]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - sys/geom/raid/g_raid.c
MFC r363988:
[FreeBSD/stable/9.git] / sys / geom / raid / g_raid.c
1 /*-
2  * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/module.h>
34 #include <sys/limits.h>
35 #include <sys/lock.h>
36 #include <sys/mutex.h>
37 #include <sys/bio.h>
38 #include <sys/sbuf.h>
39 #include <sys/sysctl.h>
40 #include <sys/malloc.h>
41 #include <sys/eventhandler.h>
42 #include <vm/uma.h>
43 #include <geom/geom.h>
44 #include <sys/proc.h>
45 #include <sys/kthread.h>
46 #include <sys/sched.h>
47 #include <geom/raid/g_raid.h>
48 #include "g_raid_md_if.h"
49 #include "g_raid_tr_if.h"
50
51 static MALLOC_DEFINE(M_RAID, "raid_data", "GEOM_RAID Data");
52
53 SYSCTL_DECL(_kern_geom);
54 SYSCTL_NODE(_kern_geom, OID_AUTO, raid, CTLFLAG_RW, 0, "GEOM_RAID stuff");
55 int g_raid_enable = 1;
56 TUNABLE_INT("kern.geom.raid.enable", &g_raid_enable);
57 SYSCTL_INT(_kern_geom_raid, OID_AUTO, enable, CTLFLAG_RW,
58     &g_raid_enable, 0, "Enable on-disk metadata taste");
59 u_int g_raid_aggressive_spare = 0;
60 TUNABLE_INT("kern.geom.raid.aggressive_spare", &g_raid_aggressive_spare);
61 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, aggressive_spare, CTLFLAG_RW,
62     &g_raid_aggressive_spare, 0, "Use disks without metadata as spare");
63 u_int g_raid_debug = 0;
64 TUNABLE_INT("kern.geom.raid.debug", &g_raid_debug);
65 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, debug, CTLFLAG_RW, &g_raid_debug, 0,
66     "Debug level");
67 int g_raid_read_err_thresh = 10;
68 TUNABLE_INT("kern.geom.raid.read_err_thresh", &g_raid_read_err_thresh);
69 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, read_err_thresh, CTLFLAG_RW,
70     &g_raid_read_err_thresh, 0,
71     "Number of read errors equated to disk failure");
72 u_int g_raid_start_timeout = 30;
73 TUNABLE_INT("kern.geom.raid.start_timeout", &g_raid_start_timeout);
74 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, start_timeout, CTLFLAG_RW,
75     &g_raid_start_timeout, 0,
76     "Time to wait for all array components");
77 static u_int g_raid_clean_time = 5;
78 TUNABLE_INT("kern.geom.raid.clean_time", &g_raid_clean_time);
79 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, clean_time, CTLFLAG_RW,
80     &g_raid_clean_time, 0, "Mark volume as clean when idling");
81 static u_int g_raid_disconnect_on_failure = 1;
82 TUNABLE_INT("kern.geom.raid.disconnect_on_failure",
83     &g_raid_disconnect_on_failure);
84 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, disconnect_on_failure, CTLFLAG_RW,
85     &g_raid_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
86 static u_int g_raid_name_format = 0;
87 TUNABLE_INT("kern.geom.raid.name_format", &g_raid_name_format);
88 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, name_format, CTLFLAG_RW,
89     &g_raid_name_format, 0, "Providers name format.");
90 static u_int g_raid_idle_threshold = 1000000;
91 TUNABLE_INT("kern.geom.raid.idle_threshold", &g_raid_idle_threshold);
92 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, idle_threshold, CTLFLAG_RW,
93     &g_raid_idle_threshold, 1000000,
94     "Time in microseconds to consider a volume idle.");
95 static u_int ar_legacy_aliases = 1;
96 SYSCTL_INT(_kern_geom_raid, OID_AUTO, legacy_aliases, CTLFLAG_RW,
97            &ar_legacy_aliases, 0, "Create aliases named as the legacy ataraid style.");
98 TUNABLE_INT("kern.geom_raid.legacy_aliases", &ar_legacy_aliases);
99
100
101 #define MSLEEP(rv, ident, mtx, priority, wmesg, timeout)        do {    \
102         G_RAID_DEBUG(4, "%s: Sleeping %p.", __func__, (ident));         \
103         rv = msleep((ident), (mtx), (priority), (wmesg), (timeout));    \
104         G_RAID_DEBUG(4, "%s: Woken up %p.", __func__, (ident));         \
105 } while (0)
106
107 LIST_HEAD(, g_raid_md_class) g_raid_md_classes =
108     LIST_HEAD_INITIALIZER(g_raid_md_classes);
109
110 LIST_HEAD(, g_raid_tr_class) g_raid_tr_classes =
111     LIST_HEAD_INITIALIZER(g_raid_tr_classes);
112
113 LIST_HEAD(, g_raid_volume) g_raid_volumes =
114     LIST_HEAD_INITIALIZER(g_raid_volumes);
115
116 static eventhandler_tag g_raid_post_sync = NULL;
117 static int g_raid_started = 0;
118 static int g_raid_shutdown = 0;
119
120 static int g_raid_destroy_geom(struct gctl_req *req, struct g_class *mp,
121     struct g_geom *gp);
122 static g_taste_t g_raid_taste;
123 static void g_raid_init(struct g_class *mp);
124 static void g_raid_fini(struct g_class *mp);
125
126 struct g_class g_raid_class = {
127         .name = G_RAID_CLASS_NAME,
128         .version = G_VERSION,
129         .ctlreq = g_raid_ctl,
130         .taste = g_raid_taste,
131         .destroy_geom = g_raid_destroy_geom,
132         .init = g_raid_init,
133         .fini = g_raid_fini
134 };
135
136 static void g_raid_destroy_provider(struct g_raid_volume *vol);
137 static int g_raid_update_disk(struct g_raid_disk *disk, u_int event);
138 static int g_raid_update_subdisk(struct g_raid_subdisk *subdisk, u_int event);
139 static int g_raid_update_volume(struct g_raid_volume *vol, u_int event);
140 static int g_raid_update_node(struct g_raid_softc *sc, u_int event);
141 static void g_raid_dumpconf(struct sbuf *sb, const char *indent,
142     struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
143 static void g_raid_start(struct bio *bp);
144 static void g_raid_start_request(struct bio *bp);
145 static void g_raid_disk_done(struct bio *bp);
146 static void g_raid_poll(struct g_raid_softc *sc);
147
148 static const char *
149 g_raid_node_event2str(int event)
150 {
151
152         switch (event) {
153         case G_RAID_NODE_E_WAKE:
154                 return ("WAKE");
155         case G_RAID_NODE_E_START:
156                 return ("START");
157         default:
158                 return ("INVALID");
159         }
160 }
161
162 const char *
163 g_raid_disk_state2str(int state)
164 {
165
166         switch (state) {
167         case G_RAID_DISK_S_NONE:
168                 return ("NONE");
169         case G_RAID_DISK_S_OFFLINE:
170                 return ("OFFLINE");
171         case G_RAID_DISK_S_DISABLED:
172                 return ("DISABLED");
173         case G_RAID_DISK_S_FAILED:
174                 return ("FAILED");
175         case G_RAID_DISK_S_STALE_FAILED:
176                 return ("STALE_FAILED");
177         case G_RAID_DISK_S_SPARE:
178                 return ("SPARE");
179         case G_RAID_DISK_S_STALE:
180                 return ("STALE");
181         case G_RAID_DISK_S_ACTIVE:
182                 return ("ACTIVE");
183         default:
184                 return ("INVALID");
185         }
186 }
187
188 static const char *
189 g_raid_disk_event2str(int event)
190 {
191
192         switch (event) {
193         case G_RAID_DISK_E_DISCONNECTED:
194                 return ("DISCONNECTED");
195         default:
196                 return ("INVALID");
197         }
198 }
199
200 const char *
201 g_raid_subdisk_state2str(int state)
202 {
203
204         switch (state) {
205         case G_RAID_SUBDISK_S_NONE:
206                 return ("NONE");
207         case G_RAID_SUBDISK_S_FAILED:
208                 return ("FAILED");
209         case G_RAID_SUBDISK_S_NEW:
210                 return ("NEW");
211         case G_RAID_SUBDISK_S_REBUILD:
212                 return ("REBUILD");
213         case G_RAID_SUBDISK_S_UNINITIALIZED:
214                 return ("UNINITIALIZED");
215         case G_RAID_SUBDISK_S_STALE:
216                 return ("STALE");
217         case G_RAID_SUBDISK_S_RESYNC:
218                 return ("RESYNC");
219         case G_RAID_SUBDISK_S_ACTIVE:
220                 return ("ACTIVE");
221         default:
222                 return ("INVALID");
223         }
224 }
225
226 static const char *
227 g_raid_subdisk_event2str(int event)
228 {
229
230         switch (event) {
231         case G_RAID_SUBDISK_E_NEW:
232                 return ("NEW");
233         case G_RAID_SUBDISK_E_FAILED:
234                 return ("FAILED");
235         case G_RAID_SUBDISK_E_DISCONNECTED:
236                 return ("DISCONNECTED");
237         default:
238                 return ("INVALID");
239         }
240 }
241
242 const char *
243 g_raid_volume_state2str(int state)
244 {
245
246         switch (state) {
247         case G_RAID_VOLUME_S_STARTING:
248                 return ("STARTING");
249         case G_RAID_VOLUME_S_BROKEN:
250                 return ("BROKEN");
251         case G_RAID_VOLUME_S_DEGRADED:
252                 return ("DEGRADED");
253         case G_RAID_VOLUME_S_SUBOPTIMAL:
254                 return ("SUBOPTIMAL");
255         case G_RAID_VOLUME_S_OPTIMAL:
256                 return ("OPTIMAL");
257         case G_RAID_VOLUME_S_UNSUPPORTED:
258                 return ("UNSUPPORTED");
259         case G_RAID_VOLUME_S_STOPPED:
260                 return ("STOPPED");
261         default:
262                 return ("INVALID");
263         }
264 }
265
266 static const char *
267 g_raid_volume_event2str(int event)
268 {
269
270         switch (event) {
271         case G_RAID_VOLUME_E_UP:
272                 return ("UP");
273         case G_RAID_VOLUME_E_DOWN:
274                 return ("DOWN");
275         case G_RAID_VOLUME_E_START:
276                 return ("START");
277         case G_RAID_VOLUME_E_STARTMD:
278                 return ("STARTMD");
279         default:
280                 return ("INVALID");
281         }
282 }
283
284 const char *
285 g_raid_volume_level2str(int level, int qual)
286 {
287
288         switch (level) {
289         case G_RAID_VOLUME_RL_RAID0:
290                 return ("RAID0");
291         case G_RAID_VOLUME_RL_RAID1:
292                 return ("RAID1");
293         case G_RAID_VOLUME_RL_RAID3:
294                 if (qual == G_RAID_VOLUME_RLQ_R3P0)
295                         return ("RAID3-P0");
296                 if (qual == G_RAID_VOLUME_RLQ_R3PN)
297                         return ("RAID3-PN");
298                 return ("RAID3");
299         case G_RAID_VOLUME_RL_RAID4:
300                 if (qual == G_RAID_VOLUME_RLQ_R4P0)
301                         return ("RAID4-P0");
302                 if (qual == G_RAID_VOLUME_RLQ_R4PN)
303                         return ("RAID4-PN");
304                 return ("RAID4");
305         case G_RAID_VOLUME_RL_RAID5:
306                 if (qual == G_RAID_VOLUME_RLQ_R5RA)
307                         return ("RAID5-RA");
308                 if (qual == G_RAID_VOLUME_RLQ_R5RS)
309                         return ("RAID5-RS");
310                 if (qual == G_RAID_VOLUME_RLQ_R5LA)
311                         return ("RAID5-LA");
312                 if (qual == G_RAID_VOLUME_RLQ_R5LS)
313                         return ("RAID5-LS");
314                 return ("RAID5");
315         case G_RAID_VOLUME_RL_RAID6:
316                 if (qual == G_RAID_VOLUME_RLQ_R6RA)
317                         return ("RAID6-RA");
318                 if (qual == G_RAID_VOLUME_RLQ_R6RS)
319                         return ("RAID6-RS");
320                 if (qual == G_RAID_VOLUME_RLQ_R6LA)
321                         return ("RAID6-LA");
322                 if (qual == G_RAID_VOLUME_RLQ_R6LS)
323                         return ("RAID6-LS");
324                 return ("RAID6");
325         case G_RAID_VOLUME_RL_RAIDMDF:
326                 if (qual == G_RAID_VOLUME_RLQ_RMDFRA)
327                         return ("RAIDMDF-RA");
328                 if (qual == G_RAID_VOLUME_RLQ_RMDFRS)
329                         return ("RAIDMDF-RS");
330                 if (qual == G_RAID_VOLUME_RLQ_RMDFLA)
331                         return ("RAIDMDF-LA");
332                 if (qual == G_RAID_VOLUME_RLQ_RMDFLS)
333                         return ("RAIDMDF-LS");
334                 return ("RAIDMDF");
335         case G_RAID_VOLUME_RL_RAID1E:
336                 if (qual == G_RAID_VOLUME_RLQ_R1EA)
337                         return ("RAID1E-A");
338                 if (qual == G_RAID_VOLUME_RLQ_R1EO)
339                         return ("RAID1E-O");
340                 return ("RAID1E");
341         case G_RAID_VOLUME_RL_SINGLE:
342                 return ("SINGLE");
343         case G_RAID_VOLUME_RL_CONCAT:
344                 return ("CONCAT");
