]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - sys/geom/raid/md_intel.c
MFC r358694:
[FreeBSD/stable/9.git] / sys / geom / raid / md_intel.c
1 /*-
2  * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
3  * Copyright (c) 2000 - 2008 Søren Schmidt <sos@FreeBSD.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include <sys/param.h>
32 #include <sys/bio.h>
33 #include <sys/endian.h>
34 #include <sys/kernel.h>
35 #include <sys/kobj.h>
36 #include <sys/limits.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mutex.h>
40 #include <sys/systm.h>
41 #include <sys/taskqueue.h>
42 #include <geom/geom.h>
43 #include "geom/raid/g_raid.h"
44 #include "g_raid_md_if.h"
45
46 static MALLOC_DEFINE(M_MD_INTEL, "md_intel_data", "GEOM_RAID Intel metadata");
47
48 struct intel_raid_map {
49         uint32_t        offset;
50         uint32_t        disk_sectors;
51         uint32_t        stripe_count;
52         uint16_t        strip_sectors;
53         uint8_t         status;
54 #define INTEL_S_READY           0x00
55 #define INTEL_S_UNINITIALIZED   0x01
56 #define INTEL_S_DEGRADED        0x02
57 #define INTEL_S_FAILURE         0x03
58
59         uint8_t         type;
60 #define INTEL_T_RAID0           0x00
61 #define INTEL_T_RAID1           0x01
62 #define INTEL_T_RAID5           0x05
63
64         uint8_t         total_disks;
65         uint8_t         total_domains;
66         uint8_t         failed_disk_num;
67         uint8_t         ddf;
68         uint32_t        offset_hi;
69         uint32_t        disk_sectors_hi;
70         uint32_t        stripe_count_hi;
71         uint32_t        filler_2[4];
72         uint32_t        disk_idx[1];    /* total_disks entries. */
73 #define INTEL_DI_IDX    0x00ffffff
74 #define INTEL_DI_RBLD   0x01000000
75 } __packed;
76
77 struct intel_raid_vol {
78         uint8_t         name[16];
79         u_int64_t       total_sectors __packed;
80         uint32_t        state;
81 #define INTEL_ST_BOOTABLE               0x00000001
82 #define INTEL_ST_BOOT_DEVICE            0x00000002
83 #define INTEL_ST_READ_COALESCING        0x00000004
84 #define INTEL_ST_WRITE_COALESCING       0x00000008
85 #define INTEL_ST_LAST_SHUTDOWN_DIRTY    0x00000010
86 #define INTEL_ST_HIDDEN_AT_BOOT         0x00000020
87 #define INTEL_ST_CURRENTLY_HIDDEN       0x00000040
88 #define INTEL_ST_VERIFY_AND_FIX         0x00000080
89 #define INTEL_ST_MAP_STATE_UNINIT       0x00000100
90 #define INTEL_ST_NO_AUTO_RECOVERY       0x00000200
91 #define INTEL_ST_CLONE_N_GO             0x00000400
92 #define INTEL_ST_CLONE_MAN_SYNC         0x00000800
93 #define INTEL_ST_CNG_MASTER_DISK_NUM    0x00001000
94         uint32_t        reserved;
95         uint8_t         migr_priority;
96         uint8_t         num_sub_vols;
97         uint8_t         tid;
98         uint8_t         cng_master_disk;
99         uint16_t        cache_policy;
100         uint8_t         cng_state;
101 #define INTEL_CNGST_UPDATED             0
102 #define INTEL_CNGST_NEEDS_UPDATE        1
103 #define INTEL_CNGST_MASTER_MISSING      2
104         uint8_t         cng_sub_state;
105         uint32_t        filler_0[10];
106
107         uint32_t        curr_migr_unit;
108         uint32_t        checkpoint_id;
109         uint8_t         migr_state;
110         uint8_t         migr_type;
111 #define INTEL_MT_INIT           0
112 #define INTEL_MT_REBUILD        1
113 #define INTEL_MT_VERIFY         2
114 #define INTEL_MT_GEN_MIGR       3
115 #define INTEL_MT_STATE_CHANGE   4
116 #define INTEL_MT_REPAIR         5
117         uint8_t         dirty;
118         uint8_t         fs_state;
