]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - sys/dev/re/if_re.c
MFC r256828:
[FreeBSD/stable/10.git] / sys / dev / re / if_re.c
1 /*-
2  * Copyright (c) 1997, 1998-2003
3  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *      This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35
36 /*
37  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43
44 /*
45  * This driver is designed to support RealTek's next generation of
46  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
48  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
49  *
50  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51  * with the older 8139 family, however it also supports a special
52  * C+ mode of operation that provides several new performance enhancing
53  * features. These include:
54  *
55  *      o Descriptor based DMA mechanism. Each descriptor represents
56  *        a single packet fragment. Data buffers may be aligned on
57  *        any byte boundary.
58  *
59  *      o 64-bit DMA
60  *
61  *      o TCP/IP checksum offload for both RX and TX
62  *
63  *      o High and normal priority transmit DMA rings
64  *
65  *      o VLAN tag insertion and extraction
66  *
67  *      o TCP large send (segmentation offload)
68  *
69  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70  * programming API is fairly straightforward. The RX filtering, EEPROM
71  * access and PHY access is the same as it is on the older 8139 series
72  * chips.
73  *
74  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75  * same programming API and feature set as the 8139C+ with the following
76  * differences and additions:
77  *
78  *      o 1000Mbps mode
79  *
80  *      o Jumbo frames
81  *
82  *      o GMII and TBI ports/registers for interfacing with copper
83  *        or fiber PHYs
84  *
85  *      o RX and TX DMA rings can have up to 1024 descriptors
86  *        (the 8139C+ allows a maximum of 64)
87  *
88  *      o Slight differences in register layout from the 8139C+
89  *
90  * The TX start and timer interrupt registers are at different locations
91  * on the 8169 than they are on the 8139C+. Also, the status word in the
92  * RX descriptor has a slightly different bit layout. The 8169 does not
93  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94  * copper gigE PHY.
95  *
96  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97  * (the 'S' stands for 'single-chip'). These devices have the same
98  * programming API as the older 8169, but also have some vendor-specific
99  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101  *
102  * This driver takes advantage of the RX and TX checksum offload and
103  * VLAN tag insertion/extraction features. It also implements TX
104  * interrupt moderation using the timer interrupt registers, which
105  * significantly reduces TX interrupt load. There is also support
106  * for jumbo frames, however the 8169/8169S/8110S can not transmit
107  * jumbo frames larger than 7440, so the max MTU possible with this
108  * driver is 7422 bytes.
109  */
110
111 #ifdef HAVE_KERNEL_OPTION_HEADERS
112 #include "opt_device_polling.h"
113 #endif
114
115 #include <sys/param.h>
116 #include <sys/endian.h>
117 #include <sys/systm.h>
118 #include <sys/sockio.h>
119 #include <sys/mbuf.h>
120 #include <sys/malloc.h>
121 #include <sys/module.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/lock.h>
125 #include <sys/mutex.h>
126 #include <sys/sysctl.h>
127 #include <sys/taskqueue.h>
128
129 #include <net/if.h>
130 #include <net/if_arp.h>
131 #include <net/ethernet.h>
132 #include <net/if_dl.h>
133 #include <net/if_media.h>
134 #include <net/if_types.h>
135 #include <net/if_vlan_var.h>
136
137 #include <net/bpf.h>
138
139 #include <machine/bus.h>
140 #include <machine/resource.h>
141 #include <sys/bus.h>
142 #include <sys/rman.h>
143
144 #include <dev/mii/mii.h>
145 #include <dev/mii/miivar.h>
146
147 #include <dev/pci/pcireg.h>
148 #include <dev/pci/pcivar.h>
149
150 #include <pci/if_rlreg.h>
151
152 MODULE_DEPEND(re, pci, 1, 1, 1);
153 MODULE_DEPEND(re, ether, 1, 1, 1);
154 MODULE_DEPEND(re, miibus, 1, 1, 1);
155
156 /* "device miibus" required.  See GENERIC if you get errors here. */
157 #include "miibus_if.h"
158
159 /* Tunables. */
160 static int intr_filter = 0;
161 TUNABLE_INT("hw.re.intr_filter", &intr_filter);
162 static int msi_disable = 0;
163 TUNABLE_INT("hw.re.msi_disable", &msi_disable);
164 static int msix_disable = 0;
165 TUNABLE_INT("hw.re.msix_disable", &msix_disable);
166 static int prefer_iomap = 0;
167 TUNABLE_INT("hw.re.prefer_iomap", &prefer_iomap);
168
169 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
170
171 /*
172  * Various supported device vendors/types and their names.
173  */
174 static const struct rl_type re_devs[] = {
175         { DLINK_VENDORID, DLINK_DEVICEID_528T, 0,
176             "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
177         { DLINK_VENDORID, DLINK_DEVICEID_530T_REVC, 0,
178             "D-Link DGE-530(T) Gigabit Ethernet Adapter" },
179         { RT_VENDORID, RT_DEVICEID_8139, 0,
180             "RealTek 8139C+ 10/100BaseTX" },
181         { RT_VENDORID, RT_DEVICEID_8101E, 0,
182             "RealTek 810xE PCIe 10/100baseTX" },
183         { RT_VENDORID, RT_DEVICEID_8168, 0,
184             "RealTek 8168/8111 B/C/CP/D/DP/E/F PCIe Gigabit Ethernet" },
185         { RT_VENDORID, RT_DEVICEID_8169, 0,
186             "RealTek 8169/8169S/8169SB(L)/8110S/8110SB(L) Gigabit Ethernet" },
187         { RT_VENDORID, RT_DEVICEID_8169SC, 0,
188             "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
189         { COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, 0,
190             "Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
191         { LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, 0,
192             "Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
193         { USR_VENDORID, USR_DEVICEID_997902, 0,
194             "US Robotics 997902 (RTL8169S) Gigabit Ethernet" }
195 };
196
197 static const struct rl_hwrev re_hwrevs[] = {
198         { RL_HWREV_8139, RL_8139, "", RL_MTU },
199         { RL_HWREV_8139A, RL_8139, "A", RL_MTU },
200         { RL_HWREV_8139AG, RL_8139, "A-G", RL_MTU },
201         { RL_HWREV_8139B, RL_8139, "B", RL_MTU },
202         { RL_HWREV_8130, RL_8139, "8130", RL_MTU },
203         { RL_HWREV_8139C, RL_8139, "C", RL_MTU },
204         { RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C", RL_MTU },
205         { RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+", RL_MTU },
206         { RL_HWREV_8168B_SPIN1, RL_8169, "8168", RL_JUMBO_MTU },
207         { RL_HWREV_8169, RL_8169, "8169", RL_JUMBO_MTU },
208         { RL_HWREV_8169S, RL_8169, "8169S", RL_JUMBO_MTU },
209         { RL_HWREV_8110S, RL_8169, "8110S", RL_JUMBO_MTU },
210         { RL_HWREV_8169_8110SB, RL_8169, "8169SB/8110SB", RL_JUMBO_MTU },
211         { RL_HWREV_8169_8110SC, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU },
212         { RL_HWREV_8169_8110SBL, RL_8169, "8169SBL/8110SBL", RL_JUMBO_MTU },
213         { RL_HWREV_8169_8110SCE, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU },
214         { RL_HWREV_8100, RL_8139, "8100", RL_MTU },
215         { RL_HWREV_8101, RL_8139, "8101", RL_MTU },
216         { RL_HWREV_8100E, RL_8169, "8100E", RL_MTU },
217         { RL_HWREV_8101E, RL_8169, "8101E", RL_MTU },
218         { RL_HWREV_8102E, RL_8169, "8102E", RL_MTU },
219         { RL_HWREV_8102EL, RL_8169, "8102EL", RL_MTU },
220         { RL_HWREV_8102EL_SPIN1, RL_8169, "8102EL", RL_MTU },
221         { RL_HWREV_8103E, RL_8169, "8103E", RL_MTU },
222         { RL_HWREV_8401E, RL_8169, "8401E", RL_MTU },
223         { RL_HWREV_8402, RL_8169, "8402", RL_MTU },
224         { RL_HWREV_8105E, RL_8169, "8105E", RL_MTU },
225         { RL_HWREV_8105E_SPIN1, RL_8169, "8105E", RL_MTU },
226         { RL_HWREV_8106E, RL_8169, "8106E", RL_MTU },
227         { RL_HWREV_8168B_SPIN2, RL_8169, "8168", RL_JUMBO_MTU },
228         { RL_HWREV_8168B_SPIN3, RL_8169, "8168", RL_JUMBO_MTU },
229         { RL_HWREV_8168C, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K },
230         { RL_HWREV_8168C_SPIN2, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K },
231         { RL_HWREV_8168CP, RL_8169, "8168CP/8111CP", RL_JUMBO_MTU_6K },
232         { RL_HWREV_8168D, RL_8169, "8168D/8111D", RL_JUMBO_MTU_9K },
233         { RL_HWREV_8168DP, RL_8169, "8168DP/8111DP", RL_JUMBO_MTU_9K },
234         { RL_HWREV_8168E, RL_8169, "8168E/8111E", RL_JUMBO_MTU_9K},
235         { RL_HWREV_8168E_VL, RL_8169, "8168E/8111E-VL", RL_JUMBO_MTU_6K},
236         { RL_HWREV_8168F, RL_8169, "8168F/8111F", RL_JUMBO_MTU_9K},
237         { RL_HWREV_8411, RL_8169, "8411", RL_JUMBO_MTU_9K},
238         { 0, 0, NULL, 0 }
239 };
240
241 static int re_probe             (device_t);
242 static int re_attach            (device_t);
243 static int re_detach            (device_t);
244
245 static int re_encap             (struct rl_softc *, struct mbuf **);
246
247 static void re_dma_map_addr     (void *, bus_dma_segment_t *, int, int);
248 static int re_allocmem          (device_t, struct rl_softc *);
249 static __inline void re_discard_rxbuf
250                                 (struct rl_softc *, int);
251 static int re_newbuf            (struct rl_softc *, int);
252 static int re_jumbo_newbuf      (struct rl_softc *, int);
253 static int re_rx_list_init      (struct rl_softc *);
254 static int re_jrx_list_init     (struct rl_softc *);
255 static int re_tx_list_init      (struct rl_softc *);
256 #ifdef RE_FIXUP_RX
257 static __inline void re_fixup_rx
258                                 (struct mbuf *);
259 #endif
260 static int re_rxeof             (struct rl_softc *, int *);
261 static void re_txeof            (struct rl_softc *);
262 #ifdef DEVICE_POLLING
263 static int re_poll              (struct ifnet *, enum poll_cmd, int);
264 static int re_poll_locked       (struct ifnet *, enum poll_cmd, int);
265 #endif
266 static int re_intr              (void *);
267 static void re_intr_msi         (void *);
268 static void re_tick             (void *);
269 static void re_int_task         (void *, int);
270 static void re_start            (struct ifnet *);
271 static void re_start_locked     (struct ifnet *);
272 static int re_ioctl             (struct ifnet *, u_long, caddr_t);
273 static void re_init             (void *);
274 static void re_init_locked      (struct rl_softc *);
275 static void re_stop             (struct rl_softc *);
276 static void re_watchdog         (struct rl_softc *);
277 static int re_suspend           (device_t);
278 static int re_resume            (device_t);
279 static int re_shutdown          (device_t);
280 static int re_ifmedia_upd       (struct ifnet *);
281 static void re_ifmedia_sts      (struct ifnet *, struct ifmediareq *);
282
283 static void re_eeprom_putbyte   (struct rl_softc *, int);
284 static void re_eeprom_getword   (struct rl_softc *, int, u_int16_t *);
285 static void re_read_eeprom      (struct rl_softc *, caddr_t, int, int);
286 static int re_gmii_readreg      (device_t, int, int);
287 static int re_gmii_writereg     (device_t, int, int, int);
288
289 static int re_miibus_readreg    (device_t, int, int);
290 static int re_miibus_writereg   (device_t, int, int, int);
291 static void re_miibus_statchg   (device_t);
292
293 static void re_set_jumbo        (struct rl_softc *, int);
294 static void re_set_rxmode               (struct rl_softc *);
295 static void re_reset            (struct rl_softc *);
296 static void re_setwol           (struct rl_softc *);
297 static void re_clrwol           (struct rl_softc *);
298 static void re_set_linkspeed    (struct rl_softc *);
299
300 #ifdef DEV_NETMAP       /* see ixgbe.c for details */
301 #include <dev/netmap/if_re_netmap.h>
302 #endif /* !DEV_NETMAP */
303
304 #ifdef RE_DIAG
305 static int re_diag              (struct rl_softc *);
306 #endif
307
308 static void re_add_sysctls      (struct rl_softc *);
309 static int re_sysctl_stats      (SYSCTL_HANDLER_ARGS);
310 static int sysctl_int_range     (SYSCTL_HANDLER_ARGS, int, int);
311 static int sysctl_hw_re_int_mod (SYSCTL_HANDLER_ARGS);
312
313 static device_method_t re_methods[] = {
314         /* Device interface */
315         DEVMETHOD(device_probe,         re_probe),
316         DEVMETHOD(device_attach,        re_attach),
317         DEVMETHOD(device_detach,        re_detach),
318         DEVMETHOD(device_suspend,       re_suspend),
319         DEVMETHOD(device_resume,        re_resume),
320         DEVMETHOD(device_shutdown,      re_shutdown),
321
322         /* MII interface */
323         DEVMETHOD(miibus_readreg,       re_miibus_readreg),
324         DEVMETHOD(miibus_writereg,      re_miibus_writereg),
325         DEVMETHOD(miibus_statchg,       re_miibus_statchg),
326
327         DEVMETHOD_END
328 };
329
330 static driver_t re_driver = {
331         "re",
332         re_methods,
333         sizeof(struct rl_softc)
334 };
335
336 static devclass_t re_devclass;
337
338 DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
339 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
340
341 #define EE_SET(x)                                       \
342         CSR_WRITE_1(sc, RL_EECMD,                       \
343                 CSR_READ_1(sc, RL_EECMD) | x)
344
345 #define EE_CLR(x)                                       \
346         CSR_WRITE_1(sc, RL_EECMD,                       \
347                 CSR_READ_1(sc, RL_EECMD) & ~x)
348
349 /*
350  * Send a read command and address to the EEPROM, check for ACK.
351  */
352 static void
353 re_eeprom_putbyte(struct rl_softc *sc, int addr)
354 {
355         int                     d, i;
356
357         d = addr | (RL_9346_READ << sc->rl_eewidth);
358
359         /*
360          * Feed in each bit and strobe the clock.
361          */
362
363         for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
364                 if (d & i) {
365                         EE_SET(RL_EE_DATAIN);
366                 } else {
367                         EE_CLR(RL_EE_DATAIN);
368                 }
369                 DELAY(100);
370                 EE_SET(RL_EE_CLK);
371                 DELAY(150);
372                 EE_CLR(RL_EE_CLK);
373                 DELAY(100);
374         }
375 }
376
377 /*
378  * Read a word of data stored in the EEPROM at address 'addr.'
379  */
380 static void
381 re_eeprom_getword(struct rl_softc *sc, int addr, u_int16_t *dest)
382 {
383         int                     i;
384         u_int16_t               word = 0;
385
386         /*
387          * Send address of word we want to read.
388          */
389         re_eeprom_putbyte(sc, addr);
390
391         /*
392          * Start reading bits from EEPROM.
393          */
394         for (i = 0x8000; i; i >>= 1) {
395                 EE_SET(RL_EE_CLK);
396                 DELAY(100);
397                 if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
398                         word |= i;
399                 EE_CLR(RL_EE_CLK);
400                 DELAY(100);
401         }
402
403         *dest = word;
404 }
405
406 /*
407  * Read a sequence of words from the EEPROM.
408  */
409 static void
410 re_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt)
411 {
412         int                     i;
413         u_int16_t               word = 0, *ptr;
414
415         CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
416
417         DELAY(100);
418
419         for (i = 0; i < cnt; i++) {
420                 CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
421                 re_eeprom_getword(sc, off + i, &word);
422                 CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
423                 ptr = (u_int16_t *)(dest + (i * 2));
424                 *ptr = word;
425         }
426
427         CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
428 }
429
430 static int
431 re_gmii_readreg(device_t dev, int phy, int reg)
432 {
433         struct rl_softc         *sc;
434         u_int32_t               rval;
435         int                     i;
436
437         sc = device_get_softc(dev);
438
439         /* Let the rgephy driver read the GMEDIASTAT register */
440
441         if (reg == RL_GMEDIASTAT) {
442                 rval = CSR_READ_1(sc, RL_GMEDIASTAT);
443                 return (rval);
444         }
445
446         CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
447
448         for (i = 0; i < RL_PHY_TIMEOUT; i++) {
449                 rval = CSR_READ_4(sc, RL_PHYAR);
450                 if (rval & RL_PHYAR_BUSY)
451                         break;
452                 DELAY(25);
453         }
454
455         if (i == RL_PHY_TIMEOUT) {
456                 device_printf(sc->rl_dev, "PHY read failed\n");
457                 return (0);
458         }
459
460         /*
461          * Controller requires a 20us delay to process next MDIO request.
462          */
463         DELAY(20);
464
465         return (rval & RL_PHYAR_PHYDATA);
466 }
467
468 static int
469 re_gmii_writereg(device_t dev, int phy, int reg, int data)
470 {
471         struct rl_softc         *sc;
472         u_int32_t               rval;
473         int                     i;
474
475         sc = device_get_softc(dev);
476
477         CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
478             (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
479
480         for (i = 0; i < RL_PHY_TIMEOUT; i++) {
481                 rval = CSR_READ_4(sc, RL_PHYAR);
482                 if (!(rval & RL_PHYAR_BUSY))
483                         break;
484                 DELAY(25);
485         }
486
487         if (i == RL_PHY_TIMEOUT) {
488                 device_printf(sc->rl_dev, "PHY write failed\n");
489                 return (0);
490         }
491
492         /*
493          * Controller requires a 20us delay to process next MDIO request.
