u_int32_t               cap, ctl;
1189         int                     hwrev;
1190         u_int16_t               devid, re_did = 0;
1191         int                     error = 0, i, phy, rid;
1192         int                     msic, msixc, reg;
1193         uint8_t                 cfg;
1194
1195         sc = device_get_softc(dev);
1196         sc->rl_dev = dev;
1197
1198         mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1199             MTX_DEF);
1200         callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
1201
1202         /*
1203          * Map control/status registers.
1204          */
1205         pci_enable_busmaster(dev);
1206
1207         devid = pci_get_device(dev);
1208         /*
1209          * Prefer memory space register mapping over IO space.
1210          * Because RTL8169SC does not seem to work when memory mapping
1211          * is used always activate io mapping.
1212          */
1213         if (devid == RT_DEVICEID_8169SC)
1214                 prefer_iomap = 1;
1215         if (prefer_iomap == 0) {
1216                 sc->rl_res_id = PCIR_BAR(1);
1217                 sc->rl_res_type = SYS_RES_MEMORY;
1218                 /* RTL8168/8101E seems to use different BARs. */
1219                 if (devid == RT_DEVICEID_8168 || devid == RT_DEVICEID_8101E)
1220                         sc->rl_res_id = PCIR_BAR(2);
1221         } else {
1222                 sc->rl_res_id = PCIR_BAR(0);
1223                 sc->rl_res_type = SYS_RES_IOPORT;
1224         }
1225         sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1226             &sc->rl_res_id, RF_ACTIVE);
1227         if (sc->rl_res == NULL && prefer_iomap == 0) {
1228                 sc->rl_res_id = PCIR_BAR(0);
1229                 sc->rl_res_type = SYS_RES_IOPORT;
1230                 sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1231                     &sc->rl_res_id, RF_ACTIVE);
1232         }
1233         if (sc->rl_res == NULL) {
1234                 device_printf(dev, "couldn't map ports/memory\n");
1235                 error = ENXIO;
1236                 goto fail;
1237         }
1238
1239         sc->rl_btag = rman_get_bustag(sc->rl_res);
1240         sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1241
1242         msic = pci_msi_count(dev);
1243         msixc = pci_msix_count(dev);
1244         if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
1245                 sc->rl_flags |= RL_FLAG_PCIE;
1246                 sc->rl_expcap = reg;
1247         }
1248         if (bootverbose) {
1249                 device_printf(dev, "MSI count : %d\n", msic);
1250                 device_printf(dev, "MSI-X count : %d\n", msixc);
1251         }
1252         if (msix_disable > 0)
1253                 msixc = 0;
1254         if (msi_disable > 0)
1255                 msic = 0;
1256         /* Prefer MSI-X to MSI. */
1257         if (msixc > 0) {
1258                 msixc = 1;
1259                 rid = PCIR_BAR(4);
1260                 sc->rl_res_pba = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1261                     &rid, RF_ACTIVE);
1262                 if (sc->rl_res_pba == NULL) {
1263                         device_printf(sc->rl_dev,
1264                             "could not allocate MSI-X PBA resource\n");
1265                 }
1266                 if (sc->rl_res_pba != NULL &&
1267                     pci_alloc_msix(dev, &msixc) == 0) {
1268                         if (msixc == 1) {
1269                                 device_printf(dev, "Using %d MSI-X message\n",
1270                                     msixc);
1271                                 sc->rl_flags |= RL_FLAG_MSIX;
1272                         } else
1273                                 pci_release_msi(dev);
1274                 }
1275                 if ((sc->rl_flags & RL_FLAG_MSIX) == 0) {
1276                         if (sc->rl_res_pba != NULL)
1277                                 bus_release_resource(dev, SYS_RES_MEMORY, rid,
1278                                     sc->rl_res_pba);
1279                         sc->rl_res_pba = NULL;
1280                         msixc = 0;
1281                 }
1282         }
1283         /* Prefer MSI to INTx. */
1284         if (msixc == 0 && msic > 0) {
1285                 msic = 1;
1286                 if (pci_alloc_msi(dev, &msic) == 0) {
1287                         if (msic == RL_MSI_MESSAGES) {
1288                                 device_printf(dev, "Using %d MSI message\n",
1289                                     msic);
1290                                 sc->rl_flags |= RL_FLAG_MSI;
1291                                 /* Explicitly set MSI enable bit. */
1292                                 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1293                                 cfg = CSR_READ_1(sc, RL_CFG2);
1294                                 cfg |= RL_CFG2_MSI;
1295                                 CSR_WRITE_1(sc, RL_CFG2, cfg);
1296                                 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1297                         } else
1298                                 pci_release_msi(dev);
1299                 }
1300                 if ((sc->rl_flags & RL_FLAG_MSI) == 0)
1301                         msic = 0;
1302         }
1303
1304         /* Allocate interrupt */
1305         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0) {
1306                 rid = 0;
1307                 sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1308                     RF_SHAREABLE | RF_ACTIVE);
1309                 if (sc->rl_irq[0] == NULL) {
1310                         device_printf(dev, "couldn't allocate IRQ resources\n");
1311                         error = ENXIO;
1312                         goto fail;
1313                 }
1314         } else {
1315                 for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1316                         sc->rl_irq[i] = bus_alloc_resource_any(dev,
1317                             SYS_RES_IRQ, &rid, RF_ACTIVE);
1318                         if (sc->rl_irq[i] == NULL) {
1319                                 device_printf(dev,
1320                                     "couldn't llocate IRQ resources for "
1321                                     "message %d\n", rid);
1322                                 error = ENXIO;
1323                                 goto fail;
1324                         }
1325                 }
1326         }
1327
1328         if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1329                 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1330                 cfg = CSR_READ_1(sc, RL_CFG2);
1331                 if ((cfg & RL_CFG2_MSI) != 0) {
1332                         device_printf(dev, "turning off MSI enable bit.\n");
1333                         cfg &= ~RL_CFG2_MSI;
1334                         CSR_WRITE_1(sc, RL_CFG2, cfg);
1335                 }
1336                 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1337         }
1338
1339         /* Disable ASPM L0S/L1. */
1340         if (sc->rl_expcap != 0) {
1341                 cap = pci_read_config(dev, sc->rl_expcap +
1342                     PCIR_EXPRESS_LINK_CAP, 2);
1343                 if ((cap & PCIM_LINK_CAP_ASPM) != 0) {
1344                         ctl = pci_read_config(dev, sc->rl_expcap +
1345                             PCIR_EXPRESS_LINK_CTL, 2);
1346                         if ((ctl & 0x0003) != 0) {
1347                                 ctl &= ~0x0003;
1348                                 pci_write_config(dev, sc->rl_expcap +
1349                                     PCIR_EXPRESS_LINK_CTL, ctl, 2);
1350                                 device_printf(dev, "ASPM disabled\n");
1351                         }
1352                 } else
1353                         device_printf(dev, "no ASPM capability\n");
1354         }
1355
1356         hw_rev = re_hwrevs;
1357         hwrev = CSR_READ_4(sc, RL_TXCFG);
1358         switch (hwrev & 0x70000000) {
1359         case 0x00000000:
1360         case 0x10000000:
1361                 device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0xfc800000);
1362                 hwrev &= (RL_TXCFG_HWREV | 0x80000000);
1363                 break;
1364         default:
1365                 device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0x7c800000);
1366                 hwrev &= RL_TXCFG_HWREV;
1367                 break;
1368         }
1369         device_printf(dev, "MAC rev. 0x%08x\n", hwrev & 0x00700000);
1370         while (hw_rev->rl_desc != NULL) {
1371                 if (hw_rev->rl_rev == hwrev) {
1372                         sc->rl_type = hw_rev->rl_type;
1373                         sc->rl_hwrev = hw_rev;
1374                         break;
1375                 }
1376                 hw_rev++;
1377         }
1378         if (hw_rev->rl_desc == NULL) {
1379                 device_printf(dev, "Unknown H/W revision: 0x%08x\n", hwrev);
1380                 error = ENXIO;
1381                 goto fail;
1382         }
1383
1384         switch (hw_rev->rl_rev) {
1385         case RL_HWREV_8139CPLUS:
1386                 sc->rl_flags |= RL_FLAG_FASTETHER | RL_FLAG_AUTOPAD;
1387                 break;
1388         case RL_HWREV_8100E:
1389         case RL_HWREV_8101E:
1390                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_FASTETHER;
1391                 break;
1392         case RL_HWREV_8102E:
1393         case RL_HWREV_8102EL:
1394         case RL_HWREV_8102EL_SPIN1:
1395                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
1396                     RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP |
1397                     RL_FLAG_AUTOPAD;
1398                 break;
1399         case RL_HWREV_8103E:
1400                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
1401                     RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP |
1402                     RL_FLAG_AUTOPAD | RL_FLAG_MACSLEEP;
1403                 break;
1404         case RL_HWREV_8401E:
1405         case RL_HWREV_8105E:
1406         case RL_HWREV_8105E_SPIN1:
1407                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1408                     RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1409                     RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD;
1410                 break;
1411         case RL_HWREV_8402:
1412                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1413                     RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1414                     RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD |
1415                     RL_FLAG_CMDSTOP_WAIT_TXQ;
1416                 break;
1417         case RL_HWREV_8168B_SPIN1:
1418         case RL_HWREV_8168B_SPIN2:
1419                 sc->rl_flags |= RL_FLAG_WOLRXENB;
1420                 /* FALLTHROUGH */
1421         case RL_HWREV_8168B_SPIN3:
1422                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_MACSTAT;
1423                 break;
1424         case RL_HWREV_8168C_SPIN2:
1425                 sc->rl_flags |= RL_FLAG_MACSLEEP;
1426                 /* FALLTHROUGH */
1427         case RL_HWREV_8168C:
1428                 if ((hwrev & 0x00700000) == 0x00200000)
1429                         sc->rl_flags |= RL_FLAG_MACSLEEP;
1430                 /* FALLTHROUGH */
1431         case RL_HWREV_8168CP:
1432         case RL_HWREV_8168D:
1433                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1434                     RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1435                     RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 | RL_FLAG_WOL_MANLINK;
1436                 break;
1437         case RL_HWREV_8168DP:
1438                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1439                     RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_AUTOPAD |
1440                     RL_FLAG_JUMBOV2 | RL_FLAG_WAIT_TXPOLL | RL_FLAG_WOL_MANLINK;
1441                 break;
1442         case RL_HWREV_8168E:
1443                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1444                     RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1445                     RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
1446                     RL_FLAG_WOL_MANLINK;
1447                 break;
1448         case RL_HWREV_8168E_VL:
1449         case RL_HWREV_8168F:
1450         case RL_HWREV_8411:
1451                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1452                     RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1453                     RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
1454                     RL_FLAG_CMDSTOP_WAIT_TXQ | RL_FLAG_WOL_MANLINK;
1455                 break;
1456         case RL_HWREV_8169_8110SB:
1457         case RL_HWREV_8169_8110SBL:
1458         case RL_HWREV_8169_8110SC:
1459         case RL_HWREV_8169_8110SCE:
1460                 sc->rl_flags |= RL_FLAG_PHYWAKE;
1461                 /* FALLTHROUGH */
1462         case RL_HWREV_8169:
1463         case RL_HWREV_8169S:
1464         case RL_HWREV_8110S:
1465                 sc->rl_flags |= RL_FLAG_MACRESET;
1466                 break;
1467         default:
1468                 break;
1469         }
1470
1471         /* Reset the adapter. */
1472         RL_LOCK(sc);
1473         re_reset(sc);
1474         RL_UNLOCK(sc);
1475
1476         /* Enable PME. */
1477         CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1478         cfg = CSR_READ_1(sc, RL_CFG1);
1479         cfg |= RL_CFG1_PME;
1480         CSR_WRITE_1(sc, RL_CFG1, cfg);
1481         cfg = CSR_READ_1(sc, RL_CFG5);
1482         cfg &= RL_CFG5_PME_STS;
1483         CSR_WRITE_1(sc, RL_CFG5, cfg);
1484         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1485
1486         if ((sc->rl_flags & RL_FLAG_PAR) != 0) {
1487                 /*
1488                  * XXX Should have a better way to extract station
1489                  * address from EEPROM.
1490                  */
1491                 for (i = 0; i < ETHER_ADDR_LEN; i++)
1492                         eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1493         } else {
1494                 sc->rl_eewidth = RL_9356_ADDR_LEN;
1495                 re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
1496                 if (re_did != 0x8129)
1497                         sc->rl_eewidth = RL_9346_ADDR_LEN;
1498
1499                 /*
1500                  * Get station address from the EEPROM.