345         case G_RAID_VOLUME_RL_RAID5E:
346                 if (qual == G_RAID_VOLUME_RLQ_R5ERA)
347                         return ("RAID5E-RA");
348                 if (qual == G_RAID_VOLUME_RLQ_R5ERS)
349                         return ("RAID5E-RS");
350                 if (qual == G_RAID_VOLUME_RLQ_R5ELA)
351                         return ("RAID5E-LA");
352                 if (qual == G_RAID_VOLUME_RLQ_R5ELS)
353                         return ("RAID5E-LS");
354                 return ("RAID5E");
355         case G_RAID_VOLUME_RL_RAID5EE:
356                 if (qual == G_RAID_VOLUME_RLQ_R5EERA)
357                         return ("RAID5EE-RA");
358                 if (qual == G_RAID_VOLUME_RLQ_R5EERS)
359                         return ("RAID5EE-RS");
360                 if (qual == G_RAID_VOLUME_RLQ_R5EELA)
361                         return ("RAID5EE-LA");
362                 if (qual == G_RAID_VOLUME_RLQ_R5EELS)
363                         return ("RAID5EE-LS");
364                 return ("RAID5EE");
365         case G_RAID_VOLUME_RL_RAID5R:
366                 if (qual == G_RAID_VOLUME_RLQ_R5RRA)
367                         return ("RAID5R-RA");
368                 if (qual == G_RAID_VOLUME_RLQ_R5RRS)
369                         return ("RAID5R-RS");
370                 if (qual == G_RAID_VOLUME_RLQ_R5RLA)
371                         return ("RAID5R-LA");
372                 if (qual == G_RAID_VOLUME_RLQ_R5RLS)
373                         return ("RAID5R-LS");
374                 return ("RAID5E");
375         default:
376                 return ("UNKNOWN");
377         }
378 }
379
380 int
381 g_raid_volume_str2level(const char *str, int *level, int *qual)
382 {
383
384         *level = G_RAID_VOLUME_RL_UNKNOWN;
385         *qual = G_RAID_VOLUME_RLQ_NONE;
386         if (strcasecmp(str, "RAID0") == 0)
387                 *level = G_RAID_VOLUME_RL_RAID0;
388         else if (strcasecmp(str, "RAID1") == 0)
389                 *level = G_RAID_VOLUME_RL_RAID1;
390         else if (strcasecmp(str, "RAID3-P0") == 0) {
391                 *level = G_RAID_VOLUME_RL_RAID3;
392                 *qual = G_RAID_VOLUME_RLQ_R3P0;
393         } else if (strcasecmp(str, "RAID3-PN") == 0 ||
394                    strcasecmp(str, "RAID3") == 0) {
395                 *level = G_RAID_VOLUME_RL_RAID3;
396                 *qual = G_RAID_VOLUME_RLQ_R3PN;
397         } else if (strcasecmp(str, "RAID4-P0") == 0) {
398                 *level = G_RAID_VOLUME_RL_RAID4;
399                 *qual = G_RAID_VOLUME_RLQ_R4P0;
400         } else if (strcasecmp(str, "RAID4-PN") == 0 ||
401                    strcasecmp(str, "RAID4") == 0) {
402                 *level = G_RAID_VOLUME_RL_RAID4;
403                 *qual = G_RAID_VOLUME_RLQ_R4PN;
404         } else if (strcasecmp(str, "RAID5-RA") == 0) {
405                 *level = G_RAID_VOLUME_RL_RAID5;
406                 *qual = G_RAID_VOLUME_RLQ_R5RA;
407         } else if (strcasecmp(str, "RAID5-RS") == 0) {
408                 *level = G_RAID_VOLUME_RL_RAID5;
409                 *qual = G_RAID_VOLUME_RLQ_R5RS;
410         } else if (strcasecmp(str, "RAID5") == 0 ||
411                    strcasecmp(str, "RAID5-LA") == 0) {
412                 *level = G_RAID_VOLUME_RL_RAID5;
413                 *qual = G_RAID_VOLUME_RLQ_R5LA;
414         } else if (strcasecmp(str, "RAID5-LS") == 0) {
415                 *level = G_RAID_VOLUME_RL_RAID5;
416                 *qual = G_RAID_VOLUME_RLQ_R5LS;
417         } else if (strcasecmp(str, "RAID6-RA") == 0) {
418                 *level = G_RAID_VOLUME_RL_RAID6;
419                 *qual = G_RAID_VOLUME_RLQ_R6RA;
420         } else if (strcasecmp(str, "RAID6-RS") == 0) {
421                 *level = G_RAID_VOLUME_RL_RAID6;
422                 *qual = G_RAID_VOLUME_RLQ_R6RS;
423         } else if (strcasecmp(str, "RAID6") == 0 ||
424                    strcasecmp(str, "RAID6-LA") == 0) {
425                 *level = G_RAID_VOLUME_RL_RAID6;
426                 *qual = G_RAID_VOLUME_RLQ_R6LA;
427         } else if (strcasecmp(str, "RAID6-LS") == 0) {
428                 *level = G_RAID_VOLUME_RL_RAID6;
429                 *qual = G_RAID_VOLUME_RLQ_R6LS;
430         } else if (strcasecmp(str, "RAIDMDF-RA") == 0) {
431                 *level = G_RAID_VOLUME_RL_RAIDMDF;
432                 *qual = G_RAID_VOLUME_RLQ_RMDFRA;
433         } else if (strcasecmp(str, "RAIDMDF-RS") == 0) {
434                 *level = G_RAID_VOLUME_RL_RAIDMDF;
435                 *qual = G_RAID_VOLUME_RLQ_RMDFRS;
436         } else if (strcasecmp(str, "RAIDMDF") == 0 ||
437                    strcasecmp(str, "RAIDMDF-LA") == 0) {
438                 *level = G_RAID_VOLUME_RL_RAIDMDF;
439                 *qual = G_RAID_VOLUME_RLQ_RMDFLA;
440         } else if (strcasecmp(str, "RAIDMDF-LS") == 0) {
441                 *level = G_RAID_VOLUME_RL_RAIDMDF;
442                 *qual = G_RAID_VOLUME_RLQ_RMDFLS;
443         } else if (strcasecmp(str, "RAID10") == 0 ||
444                    strcasecmp(str, "RAID1E") == 0 ||
445                    strcasecmp(str, "RAID1E-A") == 0) {
446                 *level = G_RAID_VOLUME_RL_RAID1E;
447                 *qual = G_RAID_VOLUME_RLQ_R1EA;
448         } else if (strcasecmp(str, "RAID1E-O") == 0) {
449                 *level = G_RAID_VOLUME_RL_RAID1E;
450                 *qual = G_RAID_VOLUME_RLQ_R1EO;
451         } else if (strcasecmp(str, "SINGLE") == 0)
452                 *level = G_RAID_VOLUME_RL_SINGLE;
453         else if (strcasecmp(str, "CONCAT") == 0)
454                 *level = G_RAID_VOLUME_RL_CONCAT;
455         else if (strcasecmp(str, "RAID5E-RA") == 0) {
456                 *level = G_RAID_VOLUME_RL_RAID5E;
457                 *qual = G_RAID_VOLUME_RLQ_R5ERA;
458         } else if (strcasecmp(str, "RAID5E-RS") == 0) {
459                 *level = G_RAID_VOLUME_RL_RAID5E;
460                 *qual = G_RAID_VOLUME_RLQ_R5ERS;
461         } else if (strcasecmp(str, "RAID5E") == 0 ||
462                    strcasecmp(str, "RAID5E-LA") == 0) {
463                 *level = G_RAID_VOLUME_RL_RAID5E;
464                 *qual = G_RAID_VOLUME_RLQ_R5ELA;
465         } else if (strcasecmp(str, "RAID5E-LS") == 0) {
466                 *level = G_RAID_VOLUME_RL_RAID5E;
467                 *qual = G_RAID_VOLUME_RLQ_R5ELS;
468         } else if (strcasecmp(str, "RAID5EE-RA") == 0) {
469                 *level = G_RAID_VOLUME_RL_RAID5EE;
470                 *qual = G_RAID_VOLUME_RLQ_R5EERA;
471         } else if (strcasecmp(str, "RAID5EE-RS") == 0) {
472                 *level = G_RAID_VOLUME_RL_RAID5EE;
473                 *qual = G_RAID_VOLUME_RLQ_R5EERS;
474         } else if (strcasecmp(str, "RAID5EE") == 0 ||
475                    strcasecmp(str, "RAID5EE-LA") == 0) {
476                 *level = G_RAID_VOLUME_RL_RAID5EE;
477                 *qual = G_RAID_VOLUME_RLQ_R5EELA;
478         } else if (strcasecmp(str, "RAID5EE-LS") == 0) {
479                 *level = G_RAID_VOLUME_RL_RAID5EE;
480                 *qual = G_RAID_VOLUME_RLQ_R5EELS;
481         } else if (strcasecmp(str, "RAID5R-RA") == 0) {
482                 *level = G_RAID_VOLUME_RL_RAID5R;
483                 *qual = G_RAID_VOLUME_RLQ_R5RRA;
484         } else if (strcasecmp(str, "RAID5R-RS") == 0) {
485                 *level = G_RAID_VOLUME_RL_RAID5R;
486                 *qual = G_RAID_VOLUME_RLQ_R5RRS;
487         } else if (strcasecmp(str, "RAID5R") == 0 ||
488                    strcasecmp(str, "RAID5R-LA") == 0) {
489                 *level = G_RAID_VOLUME_RL_RAID5R;
490                 *qual = G_RAID_VOLUME_RLQ_R5RLA;
491         } else if (strcasecmp(str, "RAID5R-LS") == 0) {
492                 *level = G_RAID_VOLUME_RL_RAID5R;
493                 *qual = G_RAID_VOLUME_RLQ_R5RLS;
494         } else
495                 return (-1);
496         return (0);
497 }
498
499 const char *
500 g_raid_get_diskname(struct g_raid_disk *disk)
501 {
502
503         if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
504                 return ("[unknown]");
505         return (disk->d_consumer->provider->name);
506 }
507
508 void
509 g_raid_get_disk_info(struct g_raid_disk *disk)
510 {
511         struct g_consumer *cp = disk->d_consumer;
512         int error, len;
513
514         /* Read kernel dumping information. */
515         disk->d_kd.offset = 0;
516         disk->d_kd.length = OFF_MAX;
517         len = sizeof(disk->d_kd);
518         error = g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd);
519         if (error)
520                 disk->d_kd.di.dumper = NULL;
521         if (disk->d_kd.di.dumper == NULL)
522                 G_RAID_DEBUG1(2, disk->d_softc,
523                     "Dumping not supported by %s: %d.", 
524                     cp->provider->name, error);
525
526         /* Read BIO_DELETE support. */
527         error = g_getattr("GEOM::candelete", cp, &disk->d_candelete);
528         if (error)
529                 disk->d_candelete = 0;
530         if (!disk->d_candelete)
531                 G_RAID_DEBUG1(2, disk->d_softc,
532                     "BIO_DELETE not supported by %s: %d.", 
533                     cp->provider->name, error);
534 }
535
536 void
537 g_raid_report_disk_state(struct g_raid_disk *disk)
538 {
539         struct g_raid_subdisk *sd;
540         int len, state;
541         uint32_t s;
542
543         if (disk->d_consumer == NULL)
544                 return;
545         if (disk->d_state == G_RAID_DISK_S_DISABLED) {
546                 s = G_STATE_ACTIVE; /* XXX */
547         } else if (disk->d_state == G_RAID_DISK_S_FAILED ||
548             disk->d_state == G_RAID_DISK_S_STALE_FAILED) {
549                 s = G_STATE_FAILED;
550         } else {
551                 state = G_RAID_SUBDISK_S_ACTIVE;
552                 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
553                         if (sd->sd_state < state)
554                                 state = sd->sd_state;
555                 }
556                 if (state == G_RAID_SUBDISK_S_FAILED)
557                         s = G_STATE_FAILED;
558                 else if (state == G_RAID_SUBDISK_S_NEW ||
559                     state == G_RAID_SUBDISK_S_REBUILD)
560                         s = G_STATE_REBUILD;
561                 else if (state == G_RAID_SUBDISK_S_STALE ||
562                     state == G_RAID_SUBDISK_S_RESYNC)
563                         s = G_STATE_RESYNC;
564                 else
565                         s = G_STATE_ACTIVE;
566         }
567         len = sizeof(s);
568         g_io_getattr("GEOM::setstate", disk->d_consumer, &len, &s);
569         G_RAID_DEBUG1(2, disk->d_softc, "Disk %s state reported as %d.",
570             g_raid_get_diskname(disk), s);
571 }
572
573 void
574 g_raid_change_disk_state(struct g_raid_disk *disk, int state)
575 {
576
577         G_RAID_DEBUG1(0, disk->d_softc, "Disk %s state changed from %s to %s.",
578             g_raid_get_diskname(disk),
579             g_raid_disk_state2str(disk->d_state),
580             g_raid_disk_state2str(state));
581         disk->d_state = state;
582         g_raid_report_disk_state(disk);
583 }
584
585 void
586 g_raid_change_subdisk_state(struct g_raid_subdisk *sd, int state)
587 {
588
589         G_RAID_DEBUG1(0, sd->sd_softc,
590             "Subdisk %s:%d-%s state changed from %s to %s.",
591             sd->sd_volume->v_name, sd->sd_pos,
592             sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]",
593             g_raid_subdisk_state2str(sd->sd_state),
594             g_raid_subdisk_state2str(state));
595         sd->sd_state = state;
596         if (sd->sd_disk)
597                 g_raid_report_disk_state(sd->sd_disk);
598 }
599
600 void
601 g_raid_change_volume_state(struct g_raid_volume *vol, int state)
602 {
603
604         G_RAID_DEBUG1(0, vol->v_softc,
605             "Volume %s state changed from %s to %s.",
606             vol->v_name,
607             g_raid_volume_state2str(vol->v_state),
608             g_raid_volume_state2str(state));
609         vol->v_state = state;
610 }
611
612 /*
613  * --- Events handling functions ---
614  * Events in geom_raid are used to maintain subdisks and volumes status
615  * from one thread to simplify locking.
