]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - sys/dev/wpi/if_wpi.c
MFC r363988:
[FreeBSD/stable/9.git] / sys / dev / wpi / if_wpi.c
1 /*-
2  * Copyright (c) 2006,2007
3  *      Damien Bergamini <damien.bergamini@free.fr>
4  *      Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18
19 #define VERSION "20071127"
20
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23
24 /*
25  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26  *
27  * The 3945ABG network adapter doesn't use traditional hardware as
28  * many other adaptors do. Instead at run time the eeprom is set into a known
29  * state and told to load boot firmware. The boot firmware loads an init and a
30  * main  binary firmware image into SRAM on the card via DMA.
31  * Once the firmware is loaded, the driver/hw then
32  * communicate by way of circular dma rings via the SRAM to the firmware.
33  *
34  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35  * The 4 tx data rings allow for prioritization QoS.
36  *
37  * The rx data ring consists of 32 dma buffers. Two registers are used to
38  * indicate where in the ring the driver and the firmware are up to. The
39  * driver sets the initial read index (reg1) and the initial write index (reg2),
40  * the firmware updates the read index (reg1) on rx of a packet and fires an
41  * interrupt. The driver then processes the buffers starting at reg1 indicating
42  * to the firmware which buffers have been accessed by updating reg2. At the
43  * same time allocating new memory for the processed buffer.
44  *
45  * A similar thing happens with the tx rings. The difference is the firmware
46  * stop processing buffers once the queue is full and until confirmation
47  * of a successful transmition (tx_intr) has occurred.
48  *
49  * The command ring operates in the same manner as the tx queues.
50  *
51  * All communication direct to the card (ie eeprom) is classed as Stage1
52  * communication
53  *
54  * All communication via the firmware to the card is classed as State2.
55  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56  * firmware. The bootstrap firmware and runtime firmware are loaded
57  * from host memory via dma to the card then told to execute. From this point
58  * on the majority of communications between the driver and the card goes
59  * via the firmware.
60  */
61
62 #include <sys/param.h>
63 #include <sys/sysctl.h>
64 #include <sys/sockio.h>
65 #include <sys/mbuf.h>
66 #include <sys/kernel.h>
67 #include <sys/socket.h>
68 #include <sys/systm.h>
69 #include <sys/malloc.h>
70 #include <sys/queue.h>
71 #include <sys/taskqueue.h>
72 #include <sys/module.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75 #include <sys/linker.h>
76 #include <sys/firmware.h>
77
78 #include <machine/bus.h>
79 #include <machine/resource.h>
80 #include <sys/rman.h>
81
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84
85 #include <net/bpf.h>
86 #include <net/if.h>
87 #include <net/if_arp.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_types.h>
92
93 #include <net80211/ieee80211_var.h>
94 #include <net80211/ieee80211_radiotap.h>
95 #include <net80211/ieee80211_regdomain.h>
96 #include <net80211/ieee80211_ratectl.h>
97
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/in_var.h>
101 #include <netinet/ip.h>
102 #include <netinet/if_ether.h>
103
104 #include <dev/wpi/if_wpireg.h>
105 #include <dev/wpi/if_wpivar.h>
106
107 #define WPI_DEBUG
108
109 #ifdef WPI_DEBUG
110 #define DPRINTF(x)      do { if (wpi_debug != 0) printf x; } while (0)
111 #define DPRINTFN(n, x)  do { if (wpi_debug & n) printf x; } while (0)
112 #define WPI_DEBUG_SET   (wpi_debug != 0)
113
114 enum {
115         WPI_DEBUG_UNUSED        = 0x00000001,   /* Unused */
116         WPI_DEBUG_HW            = 0x00000002,   /* Stage 1 (eeprom) debugging */
117         WPI_DEBUG_TX            = 0x00000004,   /* Stage 2 TX intrp debugging*/
118         WPI_DEBUG_RX            = 0x00000008,   /* Stage 2 RX intrp debugging */
119         WPI_DEBUG_CMD           = 0x00000010,   /* Stage 2 CMD intrp debugging*/
120         WPI_DEBUG_FIRMWARE      = 0x00000020,   /* firmware(9) loading debug  */
121         WPI_DEBUG_DMA           = 0x00000040,   /* DMA (de)allocations/syncs  */
122         WPI_DEBUG_SCANNING      = 0x00000080,   /* Stage 2 Scanning debugging */
123         WPI_DEBUG_NOTIFY        = 0x00000100,   /* State 2 Noftif intr debug */
124         WPI_DEBUG_TEMP          = 0x00000200,   /* TXPower/Temp Calibration */
125         WPI_DEBUG_OPS           = 0x00000400,   /* wpi_ops taskq debug */
126         WPI_DEBUG_WATCHDOG      = 0x00000800,   /* Watch dog debug */
127         WPI_DEBUG_ANY           = 0xffffffff
128 };
129
130 static int wpi_debug = 0;
131 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
132 TUNABLE_INT("debug.wpi", &wpi_debug);
133
134 #else
135 #define DPRINTF(x)
136 #define DPRINTFN(n, x)
137 #define WPI_DEBUG_SET   0
138 #endif
139
140 struct wpi_ident {
141         uint16_t        vendor;
142         uint16_t        device;
143         uint16_t        subdevice;
144         const char      *name;
145 };
146
147 static const struct wpi_ident wpi_ident_table[] = {
148         /* The below entries support ABG regardless of the subid */
149         { 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
150         { 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
151         /* The below entries only support BG */
152         { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
153         { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
154         { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
155         { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
156         { 0, 0, 0, NULL }
157 };
158
159 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
160                     const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
161                     const uint8_t [IEEE80211_ADDR_LEN],
162                     const uint8_t [IEEE80211_ADDR_LEN]);
163 static void     wpi_vap_delete(struct ieee80211vap *);
164 static int      wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
165                     void **, bus_size_t, bus_size_t, int);
166 static void     wpi_dma_contig_free(struct wpi_dma_info *);
167 static void     wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
168 static int      wpi_alloc_shared(struct wpi_softc *);
169 static void     wpi_free_shared(struct wpi_softc *);
170 static int      wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
171 static void     wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
172 static void     wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
173 static int      wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
174                     int, int);
175 static void     wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
176 static void     wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
177 static int      wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
178 static void     wpi_mem_lock(struct wpi_softc *);
179 static void     wpi_mem_unlock(struct wpi_softc *);
180 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
181 static void     wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
182 static void     wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
183                     const uint32_t *, int);
184 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
185 static int      wpi_alloc_fwmem(struct wpi_softc *);
186 static void     wpi_free_fwmem(struct wpi_softc *);
187 static int      wpi_load_firmware(struct wpi_softc *);
188 static void     wpi_unload_firmware(struct wpi_softc *);
189 static int      wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
190 static void     wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
191                     struct wpi_rx_data *);
192 static void     wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
193 static void     wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
194 static void     wpi_notif_intr(struct wpi_softc *);
195 static void     wpi_intr(void *);
196 static uint8_t  wpi_plcp_signal(int);
197 static void     wpi_watchdog(void *);
198 static int      wpi_tx_data(struct wpi_softc *, struct mbuf *,
199                     struct ieee80211_node *, int);
200 static void     wpi_start(struct ifnet *);
201 static void     wpi_start_locked(struct ifnet *);
202 static int      wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
203                     const struct ieee80211_bpf_params *);
204 static void     wpi_scan_start(struct ieee80211com *);
205 static void     wpi_scan_end(struct ieee80211com *);
206 static void     wpi_set_channel(struct ieee80211com *);
207 static void     wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
208 static void     wpi_scan_mindwell(struct ieee80211_scan_state *);
209 static int      wpi_ioctl(struct ifnet *, u_long, caddr_t);
210 static void     wpi_read_eeprom(struct wpi_softc *,
211                     uint8_t macaddr[IEEE80211_ADDR_LEN]);
212 static void     wpi_read_eeprom_channels(struct wpi_softc *, int);
213 static void     wpi_read_eeprom_group(struct wpi_softc *, int);
214 static int      wpi_cmd(struct wpi_softc *, int, const void *, int, int);
215 static int      wpi_wme_update(struct ieee80211com *);
216 static int      wpi_mrr_setup(struct wpi_softc *);
217 static void     wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
218 static void     wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
219 #if 0
220 static int      wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
221 #endif
222 static int      wpi_auth(struct wpi_softc *, struct ieee80211vap *);
223 static int      wpi_run(struct wpi_softc *, struct ieee80211vap *);
224 static int      wpi_scan(struct wpi_softc *);
225 static int      wpi_config(struct wpi_softc *);
226 static void     wpi_stop_master(struct wpi_softc *);
227 static int      wpi_power_up(struct wpi_softc *);
228 static int      wpi_reset(struct wpi_softc *);
229 static void     wpi_hwreset(void *, int);
230 static void     wpi_rfreset(void *, int);
231 static void     wpi_hw_config(struct wpi_softc *);
232 static void     wpi_init(void *);
233 static void     wpi_init_locked(struct wpi_softc *, int);
234 static void     wpi_stop(struct wpi_softc *);
235 static void     wpi_stop_locked(struct wpi_softc *);
236
237 static int      wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
238                     int);
239 static void     wpi_calib_timeout(void *);
240 static void     wpi_power_calibration(struct wpi_softc *, int);
241 static int      wpi_get_power_index(struct wpi_softc *,
242                     struct wpi_power_group *, struct ieee80211_channel *, int);
243 #ifdef WPI_DEBUG
244 static const char *wpi_cmd_str(int);
245 #endif
246 static int wpi_probe(device_t);
247 static int wpi_attach(device_t);
248 static int wpi_detach(device_t);
249 static int wpi_shutdown(device_t);
250 static int wpi_suspend(device_t);
251 static int wpi_resume(device_t);
252
253 static device_method_t wpi_methods[] = {
254         /* Device interface */
255         DEVMETHOD(device_probe,         wpi_probe),
256         DEVMETHOD(device_attach,        wpi_attach),
257         DEVMETHOD(device_detach,        wpi_detach),
258         DEVMETHOD(device_shutdown,      wpi_shutdown),
259         DEVMETHOD(device_suspend,       wpi_suspend),
260         DEVMETHOD(device_resume,        wpi_resume),
261
262         DEVMETHOD_END
263 };
264
265 static driver_t wpi_driver = {
266         "wpi",
267         wpi_methods,
268         sizeof (struct wpi_softc)
269 };
270
271 static devclass_t wpi_devclass;
272
273 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
274
275 MODULE_VERSION(wpi, 1);
276
277 static const uint8_t wpi_ridx_to_plcp[] = {
278         /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
279         /* R1-R4 (ral/ural is R4-R1) */
280         0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
281         /* CCK: device-dependent */
282         10, 20, 55, 110
283 };
284
285 static const uint8_t wpi_ridx_to_rate[] = {
286         12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
287         2, 4, 11, 22 /*CCK */
288 };
289
290 static int
291 wpi_probe(device_t dev)
292 {
293         const struct wpi_ident *ident;
294
295         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
296                 if (pci_get_vendor(dev) == ident->vendor &&
297                     pci_get_device(dev) == ident->device) {
298                         device_set_desc(dev, ident->name);
299                         return (BUS_PROBE_DEFAULT);
300                 }
301         }
302         return ENXIO;
303 }
304
305 /**
306  * Load the firmare image from disk to the allocated dma buffer.
307  * we also maintain the reference to the firmware pointer as there
308  * is times where we may need to reload the firmware but we are not
309  * in a context that can access the filesystem (ie taskq cause by restart)
310  *
311  * @return 0 on success, an errno on failure
312  */
313 static int
314 wpi_load_firmware(struct wpi_softc *sc)
315 {
316         const struct firmware *fp;
317         struct wpi_dma_info *dma = &sc->fw_dma;
318         const struct wpi_firmware_hdr *hdr;
319         const uint8_t *itext, *idata, *rtext, *rdata, *btext;
320         uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
321         int error;
322
323         DPRINTFN(WPI_DEBUG_FIRMWARE,
324             ("Attempting Loading Firmware from wpi_fw module\n"));
325
326         WPI_UNLOCK(sc);
327
328         if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
329                 device_printf(sc->sc_dev,
330                     "could not load firmware image 'wpifw'\n");
331                 error = ENOENT;
332                 WPI_LOCK(sc);
333                 goto fail;
334         }
335
336         fp = sc->fw_fp;
337
338         WPI_LOCK(sc);
339
340         /* Validate the firmware is minimum a particular version */
341         if (fp->version < WPI_FW_MINVERSION) {
342             device_printf(sc->sc_dev,
343                            "firmware version is too old. Need %d, got %d\n",
344                            WPI_FW_MINVERSION,
345                            fp->version);
346             error = ENXIO;
347             goto fail;
348         }
349
350         if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
351                 device_printf(sc->sc_dev,
352                     "firmware file too short: %zu bytes\n", fp->datasize);
353                 error = ENXIO;
354                 goto fail;
355         }
356
357         hdr = (const struct wpi_firmware_hdr *)fp->data;
358
359         /*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
360            |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
361
362         rtextsz = le32toh(hdr->rtextsz);
363         rdatasz = le32toh(hdr->rdatasz);
364         itextsz = le32toh(hdr->itextsz);
365         idatasz = le32toh(hdr->idatasz);
366         btextsz = le32toh(hdr->btextsz);
367
368         /* check that all firmware segments are present */
369         if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
370                 rtextsz + rdatasz + itextsz + idatasz + btextsz) {
371                 device_printf(sc->sc_dev,
372                     "firmware file too short: %zu bytes\n", fp->datasize);
373                 error = ENXIO; /* XXX appropriate error code? */
374                 goto fail;
375         }
376
377         /* get pointers to firmware segments */
378         rtext = (const uint8_t *)(hdr + 1);
379         rdata = rtext + rtextsz;
380         itext = rdata + rdatasz;
381         idata = itext + itextsz;
382         btext = idata + idatasz;
383
384         DPRINTFN(WPI_DEBUG_FIRMWARE,
385             ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
386              "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
387              (le32toh(hdr->version) & 0xff000000) >> 24,
388              (le32toh(hdr->version) & 0x00ff0000) >> 16,
389              (le32toh(hdr->version) & 0x0000ffff),
390              rtextsz, rdatasz,
391              itextsz, idatasz, btextsz));
392
393         DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
394         DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
395         DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
396         DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
397         DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
398
399         /* sanity checks */
400         if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
401             rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
402             itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
403             idatasz > WPI_FW_INIT_DATA_MAXSZ ||
404             btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
405             (btextsz & 3) != 0) {
406                 device_printf(sc->sc_dev, "firmware invalid\n");
407                 error = EINVAL;
408                 goto fail;
409         }
410
411         /* copy initialization images into pre-allocated DMA-safe memory */
412         memcpy(dma->vaddr, idata, idatasz);
413         memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
414
415         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
416
417         /* tell adapter where to find initialization images */
418         wpi_mem_lock(sc);
419         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
420         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
421         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
422             dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
423         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
424         wpi_mem_unlock(sc);
425
426         /* load firmware boot code */
427         if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
428             device_printf(sc->sc_dev, "Failed to load microcode\n");
429             goto fail;
430         }
431
432         /* now press "execute" */
433         WPI_WRITE(sc, WPI_RESET, 0);
434
435         /* wait at most one second for the first alive notification */
436         if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
437                 device_printf(sc->sc_dev,
438                     "timeout waiting for adapter to initialize\n");
439                 goto fail;
440         }
441
442         /* copy runtime images into pre-allocated DMA-sage memory */
443         memcpy(dma->vaddr, rdata, rdatasz);
444         memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
445         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
446
447         /* tell adapter where to find runtime images */
448         wpi_mem_lock(sc);
449         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
450         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
451         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
452             dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
453         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
454         wpi_mem_unlock(sc);
455
456         /* wait at most one second for the first alive notification */
457         if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
458                 device_printf(sc->sc_dev,
459                     "timeout waiting for adapter to initialize2\n");
460                 goto fail;
461         }
462
463         DPRINTFN(WPI_DEBUG_FIRMWARE,
464             ("Firmware loaded to driver successfully\n"));
465         return error;
466 fail:
467         wpi_unload_firmware(sc);
468         return error;
469 }
470
471 /**
472  * Free the referenced firmware image
473  */
474 static void
475 wpi_unload_firmware(struct wpi_softc *sc)
476 {
477
478         if (sc->fw_fp) {
479                 WPI_UNLOCK(sc);
480                 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
481                 WPI_LOCK(sc);
482                 sc->fw_fp = NULL;
483         }
484 }
485
486 static int
487 wpi_attach(device_t dev)
488 {
489         struct wpi_softc *sc = device_get_softc(dev);
490         struct ifnet *ifp;
491         struct ieee80211com *ic;
492         int ac, error, rid, supportsa = 1;
493         uint32_t tmp;
494         const struct wpi_ident *ident;
495         uint8_t macaddr[IEEE80211_ADDR_LEN];
496
497         sc->sc_dev = dev;
498
499         if (bootverbose || WPI_DEBUG_SET)
500             device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
501
502         /*
503          * Some card's only support 802.11b/g not a, check to see if
504          * this is one such card. A 0x0 in the subdevice table indicates
505          * the entire subdevice range is to be ignored.