1501                  */
1502                 re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
1503                 for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1504                         as[i] = le16toh(as[i]);
1505                 bcopy(as, eaddr, sizeof(eaddr));
1506         }
1507
1508         if (sc->rl_type == RL_8169) {
1509                 /* Set RX length mask and number of descriptors. */
1510                 sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1511                 sc->rl_txstart = RL_GTXSTART;
1512                 sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT;
1513                 sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT;
1514         } else {
1515                 /* Set RX length mask and number of descriptors. */
1516                 sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1517                 sc->rl_txstart = RL_TXSTART;
1518                 sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT;
1519                 sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT;
1520         }
1521
1522         error = re_allocmem(dev, sc);
1523         if (error)
1524                 goto fail;
1525         re_add_sysctls(sc);
1526
1527         ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1528         if (ifp == NULL) {
1529                 device_printf(dev, "can not if_alloc()\n");
1530                 error = ENOSPC;
1531                 goto fail;
1532         }
1533
1534         /* Take controller out of deep sleep mode. */
1535         if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
1536                 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
1537                         CSR_WRITE_1(sc, RL_GPIO,
1538                             CSR_READ_1(sc, RL_GPIO) | 0x01);
1539                 else
1540                         CSR_WRITE_1(sc, RL_GPIO,
1541                             CSR_READ_1(sc, RL_GPIO) & ~0x01);
1542         }
1543
1544         /* Take PHY out of power down mode. */
1545         if ((sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0) {
1546                 CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) | 0x80);
1547                 if (hw_rev->rl_rev == RL_HWREV_8401E)
1548                         CSR_WRITE_1(sc, 0xD1, CSR_READ_1(sc, 0xD1) & ~0x08);
1549         }
1550         if ((sc->rl_flags & RL_FLAG_PHYWAKE) != 0) {
1551                 re_gmii_writereg(dev, 1, 0x1f, 0);
1552                 re_gmii_writereg(dev, 1, 0x0e, 0);
1553         }
1554
1555 #define RE_PHYAD_INTERNAL        0
1556
1557         /* Do MII setup. */
1558         phy = RE_PHYAD_INTERNAL;
1559         if (sc->rl_type == RL_8169)
1560                 phy = 1;
1561         error = mii_attach(dev, &sc->rl_miibus, ifp, re_ifmedia_upd,
1562             re_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, MIIF_DOPAUSE);
1563         if (error != 0) {
1564                 device_printf(dev, "attaching PHYs failed\n");
1565                 goto fail;
1566         }
1567
1568         ifp->if_softc = sc;
1569         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1570         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1571         ifp->if_ioctl = re_ioctl;
1572         ifp->if_start = re_start;
1573         /*
1574          * RTL8168/8111C generates wrong IP checksummed frame if the
1575          * packet has IP options so disable TX IP checksum offloading.
1576          */
1577         if (sc->rl_hwrev->rl_rev == RL_HWREV_8168C ||
1578             sc->rl_hwrev->rl_rev == RL_HWREV_8168C_SPIN2)
1579                 ifp->if_hwassist = CSUM_TCP | CSUM_UDP;
1580         else
1581                 ifp->if_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP;
1582         ifp->if_hwassist |= CSUM_TSO;
1583         ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
1584         ifp->if_capenable = ifp->if_capabilities;
1585         ifp->if_init = re_init;
1586         IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN);
1587         ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1588         IFQ_SET_READY(&ifp->if_snd);
1589
1590         TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);
1591
1592         /*
1593          * Call MI attach routine.
1594          */
1595         ether_ifattach(ifp, eaddr);
1596
1597         /* VLAN capability setup */
1598         ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1599         if (ifp->if_capabilities & IFCAP_HWCSUM)
1600                 ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1601         /* Enable WOL if PM is supported. */
1602         if (pci_find_cap(sc->rl_dev, PCIY_PMG, &reg) == 0)
1603                 ifp->if_capabilities |= IFCAP_WOL;
1604         ifp->if_capenable = ifp->if_capabilities;
1605         ifp->if_capenable &= ~(IFCAP_WOL_UCAST | IFCAP_WOL_MCAST);
1606         /*
1607          * Don't enable TSO by default.  It is known to generate
1608          * corrupted TCP segments(bad TCP options) under certain
1609          * circumtances.
1610          */
1611         ifp->if_hwassist &= ~CSUM_TSO;
1612         ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
1613 #ifdef DEVICE_POLLING
1614         ifp->if_capabilities |= IFCAP_POLLING;
1615 #endif
1616         /*
1617          * Tell the upper layer(s) we support long frames.
1618          * Must appear after the call to ether_ifattach() because
1619          * ether_ifattach() sets ifi_hdrlen to the default value.
1620          */
1621         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1622
1623 #ifdef RE_DIAG
1624         /*
1625          * Perform hardware diagnostic on the original RTL8169.
1626          * Some 32-bit cards were incorrectly wired and would
1627          * malfunction if plugged into a 64-bit slot.
1628          */
1629
1630         if (hwrev == RL_HWREV_8169) {
1631                 error = re_diag(sc);
1632                 if (error) {
1633                         device_printf(dev,
1634                         "attach aborted due to hardware diag failure\n");
1635                         ether_ifdetach(ifp);
1636                         goto fail;
1637                 }
1638         }
1639 #endif
1640
1641 #ifdef RE_TX_MODERATION
1642         intr_filter = 1;
1643 #endif
1644         /* Hook interrupt last to avoid having to lock softc */
1645         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 &&
1646             intr_filter == 0) {
1647                 error = bus_setup_intr(dev, sc->rl_irq[0],
1648                     INTR_TYPE_NET | INTR_MPSAFE, NULL, re_intr_msi, sc,
1649                     &sc->rl_intrhand[0]);
1650         } else {
1651                 error = bus_setup_intr(dev, sc->rl_irq[0],
1652                     INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1653                     &sc->rl_intrhand[0]);
1654         }
1655         if (error) {
1656                 device_printf(dev, "couldn't set up irq\n");
1657                 ether_ifdetach(ifp);
1658         }
1659
1660 fail:
1661
1662         if (error)
1663                 re_detach(dev);
1664
1665         return (error);
1666 }
1667
1668 /*
1669  * Shutdown hardware and free up resources. This can be called any
1670  * time after the mutex has been initialized. It is called in both
1671  * the error case in attach and the normal detach case so it needs
1672  * to be careful about only freeing resources that have actually been
1673  * allocated.
1674  */
1675 static int
1676 re_detach(device_t dev)
1677 {
1678         struct rl_softc         *sc;
1679         struct ifnet            *ifp;
1680         int                     i, rid;
1681
1682         sc = device_get_softc(dev);
1683         ifp = sc->rl_ifp;
1684         KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1685
1686         /* These should only be active if attach succeeded */
1687         if (device_is_attached(dev)) {
1688 #ifdef DEVICE_POLLING
1689                 if (ifp->if_capenable & IFCAP_POLLING)
1690                         ether_poll_deregister(ifp);
1691 #endif
1692                 RL_LOCK(sc);
1693 #if 0
1694                 sc->suspended = 1;
1695 #endif
1696                 re_stop(sc);
1697                 RL_UNLOCK(sc);
1698                 callout_drain(&sc->rl_stat_callout);
1699                 taskqueue_drain(taskqueue_fast, &sc->rl_inttask);
1700                 /*
1701                  * Force off the IFF_UP flag here, in case someone
1702                  * still had a BPF descriptor attached to this
1703                  * interface. If they do, ether_ifdetach() will cause
1704                  * the BPF code to try and clear the promisc mode
1705                  * flag, which will bubble down to re_ioctl(),
1706                  * which will try to call re_init() again. This will
1707                  * turn the NIC back on and restart the MII ticker,
1708                  * which will panic the system when the kernel tries
1709                  * to invoke the re_tick() function that isn't there
1710                  * anymore.
1711                  */
1712                 ifp->if_flags &= ~IFF_UP;
1713                 ether_ifdetach(ifp);
1714         }
1715         if (sc->rl_miibus)
1716                 device_delete_child(dev, sc->rl_miibus);
1717         bus_generic_detach(dev);
1718
1719         /*
1720          * The rest is resource deallocation, so we should already be
1721          * stopped here.
1722          */
1723
1724         if (sc->rl_intrhand[0] != NULL) {
1725                 bus_teardown_intr(dev, sc->rl_irq[0], sc->rl_intrhand[0]);
1726                 sc->rl_intrhand[0] = NULL;
1727         }
1728         if (ifp != NULL)
1729                 if_free(ifp);
1730         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0)
1731                 rid = 0;
1732         else
1733                 rid = 1;
1734         if (sc->rl_irq[0] != NULL) {
1735                 bus_release_resource(dev, SYS_RES_IRQ, rid, sc->rl_irq[0]);
1736                 sc->rl_irq[0] = NULL;
1737         }
1738         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0)
1739                 pci_release_msi(dev);
1740         if (sc->rl_res_pba) {
1741                 rid = PCIR_BAR(4);
1742                 bus_release_resource(dev, SYS_RES_MEMORY, rid, sc->rl_res_pba);
1743         }
1744         if (sc->rl_res)
1745                 bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
1746                     sc->rl_res);
1747
1748         /* Unload and free the RX DMA ring memory and map */
1749
1750         if (sc->rl_ldata.rl_rx_list_tag) {
1751                 if (sc->rl_ldata.rl_rx_list_map)
1752                         bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1753                             sc->rl_ldata.rl_rx_list_map);
1754                 if (sc->rl_ldata.rl_rx_list_map && sc->rl_ldata.rl_rx_list)
1755                         bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1756                             sc->rl_ldata.rl_rx_list,
1757                             sc->rl_ldata.rl_rx_list_map);
1758                 bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1759         }
1760
1761         /* Unload and free the TX DMA ring memory and map */
1762
1763         if (sc->rl_ldata.rl_tx_list_tag) {
1764                 if (sc->rl_ldata.rl_tx_list_map)
1765                         bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1766                             sc->rl_ldata.rl_tx_list_map);
1767                 if (sc->rl_ldata.rl_tx_list_map && sc->rl_ldata.rl_tx_list)
1768                         bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1769                             sc->rl_ldata.rl_tx_list,
1770                             sc->rl_ldata.rl_tx_list_map);
1771                 bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1772         }
1773
1774         /* Destroy all the RX and TX buffer maps */
1775
1776         if (sc->rl_ldata.rl_tx_mtag) {
1777                 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1778                         if (sc->rl_ldata.rl_tx_desc[i].tx_dmamap)
1779                                 bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag,
1780                                     sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1781                 }
1782                 bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag);
1783         }
1784         if (sc->rl_ldata.rl_rx_mtag) {
1785                 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1786                         if (sc->rl_ldata.rl_rx_desc[i].rx_dmamap)
1787                                 bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1788                                     sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1789                 }
1790                 if (sc->rl_ldata.rl_rx_sparemap)
1791                         bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1792                             sc->rl_ldata.rl_rx_sparemap);
1793                 bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag);
1794         }
1795         if (sc->rl_ldata.rl_jrx_mtag) {
1796                 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1797                         if (sc->rl_ldata.rl_jrx_desc[i].rx_dmamap)
1798                                 bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag,
1799                                     sc->rl_ldata.rl_jrx_desc[i].rx_dmamap);
1800                 }
1801                 if (sc->rl_ldata.rl_jrx_sparemap)
1802                         bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag,
1803                             sc->rl_ldata.rl_jrx_sparemap);
1804                 bus_dma_tag_destroy(sc->rl_ldata.rl_jrx_mtag);
1805         }
1806         /* Unload and free the stats buffer and map */
1807
1808         if (sc->rl_ldata.rl_stag) {
1809                 if (sc->rl_ldata.rl_smap)
1810                         bus_dmamap_unload(sc->rl_ldata.rl_stag,
1811                             sc->rl_ldata.rl_smap);
1812                 if (sc->rl_ldata.rl_smap && sc->rl_ldata.rl_stats)
1813                         bus_dmamem_free(sc->rl_ldata.rl_stag,
1814                             sc->rl_ldata.rl_stats, sc->rl_ldata.rl_smap);
1815                 bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1816         }
1817
1818         if (sc->rl_parent_tag)
1819                 bus_dma_tag_destroy(sc->rl_parent_tag);
1820
1821         mtx_destroy(&sc->rl_mtx);
1822
1823         return (0);
1824 }
1825
1826 static __inline void
1827 re_discard_rxbuf(struct rl_softc *sc, int idx)
1828 {
1829         struct rl_desc          *desc;
1830         struct rl_rxdesc        *rxd;
1831         uint32_t                cmdstat;
1832
1833         if (sc->rl_ifp->if_mtu > RL_MTU &&
1834             (sc->rl_flags & RL_FLAG_JUMBOV2) != 0)
1835                 rxd = &sc->rl_ldata.rl_jrx_desc[idx];
1836         else
1837                 rxd = &sc->rl_ldata.rl_rx_desc[idx];
1838         desc = &sc->rl_ldata.rl_rx_list[idx];
1839         desc->rl_vlanctl = 0;
1840         cmdstat = rxd->rx_size;
1841         if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1842                 cmdstat |= RL_RDESC_CMD_EOR;
1843         desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1844 }
1845
1846 static int
1847 re_newbuf(struct rl_softc *sc, int idx)
1848 {
1849         struct mbuf             *m;
1850         struct rl_rxdesc        *rxd;
1851         bus_dma_segment_t       segs[1];
1852         bus_dmamap_t            map;
1853         struct rl_desc          *desc;
1854         uint32_t                cmdstat;
1855         int                     error, nsegs;
1856
1857         m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1858         if (m == NULL)
1859                 return (ENOBUFS);
1860
1861         m->m_len = m->m_pkthdr.len = MCLBYTES;
1862 #ifdef RE_FIXUP_RX
1863         /*
1864          * This is part of an evil trick to deal with non-x86 platforms.