494          */
495         DELAY(20);
496
497         return (0);
498 }
499
500 static int
501 re_miibus_readreg(device_t dev, int phy, int reg)
502 {
503         struct rl_softc         *sc;
504         u_int16_t               rval = 0;
505         u_int16_t               re8139_reg = 0;
506
507         sc = device_get_softc(dev);
508
509         if (sc->rl_type == RL_8169) {
510                 rval = re_gmii_readreg(dev, phy, reg);
511                 return (rval);
512         }
513
514         switch (reg) {
515         case MII_BMCR:
516                 re8139_reg = RL_BMCR;
517                 break;
518         case MII_BMSR:
519                 re8139_reg = RL_BMSR;
520                 break;
521         case MII_ANAR:
522                 re8139_reg = RL_ANAR;
523                 break;
524         case MII_ANER:
525                 re8139_reg = RL_ANER;
526                 break;
527         case MII_ANLPAR:
528                 re8139_reg = RL_LPAR;
529                 break;
530         case MII_PHYIDR1:
531         case MII_PHYIDR2:
532                 return (0);
533         /*
534          * Allow the rlphy driver to read the media status
535          * register. If we have a link partner which does not
536          * support NWAY, this is the register which will tell
537          * us the results of parallel detection.
538          */
539         case RL_MEDIASTAT:
540                 rval = CSR_READ_1(sc, RL_MEDIASTAT);
541                 return (rval);
542         default:
543                 device_printf(sc->rl_dev, "bad phy register\n");
544                 return (0);
545         }
546         rval = CSR_READ_2(sc, re8139_reg);
547         if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) {
548                 /* 8139C+ has different bit layout. */
549                 rval &= ~(BMCR_LOOP | BMCR_ISO);
550         }
551         return (rval);
552 }
553
554 static int
555 re_miibus_writereg(device_t dev, int phy, int reg, int data)
556 {
557         struct rl_softc         *sc;
558         u_int16_t               re8139_reg = 0;
559         int                     rval = 0;
560
561         sc = device_get_softc(dev);
562
563         if (sc->rl_type == RL_8169) {
564                 rval = re_gmii_writereg(dev, phy, reg, data);
565                 return (rval);
566         }
567
568         switch (reg) {
569         case MII_BMCR:
570                 re8139_reg = RL_BMCR;
571                 if (sc->rl_type == RL_8139CPLUS) {
572                         /* 8139C+ has different bit layout. */
573                         data &= ~(BMCR_LOOP | BMCR_ISO);
574                 }
575                 break;
576         case MII_BMSR:
577                 re8139_reg = RL_BMSR;
578                 break;
579         case MII_ANAR:
580                 re8139_reg = RL_ANAR;
581                 break;
582         case MII_ANER:
583                 re8139_reg = RL_ANER;
584                 break;
585         case MII_ANLPAR:
586                 re8139_reg = RL_LPAR;
587                 break;
588         case MII_PHYIDR1:
589         case MII_PHYIDR2:
590                 return (0);
591                 break;
592         default:
593                 device_printf(sc->rl_dev, "bad phy register\n");
594                 return (0);
595         }
596         CSR_WRITE_2(sc, re8139_reg, data);
597         return (0);
598 }
599
600 static void
601 re_miibus_statchg(device_t dev)
602 {
603         struct rl_softc         *sc;
604         struct ifnet            *ifp;
605         struct mii_data         *mii;
606
607         sc = device_get_softc(dev);
608         mii = device_get_softc(sc->rl_miibus);
609         ifp = sc->rl_ifp;
610         if (mii == NULL || ifp == NULL ||
611             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
612                 return;
613
614         sc->rl_flags &= ~RL_FLAG_LINK;
615         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
616             (IFM_ACTIVE | IFM_AVALID)) {
617                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
618                 case IFM_10_T:
619                 case IFM_100_TX:
620                         sc->rl_flags |= RL_FLAG_LINK;
621                         break;
622                 case IFM_1000_T:
623                         if ((sc->rl_flags & RL_FLAG_FASTETHER) != 0)
624                                 break;
625                         sc->rl_flags |= RL_FLAG_LINK;
626                         break;
627                 default:
628                         break;
629                 }
630         }
631         /*
632          * RealTek controllers does not provide any interface to
633          * Tx/Rx MACs for resolved speed, duplex and flow-control
634          * parameters.
635          */
636 }
637
638 /*
639  * Set the RX configuration and 64-bit multicast hash filter.
640  */
641 static void
642 re_set_rxmode(struct rl_softc *sc)
643 {
644         struct ifnet            *ifp;
645         struct ifmultiaddr      *ifma;
646         uint32_t                hashes[2] = { 0, 0 };
647         uint32_t                h, rxfilt;
648
649         RL_LOCK_ASSERT(sc);
650
651         ifp = sc->rl_ifp;
652
653         rxfilt = RL_RXCFG_CONFIG | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_BROAD;
654
655         if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
656                 if (ifp->if_flags & IFF_PROMISC)
657                         rxfilt |= RL_RXCFG_RX_ALLPHYS;
658                 /*
659                  * Unlike other hardwares, we have to explicitly set
660                  * RL_RXCFG_RX_MULTI to receive multicast frames in
661                  * promiscuous mode.
662                  */
663                 rxfilt |= RL_RXCFG_RX_MULTI;
664                 hashes[0] = hashes[1] = 0xffffffff;
665                 goto done;
666         }
667
668         if_maddr_rlock(ifp);
669         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
670                 if (ifma->ifma_addr->sa_family != AF_LINK)
671                         continue;
672                 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
673                     ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
674                 if (h < 32)
675                         hashes[0] |= (1 << h);
676                 else
677                         hashes[1] |= (1 << (h - 32));
678         }
679         if_maddr_runlock(ifp);
680
681         if (hashes[0] != 0 || hashes[1] != 0) {
682                 /*
683                  * For some unfathomable reason, RealTek decided to
684                  * reverse the order of the multicast hash registers
685                  * in the PCI Express parts.  This means we have to
686                  * write the hash pattern in reverse order for those
687                  * devices.
688                  */
689                 if ((sc->rl_flags & RL_FLAG_PCIE) != 0) {
690                         h = bswap32(hashes[0]);
691                         hashes[0] = bswap32(hashes[1]);
692                         hashes[1] = h;
693                 }
694                 rxfilt |= RL_RXCFG_RX_MULTI;
695         }
696
697 done:
698         CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
699         CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
700         CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
701 }
702
703 static void
704 re_reset(struct rl_softc *sc)
705 {
706         int                     i;
707
708         RL_LOCK_ASSERT(sc);
709
710         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
711
712         for (i = 0; i < RL_TIMEOUT; i++) {
713                 DELAY(10);
714                 if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
715                         break;
716         }
717         if (i == RL_TIMEOUT)
718                 device_printf(sc->rl_dev, "reset never completed!\n");
719
720         if ((sc->rl_flags & RL_FLAG_MACRESET) != 0)
721                 CSR_WRITE_1(sc, 0x82, 1);
722         if (sc->rl_hwrev->rl_rev == RL_HWREV_8169S)
723                 re_gmii_writereg(sc->rl_dev, 1, 0x0b, 0);
724 }
725
726 #ifdef RE_DIAG
727
728 /*
729  * The following routine is designed to test for a defect on some
730  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
731  * lines connected to the bus, however for a 32-bit only card, they
732  * should be pulled high. The result of this defect is that the
733  * NIC will not work right if you plug it into a 64-bit slot: DMA
734  * operations will be done with 64-bit transfers, which will fail
735  * because the 64-bit data lines aren't connected.
736  *
737  * There's no way to work around this (short of talking a soldering
738  * iron to the board), however we can detect it. The method we use
739  * here is to put the NIC into digital loopback mode, set the receiver
740  * to promiscuous mode, and then try to send a frame. We then compare
741  * the frame data we sent to what was received. If the data matches,
742  * then the NIC is working correctly, otherwise we know the user has
743  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
744  * slot. In the latter case, there's no way the NIC can work correctly,
745  * so we print out a message on the console and abort the device attach.
746  */
747
748 static int
749 re_diag(struct rl_softc *sc)
750 {
751         struct ifnet            *ifp = sc->rl_ifp;
752         struct mbuf             *m0;
753         struct ether_header     *eh;
754         struct rl_desc          *cur_rx;
755         u_int16_t               status;
756         u_int32_t               rxstat;
757         int                     total_len, i, error = 0, phyaddr;
758         u_int8_t                dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
759         u_int8_t                src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
760
761         /* Allocate a single mbuf */
762         MGETHDR(m0, M_NOWAIT, MT_DATA);
763         if (m0 == NULL)
764                 return (ENOBUFS);
765
766         RL_LOCK(sc);
767
768         /*
769          * Initialize the NIC in test mode. This sets the chip up
770          * so that it can send and receive frames, but performs the
771          * following special functions:
772          * - Puts receiver in promiscuous mode
773          * - Enables digital loopback mode
774          * - Leaves interrupts turned off
775          */
776
777         ifp->if_flags |= IFF_PROMISC;
778         sc->rl_testmode = 1;
779         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
780         re_init_locked(sc);
781         sc->rl_flags |= RL_FLAG_LINK;
782         if (sc->rl_type == RL_8169)
783                 phyaddr = 1;
784         else
785                 phyaddr = 0;
786
787         re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
788         for (i = 0; i < RL_TIMEOUT; i++) {
789                 status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
790                 if (!(status & BMCR_RESET))
791                         break;
792         }
793
794         re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
795         CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
796
797         DELAY(100000);
798
799         /* Put some data in the mbuf */
800
801         eh = mtod(m0, struct ether_header *);
802         bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
803         bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
804         eh->ether_type = htons(ETHERTYPE_IP);
805         m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
806
807         /*
808          * Queue the packet, start transmission.
809          * Note: IF_HANDOFF() ultimately calls re_start() for us.
810          */
811
812         CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
813         RL_UNLOCK(sc);
814         /* XXX: re_diag must not be called when in ALTQ mode */
815         IF_HANDOFF(&ifp->if_snd, m0, ifp);
816         RL_LOCK(sc);
817         m0 = NULL;
818
819         /* Wait for it to propagate through the chip */
820
821         DELAY(100000);
822         for (i = 0; i < RL_TIMEOUT; i++) {
823                 status = CSR_READ_2(sc, RL_ISR);
824                 CSR_WRITE_2(sc, RL_ISR, status);
825                 if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
826                     (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
827                         break;
828                 DELAY(10);
829         }
830
831         if (i == RL_TIMEOUT) {
832                 device_printf(sc->rl_dev,
833                     "diagnostic failed, failed to receive packet in"
834                     " loopback mode\n");
835                 error = EIO;
836                 goto done;
837         }
838
839         /*
840          * The packet should have been dumped into the first
841          * entry in the RX DMA ring. Grab it from there.
842          */
843
844         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
845             sc->rl_ldata.rl_rx_list_map,
846             BUS_DMASYNC_POSTREAD);
847         bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
848             sc->rl_ldata.rl_rx_desc[0].rx_dmamap,
849             BUS_DMASYNC_POSTREAD);
850         bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
851             sc->rl_ldata.rl_rx_desc[0].rx_dmamap);
852
853         m0 = sc->rl_ldata.rl_rx_desc[0].rx_m;
854         sc->rl_ldata.rl_rx_desc[0].rx_m = NULL;
855         eh = mtod(m0, struct ether_header *);
856
857         cur_rx = &sc->rl_ldata.rl_rx_list[0];
858         total_len = RL_RXBYTES(cur_rx);
859         rxstat = le32toh(cur_rx->rl_cmdstat);
860
861         if (total_len != ETHER_MIN_LEN) {
862                 device_printf(sc->rl_dev,
863                     "diagnostic failed, received short packet\n");
864                 error = EIO;
865                 goto done;
866         }
867
868         /* Test that the received packet data matches what we sent. */
869
870         if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
871             bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
872             ntohs(eh->ether_type) != ETHERTYPE_IP) {
873                 device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n");
874                 device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n",
875                     dst, ":", src, ":", ETHERTYPE_IP);
876                 device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n",
877                     eh->ether_dhost, ":", eh->ether_shost, ":",
878                     ntohs(eh->ether_type));
879                 device_printf(sc->rl_dev, "You may have a defective 32-bit "
880                     "NIC plugged into a 64-bit PCI slot.\n");
881                 device_printf(sc->rl_dev, "Please re-install the NIC in a "
882                     "32-bit slot for proper operation.\n");
883                 device_printf(sc->rl_dev, "Read the re(4) man page for more "
884                     "details.\n");
885                 error = EIO;
886         }
887
888 done:
889         /* Turn interface off, release resources */
890
891         sc->rl_testmode = 0;
892         sc->rl_flags &= ~RL_FLAG_LINK;
893         ifp->if_flags &= ~IFF_PROMISC;
894         re_stop(sc);
895         if (m0 != NULL)
896                 m_freem(m0);
897
898         RL_UNLOCK(sc);
899
900         return (error);
901 }
902
903 #endif
904
905 /*
906  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
907  * IDs against our list and return a device name if we find a match.
908  */
909 static int
910 re_probe(device_t dev)
911 {
912         const struct rl_type    *t;
913         uint16_t                devid, vendor;
914         uint16_t                revid, sdevid;
915         int                     i;
916
917         vendor = pci_get_vendor(dev);
918         devid = pci_get_device(dev);
919         revid = pci_get_revid(dev);
920         sdevid = pci_get_subdevice(dev);
921
922         if (vendor == LINKSYS_VENDORID && devid == LINKSYS_DEVICEID_EG1032) {
923                 if (sdevid != LINKSYS_SUBDEVICE_EG1032_REV3) {
924                         /*
925                          * Only attach to rev. 3 of the Linksys EG1032 adapter.
926                          * Rev. 2 is supported by sk(4).
927                          */
928                         return (ENXIO);
929                 }
930         }
931
932         if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
933                 if (revid != 0x20) {
934                         /* 8139, let rl(4) take care of this device. */
935                         return (ENXIO);
936                 }
937         }
938
939         t = re_devs;
940         for (i = 0; i < sizeof(re_devs) / sizeof(re_devs[0]); i++, t++) {
941                 if (vendor == t->rl_vid && devid == t->rl_did) {
942                         device_set_desc(dev, t->rl_name);
943                         return (BUS_PROBE_DEFAULT);
944                 }
945         }
946
947         return (ENXIO);
948 }
949
950 /*
951  * Map a single buffer address.
952  */
953
954 static void
955 re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
956 {
957         bus_addr_t              *addr;
958
959         if (error)
960                 return;
961
962         KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
963         addr = arg;
964         *addr = segs->ds_addr;
965 }
966
967 static int
968 re_allocmem(device_t dev, struct rl_softc *sc)
969 {
970         bus_addr_t              lowaddr;
971         bus_size_t              rx_list_size, tx_list_size;
972         int                     error;
973         int                     i;
974
975         rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc);
976         tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc);
977
978         /*
979          * Allocate the parent bus DMA tag appropriate for PCI.
980          * In order to use DAC, RL_CPLUSCMD_PCI_DAC bit of RL_CPLUS_CMD
981          * register should be set. However some RealTek chips are known
982          * to be buggy on DAC handling, therefore disable DAC by limiting
983          * DMA address space to 32bit. PCIe variants of RealTek chips
984          * may not have the limitation.
985          */
986         lowaddr = BUS_SPACE_MAXADDR;
987         if ((sc->rl_flags & RL_FLAG_PCIE) == 0)
988                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
989         error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
990             lowaddr, BUS_SPACE_MAXADDR, NULL, NULL,
991             BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
992             NULL, NULL, &sc->rl_parent_tag);
993         if (error) {
994                 device_printf(dev, "could not allocate parent DMA tag\n");
995                 return (error);
996         }
997
998         /*
999          * Allocate map for TX mbufs.
1000          */
1001         error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0,
1002             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
1003             NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0,
1004             NULL, NULL, &sc->rl_ldata.rl_tx_mtag);
1005         if (error) {
1006                 device_printf(dev, "could not allocate TX DMA tag\n");
1007                 return (error);
1008         }
1009
1010         /*
1011          * Allocate map for RX mbufs.
1012          */
1013
1014         if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
1015                 error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t),
1016                     0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1017                     MJUM9BYTES, 1, MJUM9BYTES, 0, NULL, NULL,
1018                     &sc->rl_ldata.rl_jrx_mtag);
1019                 if (error) {
1020                         device_printf(dev,
1021                             "could not allocate jumbo RX DMA tag\n");
1022                         return (error);
1023                 }
1024         }
1025         error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0,
1026             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1027             MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag);
1028         if (error) {
1029                 device_printf(dev, "could not allocate RX DMA tag\n");
1030                 return (error);
1031         }
1032
1033         /*
1034          * Allocate map for TX descriptor list.
1035          */
1036         error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1037             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1038             NULL, tx_list_size, 1, tx_list_size, 0,
1039             NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1040         if (error) {
1041                 device_printf(dev, "could not allocate TX DMA ring tag\n");
1042                 return (error);
1043         }
1044
1045         /* Allocate DMA'able memory for the TX ring */
1046
1047         error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1048             (void **)&sc->rl_ldata.rl_tx_list,
1049             BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1050             &sc->rl_ldata.rl_tx_list_map);
1051         if (error) {
1052                 device_printf(dev, "could not allocate TX DMA ring\n");
1053                 return (error);
1054         }
1055
1056         /* Load the map for the TX ring. */
1057
1058         sc->rl_ldata.rl_tx_list_addr = 0;
1059         error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1060              sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1061              tx_list_size, re_dma_map_addr,
1062              &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1063         if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) {
1064                 device_printf(dev, "could not load TX DMA ring\n");
1065                 return (ENOMEM);
1066         }
1067
1068         /* Create DMA maps for TX buffers */
1069
1070         for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1071                 error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0,
1072                     &sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1073                 if (error) {
1074                         device_printf(dev, "could not create DMA map for TX\n");
1075                         return (error);
1076                 }
1077         }
1078
1079         /*
1080          * Allocate map for RX descriptor list.