506          */
507         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
508                 if (ident->subdevice &&
509                     pci_get_subdevice(dev) == ident->subdevice) {
510                     supportsa = 0;
511                     break;
512                 }
513         }
514
515         /* Create the tasks that can be queued */
516         TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
517         TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
518
519         WPI_LOCK_INIT(sc);
520
521         callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
522         callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
523
524         /* disable the retry timeout register */
525         pci_write_config(dev, 0x41, 0, 1);
526
527         /* enable bus-mastering */
528         pci_enable_busmaster(dev);
529
530         rid = PCIR_BAR(0);
531         sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
532             RF_ACTIVE);
533         if (sc->mem == NULL) {
534                 device_printf(dev, "could not allocate memory resource\n");
535                 error = ENOMEM;
536                 goto fail;
537         }
538
539         sc->sc_st = rman_get_bustag(sc->mem);
540         sc->sc_sh = rman_get_bushandle(sc->mem);
541
542         rid = 0;
543         sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
544             RF_ACTIVE | RF_SHAREABLE);
545         if (sc->irq == NULL) {
546                 device_printf(dev, "could not allocate interrupt resource\n");
547                 error = ENOMEM;
548                 goto fail;
549         }
550
551         /*
552          * Allocate DMA memory for firmware transfers.
553          */
554         if ((error = wpi_alloc_fwmem(sc)) != 0) {
555                 printf(": could not allocate firmware memory\n");
556                 error = ENOMEM;
557                 goto fail;
558         }
559
560         /*
561          * Put adapter into a known state.
562          */
563         if ((error = wpi_reset(sc)) != 0) {
564                 device_printf(dev, "could not reset adapter\n");
565                 goto fail;
566         }
567
568         wpi_mem_lock(sc);
569         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
570         if (bootverbose || WPI_DEBUG_SET)
571             device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
572
573         wpi_mem_unlock(sc);
574
575         /* Allocate shared page */
576         if ((error = wpi_alloc_shared(sc)) != 0) {
577                 device_printf(dev, "could not allocate shared page\n");
578                 goto fail;
579         }
580
581         /* tx data queues  - 4 for QoS purposes */
582         for (ac = 0; ac < WME_NUM_AC; ac++) {
583                 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
584                 if (error != 0) {
585                     device_printf(dev, "could not allocate Tx ring %d\n",ac);
586                     goto fail;
587                 }
588         }
589
590         /* command queue to talk to the card's firmware */
591         error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
592         if (error != 0) {
593                 device_printf(dev, "could not allocate command ring\n");
594                 goto fail;
595         }
596
597         /* receive data queue */
598         error = wpi_alloc_rx_ring(sc, &sc->rxq);
599         if (error != 0) {
600                 device_printf(dev, "could not allocate Rx ring\n");
601                 goto fail;
602         }
603
604         ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
605         if (ifp == NULL) {
606                 device_printf(dev, "can not if_alloc()\n");
607                 error = ENOMEM;
608                 goto fail;
609         }
610         ic = ifp->if_l2com;
611
612         ic->ic_ifp = ifp;
613         ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
614         ic->ic_opmode = IEEE80211_M_STA;        /* default to BSS mode */
615
616         /* set device capabilities */
617         ic->ic_caps =
618                   IEEE80211_C_STA               /* station mode supported */
619                 | IEEE80211_C_MONITOR           /* monitor mode supported */
620                 | IEEE80211_C_TXPMGT            /* tx power management */
621                 | IEEE80211_C_SHSLOT            /* short slot time supported */
622                 | IEEE80211_C_SHPREAMBLE        /* short preamble supported */
623                 | IEEE80211_C_WPA               /* 802.11i */
624 /* XXX looks like WME is partly supported? */
625 #if 0
626                 | IEEE80211_C_IBSS              /* IBSS mode support */
627                 | IEEE80211_C_BGSCAN            /* capable of bg scanning */
628                 | IEEE80211_C_WME               /* 802.11e */
629                 | IEEE80211_C_HOSTAP            /* Host access point mode */
630 #endif
631                 ;
632
633         /*
634          * Read in the eeprom and also setup the channels for
635          * net80211. We don't set the rates as net80211 does this for us
636          */
637         wpi_read_eeprom(sc, macaddr);
638
639         if (bootverbose || WPI_DEBUG_SET) {
640             device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
641             device_printf(sc->sc_dev, "Hardware Type: %c\n",
642                           sc->type > 1 ? 'B': '?');
643             device_printf(sc->sc_dev, "Hardware Revision: %c\n",
644                           ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
645             device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
646                           supportsa ? "does" : "does not");
647
648             /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
649                what sc->rev really represents - benjsc 20070615 */
650         }
651
652         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
653         ifp->if_softc = sc;
654         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
655         ifp->if_init = wpi_init;
656         ifp->if_ioctl = wpi_ioctl;
657         ifp->if_start = wpi_start;
658         IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
659         ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
660         IFQ_SET_READY(&ifp->if_snd);
661
662         ieee80211_ifattach(ic, macaddr);
663         /* override default methods */
664         ic->ic_raw_xmit = wpi_raw_xmit;
665         ic->ic_wme.wme_update = wpi_wme_update;
666         ic->ic_scan_start = wpi_scan_start;
667         ic->ic_scan_end = wpi_scan_end;
668         ic->ic_set_channel = wpi_set_channel;
669         ic->ic_scan_curchan = wpi_scan_curchan;
670         ic->ic_scan_mindwell = wpi_scan_mindwell;
671
672         ic->ic_vap_create = wpi_vap_create;
673         ic->ic_vap_delete = wpi_vap_delete;
674
675         ieee80211_radiotap_attach(ic,
676             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
677                 WPI_TX_RADIOTAP_PRESENT,
678             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
679                 WPI_RX_RADIOTAP_PRESENT);
680
681         /*
682          * Hook our interrupt after all initialization is complete.
683          */
684         error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
685             NULL, wpi_intr, sc, &sc->sc_ih);
686         if (error != 0) {
687                 device_printf(dev, "could not set up interrupt\n");
688                 goto fail;
689         }
690
691         if (bootverbose)
692                 ieee80211_announce(ic);
693 #ifdef XXX_DEBUG
694         ieee80211_announce_channels(ic);
695 #endif
696         return 0;
697
698 fail:   wpi_detach(dev);
699         return ENXIO;
700 }
701
702 static int
703 wpi_detach(device_t dev)
704 {
705         struct wpi_softc *sc = device_get_softc(dev);
706         struct ifnet *ifp = sc->sc_ifp;
707         struct ieee80211com *ic;
708         int ac;
709
710         if (sc->irq != NULL)
711                 bus_teardown_intr(dev, sc->irq, sc->sc_ih);
712
713         if (ifp != NULL) {
714                 ic = ifp->if_l2com;
715
716                 ieee80211_draintask(ic, &sc->sc_restarttask);
717                 ieee80211_draintask(ic, &sc->sc_radiotask);
718                 wpi_stop(sc);
719                 callout_drain(&sc->watchdog_to);
720                 callout_drain(&sc->calib_to);
721                 ieee80211_ifdetach(ic);
722         }
723
724         WPI_LOCK(sc);
725         if (sc->txq[0].data_dmat) {
726                 for (ac = 0; ac < WME_NUM_AC; ac++)
727                         wpi_free_tx_ring(sc, &sc->txq[ac]);
728
729                 wpi_free_tx_ring(sc, &sc->cmdq);
730                 wpi_free_rx_ring(sc, &sc->rxq);
731                 wpi_free_shared(sc);
732         }
733
734         if (sc->fw_fp != NULL) {
735                 wpi_unload_firmware(sc);
736         }
737
738         if (sc->fw_dma.tag)
739                 wpi_free_fwmem(sc);
740         WPI_UNLOCK(sc);
741
742         if (sc->irq != NULL)
743                 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
744                     sc->irq);
745         if (sc->mem != NULL)
746                 bus_release_resource(dev, SYS_RES_MEMORY,
747                     rman_get_rid(sc->mem), sc->mem);
748
749         if (ifp != NULL)
750                 if_free(ifp);
751
752         WPI_LOCK_DESTROY(sc);
753
754         return 0;
755 }
756
757 static struct ieee80211vap *
758 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
759     enum ieee80211_opmode opmode, int flags,
760     const uint8_t bssid[IEEE80211_ADDR_LEN],
761     const uint8_t mac[IEEE80211_ADDR_LEN])
762 {
763         struct wpi_vap *wvp;
764         struct ieee80211vap *vap;
765
766         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
767                 return NULL;
768         wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
769             M_80211_VAP, M_NOWAIT | M_ZERO);
770         if (wvp == NULL)
771                 return NULL;
772         vap = &wvp->vap;
773         ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
774         /* override with driver methods */
775         wvp->newstate = vap->iv_newstate;
776         vap->iv_newstate = wpi_newstate;
777
778         ieee80211_ratectl_init(vap);
779         /* complete setup */
780         ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
781         ic->ic_opmode = opmode;
782         return vap;
783 }
784
785 static void
786 wpi_vap_delete(struct ieee80211vap *vap)
787 {
788         struct wpi_vap *wvp = WPI_VAP(vap);
789
790         ieee80211_ratectl_deinit(vap);
791         ieee80211_vap_detach(vap);
792         free(wvp, M_80211_VAP);
793 }
794
795 static void
796 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
797 {
798         if (error != 0)
799                 return;
800
801         KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
802
803         *(bus_addr_t *)arg = segs[0].ds_addr;
804 }
805
806 /*
807  * Allocates a contiguous block of dma memory of the requested size and
808  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
809  * allocations greater than 4096 may fail. Hence if the requested alignment is
810  * greater we allocate 'alignment' size extra memory and shift the vaddr and
811  * paddr after the dma load. This bypasses the problem at the cost of a little
812  * more memory.
813  */
814 static int
815 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
816     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
817 {
818         int error;
819         bus_size_t align;
820         bus_size_t reqsize;
821
822         DPRINTFN(WPI_DEBUG_DMA,
823             ("Size: %zd - alignment %zd\n", size, alignment));
824
825         dma->size = size;
826         dma->tag = NULL;
827
828         if (alignment > 4096) {
829                 align = PAGE_SIZE;
830                 reqsize = size + alignment;
831         } else {
832                 align = alignment;
833                 reqsize = size;
834         }
835         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
836             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
837             NULL, NULL, reqsize,
838             1, reqsize, flags,
839             NULL, NULL, &dma->tag);
840         if (error != 0) {
841                 device_printf(sc->sc_dev,
842                     "could not create shared page DMA tag\n");
843                 goto fail;
844         }
845         error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
846             flags | BUS_DMA_ZERO, &dma->map);
847         if (error != 0) {
848                 device_printf(sc->sc_dev,
849                     "could not allocate shared page DMA memory\n");
850                 goto fail;
851         }
852
853         error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
854             reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
855
856         /* Save the original pointers so we can free all the memory */
857         dma->paddr = dma->paddr_start;
858         dma->vaddr = dma->vaddr_start;
859
860         /*
861          * Check the alignment and increment by 4096 until we get the
862          * requested alignment. Fail if can't obtain the alignment
863          * we requested.