1865          * The RealTek chip requires RX buffers to be aligned on 64-bit
1866          * boundaries, but that will hose non-x86 machines. To get around
1867          * this, we leave some empty space at the start of each buffer
1868          * and for non-x86 hosts, we copy the buffer back six bytes
1869          * to achieve word alignment. This is slightly more efficient
1870          * than allocating a new buffer, copying the contents, and
1871          * discarding the old buffer.
1872          */
1873         m_adj(m, RE_ETHER_ALIGN);
1874 #endif
1875         error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag,
1876             sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
1877         if (error != 0) {
1878                 m_freem(m);
1879                 return (ENOBUFS);
1880         }
1881         KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
1882
1883         rxd = &sc->rl_ldata.rl_rx_desc[idx];
1884         if (rxd->rx_m != NULL) {
1885                 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1886                     BUS_DMASYNC_POSTREAD);
1887                 bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap);
1888         }
1889
1890         rxd->rx_m = m;
1891         map = rxd->rx_dmamap;
1892         rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap;
1893         rxd->rx_size = segs[0].ds_len;
1894         sc->rl_ldata.rl_rx_sparemap = map;
1895         bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1896             BUS_DMASYNC_PREREAD);
1897
1898         desc = &sc->rl_ldata.rl_rx_list[idx];
1899         desc->rl_vlanctl = 0;
1900         desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
1901         desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
1902         cmdstat = segs[0].ds_len;
1903         if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1904                 cmdstat |= RL_RDESC_CMD_EOR;
1905         desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1906
1907         return (0);
1908 }
1909
1910 static int
1911 re_jumbo_newbuf(struct rl_softc *sc, int idx)
1912 {
1913         struct mbuf             *m;
1914         struct rl_rxdesc        *rxd;
1915         bus_dma_segment_t       segs[1];
1916         bus_dmamap_t            map;
1917         struct rl_desc          *desc;
1918         uint32_t                cmdstat;
1919         int                     error, nsegs;
1920
1921         m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1922         if (m == NULL)
1923                 return (ENOBUFS);
1924         m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1925 #ifdef RE_FIXUP_RX
1926         m_adj(m, RE_ETHER_ALIGN);
1927 #endif
1928         error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_jrx_mtag,
1929             sc->rl_ldata.rl_jrx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
1930         if (error != 0) {
1931                 m_freem(m);
1932                 return (ENOBUFS);
1933         }
1934         KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
1935
1936         rxd = &sc->rl_ldata.rl_jrx_desc[idx];
1937         if (rxd->rx_m != NULL) {
1938                 bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap,
1939                     BUS_DMASYNC_POSTREAD);
1940                 bus_dmamap_unload(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap);
1941         }
1942
1943         rxd->rx_m = m;
1944         map = rxd->rx_dmamap;
1945         rxd->rx_dmamap = sc->rl_ldata.rl_jrx_sparemap;
1946         rxd->rx_size = segs[0].ds_len;
1947         sc->rl_ldata.rl_jrx_sparemap = map;
1948         bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap,
1949             BUS_DMASYNC_PREREAD);
1950
1951         desc = &sc->rl_ldata.rl_rx_list[idx];
1952         desc->rl_vlanctl = 0;
1953         desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
1954         desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
1955         cmdstat = segs[0].ds_len;
1956         if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1957                 cmdstat |= RL_RDESC_CMD_EOR;
1958         desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1959
1960         return (0);
1961 }
1962
1963 #ifdef RE_FIXUP_RX
1964 static __inline void
1965 re_fixup_rx(struct mbuf *m)
1966 {
1967         int                     i;
1968         uint16_t                *src, *dst;
1969
1970         src = mtod(m, uint16_t *);
1971         dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
1972
1973         for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1974                 *dst++ = *src++;
1975
1976         m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
1977 }
1978 #endif
1979
1980 static int
1981 re_tx_list_init(struct rl_softc *sc)
1982 {
1983         struct rl_desc          *desc;
1984         int                     i;
1985
1986         RL_LOCK_ASSERT(sc);
1987
1988         bzero(sc->rl_ldata.rl_tx_list,
1989             sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc));
1990         for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
1991                 sc->rl_ldata.rl_tx_desc[i].tx_m = NULL;
1992         /* Set EOR. */
1993         desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1];
1994         desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR);
1995
1996         bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1997             sc->rl_ldata.rl_tx_list_map,
1998             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1999
2000         sc->rl_ldata.rl_tx_prodidx = 0;
2001         sc->rl_ldata.rl_tx_considx = 0;
2002         sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt;
2003
2004         return (0);
2005 }
2006
2007 static int
2008 re_rx_list_init(struct rl_softc *sc)
2009 {
2010         int                     error, i;
2011
2012         bzero(sc->rl_ldata.rl_rx_list,
2013             sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
2014         for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2015                 sc->rl_ldata.rl_rx_desc[i].rx_m = NULL;
2016                 if ((error = re_newbuf(sc, i)) != 0)
2017                         return (error);
2018         }
2019
2020         /* Flush the RX descriptors */
2021
2022         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2023             sc->rl_ldata.rl_rx_list_map,
2024             BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2025
2026         sc->rl_ldata.rl_rx_prodidx = 0;
2027         sc->rl_head = sc->rl_tail = NULL;
2028         sc->rl_int_rx_act = 0;
2029
2030         return (0);
2031 }
2032
2033 static int
2034 re_jrx_list_init(struct rl_softc *sc)
2035 {
2036         int                     error, i;
2037
2038         bzero(sc->rl_ldata.rl_rx_list,
2039             sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
2040         for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2041                 sc->rl_ldata.rl_jrx_desc[i].rx_m = NULL;
2042                 if ((error = re_jumbo_newbuf(sc, i)) != 0)
2043                         return (error);
2044         }
2045
2046         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2047             sc->rl_ldata.rl_rx_list_map,
2048             BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2049
2050         sc->rl_ldata.rl_rx_prodidx = 0;
2051         sc->rl_head = sc->rl_tail = NULL;
2052         sc->rl_int_rx_act = 0;
2053
2054         return (0);
2055 }
2056
2057 /*
2058  * RX handler for C+ and 8169. For the gigE chips, we support
2059  * the reception of jumbo frames that have been fragmented
2060  * across multiple 2K mbuf cluster buffers.
2061  */
2062 static int
2063 re_rxeof(struct rl_softc *sc, int *rx_npktsp)
2064 {
2065         struct mbuf             *m;
2066         struct ifnet            *ifp;
2067         int                     i, rxerr, total_len;
2068         struct rl_desc          *cur_rx;
2069         u_int32_t               rxstat, rxvlan;
2070         int                     jumbo, maxpkt = 16, rx_npkts = 0;
2071
2072         RL_LOCK_ASSERT(sc);
2073
2074         ifp = sc->rl_ifp;
2075         if (ifp->if_mtu > RL_MTU && (sc->rl_flags & RL_FLAG_JUMBOV2) != 0)
2076                 jumbo = 1;
2077         else
2078                 jumbo = 0;
2079
2080         /* Invalidate the descriptor memory */
2081
2082         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2083             sc->rl_ldata.rl_rx_list_map,
2084             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2085
2086         for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0;
2087             i = RL_RX_DESC_NXT(sc, i)) {
2088                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2089                         break;
2090                 cur_rx = &sc->rl_ldata.rl_rx_list[i];
2091                 rxstat = le32toh(cur_rx->rl_cmdstat);
2092                 if ((rxstat & RL_RDESC_STAT_OWN) != 0)
2093                         break;
2094                 total_len = rxstat & sc->rl_rxlenmask;
2095                 rxvlan = le32toh(cur_rx->rl_vlanctl);
2096                 if (jumbo != 0)
2097                         m = sc->rl_ldata.rl_jrx_desc[i].rx_m;
2098                 else
2099                         m = sc->rl_ldata.rl_rx_desc[i].rx_m;
2100
2101                 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
2102                     (rxstat & (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) !=
2103                     (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) {
2104                         /*
2105                          * RTL8168C or later controllers do not
2106                          * support multi-fragment packet.
2107                          */
2108                         re_discard_rxbuf(sc, i);
2109                         continue;
2110                 } else if ((rxstat & RL_RDESC_STAT_EOF) == 0) {
2111                         if (re_newbuf(sc, i) != 0) {
2112                                 /*
2113                                  * If this is part of a multi-fragment packet,
2114                                  * discard all the pieces.
2115                                  */
2116                                 if (sc->rl_head != NULL) {
2117                                         m_freem(sc->rl_head);
2118                                         sc->rl_head = sc->rl_tail = NULL;
2119                                 }
2120                                 re_discard_rxbuf(sc, i);
2121                                 continue;
2122                         }
2123                         m->m_len = RE_RX_DESC_BUFLEN;
2124                         if (sc->rl_head == NULL)
2125                                 sc->rl_head = sc->rl_tail = m;
2126                         else {
2127                                 m->m_flags &= ~M_PKTHDR;
2128                                 sc->rl_tail->m_next = m;
2129                                 sc->rl_tail = m;
2130                         }
2131                         continue;
2132                 }
2133
2134                 /*
2135                  * NOTE: for the 8139C+, the frame length field
2136                  * is always 12 bits in size, but for the gigE chips,
2137                  * it is 13 bits (since the max RX frame length is 16K).
2138                  * Unfortunately, all 32 bits in the status word
2139                  * were already used, so to make room for the extra
2140                  * length bit, RealTek took out the 'frame alignment
2141                  * error' bit and shifted the other status bits
2142                  * over one slot. The OWN, EOR, FS and LS bits are
2143                  * still in the same places. We have already extracted
2144                  * the frame length and checked the OWN bit, so rather
2145                  * than using an alternate bit mapping, we shift the
2146                  * status bits one space to the right so we can evaluate
2147                  * them using the 8169 status as though it was in the
2148                  * same format as that of the 8139C+.
2149                  */
2150                 if (sc->rl_type == RL_8169)
2151                         rxstat >>= 1;
2152
2153                 /*
2154                  * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
2155                  * set, but if CRC is clear, it will still be a valid frame.
2156                  */
2157                 if ((rxstat & RL_RDESC_STAT_RXERRSUM) != 0) {
2158                         rxerr = 1;
2159                         if ((sc->rl_flags & RL_FLAG_JUMBOV2) == 0 &&
2160                             total_len > 8191 &&
2161                             (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)
2162                                 rxerr = 0;
2163                         if (rxerr != 0) {
2164                                 ifp->if_ierrors++;
2165                                 /*
2166                                  * If this is part of a multi-fragment packet,
2167                                  * discard all the pieces.
2168                                  */
2169                                 if (sc->rl_head != NULL) {
2170                                         m_freem(sc->rl_head);
2171                                         sc->rl_head = sc->rl_tail = NULL;
2172                                 }
2173                                 re_discard_rxbuf(sc, i);
2174                                 continue;
2175                         }
2176                 }
2177
2178                 /*
2179                  * If allocating a replacement mbuf fails,
2180                  * reload the current one.