1081          */
1082         error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1083             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1084             NULL, rx_list_size, 1, rx_list_size, 0,
1085             NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1086         if (error) {
1087                 device_printf(dev, "could not create RX DMA ring tag\n");
1088                 return (error);
1089         }
1090
1091         /* Allocate DMA'able memory for the RX ring */
1092
1093         error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1094             (void **)&sc->rl_ldata.rl_rx_list,
1095             BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1096             &sc->rl_ldata.rl_rx_list_map);
1097         if (error) {
1098                 device_printf(dev, "could not allocate RX DMA ring\n");
1099                 return (error);
1100         }
1101
1102         /* Load the map for the RX ring. */
1103
1104         sc->rl_ldata.rl_rx_list_addr = 0;
1105         error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1106              sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1107              rx_list_size, re_dma_map_addr,
1108              &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1109         if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) {
1110                 device_printf(dev, "could not load RX DMA ring\n");
1111                 return (ENOMEM);
1112         }
1113
1114         /* Create DMA maps for RX buffers */
1115
1116         if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
1117                 error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0,
1118                     &sc->rl_ldata.rl_jrx_sparemap);
1119                 if (error) {
1120                         device_printf(dev,
1121                             "could not create spare DMA map for jumbo RX\n");
1122                         return (error);
1123                 }
1124                 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1125                         error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0,
1126                             &sc->rl_ldata.rl_jrx_desc[i].rx_dmamap);
1127                         if (error) {
1128                                 device_printf(dev,
1129                                     "could not create DMA map for jumbo RX\n");
1130                                 return (error);
1131                         }
1132                 }
1133         }
1134         error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1135             &sc->rl_ldata.rl_rx_sparemap);
1136         if (error) {
1137                 device_printf(dev, "could not create spare DMA map for RX\n");
1138                 return (error);
1139         }
1140         for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1141                 error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1142                     &sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1143                 if (error) {
1144                         device_printf(dev, "could not create DMA map for RX\n");
1145                         return (error);
1146                 }
1147         }
1148
1149         /* Create DMA map for statistics. */
1150         error = bus_dma_tag_create(sc->rl_parent_tag, RL_DUMP_ALIGN, 0,
1151             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1152             sizeof(struct rl_stats), 1, sizeof(struct rl_stats), 0, NULL, NULL,
1153             &sc->rl_ldata.rl_stag);
1154         if (error) {
1155                 device_printf(dev, "could not create statistics DMA tag\n");
1156                 return (error);
1157         }
1158         /* Allocate DMA'able memory for statistics. */
1159         error = bus_dmamem_alloc(sc->rl_ldata.rl_stag,
1160             (void **)&sc->rl_ldata.rl_stats,
1161             BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1162             &sc->rl_ldata.rl_smap);
1163         if (error) {
1164                 device_printf(dev,
1165                     "could not allocate statistics DMA memory\n");
1166                 return (error);
1167         }
1168         /* Load the map for statistics. */
1169         sc->rl_ldata.rl_stats_addr = 0;
1170         error = bus_dmamap_load(sc->rl_ldata.rl_stag, sc->rl_ldata.rl_smap,
1171             sc->rl_ldata.rl_stats, sizeof(struct rl_stats), re_dma_map_addr,
1172              &sc->rl_ldata.rl_stats_addr, BUS_DMA_NOWAIT);
1173         if (error != 0 || sc->rl_ldata.rl_stats_addr == 0) {
1174                 device_printf(dev, "could not load statistics DMA memory\n");
1175                 return (ENOMEM);
1176         }
1177
1178         return (0);
1179 }
1180
1181 /*
1182  * Attach the interface. Allocate softc structures, do ifmedia
1183  * setup and ethernet/BPF attach.
1184  */
1185 static int
1186 re_attach(device_t dev)
1187 {
1188         u_char                  eaddr[ETHER_ADDR_LEN];
1189         u_int16_t               as[ETHER_ADDR_LEN / 2];
1190         struct rl_softc         *sc;
1191         struct ifnet            *ifp;
1192         const struct rl_hwrev   *hw_rev;
1193         u_int32_t               cap, ctl;
1194         int                     hwrev;
1195         u_int16_t               devid, re_did = 0;
1196         int                     error = 0, i, phy, rid;
1197         int                     msic, msixc, reg;
1198         uint8_t                 cfg;
1199
1200         sc = device_get_softc(dev);
1201         sc->rl_dev = dev;
1202
1203         mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1204             MTX_DEF);
1205         callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
1206
1207         /*
1208          * Map control/status registers.
1209          */
1210         pci_enable_busmaster(dev);
1211
1212         devid = pci_get_device(dev);
1213         /*
1214          * Prefer memory space register mapping over IO space.
1215          * Because RTL8169SC does not seem to work when memory mapping
1216          * is used always activate io mapping.
1217          */
1218         if (devid == RT_DEVICEID_8169SC)
1219                 prefer_iomap = 1;
1220         if (prefer_iomap == 0) {
1221                 sc->rl_res_id = PCIR_BAR(1);
1222                 sc->rl_res_type = SYS_RES_MEMORY;
1223                 /* RTL8168/8101E seems to use different BARs. */
1224                 if (devid == RT_DEVICEID_8168 || devid == RT_DEVICEID_8101E)
1225                         sc->rl_res_id = PCIR_BAR(2);
1226         } else {
1227                 sc->rl_res_id = PCIR_BAR(0);
1228                 sc->rl_res_type = SYS_RES_IOPORT;
1229         }
1230         sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1231             &sc->rl_res_id, RF_ACTIVE);
1232         if (sc->rl_res == NULL && prefer_iomap == 0) {
1233                 sc->rl_res_id = PCIR_BAR(0);
1234                 sc->rl_res_type = SYS_RES_IOPORT;
1235                 sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1236                     &sc->rl_res_id, RF_ACTIVE);
1237         }
1238         if (sc->rl_res == NULL) {
1239                 device_printf(dev, "couldn't map ports/memory\n");
1240                 error = ENXIO;
1241                 goto fail;
1242         }
1243
1244         sc->rl_btag = rman_get_bustag(sc->rl_res);
1245         sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1246
1247         msic = pci_msi_count(dev);
1248         msixc = pci_msix_count(dev);
1249         if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
1250                 sc->rl_flags |= RL_FLAG_PCIE;
1251                 sc->rl_expcap = reg;
1252         }
1253         if (bootverbose) {
1254                 device_printf(dev, "MSI count : %d\n", msic);
1255                 device_printf(dev, "MSI-X count : %d\n", msixc);
1256         }
1257         if (msix_disable > 0)
1258                 msixc = 0;
1259         if (msi_disable > 0)
1260                 msic = 0;
1261         /* Prefer MSI-X to MSI. */
1262         if (msixc > 0) {
1263                 msixc = 1;
1264                 rid = PCIR_BAR(4);
1265                 sc->rl_res_pba = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1266                     &rid, RF_ACTIVE);
1267                 if (sc->rl_res_pba == NULL) {
1268                         device_printf(sc->rl_dev,
1269                             "could not allocate MSI-X PBA resource\n");
1270                 }
1271                 if (sc->rl_res_pba != NULL &&
1272                     pci_alloc_msix(dev, &msixc) == 0) {
1273                         if (msixc == 1) {
1274                                 device_printf(dev, "Using %d MSI-X message\n",
1275                                     msixc);
1276                                 sc->rl_flags |= RL_FLAG_MSIX;
1277                         } else
1278                                 pci_release_msi(dev);
1279                 }
1280                 if ((sc->rl_flags & RL_FLAG_MSIX) == 0) {
1281                         if (sc->rl_res_pba != NULL)
1282                                 bus_release_resource(dev, SYS_RES_MEMORY, rid,
1283                                     sc->rl_res_pba);
1284                         sc->rl_res_pba = NULL;
1285                         msixc = 0;
1286                 }
1287         }
1288         /* Prefer MSI to INTx. */
1289         if (msixc == 0 && msic > 0) {
1290                 msic = 1;
1291                 if (pci_alloc_msi(dev, &msic) == 0) {
1292                         if (msic == RL_MSI_MESSAGES) {
1293                                 device_printf(dev, "Using %d MSI message\n",
1294                                     msic);
1295                                 sc->rl_flags |= RL_FLAG_MSI;
1296                                 /* Explicitly set MSI enable bit. */
1297                                 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1298                                 cfg = CSR_READ_1(sc, RL_CFG2);
1299                                 cfg |= RL_CFG2_MSI;
1300                                 CSR_WRITE_1(sc, RL_CFG2, cfg);
1301                                 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1302                         } else
1303                                 pci_release_msi(dev);
1304                 }
1305                 if ((sc->rl_flags & RL_FLAG_MSI) == 0)
1306                         msic = 0;
1307         }
1308
1309         /* Allocate interrupt */
1310         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0) {
1311                 rid = 0;
1312                 sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1313                     RF_SHAREABLE | RF_ACTIVE);
1314                 if (sc->rl_irq[0] == NULL) {
1315                         device_printf(dev, "couldn't allocate IRQ resources\n");
1316                         error = ENXIO;
1317                         goto fail;
1318                 }
1319         } else {
1320                 for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1321                         sc->rl_irq[i] = bus_alloc_resource_any(dev,
1322                             SYS_RES_IRQ, &rid, RF_ACTIVE);
1323                         if (sc->rl_irq[i] == NULL) {
1324                                 device_printf(dev,
1325                                     "couldn't allocate IRQ resources for "
1326                                     "message %d\n", rid);
1327                                 error = ENXIO;
1328                                 goto fail;
1329                         }
1330                 }
1331         }
1332
1333         if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1334                 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1335                 cfg = CSR_READ_1(sc, RL_CFG2);
1336                 if ((cfg & RL_CFG2_MSI) != 0) {
1337                         device_printf(dev, "turning off MSI enable bit.\n");
1338                         cfg &= ~RL_CFG2_MSI;
1339                         CSR_WRITE_1(sc, RL_CFG2, cfg);
1340                 }
1341                 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1342         }
1343
1344         /* Disable ASPM L0S/L1. */
1345         if (sc->rl_expcap != 0) {
1346                 cap = pci_read_config(dev, sc->rl_expcap +
1347                     PCIER_LINK_CAP, 2);
1348                 if ((cap & PCIEM_LINK_CAP_ASPM) != 0) {
1349                         ctl = pci_read_config(dev, sc->rl_expcap +
1350                             PCIER_LINK_CTL, 2);
1351                         if ((ctl & PCIEM_LINK_CTL_ASPMC) != 0) {
1352                                 ctl &= ~PCIEM_LINK_CTL_ASPMC;
1353                                 pci_write_config(dev, sc->rl_expcap +
1354                                     PCIER_LINK_CTL, ctl, 2);
1355                                 device_printf(dev, "ASPM disabled\n");
1356                         }
1357                 } else
1358                         device_printf(dev, "no ASPM capability\n");
1359         }
1360
1361         hw_rev = re_hwrevs;
1362         hwrev = CSR_READ_4(sc, RL_TXCFG);
1363         switch (hwrev & 0x70000000) {
1364         case 0x00000000:
1365         case 0x10000000:
1366                 device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0xfc800000);
1367                 hwrev &= (RL_TXCFG_HWREV | 0x80000000);
1368                 break;
1369         default:
1370                 device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0x7c800000);
1371                 sc->rl_macrev = hwrev & 0x00700000;
1372                 hwrev &= RL_TXCFG_HWREV;
1373                 break;
1374         }
1375         device_printf(dev, "MAC rev. 0x%08x\n", sc->rl_macrev);
1376         while (hw_rev->rl_desc != NULL) {
1377                 if (hw_rev->rl_rev == hwrev) {
1378                         sc->rl_type = hw_rev->rl_type;
1379                         sc->rl_hwrev = hw_rev;
1380                         break;
1381                 }
1382                 hw_rev++;
1383         }
1384         if (hw_rev->rl_desc == NULL) {
1385                 device_printf(dev, "Unknown H/W revision: 0x%08x\n", hwrev);
1386                 error = ENXIO;
1387                 goto fail;
1388         }
1389
1390         switch (hw_rev->rl_rev) {
1391         case RL_HWREV_8139CPLUS:
1392                 sc->rl_flags |= RL_FLAG_FASTETHER | RL_FLAG_AUTOPAD;
1393                 break;
1394         case RL_HWREV_8100E:
1395         case RL_HWREV_8101E:
1396                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_FASTETHER;
1397                 break;
1398         case RL_HWREV_8102E:
1399         case RL_HWREV_8102EL:
1400         case RL_HWREV_8102EL_SPIN1:
1401                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
1402                     RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP |
1403                     RL_FLAG_AUTOPAD;
1404                 break;
1405         case RL_HWREV_8103E:
1406                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
1407                     RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP |
1408                     RL_FLAG_AUTOPAD | RL_FLAG_MACSLEEP;
1409                 break;
1410         case RL_HWREV_8401E:
1411         case RL_HWREV_8105E:
1412         case RL_HWREV_8105E_SPIN1:
1413         case RL_HWREV_8106E:
1414                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1415                     RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1416                     RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD;
1417                 break;
1418         case RL_HWREV_8402:
1419                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1420                     RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1421                     RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD |
1422                     RL_FLAG_CMDSTOP_WAIT_TXQ;
1423                 break;
1424         case RL_HWREV_8168B_SPIN1:
1425         case RL_HWREV_8168B_SPIN2:
1426                 sc->rl_flags |= RL_FLAG_WOLRXENB;
1427                 /* FALLTHROUGH */
1428         case RL_HWREV_8168B_SPIN3:
1429                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_MACSTAT;
1430                 break;
1431         case RL_HWREV_8168C_SPIN2:
1432                 sc->rl_flags |= RL_FLAG_MACSLEEP;
1433                 /* FALLTHROUGH */
1434         case RL_HWREV_8168C:
1435                 if (sc->rl_macrev == 0x00200000)
1436                         sc->rl_flags |= RL_FLAG_MACSLEEP;
1437                 /* FALLTHROUGH */
1438         case RL_HWREV_8168CP:
1439                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1440                     RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1441                     RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 | RL_FLAG_WOL_MANLINK;
1442                 break;
1443         case RL_HWREV_8168D:
1444                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1445                     RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1446                     RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
1447                     RL_FLAG_WOL_MANLINK;
1448                 break;
1449         case RL_HWREV_8168DP:
1450                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1451                     RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_AUTOPAD |
1452                     RL_FLAG_JUMBOV2 | RL_FLAG_WAIT_TXPOLL | RL_FLAG_WOL_MANLINK;
1453                 break;
1454         case RL_HWREV_8168E:
1455                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1456                     RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1457                     RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
1458                     RL_FLAG_WOL_MANLINK;
1459                 break;
1460         case RL_HWREV_8168E_VL:
1461         case RL_HWREV_8168F:
1462         case RL_HWREV_8411:
1463                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1464                     RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1465                     RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
1466                     RL_FLAG_CMDSTOP_WAIT_TXQ | RL_FLAG_WOL_MANLINK;
1467                 break;
1468         case RL_HWREV_8169_8110SB:
1469         case RL_HWREV_8169_8110SBL:
1470         case RL_HWREV_8169_8110SC:
1471         case RL_HWREV_8169_8110SCE:
1472                 sc->rl_flags |= RL_FLAG_PHYWAKE;
1473                 /* FALLTHROUGH */
1474         case RL_HWREV_8169:
1475         case RL_HWREV_8169S:
1476         case RL_HWREV_8110S:
1477                 sc->rl_flags |= RL_FLAG_MACRESET;
1478                 break;
1479         default:
1480                 break;
1481         }
1482
1483         if (sc->rl_hwrev->rl_rev == RL_HWREV_8139CPLUS) {
1484                 sc->rl_cfg0 = RL_8139_CFG0;
1485                 sc->rl_cfg1 = RL_8139_CFG1;
1486                 sc->rl_cfg2 = 0;
1487                 sc->rl_cfg3 = RL_8139_CFG3;
1488                 sc->rl_cfg4 = RL_8139_CFG4;
1489                 sc->rl_cfg5 = RL_8139_CFG5;
1490         } else {
1491                 sc->rl_cfg0 = RL_CFG0;
1492                 sc->rl_cfg1 = RL_CFG1;
1493                 sc->rl_cfg2 = RL_CFG2;
1494                 sc->rl_cfg3 = RL_CFG3;
1495                 sc->rl_cfg4 = RL_CFG4;
1496                 sc->rl_cfg5 = RL_CFG5;
1497         }
1498
1499         /* Reset the adapter. */
1500         RL_LOCK(sc);
1501         re_reset(sc);
1502         RL_UNLOCK(sc);
1503
1504         /* Enable PME. */
1505         CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1506         cfg = CSR_READ_1(sc, sc->rl_cfg1);
1507         cfg |= RL_CFG1_PME;
1508         CSR_WRITE_1(sc, sc->rl_cfg1, cfg);
1509         cfg = CSR_READ_1(sc, sc->rl_cfg5);
1510         cfg &= RL_CFG5_PME_STS;
1511         CSR_WRITE_1(sc, sc->rl_cfg5, cfg);
1512         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1513
1514         if ((sc->rl_flags & RL_FLAG_PAR) != 0) {
1515                 /*
1516                  * XXX Should have a better way to extract station
1517                  * address from EEPROM.
1518                  */
1519                 for (i = 0; i < ETHER_ADDR_LEN; i++)
1520                         eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1521         } else {
1522                 sc->rl_eewidth = RL_9356_ADDR_LEN;
1523                 re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
1524                 if (re_did != 0x8129)
1525                         sc->rl_eewidth = RL_9346_ADDR_LEN;
1526
1527                 /*
1528                  * Get station address from the EEPROM.