616  */
617 static void
618 g_raid_event_free(struct g_raid_event *ep)
619 {
620
621         free(ep, M_RAID);
622 }
623
624 int
625 g_raid_event_send(void *arg, int event, int flags)
626 {
627         struct g_raid_softc *sc;
628         struct g_raid_event *ep;
629         int error;
630
631         if ((flags & G_RAID_EVENT_VOLUME) != 0) {
632                 sc = ((struct g_raid_volume *)arg)->v_softc;
633         } else if ((flags & G_RAID_EVENT_DISK) != 0) {
634                 sc = ((struct g_raid_disk *)arg)->d_softc;
635         } else if ((flags & G_RAID_EVENT_SUBDISK) != 0) {
636                 sc = ((struct g_raid_subdisk *)arg)->sd_softc;
637         } else {
638                 sc = arg;
639         }
640         ep = malloc(sizeof(*ep), M_RAID,
641             sx_xlocked(&sc->sc_lock) ? M_WAITOK : M_NOWAIT);
642         if (ep == NULL)
643                 return (ENOMEM);
644         ep->e_tgt = arg;
645         ep->e_event = event;
646         ep->e_flags = flags;
647         ep->e_error = 0;
648         G_RAID_DEBUG1(4, sc, "Sending event %p. Waking up %p.", ep, sc);
649         mtx_lock(&sc->sc_queue_mtx);
650         TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
651         mtx_unlock(&sc->sc_queue_mtx);
652         wakeup(sc);
653
654         if ((flags & G_RAID_EVENT_WAIT) == 0)
655                 return (0);
656
657         sx_assert(&sc->sc_lock, SX_XLOCKED);
658         G_RAID_DEBUG1(4, sc, "Sleeping on %p.", ep);
659         sx_xunlock(&sc->sc_lock);
660         while ((ep->e_flags & G_RAID_EVENT_DONE) == 0) {
661                 mtx_lock(&sc->sc_queue_mtx);
662                 MSLEEP(error, ep, &sc->sc_queue_mtx, PRIBIO | PDROP, "m:event",
663                     hz * 5);
664         }
665         error = ep->e_error;
666         g_raid_event_free(ep);
667         sx_xlock(&sc->sc_lock);
668         return (error);
669 }
670
671 static void
672 g_raid_event_cancel(struct g_raid_softc *sc, void *tgt)
673 {
674         struct g_raid_event *ep, *tmpep;
675
676         sx_assert(&sc->sc_lock, SX_XLOCKED);
677
678         mtx_lock(&sc->sc_queue_mtx);
679         TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
680                 if (ep->e_tgt != tgt)
681                         continue;
682                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
683                 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0)
684                         g_raid_event_free(ep);
685                 else {
686                         ep->e_error = ECANCELED;
687                         wakeup(ep);
688                 }
689         }
690         mtx_unlock(&sc->sc_queue_mtx);
691 }
692
693 static int
694 g_raid_event_check(struct g_raid_softc *sc, void *tgt)
695 {
696         struct g_raid_event *ep;
697         int     res = 0;
698
699         sx_assert(&sc->sc_lock, SX_XLOCKED);
700
701         mtx_lock(&sc->sc_queue_mtx);
702         TAILQ_FOREACH(ep, &sc->sc_events, e_next) {
703                 if (ep->e_tgt != tgt)
704                         continue;
705                 res = 1;
706                 break;
707         }
708         mtx_unlock(&sc->sc_queue_mtx);
709         return (res);
710 }
711
712 /*
713  * Return the number of disks in given state.
714  * If state is equal to -1, count all connected disks.
715  */
716 u_int
717 g_raid_ndisks(struct g_raid_softc *sc, int state)
718 {
719         struct g_raid_disk *disk;
720         u_int n;
721
722         sx_assert(&sc->sc_lock, SX_LOCKED);
723
724         n = 0;
725         TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
726                 if (disk->d_state == state || state == -1)
727                         n++;
728         }
729         return (n);
730 }
731
732 /*
733  * Return the number of subdisks in given state.
734  * If state is equal to -1, count all connected disks.
735  */
736 u_int
737 g_raid_nsubdisks(struct g_raid_volume *vol, int state)
738 {
739         struct g_raid_subdisk *subdisk;
740         struct g_raid_softc *sc;
741         u_int i, n ;
742
743         sc = vol->v_softc;
744         sx_assert(&sc->sc_lock, SX_LOCKED);
745
746         n = 0;
747         for (i = 0; i < vol->v_disks_count; i++) {
748                 subdisk = &vol->v_subdisks[i];
749                 if ((state == -1 &&
750                      subdisk->sd_state != G_RAID_SUBDISK_S_NONE) ||
751                     subdisk->sd_state == state)
752                         n++;
753         }
754         return (n);
755 }
756
757 /*
758  * Return the first subdisk in given state.
759  * If state is equal to -1, then the first connected disks.
760  */
761 struct g_raid_subdisk *
762 g_raid_get_subdisk(struct g_raid_volume *vol, int state)
763 {
764         struct g_raid_subdisk *sd;
765         struct g_raid_softc *sc;
766         u_int i;
767
768         sc = vol->v_softc;
769         sx_assert(&sc->sc_lock, SX_LOCKED);
770
771         for (i = 0; i < vol->v_disks_count; i++) {
772                 sd = &vol->v_subdisks[i];
773                 if ((state == -1 &&
774                      sd->sd_state != G_RAID_SUBDISK_S_NONE) ||
775                     sd->sd_state == state)
776                         return (sd);
777         }
778         return (NULL);
779 }
780
781 struct g_consumer *
782 g_raid_open_consumer(struct g_raid_softc *sc, const char *name)
783 {
784         struct g_consumer *cp;
785         struct g_provider *pp;
786
787         g_topology_assert();
788
789         if (strncmp(name, "/dev/", 5) == 0)
790                 name += 5;
791         pp = g_provider_by_name(name);
792         if (pp == NULL)
793                 return (NULL);
794         cp = g_new_consumer(sc->sc_geom);
795         if (g_attach(cp, pp) != 0) {
796                 g_destroy_consumer(cp);
797                 return (NULL);
798         }
799         if (g_access(cp, 1, 1, 1) != 0) {
800                 g_detach(cp);
801                 g_destroy_consumer(cp);
802                 return (NULL);
803         }
804         return (cp);
805 }
806
807 static u_int
808 g_raid_nrequests(struct g_raid_softc *sc, struct g_consumer *cp)
809 {
810         struct bio *bp;
811         u_int nreqs = 0;
812
813         mtx_lock(&sc->sc_queue_mtx);
814         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
815                 if (bp->bio_from == cp)
816                         nreqs++;
817         }
818         mtx_unlock(&sc->sc_queue_mtx);
819         return (nreqs);
820 }
821
822 u_int
823 g_raid_nopens(struct g_raid_softc *sc)
824 {
825         struct g_raid_volume *vol;
826         u_int opens;
827
828         opens = 0;
829         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
830                 if (vol->v_provider_open != 0)
831                         opens++;
832         }
833         return (opens);
834 }
835
836 static int
837 g_raid_consumer_is_busy(struct g_raid_softc *sc, struct g_consumer *cp)
838 {
839
840         if (cp->index > 0) {
841                 G_RAID_DEBUG1(2, sc,
842                     "I/O requests for %s exist, can't destroy it now.",
843                     cp->provider->name);
844                 return (1);
845         }
846         if (g_raid_nrequests(sc, cp) > 0) {
847                 G_RAID_DEBUG1(2, sc,
848                     "I/O requests for %s in queue, can't destroy it now.",
849                     cp->provider->name);
850                 return (1);
851         }
852         return (0);
853 }
854
855 static void
856 g_raid_destroy_consumer(void *arg, int flags __unused)
857 {
858         struct g_consumer *cp;
859
860         g_topology_assert();
861
862         cp = arg;
863         G_RAID_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
864         g_detach(cp);
865         g_destroy_consumer(cp);
866 }
867
868 void
869 g_raid_kill_consumer(struct g_raid_softc *sc, struct g_consumer *cp)
870 {
871         struct g_provider *pp;
872         int retaste_wait;
873
874         g_topology_assert_not();
875
876         g_topology_lock();
877         cp->private = NULL;
878         if (g_raid_consumer_is_busy(sc, cp))
879                 goto out;
880         pp = cp->provider;
881         retaste_wait = 0;
882         if (cp->acw == 1) {
883                 if ((pp->geom->flags & G_GEOM_WITHER) == 0)
884                         retaste_wait = 1;
885         }
886         if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
887                 g_access(cp, -cp->acr, -cp->acw, -cp->ace);
888         if (retaste_wait) {
889                 /*
890                  * After retaste event was send (inside g_access()), we can send
891                  * event to detach and destroy consumer.
892                  * A class, which has consumer to the given provider connected
893                  * will not receive retaste event for the provider.
894                  * This is the way how I ignore retaste events when I close
895                  * consumers opened for write: I detach and destroy consumer
896                  * after retaste event is sent.
897                  */
898                 g_post_event(g_raid_destroy_consumer, cp, M_WAITOK, NULL);
899                 goto out;
900         }
901         G_RAID_DEBUG(1, "Consumer %s destroyed.", pp->name);
902         g_detach(cp);
903         g_destroy_consumer(cp);
904 out:
905         g_topology_unlock();
906 }
907
908 static void
909 g_raid_orphan(struct g_consumer *cp)
910 {
911         struct g_raid_disk *disk;
912
913         g_topology_assert();
914
915         disk = cp->private;
916         if (disk == NULL)
917                 return;
918         g_raid_event_send(disk, G_RAID_DISK_E_DISCONNECTED,
919             G_RAID_EVENT_DISK);
920 }
921
922 static void
923 g_raid_clean(struct g_raid_volume *vol, int acw)
924 {
925         struct g_raid_softc *sc;
926         int timeout;
927
928         sc = vol->v_softc;
929         g_topology_assert_not();
930         sx_assert(&sc->sc_lock, SX_XLOCKED);
931
932 //      if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
933 //              return;
934         if (!vol->v_dirty)
935                 return;
936         if (vol->v_writes > 0)
937                 return;
938         if (acw > 0 || (acw == -1 &&
939             vol->v_provider != NULL && vol->v_provider->acw > 0)) {
940                 timeout = g_raid_clean_time - (time_uptime - vol->v_last_write);
941                 if (!g_raid_shutdown && timeout > 0)
942                         return;
943         }
944         vol->v_dirty = 0;
945         G_RAID_DEBUG1(1, sc, "Volume %s marked as clean.",
946             vol->v_name);
947         g_raid_write_metadata(sc, vol, NULL, NULL);
948 }
949
950 static void
951 g_raid_dirty(struct g_raid_volume *vol)
952 {
953         struct g_raid_softc *sc;
954
955         sc = vol->v_softc;
956         g_topology_assert_not();
957         sx_assert(&sc->sc_lock, SX_XLOCKED);
958
959 //      if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
960 //              return;
961         vol->v_dirty = 1;
962         G_RAID_DEBUG1(1, sc, "Volume %s marked as dirty.",
963             vol->v_name);
964         g_raid_write_metadata(sc, vol, NULL, NULL);
965 }
966
967 void
968 g_raid_tr_flush_common(struct g_raid_tr_object *tr, struct bio *bp)
969 {
970         struct g_raid_softc *sc;
971         struct g_raid_volume *vol;
972         struct g_raid_subdisk *sd;
973         struct bio_queue_head queue;
974         struct bio *cbp;
975         int i;
976
977         vol = tr->tro_volume;
978         sc = vol->v_softc;
979
980         /*
981          * Allocate all bios before sending any request, so we can return
982          * ENOMEM in nice and clean way.