2181                  */
2182                 if (jumbo != 0)
2183                         rxerr = re_jumbo_newbuf(sc, i);
2184                 else
2185                         rxerr = re_newbuf(sc, i);
2186                 if (rxerr != 0) {
2187                         ifp->if_iqdrops++;
2188                         if (sc->rl_head != NULL) {
2189                                 m_freem(sc->rl_head);
2190                                 sc->rl_head = sc->rl_tail = NULL;
2191                         }
2192                         re_discard_rxbuf(sc, i);
2193                         continue;
2194                 }
2195
2196                 if (sc->rl_head != NULL) {
2197                         if (jumbo != 0)
2198                                 m->m_len = total_len;
2199                         else {
2200                                 m->m_len = total_len % RE_RX_DESC_BUFLEN;
2201                                 if (m->m_len == 0)
2202                                         m->m_len = RE_RX_DESC_BUFLEN;
2203                         }
2204                         /*
2205                          * Special case: if there's 4 bytes or less
2206                          * in this buffer, the mbuf can be discarded:
2207                          * the last 4 bytes is the CRC, which we don't
2208                          * care about anyway.
2209                          */
2210                         if (m->m_len <= ETHER_CRC_LEN) {
2211                                 sc->rl_tail->m_len -=
2212                                     (ETHER_CRC_LEN - m->m_len);
2213                                 m_freem(m);
2214                         } else {
2215                                 m->m_len -= ETHER_CRC_LEN;
2216                                 m->m_flags &= ~M_PKTHDR;
2217                                 sc->rl_tail->m_next = m;
2218                         }
2219                         m = sc->rl_head;
2220                         sc->rl_head = sc->rl_tail = NULL;
2221                         m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
2222                 } else
2223                         m->m_pkthdr.len = m->m_len =
2224                             (total_len - ETHER_CRC_LEN);
2225
2226 #ifdef RE_FIXUP_RX
2227                 re_fixup_rx(m);
2228 #endif
2229                 ifp->if_ipackets++;
2230                 m->m_pkthdr.rcvif = ifp;
2231
2232                 /* Do RX checksumming if enabled */
2233
2234                 if (ifp->if_capenable & IFCAP_RXCSUM) {
2235                         if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2236                                 /* Check IP header checksum */
2237                                 if (rxstat & RL_RDESC_STAT_PROTOID)
2238                                         m->m_pkthdr.csum_flags |=
2239                                             CSUM_IP_CHECKED;
2240                                 if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
2241                                         m->m_pkthdr.csum_flags |=
2242                                             CSUM_IP_VALID;
2243
2244                                 /* Check TCP/UDP checksum */
2245                                 if ((RL_TCPPKT(rxstat) &&
2246                                     !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
2247                                     (RL_UDPPKT(rxstat) &&
2248                                      !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
2249                                         m->m_pkthdr.csum_flags |=
2250                                                 CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
2251                                         m->m_pkthdr.csum_data = 0xffff;
2252                                 }
2253                         } else {
2254                                 /*
2255                                  * RTL8168C/RTL816CP/RTL8111C/RTL8111CP
2256                                  */
2257                                 if ((rxstat & RL_RDESC_STAT_PROTOID) &&
2258                                     (rxvlan & RL_RDESC_IPV4))
2259                                         m->m_pkthdr.csum_flags |=
2260                                             CSUM_IP_CHECKED;
2261                                 if (!(rxstat & RL_RDESC_STAT_IPSUMBAD) &&
2262                                     (rxvlan & RL_RDESC_IPV4))
2263                                         m->m_pkthdr.csum_flags |=
2264                                             CSUM_IP_VALID;
2265                                 if (((rxstat & RL_RDESC_STAT_TCP) &&
2266                                     !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
2267                                     ((rxstat & RL_RDESC_STAT_UDP) &&
2268                                     !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
2269                                         m->m_pkthdr.csum_flags |=
2270                                                 CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
2271                                         m->m_pkthdr.csum_data = 0xffff;
2272                                 }
2273                         }
2274                 }
2275                 maxpkt--;
2276                 if (rxvlan & RL_RDESC_VLANCTL_TAG) {
2277                         m->m_pkthdr.ether_vtag =
2278                             bswap16((rxvlan & RL_RDESC_VLANCTL_DATA));
2279                         m->m_flags |= M_VLANTAG;
2280                 }
2281                 RL_UNLOCK(sc);
2282                 (*ifp->if_input)(ifp, m);
2283                 RL_LOCK(sc);
2284                 rx_npkts++;
2285         }
2286
2287         /* Flush the RX DMA ring */
2288
2289         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2290             sc->rl_ldata.rl_rx_list_map,
2291             BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2292
2293         sc->rl_ldata.rl_rx_prodidx = i;
2294
2295         if (rx_npktsp != NULL)
2296                 *rx_npktsp = rx_npkts;
2297         if (maxpkt)
2298                 return (EAGAIN);
2299
2300         return (0);
2301 }
2302
2303 static void
2304 re_txeof(struct rl_softc *sc)
2305 {
2306         struct ifnet            *ifp;
2307         struct rl_txdesc        *txd;
2308         u_int32_t               txstat;
2309         int                     cons;
2310
2311         cons = sc->rl_ldata.rl_tx_considx;
2312         if (cons == sc->rl_ldata.rl_tx_prodidx)
2313                 return;
2314
2315         ifp = sc->rl_ifp;
2316         /* Invalidate the TX descriptor list */
2317         bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2318             sc->rl_ldata.rl_tx_list_map,
2319             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2320
2321         for (; cons != sc->rl_ldata.rl_tx_prodidx;
2322             cons = RL_TX_DESC_NXT(sc, cons)) {
2323                 txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat);
2324                 if (txstat & RL_TDESC_STAT_OWN)
2325                         break;
2326                 /*
2327                  * We only stash mbufs in the last descriptor
2328                  * in a fragment chain, which also happens to
2329                  * be the only place where the TX status bits
2330                  * are valid.
2331                  */
2332                 if (txstat & RL_TDESC_CMD_EOF) {
2333                         txd = &sc->rl_ldata.rl_tx_desc[cons];
2334                         bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2335                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2336                         bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
2337                             txd->tx_dmamap);
2338                         KASSERT(txd->tx_m != NULL,
2339                             ("%s: freeing NULL mbufs!", __func__));
2340                         m_freem(txd->tx_m);
2341                         txd->tx_m = NULL;
2342                         if (txstat & (RL_TDESC_STAT_EXCESSCOL|
2343                             RL_TDESC_STAT_COLCNT))
2344                                 ifp->if_collisions++;
2345                         if (txstat & RL_TDESC_STAT_TXERRSUM)
2346                                 ifp->if_oerrors++;
2347                         else
2348                                 ifp->if_opackets++;
2349                 }
2350                 sc->rl_ldata.rl_tx_free++;
2351                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2352         }
2353         sc->rl_ldata.rl_tx_considx = cons;
2354
2355         /* No changes made to the TX ring, so no flush needed */
2356
2357         if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) {
2358 #ifdef RE_TX_MODERATION
2359                 /*
2360                  * If not all descriptors have been reaped yet, reload
2361                  * the timer so that we will eventually get another
2362                  * interrupt that will cause us to re-enter this routine.
2363                  * This is done in case the transmitter has gone idle.
2364                  */
2365                 CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2366 #endif
2367         } else
2368                 sc->rl_watchdog_timer = 0;
2369 }
2370
2371 static void
2372 re_tick(void *xsc)
2373 {
2374         struct rl_softc         *sc;
2375         struct mii_data         *mii;
2376
2377         sc = xsc;
2378
2379         RL_LOCK_ASSERT(sc);
2380
2381         mii = device_get_softc(sc->rl_miibus);
2382         mii_tick(mii);
2383         if ((sc->rl_flags & RL_FLAG_LINK) == 0)
2384                 re_miibus_statchg(sc->rl_dev);
2385         /*
2386          * Reclaim transmitted frames here. Technically it is not
2387          * necessary to do here but it ensures periodic reclamation
2388          * regardless of Tx completion interrupt which seems to be
2389          * lost on PCIe based controllers under certain situations.
2390          */
2391         re_txeof(sc);
2392         re_watchdog(sc);
2393         callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2394 }
2395
2396 #ifdef DEVICE_POLLING
2397 static int
2398 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2399 {
2400         struct rl_softc *sc = ifp->if_softc;
2401         int rx_npkts = 0;
2402
2403         RL_LOCK(sc);
2404         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2405                 rx_npkts = re_poll_locked(ifp, cmd, count);
2406         RL_UNLOCK(sc);
2407         return (rx_npkts);
2408 }
2409
2410 static int
2411 re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
2412 {
2413         struct rl_softc *sc = ifp->if_softc;
2414         int rx_npkts;
2415
2416         RL_LOCK_ASSERT(sc);
2417
2418         sc->rxcycles = count;
2419         re_rxeof(sc, &rx_npkts);
2420         re_txeof(sc);
2421
2422         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2423                 re_start_locked(ifp);
2424
2425         if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2426                 u_int16_t       status;
2427
2428                 status = CSR_READ_2(sc, RL_ISR);
2429                 if (status == 0xffff)
2430                         return (rx_npkts);
2431                 if (status)
2432                         CSR_WRITE_2(sc, RL_ISR, status);
2433                 if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2434                     (sc->rl_flags & RL_FLAG_PCIE))
2435                         CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2436
2437                 /*
2438                  * XXX check behaviour on receiver stalls.
2439                  */
2440
2441                 if (status & RL_ISR_SYSTEM_ERR) {
2442                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2443                         re_init_locked(sc);
2444                 }
2445         }
2446         return (rx_npkts);
2447 }
2448 #endif /* DEVICE_POLLING */
2449
2450 static int
2451 re_intr(void *arg)
2452 {
2453         struct rl_softc         *sc;
2454         uint16_t                status;
2455
2456         sc = arg;
2457
2458         status = CSR_READ_2(sc, RL_ISR);
2459         if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0)
2460                 return (FILTER_STRAY);
2461         CSR_WRITE_2(sc, RL_IMR, 0);
2462
2463         taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2464
2465         return (FILTER_HANDLED);
2466 }
2467
2468 static void
2469 re_int_task(void *arg, int npending)
2470 {
2471         struct rl_softc         *sc;
2472         struct ifnet            *ifp;
2473         u_int16_t               status;
2474         int                     rval = 0;
2475
2476         sc = arg;
2477         ifp = sc->rl_ifp;
2478
2479         RL_LOCK(sc);
2480
2481         status = CSR_READ_2(sc, RL_ISR);
2482         CSR_WRITE_2(sc, RL_ISR, status);
2483
2484         if (sc->suspended ||
2485             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2486                 RL_UNLOCK(sc);
2487                 return;
2488         }
2489
2490 #ifdef DEVICE_POLLING
2491         if  (ifp->if_capenable & IFCAP_POLLING) {
2492                 RL_UNLOCK(sc);
2493                 return;
2494         }
2495 #endif
2496
2497         if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
2498                 rval = re_rxeof(sc, NULL);
2499
2500         /*
2501          * Some chips will ignore a second TX request issued
2502          * while an existing transmission is in progress. If
2503          * the transmitter goes idle but there are still
2504          * packets waiting to be sent, we need to restart the
2505          * channel here to flush them out. This only seems to
2506          * be required with the PCIe devices.