119         uint16_t        verify_errors;
120         uint16_t        bad_blocks;
121         uint32_t        curr_migr_unit_hi;
122         uint32_t        filler_1[3];
123         struct intel_raid_map map[1];   /* 2 entries if migr_state != 0. */
124 } __packed;
125
126 struct intel_raid_disk {
127 #define INTEL_SERIAL_LEN        16
128         uint8_t         serial[INTEL_SERIAL_LEN];
129         uint32_t        sectors;
130         uint32_t        id;
131         uint32_t        flags;
132 #define INTEL_F_SPARE           0x01
133 #define INTEL_F_ASSIGNED        0x02
134 #define INTEL_F_FAILED          0x04
135 #define INTEL_F_ONLINE          0x08
136 #define INTEL_F_DISABLED        0x80
137         uint32_t        owner_cfg_num;
138         uint32_t        sectors_hi;
139         uint32_t        filler[3];
140 } __packed;
141
142 struct intel_raid_conf {
143         uint8_t         intel_id[24];
144 #define INTEL_MAGIC             "Intel Raid ISM Cfg Sig. "
145
146         uint8_t         version[6];
147 #define INTEL_VERSION_1000      "1.0.00"        /* RAID0 */
148 #define INTEL_VERSION_1100      "1.1.00"        /* RAID1 */
149 #define INTEL_VERSION_1200      "1.2.00"        /* Many volumes */
150 #define INTEL_VERSION_1201      "1.2.01"        /* 3 or 4 disks */
151 #define INTEL_VERSION_1202      "1.2.02"        /* RAID5 */
152 #define INTEL_VERSION_1204      "1.2.04"        /* 5 or 6 disks */
153 #define INTEL_VERSION_1206      "1.2.06"        /* CNG */
154 #define INTEL_VERSION_1300      "1.3.00"        /* Attributes */
155
156         uint8_t         dummy_0[2];
157         uint32_t        checksum;
158         uint32_t        config_size;
159         uint32_t        config_id;
160         uint32_t        generation;
161         uint32_t        error_log_size;
162         uint32_t        attributes;
163 #define INTEL_ATTR_RAID0        0x00000001
164 #define INTEL_ATTR_RAID1        0x00000002
165 #define INTEL_ATTR_RAID10       0x00000004
166 #define INTEL_ATTR_RAID1E       0x00000008
167 #define INTEL_ATTR_RAID5        0x00000010
168 #define INTEL_ATTR_RAIDCNG      0x00000020
169 #define INTEL_ATTR_EXT_STRIP    0x00000040
170 #define INTEL_ATTR_NVM_CACHE    0x02000000
171 #define INTEL_ATTR_2TB_DISK     0x04000000
172 #define INTEL_ATTR_BBM          0x08000000
173 #define INTEL_ATTR_NVM_CACHE2   0x10000000
174 #define INTEL_ATTR_2TB          0x20000000
175 #define INTEL_ATTR_PM           0x40000000
176 #define INTEL_ATTR_CHECKSUM     0x80000000
177
178         uint8_t         total_disks;
179         uint8_t         total_volumes;
180         uint8_t         error_log_pos;
181         uint8_t         dummy_2[1];
182         uint32_t        cache_size;
183         uint32_t        orig_config_id;
184         uint32_t        pwr_cycle_count;
185         uint32_t        bbm_log_size;
186         uint32_t        filler_0[35];
187         struct intel_raid_disk  disk[1];        /* total_disks entries. */
188         /* Here goes total_volumes of struct intel_raid_vol. */
189 } __packed;
190
191 #define INTEL_ATTR_SUPPORTED    ( INTEL_ATTR_RAID0 | INTEL_ATTR_RAID1 | \
192     INTEL_ATTR_RAID10 | INTEL_ATTR_RAID1E | INTEL_ATTR_RAID5 |          \
193     INTEL_ATTR_RAIDCNG | INTEL_ATTR_EXT_STRIP | INTEL_ATTR_2TB_DISK |   \
194     INTEL_ATTR_2TB | INTEL_ATTR_PM | INTEL_ATTR_CHECKSUM )
195
196 #define INTEL_MAX_MD_SIZE(ndisks)                               \
197     (sizeof(struct intel_raid_conf) +                           \
198      sizeof(struct intel_raid_disk) * (ndisks - 1) +            \
199      sizeof(struct intel_raid_vol) * 2 +                        \