864          */
865         if ((dma->paddr & (alignment -1 )) != 0) {
866                 int i;
867
868                 for (i = 0; i < alignment / 4096; i++) {
869                         if ((dma->paddr & (alignment - 1 )) == 0)
870                                 break;
871                         dma->paddr += 4096;
872                         dma->vaddr += 4096;
873                 }
874                 if (i == alignment / 4096) {
875                         device_printf(sc->sc_dev,
876                             "alignment requirement was not satisfied\n");
877                         goto fail;
878                 }
879         }
880
881         if (error != 0) {
882                 device_printf(sc->sc_dev,
883                     "could not load shared page DMA map\n");
884                 goto fail;
885         }
886
887         if (kvap != NULL)
888                 *kvap = dma->vaddr;
889
890         return 0;
891
892 fail:
893         wpi_dma_contig_free(dma);
894         return error;
895 }
896
897 static void
898 wpi_dma_contig_free(struct wpi_dma_info *dma)
899 {
900         if (dma->tag) {
901                 if (dma->map != NULL) {
902                         if (dma->paddr_start != 0) {
903                                 bus_dmamap_sync(dma->tag, dma->map,
904                                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
905                                 bus_dmamap_unload(dma->tag, dma->map);
906                         }
907                         bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
908                 }
909                 bus_dma_tag_destroy(dma->tag);
910         }
911 }
912
913 /*
914  * Allocate a shared page between host and NIC.
915  */
916 static int
917 wpi_alloc_shared(struct wpi_softc *sc)
918 {
919         int error;
920
921         error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
922             (void **)&sc->shared, sizeof (struct wpi_shared),
923             PAGE_SIZE,
924             BUS_DMA_NOWAIT);
925
926         if (error != 0) {
927                 device_printf(sc->sc_dev,
928                     "could not allocate shared area DMA memory\n");
929         }
930
931         return error;
932 }
933
934 static void
935 wpi_free_shared(struct wpi_softc *sc)
936 {
937         wpi_dma_contig_free(&sc->shared_dma);
938 }
939
940 static int
941 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
942 {
943
944         int i, error;
945
946         ring->cur = 0;
947
948         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
949             (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
950             WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
951
952         if (error != 0) {
953                 device_printf(sc->sc_dev,
954                     "%s: could not allocate rx ring DMA memory, error %d\n",
955                     __func__, error);
956                 goto fail;
957         }
958
959         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 
960             BUS_SPACE_MAXADDR_32BIT,
961             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
962             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
963         if (error != 0) {
964                 device_printf(sc->sc_dev,
965                     "%s: bus_dma_tag_create_failed, error %d\n",
966                     __func__, error);
967                 goto fail;
968         }
969
970         /*
971          * Setup Rx buffers.
972          */
973         for (i = 0; i < WPI_RX_RING_COUNT; i++) {
974                 struct wpi_rx_data *data = &ring->data[i];
975                 struct mbuf *m;
976                 bus_addr_t paddr;
977
978                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
979                 if (error != 0) {
980                         device_printf(sc->sc_dev,
981                             "%s: bus_dmamap_create failed, error %d\n",
982                             __func__, error);
983                         goto fail;
984                 }
985                 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
986                 if (m == NULL) {
987                         device_printf(sc->sc_dev,
988                            "%s: could not allocate rx mbuf\n", __func__);
989                         error = ENOMEM;
990                         goto fail;
991                 }
992                 /* map page */
993                 error = bus_dmamap_load(ring->data_dmat, data->map,
994                     mtod(m, caddr_t), MJUMPAGESIZE,
995                     wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
996                 if (error != 0 && error != EFBIG) {
997                         device_printf(sc->sc_dev,
998                             "%s: bus_dmamap_load failed, error %d\n",
999                             __func__, error);
1000                         m_freem(m);
1001                         error = ENOMEM; /* XXX unique code */
1002                         goto fail;
1003                 }
1004                 bus_dmamap_sync(ring->data_dmat, data->map, 
1005                     BUS_DMASYNC_PREWRITE);
1006
1007                 data->m = m;
1008                 ring->desc[i] = htole32(paddr);
1009         }
1010         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1011             BUS_DMASYNC_PREWRITE);
1012         return 0;
1013 fail:
1014         wpi_free_rx_ring(sc, ring);
1015         return error;
1016 }
1017
1018 static void
1019 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1020 {
1021         int ntries;
1022
1023         wpi_mem_lock(sc);
1024
1025         WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1026
1027         for (ntries = 0; ntries < 100; ntries++) {
1028                 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1029                         break;
1030                 DELAY(10);
1031         }
1032
1033         wpi_mem_unlock(sc);
1034
1035 #ifdef WPI_DEBUG
1036         if (ntries == 100 && wpi_debug > 0)
1037                 device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1038 #endif
1039
1040         ring->cur = 0;
1041 }
1042
1043 static void
1044 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1045 {
1046         int i;
1047
1048         wpi_dma_contig_free(&ring->desc_dma);
1049
1050         for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1051                 struct wpi_rx_data *data = &ring->data[i];
1052
1053                 if (data->m != NULL) {
1054                         bus_dmamap_sync(ring->data_dmat, data->map,
1055                             BUS_DMASYNC_POSTREAD);
1056                         bus_dmamap_unload(ring->data_dmat, data->map);
1057                         m_freem(data->m);
1058                 }
1059                 if (data->map != NULL)
1060                         bus_dmamap_destroy(ring->data_dmat, data->map);
1061         }
1062 }
1063
1064 static int
1065 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1066         int qid)
1067 {
1068         struct wpi_tx_data *data;
1069         int i, error;
1070
1071         ring->qid = qid;
1072         ring->count = count;
1073         ring->queued = 0;
1074         ring->cur = 0;
1075         ring->data = NULL;
1076
1077         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1078                 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1079                 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1080
1081         if (error != 0) {
1082             device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1083             goto fail;
1084         }
1085
1086         /* update shared page with ring's base address */
1087         sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1088
1089         error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1090                 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1091                 BUS_DMA_NOWAIT);
1092
1093         if (error != 0) {
1094                 device_printf(sc->sc_dev,
1095                     "could not allocate tx command DMA memory\n");
1096                 goto fail;
1097         }
1098
1099         ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1100             M_NOWAIT | M_ZERO);
1101         if (ring->data == NULL) {
1102                 device_printf(sc->sc_dev,
1103                     "could not allocate tx data slots\n");
1104                 goto fail;
1105         }
1106
1107         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1108             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1109             WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1110             &ring->data_dmat);
1111         if (error != 0) {
1112                 device_printf(sc->sc_dev, "could not create data DMA tag\n");
1113                 goto fail;
1114         }
1115
1116         for (i = 0; i < count; i++) {
1117                 data = &ring->data[i];
1118
1119                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1120                 if (error != 0) {
1121                         device_printf(sc->sc_dev,
1122                             "could not create tx buf DMA map\n");
1123                         goto fail;
1124                 }
1125                 bus_dmamap_sync(ring->data_dmat, data->map,
1126                     BUS_DMASYNC_PREWRITE);
1127         }
1128
1129         return 0;
1130
1131 fail:
1132         wpi_free_tx_ring(sc, ring);
1133         return error;
1134 }
1135
1136 static void
1137 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1138 {
1139         struct wpi_tx_data *data;
1140         int i, ntries;
1141
1142         wpi_mem_lock(sc);
1143
1144         WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1145         for (ntries = 0; ntries < 100; ntries++) {
1146                 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1147                         break;
1148                 DELAY(10);
1149         }
1150 #ifdef WPI_DEBUG
1151         if (ntries == 100 && wpi_debug > 0)
1152                 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1153                     ring->qid);
1154 #endif
1155         wpi_mem_unlock(sc);
1156
1157         for (i = 0; i < ring->count; i++) {
1158                 data = &ring->data[i];
1159
1160                 if (data->m != NULL) {
1161                         bus_dmamap_unload(ring->data_dmat, data->map);
1162                         m_freem(data->m);
1163                         data->m = NULL;
1164                 }
1165         }
1166
1167         ring->queued = 0;
1168         ring->cur = 0;
1169 }
1170
1171 static void
1172 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1173 {
1174         struct wpi_tx_data *data;
1175         int i;
1176
1177         wpi_dma_contig_free(&ring->desc_dma);
1178         wpi_dma_contig_free(&ring->cmd_dma);
1179
1180         if (ring->data != NULL) {
1181                 for (i = 0; i < ring->count; i++) {
1182                         data = &ring->data[i];
1183
1184                         if (data->m != NULL) {
1185                                 bus_dmamap_sync(ring->data_dmat, data->map,
1186                                     BUS_DMASYNC_POSTWRITE);
1187                                 bus_dmamap_unload(ring->data_dmat, data->map);
1188                                 m_freem(data->m);
1189                                 data->m = NULL;
1190                         }
1191                 }
1192                 free(ring->data, M_DEVBUF);
1193         }
1194
1195         if (ring->data_dmat != NULL)
1196                 bus_dma_tag_destroy(ring->data_dmat);
1197 }
1198
1199 static int
1200 wpi_shutdown(device_t dev)
1201 {
1202         struct wpi_softc *sc = device_get_softc(dev);
1203
1204         WPI_LOCK(sc);
1205         wpi_stop_locked(sc);
1206         wpi_unload_firmware(sc);
1207         WPI_UNLOCK(sc);
1208
1209         return 0;
1210 }
1211
1212 static int
1213 wpi_suspend(device_t dev)
1214 {
1215         struct wpi_softc *sc = device_get_softc(dev);
1216         struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1217
1218         ieee80211_suspend_all(ic);
1219         return 0;
1220 }
1221
1222 static int
1223 wpi_resume(device_t dev)
1224 {
1225         struct wpi_softc *sc = device_get_softc(dev);
1226         struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1227
1228         pci_write_config(dev, 0x41, 0, 1);
1229
1230         ieee80211_resume_all(ic);
1231         return 0;
1232 }
1233
1234 /**
1235  * Called by net80211 when ever there is a change to 80211 state machine
1236  */
1237 static int
1238 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1239 {
1240         struct wpi_vap *wvp = WPI_VAP(vap);
1241         struct ieee80211com *ic = vap->iv_ic;
1242         struct ifnet *ifp = ic->ic_ifp;
1243         struct wpi_softc *sc = ifp->if_softc;
1244         int error;
1245
1246         DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1247                 ieee80211_state_name[vap->iv_state],
1248                 ieee80211_state_name[nstate], sc->flags));
1249
1250         IEEE80211_UNLOCK(ic);
1251         WPI_LOCK(sc);
1252         if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) {
1253                 /*
1254                  * On !INIT -> SCAN transitions, we need to clear any possible
1255                  * knowledge about associations.
1256                  */
1257                 error = wpi_config(sc);
1258                 if (error != 0) {
1259                         device_printf(sc->sc_dev,
1260                             "%s: device config failed, error %d\n",
1261                             __func__, error);
1262                 }
1263         }
1264         if (nstate == IEEE80211_S_AUTH ||
1265             (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) {
1266                 /*
1267                  * The node must be registered in the firmware before auth.
1268                  * Also the associd must be cleared on RUN -> ASSOC
1269                  * transitions.
1270                  */
1271                 error = wpi_auth(sc, vap);
1272                 if (error != 0) {
1273                         device_printf(sc->sc_dev,
1274                             "%s: could not move to auth state, error %d\n",
1275                             __func__, error);
1276                 }
1277         }
1278         if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1279                 error = wpi_run(sc, vap);
1280                 if (error != 0) {
1281                         device_printf(sc->sc_dev,
1282                             "%s: could not move to run state, error %d\n",
1283                             __func__, error);
1284                 }
1285         }
1286         if (nstate == IEEE80211_S_RUN) {
1287                 /* RUN -> RUN transition; just restart the timers */
1288                 wpi_calib_timeout(sc);
1289                 /* XXX split out rate control timer */
1290         }
1291         WPI_UNLOCK(sc);
1292         IEEE80211_LOCK(ic);
1293         return wvp->newstate(vap, nstate, arg);
1294 }
1295
1296 /*
1297  * Grab exclusive access to NIC memory.
1298  */
1299 static void
1300 wpi_mem_lock(struct wpi_softc *sc)
1301 {
1302         int ntries;
1303         uint32_t tmp;
1304
1305         tmp = WPI_READ(sc, WPI_GPIO_CTL);
1306         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1307
1308         /* spin until we actually get the lock */
1309         for (ntries = 0; ntries < 100; ntries++) {
1310                 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1311                         (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1312                         break;
1313                 DELAY(10);
1314         }
1315         if (ntries == 100)
1316                 device_printf(sc->sc_dev, "could not lock memory\n");
1317 }
1318
1319 /*
1320  * Release lock on NIC memory.
1321  */
1322 static void
1323 wpi_mem_unlock(struct wpi_softc *sc)
1324 {
1325         uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1326         WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1327 }
1328
1329 static uint32_t
1330 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1331 {
1332         WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1333         return WPI_READ(sc, WPI_READ_MEM_DATA);
1334 }
1335
1336 static void
1337 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1338 {
1339         WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1340         WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1341 }
1342
1343 static void
1344 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1345     const uint32_t *data, int wlen)
1346 {
1347         for (; wlen > 0; wlen--, data++, addr+=4)
1348                 wpi_mem_write(sc, addr, *data);
1349 }
1350
1351 /*
1352  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1353  * using the traditional bit-bang method. Data is read up until len bytes have
1354  * been obtained.
1355  */
1356 static uint16_t
1357 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1358 {
1359         int ntries;
1360         uint32_t val;
1361         uint8_t *out = data;
1362
1363         wpi_mem_lock(sc);
1364
1365         for (; len > 0; len -= 2, addr++) {
1366                 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1367
1368                 for (ntries = 0; ntries < 10; ntries++) {
1369                         if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1370                                 break;
1371                         DELAY(5);
1372                 }
1373
1374                 if (ntries == 10) {
1375                         device_printf(sc->sc_dev, "could not read EEPROM\n");
1376                         return ETIMEDOUT;
1377                 }
1378
1379                 *out++= val >> 16;
1380                 if (len > 1)
1381                         *out ++= val >> 24;
1382         }
1383
1384         wpi_mem_unlock(sc);
1385
1386         return 0;
1387 }
1388
1389 /*
1390  * The firmware text and data segments are transferred to the NIC using DMA.
1391  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1392  * where to find it.  Once the NIC has copied the firmware into its internal
1393  * memory, we can free our local copy in the driver.