2507          */
2508         if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2509             (sc->rl_flags & RL_FLAG_PCIE))
2510                 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2511         if (status & (
2512 #ifdef RE_TX_MODERATION
2513             RL_ISR_TIMEOUT_EXPIRED|
2514 #else
2515             RL_ISR_TX_OK|
2516 #endif
2517             RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
2518                 re_txeof(sc);
2519
2520         if (status & RL_ISR_SYSTEM_ERR) {
2521                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2522                 re_init_locked(sc);
2523         }
2524
2525         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2526                 re_start_locked(ifp);
2527
2528         RL_UNLOCK(sc);
2529
2530         if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
2531                 taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2532                 return;
2533         }
2534
2535         CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2536 }
2537
2538 static void
2539 re_intr_msi(void *xsc)
2540 {
2541         struct rl_softc         *sc;
2542         struct ifnet            *ifp;
2543         uint16_t                intrs, status;
2544
2545         sc = xsc;
2546         RL_LOCK(sc);
2547
2548         ifp = sc->rl_ifp;
2549 #ifdef DEVICE_POLLING
2550         if (ifp->if_capenable & IFCAP_POLLING) {
2551                 RL_UNLOCK(sc);
2552                 return;
2553         }
2554 #endif
2555         /* Disable interrupts. */
2556         CSR_WRITE_2(sc, RL_IMR, 0);
2557         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2558                 RL_UNLOCK(sc);
2559                 return;
2560         }
2561
2562         intrs = RL_INTRS_CPLUS;
2563         status = CSR_READ_2(sc, RL_ISR);
2564         CSR_WRITE_2(sc, RL_ISR, status);
2565         if (sc->rl_int_rx_act > 0) {
2566                 intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW |
2567                     RL_ISR_RX_OVERRUN);
2568                 status &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW |
2569                     RL_ISR_RX_OVERRUN);
2570         }
2571
2572         if (status & (RL_ISR_TIMEOUT_EXPIRED | RL_ISR_RX_OK | RL_ISR_RX_ERR |
2573             RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) {
2574                 re_rxeof(sc, NULL);
2575                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2576                         if (sc->rl_int_rx_mod != 0 &&
2577                             (status & (RL_ISR_RX_OK | RL_ISR_RX_ERR |
2578                             RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) != 0) {
2579                                 /* Rearm one-shot timer. */
2580                                 CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2581                                 intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR |
2582                                     RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN);
2583                                 sc->rl_int_rx_act = 1;
2584                         } else {
2585                                 intrs |= RL_ISR_RX_OK | RL_ISR_RX_ERR |
2586                                     RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN;
2587                                 sc->rl_int_rx_act = 0;
2588                         }
2589                 }
2590         }
2591
2592         /*
2593          * Some chips will ignore a second TX request issued
2594          * while an existing transmission is in progress. If
2595          * the transmitter goes idle but there are still
2596          * packets waiting to be sent, we need to restart the
2597          * channel here to flush them out. This only seems to
2598          * be required with the PCIe devices.
2599          */
2600         if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2601             (sc->rl_flags & RL_FLAG_PCIE))
2602                 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2603         if (status & (RL_ISR_TX_OK | RL_ISR_TX_ERR | RL_ISR_TX_DESC_UNAVAIL))
2604                 re_txeof(sc);
2605
2606         if (status & RL_ISR_SYSTEM_ERR) {
2607                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2608                 re_init_locked(sc);
2609         }
2610
2611         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2612                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2613                         re_start_locked(ifp);
2614                 CSR_WRITE_2(sc, RL_IMR, intrs);
2615         }
2616         RL_UNLOCK(sc);
2617 }
2618
2619 static int
2620 re_encap(struct rl_softc *sc, struct mbuf **m_head)
2621 {
2622         struct rl_txdesc        *txd, *txd_last;
2623         bus_dma_segment_t       segs[RL_NTXSEGS];
2624         bus_dmamap_t            map;
2625         struct mbuf             *m_new;
2626         struct rl_desc          *desc;
2627         int                     nsegs, prod;
2628         int                     i, error, ei, si;
2629         int                     padlen;
2630         uint32_t                cmdstat, csum_flags, vlanctl;
2631
2632         RL_LOCK_ASSERT(sc);
2633         M_ASSERTPKTHDR((*m_head));
2634
2635         /*
2636          * With some of the RealTek chips, using the checksum offload
2637          * support in conjunction with the autopadding feature results
2638          * in the transmission of corrupt frames. For example, if we
2639          * need to send a really small IP fragment that's less than 60
2640          * bytes in size, and IP header checksumming is enabled, the
2641          * resulting ethernet frame that appears on the wire will
2642          * have garbled payload. To work around this, if TX IP checksum
2643          * offload is enabled, we always manually pad short frames out
2644          * to the minimum ethernet frame size.
2645          */
2646         if ((sc->rl_flags & RL_FLAG_AUTOPAD) == 0 &&
2647             (*m_head)->m_pkthdr.len < RL_IP4CSUMTX_PADLEN &&
2648             ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) != 0) {
2649                 padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len;
2650                 if (M_WRITABLE(*m_head) == 0) {
2651                         /* Get a writable copy. */
2652                         m_new = m_dup(*m_head, M_DONTWAIT);
2653                         m_freem(*m_head);
2654                         if (m_new == NULL) {
2655                                 *m_head = NULL;
2656                                 return (ENOBUFS);
2657                         }
2658                         *m_head = m_new;
2659                 }
2660                 if ((*m_head)->m_next != NULL ||
2661                     M_TRAILINGSPACE(*m_head) < padlen) {
2662                         m_new = m_defrag(*m_head, M_DONTWAIT);
2663                         if (m_new == NULL) {
2664                                 m_freem(*m_head);
2665                                 *m_head = NULL;
2666                                 return (ENOBUFS);
2667                         }
2668                 } else
2669                         m_new = *m_head;
2670
2671                 /*
2672                  * Manually pad short frames, and zero the pad space
2673                  * to avoid leaking data.
2674                  */
2675                 bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen);
2676                 m_new->m_pkthdr.len += padlen;
2677                 m_new->m_len = m_new->m_pkthdr.len;
2678                 *m_head = m_new;
2679         }
2680
2681         prod = sc->rl_ldata.rl_tx_prodidx;
2682         txd = &sc->rl_ldata.rl_tx_desc[prod];
2683         error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2684             *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2685         if (error == EFBIG) {
2686                 m_new = m_collapse(*m_head, M_DONTWAIT, RL_NTXSEGS);
2687                 if (m_new == NULL) {
2688                         m_freem(*m_head);
2689                         *m_head = NULL;
2690                         return (ENOBUFS);
2691                 }
2692                 *m_head = m_new;
2693                 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag,
2694                     txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2695                 if (error != 0) {
2696                         m_freem(*m_head);
2697                         *m_head = NULL;
2698                         return (error);
2699                 }
2700         } else if (error != 0)
2701                 return (error);
2702         if (nsegs == 0) {
2703                 m_freem(*m_head);
2704                 *m_head = NULL;
2705                 return (EIO);
2706         }
2707
2708         /* Check for number of available descriptors. */
2709         if (sc->rl_ldata.rl_tx_free - nsegs <= 1) {
2710                 bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap);
2711                 return (ENOBUFS);
2712         }
2713
2714         bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2715             BUS_DMASYNC_PREWRITE);
2716
2717         /*
2718          * Set up checksum offload. Note: checksum offload bits must
2719          * appear in all descriptors of a multi-descriptor transmit
2720          * attempt. This is according to testing done with an 8169
2721          * chip. This is a requirement.
2722          */
2723         vlanctl = 0;
2724         csum_flags = 0;
2725         if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2726                 if ((sc->rl_flags & RL_FLAG_DESCV2) != 0) {
2727                         csum_flags |= RL_TDESC_CMD_LGSEND;
2728                         vlanctl |= ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2729                             RL_TDESC_CMD_MSSVALV2_SHIFT);
2730                 } else {
2731                         csum_flags |= RL_TDESC_CMD_LGSEND |
2732                             ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2733                             RL_TDESC_CMD_MSSVAL_SHIFT);
2734                 }
2735         } else {
2736                 /*
2737                  * Unconditionally enable IP checksum if TCP or UDP
2738                  * checksum is required. Otherwise, TCP/UDP checksum
2739                  * does't make effects.
2740                  */
2741                 if (((*m_head)->m_pkthdr.csum_flags & RE_CSUM_FEATURES) != 0) {
2742                         if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2743                                 csum_flags |= RL_TDESC_CMD_IPCSUM;
2744                                 if (((*m_head)->m_pkthdr.csum_flags &
2745                                     CSUM_TCP) != 0)
2746                                         csum_flags |= RL_TDESC_CMD_TCPCSUM;
2747                                 if (((*m_head)->m_pkthdr.csum_flags &
2748                                     CSUM_UDP) != 0)
2749                                         csum_flags |= RL_TDESC_CMD_UDPCSUM;
2750                         } else {
2751                                 vlanctl |= RL_TDESC_CMD_IPCSUMV2;
2752                                 if (((*m_head)->m_pkthdr.csum_flags &
2753                                     CSUM_TCP) != 0)
2754                                         vlanctl |= RL_TDESC_CMD_TCPCSUMV2;
2755                                 if (((*m_head)->m_pkthdr.csum_flags &
2756                                     CSUM_UDP) != 0)
2757                                         vlanctl |= RL_TDESC_CMD_UDPCSUMV2;
2758                         }
2759                 }
2760         }
2761
2762         /*
2763          * Set up hardware VLAN tagging. Note: vlan tag info must
2764          * appear in all descriptors of a multi-descriptor
2765          * transmission attempt.
2766          */
2767         if ((*m_head)->m_flags & M_VLANTAG)
2768                 vlanctl |= bswap16((*m_head)->m_pkthdr.ether_vtag) |
2769                     RL_TDESC_VLANCTL_TAG;
2770
2771         si = prod;
2772         for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) {
2773                 desc = &sc->rl_ldata.rl_tx_list[prod];
2774                 desc->rl_vlanctl = htole32(vlanctl);
2775                 desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
2776                 desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
2777                 cmdstat = segs[i].ds_len;
2778                 if (i != 0)
2779                         cmdstat |= RL_TDESC_CMD_OWN;
2780                 if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1)
2781                         cmdstat |= RL_TDESC_CMD_EOR;
2782                 desc->rl_cmdstat = htole32(cmdstat | csum_flags);
2783                 sc->rl_ldata.rl_tx_free--;
2784         }
2785         /* Update producer index. */
2786         sc->rl_ldata.rl_tx_prodidx = prod;
2787
2788         /* Set EOF on the last descriptor. */
2789         ei = RL_TX_DESC_PRV(sc, prod);
2790         desc = &sc->rl_ldata.rl_tx_list[ei];
2791         desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
2792
2793         desc = &sc->rl_ldata.rl_tx_list[si];
2794         /* Set SOF and transfer ownership of packet to the chip. */
2795         desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF);
2796
2797         /*
2798          * Insure that the map for this transmission
2799          * is placed at the array index of the last descriptor
2800          * in this chain.  (Swap last and first dmamaps.)
2801          */
2802         txd_last = &sc->rl_ldata.rl_tx_desc[ei];
2803         map = txd->tx_dmamap;
2804         txd->tx_dmamap = txd_last->tx_dmamap;
2805         txd_last->tx_dmamap = map;
2806         txd_last->tx_m = *m_head;
2807
2808         return (0);
2809 }
2810
2811 static void
2812 re_start(struct ifnet *ifp)
2813 {
2814         struct rl_softc         *sc;
2815
2816         sc = ifp->if_softc;
2817         RL_LOCK(sc);
2818         re_start_locked(ifp);
2819         RL_UNLOCK(sc);
2820 }
2821
2822 /*
2823  * Main transmit routine for C+ and gigE NICs.
2824  */
2825 static void
2826 re_start_locked(struct ifnet *ifp)
2827 {
2828         struct rl_softc         *sc;
2829         struct mbuf             *m_head;
2830         int                     queued;
2831
2832         sc = ifp->if_softc;
2833
2834         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2835             IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0)
2836                 return;
2837
2838         for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2839             sc->rl_ldata.rl_tx_free > 1;) {
2840                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2841                 if (m_head == NULL)
2842                         break;
2843
2844                 if (re_encap(sc, &m_head) != 0) {
2845                         if (m_head == NULL)
2846                                 break;
2847                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2848                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2849                         break;
2850                 }
2851
2852                 /*
2853                  * If there's a BPF listener, bounce a copy of this frame
2854                  * to him.
2855                  */
2856                 ETHER_BPF_MTAP(ifp, m_head);
2857
2858                 queued++;
2859         }
2860
2861         if (queued == 0) {
2862 #ifdef RE_TX_MODERATION
2863                 if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt)
2864                         CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2865 #endif
2866                 return;
2867         }
2868
2869         /* Flush the TX descriptors */
2870
2871         bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2872             sc->rl_ldata.rl_tx_list_map,
2873             BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2874
2875         CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2876
2877 #ifdef RE_TX_MODERATION
2878         /*
2879          * Use the countdown timer for interrupt moderation.
2880          * 'TX done' interrupts are disabled. Instead, we reset the
2881          * countdown timer, which will begin counting until it hits
2882          * the value in the TIMERINT register, and then trigger an
2883          * interrupt. Each time we write to the TIMERCNT register,
2884          * the timer count is reset to 0.
2885          */
2886         CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2887 #endif
2888
2889         /*
2890          * Set a timeout in case the chip goes out to lunch.