983          */
984         bioq_init(&queue);
985         for (i = 0; i < vol->v_disks_count; i++) {
986                 sd = &vol->v_subdisks[i];
987                 if (sd->sd_state == G_RAID_SUBDISK_S_NONE ||
988                     sd->sd_state == G_RAID_SUBDISK_S_FAILED)
989                         continue;
990                 cbp = g_clone_bio(bp);
991                 if (cbp == NULL)
992                         goto failure;
993                 cbp->bio_caller1 = sd;
994                 bioq_insert_tail(&queue, cbp);
995         }
996         while ((cbp = bioq_takefirst(&queue)) != NULL) {
997                 sd = cbp->bio_caller1;
998                 cbp->bio_caller1 = NULL;
999                 g_raid_subdisk_iostart(sd, cbp);
1000         }
1001         return;
1002 failure:
1003         while ((cbp = bioq_takefirst(&queue)) != NULL)
1004                 g_destroy_bio(cbp);
1005         if (bp->bio_error == 0)
1006                 bp->bio_error = ENOMEM;
1007         g_raid_iodone(bp, bp->bio_error);
1008 }
1009
1010 static void
1011 g_raid_tr_kerneldump_common_done(struct bio *bp)
1012 {
1013
1014         bp->bio_flags |= BIO_DONE;
1015 }
1016
1017 int
1018 g_raid_tr_kerneldump_common(struct g_raid_tr_object *tr,
1019     void *virtual, vm_offset_t physical, off_t offset, size_t length)
1020 {
1021         struct g_raid_softc *sc;
1022         struct g_raid_volume *vol;
1023         struct bio bp;
1024
1025         vol = tr->tro_volume;
1026         sc = vol->v_softc;
1027
1028         bzero(&bp, sizeof(bp));
1029         bp.bio_cmd = BIO_WRITE;
1030         bp.bio_done = g_raid_tr_kerneldump_common_done;
1031         bp.bio_attribute = NULL;
1032         bp.bio_offset = offset;
1033         bp.bio_length = length;
1034         bp.bio_data = virtual;
1035         bp.bio_to = vol->v_provider;
1036
1037         g_raid_start(&bp);
1038         while (!(bp.bio_flags & BIO_DONE)) {
1039                 G_RAID_DEBUG1(4, sc, "Poll...");
1040                 g_raid_poll(sc);
1041                 DELAY(10);
1042         }
1043
1044         return (bp.bio_error != 0 ? EIO : 0);
1045 }
1046
1047 static int
1048 g_raid_dump(void *arg,
1049     void *virtual, vm_offset_t physical, off_t offset, size_t length)
1050 {
1051         struct g_raid_volume *vol;
1052         int error;
1053
1054         vol = (struct g_raid_volume *)arg;
1055         G_RAID_DEBUG1(3, vol->v_softc, "Dumping at off %llu len %llu.",
1056             (long long unsigned)offset, (long long unsigned)length);
1057
1058         error = G_RAID_TR_KERNELDUMP(vol->v_tr,
1059             virtual, physical, offset, length);
1060         return (error);
1061 }
1062
1063 static void
1064 g_raid_kerneldump(struct g_raid_softc *sc, struct bio *bp)
1065 {
1066         struct g_kerneldump *gkd;
1067         struct g_provider *pp;
1068         struct g_raid_volume *vol;
1069
1070         gkd = (struct g_kerneldump*)bp->bio_data;
1071         pp = bp->bio_to;
1072         vol = pp->private;
1073         g_trace(G_T_TOPOLOGY, "g_raid_kerneldump(%s, %jd, %jd)",
1074                 pp->name, (intmax_t)gkd->offset, (intmax_t)gkd->length);
1075         gkd->di.dumper = g_raid_dump;
1076         gkd->di.priv = vol;
1077         gkd->di.blocksize = vol->v_sectorsize;
1078         gkd->di.maxiosize = DFLTPHYS;
1079         gkd->di.mediaoffset = gkd->offset;
1080         if ((gkd->offset + gkd->length) > vol->v_mediasize)
1081                 gkd->length = vol->v_mediasize - gkd->offset;
1082         gkd->di.mediasize = gkd->length;
1083         g_io_deliver(bp, 0);
1084 }
1085
1086 static void
1087 g_raid_candelete(struct g_raid_softc *sc, struct bio *bp)
1088 {
1089         struct g_provider *pp;
1090         struct g_raid_volume *vol;
1091         struct g_raid_subdisk *sd;
1092         int *val;
1093         int i;
1094
1095         val = (int *)bp->bio_data;
1096         pp = bp->bio_to;
1097         vol = pp->private;
1098         *val = 0;
1099         for (i = 0; i < vol->v_disks_count; i++) {
1100                 sd = &vol->v_subdisks[i];
1101                 if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
1102                         continue;
1103                 if (sd->sd_disk->d_candelete) {
1104                         *val = 1;
1105                         break;
1106                 }
1107         }
1108         g_io_deliver(bp, 0);
1109 }
1110
1111 static void
1112 g_raid_start(struct bio *bp)
1113 {
1114         struct g_raid_softc *sc;
1115
1116         sc = bp->bio_to->geom->softc;
1117         /*
1118          * If sc == NULL or there are no valid disks, provider's error
1119          * should be set and g_raid_start() should not be called at all.
1120          */
1121 //      KASSERT(sc != NULL && sc->sc_state == G_RAID_VOLUME_S_RUNNING,
1122 //          ("Provider's error should be set (error=%d)(mirror=%s).",
1123 //          bp->bio_to->error, bp->bio_to->name));
1124         G_RAID_LOGREQ(3, bp, "Request received.");
1125
1126         switch (bp->bio_cmd) {
1127         case BIO_READ:
1128         case BIO_WRITE:
1129         case BIO_DELETE:
1130         case BIO_FLUSH:
1131                 break;
1132         case BIO_GETATTR:
1133                 if (!strcmp(bp->bio_attribute, "GEOM::candelete"))
1134                         g_raid_candelete(sc, bp);
1135                 else if (!strcmp(bp->bio_attribute, "GEOM::kerneldump"))
1136                         g_raid_kerneldump(sc, bp);
1137                 else
1138                         g_io_deliver(bp, EOPNOTSUPP);
1139                 return;
1140         default:
1141                 g_io_deliver(bp, EOPNOTSUPP);
1142                 return;
1143         }
1144         mtx_lock(&sc->sc_queue_mtx);
1145         bioq_insert_tail(&sc->sc_queue, bp);
1146         mtx_unlock(&sc->sc_queue_mtx);
1147         if (!dumping) {
1148                 G_RAID_DEBUG1(4, sc, "Waking up %p.", sc);
1149                 wakeup(sc);
1150         }
1151 }
1152
1153 static int
1154 g_raid_bio_overlaps(const struct bio *bp, off_t lstart, off_t len)
1155 {
1156         /*
1157          * 5 cases:
1158          * (1) bp entirely below NO
1159          * (2) bp entirely above NO
1160          * (3) bp start below, but end in range YES
1161          * (4) bp entirely within YES
1162          * (5) bp starts within, ends above YES
1163          *
1164          * lock range 10-19 (offset 10 length 10)
1165          * (1) 1-5: first if kicks it out
1166          * (2) 30-35: second if kicks it out
1167          * (3) 5-15: passes both ifs
1168          * (4) 12-14: passes both ifs
1169          * (5) 19-20: passes both
1170          */
1171         off_t lend = lstart + len - 1;
1172         off_t bstart = bp->bio_offset;
1173         off_t bend = bp->bio_offset + bp->bio_length - 1;
1174
1175         if (bend < lstart)
1176                 return (0);
1177         if (lend < bstart)
1178                 return (0);
1179         return (1);
1180 }
1181
1182 static int
1183 g_raid_is_in_locked_range(struct g_raid_volume *vol, const struct bio *bp)
1184 {
1185         struct g_raid_lock *lp;
1186
1187         sx_assert(&vol->v_softc->sc_lock, SX_LOCKED);
1188
1189         LIST_FOREACH(lp, &vol->v_locks, l_next) {
1190                 if (g_raid_bio_overlaps(bp, lp->l_offset, lp->l_length))
1191                         return (1);
1192         }
1193         return (0);
1194 }
1195
1196 static void
1197 g_raid_start_request(struct bio *bp)
1198 {
1199         struct g_raid_softc *sc;
1200         struct g_raid_volume *vol;
1201
1202         sc = bp->bio_to->geom->softc;
1203         sx_assert(&sc->sc_lock, SX_LOCKED);
1204         vol = bp->bio_to->private;
1205
1206         /*
1207          * Check to see if this item is in a locked range.  If so,
1208          * queue it to our locked queue and return.  We'll requeue
1209          * it when the range is unlocked.  Internal I/O for the
1210          * rebuild/rescan/recovery process is excluded from this
1211          * check so we can actually do the recovery.
1212          */
1213         if (!(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL) &&
1214             g_raid_is_in_locked_range(vol, bp)) {
1215                 G_RAID_LOGREQ(3, bp, "Defer request.");
1216                 bioq_insert_tail(&vol->v_locked, bp);
1217                 return;
1218         }
1219
1220         /*
1221          * If we're actually going to do the write/delete, then
1222          * update the idle stats for the volume.
1223          */
1224         if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
1225                 if (!vol->v_dirty)
1226                         g_raid_dirty(vol);
1227                 vol->v_writes++;
1228         }
1229
1230         /*
1231          * Put request onto inflight queue, so we can check if new
1232          * synchronization requests don't collide with it.  Then tell
1233          * the transformation layer to start the I/O.
1234          */
1235         bioq_insert_tail(&vol->v_inflight, bp);
1236         G_RAID_LOGREQ(4, bp, "Request started");
1237         G_RAID_TR_IOSTART(vol->v_tr, bp);
1238 }
1239
1240 static void
1241 g_raid_finish_with_locked_ranges(struct g_raid_volume *vol, struct bio *bp)
1242 {
1243         off_t off, len;
1244         struct bio *nbp;
1245         struct g_raid_lock *lp;
1246
1247         vol->v_pending_lock = 0;
1248         LIST_FOREACH(lp, &vol->v_locks, l_next) {
1249                 if (lp->l_pending) {
1250                         off = lp->l_offset;
1251                         len = lp->l_length;
1252                         lp->l_pending = 0;
1253                         TAILQ_FOREACH(nbp, &vol->v_inflight.queue, bio_queue) {
1254                                 if (g_raid_bio_overlaps(nbp, off, len))
1255                                         lp->l_pending++;
1256                         }
1257                         if (lp->l_pending) {
1258                                 vol->v_pending_lock = 1;
1259                                 G_RAID_DEBUG1(4, vol->v_softc,
1260                                     "Deferred lock(%jd, %jd) has %d pending",
1261                                     (intmax_t)off, (intmax_t)(off + len),
1262                                     lp->l_pending);
1263                                 continue;
1264                         }
1265                         G_RAID_DEBUG1(4, vol->v_softc,
1266                             "Deferred lock of %jd to %jd completed",
1267                             (intmax_t)off, (intmax_t)(off + len));
1268                         G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
1269                 }
1270         }
1271 }
1272
1273 void
1274 g_raid_iodone(struct bio *bp, int error)
1275 {
1276         struct g_raid_softc *sc;
1277         struct g_raid_volume *vol;
1278
1279         sc = bp->bio_to->geom->softc;
1280         sx_assert(&sc->sc_lock, SX_LOCKED);
1281         vol = bp->bio_to->private;
1282         G_RAID_LOGREQ(3, bp, "Request done: %d.", error);
1283
1284         /* Update stats if we done write/delete. */
1285         if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
1286                 vol->v_writes--;
1287                 vol->v_last_write = time_uptime;
1288         }
1289
1290         bioq_remove(&vol->v_inflight, bp);
1291         if (vol->v_pending_lock && g_raid_is_in_locked_range(vol, bp))
1292                 g_raid_finish_with_locked_ranges(vol, bp);
1293         getmicrouptime(&vol->v_last_done);
1294         g_io_deliver(bp, error);
1295 }
1296
1297 int
1298 g_raid_lock_range(struct g_raid_volume *vol, off_t off, off_t len,
1299     struct bio *ignore, void *argp)
1300 {
1301         struct g_raid_softc *sc;
1302         struct g_raid_lock *lp;
1303         struct bio *bp;
1304
1305         sc = vol->v_softc;
1306         lp = malloc(sizeof(*lp), M_RAID, M_WAITOK | M_ZERO);
1307         LIST_INSERT_HEAD(&vol->v_locks, lp, l_next);
1308         lp->l_offset = off;
1309         lp->l_length = len;
1310         lp->l_callback_arg = argp;
1311
1312         lp->l_pending = 0;
1313         TAILQ_FOREACH(bp, &vol->v_inflight.queue, bio_queue) {
1314                 if (bp != ignore && g_raid_bio_overlaps(bp, off, len))
1315                         lp->l_pending++;
1316         }       
1317
1318         /*
1319          * If there are any writes that are pending, we return EBUSY.  All
1320          * callers will have to wait until all pending writes clear.