1394  */
1395 static int
1396 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1397 {
1398         int error, ntries;
1399
1400         DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1401
1402         size /= sizeof(uint32_t);
1403
1404         wpi_mem_lock(sc);
1405
1406         wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1407             (const uint32_t *)fw, size);
1408
1409         wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1410         wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1411         wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1412
1413         /* run microcode */
1414         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1415
1416         /* wait while the adapter is busy copying the firmware */
1417         for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1418                 uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1419                 DPRINTFN(WPI_DEBUG_HW,
1420                     ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1421                      WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1422                 if (status & WPI_TX_IDLE(6)) {
1423                         DPRINTFN(WPI_DEBUG_HW,
1424                             ("Status Match! - ntries = %d\n", ntries));
1425                         break;
1426                 }
1427                 DELAY(10);
1428         }
1429         if (ntries == 1000) {
1430                 device_printf(sc->sc_dev, "timeout transferring firmware\n");
1431                 error = ETIMEDOUT;
1432         }
1433
1434         /* start the microcode executing */
1435         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1436
1437         wpi_mem_unlock(sc);
1438
1439         return (error);
1440 }
1441
1442 static void
1443 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1444         struct wpi_rx_data *data)
1445 {
1446         struct ifnet *ifp = sc->sc_ifp;
1447         struct ieee80211com *ic = ifp->if_l2com;
1448         struct wpi_rx_ring *ring = &sc->rxq;
1449         struct wpi_rx_stat *stat;
1450         struct wpi_rx_head *head;
1451         struct wpi_rx_tail *tail;
1452         struct ieee80211_node *ni;
1453         struct mbuf *m, *mnew;
1454         bus_addr_t paddr;
1455         int error;
1456
1457         stat = (struct wpi_rx_stat *)(desc + 1);
1458
1459         if (stat->len > WPI_STAT_MAXLEN) {
1460                 device_printf(sc->sc_dev, "invalid rx statistic header\n");
1461                 ifp->if_ierrors++;
1462                 return;
1463         }
1464
1465         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1466         head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1467         tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1468
1469         DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1470             "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1471             le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1472             (uintmax_t)le64toh(tail->tstamp)));
1473
1474         /* discard Rx frames with bad CRC early */
1475         if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1476                 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1477                     le32toh(tail->flags)));
1478                 ifp->if_ierrors++;
1479                 return;
1480         }
1481         if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1482                 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1483                     le16toh(head->len)));
1484                 ifp->if_ierrors++;
1485                 return;
1486         }
1487
1488         /* XXX don't need mbuf, just dma buffer */
1489         mnew = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1490         if (mnew == NULL) {
1491                 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1492                     __func__));
1493                 ifp->if_ierrors++;
1494                 return;
1495         }
1496         bus_dmamap_unload(ring->data_dmat, data->map);
1497
1498         error = bus_dmamap_load(ring->data_dmat, data->map,
1499             mtod(mnew, caddr_t), MJUMPAGESIZE,
1500             wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1501         if (error != 0 && error != EFBIG) {
1502                 device_printf(sc->sc_dev,
1503                     "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1504                 m_freem(mnew);
1505                 ifp->if_ierrors++;
1506                 return;
1507         }
1508         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1509
1510         /* finalize mbuf and swap in new one */
1511         m = data->m;
1512         m->m_pkthdr.rcvif = ifp;
1513         m->m_data = (caddr_t)(head + 1);
1514         m->m_pkthdr.len = m->m_len = le16toh(head->len);
1515
1516         data->m = mnew;
1517         /* update Rx descriptor */
1518         ring->desc[ring->cur] = htole32(paddr);
1519
1520         if (ieee80211_radiotap_active(ic)) {
1521                 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1522
1523                 tap->wr_flags = 0;
1524                 tap->wr_chan_freq =
1525                         htole16(ic->ic_channels[head->chan].ic_freq);
1526                 tap->wr_chan_flags =
1527                         htole16(ic->ic_channels[head->chan].ic_flags);
1528                 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1529                 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1530                 tap->wr_tsft = tail->tstamp;
1531                 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1532                 switch (head->rate) {
1533                 /* CCK rates */
1534                 case  10: tap->wr_rate =   2; break;
1535                 case  20: tap->wr_rate =   4; break;
1536                 case  55: tap->wr_rate =  11; break;
1537                 case 110: tap->wr_rate =  22; break;
1538                 /* OFDM rates */
1539                 case 0xd: tap->wr_rate =  12; break;
1540                 case 0xf: tap->wr_rate =  18; break;
1541                 case 0x5: tap->wr_rate =  24; break;
1542                 case 0x7: tap->wr_rate =  36; break;
1543                 case 0x9: tap->wr_rate =  48; break;
1544                 case 0xb: tap->wr_rate =  72; break;
1545                 case 0x1: tap->wr_rate =  96; break;
1546                 case 0x3: tap->wr_rate = 108; break;
1547                 /* unknown rate: should not happen */
1548                 default:  tap->wr_rate =   0;
1549                 }
1550                 if (le16toh(head->flags) & 0x4)
1551                         tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1552         }
1553
1554         WPI_UNLOCK(sc);
1555
1556         ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1557         if (ni != NULL) {
1558                 (void) ieee80211_input(ni, m, stat->rssi, 0);
1559                 ieee80211_free_node(ni);
1560         } else
1561                 (void) ieee80211_input_all(ic, m, stat->rssi, 0);
1562
1563         WPI_LOCK(sc);
1564 }
1565
1566 static void
1567 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1568 {
1569         struct ifnet *ifp = sc->sc_ifp;
1570         struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1571         struct wpi_tx_data *txdata = &ring->data[desc->idx];
1572         struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1573         struct ieee80211_node *ni = txdata->ni;
1574         struct ieee80211vap *vap = ni->ni_vap;
1575         int retrycnt = 0;
1576
1577         DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1578             "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1579             stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1580             le32toh(stat->status)));
1581
1582         /*
1583          * Update rate control statistics for the node.
1584          * XXX we should not count mgmt frames since they're always sent at
1585          * the lowest available bit-rate.
1586          * XXX frames w/o ACK shouldn't be used either
1587          */
1588         if (stat->ntries > 0) {
1589                 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1590                 retrycnt = 1;
1591         }
1592         ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1593             &retrycnt, NULL);
1594
1595         /* XXX oerrors should only count errors !maxtries */
1596         if ((le32toh(stat->status) & 0xff) != 1)
1597                 ifp->if_oerrors++;
1598         else
1599                 ifp->if_opackets++;
1600
1601         bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1602         bus_dmamap_unload(ring->data_dmat, txdata->map);
1603         /* XXX handle M_TXCB? */
1604         m_freem(txdata->m);
1605         txdata->m = NULL;
1606         ieee80211_free_node(txdata->ni);
1607         txdata->ni = NULL;
1608
1609         ring->queued--;
1610
1611         sc->sc_tx_timer = 0;
1612         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1613         wpi_start_locked(ifp);
1614 }
1615
1616 static void
1617 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1618 {
1619         struct wpi_tx_ring *ring = &sc->cmdq;
1620         struct wpi_tx_data *data;
1621
1622         DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1623                                  "type=%s len=%d\n", desc->qid, desc->idx,
1624                                  desc->flags, wpi_cmd_str(desc->type),
1625                                  le32toh(desc->len)));
1626
1627         if ((desc->qid & 7) != 4)
1628                 return; /* not a command ack */
1629
1630         data = &ring->data[desc->idx];
1631
1632         /* if the command was mapped in a mbuf, free it */
1633         if (data->m != NULL) {
1634                 bus_dmamap_unload(ring->data_dmat, data->map);
1635                 m_freem(data->m);
1636                 data->m = NULL;
1637         }
1638
1639         sc->flags &= ~WPI_FLAG_BUSY;
1640         wakeup(&ring->cmd[desc->idx]);
1641 }
1642
1643 static void
1644 wpi_notif_intr(struct wpi_softc *sc)
1645 {
1646         struct ifnet *ifp = sc->sc_ifp;
1647         struct ieee80211com *ic = ifp->if_l2com;
1648         struct wpi_rx_desc *desc;
1649         struct wpi_rx_data *data;
1650         uint32_t hw;
1651
1652         bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1653             BUS_DMASYNC_POSTREAD);
1654
1655         hw = le32toh(sc->shared->next);
1656         while (sc->rxq.cur != hw) {
1657                 data = &sc->rxq.data[sc->rxq.cur];
1658
1659                 bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1660                     BUS_DMASYNC_POSTREAD);
1661                 desc = (void *)data->m->m_ext.ext_buf;
1662
1663                 DPRINTFN(WPI_DEBUG_NOTIFY,
1664                          ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1665                           desc->qid,
1666                           desc->idx,
1667                           desc->flags,
1668                           desc->type,
1669                           le32toh(desc->len)));
1670
1671                 if (!(desc->qid & 0x80))        /* reply to a command */
1672                         wpi_cmd_intr(sc, desc);
1673
1674                 switch (desc->type) {
1675                 case WPI_RX_DONE:
1676                         /* a 802.11 frame was received */
1677                         wpi_rx_intr(sc, desc, data);
1678                         break;
1679
1680                 case WPI_TX_DONE:
1681                         /* a 802.11 frame has been transmitted */
1682                         wpi_tx_intr(sc, desc);
1683                         break;
1684
1685                 case WPI_UC_READY:
1686                 {
1687                         struct wpi_ucode_info *uc =
1688                                 (struct wpi_ucode_info *)(desc + 1);
1689
1690                         /* the microcontroller is ready */
1691                         DPRINTF(("microcode alive notification version %x "
1692                                 "alive %x\n", le32toh(uc->version),
1693                                 le32toh(uc->valid)));
1694
1695                         if (le32toh(uc->valid) != 1) {
1696                                 device_printf(sc->sc_dev,
1697                                     "microcontroller initialization failed\n");
1698                                 wpi_stop_locked(sc);
1699                         }
1700                         break;
1701                 }
1702                 case WPI_STATE_CHANGED:
1703                 {
1704                         uint32_t *status = (uint32_t *)(desc + 1);
1705
1706                         /* enabled/disabled notification */
1707                         DPRINTF(("state changed to %x\n", le32toh(*status)));
1708
1709                         if (le32toh(*status) & 1) {
1710                                 device_printf(sc->sc_dev,
1711                                     "Radio transmitter is switched off\n");
1712                                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1713                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1714                                 /* Disable firmware commands */
1715                                 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1716                         }
1717                         break;
1718                 }
1719                 case WPI_START_SCAN:
1720                 {
1721 #ifdef WPI_DEBUG
1722                         struct wpi_start_scan *scan =
1723                                 (struct wpi_start_scan *)(desc + 1);
1724 #endif
1725
1726                         DPRINTFN(WPI_DEBUG_SCANNING,
1727                                  ("scanning channel %d status %x\n",
1728                             scan->chan, le32toh(scan->status)));
1729                         break;
1730                 }
1731                 case WPI_STOP_SCAN:
1732                 {
1733 #ifdef WPI_DEBUG
1734                         struct wpi_stop_scan *scan =
1735                                 (struct wpi_stop_scan *)(desc + 1);
1736 #endif
1737                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1738
1739                         DPRINTFN(WPI_DEBUG_SCANNING,
1740                             ("scan finished nchan=%d status=%d chan=%d\n",
1741                              scan->nchan, scan->status, scan->chan));
1742
1743                         sc->sc_scan_timer = 0;
1744                         ieee80211_scan_next(vap);
1745                         break;
1746                 }
1747                 case WPI_MISSED_BEACON:
1748                 {
1749                         struct wpi_missed_beacon *beacon =
1750                                 (struct wpi_missed_beacon *)(desc + 1);
1751                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1752
1753                         if (le32toh(beacon->consecutive) >=
1754                             vap->iv_bmissthreshold) {
1755                                 DPRINTF(("Beacon miss: %u >= %u\n",
1756                                          le32toh(beacon->consecutive),
1757                                          vap->iv_bmissthreshold));
1758                                 ieee80211_beacon_miss(ic);
1759                         }
1760                         break;
1761                 }
1762                 }
1763
1764                 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1765         }
1766
1767         /* tell the firmware what we have processed */
1768         hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1769         WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1770 }
1771
1772 static void
1773 wpi_intr(void *arg)
1774 {
1775         struct wpi_softc *sc = arg;
1776         uint32_t r;
1777
1778         WPI_LOCK(sc);
1779
1780         r = WPI_READ(sc, WPI_INTR);
1781         if (r == 0 || r == 0xffffffff) {
1782                 WPI_UNLOCK(sc);
1783                 return;
1784         }
1785
1786         /* disable interrupts */
1787         WPI_WRITE(sc, WPI_MASK, 0);
1788         /* ack interrupts */
1789         WPI_WRITE(sc, WPI_INTR, r);
1790
1791         if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1792                 struct ifnet *ifp = sc->sc_ifp;
1793                 struct ieee80211com *ic = ifp->if_l2com;
1794                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1795
1796                 device_printf(sc->sc_dev, "fatal firmware error\n");
1797                 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1798                                 "(Hardware Error)"));
1799                 if (vap != NULL)
1800                         ieee80211_cancel_scan(vap);
1801                 ieee80211_runtask(ic, &sc->sc_restarttask);
1802                 sc->flags &= ~WPI_FLAG_BUSY;
1803                 WPI_UNLOCK(sc);
1804                 return;
1805         }
1806
1807         if (r & WPI_RX_INTR)
1808                 wpi_notif_intr(sc);
1809
1810         if (r & WPI_ALIVE_INTR) /* firmware initialized */
1811                 wakeup(sc);
1812
1813         /* re-enable interrupts */
1814         if (sc->sc_ifp->if_flags & IFF_UP)
1815                 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1816
1817         WPI_UNLOCK(sc);
1818 }
1819
1820 static uint8_t
1821 wpi_plcp_signal(int rate)
1822 {
1823         switch (rate) {
1824         /* CCK rates (returned values are device-dependent) */
1825         case 2:         return 10;
1826         case 4:         return 20;
1827         case 11:        return 55;
1828         case 22:        return 110;
1829
1830         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1831         /* R1-R4 (ral/ural is R4-R1) */
1832         case 12:        return 0xd;
1833         case 18:        return 0xf;
1834         case 24:        return 0x5;
1835         case 36:        return 0x7;
1836         case 48:        return 0x9;
1837         case 72:        return 0xb;
1838         case 96:        return 0x1;
1839         case 108:       return 0x3;
1840
1841         /* unsupported rates (should not get there) */
1842         default:        return 0;
1843         }
1844 }
1845
1846 /* quickly determine if a given rate is CCK or OFDM */
1847 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1848
1849 /*
1850  * Construct the data packet for a transmit buffer and acutally put
1851  * the buffer onto the transmit ring, kicking the card to process the
1852  * the buffer.