2891          */
2892         sc->rl_watchdog_timer = 5;
2893 }
2894
2895 static void
2896 re_set_jumbo(struct rl_softc *sc, int jumbo)
2897 {
2898
2899         if (sc->rl_hwrev->rl_rev == RL_HWREV_8168E_VL) {
2900                 pci_set_max_read_req(sc->rl_dev, 4096);
2901                 return;
2902         }
2903
2904         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2905         if (jumbo != 0) {
2906                 CSR_WRITE_1(sc, RL_CFG3, CSR_READ_1(sc, RL_CFG3) |
2907                     RL_CFG3_JUMBO_EN0);
2908                 switch (sc->rl_hwrev->rl_rev) {
2909                 case RL_HWREV_8168DP:
2910                         break;
2911                 case RL_HWREV_8168E:
2912                         CSR_WRITE_1(sc, RL_CFG4, CSR_READ_1(sc, RL_CFG4) |
2913                             0x01);
2914                         break;
2915                 default:
2916                         CSR_WRITE_1(sc, RL_CFG4, CSR_READ_1(sc, RL_CFG4) |
2917                             RL_CFG4_JUMBO_EN1);
2918                 }
2919         } else {
2920                 CSR_WRITE_1(sc, RL_CFG3, CSR_READ_1(sc, RL_CFG3) &
2921                     ~RL_CFG3_JUMBO_EN0);
2922                 switch (sc->rl_hwrev->rl_rev) {
2923                 case RL_HWREV_8168DP:
2924                         break;
2925                 case RL_HWREV_8168E:
2926                         CSR_WRITE_1(sc, RL_CFG4, CSR_READ_1(sc, RL_CFG4) &
2927                             ~0x01);
2928                         break;
2929                 default:
2930                         CSR_WRITE_1(sc, RL_CFG4, CSR_READ_1(sc, RL_CFG4) &
2931                             ~RL_CFG4_JUMBO_EN1);
2932                 }
2933         }
2934         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2935
2936         switch (sc->rl_hwrev->rl_rev) {
2937         case RL_HWREV_8168DP:
2938                 pci_set_max_read_req(sc->rl_dev, 4096);
2939                 break;
2940         default:
2941                 if (jumbo != 0)
2942                         pci_set_max_read_req(sc->rl_dev, 512);
2943                 else
2944                         pci_set_max_read_req(sc->rl_dev, 4096);
2945         }
2946 }
2947
2948 static void
2949 re_init(void *xsc)
2950 {
2951         struct rl_softc         *sc = xsc;
2952
2953         RL_LOCK(sc);
2954         re_init_locked(sc);
2955         RL_UNLOCK(sc);
2956 }
2957
2958 static void
2959 re_init_locked(struct rl_softc *sc)
2960 {
2961         struct ifnet            *ifp = sc->rl_ifp;
2962         struct mii_data         *mii;
2963         uint32_t                reg;
2964         uint16_t                cfg;
2965         union {
2966                 uint32_t align_dummy;
2967                 u_char eaddr[ETHER_ADDR_LEN];
2968         } eaddr;
2969
2970         RL_LOCK_ASSERT(sc);
2971
2972         mii = device_get_softc(sc->rl_miibus);
2973
2974         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2975                 return;
2976
2977         /*
2978          * Cancel pending I/O and free all RX/TX buffers.
2979          */
2980         re_stop(sc);
2981
2982         /* Put controller into known state. */
2983         re_reset(sc);
2984
2985         /*
2986          * For C+ mode, initialize the RX descriptors and mbufs.
2987          */
2988         if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
2989                 if (ifp->if_mtu > RL_MTU) {
2990                         if (re_jrx_list_init(sc) != 0) {
2991                                 device_printf(sc->rl_dev,
2992                                     "no memory for jumbo RX buffers\n");
2993                                 re_stop(sc);
2994                                 return;
2995                         }
2996                         /* Disable checksum offloading for jumbo frames. */
2997                         ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_TSO4);
2998                         ifp->if_hwassist &= ~(RE_CSUM_FEATURES | CSUM_TSO);
2999                 } else {
3000                         if (re_rx_list_init(sc) != 0) {
3001                                 device_printf(sc->rl_dev,
3002                                     "no memory for RX buffers\n");
3003                                 re_stop(sc);
3004                                 return;
3005                         }
3006                 }
3007                 re_set_jumbo(sc, ifp->if_mtu > RL_MTU);
3008         } else {
3009                 if (re_rx_list_init(sc) != 0) {
3010                         device_printf(sc->rl_dev, "no memory for RX buffers\n");
3011                         re_stop(sc);
3012                         return;
3013                 }
3014                 if ((sc->rl_flags & RL_FLAG_PCIE) != 0 &&
3015                     pci_get_device(sc->rl_dev) != RT_DEVICEID_8101E) {
3016                         if (ifp->if_mtu > RL_MTU)
3017                                 pci_set_max_read_req(sc->rl_dev, 512);
3018                         else
3019                                 pci_set_max_read_req(sc->rl_dev, 4096);
3020                 }
3021         }
3022         re_tx_list_init(sc);
3023
3024         /*
3025          * Enable C+ RX and TX mode, as well as VLAN stripping and
3026          * RX checksum offload. We must configure the C+ register
3027          * before all others.
3028          */
3029         cfg = RL_CPLUSCMD_PCI_MRW;
3030         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
3031                 cfg |= RL_CPLUSCMD_RXCSUM_ENB;
3032         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3033                 cfg |= RL_CPLUSCMD_VLANSTRIP;
3034         if ((sc->rl_flags & RL_FLAG_MACSTAT) != 0) {
3035                 cfg |= RL_CPLUSCMD_MACSTAT_DIS;
3036                 /* XXX magic. */
3037                 cfg |= 0x0001;
3038         } else
3039                 cfg |= RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB;
3040         CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg);
3041         if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SC ||
3042             sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE) {
3043                 reg = 0x000fff00;
3044                 if ((CSR_READ_1(sc, RL_CFG2) & RL_CFG2_PCI66MHZ) != 0)
3045                         reg |= 0x000000ff;
3046                 if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE)
3047                         reg |= 0x00f00000;
3048                 CSR_WRITE_4(sc, 0x7c, reg);
3049                 /* Disable interrupt mitigation. */
3050                 CSR_WRITE_2(sc, 0xe2, 0);
3051         }
3052         /*
3053          * Disable TSO if interface MTU size is greater than MSS
3054          * allowed in controller.
3055          */
3056         if (ifp->if_mtu > RL_TSO_MTU && (ifp->if_capenable & IFCAP_TSO4) != 0) {
3057                 ifp->if_capenable &= ~IFCAP_TSO4;
3058                 ifp->if_hwassist &= ~CSUM_TSO;
3059         }
3060
3061         /*
3062          * Init our MAC address.  Even though the chipset
3063          * documentation doesn't mention it, we need to enter "Config
3064          * register write enable" mode to modify the ID registers.
3065          */
3066         /* Copy MAC address on stack to align. */
3067         bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN);
3068         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
3069         CSR_WRITE_4(sc, RL_IDR0,
3070             htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
3071         CSR_WRITE_4(sc, RL_IDR4,
3072             htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
3073         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3074
3075         /*
3076          * Load the addresses of the RX and TX lists into the chip.
3077          */
3078
3079         CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
3080             RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
3081         CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
3082             RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
3083
3084         CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
3085             RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
3086         CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
3087             RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
3088
3089         /*
3090          * Enable transmit and receive.
3091          */
3092         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
3093
3094         /*
3095          * Set the initial TX configuration.
3096          */
3097         if (sc->rl_testmode) {
3098                 if (sc->rl_type == RL_8169)
3099                         CSR_WRITE_4(sc, RL_TXCFG,
3100                             RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
3101                 else
3102                         CSR_WRITE_4(sc, RL_TXCFG,
3103                             RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
3104         } else
3105                 CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
3106
3107         CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
3108
3109         /*
3110          * Set the initial RX configuration.
3111          */
3112         re_set_rxmode(sc);
3113
3114         /* Configure interrupt moderation. */
3115         if (sc->rl_type == RL_8169) {
3116                 /* Magic from vendor. */
3117                 CSR_WRITE_2(sc, RL_INTRMOD, 0x5100);
3118         }
3119
3120 #ifdef DEVICE_POLLING
3121         /*
3122          * Disable interrupts if we are polling.
3123          */
3124         if (ifp->if_capenable & IFCAP_POLLING)
3125                 CSR_WRITE_2(sc, RL_IMR, 0);
3126         else    /* otherwise ... */
3127 #endif
3128
3129         /*
3130          * Enable interrupts.
3131          */
3132         if (sc->rl_testmode)
3133                 CSR_WRITE_2(sc, RL_IMR, 0);
3134         else
3135                 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
3136         CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);
3137
3138         /* Set initial TX threshold */
3139         sc->rl_txthresh = RL_TX_THRESH_INIT;
3140
3141         /* Start RX/TX process. */
3142         CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
3143 #ifdef notdef
3144         /* Enable receiver and transmitter. */
3145         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
3146 #endif
3147
3148         /*
3149          * Initialize the timer interrupt register so that
3150          * a timer interrupt will be generated once the timer
3151          * reaches a certain number of ticks. The timer is
3152          * reloaded on each transmit.
3153          */
3154 #ifdef RE_TX_MODERATION
3155         /*
3156          * Use timer interrupt register to moderate TX interrupt
3157          * moderation, which dramatically improves TX frame rate.
3158          */
3159         if (sc->rl_type == RL_8169)
3160                 CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
3161         else
3162                 CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
3163 #else
3164         /*
3165          * Use timer interrupt register to moderate RX interrupt
3166          * moderation.
3167          */
3168         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 &&
3169             intr_filter == 0) {
3170                 if (sc->rl_type == RL_8169)
3171                         CSR_WRITE_4(sc, RL_TIMERINT_8169,
3172                             RL_USECS(sc->rl_int_rx_mod));
3173         } else {
3174                 if (sc->rl_type == RL_8169)
3175                         CSR_WRITE_4(sc, RL_TIMERINT_8169, RL_USECS(0));
3176         }
3177 #endif
3178
3179         /*
3180          * For 8169 gigE NICs, set the max allowed RX packet
3181          * size so we can receive jumbo frames.
3182          */
3183         if (sc->rl_type == RL_8169) {
3184                 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
3185                         /*
3186                          * For controllers that use new jumbo frame scheme,
3187                          * set maximum size of jumbo frame depedning on
3188                          * controller revisions.
3189                          */
3190                         if (ifp->if_mtu > RL_MTU)
3191                                 CSR_WRITE_2(sc, RL_MAXRXPKTLEN,
3192                                     sc->rl_hwrev->rl_max_mtu +
3193                                     ETHER_VLAN_ENCAP_LEN + ETHER_HDR_LEN +
3194                                     ETHER_CRC_LEN);
3195                         else
3196                                 CSR_WRITE_2(sc, RL_MAXRXPKTLEN,
3197                                     RE_RX_DESC_BUFLEN);
3198                 } else if ((sc->rl_flags & RL_FLAG_PCIE) != 0 &&
3199                     sc->rl_hwrev->rl_max_mtu == RL_MTU) {
3200                         /* RTL810x has no jumbo frame support. */
3201                         CSR_WRITE_2(sc, RL_MAXRXPKTLEN, RE_RX_DESC_BUFLEN);
3202                 } else
3203                         CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
3204         }
3205
3206         if (sc->rl_testmode)
3207                 return;
3208
3209         CSR_WRITE_1(sc, RL_CFG1, CSR_READ_1(sc, RL_CFG1) | RL_CFG1_DRVLOAD);
3210
3211         ifp->if_drv_flags |= IFF_DRV_RUNNING;
3212         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3213
3214         sc->rl_flags &= ~RL_FLAG_LINK;
3215         mii_mediachg(mii);
3216
3217         sc->rl_watchdog_timer = 0;
3218         callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
3219 }
3220
3221 /*
3222  * Set media options.
3223  */
3224 static int
3225 re_ifmedia_upd(struct ifnet *ifp)
3226 {
3227         struct rl_softc         *sc;
3228         struct mii_data         *mii;
3229         int                     error;
3230
3231         sc = ifp->if_softc;
3232         mii = device_get_softc(sc->rl_miibus);
3233         RL_LOCK(sc);
3234         error = mii_mediachg(mii);
3235         RL_UNLOCK(sc);
3236
3237         return (error);
3238 }
3239
3240 /*
3241  * Report current media status.