1321          */
1322         if (lp->l_pending > 0) {
1323                 vol->v_pending_lock = 1;
1324                 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd deferred %d pend",
1325                     (intmax_t)off, (intmax_t)(off+len), lp->l_pending);
1326                 return (EBUSY);
1327         }
1328         G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd",
1329             (intmax_t)off, (intmax_t)(off+len));
1330         G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
1331         return (0);
1332 }
1333
1334 int
1335 g_raid_unlock_range(struct g_raid_volume *vol, off_t off, off_t len)
1336 {
1337         struct g_raid_lock *lp;
1338         struct g_raid_softc *sc;
1339         struct bio *bp;
1340
1341         sc = vol->v_softc;
1342         LIST_FOREACH(lp, &vol->v_locks, l_next) {
1343                 if (lp->l_offset == off && lp->l_length == len) {
1344                         LIST_REMOVE(lp, l_next);
1345                         /* XXX
1346                          * Right now we just put them all back on the queue
1347                          * and hope for the best.  We hope this because any
1348                          * locked ranges will go right back on this list
1349                          * when the worker thread runs.
1350                          * XXX
1351                          */
1352                         G_RAID_DEBUG1(4, sc, "Unlocked %jd to %jd",
1353                             (intmax_t)lp->l_offset,
1354                             (intmax_t)(lp->l_offset+lp->l_length));
1355                         mtx_lock(&sc->sc_queue_mtx);
1356                         while ((bp = bioq_takefirst(&vol->v_locked)) != NULL)
1357                                 bioq_insert_tail(&sc->sc_queue, bp);
1358                         mtx_unlock(&sc->sc_queue_mtx);
1359                         free(lp, M_RAID);
1360                         return (0);
1361                 }
1362         }
1363         return (EINVAL);
1364 }
1365
1366 void
1367 g_raid_subdisk_iostart(struct g_raid_subdisk *sd, struct bio *bp)
1368 {
1369         struct g_consumer *cp;
1370         struct g_raid_disk *disk, *tdisk;
1371
1372         bp->bio_caller1 = sd;
1373
1374         /*
1375          * Make sure that the disk is present. Generally it is a task of
1376          * transformation layers to not send requests to absent disks, but
1377          * it is better to be safe and report situation then sorry.
1378          */
1379         if (sd->sd_disk == NULL) {
1380                 G_RAID_LOGREQ(0, bp, "Warning! I/O request to an absent disk!");
1381 nodisk:
1382                 bp->bio_from = NULL;
1383                 bp->bio_to = NULL;
1384                 bp->bio_error = ENXIO;
1385                 g_raid_disk_done(bp);
1386                 return;
1387         }
1388         disk = sd->sd_disk;
1389         if (disk->d_state != G_RAID_DISK_S_ACTIVE &&
1390             disk->d_state != G_RAID_DISK_S_FAILED) {
1391                 G_RAID_LOGREQ(0, bp, "Warning! I/O request to a disk in a "
1392                     "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
1393                 goto nodisk;
1394         }
1395
1396         cp = disk->d_consumer;
1397         bp->bio_from = cp;
1398         bp->bio_to = cp->provider;
1399         cp->index++;
1400
1401         /* Update average disks load. */
1402         TAILQ_FOREACH(tdisk, &sd->sd_softc->sc_disks, d_next) {
1403                 if (tdisk->d_consumer == NULL)
1404                         tdisk->d_load = 0;
1405                 else
1406                         tdisk->d_load = (tdisk->d_consumer->index *
1407                             G_RAID_SUBDISK_LOAD_SCALE + tdisk->d_load * 7) / 8;
1408         }
1409
1410         disk->d_last_offset = bp->bio_offset + bp->bio_length;
1411         if (dumping) {
1412                 G_RAID_LOGREQ(3, bp, "Sending dumping request.");
1413                 if (bp->bio_cmd == BIO_WRITE) {
1414                         bp->bio_error = g_raid_subdisk_kerneldump(sd,
1415                             bp->bio_data, 0, bp->bio_offset, bp->bio_length);
1416                 } else
1417                         bp->bio_error = EOPNOTSUPP;
1418                 g_raid_disk_done(bp);
1419         } else {
1420                 bp->bio_done = g_raid_disk_done;
1421                 bp->bio_offset += sd->sd_offset;
1422                 G_RAID_LOGREQ(3, bp, "Sending request.");
1423                 g_io_request(bp, cp);
1424         }
1425 }
1426
1427 int
1428 g_raid_subdisk_kerneldump(struct g_raid_subdisk *sd,
1429     void *virtual, vm_offset_t physical, off_t offset, size_t length)
1430 {
1431
1432         if (sd->sd_disk == NULL)
1433                 return (ENXIO);
1434         if (sd->sd_disk->d_kd.di.dumper == NULL)
1435                 return (EOPNOTSUPP);
1436         return (dump_write(&sd->sd_disk->d_kd.di,
1437             virtual, physical,
1438             sd->sd_disk->d_kd.di.mediaoffset + sd->sd_offset + offset,
1439             length));
1440 }
1441
1442 static void
1443 g_raid_disk_done(struct bio *bp)
1444 {
1445         struct g_raid_softc *sc;
1446         struct g_raid_subdisk *sd;
1447
1448         sd = bp->bio_caller1;
1449         sc = sd->sd_softc;
1450         mtx_lock(&sc->sc_queue_mtx);
1451         bioq_insert_tail(&sc->sc_queue, bp);
1452         mtx_unlock(&sc->sc_queue_mtx);
1453         if (!dumping)
1454                 wakeup(sc);
1455 }
1456
1457 static void
1458 g_raid_disk_done_request(struct bio *bp)
1459 {
1460         struct g_raid_softc *sc;
1461         struct g_raid_disk *disk;
1462         struct g_raid_subdisk *sd;
1463         struct g_raid_volume *vol;
1464
1465         g_topology_assert_not();
1466
1467         G_RAID_LOGREQ(3, bp, "Disk request done: %d.", bp->bio_error);
1468         sd = bp->bio_caller1;
1469         sc = sd->sd_softc;
1470         vol = sd->sd_volume;
1471         if (bp->bio_from != NULL) {
1472                 bp->bio_from->index--;
1473                 disk = bp->bio_from->private;
1474                 if (disk == NULL)
1475                         g_raid_kill_consumer(sc, bp->bio_from);
1476         }
1477         bp->bio_offset -= sd->sd_offset;
1478
1479         G_RAID_TR_IODONE(vol->v_tr, sd, bp);
1480 }
1481
1482 static void
1483 g_raid_handle_event(struct g_raid_softc *sc, struct g_raid_event *ep)
1484 {
1485
1486         if ((ep->e_flags & G_RAID_EVENT_VOLUME) != 0)
1487                 ep->e_error = g_raid_update_volume(ep->e_tgt, ep->e_event);
1488         else if ((ep->e_flags & G_RAID_EVENT_DISK) != 0)
1489                 ep->e_error = g_raid_update_disk(ep->e_tgt, ep->e_event);
1490         else if ((ep->e_flags & G_RAID_EVENT_SUBDISK) != 0)
1491                 ep->e_error = g_raid_update_subdisk(ep->e_tgt, ep->e_event);
1492         else
1493                 ep->e_error = g_raid_update_node(ep->e_tgt, ep->e_event);
1494         if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) {
1495                 KASSERT(ep->e_error == 0,
1496                     ("Error cannot be handled."));
1497                 g_raid_event_free(ep);
1498         } else {
1499                 ep->e_flags |= G_RAID_EVENT_DONE;
1500                 G_RAID_DEBUG1(4, sc, "Waking up %p.", ep);
1501                 mtx_lock(&sc->sc_queue_mtx);
1502                 wakeup(ep);
1503                 mtx_unlock(&sc->sc_queue_mtx);
1504         }
1505 }
1506
1507 /*
1508  * Worker thread.
1509  */
1510 static void
1511 g_raid_worker(void *arg)
1512 {
1513         struct g_raid_softc *sc;
1514         struct g_raid_event *ep;
1515         struct g_raid_volume *vol;
1516         struct bio *bp;
1517         struct timeval now, t;
1518         int timeout, rv;
1519
1520         sc = arg;
1521         thread_lock(curthread);
1522         sched_prio(curthread, PRIBIO);
1523         thread_unlock(curthread);
1524
1525         sx_xlock(&sc->sc_lock);
1526         for (;;) {
1527                 mtx_lock(&sc->sc_queue_mtx);
1528                 /*
1529                  * First take a look at events.
1530                  * This is important to handle events before any I/O requests.
1531                  */
1532                 bp = NULL;
1533                 vol = NULL;
1534                 rv = 0;
1535                 ep = TAILQ_FIRST(&sc->sc_events);
1536                 if (ep != NULL)
1537                         TAILQ_REMOVE(&sc->sc_events, ep, e_next);
1538                 else if ((bp = bioq_takefirst(&sc->sc_queue)) != NULL)
1539                         ;
1540                 else {
1541                         getmicrouptime(&now);
1542                         t = now;
1543                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1544                                 if (bioq_first(&vol->v_inflight) == NULL &&
1545                                     vol->v_tr &&
1546                                     timevalcmp(&vol->v_last_done, &t, < ))
1547                                         t = vol->v_last_done;
1548                         }
1549                         timevalsub(&t, &now);
1550                         timeout = g_raid_idle_threshold +
1551                             t.tv_sec * 1000000 + t.tv_usec;
1552                         if (timeout > 0) {
1553                                 /*
1554                                  * Two steps to avoid overflows at HZ=1000
1555                                  * and idle timeouts > 2.1s.  Some rounding
1556                                  * errors can occur, but they are < 1tick,
1557                                  * which is deemed to be close enough for
1558                                  * this purpose.
1559                                  */
1560                                 int micpertic = 1000000 / hz;
1561                                 timeout = (timeout + micpertic - 1) / micpertic;
1562                                 sx_xunlock(&sc->sc_lock);
1563                                 MSLEEP(rv, sc, &sc->sc_queue_mtx,
1564                                     PRIBIO | PDROP, "-", timeout);
1565                                 sx_xlock(&sc->sc_lock);
1566                                 goto process;
1567                         } else
1568                                 rv = EWOULDBLOCK;
1569                 }
1570                 mtx_unlock(&sc->sc_queue_mtx);
1571 process:
1572                 if (ep != NULL) {
1573                         g_raid_handle_event(sc, ep);
1574                 } else if (bp != NULL) {
1575                         if (bp->bio_to != NULL &&
1576                             bp->bio_to->geom == sc->sc_geom)
1577                                 g_raid_start_request(bp);
1578                         else
1579                                 g_raid_disk_done_request(bp);
1580                 } else if (rv == EWOULDBLOCK) {
1581                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1582                                 g_raid_clean(vol, -1);
1583                                 if (bioq_first(&vol->v_inflight) == NULL &&
1584                                     vol->v_tr) {
1585                                         t.tv_sec = g_raid_idle_threshold / 1000000;
1586                                         t.tv_usec = g_raid_idle_threshold % 1000000;
1587                                         timevaladd(&t, &vol->v_last_done);
1588                                         getmicrouptime(&now);
1589                                         if (timevalcmp(&t, &now, <= )) {
1590                                                 G_RAID_TR_IDLE(vol->v_tr);
1591                                                 vol->v_last_done = now;
1592                                         }
1593                                 }
1594                         }
1595                 }
1596                 if (sc->sc_stopping == G_RAID_DESTROY_HARD)
1597                         g_raid_destroy_node(sc, 1);     /* May not return. */
1598         }
1599 }
1600
1601 static void
1602 g_raid_poll(struct g_raid_softc *sc)
1603 {
1604         struct g_raid_event *ep;
1605         struct bio *bp;
1606
1607         sx_xlock(&sc->sc_lock);
1608         mtx_lock(&sc->sc_queue_mtx);
1609         /*
1610          * First take a look at events.
1611          * This is important to handle events before any I/O requests.