1853  */
1854 static int
1855 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1856         int ac)
1857 {
1858         struct ieee80211vap *vap = ni->ni_vap;
1859         struct ifnet *ifp = sc->sc_ifp;
1860         struct ieee80211com *ic = ifp->if_l2com;
1861         const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1862         struct wpi_tx_ring *ring = &sc->txq[ac];
1863         struct wpi_tx_desc *desc;
1864         struct wpi_tx_data *data;
1865         struct wpi_tx_cmd *cmd;
1866         struct wpi_cmd_data *tx;
1867         struct ieee80211_frame *wh;
1868         const struct ieee80211_txparam *tp;
1869         struct ieee80211_key *k;
1870         struct mbuf *mnew;
1871         int i, error, nsegs, rate, hdrlen, ismcast;
1872         bus_dma_segment_t segs[WPI_MAX_SCATTER];
1873
1874         desc = &ring->desc[ring->cur];
1875         data = &ring->data[ring->cur];
1876
1877         wh = mtod(m0, struct ieee80211_frame *);
1878
1879         hdrlen = ieee80211_hdrsize(wh);
1880         ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1881
1882         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1883                 k = ieee80211_crypto_encap(ni, m0);
1884                 if (k == NULL) {
1885                         m_freem(m0);
1886                         return ENOBUFS;
1887                 }
1888                 /* packet header may have moved, reset our local pointer */
1889                 wh = mtod(m0, struct ieee80211_frame *);
1890         }
1891
1892         cmd = &ring->cmd[ring->cur];
1893         cmd->code = WPI_CMD_TX_DATA;
1894         cmd->flags = 0;
1895         cmd->qid = ring->qid;
1896         cmd->idx = ring->cur;
1897
1898         tx = (struct wpi_cmd_data *)cmd->data;
1899         tx->flags = htole32(WPI_TX_AUTO_SEQ);
1900         tx->timeout = htole16(0);
1901         tx->ofdm_mask = 0xff;
1902         tx->cck_mask = 0x0f;
1903         tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1904         tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1905         tx->len = htole16(m0->m_pkthdr.len);
1906
1907         if (!ismcast) {
1908                 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1909                     !cap->cap_wmeParams[ac].wmep_noackPolicy)
1910                         tx->flags |= htole32(WPI_TX_NEED_ACK);
1911                 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1912                         tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1913                         tx->rts_ntries = 7;
1914                 }
1915         }
1916         /* pick a rate */
1917         tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1918         if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1919                 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1920                 /* tell h/w to set timestamp in probe responses */
1921                 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1922                         tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1923                 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1924                     subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1925                         tx->timeout = htole16(3);
1926                 else
1927                         tx->timeout = htole16(2);
1928                 rate = tp->mgmtrate;
1929         } else if (ismcast) {
1930                 rate = tp->mcastrate;
1931         } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1932                 rate = tp->ucastrate;
1933         } else {
1934                 (void) ieee80211_ratectl_rate(ni, NULL, 0);
1935                 rate = ni->ni_txrate;
1936         }
1937         tx->rate = wpi_plcp_signal(rate);
1938
1939         /* be very persistant at sending frames out */
1940 #if 0
1941         tx->data_ntries = tp->maxretry;
1942 #else
1943         tx->data_ntries = 15;           /* XXX way too high */
1944 #endif
1945
1946         if (ieee80211_radiotap_active_vap(vap)) {
1947                 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1948                 tap->wt_flags = 0;
1949                 tap->wt_rate = rate;
1950                 tap->wt_hwqueue = ac;
1951                 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1952                         tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1953
1954                 ieee80211_radiotap_tx(vap, m0);
1955         }
1956
1957         /* save and trim IEEE802.11 header */
1958         m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1959         m_adj(m0, hdrlen);
1960
1961         error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1962             &nsegs, BUS_DMA_NOWAIT);
1963         if (error != 0 && error != EFBIG) {
1964                 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1965                     error);
1966                 m_freem(m0);
1967                 return error;
1968         }
1969         if (error != 0) {
1970                 /* XXX use m_collapse */
1971                 mnew = m_defrag(m0, M_NOWAIT);
1972                 if (mnew == NULL) {
1973                         device_printf(sc->sc_dev,
1974                             "could not defragment mbuf\n");
1975                         m_freem(m0);
1976                         return ENOBUFS;
1977                 }
1978                 m0 = mnew;
1979
1980                 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1981                     m0, segs, &nsegs, BUS_DMA_NOWAIT);
1982                 if (error != 0) {
1983                         device_printf(sc->sc_dev,
1984                             "could not map mbuf (error %d)\n", error);
1985                         m_freem(m0);
1986                         return error;
1987                 }
1988         }
1989
1990         data->m = m0;
1991         data->ni = ni;
1992
1993         DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1994             ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1995
1996         /* first scatter/gather segment is used by the tx data command */
1997         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1998             (1 + nsegs) << 24);
1999         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2000             ring->cur * sizeof (struct wpi_tx_cmd));
2001         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
2002         for (i = 1; i <= nsegs; i++) {
2003                 desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
2004                 desc->segs[i].len  = htole32(segs[i - 1].ds_len);
2005         }
2006
2007         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2008         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2009             BUS_DMASYNC_PREWRITE);
2010
2011         ring->queued++;
2012
2013         /* kick ring */
2014         ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2015         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2016
2017         return 0;
2018 }
2019
2020 /**
2021  * Process data waiting to be sent on the IFNET output queue
2022  */
2023 static void
2024 wpi_start(struct ifnet *ifp)
2025 {
2026         struct wpi_softc *sc = ifp->if_softc;
2027
2028         WPI_LOCK(sc);
2029         wpi_start_locked(ifp);
2030         WPI_UNLOCK(sc);
2031 }
2032
2033 static void
2034 wpi_start_locked(struct ifnet *ifp)
2035 {
2036         struct wpi_softc *sc = ifp->if_softc;
2037         struct ieee80211_node *ni;
2038         struct mbuf *m;
2039         int ac;
2040
2041         WPI_LOCK_ASSERT(sc);
2042
2043         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2044                 return;
2045
2046         for (;;) {
2047                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2048                 if (m == NULL)
2049                         break;
2050                 ac = M_WME_GETAC(m);
2051                 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2052                         /* there is no place left in this ring */
2053                         IFQ_DRV_PREPEND(&ifp->if_snd, m);
2054                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2055                         break;
2056                 }
2057                 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2058                 if (wpi_tx_data(sc, m, ni, ac) != 0) {
2059                         ieee80211_free_node(ni);
2060                         ifp->if_oerrors++;
2061                         break;
2062                 }
2063                 sc->sc_tx_timer = 5;
2064         }
2065 }
2066
2067 static int
2068 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2069         const struct ieee80211_bpf_params *params)
2070 {
2071         struct ieee80211com *ic = ni->ni_ic;
2072         struct ifnet *ifp = ic->ic_ifp;
2073         struct wpi_softc *sc = ifp->if_softc;
2074
2075         /* prevent management frames from being sent if we're not ready */
2076         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2077                 m_freem(m);
2078                 ieee80211_free_node(ni);
2079                 return ENETDOWN;
2080         }
2081         WPI_LOCK(sc);
2082
2083         /* management frames go into ring 0 */
2084         if (sc->txq[0].queued > sc->txq[0].count - 8) {
2085                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2086                 m_freem(m);
2087                 WPI_UNLOCK(sc);
2088                 ieee80211_free_node(ni);
2089                 return ENOBUFS;         /* XXX */
2090         }
2091
2092         ifp->if_opackets++;
2093         if (wpi_tx_data(sc, m, ni, 0) != 0)
2094                 goto bad;
2095         sc->sc_tx_timer = 5;
2096         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2097
2098         WPI_UNLOCK(sc);
2099         return 0;
2100 bad:
2101         ifp->if_oerrors++;
2102         WPI_UNLOCK(sc);
2103         ieee80211_free_node(ni);
2104         return EIO;             /* XXX */
2105 }
2106
2107 static int
2108 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2109 {
2110         struct wpi_softc *sc = ifp->if_softc;
2111         struct ieee80211com *ic = ifp->if_l2com;
2112         struct ifreq *ifr = (struct ifreq *) data;
2113         int error = 0, startall = 0;
2114
2115         switch (cmd) {
2116         case SIOCSIFFLAGS:
2117                 WPI_LOCK(sc);
2118                 if ((ifp->if_flags & IFF_UP)) {
2119                         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2120                                 wpi_init_locked(sc, 0);
2121                                 startall = 1;
2122                         }
2123                 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2124                            (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2125                         wpi_stop_locked(sc);
2126                 WPI_UNLOCK(sc);
2127                 if (startall)
2128                         ieee80211_start_all(ic);
2129                 break;
2130         case SIOCGIFMEDIA:
2131                 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2132                 break;
2133         case SIOCGIFADDR:
2134                 error = ether_ioctl(ifp, cmd, data);
2135                 break;
2136         default:
2137                 error = EINVAL;
2138                 break;
2139         }
2140         return error;
2141 }
2142
2143 /*
2144  * Extract various information from EEPROM.
2145  */
2146 static void
2147 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2148 {
2149         int i;
2150
2151         /* read the hardware capabilities, revision and SKU type */
2152         wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2153         wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2154         wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2155
2156         /* read the regulatory domain */
2157         wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2158
2159         /* read in the hw MAC address */
2160         wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2161
2162         /* read the list of authorized channels */
2163         for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2164                 wpi_read_eeprom_channels(sc,i);
2165
2166         /* read the power level calibration info for each group */
2167         for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2168                 wpi_read_eeprom_group(sc,i);
2169 }
2170
2171 /*
2172  * Send a command to the firmware.
2173  */
2174 static int
2175 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2176 {
2177         struct wpi_tx_ring *ring = &sc->cmdq;
2178         struct wpi_tx_desc *desc;
2179         struct wpi_tx_cmd *cmd;
2180
2181 #ifdef WPI_DEBUG
2182         if (!async) {
2183                 WPI_LOCK_ASSERT(sc);
2184         }
2185 #endif
2186
2187         DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2188                     async));
2189
2190         if (sc->flags & WPI_FLAG_BUSY) {
2191                 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2192                     __func__, code);
2193                 return EAGAIN;
2194         }
2195         sc->flags|= WPI_FLAG_BUSY;
2196
2197         KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2198             code, size));
2199
2200         desc = &ring->desc[ring->cur];
2201         cmd = &ring->cmd[ring->cur];
2202
2203         cmd->code = code;
2204         cmd->flags = 0;
2205         cmd->qid = ring->qid;
2206         cmd->idx = ring->cur;
2207         memcpy(cmd->data, buf, size);
2208
2209         desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2210         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2211                 ring->cur * sizeof (struct wpi_tx_cmd));
2212         desc->segs[0].len  = htole32(4 + size);
2213
2214         /* kick cmd ring */
2215         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2216         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2217
2218         if (async) {
2219                 sc->flags &= ~ WPI_FLAG_BUSY;
2220                 return 0;
2221         }
2222
2223         return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2224 }
2225
2226 static int
2227 wpi_wme_update(struct ieee80211com *ic)
2228 {
2229 #define WPI_EXP2(v)     htole16((1 << (v)) - 1)
2230 #define WPI_USEC(v)     htole16(IEEE80211_TXOP_TO_US(v))
2231         struct wpi_softc *sc = ic->ic_ifp->if_softc;
2232         const struct wmeParams *wmep;
2233         struct wpi_wme_setup wme;
2234         int ac;
2235
2236         /* don't override default WME values if WME is not actually enabled */
2237         if (!(ic->ic_flags & IEEE80211_F_WME))
2238                 return 0;
2239
2240         wme.flags = 0;
2241         for (ac = 0; ac < WME_NUM_AC; ac++) {
2242                 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2243                 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2244                 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2245                 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2246                 wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2247
2248                 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2249                     "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2250                     wme.ac[ac].cwmax, wme.ac[ac].txop));
2251         }
2252         return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2253 #undef WPI_USEC
2254 #undef WPI_EXP2
2255 }
2256
2257 /*
2258  * Configure h/w multi-rate retries.
2259  */
2260 static int
2261 wpi_mrr_setup(struct wpi_softc *sc)
2262 {
2263         struct ifnet *ifp = sc->sc_ifp;
2264         struct ieee80211com *ic = ifp->if_l2com;
2265         struct wpi_mrr_setup mrr;
2266         int i, error;
2267
2268         memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2269
2270         /* CCK rates (not used with 802.11a) */
2271         for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2272                 mrr.rates[i].flags = 0;
2273                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2274                 /* fallback to the immediate lower CCK rate (if any) */
2275                 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2276                 /* try one time at this rate before falling back to "next" */
2277                 mrr.rates[i].ntries = 1;
2278         }
2279
2280         /* OFDM rates (not used with 802.11b) */
2281         for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2282                 mrr.rates[i].flags = 0;
2283                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2284                 /* fallback to the immediate lower OFDM rate (if any) */
2285                 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2286                 mrr.rates[i].next = (i == WPI_OFDM6) ?
2287                     ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2288                         WPI_OFDM6 : WPI_CCK2) :
2289                     i - 1;
2290                 /* try one time at this rate before falling back to "next" */
2291                 mrr.rates[i].ntries = 1;
2292         }
2293
2294         /* setup MRR for control frames */
2295         mrr.which = WPI_MRR_CTL;
2296         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2297         if (error != 0) {
2298                 device_printf(sc->sc_dev,
2299                     "could not setup MRR for control frames\n");
2300                 return error;
2301         }
2302
2303         /* setup MRR for data frames */
2304         mrr.which = WPI_MRR_DATA;
2305         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2306         if (error != 0) {
2307                 device_printf(sc->sc_dev,
2308                     "could not setup MRR for data frames\n");
2309                 return error;
2310         }
2311
2312         return 0;
2313 }
2314
2315 static void
2316 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2317 {
2318         struct wpi_cmd_led led;
2319
2320         led.which = which;
2321         led.unit = htole32(100000);     /* on/off in unit of 100ms */
2322         led.off = off;
2323         led.on = on;
2324
2325         (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2326 }
2327
2328 static void
2329 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2330 {
2331         struct wpi_cmd_tsf tsf;
2332         uint64_t val, mod;
2333
2334         memset(&tsf, 0, sizeof tsf);
2335         memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2336         tsf.bintval = htole16(ni->ni_intval);
2337         tsf.lintval = htole16(10);
2338
2339         /* compute remaining time until next beacon */
2340         val = (uint64_t)ni->ni_intval  * 1024;  /* msec -> usec */
2341         mod = le64toh(tsf.tstamp) % val;
2342         tsf.binitval = htole32((uint32_t)(val - mod));
2343
2344         if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2345                 device_printf(sc->sc_dev, "could not enable TSF\n");
2346 }
2347
2348 #if 0
2349 /*
2350  * Build a beacon frame that the firmware will broadcast periodically in
2351  * IBSS or HostAP modes.