3242  */
3243 static void
3244 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3245 {
3246         struct rl_softc         *sc;
3247         struct mii_data         *mii;
3248
3249         sc = ifp->if_softc;
3250         mii = device_get_softc(sc->rl_miibus);
3251
3252         RL_LOCK(sc);
3253         mii_pollstat(mii);
3254         ifmr->ifm_active = mii->mii_media_active;
3255         ifmr->ifm_status = mii->mii_media_status;
3256         RL_UNLOCK(sc);
3257 }
3258
3259 static int
3260 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3261 {
3262         struct rl_softc         *sc = ifp->if_softc;
3263         struct ifreq            *ifr = (struct ifreq *) data;
3264         struct mii_data         *mii;
3265         uint32_t                rev;
3266         int                     error = 0;
3267
3268         switch (command) {
3269         case SIOCSIFMTU:
3270                 if (ifr->ifr_mtu < ETHERMIN ||
3271                     ifr->ifr_mtu > sc->rl_hwrev->rl_max_mtu) {
3272                         error = EINVAL;
3273                         break;
3274                 }
3275                 RL_LOCK(sc);
3276                 if (ifp->if_mtu != ifr->ifr_mtu) {
3277                         ifp->if_mtu = ifr->ifr_mtu;
3278                         if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
3279                             (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
3280                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3281                                 re_init_locked(sc);
3282                         }
3283                         if (ifp->if_mtu > RL_TSO_MTU &&
3284                             (ifp->if_capenable & IFCAP_TSO4) != 0) {
3285                                 ifp->if_capenable &= ~(IFCAP_TSO4 |
3286                                     IFCAP_VLAN_HWTSO);
3287                                 ifp->if_hwassist &= ~CSUM_TSO;
3288                         }
3289                         VLAN_CAPABILITIES(ifp);
3290                 }
3291                 RL_UNLOCK(sc);
3292                 break;
3293         case SIOCSIFFLAGS:
3294                 RL_LOCK(sc);
3295                 if ((ifp->if_flags & IFF_UP) != 0) {
3296                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
3297                                 if (((ifp->if_flags ^ sc->rl_if_flags)
3298                                     & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
3299                                         re_set_rxmode(sc);
3300                         } else
3301                                 re_init_locked(sc);
3302                 } else {
3303                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3304                                 re_stop(sc);
3305                 }
3306                 sc->rl_if_flags = ifp->if_flags;
3307                 RL_UNLOCK(sc);
3308                 break;
3309         case SIOCADDMULTI:
3310         case SIOCDELMULTI:
3311                 RL_LOCK(sc);
3312                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3313                         re_set_rxmode(sc);
3314                 RL_UNLOCK(sc);
3315                 break;
3316         case SIOCGIFMEDIA:
3317         case SIOCSIFMEDIA:
3318                 mii = device_get_softc(sc->rl_miibus);
3319                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3320                 break;
3321         case SIOCSIFCAP:
3322             {
3323                 int mask, reinit;
3324
3325                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3326                 reinit = 0;
3327 #ifdef DEVICE_POLLING
3328                 if (mask & IFCAP_POLLING) {
3329                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
3330                                 error = ether_poll_register(re_poll, ifp);
3331                                 if (error)
3332                                         return (error);
3333                                 RL_LOCK(sc);
3334                                 /* Disable interrupts */
3335                                 CSR_WRITE_2(sc, RL_IMR, 0x0000);
3336                                 ifp->if_capenable |= IFCAP_POLLING;
3337                                 RL_UNLOCK(sc);
3338                         } else {
3339                                 error = ether_poll_deregister(ifp);
3340                                 /* Enable interrupts. */
3341                                 RL_LOCK(sc);
3342                                 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
3343                                 ifp->if_capenable &= ~IFCAP_POLLING;
3344                                 RL_UNLOCK(sc);
3345                         }
3346                 }
3347 #endif /* DEVICE_POLLING */
3348                 RL_LOCK(sc);
3349                 if ((mask & IFCAP_TXCSUM) != 0 &&
3350                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
3351                         ifp->if_capenable ^= IFCAP_TXCSUM;
3352                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) {
3353                                 rev = sc->rl_hwrev->rl_rev;
3354                                 if (rev == RL_HWREV_8168C ||
3355                                     rev == RL_HWREV_8168C_SPIN2)
3356                                         ifp->if_hwassist |= CSUM_TCP | CSUM_UDP;
3357                                 else
3358                                         ifp->if_hwassist |= RE_CSUM_FEATURES;
3359                         } else
3360                                 ifp->if_hwassist &= ~RE_CSUM_FEATURES;
3361                         reinit = 1;
3362                 }
3363                 if ((mask & IFCAP_RXCSUM) != 0 &&
3364                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
3365                         ifp->if_capenable ^= IFCAP_RXCSUM;
3366                         reinit = 1;
3367                 }
3368                 if ((mask & IFCAP_TSO4) != 0 &&
3369                     (ifp->if_capabilities & IFCAP_TSO) != 0) {
3370                         ifp->if_capenable ^= IFCAP_TSO4;
3371                         if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
3372                                 ifp->if_hwassist |= CSUM_TSO;
3373                         else
3374                                 ifp->if_hwassist &= ~CSUM_TSO;
3375                         if (ifp->if_mtu > RL_TSO_MTU &&
3376                             (ifp->if_capenable & IFCAP_TSO4) != 0) {
3377                                 ifp->if_capenable &= ~IFCAP_TSO4;
3378                                 ifp->if_hwassist &= ~CSUM_TSO;
3379                         }
3380                 }
3381                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
3382                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
3383                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
3384                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
3385                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
3386                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
3387                         /* TSO over VLAN requires VLAN hardware tagging. */
3388                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
3389                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
3390                         reinit = 1;
3391                 }
3392                 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
3393                     (mask & (IFCAP_HWCSUM | IFCAP_TSO4 |
3394                     IFCAP_VLAN_HWTSO)) != 0)
3395                                 reinit = 1;
3396                 if ((mask & IFCAP_WOL) != 0 &&
3397                     (ifp->if_capabilities & IFCAP_WOL) != 0) {
3398                         if ((mask & IFCAP_WOL_UCAST) != 0)
3399                                 ifp->if_capenable ^= IFCAP_WOL_UCAST;
3400                         if ((mask & IFCAP_WOL_MCAST) != 0)
3401                                 ifp->if_capenable ^= IFCAP_WOL_MCAST;
3402                         if ((mask & IFCAP_WOL_MAGIC) != 0)
3403                                 ifp->if_capenable ^= IFCAP_WOL_MAGIC;
3404                 }
3405                 if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING) {
3406                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3407                         re_init_locked(sc);
3408                 }
3409                 RL_UNLOCK(sc);
3410                 VLAN_CAPABILITIES(ifp);
3411             }
3412                 break;
3413         default:
3414                 error = ether_ioctl(ifp, command, data);
3415                 break;
3416         }
3417
3418         return (error);
3419 }
3420
3421 static void
3422 re_watchdog(struct rl_softc *sc)
3423 {
3424         struct ifnet            *ifp;
3425
3426         RL_LOCK_ASSERT(sc);
3427
3428         if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0)
3429                 return;
3430
3431         ifp = sc->rl_ifp;
3432         re_txeof(sc);
3433         if (sc->rl_ldata.rl_tx_free == sc->rl_ldata.rl_tx_desc_cnt) {
3434                 if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
3435                     "-- recovering\n");
3436                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3437                         re_start_locked(ifp);
3438                 return;
3439         }
3440
3441         if_printf(ifp, "watchdog timeout\n");
3442         ifp->if_oerrors++;
3443
3444         re_rxeof(sc, NULL);
3445         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3446         re_init_locked(sc);
3447         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3448                 re_start_locked(ifp);
3449 }
3450
3451 /*
3452  * Stop the adapter and free any mbufs allocated to the
3453  * RX and TX lists.
3454  */
3455 static void
3456 re_stop(struct rl_softc *sc)
3457 {
3458         int                     i;
3459         struct ifnet            *ifp;
3460         struct rl_txdesc        *txd;
3461         struct rl_rxdesc        *rxd;
3462
3463         RL_LOCK_ASSERT(sc);
3464
3465         ifp = sc->rl_ifp;
3466
3467         sc->rl_watchdog_timer = 0;
3468         callout_stop(&sc->rl_stat_callout);
3469         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3470
3471         /*
3472          * Disable accepting frames to put RX MAC into idle state.
3473          * Otherwise it's possible to get frames while stop command
3474          * execution is in progress and controller can DMA the frame
3475          * to already freed RX buffer during that period.
3476          */
3477         CSR_WRITE_4(sc, RL_RXCFG, CSR_READ_4(sc, RL_RXCFG) &
3478             ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_MULTI |
3479             RL_RXCFG_RX_BROAD));
3480
3481         if ((sc->rl_flags & RL_FLAG_WAIT_TXPOLL) != 0) {
3482                 for (i = RL_TIMEOUT; i > 0; i--) {
3483                         if ((CSR_READ_1(sc, sc->rl_txstart) &
3484                             RL_TXSTART_START) == 0)
3485                                 break;
3486                         DELAY(20);
3487                 }
3488                 if (i == 0)
3489                         device_printf(sc->rl_dev,
3490                             "stopping TX poll timed out!\n");
3491                 CSR_WRITE_1(sc, RL_COMMAND, 0x00);
3492         } else if ((sc->rl_flags & RL_FLAG_CMDSTOP) != 0) {
3493                 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_STOPREQ | RL_CMD_TX_ENB |
3494                     RL_CMD_RX_ENB);
3495                 if ((sc->rl_flags & RL_FLAG_CMDSTOP_WAIT_TXQ) != 0) {
3496                         for (i = RL_TIMEOUT; i > 0; i--) {
3497                                 if ((CSR_READ_4(sc, RL_TXCFG) &
3498                                     RL_TXCFG_QUEUE_EMPTY) != 0)
3499                                         break;
3500                                 DELAY(100);
3501                         }
3502                         if (i == 0)
3503                                 device_printf(sc->rl_dev,
3504                                    "stopping TXQ timed out!\n");
3505                 }
3506         } else
3507                 CSR_WRITE_1(sc, RL_COMMAND, 0x00);
3508         DELAY(1000);
3509         CSR_WRITE_2(sc, RL_IMR, 0x0000);
3510         CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
3511
3512         if (sc->rl_head != NULL) {
3513                 m_freem(sc->rl_head);
3514                 sc->rl_head = sc->rl_tail = NULL;
3515         }
3516
3517         /* Free the TX list buffers. */
3518
3519         for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
3520                 txd = &sc->rl_ldata.rl_tx_desc[i];
3521                 if (txd->tx_m != NULL) {
3522                         bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
3523                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3524                         bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
3525                             txd->tx_dmamap);
3526                         m_freem(txd->tx_m);
3527                         txd->tx_m = NULL;
3528                 }
3529         }
3530
3531         /* Free the RX list buffers. */
3532
3533         for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
3534                 rxd = &sc->rl_ldata.rl_rx_desc[i];
3535                 if (rxd->rx_m != NULL) {
3536                         bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
3537                             rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3538                         bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
3539                             rxd->rx_dmamap);
3540                         m_freem(rxd->rx_m);
3541                         rxd->rx_m = NULL;
3542                 }
3543         }
3544 }
3545
3546 /*
3547  * Device suspend routine.  Stop the interface and save some PCI
3548  * settings in case the BIOS doesn't restore them properly on
3549  * resume.
3550  */
3551 static int
3552 re_suspend(device_t dev)
3553 {
3554         struct rl_softc         *sc;
3555
3556         sc = device_get_softc(dev);
3557
3558         RL_LOCK(sc);
3559         re_stop(sc);
3560         re_setwol(sc);
3561         sc->suspended = 1;
3562         RL_UNLOCK(sc);
3563
3564         return (0);
3565 }
3566
3567 /*
3568  * Device resume routine.  Restore some PCI settings in case the BIOS
3569  * doesn't, re-enable busmastering, and restart the interface if
3570  * appropriate.
3571  */
3572 static int
3573 re_resume(device_t dev)
3574 {
3575         struct rl_softc         *sc;
3576         struct ifnet            *ifp;
3577
3578         sc = device_get_softc(dev);
3579
3580         RL_LOCK(sc);
3581
3582         ifp = sc->rl_ifp;
3583         /* Take controller out of sleep mode. */
3584         if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
3585                 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
3586                         CSR_WRITE_1(sc, RL_GPIO,
3587                             CSR_READ_1(sc, RL_GPIO) | 0x01);
3588         }
3589
3590         /*
3591          * Clear WOL matching such that normal Rx filtering
3592          * wouldn't interfere with WOL patterns.