1612          */
1613         ep = TAILQ_FIRST(&sc->sc_events);
1614         if (ep != NULL) {
1615                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
1616                 mtx_unlock(&sc->sc_queue_mtx);
1617                 g_raid_handle_event(sc, ep);
1618                 goto out;
1619         }
1620         bp = bioq_takefirst(&sc->sc_queue);
1621         if (bp != NULL) {
1622                 mtx_unlock(&sc->sc_queue_mtx);
1623                 if (bp->bio_from == NULL ||
1624                     bp->bio_from->geom != sc->sc_geom)
1625                         g_raid_start_request(bp);
1626                 else
1627                         g_raid_disk_done_request(bp);
1628         }
1629 out:
1630         sx_xunlock(&sc->sc_lock);
1631 }
1632
1633 static void
1634 g_raid_launch_provider(struct g_raid_volume *vol)
1635 {
1636         struct g_raid_disk *disk;
1637         struct g_raid_subdisk *sd;
1638         struct g_raid_softc *sc;
1639         struct g_provider *pp;
1640         char name[G_RAID_MAX_VOLUMENAME];
1641         char   announce_buf[80], buf1[32];
1642         off_t off;
1643         int i;
1644
1645         sc = vol->v_softc;
1646         sx_assert(&sc->sc_lock, SX_LOCKED);
1647
1648         g_topology_lock();
1649         /* Try to name provider with volume name. */
1650         snprintf(name, sizeof(name), "raid/%s", vol->v_name);
1651         if (g_raid_name_format == 0 || vol->v_name[0] == 0 ||
1652             g_provider_by_name(name) != NULL) {
1653                 /* Otherwise use sequential volume number. */
1654                 snprintf(name, sizeof(name), "raid/r%d", vol->v_global_id);
1655         }
1656
1657         /*
1658          * Create a /dev/ar%d that the old ataraid(4) stack once
1659          * created as an alias for /dev/raid/r%d if requested.
1660          * This helps going from stable/7 ataraid devices to newer
1661          * FreeBSD releases. sbruno 07 MAY 2013
1662          */
1663
1664         if (ar_legacy_aliases) {
1665                 snprintf(announce_buf, sizeof(announce_buf),
1666                         "kern.devalias.%s", name);
1667                 snprintf(buf1, sizeof(buf1),
1668                         "ar%d", vol->v_global_id);
1669                 setenv(announce_buf, buf1);
1670         }
1671
1672         pp = g_new_providerf(sc->sc_geom, "%s", name);
1673         if (vol->v_tr->tro_class->trc_accept_unmapped) {
1674                 pp->flags |= G_PF_ACCEPT_UNMAPPED;
1675                 for (i = 0; i < vol->v_disks_count; i++) {
1676                         sd = &vol->v_subdisks[i];
1677                         if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
1678                                 continue;
1679                         if ((sd->sd_disk->d_consumer->provider->flags &
1680                             G_PF_ACCEPT_UNMAPPED) == 0)
1681                                 pp->flags &= ~G_PF_ACCEPT_UNMAPPED;
1682                 }
1683         }
1684         pp->private = vol;
1685         pp->mediasize = vol->v_mediasize;
1686         pp->sectorsize = vol->v_sectorsize;
1687         pp->stripesize = 0;
1688         pp->stripeoffset = 0;
1689         if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 ||
1690             vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 ||
1691             vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE ||
1692             vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT) {
1693                 if ((disk = vol->v_subdisks[0].sd_disk) != NULL &&
1694                     disk->d_consumer != NULL &&
1695                     disk->d_consumer->provider != NULL) {
1696                         pp->stripesize = disk->d_consumer->provider->stripesize;
1697                         off = disk->d_consumer->provider->stripeoffset;
1698                         pp->stripeoffset = off + vol->v_subdisks[0].sd_offset;
1699                         if (off > 0)
1700                                 pp->stripeoffset %= off;
1701                 }
1702                 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3) {
1703                         pp->stripesize *= (vol->v_disks_count - 1);
1704                         pp->stripeoffset *= (vol->v_disks_count - 1);
1705                 }
1706         } else
1707                 pp->stripesize = vol->v_strip_size;
1708         vol->v_provider = pp;
1709         g_error_provider(pp, 0);
1710         g_topology_unlock();
1711         G_RAID_DEBUG1(0, sc, "Provider %s for volume %s created.",
1712             pp->name, vol->v_name);
1713 }
1714
1715 static void
1716 g_raid_destroy_provider(struct g_raid_volume *vol)
1717 {
1718         struct g_raid_softc *sc;
1719         struct g_provider *pp;
1720         struct bio *bp, *tmp;
1721
1722         g_topology_assert_not();
1723         sc = vol->v_softc;
1724         pp = vol->v_provider;
1725         KASSERT(pp != NULL, ("NULL provider (volume=%s).", vol->v_name));
1726
1727         g_topology_lock();
1728         g_error_provider(pp, ENXIO);
1729         mtx_lock(&sc->sc_queue_mtx);
1730         TAILQ_FOREACH_SAFE(bp, &sc->sc_queue.queue, bio_queue, tmp) {
1731                 if (bp->bio_to != pp)
1732                         continue;
1733                 bioq_remove(&sc->sc_queue, bp);
1734                 g_io_deliver(bp, ENXIO);
1735         }
1736         mtx_unlock(&sc->sc_queue_mtx);
1737         G_RAID_DEBUG1(0, sc, "Provider %s for volume %s destroyed.",
1738             pp->name, vol->v_name);
1739         g_wither_provider(pp, ENXIO);
1740         g_topology_unlock();
1741         vol->v_provider = NULL;
1742 }
1743
1744 /*
1745  * Update device state.
1746  */
1747 static int
1748 g_raid_update_volume(struct g_raid_volume *vol, u_int event)
1749 {
1750         struct g_raid_softc *sc;
1751
1752         sc = vol->v_softc;
1753         sx_assert(&sc->sc_lock, SX_XLOCKED);
1754
1755         G_RAID_DEBUG1(2, sc, "Event %s for volume %s.",
1756             g_raid_volume_event2str(event),
1757             vol->v_name);
1758         switch (event) {
1759         case G_RAID_VOLUME_E_DOWN:
1760                 if (vol->v_provider != NULL)
1761                         g_raid_destroy_provider(vol);
1762                 break;
1763         case G_RAID_VOLUME_E_UP:
1764                 if (vol->v_provider == NULL)
1765                         g_raid_launch_provider(vol);
1766                 break;
1767         case G_RAID_VOLUME_E_START:
1768                 if (vol->v_tr)
1769                         G_RAID_TR_START(vol->v_tr);
1770                 return (0);
1771         default:
1772                 if (sc->sc_md)
1773                         G_RAID_MD_VOLUME_EVENT(sc->sc_md, vol, event);
1774                 return (0);
1775         }
1776
1777         /* Manage root mount release. */
1778         if (vol->v_starting) {
1779                 vol->v_starting = 0;
1780                 G_RAID_DEBUG1(1, sc, "root_mount_rel %p", vol->v_rootmount);
1781                 root_mount_rel(vol->v_rootmount);
1782                 vol->v_rootmount = NULL;
1783         }
1784         if (vol->v_stopping && vol->v_provider_open == 0)
1785                 g_raid_destroy_volume(vol);
1786         return (0);
1787 }
1788
1789 /*
1790  * Update subdisk state.
1791  */
1792 static int
1793 g_raid_update_subdisk(struct g_raid_subdisk *sd, u_int event)
1794 {
1795         struct g_raid_softc *sc;
1796         struct g_raid_volume *vol;
1797
1798         sc = sd->sd_softc;
1799         vol = sd->sd_volume;
1800         sx_assert(&sc->sc_lock, SX_XLOCKED);
1801
1802         G_RAID_DEBUG1(2, sc, "Event %s for subdisk %s:%d-%s.",
1803             g_raid_subdisk_event2str(event),
1804             vol->v_name, sd->sd_pos,
1805             sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
1806         if (vol->v_tr)
1807                 G_RAID_TR_EVENT(vol->v_tr, sd, event);
1808
1809         return (0);
1810 }
1811
1812 /*
1813  * Update disk state.
1814  */
1815 static int
1816 g_raid_update_disk(struct g_raid_disk *disk, u_int event)
1817 {
1818         struct g_raid_softc *sc;
1819
1820         sc = disk->d_softc;
1821         sx_assert(&sc->sc_lock, SX_XLOCKED);
1822
1823         G_RAID_DEBUG1(2, sc, "Event %s for disk %s.",
1824             g_raid_disk_event2str(event),
1825             g_raid_get_diskname(disk));
1826
1827         if (sc->sc_md)
1828                 G_RAID_MD_EVENT(sc->sc_md, disk, event);
1829         return (0);
1830 }
1831
1832 /*
1833  * Node event.
1834  */
1835 static int
1836 g_raid_update_node(struct g_raid_softc *sc, u_int event)
1837 {
1838         sx_assert(&sc->sc_lock, SX_XLOCKED);
1839
1840         G_RAID_DEBUG1(2, sc, "Event %s for the array.",
1841             g_raid_node_event2str(event));
1842
1843         if (event == G_RAID_NODE_E_WAKE)
1844                 return (0);
1845         if (sc->sc_md)
1846                 G_RAID_MD_EVENT(sc->sc_md, NULL, event);
1847         return (0);
1848 }
1849
1850 static int
1851 g_raid_access(struct g_provider *pp, int acr, int acw, int ace)
1852 {
1853         struct g_raid_volume *vol;
1854         struct g_raid_softc *sc;
1855         int dcw, opens, error = 0;
1856
1857         g_topology_assert();
1858         sc = pp->geom->softc;
1859         vol = pp->private;
1860         KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
1861         KASSERT(vol != NULL, ("NULL volume (provider=%s).", pp->name));
1862
1863         G_RAID_DEBUG1(2, sc, "Access request for %s: r%dw%de%d.", pp->name,
1864             acr, acw, ace);
1865         dcw = pp->acw + acw;
1866
1867         g_topology_unlock();
1868         sx_xlock(&sc->sc_lock);
1869         /* Deny new opens while dying. */
1870         if (sc->sc_stopping != 0 && (acr > 0 || acw > 0 || ace > 0)) {
1871                 error = ENXIO;
1872                 goto out;
1873         }
1874         /* Deny write opens for read-only volumes. */
1875         if (vol->v_read_only && acw > 0) {
1876                 error = EROFS;
1877                 goto out;
1878         }
1879         if (dcw == 0)
1880                 g_raid_clean(vol, dcw);
1881         vol->v_provider_open += acr + acw + ace;
1882         /* Handle delayed node destruction. */
1883         if (sc->sc_stopping == G_RAID_DESTROY_DELAYED &&
1884             vol->v_provider_open == 0) {
1885                 /* Count open volumes. */
1886                 opens = g_raid_nopens(sc);
1887                 if (opens == 0) {
1888                         sc->sc_stopping = G_RAID_DESTROY_HARD;
1889                         /* Wake up worker to make it selfdestruct. */
1890                         g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
1891                 }
1892         }
1893         /* Handle open volume destruction. */
1894         if (vol->v_stopping && vol->v_provider_open == 0)
1895                 g_raid_destroy_volume(vol);
1896 out:
1897         sx_xunlock(&sc->sc_lock);
1898         g_topology_lock();
1899         return (error);
1900 }
1901
1902 struct g_raid_softc *
1903 g_raid_create_node(struct g_class *mp,
1904     const char *name, struct g_raid_md_object *md)
1905 {
1906         struct g_raid_softc *sc;
1907         struct g_geom *gp;
1908         int error;
1909
1910         g_topology_assert();
1911         G_RAID_DEBUG(1, "Creating array %s.", name);
1912
1913         gp = g_new_geomf(mp, "%s", name);
1914         sc = malloc(sizeof(*sc), M_RAID, M_WAITOK | M_ZERO);
1915         gp->start = g_raid_start;
1916         gp->orphan = g_raid_orphan;
1917         gp->access = g_raid_access;
1918         gp->dumpconf = g_raid_dumpconf;
1919
1920         sc->sc_md = md;
1921         sc->sc_geom = gp;
1922         sc->sc_flags = 0;
1923         TAILQ_INIT(&sc->sc_volumes);
1924         TAILQ_INIT(&sc->sc_disks);
1925         sx_init(&sc->sc_lock, "graid:lock");
1926         mtx_init(&sc->sc_queue_mtx, "graid:queue", NULL, MTX_DEF);
1927         TAILQ_INIT(&sc->sc_events);
1928         bioq_init(&sc->sc_queue);
1929         gp->softc = sc;
1930         error = kproc_create(g_raid_worker, sc, &sc->sc_worker, 0, 0,
1931             "g_raid %s", name);
1932         if (error != 0) {
1933                 G_RAID_DEBUG(0, "Cannot create kernel thread for %s.", name);
1934                 mtx_destroy(&sc->sc_queue_mtx);
1935                 sx_destroy(&sc->sc_lock);
1936                 g_destroy_geom(sc->sc_geom);
1937                 free(sc, M_RAID);
1938                 return (NULL);
1939         }
1940
1941         G_RAID_DEBUG1(0, sc, "Array %s created.", name);