1529                  */
1530                 re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
1531                 for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1532                         as[i] = le16toh(as[i]);
1533                 bcopy(as, eaddr, ETHER_ADDR_LEN);
1534         }
1535
1536         if (sc->rl_type == RL_8169) {
1537                 /* Set RX length mask and number of descriptors. */
1538                 sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1539                 sc->rl_txstart = RL_GTXSTART;
1540                 sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT;
1541                 sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT;
1542         } else {
1543                 /* Set RX length mask and number of descriptors. */
1544                 sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1545                 sc->rl_txstart = RL_TXSTART;
1546                 sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT;
1547                 sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT;
1548         }
1549
1550         error = re_allocmem(dev, sc);
1551         if (error)
1552                 goto fail;
1553         re_add_sysctls(sc);
1554
1555         ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1556         if (ifp == NULL) {
1557                 device_printf(dev, "can not if_alloc()\n");
1558                 error = ENOSPC;
1559                 goto fail;
1560         }
1561
1562         /* Take controller out of deep sleep mode. */
1563         if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
1564                 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
1565                         CSR_WRITE_1(sc, RL_GPIO,
1566                             CSR_READ_1(sc, RL_GPIO) | 0x01);
1567                 else
1568                         CSR_WRITE_1(sc, RL_GPIO,
1569                             CSR_READ_1(sc, RL_GPIO) & ~0x01);
1570         }
1571
1572         /* Take PHY out of power down mode. */
1573         if ((sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0) {
1574                 CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) | 0x80);
1575                 if (hw_rev->rl_rev == RL_HWREV_8401E)
1576                         CSR_WRITE_1(sc, 0xD1, CSR_READ_1(sc, 0xD1) & ~0x08);
1577         }
1578         if ((sc->rl_flags & RL_FLAG_PHYWAKE) != 0) {
1579                 re_gmii_writereg(dev, 1, 0x1f, 0);
1580                 re_gmii_writereg(dev, 1, 0x0e, 0);
1581         }
1582
1583         ifp->if_softc = sc;
1584         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1585         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1586         ifp->if_ioctl = re_ioctl;
1587         ifp->if_start = re_start;
1588         /*
1589          * RTL8168/8111C generates wrong IP checksummed frame if the
1590          * packet has IP options so disable TX IP checksum offloading.
1591          */
1592         if (sc->rl_hwrev->rl_rev == RL_HWREV_8168C ||
1593             sc->rl_hwrev->rl_rev == RL_HWREV_8168C_SPIN2 ||
1594             sc->rl_hwrev->rl_rev == RL_HWREV_8168CP)
1595                 ifp->if_hwassist = CSUM_TCP | CSUM_UDP;
1596         else
1597                 ifp->if_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP;
1598         ifp->if_hwassist |= CSUM_TSO;
1599         ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
1600         ifp->if_capenable = ifp->if_capabilities;
1601         ifp->if_init = re_init;
1602         IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN);
1603         ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1604         IFQ_SET_READY(&ifp->if_snd);
1605
1606         TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);
1607
1608 #define RE_PHYAD_INTERNAL        0
1609
1610         /* Do MII setup. */
1611         phy = RE_PHYAD_INTERNAL;
1612         if (sc->rl_type == RL_8169)
1613                 phy = 1;
1614         error = mii_attach(dev, &sc->rl_miibus, ifp, re_ifmedia_upd,
1615             re_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, MIIF_DOPAUSE);
1616         if (error != 0) {
1617                 device_printf(dev, "attaching PHYs failed\n");
1618                 goto fail;
1619         }
1620
1621         /*
1622          * Call MI attach routine.
1623          */
1624         ether_ifattach(ifp, eaddr);
1625
1626         /* VLAN capability setup */
1627         ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1628         if (ifp->if_capabilities & IFCAP_HWCSUM)
1629                 ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1630         /* Enable WOL if PM is supported. */
1631         if (pci_find_cap(sc->rl_dev, PCIY_PMG, &reg) == 0)
1632                 ifp->if_capabilities |= IFCAP_WOL;
1633         ifp->if_capenable = ifp->if_capabilities;
1634         ifp->if_capenable &= ~(IFCAP_WOL_UCAST | IFCAP_WOL_MCAST);
1635         /*
1636          * Don't enable TSO by default.  It is known to generate
1637          * corrupted TCP segments(bad TCP options) under certain
1638          * circumstances.
1639          */
1640         ifp->if_hwassist &= ~CSUM_TSO;
1641         ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
1642 #ifdef DEVICE_POLLING
1643         ifp->if_capabilities |= IFCAP_POLLING;
1644 #endif
1645         /*
1646          * Tell the upper layer(s) we support long frames.
1647          * Must appear after the call to ether_ifattach() because
1648          * ether_ifattach() sets ifi_hdrlen to the default value.
1649          */
1650         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1651
1652 #ifdef DEV_NETMAP
1653         re_netmap_attach(sc);
1654 #endif /* DEV_NETMAP */
1655 #ifdef RE_DIAG
1656         /*
1657          * Perform hardware diagnostic on the original RTL8169.
1658          * Some 32-bit cards were incorrectly wired and would
1659          * malfunction if plugged into a 64-bit slot.
1660          */
1661
1662         if (hwrev == RL_HWREV_8169) {
1663                 error = re_diag(sc);
1664                 if (error) {
1665                         device_printf(dev,
1666                         "attach aborted due to hardware diag failure\n");
1667                         ether_ifdetach(ifp);
1668                         goto fail;
1669                 }
1670         }
1671 #endif
1672
1673 #ifdef RE_TX_MODERATION
1674         intr_filter = 1;
1675 #endif
1676         /* Hook interrupt last to avoid having to lock softc */
1677         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 &&
1678             intr_filter == 0) {
1679                 error = bus_setup_intr(dev, sc->rl_irq[0],
1680                     INTR_TYPE_NET | INTR_MPSAFE, NULL, re_intr_msi, sc,
1681                     &sc->rl_intrhand[0]);
1682         } else {
1683                 error = bus_setup_intr(dev, sc->rl_irq[0],
1684                     INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1685                     &sc->rl_intrhand[0]);
1686         }
1687         if (error) {
1688                 device_printf(dev, "couldn't set up irq\n");
1689                 ether_ifdetach(ifp);
1690         }
1691
1692 fail:
1693
1694         if (error)
1695                 re_detach(dev);
1696
1697         return (error);
1698 }
1699
1700 /*
1701  * Shutdown hardware and free up resources. This can be called any
1702  * time after the mutex has been initialized. It is called in both
1703  * the error case in attach and the normal detach case so it needs
1704  * to be careful about only freeing resources that have actually been
1705  * allocated.
1706  */
1707 static int
1708 re_detach(device_t dev)
1709 {
1710         struct rl_softc         *sc;
1711         struct ifnet            *ifp;
1712         int                     i, rid;
1713
1714         sc = device_get_softc(dev);
1715         ifp = sc->rl_ifp;
1716         KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1717
1718         /* These should only be active if attach succeeded */
1719         if (device_is_attached(dev)) {
1720 #ifdef DEVICE_POLLING
1721                 if (ifp->if_capenable & IFCAP_POLLING)
1722                         ether_poll_deregister(ifp);
1723 #endif
1724                 RL_LOCK(sc);
1725 #if 0
1726                 sc->suspended = 1;
1727 #endif
1728                 re_stop(sc);
1729                 RL_UNLOCK(sc);
1730                 callout_drain(&sc->rl_stat_callout);
1731                 taskqueue_drain(taskqueue_fast, &sc->rl_inttask);
1732                 /*
1733                  * Force off the IFF_UP flag here, in case someone
1734                  * still had a BPF descriptor attached to this
1735                  * interface. If they do, ether_ifdetach() will cause
1736                  * the BPF code to try and clear the promisc mode
1737                  * flag, which will bubble down to re_ioctl(),
1738                  * which will try to call re_init() again. This will
1739                  * turn the NIC back on and restart the MII ticker,
1740                  * which will panic the system when the kernel tries
1741                  * to invoke the re_tick() function that isn't there
1742                  * anymore.
1743                  */
1744                 ifp->if_flags &= ~IFF_UP;
1745                 ether_ifdetach(ifp);
1746         }
1747         if (sc->rl_miibus)
1748                 device_delete_child(dev, sc->rl_miibus);
1749         bus_generic_detach(dev);
1750
1751         /*
1752          * The rest is resource deallocation, so we should already be
1753          * stopped here.
1754          */
1755
1756         if (sc->rl_intrhand[0] != NULL) {
1757                 bus_teardown_intr(dev, sc->rl_irq[0], sc->rl_intrhand[0]);
1758                 sc->rl_intrhand[0] = NULL;
1759         }
1760         if (ifp != NULL) {
1761 #ifdef DEV_NETMAP
1762                 netmap_detach(ifp);
1763 #endif /* DEV_NETMAP */
1764                 if_free(ifp);
1765         }
1766         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0)
1767                 rid = 0;
1768         else
1769                 rid = 1;
1770         if (sc->rl_irq[0] != NULL) {
1771                 bus_release_resource(dev, SYS_RES_IRQ, rid, sc->rl_irq[0]);
1772                 sc->rl_irq[0] = NULL;
1773         }
1774         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0)
1775                 pci_release_msi(dev);
1776         if (sc->rl_res_pba) {
1777                 rid = PCIR_BAR(4);
1778                 bus_release_resource(dev, SYS_RES_MEMORY, rid, sc->rl_res_pba);
1779         }
1780         if (sc->rl_res)
1781                 bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
1782                     sc->rl_res);
1783
1784         /* Unload and free the RX DMA ring memory and map */
1785
1786         if (sc->rl_ldata.rl_rx_list_tag) {
1787                 if (sc->rl_ldata.rl_rx_list_map)
1788                         bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1789                             sc->rl_ldata.rl_rx_list_map);
1790                 if (sc->rl_ldata.rl_rx_list_map && sc->rl_ldata.rl_rx_list)
1791                         bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1792                             sc->rl_ldata.rl_rx_list,
1793                             sc->rl_ldata.rl_rx_list_map);
1794                 bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1795         }
1796
1797         /* Unload and free the TX DMA ring memory and map */
1798
1799         if (sc->rl_ldata.rl_tx_list_tag) {
1800                 if (sc->rl_ldata.rl_tx_list_map)
1801                         bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1802                             sc->rl_ldata.rl_tx_list_map);
1803                 if (sc->rl_ldata.rl_tx_list_map && sc->rl_ldata.rl_tx_list)
1804                         bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1805                             sc->rl_ldata.rl_tx_list,
1806                             sc->rl_ldata.rl_tx_list_map);
1807                 bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1808         }
1809
1810         /* Destroy all the RX and TX buffer maps */
1811
1812         if (sc->rl_ldata.rl_tx_mtag) {
1813                 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1814                         if (sc->rl_ldata.rl_tx_desc[i].tx_dmamap)
1815                                 bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag,
1816                                     sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1817                 }
1818                 bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag);
1819         }
1820         if (sc->rl_ldata.rl_rx_mtag) {
1821                 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1822                         if (sc->rl_ldata.rl_rx_desc[i].rx_dmamap)
1823                                 bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1824                                     sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1825                 }
1826                 if (sc->rl_ldata.rl_rx_sparemap)
1827                         bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1828                             sc->rl_ldata.rl_rx_sparemap);
1829                 bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag);
1830         }
1831         if (sc->rl_ldata.rl_jrx_mtag) {
1832                 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1833                         if (sc->rl_ldata.rl_jrx_desc[i].rx_dmamap)
1834                                 bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag,
1835                                     sc->rl_ldata.rl_jrx_desc[i].rx_dmamap);
1836                 }
1837                 if (sc->rl_ldata.rl_jrx_sparemap)
1838                         bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag,
1839                             sc->rl_ldata.rl_jrx_sparemap);
1840                 bus_dma_tag_destroy(sc->rl_ldata.rl_jrx_mtag);
1841         }
1842         /* Unload and free the stats buffer and map */
1843
1844         if (sc->rl_ldata.rl_stag) {
1845                 if (sc->rl_ldata.rl_smap)
1846                         bus_dmamap_unload(sc->rl_ldata.rl_stag,
1847                             sc->rl_ldata.rl_smap);
1848                 if (sc->rl_ldata.rl_smap && sc->rl_ldata.rl_stats)
1849                         bus_dmamem_free(sc->rl_ldata.rl_stag,
1850                             sc->rl_ldata.rl_stats, sc->rl_ldata.rl_smap);
1851                 bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1852         }
1853
1854         if (sc->rl_parent_tag)
1855                 bus_dma_tag_destroy(sc->rl_parent_tag);
1856
1857         mtx_destroy(&sc->rl_mtx);
1858
1859         return (0);
1860 }
1861
1862 static __inline void
1863 re_discard_rxbuf(struct rl_softc *sc, int idx)
1864 {
1865         struct rl_desc          *desc;
1866         struct rl_rxdesc        *rxd;
1867         uint32_t                cmdstat;
1868
1869         if (sc->rl_ifp->if_mtu > RL_MTU &&
1870             (sc->rl_flags & RL_FLAG_JUMBOV2) != 0)
1871                 rxd = &sc->rl_ldata.rl_jrx_desc[idx];
1872         else
1873                 rxd = &sc->rl_ldata.rl_rx_desc[idx];
1874         desc = &sc->rl_ldata.rl_rx_list[idx];
1875         desc->rl_vlanctl = 0;
1876         cmdstat = rxd->rx_size;
1877         if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1878                 cmdstat |= RL_RDESC_CMD_EOR;
1879         desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1880 }
1881
1882 static int
1883 re_newbuf(struct rl_softc *sc, int idx)
1884 {
1885         struct mbuf             *m;
1886         struct rl_rxdesc        *rxd;
1887         bus_dma_segment_t       segs[1];
1888         bus_dmamap_t            map;
1889         struct rl_desc          *desc;
1890         uint32_t                cmdstat;
1891         int                     error, nsegs;
1892
1893         m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1894         if (m == NULL)
1895                 return (ENOBUFS);
1896
1897         m->m_len = m->m_pkthdr.len = MCLBYTES;
1898 #ifdef RE_FIXUP_RX
1899         /*
1900          * This is part of an evil trick to deal with non-x86 platforms.
1901          * The RealTek chip requires RX buffers to be aligned on 64-bit
1902          * boundaries, but that will hose non-x86 machines. To get around
1903          * this, we leave some empty space at the start of each buffer
1904          * and for non-x86 hosts, we copy the buffer back six bytes
1905          * to achieve word alignment. This is slightly more efficient
1906          * than allocating a new buffer, copying the contents, and
1907          * discarding the old buffer.
1908          */
1909         m_adj(m, RE_ETHER_ALIGN);
1910 #endif
1911         error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag,
1912             sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
1913         if (error != 0) {
1914                 m_freem(m);
1915                 return (ENOBUFS);
1916         }
1917         KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
1918
1919         rxd = &sc->rl_ldata.rl_rx_desc[idx];
1920         if (rxd->rx_m != NULL) {
1921                 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1922                     BUS_DMASYNC_POSTREAD);
1923                 bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap);
1924         }
1925
1926         rxd->rx_m = m;
1927         map = rxd->rx_dmamap;
1928         rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap;
1929         rxd->rx_size = segs[0].ds_len;
1930         sc->rl_ldata.rl_rx_sparemap = map;
1931         bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1932             BUS_DMASYNC_PREREAD);
1933
1934         desc = &sc->rl_ldata.rl_rx_list[idx];
1935         desc->rl_vlanctl = 0;
1936         desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
1937         desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
1938         cmdstat = segs[0].ds_len;
1939         if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1940                 cmdstat |= RL_RDESC_CMD_EOR;
1941         desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1942
1943         return (0);
1944 }
1945
1946 static int
1947 re_jumbo_newbuf(struct rl_softc *sc, int idx)
1948 {
1949         struct mbuf             *m;
1950         struct rl_rxdesc        *rxd;
1951         bus_dma_segment_t       segs[1];
1952         bus_dmamap_t            map;
1953         struct rl_desc          *desc;
1954         uint32_t                cmdstat;
1955         int                     error, nsegs;
1956
1957         m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1958         if (m == NULL)
1959                 return (ENOBUFS);
1960         m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1961 #ifdef RE_FIXUP_RX
1962         m_adj(m, RE_ETHER_ALIGN);
1963 #endif
1964         error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_jrx_mtag,
1965             sc->rl_ldata.rl_jrx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
1966         if (error != 0) {
1967                 m_freem(m);
1968                 return (ENOBUFS);
1969         }
1970         KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
1971
1972         rxd = &sc->rl_ldata.rl_jrx_desc[idx];
1973         if (rxd->rx_m != NULL) {
1974                 bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap,
1975                     BUS_DMASYNC_POSTREAD);
1976                 bus_dmamap_unload(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap);
1977         }
1978
1979         rxd->rx_m = m;
1980         map = rxd->rx_dmamap;
1981         rxd->rx_dmamap = sc->rl_ldata.rl_jrx_sparemap;
1982         rxd->rx_size = segs[0].ds_len;
1983         sc->rl_ldata.rl_jrx_sparemap = map;
1984         bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap,
1985             BUS_DMASYNC_PREREAD);
1986
1987         desc = &sc->rl_ldata.rl_rx_list[idx];
1988         desc->rl_vlanctl = 0;
1989         desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
1990         desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
1991         cmdstat = segs[0].ds_len;
1992         if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1993                 cmdstat |= RL_RDESC_CMD_EOR;
1994         desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1995
1996         return (0);
1997 }
1998
1999 #ifdef RE_FIXUP_RX
2000 static __inline void
2001 re_fixup_rx(struct mbuf *m)
2002 {
2003         int                     i;
2004         uint16_t                *src, *dst;
2005
2006         src = mtod(m, uint16_t *);
2007         dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
2008
2009         for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2010                 *dst++ = *src++;
2011
2012         m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
2013 }
2014 #endif
2015
2016 static int
2017 re_tx_list_init(struct rl_softc *sc)
2018 {
2019         struct rl_desc          *desc;
2020         int                     i;
2021
2022         RL_LOCK_ASSERT(sc);
2023
2024         bzero(sc->rl_ldata.rl_tx_list,
2025             sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc));
2026         for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
2027                 sc->rl_ldata.rl_tx_desc[i].tx_m = NULL;
2028 #ifdef DEV_NETMAP
2029         re_netmap_tx_init(sc);
2030 #endif /* DEV_NETMAP */
2031         /* Set EOR. */
2032         desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1];
2033         desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR);
2034
2035         bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2036             sc->rl_ldata.rl_tx_list_map,
2037             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2038
2039         sc->rl_ldata.rl_tx_prodidx = 0;
2040         sc->rl_ldata.rl_tx_considx = 0;
2041         sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt;
2042
2043         return (0);
2044 }
2045
2046 static int
2047 re_rx_list_init(struct rl_softc *sc)
2048 {
2049         int                     error, i;
2050
2051         bzero(sc->rl_ldata.rl_rx_list,
2052             sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
2053         for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2054                 sc->rl_ldata.rl_rx_desc[i].rx_m = NULL;
2055                 if ((error = re_newbuf(sc, i)) != 0)
2056                         return (error);
2057         }
2058 #ifdef DEV_NETMAP
2059         re_netmap_rx_init(sc);
2060 #endif /* DEV_NETMAP */
2061
2062         /* Flush the RX descriptors */
2063
2064         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2065             sc->rl_ldata.rl_rx_list_map,
2066             BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2067
2068         sc->rl_ldata.rl_rx_prodidx = 0;
2069         sc->rl_head = sc->rl_tail = NULL;
2070         sc->rl_int_rx_act = 0;
2071
2072         return (0);
2073 }
2074
2075 static int
2076 re_jrx_list_init(struct rl_softc *sc)
2077 {
2078         int                     error, i;
2079
2080         bzero(sc->rl_ldata.rl_rx_list,
2081             sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
2082         for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2083                 sc->rl_ldata.rl_jrx_desc[i].rx_m = NULL;
2084                 if ((error = re_jumbo_newbuf(sc, i)) != 0)
2085                         return (error);
2086         }
2087
2088         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2089             sc->rl_ldata.rl_rx_list_map,
2090             BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2091
2092         sc->rl_ldata.rl_rx_prodidx = 0;
2093         sc->rl_head = sc->rl_tail = NULL;
2094         sc->rl_int_rx_act = 0;
2095
2096         return (0);
2097 }
2098
2099 /*
2100  * RX handler for C+ and 8169. For the gigE chips, we support
2101  * the reception of jumbo frames that have been fragmented
2102  * across multiple 2K mbuf cluster buffers.