3593          */
3594         re_clrwol(sc);
3595
3596         /* reinitialize interface if necessary */
3597         if (ifp->if_flags & IFF_UP)
3598                 re_init_locked(sc);
3599
3600         sc->suspended = 0;
3601         RL_UNLOCK(sc);
3602
3603         return (0);
3604 }
3605
3606 /*
3607  * Stop all chip I/O so that the kernel's probe routines don't
3608  * get confused by errant DMAs when rebooting.
3609  */
3610 static int
3611 re_shutdown(device_t dev)
3612 {
3613         struct rl_softc         *sc;
3614
3615         sc = device_get_softc(dev);
3616
3617         RL_LOCK(sc);
3618         re_stop(sc);
3619         /*
3620          * Mark interface as down since otherwise we will panic if
3621          * interrupt comes in later on, which can happen in some
3622          * cases.
3623          */
3624         sc->rl_ifp->if_flags &= ~IFF_UP;
3625         re_setwol(sc);
3626         RL_UNLOCK(sc);
3627
3628         return (0);
3629 }
3630
3631 static void
3632 re_set_linkspeed(struct rl_softc *sc)
3633 {
3634         struct mii_softc *miisc;
3635         struct mii_data *mii;
3636         int aneg, i, phyno;
3637
3638         RL_LOCK_ASSERT(sc);
3639
3640         mii = device_get_softc(sc->rl_miibus);
3641         mii_pollstat(mii);
3642         aneg = 0;
3643         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
3644             (IFM_ACTIVE | IFM_AVALID)) {
3645                 switch IFM_SUBTYPE(mii->mii_media_active) {
3646                 case IFM_10_T:
3647                 case IFM_100_TX:
3648                         return;
3649                 case IFM_1000_T:
3650                         aneg++;
3651                         break;
3652                 default:
3653                         break;
3654                 }
3655         }
3656         miisc = LIST_FIRST(&mii->mii_phys);
3657         phyno = miisc->mii_phy;
3658         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3659                 PHY_RESET(miisc);
3660         re_miibus_writereg(sc->rl_dev, phyno, MII_100T2CR, 0);
3661         re_miibus_writereg(sc->rl_dev, phyno,
3662             MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
3663         re_miibus_writereg(sc->rl_dev, phyno,
3664             MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
3665         DELAY(1000);
3666         if (aneg != 0) {
3667                 /*
3668                  * Poll link state until re(4) get a 10/100Mbps link.
3669                  */
3670                 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
3671                         mii_pollstat(mii);
3672                         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
3673                             == (IFM_ACTIVE | IFM_AVALID)) {
3674                                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
3675                                 case IFM_10_T:
3676                                 case IFM_100_TX:
3677                                         return;
3678                                 default:
3679                                         break;
3680                                 }
3681                         }
3682                         RL_UNLOCK(sc);
3683                         pause("relnk", hz);
3684                         RL_LOCK(sc);
3685                 }
3686                 if (i == MII_ANEGTICKS_GIGE)
3687                         device_printf(sc->rl_dev,
3688                             "establishing a link failed, WOL may not work!");
3689         }
3690         /*
3691          * No link, force MAC to have 100Mbps, full-duplex link.
3692          * MAC does not require reprogramming on resolved speed/duplex,
3693          * so this is just for completeness.
3694          */
3695         mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
3696         mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
3697 }
3698
3699 static void
3700 re_setwol(struct rl_softc *sc)
3701 {
3702         struct ifnet            *ifp;
3703         int                     pmc;
3704         uint16_t                pmstat;
3705         uint8_t                 v;
3706
3707         RL_LOCK_ASSERT(sc);
3708
3709         if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3710                 return;
3711
3712         ifp = sc->rl_ifp;
3713         /* Put controller into sleep mode. */
3714         if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
3715                 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
3716                         CSR_WRITE_1(sc, RL_GPIO,
3717                             CSR_READ_1(sc, RL_GPIO) & ~0x01);
3718         }
3719         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
3720                 re_set_rxmode(sc);
3721                 if ((sc->rl_flags & RL_FLAG_WOL_MANLINK) != 0)
3722                         re_set_linkspeed(sc);
3723                 if ((sc->rl_flags & RL_FLAG_WOLRXENB) != 0)
3724                         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RX_ENB);
3725         }
3726         /* Enable config register write. */
3727         CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3728
3729         /* Enable PME. */
3730         v = CSR_READ_1(sc, RL_CFG1);
3731         v &= ~RL_CFG1_PME;
3732         if ((ifp->if_capenable & IFCAP_WOL) != 0)
3733                 v |= RL_CFG1_PME;
3734         CSR_WRITE_1(sc, RL_CFG1, v);
3735
3736         v = CSR_READ_1(sc, RL_CFG3);
3737         v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3738         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
3739                 v |= RL_CFG3_WOL_MAGIC;
3740         CSR_WRITE_1(sc, RL_CFG3, v);
3741
3742         v = CSR_READ_1(sc, RL_CFG5);
3743         v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST |
3744             RL_CFG5_WOL_LANWAKE);
3745         if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
3746                 v |= RL_CFG5_WOL_UCAST;
3747         if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
3748                 v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
3749         if ((ifp->if_capenable & IFCAP_WOL) != 0)
3750                 v |= RL_CFG5_WOL_LANWAKE;
3751         CSR_WRITE_1(sc, RL_CFG5, v);
3752
3753         /* Config register write done. */
3754         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3755
3756         if ((ifp->if_capenable & IFCAP_WOL) != 0 &&
3757             (sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0)
3758                 CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) & ~0x80);
3759         /*
3760          * It seems that hardware resets its link speed to 100Mbps in
3761          * power down mode so switching to 100Mbps in driver is not
3762          * needed.
3763          */
3764
3765         /* Request PME if WOL is requested. */
3766         pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
3767         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3768         if ((ifp->if_capenable & IFCAP_WOL) != 0)
3769                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3770         pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
3771 }
3772
3773 static void
3774 re_clrwol(struct rl_softc *sc)
3775 {
3776         int                     pmc;
3777         uint8_t                 v;
3778
3779         RL_LOCK_ASSERT(sc);
3780
3781         if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3782                 return;
3783
3784         /* Enable config register write. */
3785         CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3786
3787         v = CSR_READ_1(sc, RL_CFG3);
3788         v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3789         CSR_WRITE_1(sc, RL_CFG3, v);
3790
3791         /* Config register write done. */
3792         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3793
3794         v = CSR_READ_1(sc, RL_CFG5);
3795         v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
3796         v &= ~RL_CFG5_WOL_LANWAKE;
3797         CSR_WRITE_1(sc, RL_CFG5, v);
3798 }
3799
3800 static void
3801 re_add_sysctls(struct rl_softc *sc)
3802 {
3803         struct sysctl_ctx_list  *ctx;
3804         struct sysctl_oid_list  *children;
3805         int                     error;
3806
3807         ctx = device_get_sysctl_ctx(sc->rl_dev);
3808         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev));
3809
3810         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "stats",
3811             CTLTYPE_INT | CTLFLAG_RW, sc, 0, re_sysctl_stats, "I",
3812             "Statistics Information");
3813         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0)
3814                 return;
3815
3816         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "int_rx_mod",
3817             CTLTYPE_INT | CTLFLAG_RW, &sc->rl_int_rx_mod, 0,
3818             sysctl_hw_re_int_mod, "I", "re RX interrupt moderation");
3819         /* Pull in device tunables. */
3820         sc->rl_int_rx_mod = RL_TIMER_DEFAULT;
3821         error = resource_int_value(device_get_name(sc->rl_dev),
3822             device_get_unit(sc->rl_dev), "int_rx_mod", &sc->rl_int_rx_mod);
3823         if (error == 0) {
3824                 if (sc->rl_int_rx_mod < RL_TIMER_MIN ||
3825                     sc->rl_int_rx_mod > RL_TIMER_MAX) {
3826                         device_printf(sc->rl_dev, "int_rx_mod value out of "
3827                             "range; using default: %d\n",
3828                             RL_TIMER_DEFAULT);
3829                         sc->rl_int_rx_mod = RL_TIMER_DEFAULT;
3830                 }
3831         }
3832
3833 }
3834
3835 static int
3836 re_sysctl_stats(SYSCTL_HANDLER_ARGS)
3837 {
3838         struct rl_softc         *sc;
3839         struct rl_stats         *stats;
3840         int                     error, i, result;
3841
3842         result = -1;
3843         error = sysctl_handle_int(oidp, &result, 0, req);
3844         if (error || req->newptr == NULL)
3845                 return (error);
3846
3847         if (result == 1) {
3848                 sc = (struct rl_softc *)arg1;
3849                 RL_LOCK(sc);
3850                 if ((sc->rl_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3851                         RL_UNLOCK(sc);
3852                         goto done;
3853                 }
3854                 bus_dmamap_sync(sc->rl_ldata.rl_stag,
3855                     sc->rl_ldata.rl_smap, BUS_DMASYNC_PREREAD);
3856                 CSR_WRITE_4(sc, RL_DUMPSTATS_HI,
3857                     RL_ADDR_HI(sc->rl_ldata.rl_stats_addr));
3858                 CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
3859                     RL_ADDR_LO(sc->rl_ldata.rl_stats_addr));
3860                 CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
3861                     RL_ADDR_LO(sc->rl_ldata.rl_stats_addr |
3862                     RL_DUMPSTATS_START));
3863                 for (i = RL_TIMEOUT; i > 0; i--) {
3864                         if ((CSR_READ_4(sc, RL_DUMPSTATS_LO) &
3865                             RL_DUMPSTATS_START) == 0)
3866                                 break;
3867                         DELAY(1000);
3868                 }
3869                 bus_dmamap_sync(sc->rl_ldata.rl_stag,
3870                     sc->rl_ldata.rl_smap, BUS_DMASYNC_POSTREAD);
3871                 RL_UNLOCK(sc);
3872                 if (i == 0) {
3873                         device_printf(sc->rl_dev,
3874                             "DUMP statistics request timedout\n");
3875                         return (ETIMEDOUT);
3876                 }
3877 done:
3878                 stats = sc->rl_ldata.rl_stats;
3879                 printf("%s statistics:\n", device_get_nameunit(sc->rl_dev));
3880                 printf("Tx frames : %ju\n",
3881                     (uintmax_t)le64toh(stats->rl_tx_pkts));
3882                 printf("Rx frames : %ju\n",
3883                     (uintmax_t)le64toh(stats->rl_rx_pkts));
3884                 printf("Tx errors : %ju\n",
3885                     (uintmax_t)le64toh(stats->rl_tx_errs));
3886                 printf("Rx errors : %u\n",
3887                     le32toh(stats->rl_rx_errs));
3888                 printf("Rx missed frames : %u\n",
3889                     (uint32_t)le16toh(stats->rl_missed_pkts));
3890                 printf("Rx frame alignment errs : %u\n",
3891                     (uint32_t)le16toh(stats->rl_rx_framealign_errs));
3892                 printf("Tx single collisions : %u\n",
3893                     le32toh(stats->rl_tx_onecoll));
3894                 printf("Tx multiple collisions : %u\n",
3895                     le32toh(stats->rl_tx_multicolls));
3896                 printf("Rx unicast frames : %ju\n",
3897                     (uintmax_t)le64toh(stats->rl_rx_ucasts));
3898                 printf("Rx broadcast frames : %ju\n",
3899                     (uintmax_t)le64toh(stats->rl_rx_bcasts));
3900                 printf("Rx multicast frames : %u\n",
3901                     le32toh(stats->rl_rx_mcasts));
3902                 printf("Tx aborts : %u\n",
3903                     (uint32_t)le16toh(stats->rl_tx_aborts));
3904                 printf("Tx underruns : %u\n",
3905                     (uint32_t)le16toh(stats->rl_rx_underruns));
3906         }
3907
3908         return (error);
3909 }
3910
3911 static int
3912 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3913 {
3914         int error, value;
3915
3916         if (arg1 == NULL)
3917                 return (EINVAL);
3918         value = *(int *)arg1;
3919         error = sysctl_handle_int(oidp, &value, 0, req);
3920         if (error || req->newptr == NULL)
3921                 return (error);
3922         if (value < low || value > high)
3923                 return (EINVAL);
3924         *(int *)arg1 = value;
3925
3926         return (0);
3927 }
3928
3929 static int
3930 sysctl_hw_re_int_mod(SYSCTL_HANDLER_ARGS)
3931 {
3932
3933         return (sysctl_int_range(oidp, arg1, arg2, req, RL_TIMER_MIN,
3934             RL_TIMER_MAX));
3935 }