1942         return (sc);
1943 }
1944
1945 struct g_raid_volume *
1946 g_raid_create_volume(struct g_raid_softc *sc, const char *name, int id)
1947 {
1948         struct g_raid_volume    *vol, *vol1;
1949         int i;
1950
1951         G_RAID_DEBUG1(1, sc, "Creating volume %s.", name);
1952         vol = malloc(sizeof(*vol), M_RAID, M_WAITOK | M_ZERO);
1953         vol->v_softc = sc;
1954         strlcpy(vol->v_name, name, G_RAID_MAX_VOLUMENAME);
1955         vol->v_state = G_RAID_VOLUME_S_STARTING;
1956         vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN;
1957         vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_UNKNOWN;
1958         vol->v_rotate_parity = 1;
1959         bioq_init(&vol->v_inflight);
1960         bioq_init(&vol->v_locked);
1961         LIST_INIT(&vol->v_locks);
1962         for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
1963                 vol->v_subdisks[i].sd_softc = sc;
1964                 vol->v_subdisks[i].sd_volume = vol;
1965                 vol->v_subdisks[i].sd_pos = i;
1966                 vol->v_subdisks[i].sd_state = G_RAID_DISK_S_NONE;
1967         }
1968
1969         /* Find free ID for this volume. */
1970         g_topology_lock();
1971         vol1 = vol;
1972         if (id >= 0) {
1973                 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
1974                         if (vol1->v_global_id == id)
1975                                 break;
1976                 }
1977         }
1978         if (vol1 != NULL) {
1979                 for (id = 0; ; id++) {
1980                         LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
1981                                 if (vol1->v_global_id == id)
1982                                         break;
1983                         }
1984                         if (vol1 == NULL)
1985                                 break;
1986                 }
1987         }
1988         vol->v_global_id = id;
1989         LIST_INSERT_HEAD(&g_raid_volumes, vol, v_global_next);
1990         g_topology_unlock();
1991
1992         /* Delay root mounting. */
1993         vol->v_rootmount = root_mount_hold("GRAID");
1994         G_RAID_DEBUG1(1, sc, "root_mount_hold %p", vol->v_rootmount);
1995         vol->v_starting = 1;
1996         TAILQ_INSERT_TAIL(&sc->sc_volumes, vol, v_next);
1997         return (vol);
1998 }
1999
2000 struct g_raid_disk *
2001 g_raid_create_disk(struct g_raid_softc *sc)
2002 {
2003         struct g_raid_disk      *disk;
2004
2005         G_RAID_DEBUG1(1, sc, "Creating disk.");
2006         disk = malloc(sizeof(*disk), M_RAID, M_WAITOK | M_ZERO);
2007         disk->d_softc = sc;
2008         disk->d_state = G_RAID_DISK_S_NONE;
2009         TAILQ_INIT(&disk->d_subdisks);
2010         TAILQ_INSERT_TAIL(&sc->sc_disks, disk, d_next);
2011         return (disk);
2012 }
2013
2014 int g_raid_start_volume(struct g_raid_volume *vol)
2015 {
2016         struct g_raid_tr_class *class;
2017         struct g_raid_tr_object *obj;
2018         int status;
2019
2020         G_RAID_DEBUG1(2, vol->v_softc, "Starting volume %s.", vol->v_name);
2021         LIST_FOREACH(class, &g_raid_tr_classes, trc_list) {
2022                 if (!class->trc_enable)
2023                         continue;
2024                 G_RAID_DEBUG1(2, vol->v_softc,
2025                     "Tasting volume %s for %s transformation.",
2026                     vol->v_name, class->name);
2027                 obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
2028                     M_WAITOK);
2029                 obj->tro_class = class;
2030                 obj->tro_volume = vol;
2031                 status = G_RAID_TR_TASTE(obj, vol);
2032                 if (status != G_RAID_TR_TASTE_FAIL)
2033                         break;
2034                 kobj_delete((kobj_t)obj, M_RAID);
2035         }
2036         if (class == NULL) {
2037                 G_RAID_DEBUG1(0, vol->v_softc,
2038                     "No transformation module found for %s.",
2039                     vol->v_name);
2040                 vol->v_tr = NULL;
2041                 g_raid_change_volume_state(vol, G_RAID_VOLUME_S_UNSUPPORTED);
2042                 g_raid_event_send(vol, G_RAID_VOLUME_E_DOWN,
2043                     G_RAID_EVENT_VOLUME);
2044                 return (-1);
2045         }
2046         G_RAID_DEBUG1(2, vol->v_softc,
2047             "Transformation module %s chosen for %s.",
2048             class->name, vol->v_name);
2049         vol->v_tr = obj;
2050         return (0);
2051 }
2052
2053 int
2054 g_raid_destroy_node(struct g_raid_softc *sc, int worker)
2055 {
2056         struct g_raid_volume *vol, *tmpv;
2057         struct g_raid_disk *disk, *tmpd;
2058         int error = 0;
2059
2060         sc->sc_stopping = G_RAID_DESTROY_HARD;
2061         TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tmpv) {
2062                 if (g_raid_destroy_volume(vol))
2063                         error = EBUSY;
2064         }
2065         if (error)
2066                 return (error);
2067         TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tmpd) {
2068                 if (g_raid_destroy_disk(disk))
2069                         error = EBUSY;
2070         }
2071         if (error)
2072                 return (error);
2073         if (sc->sc_md) {
2074                 G_RAID_MD_FREE(sc->sc_md);
2075                 kobj_delete((kobj_t)sc->sc_md, M_RAID);
2076                 sc->sc_md = NULL;
2077         }
2078         if (sc->sc_geom != NULL) {
2079                 G_RAID_DEBUG1(0, sc, "Array %s destroyed.", sc->sc_name);
2080                 g_topology_lock();
2081                 sc->sc_geom->softc = NULL;
2082                 g_wither_geom(sc->sc_geom, ENXIO);
2083                 g_topology_unlock();
2084                 sc->sc_geom = NULL;
2085         } else
2086                 G_RAID_DEBUG(1, "Array destroyed.");
2087         if (worker) {
2088                 g_raid_event_cancel(sc, sc);
2089                 mtx_destroy(&sc->sc_queue_mtx);
2090                 sx_xunlock(&sc->sc_lock);
2091                 sx_destroy(&sc->sc_lock);
2092                 wakeup(&sc->sc_stopping);
2093                 free(sc, M_RAID);
2094                 curthread->td_pflags &= ~TDP_GEOM;
2095                 G_RAID_DEBUG(1, "Thread exiting.");
2096                 kproc_exit(0);
2097         } else {
2098                 /* Wake up worker to make it selfdestruct. */
2099                 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
2100         }
2101         return (0);
2102 }
2103
2104 int
2105 g_raid_destroy_volume(struct g_raid_volume *vol)
2106 {
2107         struct g_raid_softc *sc;
2108         struct g_raid_disk *disk;
2109         int i;
2110
2111         sc = vol->v_softc;
2112         G_RAID_DEBUG1(2, sc, "Destroying volume %s.", vol->v_name);
2113         vol->v_stopping = 1;
2114         if (vol->v_state != G_RAID_VOLUME_S_STOPPED) {
2115                 if (vol->v_tr) {
2116                         G_RAID_TR_STOP(vol->v_tr);
2117                         return (EBUSY);
2118                 } else
2119                         vol->v_state = G_RAID_VOLUME_S_STOPPED;
2120         }
2121         if (g_raid_event_check(sc, vol) != 0)
2122                 return (EBUSY);
2123         if (vol->v_provider != NULL)
2124                 return (EBUSY);
2125         if (vol->v_provider_open != 0)
2126                 return (EBUSY);
2127         if (vol->v_tr) {
2128                 G_RAID_TR_FREE(vol->v_tr);
2129                 kobj_delete((kobj_t)vol->v_tr, M_RAID);
2130                 vol->v_tr = NULL;
2131         }
2132         if (vol->v_rootmount)
2133                 root_mount_rel(vol->v_rootmount);
2134         g_topology_lock();
2135         LIST_REMOVE(vol, v_global_next);
2136         g_topology_unlock();
2137         TAILQ_REMOVE(&sc->sc_volumes, vol, v_next);
2138         for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
2139                 g_raid_event_cancel(sc, &vol->v_subdisks[i]);
2140                 disk = vol->v_subdisks[i].sd_disk;
2141                 if (disk == NULL)
2142                         continue;
2143                 TAILQ_REMOVE(&disk->d_subdisks, &vol->v_subdisks[i], sd_next);
2144         }
2145         G_RAID_DEBUG1(2, sc, "Volume %s destroyed.", vol->v_name);
2146         if (sc->sc_md)
2147                 G_RAID_MD_FREE_VOLUME(sc->sc_md, vol);
2148         g_raid_event_cancel(sc, vol);
2149         free(vol, M_RAID);
2150         if (sc->sc_stopping == G_RAID_DESTROY_HARD) {
2151                 /* Wake up worker to let it selfdestruct. */
2152                 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
2153         }
2154         return (0);
2155 }
2156
2157 int
2158 g_raid_destroy_disk(struct g_raid_disk *disk)
2159 {
2160         struct g_raid_softc *sc;
2161         struct g_raid_subdisk *sd, *tmp;
2162
2163         sc = disk->d_softc;
2164         G_RAID_DEBUG1(2, sc, "Destroying disk.");
2165         if (disk->d_consumer) {
2166                 g_raid_kill_consumer(sc, disk->d_consumer);
2167                 disk->d_consumer = NULL;
2168         }
2169         TAILQ_FOREACH_SAFE(sd, &disk->d_subdisks, sd_next, tmp) {
2170                 g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE);
2171                 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
2172                     G_RAID_EVENT_SUBDISK);
2173                 TAILQ_REMOVE(&disk->d_subdisks, sd, sd_next);
2174                 sd->sd_disk = NULL;
2175         }
2176         TAILQ_REMOVE(&sc->sc_disks, disk, d_next);
2177         if (sc->sc_md)
2178                 G_RAID_MD_FREE_DISK(sc->sc_md, disk);
2179         g_raid_event_cancel(sc, disk);
2180         free(disk, M_RAID);
2181         return (0);
2182 }
2183
2184 int
2185 g_raid_destroy(struct g_raid_softc *sc, int how)
2186 {
2187         int error, opens;
2188
2189         g_topology_assert_not();
2190         if (sc == NULL)
2191                 return (ENXIO);
2192         sx_assert(&sc->sc_lock, SX_XLOCKED);
2193
2194         /* Count open volumes. */
2195         opens = g_raid_nopens(sc);
2196
2197         /* React on some opened volumes. */
2198         if (opens > 0) {
2199                 switch (how) {
2200                 case G_RAID_DESTROY_SOFT:
2201                         G_RAID_DEBUG1(1, sc,
2202                             "%d volumes are still open.",
2203                             opens);
2204                         sx_xunlock(&sc->sc_lock);
2205                         return (EBUSY);
2206                 case G_RAID_DESTROY_DELAYED:
2207                         G_RAID_DEBUG1(1, sc,
2208                             "Array will be destroyed on last close.");
2209                         sc->sc_stopping = G_RAID_DESTROY_DELAYED;
2210                         sx_xunlock(&sc->sc_lock);
2211                         return (EBUSY);
2212                 case G_RAID_DESTROY_HARD:
2213                         G_RAID_DEBUG1(1, sc,
2214                             "%d volumes are still open.",
2215                             opens);
2216                 }
2217         }
2218
2219         /* Mark node for destruction. */
2220         sc->sc_stopping = G_RAID_DESTROY_HARD;
2221         /* Wake up worker to let it selfdestruct. */
2222         g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
2223         /* Sleep until node destroyed. */
2224         error = sx_sleep(&sc->sc_stopping, &sc->sc_lock,
2225             PRIBIO | PDROP, "r:destroy", hz * 3);
2226         return (error == EWOULDBLOCK ? EBUSY : 0);
2227 }
2228
2229 static void
2230 g_raid_taste_orphan(struct g_consumer *cp)
2231 {
2232
2233         KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
2234             cp->provider->name));
2235 }
2236
2237 static struct g_geom *
2238 g_raid_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
2239 {
2240         struct g_consumer *cp;
2241         struct g_geom *gp, *geom;
2242         struct g_raid_md_class *class;
2243         struct g_raid_md_object *obj;
2244         int status;
2245
2246         g_topology_assert();
2247         g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
2248         if (!g_raid_enable)
2249                 return (NULL);
2250         G_RAID_DEBUG(2, "Tasting provider %s.", pp->name);
2251
2252         geom = NULL;
2253         status = G_RAID_MD_TASTE_FAIL;
2254         gp = g_new_geomf(mp, "raid:taste");
2255         /*
2256          * This orphan function should be never called.