2103  */
2104 static int
2105 re_rxeof(struct rl_softc *sc, int *rx_npktsp)
2106 {
2107         struct mbuf             *m;
2108         struct ifnet            *ifp;
2109         int                     i, rxerr, total_len;
2110         struct rl_desc          *cur_rx;
2111         u_int32_t               rxstat, rxvlan;
2112         int                     jumbo, maxpkt = 16, rx_npkts = 0;
2113
2114         RL_LOCK_ASSERT(sc);
2115
2116         ifp = sc->rl_ifp;
2117 #ifdef DEV_NETMAP
2118         if (netmap_rx_irq(ifp, 0 | (NETMAP_LOCKED_ENTER|NETMAP_LOCKED_EXIT),
2119             &rx_npkts))
2120                 return 0;
2121 #endif /* DEV_NETMAP */
2122         if (ifp->if_mtu > RL_MTU && (sc->rl_flags & RL_FLAG_JUMBOV2) != 0)
2123                 jumbo = 1;
2124         else
2125                 jumbo = 0;
2126
2127         /* Invalidate the descriptor memory */
2128
2129         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2130             sc->rl_ldata.rl_rx_list_map,
2131             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2132
2133         for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0;
2134             i = RL_RX_DESC_NXT(sc, i)) {
2135                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2136                         break;
2137                 cur_rx = &sc->rl_ldata.rl_rx_list[i];
2138                 rxstat = le32toh(cur_rx->rl_cmdstat);
2139                 if ((rxstat & RL_RDESC_STAT_OWN) != 0)
2140                         break;
2141                 total_len = rxstat & sc->rl_rxlenmask;
2142                 rxvlan = le32toh(cur_rx->rl_vlanctl);
2143                 if (jumbo != 0)
2144                         m = sc->rl_ldata.rl_jrx_desc[i].rx_m;
2145                 else
2146                         m = sc->rl_ldata.rl_rx_desc[i].rx_m;
2147
2148                 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
2149                     (rxstat & (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) !=
2150                     (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) {
2151                         /*
2152                          * RTL8168C or later controllers do not
2153                          * support multi-fragment packet.
2154                          */
2155                         re_discard_rxbuf(sc, i);
2156                         continue;
2157                 } else if ((rxstat & RL_RDESC_STAT_EOF) == 0) {
2158                         if (re_newbuf(sc, i) != 0) {
2159                                 /*
2160                                  * If this is part of a multi-fragment packet,
2161                                  * discard all the pieces.
2162                                  */
2163                                 if (sc->rl_head != NULL) {
2164                                         m_freem(sc->rl_head);
2165                                         sc->rl_head = sc->rl_tail = NULL;
2166                                 }
2167                                 re_discard_rxbuf(sc, i);
2168                                 continue;
2169                         }
2170                         m->m_len = RE_RX_DESC_BUFLEN;
2171                         if (sc->rl_head == NULL)
2172                                 sc->rl_head = sc->rl_tail = m;
2173                         else {
2174                                 m->m_flags &= ~M_PKTHDR;
2175                                 sc->rl_tail->m_next = m;
2176                                 sc->rl_tail = m;
2177                         }
2178                         continue;
2179                 }
2180
2181                 /*
2182                  * NOTE: for the 8139C+, the frame length field
2183                  * is always 12 bits in size, but for the gigE chips,
2184                  * it is 13 bits (since the max RX frame length is 16K).
2185                  * Unfortunately, all 32 bits in the status word
2186                  * were already used, so to make room for the extra
2187                  * length bit, RealTek took out the 'frame alignment
2188                  * error' bit and shifted the other status bits
2189                  * over one slot. The OWN, EOR, FS and LS bits are
2190                  * still in the same places. We have already extracted
2191                  * the frame length and checked the OWN bit, so rather
2192                  * than using an alternate bit mapping, we shift the
2193                  * status bits one space to the right so we can evaluate
2194                  * them using the 8169 status as though it was in the
2195                  * same format as that of the 8139C+.
2196                  */
2197                 if (sc->rl_type == RL_8169)
2198                         rxstat >>= 1;
2199
2200                 /*
2201                  * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
2202                  * set, but if CRC is clear, it will still be a valid frame.
2203                  */
2204                 if ((rxstat & RL_RDESC_STAT_RXERRSUM) != 0) {
2205                         rxerr = 1;
2206                         if ((sc->rl_flags & RL_FLAG_JUMBOV2) == 0 &&
2207                             total_len > 8191 &&
2208                             (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)
2209                                 rxerr = 0;
2210                         if (rxerr != 0) {
2211                                 ifp->if_ierrors++;
2212                                 /*
2213                                  * If this is part of a multi-fragment packet,
2214                                  * discard all the pieces.
2215                                  */
2216                                 if (sc->rl_head != NULL) {
2217                                         m_freem(sc->rl_head);
2218                                         sc->rl_head = sc->rl_tail = NULL;
2219                                 }
2220                                 re_discard_rxbuf(sc, i);
2221                                 continue;
2222                         }
2223                 }
2224
2225                 /*
2226                  * If allocating a replacement mbuf fails,
2227                  * reload the current one.
2228                  */
2229                 if (jumbo != 0)
2230                         rxerr = re_jumbo_newbuf(sc, i);
2231                 else
2232                         rxerr = re_newbuf(sc, i);
2233                 if (rxerr != 0) {
2234                         ifp->if_iqdrops++;
2235                         if (sc->rl_head != NULL) {
2236                                 m_freem(sc->rl_head);
2237                                 sc->rl_head = sc->rl_tail = NULL;
2238                         }
2239                         re_discard_rxbuf(sc, i);
2240                         continue;
2241                 }
2242
2243                 if (sc->rl_head != NULL) {
2244                         if (jumbo != 0)
2245                                 m->m_len = total_len;
2246                         else {
2247                                 m->m_len = total_len % RE_RX_DESC_BUFLEN;
2248                                 if (m->m_len == 0)
2249                                         m->m_len = RE_RX_DESC_BUFLEN;
2250                         }
2251                         /*
2252                          * Special case: if there's 4 bytes or less
2253                          * in this buffer, the mbuf can be discarded:
2254                          * the last 4 bytes is the CRC, which we don't
2255                          * care about anyway.
2256                          */
2257                         if (m->m_len <= ETHER_CRC_LEN) {
2258                                 sc->rl_tail->m_len -=
2259                                     (ETHER_CRC_LEN - m->m_len);
2260                                 m_freem(m);
2261                         } else {
2262                                 m->m_len -= ETHER_CRC_LEN;
2263                                 m->m_flags &= ~M_PKTHDR;
2264                                 sc->rl_tail->m_next = m;
2265                         }
2266                         m = sc->rl_head;
2267                         sc->rl_head = sc->rl_tail = NULL;
2268                         m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
2269                 } else
2270                         m->m_pkthdr.len = m->m_len =
2271                             (total_len - ETHER_CRC_LEN);
2272
2273 #ifdef RE_FIXUP_RX
2274                 re_fixup_rx(m);
2275 #endif
2276                 ifp->if_ipackets++;
2277                 m->m_pkthdr.rcvif = ifp;
2278
2279                 /* Do RX checksumming if enabled */
2280
2281                 if (ifp->if_capenable & IFCAP_RXCSUM) {
2282                         if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2283                                 /* Check IP header checksum */
2284                                 if (rxstat & RL_RDESC_STAT_PROTOID)
2285                                         m->m_pkthdr.csum_flags |=
2286                                             CSUM_IP_CHECKED;
2287                                 if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
2288                                         m->m_pkthdr.csum_flags |=
2289                                             CSUM_IP_VALID;
2290
2291                                 /* Check TCP/UDP checksum */
2292                                 if ((RL_TCPPKT(rxstat) &&
2293                                     !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
2294                                     (RL_UDPPKT(rxstat) &&
2295                                      !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
2296                                         m->m_pkthdr.csum_flags |=
2297                                                 CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
2298                                         m->m_pkthdr.csum_data = 0xffff;
2299                                 }
2300                         } else {
2301                                 /*
2302                                  * RTL8168C/RTL816CP/RTL8111C/RTL8111CP
2303                                  */
2304                                 if ((rxstat & RL_RDESC_STAT_PROTOID) &&
2305                                     (rxvlan & RL_RDESC_IPV4))
2306                                         m->m_pkthdr.csum_flags |=
2307                                             CSUM_IP_CHECKED;
2308                                 if (!(rxstat & RL_RDESC_STAT_IPSUMBAD) &&
2309                                     (rxvlan & RL_RDESC_IPV4))
2310                                         m->m_pkthdr.csum_flags |=
2311                                             CSUM_IP_VALID;
2312                                 if (((rxstat & RL_RDESC_STAT_TCP) &&
2313                                     !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
2314                                     ((rxstat & RL_RDESC_STAT_UDP) &&
2315                                     !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
2316                                         m->m_pkthdr.csum_flags |=
2317                                                 CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
2318                                         m->m_pkthdr.csum_data = 0xffff;
2319                                 }
2320                         }
2321                 }
2322                 maxpkt--;
2323                 if (rxvlan & RL_RDESC_VLANCTL_TAG) {
2324                         m->m_pkthdr.ether_vtag =
2325                             bswap16((rxvlan & RL_RDESC_VLANCTL_DATA));
2326                         m->m_flags |= M_VLANTAG;
2327                 }
2328                 RL_UNLOCK(sc);
2329                 (*ifp->if_input)(ifp, m);
2330                 RL_LOCK(sc);
2331                 rx_npkts++;
2332         }
2333
2334         /* Flush the RX DMA ring */
2335
2336         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2337             sc->rl_ldata.rl_rx_list_map,
2338             BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2339
2340         sc->rl_ldata.rl_rx_prodidx = i;
2341
2342         if (rx_npktsp != NULL)
2343                 *rx_npktsp = rx_npkts;
2344         if (maxpkt)
2345                 return (EAGAIN);
2346
2347         return (0);
2348 }
2349
2350 static void
2351 re_txeof(struct rl_softc *sc)
2352 {
2353         struct ifnet            *ifp;
2354         struct rl_txdesc        *txd;
2355         u_int32_t               txstat;
2356         int                     cons;
2357
2358         cons = sc->rl_ldata.rl_tx_considx;
2359         if (cons == sc->rl_ldata.rl_tx_prodidx)
2360                 return;
2361
2362         ifp = sc->rl_ifp;
2363 #ifdef DEV_NETMAP
2364         if (netmap_tx_irq(ifp, 0 | (NETMAP_LOCKED_ENTER|NETMAP_LOCKED_EXIT)))
2365                 return;
2366 #endif /* DEV_NETMAP */
2367         /* Invalidate the TX descriptor list */
2368         bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2369             sc->rl_ldata.rl_tx_list_map,
2370             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2371
2372         for (; cons != sc->rl_ldata.rl_tx_prodidx;
2373             cons = RL_TX_DESC_NXT(sc, cons)) {
2374                 txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat);
2375                 if (txstat & RL_TDESC_STAT_OWN)
2376                         break;
2377                 /*
2378                  * We only stash mbufs in the last descriptor
2379                  * in a fragment chain, which also happens to
2380                  * be the only place where the TX status bits
2381                  * are valid.
2382                  */
2383                 if (txstat & RL_TDESC_CMD_EOF) {
2384                         txd = &sc->rl_ldata.rl_tx_desc[cons];
2385                         bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2386                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2387                         bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
2388                             txd->tx_dmamap);
2389                         KASSERT(txd->tx_m != NULL,
2390                             ("%s: freeing NULL mbufs!", __func__));
2391                         m_freem(txd->tx_m);
2392                         txd->tx_m = NULL;
2393                         if (txstat & (RL_TDESC_STAT_EXCESSCOL|
2394                             RL_TDESC_STAT_COLCNT))
2395                                 ifp->if_collisions++;
2396                         if (txstat & RL_TDESC_STAT_TXERRSUM)
2397                                 ifp->if_oerrors++;
2398                         else
2399                                 ifp->if_opackets++;
2400                 }
2401                 sc->rl_ldata.rl_tx_free++;
2402                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2403         }
2404         sc->rl_ldata.rl_tx_considx = cons;
2405
2406         /* No changes made to the TX ring, so no flush needed */
2407
2408         if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) {
2409 #ifdef RE_TX_MODERATION
2410                 /*
2411                  * If not all descriptors have been reaped yet, reload
2412                  * the timer so that we will eventually get another
2413                  * interrupt that will cause us to re-enter this routine.
2414                  * This is done in case the transmitter has gone idle.
2415                  */
2416                 CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2417 #endif
2418         } else
2419                 sc->rl_watchdog_timer = 0;
2420 }
2421
2422 static void
2423 re_tick(void *xsc)
2424 {
2425         struct rl_softc         *sc;
2426         struct mii_data         *mii;
2427
2428         sc = xsc;
2429
2430         RL_LOCK_ASSERT(sc);
2431
2432         mii = device_get_softc(sc->rl_miibus);
2433         mii_tick(mii);
2434         if ((sc->rl_flags & RL_FLAG_LINK) == 0)
2435                 re_miibus_statchg(sc->rl_dev);
2436         /*
2437          * Reclaim transmitted frames here. Technically it is not
2438          * necessary to do here but it ensures periodic reclamation
2439          * regardless of Tx completion interrupt which seems to be
2440          * lost on PCIe based controllers under certain situations.
2441          */
2442         re_txeof(sc);
2443         re_watchdog(sc);
2444         callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2445 }
2446
2447 #ifdef DEVICE_POLLING
2448 static int
2449 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2450 {
2451         struct rl_softc *sc = ifp->if_softc;
2452         int rx_npkts = 0;
2453
2454         RL_LOCK(sc);
2455         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2456                 rx_npkts = re_poll_locked(ifp, cmd, count);
2457         RL_UNLOCK(sc);
2458         return (rx_npkts);
2459 }
2460
2461 static int
2462 re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
2463 {
2464         struct rl_softc *sc = ifp->if_softc;
2465         int rx_npkts;
2466
2467         RL_LOCK_ASSERT(sc);
2468
2469         sc->rxcycles = count;
2470         re_rxeof(sc, &rx_npkts);
2471         re_txeof(sc);
2472
2473         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2474                 re_start_locked(ifp);
2475
2476         if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2477                 u_int16_t       status;
2478
2479                 status = CSR_READ_2(sc, RL_ISR);
2480                 if (status == 0xffff)
2481                         return (rx_npkts);
2482                 if (status)
2483                         CSR_WRITE_2(sc, RL_ISR, status);
2484                 if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2485                     (sc->rl_flags & RL_FLAG_PCIE))
2486                         CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2487
2488                 /*
2489                  * XXX check behaviour on receiver stalls.