2352  */
2353 static int
2354 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2355 {
2356         struct ifnet *ifp = sc->sc_ifp;
2357         struct ieee80211com *ic = ifp->if_l2com;
2358         struct wpi_tx_ring *ring = &sc->cmdq;
2359         struct wpi_tx_desc *desc;
2360         struct wpi_tx_data *data;
2361         struct wpi_tx_cmd *cmd;
2362         struct wpi_cmd_beacon *bcn;
2363         struct ieee80211_beacon_offsets bo;
2364         struct mbuf *m0;
2365         bus_addr_t physaddr;
2366         int error;
2367
2368         desc = &ring->desc[ring->cur];
2369         data = &ring->data[ring->cur];
2370
2371         m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2372         if (m0 == NULL) {
2373                 device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2374                 return ENOMEM;
2375         }
2376
2377         cmd = &ring->cmd[ring->cur];
2378         cmd->code = WPI_CMD_SET_BEACON;
2379         cmd->flags = 0;
2380         cmd->qid = ring->qid;
2381         cmd->idx = ring->cur;
2382
2383         bcn = (struct wpi_cmd_beacon *)cmd->data;
2384         memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2385         bcn->id = WPI_ID_BROADCAST;
2386         bcn->ofdm_mask = 0xff;
2387         bcn->cck_mask = 0x0f;
2388         bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2389         bcn->len = htole16(m0->m_pkthdr.len);
2390         bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2391                 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2392         bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2393
2394         /* save and trim IEEE802.11 header */
2395         m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2396         m_adj(m0, sizeof (struct ieee80211_frame));
2397
2398         /* assume beacon frame is contiguous */
2399         error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2400             m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2401         if (error != 0) {
2402                 device_printf(sc->sc_dev, "could not map beacon\n");
2403                 m_freem(m0);
2404                 return error;
2405         }
2406
2407         data->m = m0;
2408
2409         /* first scatter/gather segment is used by the beacon command */
2410         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2411         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2412                 ring->cur * sizeof (struct wpi_tx_cmd));
2413         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2414         desc->segs[1].addr = htole32(physaddr);
2415         desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2416
2417         /* kick cmd ring */
2418         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2419         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2420
2421         return 0;
2422 }
2423 #endif
2424
2425 static int
2426 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2427 {
2428         struct ieee80211com *ic = vap->iv_ic;
2429         struct ieee80211_node *ni = vap->iv_bss;
2430         struct wpi_node_info node;
2431         int error;
2432
2433
2434         /* update adapter's configuration */
2435         sc->config.associd = 0;
2436         sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2437         IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2438         sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2439         if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2440                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2441                     WPI_CONFIG_24GHZ);
2442         } else {
2443                 sc->config.flags &= ~htole32(WPI_CONFIG_AUTO |
2444                     WPI_CONFIG_24GHZ);
2445         }
2446         if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2447                 sc->config.cck_mask  = 0;
2448                 sc->config.ofdm_mask = 0x15;
2449         } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2450                 sc->config.cck_mask  = 0x03;
2451                 sc->config.ofdm_mask = 0;
2452         } else {
2453                 /* XXX assume 802.11b/g */
2454                 sc->config.cck_mask  = 0x0f;
2455                 sc->config.ofdm_mask = 0x15;
2456         }
2457
2458         DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2459                 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2460         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2461                 sizeof (struct wpi_config), 1);
2462         if (error != 0) {
2463                 device_printf(sc->sc_dev, "could not configure\n");
2464                 return error;
2465         }
2466
2467         /* configuration has changed, set Tx power accordingly */
2468         if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2469                 device_printf(sc->sc_dev, "could not set Tx power\n");
2470                 return error;
2471         }
2472
2473         /* add default node */
2474         memset(&node, 0, sizeof node);
2475         IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2476         node.id = WPI_ID_BSS;
2477         node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2478             wpi_plcp_signal(12) : wpi_plcp_signal(2);
2479         node.action = htole32(WPI_ACTION_SET_RATE);
2480         node.antenna = WPI_ANTENNA_BOTH;
2481         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2482         if (error != 0)
2483                 device_printf(sc->sc_dev, "could not add BSS node\n");
2484
2485         return (error);
2486 }
2487
2488 static int
2489 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2490 {
2491         struct ieee80211com *ic = vap->iv_ic;
2492         struct ieee80211_node *ni = vap->iv_bss;
2493         int error;
2494
2495         if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2496                 /* link LED blinks while monitoring */
2497                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2498                 return 0;
2499         }
2500
2501         wpi_enable_tsf(sc, ni);
2502
2503         /* update adapter's configuration */
2504         sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2505         /* short preamble/slot time are negotiated when associating */
2506         sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2507             WPI_CONFIG_SHSLOT);
2508         if (ic->ic_flags & IEEE80211_F_SHSLOT)
2509                 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2510         if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2511                 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2512         sc->config.filter |= htole32(WPI_FILTER_BSS);
2513
2514         /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2515
2516         DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2517                     sc->config.flags));
2518         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2519                     wpi_config), 1);
2520         if (error != 0) {
2521                 device_printf(sc->sc_dev, "could not update configuration\n");
2522                 return error;
2523         }
2524
2525         error = wpi_set_txpower(sc, ni->ni_chan, 1);
2526         if (error != 0) {
2527                 device_printf(sc->sc_dev, "could set txpower\n");
2528                 return error;
2529         }
2530
2531         /* link LED always on while associated */
2532         wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2533
2534         /* start automatic rate control timer */
2535         callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2536
2537         return (error);
2538 }
2539
2540 /*
2541  * Send a scan request to the firmware.  Since this command is huge, we map it
2542  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2543  * much of this code is similar to that in wpi_cmd but because we must manually
2544  * construct the probe & channels, we duplicate what's needed here. XXX In the
2545  * future, this function should be modified to use wpi_cmd to help cleanup the
2546  * code base.
2547  */
2548 static int
2549 wpi_scan(struct wpi_softc *sc)
2550 {
2551         struct ifnet *ifp = sc->sc_ifp;
2552         struct ieee80211com *ic = ifp->if_l2com;
2553         struct ieee80211_scan_state *ss = ic->ic_scan;
2554         struct wpi_tx_ring *ring = &sc->cmdq;
2555         struct wpi_tx_desc *desc;
2556         struct wpi_tx_data *data;
2557         struct wpi_tx_cmd *cmd;
2558         struct wpi_scan_hdr *hdr;
2559         struct wpi_scan_chan *chan;
2560         struct ieee80211_frame *wh;
2561         struct ieee80211_rateset *rs;
2562         struct ieee80211_channel *c;
2563         enum ieee80211_phymode mode;
2564         uint8_t *frm;
2565         int nrates, pktlen, error, i, nssid;
2566         bus_addr_t physaddr;
2567
2568         desc = &ring->desc[ring->cur];
2569         data = &ring->data[ring->cur];
2570
2571         data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2572         if (data->m == NULL) {
2573                 device_printf(sc->sc_dev,
2574                     "could not allocate mbuf for scan command\n");
2575                 return ENOMEM;
2576         }
2577
2578         cmd = mtod(data->m, struct wpi_tx_cmd *);
2579         cmd->code = WPI_CMD_SCAN;
2580         cmd->flags = 0;
2581         cmd->qid = ring->qid;
2582         cmd->idx = ring->cur;
2583
2584         hdr = (struct wpi_scan_hdr *)cmd->data;
2585         memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2586
2587         /*
2588          * Move to the next channel if no packets are received within 5 msecs
2589          * after sending the probe request (this helps to reduce the duration
2590          * of active scans).
2591          */
2592         hdr->quiet = htole16(5);
2593         hdr->threshold = htole16(1);
2594
2595         if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2596                 /* send probe requests at 6Mbps */
2597                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2598
2599                 /* Enable crc checking */
2600                 hdr->promotion = htole16(1);
2601         } else {
2602                 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2603                 /* send probe requests at 1Mbps */
2604                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2605         }
2606         hdr->tx.id = WPI_ID_BROADCAST;
2607         hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2608         hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2609
2610         memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2611         nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2612         for (i = 0; i < nssid; i++) {
2613                 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2614                 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2615                 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2616                     hdr->scan_essids[i].esslen);
2617 #ifdef WPI_DEBUG
2618                 if (wpi_debug & WPI_DEBUG_SCANNING) {
2619                         printf("Scanning Essid: ");
2620                         ieee80211_print_essid(hdr->scan_essids[i].essid,
2621                             hdr->scan_essids[i].esslen);
2622                         printf("\n");
2623                 }
2624 #endif
2625         }
2626
2627         /*
2628          * Build a probe request frame.  Most of the following code is a
2629          * copy & paste of what is done in net80211.
2630          */
2631         wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2632         wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2633                 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2634         wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2635         IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2636         IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2637         IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2638         *(u_int16_t *)&wh->i_dur[0] = 0;        /* filled by h/w */
2639         *(u_int16_t *)&wh->i_seq[0] = 0;        /* filled by h/w */
2640
2641         frm = (uint8_t *)(wh + 1);
2642
2643         /* add essid IE, the hardware will fill this in for us */
2644         *frm++ = IEEE80211_ELEMID_SSID;
2645         *frm++ = 0;
2646
2647         mode = ieee80211_chan2mode(ic->ic_curchan);
2648         rs = &ic->ic_sup_rates[mode];
2649
2650         /* add supported rates IE */
2651         *frm++ = IEEE80211_ELEMID_RATES;
2652         nrates = rs->rs_nrates;
2653         if (nrates > IEEE80211_RATE_SIZE)
2654                 nrates = IEEE80211_RATE_SIZE;
2655         *frm++ = nrates;
2656         memcpy(frm, rs->rs_rates, nrates);
2657         frm += nrates;
2658
2659         /* add supported xrates IE */
2660         if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2661                 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2662                 *frm++ = IEEE80211_ELEMID_XRATES;
2663                 *frm++ = nrates;
2664                 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2665                 frm += nrates;
2666         }
2667
2668         /* setup length of probe request */
2669         hdr->tx.len = htole16(frm - (uint8_t *)wh);
2670
2671         /*
2672          * Construct information about the channel that we
2673          * want to scan. The firmware expects this to be directly
2674          * after the scan probe request
2675          */
2676         c = ic->ic_curchan;
2677         chan = (struct wpi_scan_chan *)frm;
2678         chan->chan = ieee80211_chan2ieee(ic, c);
2679         chan->flags = 0;
2680         if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2681                 chan->flags |= WPI_CHAN_ACTIVE;
2682                 if (nssid != 0)
2683                         chan->flags |= WPI_CHAN_DIRECT;
2684         }
2685         chan->gain_dsp = 0x6e; /* Default level */
2686         if (IEEE80211_IS_CHAN_5GHZ(c)) {
2687                 chan->active = htole16(10);
2688                 chan->passive = htole16(ss->ss_maxdwell);
2689                 chan->gain_radio = 0x3b;
2690         } else {
2691                 chan->active = htole16(20);
2692                 chan->passive = htole16(ss->ss_maxdwell);
2693                 chan->gain_radio = 0x28;
2694         }
2695
2696         DPRINTFN(WPI_DEBUG_SCANNING,
2697             ("Scanning %u Passive: %d\n",
2698              chan->chan,
2699              c->ic_flags & IEEE80211_CHAN_PASSIVE));
2700
2701         hdr->nchan++;
2702         chan++;
2703
2704         frm += sizeof (struct wpi_scan_chan);
2705 #if 0
2706         // XXX All Channels....
2707         for (c  = &ic->ic_channels[1];
2708              c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2709                 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2710                         continue;
2711
2712                 chan->chan = ieee80211_chan2ieee(ic, c);
2713                 chan->flags = 0;
2714                 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2715                     chan->flags |= WPI_CHAN_ACTIVE;
2716                     if (ic->ic_des_ssid[0].len != 0)
2717                         chan->flags |= WPI_CHAN_DIRECT;
2718                 }
2719                 chan->gain_dsp = 0x6e; /* Default level */
2720                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2721                         chan->active = htole16(10);
2722                         chan->passive = htole16(110);
2723                         chan->gain_radio = 0x3b;
2724                 } else {
2725                         chan->active = htole16(20);
2726                         chan->passive = htole16(120);
2727                         chan->gain_radio = 0x28;
2728                 }
2729
2730                 DPRINTFN(WPI_DEBUG_SCANNING,
2731                          ("Scanning %u Passive: %d\n",
2732                           chan->chan,
2733                           c->ic_flags & IEEE80211_CHAN_PASSIVE));
2734
2735                 hdr->nchan++;
2736                 chan++;
2737
2738                 frm += sizeof (struct wpi_scan_chan);
2739         }
2740 #endif
2741
2742         hdr->len = htole16(frm - (uint8_t *)hdr);
2743         pktlen = frm - (uint8_t *)cmd;
2744
2745         error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2746             wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2747         if (error != 0) {
2748                 device_printf(sc->sc_dev, "could not map scan command\n");
2749                 m_freem(data->m);
2750                 data->m = NULL;
2751                 return error;
2752         }
2753
2754         desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2755         desc->segs[0].addr = htole32(physaddr);
2756         desc->segs[0].len  = htole32(pktlen);
2757
2758         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2759             BUS_DMASYNC_PREWRITE);
2760         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2761
2762         /* kick cmd ring */
2763         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2764         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2765
2766         sc->sc_scan_timer = 5;
2767         return 0;       /* will be notified async. of failure/success */
2768 }
2769
2770 /**
2771  * Configure the card to listen to a particular channel, this transisions the
2772  * card in to being able to receive frames from remote devices.