2257          */
2258         gp->orphan = g_raid_taste_orphan;
2259         cp = g_new_consumer(gp);
2260         g_attach(cp, pp);
2261         if (g_access(cp, 1, 0, 0) != 0)
2262                 goto ofail;
2263
2264         LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
2265                 if (!class->mdc_enable)
2266                         continue;
2267                 G_RAID_DEBUG(2, "Tasting provider %s for %s metadata.",
2268                     pp->name, class->name);
2269                 obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
2270                     M_WAITOK);
2271                 obj->mdo_class = class;
2272                 status = G_RAID_MD_TASTE(obj, mp, cp, &geom);
2273                 if (status != G_RAID_MD_TASTE_NEW)
2274                         kobj_delete((kobj_t)obj, M_RAID);
2275                 if (status != G_RAID_MD_TASTE_FAIL)
2276                         break;
2277         }
2278
2279         if (status == G_RAID_MD_TASTE_FAIL)
2280                 (void)g_access(cp, -1, 0, 0);
2281 ofail:
2282         g_detach(cp);
2283         g_destroy_consumer(cp);
2284         g_destroy_geom(gp);
2285         G_RAID_DEBUG(2, "Tasting provider %s done.", pp->name);
2286         return (geom);
2287 }
2288
2289 int
2290 g_raid_create_node_format(const char *format, struct gctl_req *req,
2291     struct g_geom **gp)
2292 {
2293         struct g_raid_md_class *class;
2294         struct g_raid_md_object *obj;
2295         int status;
2296
2297         G_RAID_DEBUG(2, "Creating array for %s metadata.", format);
2298         LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
2299                 if (strcasecmp(class->name, format) == 0)
2300                         break;
2301         }
2302         if (class == NULL) {
2303                 G_RAID_DEBUG(1, "No support for %s metadata.", format);
2304                 return (G_RAID_MD_TASTE_FAIL);
2305         }
2306         obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
2307             M_WAITOK);
2308         obj->mdo_class = class;
2309         status = G_RAID_MD_CREATE_REQ(obj, &g_raid_class, req, gp);
2310         if (status != G_RAID_MD_TASTE_NEW)
2311                 kobj_delete((kobj_t)obj, M_RAID);
2312         return (status);
2313 }
2314
2315 static int
2316 g_raid_destroy_geom(struct gctl_req *req __unused,
2317     struct g_class *mp __unused, struct g_geom *gp)
2318 {
2319         struct g_raid_softc *sc;
2320         int error;
2321
2322         g_topology_unlock();
2323         sc = gp->softc;
2324         sx_xlock(&sc->sc_lock);
2325         g_cancel_event(sc);
2326         error = g_raid_destroy(gp->softc, G_RAID_DESTROY_SOFT);
2327         g_topology_lock();
2328         return (error);
2329 }
2330
2331 void g_raid_write_metadata(struct g_raid_softc *sc, struct g_raid_volume *vol,
2332     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
2333 {
2334
2335         if (sc->sc_stopping == G_RAID_DESTROY_HARD)
2336                 return;
2337         if (sc->sc_md)
2338                 G_RAID_MD_WRITE(sc->sc_md, vol, sd, disk);
2339 }
2340
2341 void g_raid_fail_disk(struct g_raid_softc *sc,
2342     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
2343 {
2344
2345         if (disk == NULL)
2346                 disk = sd->sd_disk;
2347         if (disk == NULL) {
2348                 G_RAID_DEBUG1(0, sc, "Warning! Fail request to an absent disk!");
2349                 return;
2350         }
2351         if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
2352                 G_RAID_DEBUG1(0, sc, "Warning! Fail request to a disk in a "
2353                     "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
2354                 return;
2355         }
2356         if (sc->sc_md)
2357                 G_RAID_MD_FAIL_DISK(sc->sc_md, sd, disk);
2358 }
2359
2360 static void
2361 g_raid_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
2362     struct g_consumer *cp, struct g_provider *pp)
2363 {
2364         struct g_raid_softc *sc;
2365         struct g_raid_volume *vol;
2366         struct g_raid_subdisk *sd;
2367         struct g_raid_disk *disk;
2368         int i, s;
2369
2370         g_topology_assert();
2371
2372         sc = gp->softc;
2373         if (sc == NULL)
2374                 return;
2375         if (pp != NULL) {
2376                 vol = pp->private;
2377                 g_topology_unlock();
2378                 sx_xlock(&sc->sc_lock);
2379                 sbuf_printf(sb, "%s<descr>%s %s volume</descr>\n", indent,
2380                     sc->sc_md->mdo_class->name,
2381                     g_raid_volume_level2str(vol->v_raid_level,
2382                     vol->v_raid_level_qualifier));
2383                 sbuf_printf(sb, "%s<Label>%s</Label>\n", indent,
2384                     vol->v_name);
2385                 sbuf_printf(sb, "%s<RAIDLevel>%s</RAIDLevel>\n", indent,
2386                     g_raid_volume_level2str(vol->v_raid_level,
2387                     vol->v_raid_level_qualifier));
2388                 sbuf_printf(sb,
2389                     "%s<Transformation>%s</Transformation>\n", indent,
2390                     vol->v_tr ? vol->v_tr->tro_class->name : "NONE");
2391                 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
2392                     vol->v_disks_count);
2393                 sbuf_printf(sb, "%s<Strip>%u</Strip>\n", indent,
2394                     vol->v_strip_size);
2395                 sbuf_printf(sb, "%s<State>%s</State>\n", indent,
2396                     g_raid_volume_state2str(vol->v_state));
2397                 sbuf_printf(sb, "%s<Dirty>%s</Dirty>\n", indent,
2398                     vol->v_dirty ? "Yes" : "No");
2399                 sbuf_printf(sb, "%s<Subdisks>", indent);
2400                 for (i = 0; i < vol->v_disks_count; i++) {
2401                         sd = &vol->v_subdisks[i];
2402                         if (sd->sd_disk != NULL &&
2403                             sd->sd_disk->d_consumer != NULL) {
2404                                 sbuf_printf(sb, "%s ",
2405                                     g_raid_get_diskname(sd->sd_disk));
2406                         } else {
2407                                 sbuf_printf(sb, "NONE ");
2408                         }
2409                         sbuf_printf(sb, "(%s",
2410                             g_raid_subdisk_state2str(sd->sd_state));
2411                         if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2412                             sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
2413                                 sbuf_printf(sb, " %d%%",
2414                                     (int)(sd->sd_rebuild_pos * 100 /
2415                                      sd->sd_size));
2416                         }
2417                         sbuf_printf(sb, ")");
2418                         if (i + 1 < vol->v_disks_count)
2419                                 sbuf_printf(sb, ", ");
2420                 }
2421                 sbuf_printf(sb, "</Subdisks>\n");
2422                 sx_xunlock(&sc->sc_lock);
2423                 g_topology_lock();
2424         } else if (cp != NULL) {
2425                 disk = cp->private;
2426                 if (disk == NULL)
2427                         return;
2428                 g_topology_unlock();
2429                 sx_xlock(&sc->sc_lock);
2430                 sbuf_printf(sb, "%s<State>%s", indent,
2431                     g_raid_disk_state2str(disk->d_state));
2432                 if (!TAILQ_EMPTY(&disk->d_subdisks)) {
2433                         sbuf_printf(sb, " (");
2434                         TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
2435                                 sbuf_printf(sb, "%s",
2436                                     g_raid_subdisk_state2str(sd->sd_state));
2437                                 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2438                                     sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
2439                                         sbuf_printf(sb, " %d%%",
2440                                             (int)(sd->sd_rebuild_pos * 100 /
2441                                              sd->sd_size));
2442                                 }
2443                                 if (TAILQ_NEXT(sd, sd_next))
2444                                         sbuf_printf(sb, ", ");
2445                         }
2446                         sbuf_printf(sb, ")");
2447                 }
2448                 sbuf_printf(sb, "</State>\n");
2449                 sbuf_printf(sb, "%s<Subdisks>", indent);
2450                 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
2451                         sbuf_printf(sb, "r%d(%s):%d@%ju",
2452                             sd->sd_volume->v_global_id,
2453                             sd->sd_volume->v_name,
2454                             sd->sd_pos, sd->sd_offset);
2455                         if (TAILQ_NEXT(sd, sd_next))
2456                                 sbuf_printf(sb, ", ");
2457                 }
2458                 sbuf_printf(sb, "</Subdisks>\n");
2459                 sbuf_printf(sb, "%s<ReadErrors>%d</ReadErrors>\n", indent,
2460                     disk->d_read_errs);
2461                 sx_xunlock(&sc->sc_lock);
2462                 g_topology_lock();
2463         } else {
2464                 g_topology_unlock();
2465                 sx_xlock(&sc->sc_lock);
2466                 if (sc->sc_md) {
2467                         sbuf_printf(sb, "%s<Metadata>%s</Metadata>\n", indent,
2468                             sc->sc_md->mdo_class->name);
2469                 }
2470                 if (!TAILQ_EMPTY(&sc->sc_volumes)) {
2471                         s = 0xff;
2472                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2473                                 if (vol->v_state < s)
2474                                         s = vol->v_state;
2475                         }
2476                         sbuf_printf(sb, "%s<State>%s</State>\n", indent,
2477                             g_raid_volume_state2str(s));
2478                 }
2479                 sx_xunlock(&sc->sc_lock);
2480                 g_topology_lock();
2481         }
2482 }
2483
2484 static void
2485 g_raid_shutdown_post_sync(void *arg, int howto)
2486 {
2487         struct g_class *mp;
2488         struct g_geom *gp, *gp2;
2489         struct g_raid_softc *sc;
2490         struct g_raid_volume *vol;
2491
2492         mp = arg;
2493         DROP_GIANT();
2494         g_topology_lock();
2495         g_raid_shutdown = 1;
2496         LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
2497                 if ((sc = gp->softc) == NULL)
2498                         continue;
2499                 g_topology_unlock();
2500                 sx_xlock(&sc->sc_lock);
2501                 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next)
2502                         g_raid_clean(vol, -1);
2503                 g_cancel_event(sc);
2504                 g_raid_destroy(sc, G_RAID_DESTROY_DELAYED);
2505                 g_topology_lock();
2506         }
2507         g_topology_unlock();
2508         PICKUP_GIANT();
2509 }
2510
2511 static void
2512 g_raid_init(struct g_class *mp)
2513 {
2514
2515         g_raid_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync,
2516             g_raid_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST);
2517         if (g_raid_post_sync == NULL)
2518                 G_RAID_DEBUG(0, "Warning! Cannot register shutdown event.");
2519         g_raid_started = 1;
2520 }
2521
2522 static void
2523 g_raid_fini(struct g_class *mp)
2524 {
2525
2526         if (g_raid_post_sync != NULL)
2527                 EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid_post_sync);
2528         g_raid_started = 0;
2529 }
2530
2531 int
2532 g_raid_md_modevent(module_t mod, int type, void *arg)
2533 {
2534         struct g_raid_md_class *class, *c, *nc;
2535         int error;
2536
2537         error = 0;
2538         class = arg;
2539         switch (type) {
2540         case MOD_LOAD:
2541                 c = LIST_FIRST(&g_raid_md_classes);
2542                 if (c == NULL || c->mdc_priority > class->mdc_priority)
2543                         LIST_INSERT_HEAD(&g_raid_md_classes, class, mdc_list);
2544                 else {
2545                         while ((nc = LIST_NEXT(c, mdc_list)) != NULL &&
2546                             nc->mdc_priority < class->mdc_priority)
2547                                 c = nc;
2548                         LIST_INSERT_AFTER(c, class, mdc_list);
2549                 }
2550                 if (g_raid_started)
2551                         g_retaste(&g_raid_class);
2552                 break;
2553         case MOD_UNLOAD:
2554                 LIST_REMOVE(class, mdc_list);
2555                 break;
2556         default:
2557                 error = EOPNOTSUPP;
2558                 break;
2559         }
2560
2561         return (error);
2562 }
2563
2564 int
2565 g_raid_tr_modevent(module_t mod, int type, void *arg)
2566 {
2567         struct g_raid_tr_class *class, *c, *nc;
2568         int error;
2569
2570         error = 0;
2571         class = arg;
2572         switch (type) {
2573         case MOD_LOAD:
2574                 c = LIST_FIRST(&g_raid_tr_classes);
2575                 if (c == NULL || c->trc_priority > class->trc_priority)
2576                         LIST_INSERT_HEAD(&g_raid_tr_classes, class, trc_list);
2577                 else {
2578                         while ((nc = LIST_NEXT(c, trc_list)) != NULL &&
2579                             nc->trc_priority < class->trc_priority)
2580                                 c = nc;
2581                         LIST_INSERT_AFTER(c, class, trc_list);
2582                 }
2583                 break;
2584         case MOD_UNLOAD:
2585                 LIST_REMOVE(class, trc_list);
2586                 break;
2587         default:
2588                 error = EOPNOTSUPP;
2589                 break;
2590         }
2591
2592         return (error);
2593 }
2594
2595 /*
2596  * Use local implementation of DECLARE_GEOM_CLASS(g_raid_class, g_raid)
2597  * to reduce module priority, allowing submodules to register them first.
2598  */
2599 static moduledata_t g_raid_mod = {
2600         "g_raid",
2601         g_modevent,
2602         &g_raid_class
2603 };
2604 DECLARE_MODULE(g_raid, g_raid_mod, SI_SUB_DRIVERS, SI_ORDER_THIRD);
2605 MODULE_VERSION(geom_raid, 0);