2490                  */
2491
2492                 if (status & RL_ISR_SYSTEM_ERR) {
2493                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2494                         re_init_locked(sc);
2495                 }
2496         }
2497         return (rx_npkts);
2498 }
2499 #endif /* DEVICE_POLLING */
2500
2501 static int
2502 re_intr(void *arg)
2503 {
2504         struct rl_softc         *sc;
2505         uint16_t                status;
2506
2507         sc = arg;
2508
2509         status = CSR_READ_2(sc, RL_ISR);
2510         if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0)
2511                 return (FILTER_STRAY);
2512         CSR_WRITE_2(sc, RL_IMR, 0);
2513
2514         taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2515
2516         return (FILTER_HANDLED);
2517 }
2518
2519 static void
2520 re_int_task(void *arg, int npending)
2521 {
2522         struct rl_softc         *sc;
2523         struct ifnet            *ifp;
2524         u_int16_t               status;
2525         int                     rval = 0;
2526
2527         sc = arg;
2528         ifp = sc->rl_ifp;
2529
2530         RL_LOCK(sc);
2531
2532         status = CSR_READ_2(sc, RL_ISR);
2533         CSR_WRITE_2(sc, RL_ISR, status);
2534
2535         if (sc->suspended ||
2536             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2537                 RL_UNLOCK(sc);
2538                 return;
2539         }
2540
2541 #ifdef DEVICE_POLLING
2542         if  (ifp->if_capenable & IFCAP_POLLING) {
2543                 RL_UNLOCK(sc);
2544                 return;
2545         }
2546 #endif
2547
2548         if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
2549                 rval = re_rxeof(sc, NULL);
2550
2551         /*
2552          * Some chips will ignore a second TX request issued
2553          * while an existing transmission is in progress. If
2554          * the transmitter goes idle but there are still
2555          * packets waiting to be sent, we need to restart the
2556          * channel here to flush them out. This only seems to
2557          * be required with the PCIe devices.
2558          */
2559         if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2560             (sc->rl_flags & RL_FLAG_PCIE))
2561                 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2562         if (status & (
2563 #ifdef RE_TX_MODERATION
2564             RL_ISR_TIMEOUT_EXPIRED|
2565 #else
2566             RL_ISR_TX_OK|
2567 #endif
2568             RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
2569                 re_txeof(sc);
2570
2571         if (status & RL_ISR_SYSTEM_ERR) {
2572                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2573                 re_init_locked(sc);
2574         }
2575
2576         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2577                 re_start_locked(ifp);
2578
2579         RL_UNLOCK(sc);
2580
2581         if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
2582                 taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2583                 return;
2584         }
2585
2586         CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2587 }
2588
2589 static void
2590 re_intr_msi(void *xsc)
2591 {
2592         struct rl_softc         *sc;
2593         struct ifnet            *ifp;
2594         uint16_t                intrs, status;
2595
2596         sc = xsc;
2597         RL_LOCK(sc);
2598
2599         ifp = sc->rl_ifp;
2600 #ifdef DEVICE_POLLING
2601         if (ifp->if_capenable & IFCAP_POLLING) {
2602                 RL_UNLOCK(sc);
2603                 return;
2604         }
2605 #endif
2606         /* Disable interrupts. */
2607         CSR_WRITE_2(sc, RL_IMR, 0);
2608         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2609                 RL_UNLOCK(sc);
2610                 return;
2611         }
2612
2613         intrs = RL_INTRS_CPLUS;
2614         status = CSR_READ_2(sc, RL_ISR);
2615         CSR_WRITE_2(sc, RL_ISR, status);
2616         if (sc->rl_int_rx_act > 0) {
2617                 intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW |
2618                     RL_ISR_RX_OVERRUN);
2619                 status &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW |
2620                     RL_ISR_RX_OVERRUN);
2621         }
2622
2623         if (status & (RL_ISR_TIMEOUT_EXPIRED | RL_ISR_RX_OK | RL_ISR_RX_ERR |
2624             RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) {
2625                 re_rxeof(sc, NULL);
2626                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2627                         if (sc->rl_int_rx_mod != 0 &&
2628                             (status & (RL_ISR_RX_OK | RL_ISR_RX_ERR |
2629                             RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) != 0) {
2630                                 /* Rearm one-shot timer. */
2631                                 CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2632                                 intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR |
2633                                     RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN);
2634                                 sc->rl_int_rx_act = 1;
2635                         } else {
2636                                 intrs |= RL_ISR_RX_OK | RL_ISR_RX_ERR |
2637                                     RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN;
2638                                 sc->rl_int_rx_act = 0;
2639                         }
2640                 }
2641         }
2642
2643         /*
2644          * Some chips will ignore a second TX request issued
2645          * while an existing transmission is in progress. If
2646          * the transmitter goes idle but there are still
2647          * packets waiting to be sent, we need to restart the
2648          * channel here to flush them out. This only seems to
2649          * be required with the PCIe devices.
2650          */
2651         if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2652             (sc->rl_flags & RL_FLAG_PCIE))
2653                 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2654         if (status & (RL_ISR_TX_OK | RL_ISR_TX_ERR | RL_ISR_TX_DESC_UNAVAIL))
2655                 re_txeof(sc);
2656
2657         if (status & RL_ISR_SYSTEM_ERR) {
2658                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2659                 re_init_locked(sc);
2660         }
2661
2662         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2663                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2664                         re_start_locked(ifp);
2665                 CSR_WRITE_2(sc, RL_IMR, intrs);
2666         }
2667         RL_UNLOCK(sc);
2668 }
2669
2670 static int
2671 re_encap(struct rl_softc *sc, struct mbuf **m_head)
2672 {
2673         struct rl_txdesc        *txd, *txd_last;
2674         bus_dma_segment_t       segs[RL_NTXSEGS];
2675         bus_dmamap_t            map;
2676         struct mbuf             *m_new;
2677         struct rl_desc          *desc;
2678         int                     nsegs, prod;
2679         int                     i, error, ei, si;
2680         int                     padlen;
2681         uint32_t                cmdstat, csum_flags, vlanctl;
2682
2683         RL_LOCK_ASSERT(sc);
2684         M_ASSERTPKTHDR((*m_head));
2685
2686         /*
2687          * With some of the RealTek chips, using the checksum offload
2688          * support in conjunction with the autopadding feature results
2689          * in the transmission of corrupt frames. For example, if we
2690          * need to send a really small IP fragment that's less than 60
2691          * bytes in size, and IP header checksumming is enabled, the
2692          * resulting ethernet frame that appears on the wire will
2693          * have garbled payload. To work around this, if TX IP checksum
2694          * offload is enabled, we always manually pad short frames out
2695          * to the minimum ethernet frame size.
2696          */
2697         if ((sc->rl_flags & RL_FLAG_AUTOPAD) == 0 &&
2698             (*m_head)->m_pkthdr.len < RL_IP4CSUMTX_PADLEN &&
2699             ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) != 0) {
2700                 padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len;
2701                 if (M_WRITABLE(*m_head) == 0) {
2702                         /* Get a writable copy. */
2703                         m_new = m_dup(*m_head, M_NOWAIT);
2704                         m_freem(*m_head);
2705                         if (m_new == NULL) {
2706                                 *m_head = NULL;
2707                                 return (ENOBUFS);
2708                         }
2709                         *m_head = m_new;
2710                 }
2711                 if ((*m_head)->m_next != NULL ||
2712                     M_TRAILINGSPACE(*m_head) < padlen) {
2713                         m_new = m_defrag(*m_head, M_NOWAIT);
2714                         if (m_new == NULL) {
2715                                 m_freem(*m_head);
2716                                 *m_head = NULL;
2717                                 return (ENOBUFS);
2718                         }
2719                 } else
2720                         m_new = *m_head;
2721
2722                 /*
2723                  * Manually pad short frames, and zero the pad space
2724                  * to avoid leaking data.
2725                  */
2726                 bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen);
2727                 m_new->m_pkthdr.len += padlen;
2728                 m_new->m_len = m_new->m_pkthdr.len;
2729                 *m_head = m_new;
2730         }
2731
2732         prod = sc->rl_ldata.rl_tx_prodidx;
2733         txd = &sc->rl_ldata.rl_tx_desc[prod];
2734         error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2735             *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2736         if (error == EFBIG) {
2737                 m_new = m_collapse(*m_head, M_NOWAIT, RL_NTXSEGS);
2738                 if (m_new == NULL) {
2739                         m_freem(*m_head);
2740                         *m_head = NULL;
2741                         return (ENOBUFS);
2742                 }
2743                 *m_head = m_new;
2744                 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag,
2745                     txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2746                 if (error != 0) {
2747                         m_freem(*m_head);
2748                         *m_head = NULL;
2749                         return (error);
2750                 }
2751         } else if (error != 0)
2752                 return (error);
2753         if (nsegs == 0) {
2754                 m_freem(*m_head);
2755                 *m_head = NULL;
2756                 return (EIO);
2757         }
2758
2759         /* Check for number of available descriptors. */
2760         if (sc->rl_ldata.rl_tx_free - nsegs <= 1) {
2761                 bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap);
2762                 return (ENOBUFS);
2763         }
2764
2765         bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2766             BUS_DMASYNC_PREWRITE);
2767
2768         /*
2769          * Set up checksum offload. Note: checksum offload bits must
2770          * appear in all descriptors of a multi-descriptor transmit
2771          * attempt. This is according to testing done with an 8169
2772          * chip. This is a requirement.
2773          */
2774         vlanctl = 0;
2775         csum_flags = 0;
2776         if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2777                 if ((sc->rl_flags & RL_FLAG_DESCV2) != 0) {
2778                         csum_flags |= RL_TDESC_CMD_LGSEND;
2779                         vlanctl |= ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2780                             RL_TDESC_CMD_MSSVALV2_SHIFT);
2781                 } else {
2782                         csum_flags |= RL_TDESC_CMD_LGSEND |
2783                             ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2784                             RL_TDESC_CMD_MSSVAL_SHIFT);
2785                 }
2786         } else {
2787                 /*
2788                  * Unconditionally enable IP checksum if TCP or UDP
2789                  * checksum is required. Otherwise, TCP/UDP checksum
2790                  * doesn't make effects.
2791                  */
2792                 if (((*m_head)->m_pkthdr.csum_flags & RE_CSUM_FEATURES) != 0) {
2793                         if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2794                                 csum_flags |= RL_TDESC_CMD_IPCSUM;
2795                                 if (((*m_head)->m_pkthdr.csum_flags &
2796                                     CSUM_TCP) != 0)
2797                                         csum_flags |= RL_TDESC_CMD_TCPCSUM;
2798                                 if (((*m_head)->m_pkthdr.csum_flags &
2799                                     CSUM_UDP) != 0)
2800                                         csum_flags |= RL_TDESC_CMD_UDPCSUM;
2801                         } else {
2802                                 vlanctl |= RL_TDESC_CMD_IPCSUMV2;
2803                                 if (((*m_head)->m_pkthdr.csum_flags &
2804                                     CSUM_TCP) != 0)
2805                                         vlanctl |= RL_TDESC_CMD_TCPCSUMV2;
2806                                 if (((*m_head)->m_pkthdr.csum_flags &
2807                                     CSUM_UDP) != 0)
2808                                         vlanctl |= RL_TDESC_CMD_UDPCSUMV2;
2809                         }
2810                 }
2811         }
2812
2813         /*
2814          * Set up hardware VLAN tagging. Note: vlan tag info must
2815          * appear in all descriptors of a multi-descriptor
2816          * transmission attempt.
2817          */
2818         if ((*m_head)->m_flags & M_VLANTAG)
2819                 vlanctl |= bswap16((*m_head)->m_pkthdr.ether_vtag) |
2820                     RL_TDESC_VLANCTL_TAG;
2821
2822         si = prod;
2823         for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) {
2824                 desc = &sc->rl_ldata.rl_tx_list[prod];
2825                 desc->rl_vlanctl = htole32(vlanctl);
2826                 desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
2827                 desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
2828                 cmdstat = segs[i].ds_len;
2829                 if (i != 0)
2830                         cmdstat |= RL_TDESC_CMD_OWN;
2831                 if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1)
2832                         cmdstat |= RL_TDESC_CMD_EOR;
2833                 desc->rl_cmdstat = htole32(cmdstat | csum_flags);
2834                 sc->rl_ldata.rl_tx_free--;
2835         }
2836         /* Update producer index. */
2837         sc->rl_ldata.rl_tx_prodidx = prod;
2838
2839         /* Set EOF on the last descriptor. */
2840         ei = RL_TX_DESC_PRV(sc, prod);
2841         desc = &sc->rl_ldata.rl_tx_list[ei];
2842         desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
2843
2844         desc = &sc->rl_ldata.rl_tx_list[si];
2845         /* Set SOF and transfer ownership of packet to the chip. */
2846         desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF);
2847
2848         /*
2849          * Insure that the map for this transmission
2850          * is placed at the array index of the last descriptor
2851          * in this chain.  (Swap last and first dmamaps.)
2852          */
2853         txd_last = &sc->rl_ldata.rl_tx_desc[ei];
2854         map = txd->tx_dmamap;
2855         txd->tx_dmamap = txd_last->tx_dmamap;
2856         txd_last->tx_dmamap = map;
2857         txd_last->tx_m = *m_head;
2858
2859         return (0);
2860 }
2861
2862 static void
2863 re_start(struct ifnet *ifp)
2864 {
2865         struct rl_softc         *sc;
2866
2867         sc = ifp->if_softc;
2868         RL_LOCK(sc);
2869         re_start_locked(ifp);
2870         RL_UNLOCK(sc);
2871 }
2872
2873 /*
2874  * Main transmit routine for C+ and gigE NICs.
2875  */
2876 static void
2877 re_start_locked(struct ifnet *ifp)
2878 {
2879         struct rl_softc         *sc;
2880         struct mbuf             *m_head;
2881         int                     queued;
2882
2883         sc = ifp->if_softc;
2884
2885 #ifdef DEV_NETMAP
2886         /* XXX is this necessary ? */
2887         if (ifp->if_capenable & IFCAP_NETMAP) {
2888                 struct netmap_kring *kring = &NA(ifp)->tx_rings[0];
2889                 if (sc->rl_ldata.rl_tx_prodidx != kring->nr_hwcur) {
2890                         /* kick the tx unit */
2891                         CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2892 #ifdef RE_TX_MODERATION
2893                         CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2894 #endif
2895                         sc->rl_watchdog_timer = 5;
2896                 }
2897                 return;
2898         }
2899 #endif /* DEV_NETMAP */
2900         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2901             IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0)
2902                 return;
2903
2904         for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2905             sc->rl_ldata.rl_tx_free > 1;) {
2906                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2907                 if (m_head == NULL)
2908                         break;
2909
2910                 if (re_encap(sc, &m_head) != 0) {
2911                         if (m_head == NULL)
2912                                 break;
2913                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2914                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2915                         break;
2916                 }
2917
2918                 /*
2919                  * If there's a BPF listener, bounce a copy of this frame
2920                  * to him.
2921                  */
2922                 ETHER_BPF_MTAP(ifp, m_head);
2923
2924                 queued++;
2925         }
2926
2927         if (queued == 0) {
2928 #ifdef RE_TX_MODERATION
2929                 if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt)
2930                         CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2931 #endif
2932                 return;
2933         }
2934
2935         /* Flush the TX descriptors */
2936
2937         bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2938             sc->rl_ldata.rl_tx_list_map,
2939             BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2940
2941         CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2942
2943 #ifdef RE_TX_MODERATION
2944         /*
2945          * Use the countdown timer for interrupt moderation.
2946          * 'TX done' interrupts are disabled. Instead, we reset the
2947          * countdown timer, which will begin counting until it hits
2948          * the value in the TIMERINT register, and then trigger an
2949          * interrupt. Each time we write to the TIMERCNT register,
2950          * the timer count is reset to 0.
2951          */
2952         CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2953 #endif
2954
2955         /*
2956          * Set a timeout in case the chip goes out to lunch.
2957          */
2958         sc->rl_watchdog_timer = 5;
2959 }
2960
2961 static void
2962 re_set_jumbo(struct rl_softc *sc, int jumbo)
2963 {
2964
2965         if (sc->rl_hwrev->rl_rev == RL_HWREV_8168E_VL) {
2966                 pci_set_max_read_req(sc->rl_dev, 4096);
2967                 return;
2968         }
2969
2970         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2971         if (jumbo != 0) {
2972                 CSR_WRITE_1(sc, sc->rl_cfg3, CSR_READ_1(sc, sc->rl_cfg3) |
2973                     RL_CFG3_JUMBO_EN0);
2974                 switch (sc->rl_hwrev->rl_rev) {
2975                 case RL_HWREV_8168DP:
2976                         break;
2977                 case RL_HWREV_8168E:
2978                         CSR_WRITE_1(sc, sc->rl_cfg4,
2979                             CSR_READ_1(sc, sc->rl_cfg4) | 0x01);
2980                         break;
2981                 default:
2982                         CSR_WRITE_1(sc, sc->rl_cfg4,
2983                             CSR_READ_1(sc, sc->rl_cfg4) | RL_CFG4_JUMBO_EN1);
2984                 }
2985         } else {
2986                 CSR_WRITE_1(sc, sc->rl_cfg3, CSR_READ_1(sc, sc->rl_cfg3) &
2987                     ~RL_CFG3_JUMBO_EN0);
2988                 switch (sc->rl_hwrev->rl_rev) {
2989                 case RL_HWREV_8168DP:
2990                         break;
2991                 case RL_HWREV_8168E:
2992                         CSR_WRITE_1(sc, sc->rl_cfg4,
2993                             CSR_READ_1(sc, sc->rl_cfg4) & ~0x01);
2994                         break;
2995                 default:
2996                         CSR_WRITE_1(sc, sc->rl_cfg4,
2997                             CSR_READ_1(sc, sc->rl_cfg4) & ~RL_CFG4_JUMBO_EN1);
2998                 }
2999         }
3000         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3001
3002         switch (sc->rl_hwrev->rl_rev) {
3003         case RL_HWREV_8168DP:
3004                 pci_set_max_read_req(sc->rl_dev, 4096);
3005                 break;
3006         default:
3007                 if (jumbo != 0)
3008                         pci_set_max_read_req(sc->rl_dev, 512);
3009                 else
3010                         pci_set_max_read_req(sc->rl_dev, 4096);
3011         }
3012 }
3013
3014 static void
3015 re_init(void *xsc)
3016 {
3017         struct rl_softc         *sc = xsc;
3018
3019         RL_LOCK(sc);
3020         re_init_locked(sc);
3021         RL_UNLOCK(sc);
3022 }
3023
3024 static void
3025 re_init_locked(struct rl_softc *sc)
3026 {
3027         struct ifnet            *ifp = sc->rl_ifp;
3028         struct mii_data         *mii;
3029         uint32_t                reg;
3030         uint16_t                cfg;
3031         union {
3032                 uint32_t align_dummy;
3033                 u_char eaddr[ETHER_ADDR_LEN];
3034         } eaddr;
3035
3036         RL_LOCK_ASSERT(sc);
3037
3038         mii = device_get_softc(sc->rl_miibus);
3039
3040         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3041                 return;
3042
3043         /*
3044          * Cancel pending I/O and free all RX/TX buffers.