2773  */
2774 static int
2775 wpi_config(struct wpi_softc *sc)
2776 {
2777         struct ifnet *ifp = sc->sc_ifp;
2778         struct ieee80211com *ic = ifp->if_l2com;
2779         struct wpi_power power;
2780         struct wpi_bluetooth bluetooth;
2781         struct wpi_node_info node;
2782         int error;
2783
2784         /* set power mode */
2785         memset(&power, 0, sizeof power);
2786         power.flags = htole32(WPI_POWER_CAM|0x8);
2787         error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2788         if (error != 0) {
2789                 device_printf(sc->sc_dev, "could not set power mode\n");
2790                 return error;
2791         }
2792
2793         /* configure bluetooth coexistence */
2794         memset(&bluetooth, 0, sizeof bluetooth);
2795         bluetooth.flags = 3;
2796         bluetooth.lead = 0xaa;
2797         bluetooth.kill = 1;
2798         error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2799             0);
2800         if (error != 0) {
2801                 device_printf(sc->sc_dev,
2802                     "could not configure bluetooth coexistence\n");
2803                 return error;
2804         }
2805
2806         /* configure adapter */
2807         memset(&sc->config, 0, sizeof (struct wpi_config));
2808         IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2809         /*set default channel*/
2810         sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2811         sc->config.flags = htole32(WPI_CONFIG_TSF);
2812         if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2813                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2814                     WPI_CONFIG_24GHZ);
2815         }
2816         sc->config.filter = 0;
2817         switch (ic->ic_opmode) {
2818         case IEEE80211_M_STA:
2819         case IEEE80211_M_WDS:   /* No know setup, use STA for now */
2820                 sc->config.mode = WPI_MODE_STA;
2821                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2822                 break;
2823         case IEEE80211_M_IBSS:
2824         case IEEE80211_M_AHDEMO:
2825                 sc->config.mode = WPI_MODE_IBSS;
2826                 sc->config.filter |= htole32(WPI_FILTER_BEACON |
2827                                              WPI_FILTER_MULTICAST);
2828                 break;
2829         case IEEE80211_M_HOSTAP:
2830                 sc->config.mode = WPI_MODE_HOSTAP;
2831                 break;
2832         case IEEE80211_M_MONITOR:
2833                 sc->config.mode = WPI_MODE_MONITOR;
2834                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2835                         WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2836                 break;
2837         default:
2838                 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2839                 return EINVAL;
2840         }
2841         sc->config.cck_mask  = 0x0f;    /* not yet negotiated */
2842         sc->config.ofdm_mask = 0xff;    /* not yet negotiated */
2843         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2844                 sizeof (struct wpi_config), 0);
2845         if (error != 0) {
2846                 device_printf(sc->sc_dev, "configure command failed\n");
2847                 return error;
2848         }
2849
2850         /* configuration has changed, set Tx power accordingly */
2851         if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2852             device_printf(sc->sc_dev, "could not set Tx power\n");
2853             return error;
2854         }
2855
2856         /* add broadcast node */
2857         memset(&node, 0, sizeof node);
2858         IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2859         node.id = WPI_ID_BROADCAST;
2860         node.rate = wpi_plcp_signal(2);
2861         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2862         if (error != 0) {
2863                 device_printf(sc->sc_dev, "could not add broadcast node\n");
2864                 return error;
2865         }
2866
2867         /* Setup rate scalling */
2868         error = wpi_mrr_setup(sc);
2869         if (error != 0) {
2870                 device_printf(sc->sc_dev, "could not setup MRR\n");
2871                 return error;
2872         }
2873
2874         return 0;
2875 }
2876
2877 static void
2878 wpi_stop_master(struct wpi_softc *sc)
2879 {
2880         uint32_t tmp;
2881         int ntries;
2882
2883         DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2884
2885         tmp = WPI_READ(sc, WPI_RESET);
2886         WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2887
2888         tmp = WPI_READ(sc, WPI_GPIO_CTL);
2889         if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2890                 return; /* already asleep */
2891
2892         for (ntries = 0; ntries < 100; ntries++) {
2893                 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2894                         break;
2895                 DELAY(10);
2896         }
2897         if (ntries == 100) {
2898                 device_printf(sc->sc_dev, "timeout waiting for master\n");
2899         }
2900 }
2901
2902 static int
2903 wpi_power_up(struct wpi_softc *sc)
2904 {
2905         uint32_t tmp;
2906         int ntries;
2907
2908         wpi_mem_lock(sc);
2909         tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2910         wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2911         wpi_mem_unlock(sc);
2912
2913         for (ntries = 0; ntries < 5000; ntries++) {
2914                 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2915                         break;
2916                 DELAY(10);
2917         }
2918         if (ntries == 5000) {
2919                 device_printf(sc->sc_dev,
2920                     "timeout waiting for NIC to power up\n");
2921                 return ETIMEDOUT;
2922         }
2923         return 0;
2924 }
2925
2926 static int
2927 wpi_reset(struct wpi_softc *sc)
2928 {
2929         uint32_t tmp;
2930         int ntries;
2931
2932         DPRINTFN(WPI_DEBUG_HW,
2933             ("Resetting the card - clearing any uploaded firmware\n"));
2934
2935         /* clear any pending interrupts */
2936         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2937
2938         tmp = WPI_READ(sc, WPI_PLL_CTL);
2939         WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2940
2941         tmp = WPI_READ(sc, WPI_CHICKEN);
2942         WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2943
2944         tmp = WPI_READ(sc, WPI_GPIO_CTL);
2945         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2946
2947         /* wait for clock stabilization */
2948         for (ntries = 0; ntries < 25000; ntries++) {
2949                 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2950                         break;
2951                 DELAY(10);
2952         }
2953         if (ntries == 25000) {
2954                 device_printf(sc->sc_dev,
2955                     "timeout waiting for clock stabilization\n");
2956                 return ETIMEDOUT;
2957         }
2958
2959         /* initialize EEPROM */
2960         tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2961
2962         if ((tmp & WPI_EEPROM_VERSION) == 0) {
2963                 device_printf(sc->sc_dev, "EEPROM not found\n");
2964                 return EIO;
2965         }
2966         WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2967
2968         return 0;
2969 }
2970
2971 static void
2972 wpi_hw_config(struct wpi_softc *sc)
2973 {
2974         uint32_t rev, hw;
2975
2976         /* voodoo from the Linux "driver".. */
2977         hw = WPI_READ(sc, WPI_HWCONFIG);
2978
2979         rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2980         if ((rev & 0xc0) == 0x40)
2981                 hw |= WPI_HW_ALM_MB;
2982         else if (!(rev & 0x80))
2983                 hw |= WPI_HW_ALM_MM;
2984
2985         if (sc->cap == 0x80)
2986                 hw |= WPI_HW_SKU_MRC;
2987
2988         hw &= ~WPI_HW_REV_D;
2989         if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2990                 hw |= WPI_HW_REV_D;
2991
2992         if (sc->type > 1)
2993                 hw |= WPI_HW_TYPE_B;
2994
2995         WPI_WRITE(sc, WPI_HWCONFIG, hw);
2996 }
2997
2998 static void
2999 wpi_rfkill_resume(struct wpi_softc *sc)
3000 {
3001         struct ifnet *ifp = sc->sc_ifp;
3002         struct ieee80211com *ic = ifp->if_l2com;
3003         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3004         int ntries;
3005
3006         /* enable firmware again */
3007         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3008         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3009
3010         /* wait for thermal sensors to calibrate */
3011         for (ntries = 0; ntries < 1000; ntries++) {
3012                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3013                         break;
3014                 DELAY(10);
3015         }
3016
3017         if (ntries == 1000) {
3018                 device_printf(sc->sc_dev,
3019                     "timeout waiting for thermal calibration\n");
3020                 return;
3021         }
3022         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3023
3024         if (wpi_config(sc) != 0) {
3025                 device_printf(sc->sc_dev, "device config failed\n");
3026                 return;
3027         }
3028
3029         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3030         ifp->if_drv_flags |= IFF_DRV_RUNNING;
3031         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3032
3033         if (vap != NULL) {
3034                 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3035                         if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3036                                 ieee80211_beacon_miss(ic);
3037                                 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3038                         } else
3039                                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3040                 } else {
3041                         ieee80211_scan_next(vap);
3042                         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3043                 }
3044         }
3045
3046         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3047 }
3048
3049 static void
3050 wpi_init_locked(struct wpi_softc *sc, int force)
3051 {
3052         struct ifnet *ifp = sc->sc_ifp;
3053         uint32_t tmp;
3054         int ntries, qid;
3055
3056         wpi_stop_locked(sc);
3057         (void)wpi_reset(sc);
3058
3059         wpi_mem_lock(sc);
3060         wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3061         DELAY(20);
3062         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3063         wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3064         wpi_mem_unlock(sc);
3065
3066         (void)wpi_power_up(sc);
3067         wpi_hw_config(sc);
3068
3069         /* init Rx ring */
3070         wpi_mem_lock(sc);
3071         WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3072         WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3073             offsetof(struct wpi_shared, next));
3074         WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3075         WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3076         wpi_mem_unlock(sc);
3077
3078         /* init Tx rings */
3079         wpi_mem_lock(sc);
3080         wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3081         wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3082         wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3083         wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3084         wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3085         wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3086         wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3087
3088         WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3089         WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3090
3091         for (qid = 0; qid < 6; qid++) {
3092                 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3093                 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3094                 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3095         }
3096         wpi_mem_unlock(sc);
3097
3098         /* clear "radio off" and "disable command" bits (reversed logic) */
3099         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3100         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3101         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3102
3103         /* clear any pending interrupts */
3104         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3105
3106         /* enable interrupts */
3107         WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3108
3109         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3110         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3111
3112         if ((wpi_load_firmware(sc)) != 0) {
3113             device_printf(sc->sc_dev,
3114                 "A problem occurred loading the firmware to the driver\n");
3115             return;
3116         }
3117
3118         /* At this point the firmware is up and running. If the hardware
3119          * RF switch is turned off thermal calibration will fail, though
3120          * the card is still happy to continue to accept commands, catch
3121          * this case and schedule a task to watch for it to be turned on.
3122          */
3123         wpi_mem_lock(sc);
3124         tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3125         wpi_mem_unlock(sc);
3126
3127         if (!(tmp & 0x1)) {
3128                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3129                 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3130                 goto out;
3131         }
3132
3133         /* wait for thermal sensors to calibrate */
3134         for (ntries = 0; ntries < 1000; ntries++) {
3135                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3136                         break;
3137                 DELAY(10);
3138         }
3139
3140         if (ntries == 1000) {
3141                 device_printf(sc->sc_dev,
3142                     "timeout waiting for thermal sensors calibration\n");
3143                 return;
3144         }
3145         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3146
3147         if (wpi_config(sc) != 0) {
3148                 device_printf(sc->sc_dev, "device config failed\n");
3149                 return;
3150         }
3151
3152         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3153         ifp->if_drv_flags |= IFF_DRV_RUNNING;
3154 out:
3155         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3156 }
3157
3158 static void
3159 wpi_init(void *arg)
3160 {
3161         struct wpi_softc *sc = arg;
3162         struct ifnet *ifp = sc->sc_ifp;
3163         struct ieee80211com *ic = ifp->if_l2com;
3164
3165         WPI_LOCK(sc);
3166         wpi_init_locked(sc, 0);
3167         WPI_UNLOCK(sc);
3168
3169         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3170                 ieee80211_start_all(ic);                /* start all vaps */
3171 }
3172
3173 static void
3174 wpi_stop_locked(struct wpi_softc *sc)
3175 {
3176         struct ifnet *ifp = sc->sc_ifp;
3177         uint32_t tmp;
3178         int ac;
3179
3180         sc->sc_tx_timer = 0;
3181         sc->sc_scan_timer = 0;
3182         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3183         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3184         callout_stop(&sc->watchdog_to);
3185         callout_stop(&sc->calib_to);
3186
3187         /* disable interrupts */
3188         WPI_WRITE(sc, WPI_MASK, 0);
3189         WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3190         WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3191         WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3192
3193         wpi_mem_lock(sc);
3194         wpi_mem_write(sc, WPI_MEM_MODE, 0);
3195         wpi_mem_unlock(sc);
3196
3197         /* reset all Tx rings */
3198         for (ac = 0; ac < 4; ac++)
3199                 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3200         wpi_reset_tx_ring(sc, &sc->cmdq);
3201
3202         /* reset Rx ring */
3203         wpi_reset_rx_ring(sc, &sc->rxq);
3204
3205         wpi_mem_lock(sc);
3206         wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3207         wpi_mem_unlock(sc);
3208
3209         DELAY(5);
3210
3211         wpi_stop_master(sc);
3212
3213         tmp = WPI_READ(sc, WPI_RESET);
3214         WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3215         sc->flags &= ~WPI_FLAG_BUSY;
3216 }
3217
3218 static void
3219 wpi_stop(struct wpi_softc *sc)
3220 {
3221         WPI_LOCK(sc);
3222         wpi_stop_locked(sc);
3223         WPI_UNLOCK(sc);
3224 }
3225
3226 static void
3227 wpi_calib_timeout(void *arg)
3228 {
3229         struct wpi_softc *sc = arg;
3230         struct ifnet *ifp = sc->sc_ifp;
3231         struct ieee80211com *ic = ifp->if_l2com;
3232         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3233         int temp;
3234
3235         if (vap->iv_state != IEEE80211_S_RUN)
3236                 return;
3237
3238         /* update sensor data */
3239         temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3240         DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3241
3242         wpi_power_calibration(sc, temp);
3243
3244         callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3245 }
3246
3247 /*
3248  * This function is called periodically (every 60 seconds) to adjust output
3249  * power to temperature changes.
3250  */
3251 static void
3252 wpi_power_calibration(struct wpi_softc *sc, int temp)
3253 {
3254         struct ifnet *ifp = sc->sc_ifp;
3255         struct ieee80211com *ic = ifp->if_l2com;
3256         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3257
3258         /* sanity-check read value */
3259         if (temp < -260 || temp > 25) {
3260                 /* this can't be correct, ignore */
3261                 DPRINTFN(WPI_DEBUG_TEMP,
3262                     ("out-of-range temperature reported: %d\n", temp));
3263                 return;
3264         }
3265
3266         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3267
3268         /* adjust Tx power if need be */
3269         if (abs(temp - sc->temp) <= 6)
3270                 return;
3271
3272         sc->temp = temp;
3273
3274         if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3275                 /* just warn, too bad for the automatic calibration... */
3276                 device_printf(sc->sc_dev,"could not adjust Tx power\n");
3277         }
3278 }
3279
3280 /**
3281  * Read the eeprom to find out what channels are valid for the given
3282  * band and update net80211 with what we find.