200      sizeof(struct intel_raid_map) * 2 +                        \
201      sizeof(uint32_t) * (ndisks - 1) * 4)
202
203 struct g_raid_md_intel_perdisk {
204         struct intel_raid_conf  *pd_meta;
205         int                      pd_disk_pos;
206         struct intel_raid_disk   pd_disk_meta;
207 };
208
209 struct g_raid_md_intel_pervolume {
210         int                      pv_volume_pos;
211         int                      pv_cng;
212         int                      pv_cng_man_sync;
213         int                      pv_cng_master_disk;
214 };
215
216 struct g_raid_md_intel_object {
217         struct g_raid_md_object  mdio_base;
218         uint32_t                 mdio_config_id;
219         uint32_t                 mdio_orig_config_id;
220         uint32_t                 mdio_generation;
221         struct intel_raid_conf  *mdio_meta;
222         struct callout           mdio_start_co; /* STARTING state timer. */
223         int                      mdio_disks_present;
224         int                      mdio_started;
225         int                      mdio_incomplete;
226         struct root_hold_token  *mdio_rootmount; /* Root mount delay token. */
227 };
228
229 static g_raid_md_create_t g_raid_md_create_intel;
230 static g_raid_md_taste_t g_raid_md_taste_intel;
231 static g_raid_md_event_t g_raid_md_event_intel;
232 static g_raid_md_ctl_t g_raid_md_ctl_intel;
233 static g_raid_md_write_t g_raid_md_write_intel;
234 static g_raid_md_fail_disk_t g_raid_md_fail_disk_intel;
235 static g_raid_md_free_disk_t g_raid_md_free_disk_intel;
236 static g_raid_md_free_volume_t g_raid_md_free_volume_intel;
237 static g_raid_md_free_t g_raid_md_free_intel;
238
239 static kobj_method_t g_raid_md_intel_methods[] = {
240         KOBJMETHOD(g_raid_md_create,    g_raid_md_create_intel),
241         KOBJMETHOD(g_raid_md_taste,     g_raid_md_taste_intel),
242         KOBJMETHOD(g_raid_md_event,     g_raid_md_event_intel),
243         KOBJMETHOD(g_raid_md_ctl,       g_raid_md_ctl_intel),
244         KOBJMETHOD(g_raid_md_write,     g_raid_md_write_intel),
245         KOBJMETHOD(g_raid_md_fail_disk, g_raid_md_fail_disk_intel),
246         KOBJMETHOD(g_raid_md_free_disk, g_raid_md_free_disk_intel),
247         KOBJMETHOD(g_raid_md_free_volume,       g_raid_md_free_volume_intel),
248         KOBJMETHOD(g_raid_md_free,      g_raid_md_free_intel),
249         { 0, 0 }
250 };
251
252 static struct g_raid_md_class g_raid_md_intel_class = {
253         "Intel",
254         g_raid_md_intel_methods,
255         sizeof(struct g_raid_md_intel_object),
256         .mdc_enable = 1,
257         .mdc_priority = 100
258 };
259
260
261 static struct intel_raid_map *
262 intel_get_map(struct intel_raid_vol *mvol, int i)
263 {
264         struct intel_raid_map *mmap;
265
266         if (i > (mvol->migr_state ? 1 : 0))
267                 return (NULL);
268         mmap = &mvol->map[0];
269         for (; i > 0; i--) {
270                 mmap = (struct intel_raid_map *)
271                     &mmap->disk_idx[mmap->total_disks];
272         }
273         return ((struct intel_raid_map *)mmap);
274 }
275
276 static struct intel_raid_vol *
277 intel_get_volume(struct intel_raid_conf *meta, int i)
278 {
279         struct intel_raid_vol *mvol;
280         struct intel_raid_map *mmap;
281
282         if (i > 1)
283                 return (NULL);
284         mvol = (struct intel_raid_vol *)&meta->disk[meta->total_disks];
285         for (; i > 0; i--) {
286                 mmap = intel_get_map(mvol, mvol->migr_state ? 1 : 0);
287                 mvol = (struct intel_raid_vol *)