3045          */
3046         re_stop(sc);
3047
3048         /* Put controller into known state. */
3049         re_reset(sc);
3050
3051         /*
3052          * For C+ mode, initialize the RX descriptors and mbufs.
3053          */
3054         if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
3055                 if (ifp->if_mtu > RL_MTU) {
3056                         if (re_jrx_list_init(sc) != 0) {
3057                                 device_printf(sc->rl_dev,
3058                                     "no memory for jumbo RX buffers\n");
3059                                 re_stop(sc);
3060                                 return;
3061                         }
3062                         /* Disable checksum offloading for jumbo frames. */
3063                         ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_TSO4);
3064                         ifp->if_hwassist &= ~(RE_CSUM_FEATURES | CSUM_TSO);
3065                 } else {
3066                         if (re_rx_list_init(sc) != 0) {
3067                                 device_printf(sc->rl_dev,
3068                                     "no memory for RX buffers\n");
3069                                 re_stop(sc);
3070                                 return;
3071                         }
3072                 }
3073                 re_set_jumbo(sc, ifp->if_mtu > RL_MTU);
3074         } else {
3075                 if (re_rx_list_init(sc) != 0) {
3076                         device_printf(sc->rl_dev, "no memory for RX buffers\n");
3077                         re_stop(sc);
3078                         return;
3079                 }
3080                 if ((sc->rl_flags & RL_FLAG_PCIE) != 0 &&
3081                     pci_get_device(sc->rl_dev) != RT_DEVICEID_8101E) {
3082                         if (ifp->if_mtu > RL_MTU)
3083                                 pci_set_max_read_req(sc->rl_dev, 512);
3084                         else
3085                                 pci_set_max_read_req(sc->rl_dev, 4096);
3086                 }
3087         }
3088         re_tx_list_init(sc);
3089
3090         /*
3091          * Enable C+ RX and TX mode, as well as VLAN stripping and
3092          * RX checksum offload. We must configure the C+ register
3093          * before all others.
3094          */
3095         cfg = RL_CPLUSCMD_PCI_MRW;
3096         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
3097                 cfg |= RL_CPLUSCMD_RXCSUM_ENB;
3098         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3099                 cfg |= RL_CPLUSCMD_VLANSTRIP;
3100         if ((sc->rl_flags & RL_FLAG_MACSTAT) != 0) {
3101                 cfg |= RL_CPLUSCMD_MACSTAT_DIS;
3102                 /* XXX magic. */
3103                 cfg |= 0x0001;
3104         } else
3105                 cfg |= RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB;
3106         CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg);
3107         if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SC ||
3108             sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE) {
3109                 reg = 0x000fff00;
3110                 if ((CSR_READ_1(sc, sc->rl_cfg2) & RL_CFG2_PCI66MHZ) != 0)
3111                         reg |= 0x000000ff;
3112                 if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE)
3113                         reg |= 0x00f00000;
3114                 CSR_WRITE_4(sc, 0x7c, reg);
3115                 /* Disable interrupt mitigation. */
3116                 CSR_WRITE_2(sc, 0xe2, 0);
3117         }
3118         /*
3119          * Disable TSO if interface MTU size is greater than MSS
3120          * allowed in controller.
3121          */
3122         if (ifp->if_mtu > RL_TSO_MTU && (ifp->if_capenable & IFCAP_TSO4) != 0) {
3123                 ifp->if_capenable &= ~IFCAP_TSO4;
3124                 ifp->if_hwassist &= ~CSUM_TSO;
3125         }
3126
3127         /*
3128          * Init our MAC address.  Even though the chipset
3129          * documentation doesn't mention it, we need to enter "Config
3130          * register write enable" mode to modify the ID registers.
3131          */
3132         /* Copy MAC address on stack to align. */
3133         bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN);
3134         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
3135         CSR_WRITE_4(sc, RL_IDR0,
3136             htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
3137         CSR_WRITE_4(sc, RL_IDR4,
3138             htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
3139         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3140
3141         /*
3142          * Load the addresses of the RX and TX lists into the chip.
3143          */
3144
3145         CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
3146             RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
3147         CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
3148             RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
3149
3150         CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
3151             RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
3152         CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
3153             RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
3154
3155         /*
3156          * Enable transmit and receive.
3157          */
3158         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
3159
3160         /*
3161          * Set the initial TX configuration.
3162          */
3163         if (sc->rl_testmode) {
3164                 if (sc->rl_type == RL_8169)
3165                         CSR_WRITE_4(sc, RL_TXCFG,
3166                             RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
3167                 else
3168                         CSR_WRITE_4(sc, RL_TXCFG,
3169                             RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
3170         } else
3171                 CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
3172
3173         CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
3174
3175         /*
3176          * Set the initial RX configuration.
3177          */
3178         re_set_rxmode(sc);
3179
3180         /* Configure interrupt moderation. */
3181         if (sc->rl_type == RL_8169) {
3182                 /* Magic from vendor. */
3183                 CSR_WRITE_2(sc, RL_INTRMOD, 0x5100);
3184         }
3185
3186 #ifdef DEVICE_POLLING
3187         /*
3188          * Disable interrupts if we are polling.
3189          */
3190         if (ifp->if_capenable & IFCAP_POLLING)
3191                 CSR_WRITE_2(sc, RL_IMR, 0);
3192         else    /* otherwise ... */
3193 #endif
3194
3195         /*
3196          * Enable interrupts.
3197          */
3198         if (sc->rl_testmode)
3199                 CSR_WRITE_2(sc, RL_IMR, 0);
3200         else
3201                 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
3202         CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);
3203
3204         /* Set initial TX threshold */
3205         sc->rl_txthresh = RL_TX_THRESH_INIT;
3206
3207         /* Start RX/TX process. */
3208         CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
3209 #ifdef notdef
3210         /* Enable receiver and transmitter. */
3211         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
3212 #endif
3213
3214         /*
3215          * Initialize the timer interrupt register so that
3216          * a timer interrupt will be generated once the timer
3217          * reaches a certain number of ticks. The timer is
3218          * reloaded on each transmit.
3219          */
3220 #ifdef RE_TX_MODERATION
3221         /*
3222          * Use timer interrupt register to moderate TX interrupt
3223          * moderation, which dramatically improves TX frame rate.
3224          */
3225         if (sc->rl_type == RL_8169)
3226                 CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
3227         else
3228                 CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
3229 #else
3230         /*
3231          * Use timer interrupt register to moderate RX interrupt
3232          * moderation.
3233          */
3234         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 &&
3235             intr_filter == 0) {
3236                 if (sc->rl_type == RL_8169)
3237                         CSR_WRITE_4(sc, RL_TIMERINT_8169,
3238                             RL_USECS(sc->rl_int_rx_mod));
3239         } else {
3240                 if (sc->rl_type == RL_8169)
3241                         CSR_WRITE_4(sc, RL_TIMERINT_8169, RL_USECS(0));
3242         }
3243 #endif
3244
3245         /*
3246          * For 8169 gigE NICs, set the max allowed RX packet
3247          * size so we can receive jumbo frames.
3248          */
3249         if (sc->rl_type == RL_8169) {
3250                 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
3251                         /*
3252                          * For controllers that use new jumbo frame scheme,
3253                          * set maximum size of jumbo frame depending on
3254                          * controller revisions.
3255                          */
3256                         if (ifp->if_mtu > RL_MTU)
3257                                 CSR_WRITE_2(sc, RL_MAXRXPKTLEN,
3258                                     sc->rl_hwrev->rl_max_mtu +
3259                                     ETHER_VLAN_ENCAP_LEN + ETHER_HDR_LEN +
3260                                     ETHER_CRC_LEN);
3261                         else
3262                                 CSR_WRITE_2(sc, RL_MAXRXPKTLEN,
3263                                     RE_RX_DESC_BUFLEN);
3264                 } else if ((sc->rl_flags & RL_FLAG_PCIE) != 0 &&
3265                     sc->rl_hwrev->rl_max_mtu == RL_MTU) {
3266                         /* RTL810x has no jumbo frame support. */
3267                         CSR_WRITE_2(sc, RL_MAXRXPKTLEN, RE_RX_DESC_BUFLEN);
3268                 } else
3269                         CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
3270         }
3271
3272         if (sc->rl_testmode)
3273                 return;
3274
3275         CSR_WRITE_1(sc, sc->rl_cfg1, CSR_READ_1(sc, sc->rl_cfg1) |
3276             RL_CFG1_DRVLOAD);
3277
3278         ifp->if_drv_flags |= IFF_DRV_RUNNING;
3279         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3280
3281         sc->rl_flags &= ~RL_FLAG_LINK;
3282         mii_mediachg(mii);
3283
3284         sc->rl_watchdog_timer = 0;
3285         callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
3286 }
3287
3288 /*
3289  * Set media options.
3290  */
3291 static int
3292 re_ifmedia_upd(struct ifnet *ifp)
3293 {
3294         struct rl_softc         *sc;
3295         struct mii_data         *mii;
3296         int                     error;
3297
3298         sc = ifp->if_softc;
3299         mii = device_get_softc(sc->rl_miibus);
3300         RL_LOCK(sc);
3301         error = mii_mediachg(mii);
3302         RL_UNLOCK(sc);
3303
3304         return (error);
3305 }
3306
3307 /*
3308  * Report current media status.
3309  */
3310 static void
3311 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3312 {
3313         struct rl_softc         *sc;
3314         struct mii_data         *mii;
3315
3316         sc = ifp->if_softc;
3317         mii = device_get_softc(sc->rl_miibus);
3318
3319         RL_LOCK(sc);
3320         mii_pollstat(mii);
3321         ifmr->ifm_active = mii->mii_media_active;
3322         ifmr->ifm_status = mii->mii_media_status;
3323         RL_UNLOCK(sc);
3324 }
3325
3326 static int
3327 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3328 {
3329         struct rl_softc         *sc = ifp->if_softc;
3330         struct ifreq            *ifr = (struct ifreq *) data;
3331         struct mii_data         *mii;
3332         uint32_t                rev;
3333         int                     error = 0;
3334
3335         switch (command) {
3336         case SIOCSIFMTU:
3337                 if (ifr->ifr_mtu < ETHERMIN ||
3338                     ifr->ifr_mtu > sc->rl_hwrev->rl_max_mtu) {
3339                         error = EINVAL;
3340                         break;
3341                 }
3342                 RL_LOCK(sc);
3343                 if (ifp->if_mtu != ifr->ifr_mtu) {
3344                         ifp->if_mtu = ifr->ifr_mtu;
3345                         if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
3346                             (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
3347                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3348                                 re_init_locked(sc);
3349                         }
3350                         if (ifp->if_mtu > RL_TSO_MTU &&
3351                             (ifp->if_capenable & IFCAP_TSO4) != 0) {
3352                                 ifp->if_capenable &= ~(IFCAP_TSO4 |
3353                                     IFCAP_VLAN_HWTSO);
3354                                 ifp->if_hwassist &= ~CSUM_TSO;
3355                         }
3356                         VLAN_CAPABILITIES(ifp);
3357                 }
3358                 RL_UNLOCK(sc);
3359                 break;
3360         case SIOCSIFFLAGS:
3361                 RL_LOCK(sc);
3362                 if ((ifp->if_flags & IFF_UP) != 0) {
3363                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
3364                                 if (((ifp->if_flags ^ sc->rl_if_flags)
3365                                     & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
3366                                         re_set_rxmode(sc);
3367                         } else
3368                                 re_init_locked(sc);
3369                 } else {
3370                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3371                                 re_stop(sc);
3372                 }
3373                 sc->rl_if_flags = ifp->if_flags;
3374                 RL_UNLOCK(sc);
3375                 break;
3376         case SIOCADDMULTI:
3377         case SIOCDELMULTI:
3378                 RL_LOCK(sc);
3379                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3380                         re_set_rxmode(sc);
3381                 RL_UNLOCK(sc);
3382                 break;
3383         case SIOCGIFMEDIA:
3384         case SIOCSIFMEDIA:
3385                 mii = device_get_softc(sc->rl_miibus);
3386                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3387                 break;
3388         case SIOCSIFCAP:
3389             {
3390                 int mask, reinit;
3391
3392                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3393                 reinit = 0;
3394 #ifdef DEVICE_POLLING
3395                 if (mask & IFCAP_POLLING) {
3396                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
3397                                 error = ether_poll_register(re_poll, ifp);
3398                                 if (error)
3399                                         return (error);
3400                                 RL_LOCK(sc);
3401                                 /* Disable interrupts */
3402                                 CSR_WRITE_2(sc, RL_IMR, 0x0000);
3403                                 ifp->if_capenable |= IFCAP_POLLING;
3404                                 RL_UNLOCK(sc);
3405                         } else {
3406                                 error = ether_poll_deregister(ifp);
3407                                 /* Enable interrupts. */
3408                                 RL_LOCK(sc);
3409                                 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
3410                                 ifp->if_capenable &= ~IFCAP_POLLING;
3411                                 RL_UNLOCK(sc);
3412                         }
3413                 }
3414 #endif /* DEVICE_POLLING */
3415                 RL_LOCK(sc);
3416                 if ((mask & IFCAP_TXCSUM) != 0 &&
3417                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
3418                         ifp->if_capenable ^= IFCAP_TXCSUM;
3419                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) {
3420                                 rev = sc->rl_hwrev->rl_rev;
3421                                 if (rev == RL_HWREV_8168C ||
3422                                     rev == RL_HWREV_8168C_SPIN2 ||
3423                                     rev == RL_HWREV_8168CP)
3424                                         ifp->if_hwassist |= CSUM_TCP | CSUM_UDP;
3425                                 else
3426                                         ifp->if_hwassist |= RE_CSUM_FEATURES;
3427                         } else
3428                                 ifp->if_hwassist &= ~RE_CSUM_FEATURES;
3429                         reinit = 1;
3430                 }
3431                 if ((mask & IFCAP_RXCSUM) != 0 &&
3432                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
3433                         ifp->if_capenable ^= IFCAP_RXCSUM;
3434                         reinit = 1;
3435                 }
3436                 if ((mask & IFCAP_TSO4) != 0 &&
3437                     (ifp->if_capabilities & IFCAP_TSO4) != 0) {
3438                         ifp->if_capenable ^= IFCAP_TSO4;
3439                         if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
3440                                 ifp->if_hwassist |= CSUM_TSO;
3441                         else
3442                                 ifp->if_hwassist &= ~CSUM_TSO;
3443                         if (ifp->if_mtu > RL_TSO_MTU &&
3444                             (ifp->if_capenable & IFCAP_TSO4) != 0) {
3445                                 ifp->if_capenable &= ~IFCAP_TSO4;
3446                                 ifp->if_hwassist &= ~CSUM_TSO;
3447                         }
3448                 }
3449                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
3450                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
3451                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
3452                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
3453                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
3454                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
3455                         /* TSO over VLAN requires VLAN hardware tagging. */
3456                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
3457                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
3458                         reinit = 1;
3459                 }
3460                 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
3461                     (mask & (IFCAP_HWCSUM | IFCAP_TSO4 |
3462                     IFCAP_VLAN_HWTSO)) != 0)
3463                                 reinit = 1;
3464                 if ((mask & IFCAP_WOL) != 0 &&
3465                     (ifp->if_capabilities & IFCAP_WOL) != 0) {
3466                         if ((mask & IFCAP_WOL_UCAST) != 0)
3467                                 ifp->if_capenable ^= IFCAP_WOL_UCAST;
3468                         if ((mask & IFCAP_WOL_MCAST) != 0)
3469                                 ifp->if_capenable ^= IFCAP_WOL_MCAST;
3470                         if ((mask & IFCAP_WOL_MAGIC) != 0)
3471                                 ifp->if_capenable ^= IFCAP_WOL_MAGIC;
3472                 }
3473                 if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING) {
3474                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3475                         re_init_locked(sc);
3476                 }
3477                 RL_UNLOCK(sc);
3478                 VLAN_CAPABILITIES(ifp);
3479             }
3480                 break;
3481         default:
3482                 error = ether_ioctl(ifp, command, data);
3483                 break;
3484         }
3485
3486         return (error);
3487 }
3488
3489 static void
3490 re_watchdog(struct rl_softc *sc)
3491 {
3492         struct ifnet            *ifp;
3493
3494         RL_LOCK_ASSERT(sc);
3495
3496         if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0)
3497                 return;
3498
3499         ifp = sc->rl_ifp;
3500         re_txeof(sc);
3501         if (sc->rl_ldata.rl_tx_free == sc->rl_ldata.rl_tx_desc_cnt) {
3502                 if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
3503                     "-- recovering\n");
3504                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3505                         re_start_locked(ifp);
3506                 return;
3507         }
3508
3509         if_printf(ifp, "watchdog timeout\n");
3510         ifp->if_oerrors++;
3511
3512         re_rxeof(sc, NULL);
3513         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3514         re_init_locked(sc);
3515         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3516                 re_start_locked(ifp);
3517 }
3518
3519 /*
3520  * Stop the adapter and free any mbufs allocated to the
3521  * RX and TX lists.