3283  */
3284 static void
3285 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3286 {
3287         struct ifnet *ifp = sc->sc_ifp;
3288         struct ieee80211com *ic = ifp->if_l2com;
3289         const struct wpi_chan_band *band = &wpi_bands[n];
3290         struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3291         struct ieee80211_channel *c;
3292         int chan, i, passive;
3293
3294         wpi_read_prom_data(sc, band->addr, channels,
3295             band->nchan * sizeof (struct wpi_eeprom_chan));
3296
3297         for (i = 0; i < band->nchan; i++) {
3298                 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3299                         DPRINTFN(WPI_DEBUG_HW,
3300                             ("Channel Not Valid: %d, band %d\n",
3301                              band->chan[i],n));
3302                         continue;
3303                 }
3304
3305                 passive = 0;
3306                 chan = band->chan[i];
3307                 c = &ic->ic_channels[ic->ic_nchans++];
3308
3309                 /* is active scan allowed on this channel? */
3310                 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3311                         passive = IEEE80211_CHAN_PASSIVE;
3312                 }
3313
3314                 if (n == 0) {   /* 2GHz band */
3315                         c->ic_ieee = chan;
3316                         c->ic_freq = ieee80211_ieee2mhz(chan,
3317                             IEEE80211_CHAN_2GHZ);
3318                         c->ic_flags = IEEE80211_CHAN_B | passive;
3319
3320                         c = &ic->ic_channels[ic->ic_nchans++];
3321                         c->ic_ieee = chan;
3322                         c->ic_freq = ieee80211_ieee2mhz(chan,
3323                             IEEE80211_CHAN_2GHZ);
3324                         c->ic_flags = IEEE80211_CHAN_G | passive;
3325
3326                 } else {        /* 5GHz band */
3327                         /*
3328                          * Some 3945ABG adapters support channels 7, 8, 11
3329                          * and 12 in the 2GHz *and* 5GHz bands.
3330                          * Because of limitations in our net80211(9) stack,
3331                          * we can't support these channels in 5GHz band.
3332                          * XXX not true; just need to map to proper frequency
3333                          */
3334                         if (chan <= 14)
3335                                 continue;
3336
3337                         c->ic_ieee = chan;
3338                         c->ic_freq = ieee80211_ieee2mhz(chan,
3339                             IEEE80211_CHAN_5GHZ);
3340                         c->ic_flags = IEEE80211_CHAN_A | passive;
3341                 }
3342
3343                 /* save maximum allowed power for this channel */
3344                 sc->maxpwr[chan] = channels[i].maxpwr;
3345
3346 #if 0
3347                 // XXX We can probably use this an get rid of maxpwr - ben 20070617
3348                 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3349                 //ic->ic_channels[chan].ic_minpower...
3350                 //ic->ic_channels[chan].ic_maxregtxpower...
3351 #endif
3352
3353                 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3354                     " passive=%d, offset %d\n", chan, c->ic_freq,
3355                     channels[i].flags, sc->maxpwr[chan],
3356                     (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3357                     ic->ic_nchans));
3358         }
3359 }
3360
3361 static void
3362 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3363 {
3364         struct wpi_power_group *group = &sc->groups[n];
3365         struct wpi_eeprom_group rgroup;
3366         int i;
3367
3368         wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3369             sizeof rgroup);
3370
3371         /* save power group information */
3372         group->chan   = rgroup.chan;
3373         group->maxpwr = rgroup.maxpwr;
3374         /* temperature at which the samples were taken */
3375         group->temp   = (int16_t)le16toh(rgroup.temp);
3376
3377         DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3378                     group->chan, group->maxpwr, group->temp));
3379
3380         for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3381                 group->samples[i].index = rgroup.samples[i].index;
3382                 group->samples[i].power = rgroup.samples[i].power;
3383
3384                 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3385                             group->samples[i].index, group->samples[i].power));
3386         }
3387 }
3388
3389 /*
3390  * Update Tx power to match what is defined for channel `c'.
3391  */
3392 static int
3393 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3394 {
3395         struct ifnet *ifp = sc->sc_ifp;
3396         struct ieee80211com *ic = ifp->if_l2com;
3397         struct wpi_power_group *group;
3398         struct wpi_cmd_txpower txpower;
3399         u_int chan;
3400         int i;
3401
3402         /* get channel number */
3403         chan = ieee80211_chan2ieee(ic, c);
3404
3405         /* find the power group to which this channel belongs */
3406         if (IEEE80211_IS_CHAN_5GHZ(c)) {
3407                 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3408                         if (chan <= group->chan)
3409                                 break;
3410         } else
3411                 group = &sc->groups[0];
3412
3413         memset(&txpower, 0, sizeof txpower);
3414         txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3415         txpower.channel = htole16(chan);
3416
3417         /* set Tx power for all OFDM and CCK rates */
3418         for (i = 0; i <= 11 ; i++) {
3419                 /* retrieve Tx power for this channel/rate combination */
3420                 int idx = wpi_get_power_index(sc, group, c,
3421                     wpi_ridx_to_rate[i]);
3422
3423                 txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3424
3425                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
3426                         txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3427                         txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3428                 } else {
3429                         txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3430                         txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3431                 }
3432                 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3433                             chan, wpi_ridx_to_rate[i], idx));
3434         }
3435
3436         return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3437 }
3438
3439 /*
3440  * Determine Tx power index for a given channel/rate combination.
3441  * This takes into account the regulatory information from EEPROM and the
3442  * current temperature.
3443  */
3444 static int
3445 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3446     struct ieee80211_channel *c, int rate)
3447 {
3448 /* fixed-point arithmetic division using a n-bit fractional part */
3449 #define fdivround(a, b, n)      \
3450         ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3451
3452 /* linear interpolation */
3453 #define interpolate(x, x1, y1, x2, y2, n)       \
3454         ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3455
3456         struct ifnet *ifp = sc->sc_ifp;
3457         struct ieee80211com *ic = ifp->if_l2com;
3458         struct wpi_power_sample *sample;
3459         int pwr, idx;
3460         u_int chan;
3461
3462         /* get channel number */
3463         chan = ieee80211_chan2ieee(ic, c);
3464
3465         /* default power is group's maximum power - 3dB */
3466         pwr = group->maxpwr / 2;
3467
3468         /* decrease power for highest OFDM rates to reduce distortion */
3469         switch (rate) {
3470                 case 72:        /* 36Mb/s */
3471                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3472                         break;
3473                 case 96:        /* 48Mb/s */
3474                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3475                         break;
3476                 case 108:       /* 54Mb/s */
3477                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3478                         break;
3479         }
3480
3481         /* never exceed channel's maximum allowed Tx power */
3482         pwr = min(pwr, sc->maxpwr[chan]);
3483
3484         /* retrieve power index into gain tables from samples */
3485         for (sample = group->samples; sample < &group->samples[3]; sample++)
3486                 if (pwr > sample[1].power)
3487                         break;
3488         /* fixed-point linear interpolation using a 19-bit fractional part */
3489         idx = interpolate(pwr, sample[0].power, sample[0].index,
3490             sample[1].power, sample[1].index, 19);
3491
3492         /*
3493          *  Adjust power index based on current temperature
3494          *      - if colder than factory-calibrated: decreate output power
3495          *      - if warmer than factory-calibrated: increase output power
3496          */
3497         idx -= (sc->temp - group->temp) * 11 / 100;
3498
3499         /* decrease power for CCK rates (-5dB) */
3500         if (!WPI_RATE_IS_OFDM(rate))
3501                 idx += 10;
3502
3503         /* keep power index in a valid range */
3504         if (idx < 0)
3505                 return 0;
3506         if (idx > WPI_MAX_PWR_INDEX)
3507                 return WPI_MAX_PWR_INDEX;
3508         return idx;
3509
3510 #undef interpolate
3511 #undef fdivround
3512 }
3513
3514 /**
3515  * Called by net80211 framework to indicate that a scan
3516  * is starting. This function doesn't actually do the scan,
3517  * wpi_scan_curchan starts things off. This function is more
3518  * of an early warning from the framework we should get ready
3519  * for the scan.
3520  */
3521 static void
3522 wpi_scan_start(struct ieee80211com *ic)
3523 {
3524         struct ifnet *ifp = ic->ic_ifp;
3525         struct wpi_softc *sc = ifp->if_softc;
3526
3527         WPI_LOCK(sc);
3528         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3529         WPI_UNLOCK(sc);
3530 }
3531
3532 /**
3533  * Called by the net80211 framework, indicates that the
3534  * scan has ended. If there is a scan in progress on the card
3535  * then it should be aborted.
3536  */
3537 static void
3538 wpi_scan_end(struct ieee80211com *ic)
3539 {
3540         /* XXX ignore */
3541 }
3542
3543 /**
3544  * Called by the net80211 framework to indicate to the driver
3545  * that the channel should be changed
3546  */
3547 static void
3548 wpi_set_channel(struct ieee80211com *ic)
3549 {
3550         struct ifnet *ifp = ic->ic_ifp;
3551         struct wpi_softc *sc = ifp->if_softc;
3552         int error;
3553
3554         /*
3555          * Only need to set the channel in Monitor mode. AP scanning and auth
3556          * are already taken care of by their respective firmware commands.
3557          */
3558         if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3559                 WPI_LOCK(sc);
3560                 error = wpi_config(sc);
3561                 WPI_UNLOCK(sc);
3562                 if (error != 0)
3563                         device_printf(sc->sc_dev,
3564                             "error %d settting channel\n", error);
3565         }
3566 }
3567
3568 /**
3569  * Called by net80211 to indicate that we need to scan the current
3570  * channel. The channel is previously be set via the wpi_set_channel
3571  * callback.
3572  */
3573 static void
3574 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3575 {
3576         struct ieee80211vap *vap = ss->ss_vap;
3577         struct ifnet *ifp = vap->iv_ic->ic_ifp;
3578         struct wpi_softc *sc = ifp->if_softc;
3579
3580         WPI_LOCK(sc);
3581         if (wpi_scan(sc))
3582                 ieee80211_cancel_scan(vap);
3583         WPI_UNLOCK(sc);
3584 }
3585
3586 /**
3587  * Called by the net80211 framework to indicate
3588  * the minimum dwell time has been met, terminate the scan.
3589  * We don't actually terminate the scan as the firmware will notify
3590  * us when it's finished and we have no way to interrupt it.
3591  */
3592 static void
3593 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3594 {
3595         /* NB: don't try to abort scan; wait for firmware to finish */
3596 }
3597
3598 static void
3599 wpi_hwreset(void *arg, int pending)
3600 {
3601         struct wpi_softc *sc = arg;
3602
3603         WPI_LOCK(sc);
3604         wpi_init_locked(sc, 0);
3605         WPI_UNLOCK(sc);
3606 }
3607
3608 static void
3609 wpi_rfreset(void *arg, int pending)
3610 {
3611         struct wpi_softc *sc = arg;
3612
3613         WPI_LOCK(sc);
3614         wpi_rfkill_resume(sc);
3615         WPI_UNLOCK(sc);
3616 }
3617
3618 /*
3619  * Allocate DMA-safe memory for firmware transfer.
3620  */
3621 static int
3622 wpi_alloc_fwmem(struct wpi_softc *sc)
3623 {
3624         /* allocate enough contiguous space to store text and data */
3625         return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3626             WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3627             BUS_DMA_NOWAIT);
3628 }
3629
3630 static void
3631 wpi_free_fwmem(struct wpi_softc *sc)
3632 {
3633         wpi_dma_contig_free(&sc->fw_dma);
3634 }
3635
3636 /**
3637  * Called every second, wpi_watchdog used by the watch dog timer
3638  * to check that the card is still alive
3639  */
3640 static void
3641 wpi_watchdog(void *arg)
3642 {
3643         struct wpi_softc *sc = arg;
3644         struct ifnet *ifp = sc->sc_ifp;
3645         struct ieee80211com *ic = ifp->if_l2com;
3646         uint32_t tmp;
3647
3648         DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3649
3650         if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3651                 /* No need to lock firmware memory */
3652                 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3653
3654                 if ((tmp & 0x1) == 0) {
3655                         /* Radio kill switch is still off */
3656                         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3657                         return;
3658                 }
3659
3660                 device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3661                 ieee80211_runtask(ic, &sc->sc_radiotask);
3662                 return;
3663         }
3664
3665         if (sc->sc_tx_timer > 0) {
3666                 if (--sc->sc_tx_timer == 0) {
3667                         device_printf(sc->sc_dev,"device timeout\n");
3668                         ifp->if_oerrors++;
3669                         ieee80211_runtask(ic, &sc->sc_restarttask);
3670                 }
3671         }
3672         if (sc->sc_scan_timer > 0) {
3673                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3674                 if (--sc->sc_scan_timer == 0 && vap != NULL) {
3675                         device_printf(sc->sc_dev,"scan timeout\n");
3676                         ieee80211_cancel_scan(vap);
3677                         ieee80211_runtask(ic, &sc->sc_restarttask);
3678                 }
3679         }
3680
3681         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3682                 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3683 }
3684
3685 #ifdef WPI_DEBUG
3686 static const char *wpi_cmd_str(int cmd)
3687 {
3688         switch (cmd) {
3689         case WPI_DISABLE_CMD:   return "WPI_DISABLE_CMD";
3690         case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE";
3691         case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE";
3692         case WPI_CMD_SET_WME:   return "WPI_CMD_SET_WME";
3693         case WPI_CMD_TSF:       return "WPI_CMD_TSF";
3694         case WPI_CMD_ADD_NODE:  return "WPI_CMD_ADD_NODE";
3695         case WPI_CMD_TX_DATA:   return "WPI_CMD_TX_DATA";
3696         case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP";
3697         case WPI_CMD_SET_LED:   return "WPI_CMD_SET_LED";
3698         case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3699         case WPI_CMD_SCAN:      return "WPI_CMD_SCAN";
3700         case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3701         case WPI_CMD_TXPOWER:   return "WPI_CMD_TXPOWER";
3702         case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH";
3703
3704         default:
3705                 KASSERT(1, ("Unknown Command: %d\n", cmd));
3706                 return "UNKNOWN CMD";   /* Make the compiler happy */
3707         }
3708 }
3709 #endif
3710
3711 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3712 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3713 MODULE_DEPEND(wpi, firmware, 1, 1, 1);