3522  */
3523 static void
3524 re_stop(struct rl_softc *sc)
3525 {
3526         int                     i;
3527         struct ifnet            *ifp;
3528         struct rl_txdesc        *txd;
3529         struct rl_rxdesc        *rxd;
3530
3531         RL_LOCK_ASSERT(sc);
3532
3533         ifp = sc->rl_ifp;
3534
3535         sc->rl_watchdog_timer = 0;
3536         callout_stop(&sc->rl_stat_callout);
3537         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3538
3539         /*
3540          * Disable accepting frames to put RX MAC into idle state.
3541          * Otherwise it's possible to get frames while stop command
3542          * execution is in progress and controller can DMA the frame
3543          * to already freed RX buffer during that period.
3544          */
3545         CSR_WRITE_4(sc, RL_RXCFG, CSR_READ_4(sc, RL_RXCFG) &
3546             ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_MULTI |
3547             RL_RXCFG_RX_BROAD));
3548
3549         if ((sc->rl_flags & RL_FLAG_WAIT_TXPOLL) != 0) {
3550                 for (i = RL_TIMEOUT; i > 0; i--) {
3551                         if ((CSR_READ_1(sc, sc->rl_txstart) &
3552                             RL_TXSTART_START) == 0)
3553                                 break;
3554                         DELAY(20);
3555                 }
3556                 if (i == 0)
3557                         device_printf(sc->rl_dev,
3558                             "stopping TX poll timed out!\n");
3559                 CSR_WRITE_1(sc, RL_COMMAND, 0x00);
3560         } else if ((sc->rl_flags & RL_FLAG_CMDSTOP) != 0) {
3561                 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_STOPREQ | RL_CMD_TX_ENB |
3562                     RL_CMD_RX_ENB);
3563                 if ((sc->rl_flags & RL_FLAG_CMDSTOP_WAIT_TXQ) != 0) {
3564                         for (i = RL_TIMEOUT; i > 0; i--) {
3565                                 if ((CSR_READ_4(sc, RL_TXCFG) &
3566                                     RL_TXCFG_QUEUE_EMPTY) != 0)
3567                                         break;
3568                                 DELAY(100);
3569                         }
3570                         if (i == 0)
3571                                 device_printf(sc->rl_dev,
3572                                    "stopping TXQ timed out!\n");
3573                 }
3574         } else
3575                 CSR_WRITE_1(sc, RL_COMMAND, 0x00);
3576         DELAY(1000);
3577         CSR_WRITE_2(sc, RL_IMR, 0x0000);
3578         CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
3579
3580         if (sc->rl_head != NULL) {
3581                 m_freem(sc->rl_head);
3582                 sc->rl_head = sc->rl_tail = NULL;
3583         }
3584
3585         /* Free the TX list buffers. */
3586         for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
3587                 txd = &sc->rl_ldata.rl_tx_desc[i];
3588                 if (txd->tx_m != NULL) {
3589                         bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
3590                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3591                         bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
3592                             txd->tx_dmamap);
3593                         m_freem(txd->tx_m);
3594                         txd->tx_m = NULL;
3595                 }
3596         }
3597
3598         /* Free the RX list buffers. */
3599         for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
3600                 rxd = &sc->rl_ldata.rl_rx_desc[i];
3601                 if (rxd->rx_m != NULL) {
3602                         bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
3603                             rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3604                         bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
3605                             rxd->rx_dmamap);
3606                         m_freem(rxd->rx_m);
3607                         rxd->rx_m = NULL;
3608                 }
3609         }
3610
3611         if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
3612                 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
3613                         rxd = &sc->rl_ldata.rl_jrx_desc[i];
3614                         if (rxd->rx_m != NULL) {
3615                                 bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag,
3616                                     rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3617                                 bus_dmamap_unload(sc->rl_ldata.rl_jrx_mtag,
3618                                     rxd->rx_dmamap);
3619                                 m_freem(rxd->rx_m);
3620                                 rxd->rx_m = NULL;
3621                         }
3622                 }
3623         }
3624 }
3625
3626 /*
3627  * Device suspend routine.  Stop the interface and save some PCI
3628  * settings in case the BIOS doesn't restore them properly on
3629  * resume.
3630  */
3631 static int
3632 re_suspend(device_t dev)
3633 {
3634         struct rl_softc         *sc;
3635
3636         sc = device_get_softc(dev);
3637
3638         RL_LOCK(sc);
3639         re_stop(sc);
3640         re_setwol(sc);
3641         sc->suspended = 1;
3642         RL_UNLOCK(sc);
3643
3644         return (0);
3645 }
3646
3647 /*
3648  * Device resume routine.  Restore some PCI settings in case the BIOS
3649  * doesn't, re-enable busmastering, and restart the interface if
3650  * appropriate.
3651  */
3652 static int
3653 re_resume(device_t dev)
3654 {
3655         struct rl_softc         *sc;
3656         struct ifnet            *ifp;
3657
3658         sc = device_get_softc(dev);
3659
3660         RL_LOCK(sc);
3661
3662         ifp = sc->rl_ifp;
3663         /* Take controller out of sleep mode. */
3664         if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
3665                 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
3666                         CSR_WRITE_1(sc, RL_GPIO,
3667                             CSR_READ_1(sc, RL_GPIO) | 0x01);
3668         }
3669
3670         /*
3671          * Clear WOL matching such that normal Rx filtering
3672          * wouldn't interfere with WOL patterns.
3673          */
3674         re_clrwol(sc);
3675
3676         /* reinitialize interface if necessary */
3677         if (ifp->if_flags & IFF_UP)
3678                 re_init_locked(sc);
3679
3680         sc->suspended = 0;
3681         RL_UNLOCK(sc);
3682
3683         return (0);
3684 }
3685
3686 /*
3687  * Stop all chip I/O so that the kernel's probe routines don't
3688  * get confused by errant DMAs when rebooting.
3689  */
3690 static int
3691 re_shutdown(device_t dev)
3692 {
3693         struct rl_softc         *sc;
3694
3695         sc = device_get_softc(dev);
3696
3697         RL_LOCK(sc);
3698         re_stop(sc);
3699         /*
3700          * Mark interface as down since otherwise we will panic if
3701          * interrupt comes in later on, which can happen in some
3702          * cases.
3703          */
3704         sc->rl_ifp->if_flags &= ~IFF_UP;
3705         re_setwol(sc);
3706         RL_UNLOCK(sc);
3707
3708         return (0);
3709 }
3710
3711 static void
3712 re_set_linkspeed(struct rl_softc *sc)
3713 {
3714         struct mii_softc *miisc;
3715         struct mii_data *mii;
3716         int aneg, i, phyno;
3717
3718         RL_LOCK_ASSERT(sc);
3719
3720         mii = device_get_softc(sc->rl_miibus);
3721         mii_pollstat(mii);
3722         aneg = 0;
3723         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
3724             (IFM_ACTIVE | IFM_AVALID)) {
3725                 switch IFM_SUBTYPE(mii->mii_media_active) {
3726                 case IFM_10_T:
3727                 case IFM_100_TX:
3728                         return;
3729                 case IFM_1000_T:
3730                         aneg++;
3731                         break;
3732                 default:
3733                         break;
3734                 }
3735         }
3736         miisc = LIST_FIRST(&mii->mii_phys);
3737         phyno = miisc->mii_phy;
3738         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3739                 PHY_RESET(miisc);
3740         re_miibus_writereg(sc->rl_dev, phyno, MII_100T2CR, 0);
3741         re_miibus_writereg(sc->rl_dev, phyno,
3742             MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
3743         re_miibus_writereg(sc->rl_dev, phyno,
3744             MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
3745         DELAY(1000);
3746         if (aneg != 0) {
3747                 /*
3748                  * Poll link state until re(4) get a 10/100Mbps link.
3749                  */
3750                 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
3751                         mii_pollstat(mii);
3752                         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
3753                             == (IFM_ACTIVE | IFM_AVALID)) {
3754                                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
3755                                 case IFM_10_T:
3756                                 case IFM_100_TX:
3757                                         return;
3758                                 default:
3759                                         break;
3760                                 }
3761                         }
3762                         RL_UNLOCK(sc);
3763                         pause("relnk", hz);
3764                         RL_LOCK(sc);
3765                 }
3766                 if (i == MII_ANEGTICKS_GIGE)
3767                         device_printf(sc->rl_dev,
3768                             "establishing a link failed, WOL may not work!");
3769         }
3770         /*
3771          * No link, force MAC to have 100Mbps, full-duplex link.
3772          * MAC does not require reprogramming on resolved speed/duplex,
3773          * so this is just for completeness.
3774          */
3775         mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
3776         mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
3777 }
3778
3779 static void
3780 re_setwol(struct rl_softc *sc)
3781 {
3782         struct ifnet            *ifp;
3783         int                     pmc;
3784         uint16_t                pmstat;
3785         uint8_t                 v;
3786
3787         RL_LOCK_ASSERT(sc);
3788
3789         if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3790                 return;
3791
3792         ifp = sc->rl_ifp;
3793         /* Put controller into sleep mode. */
3794         if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
3795                 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
3796                         CSR_WRITE_1(sc, RL_GPIO,
3797                             CSR_READ_1(sc, RL_GPIO) & ~0x01);
3798         }
3799         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
3800                 re_set_rxmode(sc);
3801                 if ((sc->rl_flags & RL_FLAG_WOL_MANLINK) != 0)
3802                         re_set_linkspeed(sc);
3803                 if ((sc->rl_flags & RL_FLAG_WOLRXENB) != 0)
3804                         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RX_ENB);
3805         }
3806         /* Enable config register write. */
3807         CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3808
3809         /* Enable PME. */
3810         v = CSR_READ_1(sc, sc->rl_cfg1);
3811         v &= ~RL_CFG1_PME;
3812         if ((ifp->if_capenable & IFCAP_WOL) != 0)
3813                 v |= RL_CFG1_PME;
3814         CSR_WRITE_1(sc, sc->rl_cfg1, v);
3815
3816         v = CSR_READ_1(sc, sc->rl_cfg3);
3817         v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3818         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
3819                 v |= RL_CFG3_WOL_MAGIC;
3820         CSR_WRITE_1(sc, sc->rl_cfg3, v);
3821
3822         v = CSR_READ_1(sc, sc->rl_cfg5);
3823         v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST |
3824             RL_CFG5_WOL_LANWAKE);
3825         if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
3826                 v |= RL_CFG5_WOL_UCAST;
3827         if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
3828                 v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
3829         if ((ifp->if_capenable & IFCAP_WOL) != 0)
3830                 v |= RL_CFG5_WOL_LANWAKE;
3831         CSR_WRITE_1(sc, sc->rl_cfg5, v);
3832
3833         /* Config register write done. */
3834         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3835
3836         if ((ifp->if_capenable & IFCAP_WOL) == 0 &&
3837             (sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0)
3838                 CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) & ~0x80);
3839         /*
3840          * It seems that hardware resets its link speed to 100Mbps in
3841          * power down mode so switching to 100Mbps in driver is not
3842          * needed.
3843          */
3844
3845         /* Request PME if WOL is requested. */
3846         pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
3847         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3848         if ((ifp->if_capenable & IFCAP_WOL) != 0)
3849                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3850         pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
3851 }
3852
3853 static void
3854 re_clrwol(struct rl_softc *sc)
3855 {
3856         int                     pmc;
3857         uint8_t                 v;
3858
3859         RL_LOCK_ASSERT(sc);
3860
3861         if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3862                 return;
3863
3864         /* Enable config register write. */
3865         CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3866
3867         v = CSR_READ_1(sc, sc->rl_cfg3);
3868         v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3869         CSR_WRITE_1(sc, sc->rl_cfg3, v);
3870
3871         /* Config register write done. */
3872         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3873
3874         v = CSR_READ_1(sc, sc->rl_cfg5);
3875         v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
3876         v &= ~RL_CFG5_WOL_LANWAKE;
3877         CSR_WRITE_1(sc, sc->rl_cfg5, v);
3878 }
3879
3880 static void
3881 re_add_sysctls(struct rl_softc *sc)
3882 {
3883         struct sysctl_ctx_list  *ctx;
3884         struct sysctl_oid_list  *children;
3885         int                     error;
3886
3887         ctx = device_get_sysctl_ctx(sc->rl_dev);
3888         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev));
3889
3890         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "stats",
3891             CTLTYPE_INT | CTLFLAG_RW, sc, 0, re_sysctl_stats, "I",
3892             "Statistics Information");
3893         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0)
3894                 return;
3895
3896         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "int_rx_mod",
3897             CTLTYPE_INT | CTLFLAG_RW, &sc->rl_int_rx_mod, 0,
3898             sysctl_hw_re_int_mod, "I", "re RX interrupt moderation");
3899         /* Pull in device tunables. */
3900         sc->rl_int_rx_mod = RL_TIMER_DEFAULT;
3901         error = resource_int_value(device_get_name(sc->rl_dev),
3902             device_get_unit(sc->rl_dev), "int_rx_mod", &sc->rl_int_rx_mod);
3903         if (error == 0) {
3904                 if (sc->rl_int_rx_mod < RL_TIMER_MIN ||
3905                     sc->rl_int_rx_mod > RL_TIMER_MAX) {
3906                         device_printf(sc->rl_dev, "int_rx_mod value out of "
3907                             "range; using default: %d\n",
3908                             RL_TIMER_DEFAULT);
3909                         sc->rl_int_rx_mod = RL_TIMER_DEFAULT;
3910                 }
3911         }
3912
3913 }
3914
3915 static int
3916 re_sysctl_stats(SYSCTL_HANDLER_ARGS)
3917 {
3918         struct rl_softc         *sc;
3919         struct rl_stats         *stats;
3920         int                     error, i, result;
3921
3922         result = -1;
3923         error = sysctl_handle_int(oidp, &result, 0, req);
3924         if (error || req->newptr == NULL)
3925                 return (error);
3926
3927         if (result == 1) {
3928                 sc = (struct rl_softc *)arg1;
3929                 RL_LOCK(sc);
3930                 if ((sc->rl_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3931                         RL_UNLOCK(sc);
3932                         goto done;
3933                 }
3934                 bus_dmamap_sync(sc->rl_ldata.rl_stag,
3935                     sc->rl_ldata.rl_smap, BUS_DMASYNC_PREREAD);
3936                 CSR_WRITE_4(sc, RL_DUMPSTATS_HI,
3937                     RL_ADDR_HI(sc->rl_ldata.rl_stats_addr));
3938                 CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
3939                     RL_ADDR_LO(sc->rl_ldata.rl_stats_addr));
3940                 CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
3941                     RL_ADDR_LO(sc->rl_ldata.rl_stats_addr |
3942                     RL_DUMPSTATS_START));
3943                 for (i = RL_TIMEOUT; i > 0; i--) {
3944                         if ((CSR_READ_4(sc, RL_DUMPSTATS_LO) &
3945                             RL_DUMPSTATS_START) == 0)
3946                                 break;
3947                         DELAY(1000);
3948                 }
3949                 bus_dmamap_sync(sc->rl_ldata.rl_stag,
3950                     sc->rl_ldata.rl_smap, BUS_DMASYNC_POSTREAD);
3951                 RL_UNLOCK(sc);
3952                 if (i == 0) {
3953                         device_printf(sc->rl_dev,
3954                             "DUMP statistics request timed out\n");
3955                         return (ETIMEDOUT);
3956                 }
3957 done:
3958                 stats = sc->rl_ldata.rl_stats;
3959                 printf("%s statistics:\n", device_get_nameunit(sc->rl_dev));
3960                 printf("Tx frames : %ju\n",
3961                     (uintmax_t)le64toh(stats->rl_tx_pkts));
3962                 printf("Rx frames : %ju\n",
3963                     (uintmax_t)le64toh(stats->rl_rx_pkts));
3964                 printf("Tx errors : %ju\n",
3965                     (uintmax_t)le64toh(stats->rl_tx_errs));
3966                 printf("Rx errors : %u\n",
3967                     le32toh(stats->rl_rx_errs));
3968                 printf("Rx missed frames : %u\n",
3969                     (uint32_t)le16toh(stats->rl_missed_pkts));
3970                 printf("Rx frame alignment errs : %u\n",
3971                     (uint32_t)le16toh(stats->rl_rx_framealign_errs));
3972                 printf("Tx single collisions : %u\n",
3973                     le32toh(stats->rl_tx_onecoll));
3974                 printf("Tx multiple collisions : %u\n",
3975                     le32toh(stats->rl_tx_multicolls));
3976                 printf("Rx unicast frames : %ju\n",
3977                     (uintmax_t)le64toh(stats->rl_rx_ucasts));
3978                 printf("Rx broadcast frames : %ju\n",
3979                     (uintmax_t)le64toh(stats->rl_rx_bcasts));
3980                 printf("Rx multicast frames : %u\n",
3981                     le32toh(stats->rl_rx_mcasts));
3982                 printf("Tx aborts : %u\n",
3983                     (uint32_t)le16toh(stats->rl_tx_aborts));
3984                 printf("Tx underruns : %u\n",
3985                     (uint32_t)le16toh(stats->rl_rx_underruns));
3986         }
3987
3988         return (error);
3989 }
3990
3991 static int
3992 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3993 {
3994         int error, value;
3995
3996         if (arg1 == NULL)
3997                 return (EINVAL);
3998         value = *(int *)arg1;
3999         error = sysctl_handle_int(oidp, &value, 0, req);
4000         if (error || req->newptr == NULL)
4001                 return (error);
4002         if (value < low || value > high)
4003                 return (EINVAL);
4004         *(int *)arg1 = value;
4005
4006         return (0);
4007 }
4008
4009 static int
4010 sysctl_hw_re_int_mod(SYSCTL_HANDLER_ARGS)
4011 {
4012
4013         return (sysctl_int_range(oidp, arg1, arg2, req, RL_TIMER_MIN,
4014             RL_TIMER_MAX));
4015 }