288                     &mmap->disk_idx[mmap->total_disks];
289         }
290         return (mvol);
291 }
292
293 static off_t
294 intel_get_map_offset(struct intel_raid_map *mmap)
295 {
296         off_t offset = (off_t)mmap->offset_hi << 32;
297
298         offset += mmap->offset;
299         return (offset);
300 }
301
302 static void
303 intel_set_map_offset(struct intel_raid_map *mmap, off_t offset)
304 {
305
306         mmap->offset = offset & 0xffffffff;
307         mmap->offset_hi = offset >> 32;
308 }
309
310 static off_t
311 intel_get_map_disk_sectors(struct intel_raid_map *mmap)
312 {
313         off_t disk_sectors = (off_t)mmap->disk_sectors_hi << 32;
314
315         disk_sectors += mmap->disk_sectors;
316         return (disk_sectors);
317 }
318
319 static void
320 intel_set_map_disk_sectors(struct intel_raid_map *mmap, off_t disk_sectors)
321 {
322
323         mmap->disk_sectors = disk_sectors & 0xffffffff;
324         mmap->disk_sectors_hi = disk_sectors >> 32;
325 }
326
327 static void
328 intel_set_map_stripe_count(struct intel_raid_map *mmap, off_t stripe_count)
329 {
330
331         mmap->stripe_count = stripe_count & 0xffffffff;
332         mmap->stripe_count_hi = stripe_count >> 32;
333 }
334
335 static off_t
336 intel_get_disk_sectors(struct intel_raid_disk *disk)
337 {
338         off_t sectors = (off_t)disk->sectors_hi << 32;
339
340         sectors += disk->sectors;
341         return (sectors);
342 }
343
344 static void
345 intel_set_disk_sectors(struct intel_raid_disk *disk, off_t sectors)
346 {
347
348         disk->sectors = sectors & 0xffffffff;
349         disk->sectors_hi = sectors >> 32;
350 }
351
352 static off_t
353 intel_get_vol_curr_migr_unit(struct intel_raid_vol *vol)
354 {
355         off_t curr_migr_unit = (off_t)vol->curr_migr_unit_hi << 32;
356
357         curr_migr_unit += vol->curr_migr_unit;
358         return (curr_migr_unit);
359 }
360
361 static void
362 intel_set_vol_curr_migr_unit(struct intel_raid_vol *vol, off_t curr_migr_unit)
363 {
364
365         vol->curr_migr_unit = curr_migr_unit & 0xffffffff;
366         vol->curr_migr_unit_hi = curr_migr_unit >> 32;
367 }
368
369 static char *
370 intel_status2str(int status)
371 {
372
373         switch (status) {
374         case INTEL_S_READY:
375                 return ("READY");
376         case INTEL_S_UNINITIALIZED:
377                 return ("UNINITIALIZED");
378         case INTEL_S_DEGRADED:
379                 return ("DEGRADED");
380         case INTEL_S_FAILURE:
381                 return ("FAILURE");
382         default:
383                 return ("UNKNOWN");
384         }
385 }
386
387 static char *
388 intel_type2str(int type)
389 {
390
391         switch (type) {
392         case INTEL_T_RAID0:
393                 return ("RAID0");
394         case INTEL_T_RAID1:
395                 return ("RAID1");
396         case INTEL_T_RAID5:
397                 return ("RAID5");
398         default:
399                 return ("UNKNOWN");
400         }
401 }
402
403 static char *
404 intel_cngst2str(int cng_state)
405 {
406
407         switch (cng_state) {
408         case INTEL_CNGST_UPDATED:
409                 return ("UPDATED");
410         case INTEL_CNGST_NEEDS_UPDATE:
411                 return ("NEEDS_UPDATE");
412         case INTEL_CNGST_MASTER_MISSING:
413                 return ("MASTER_MISSING");
414         default:
415                 return ("UNKNOWN");
416         }
417 }
418
419 static char *
420 intel_mt2str(int type)
421 {
422
423         switch (type) {
424         case INTEL_MT_INIT:
425                 return ("INIT");
426         case INTEL_MT_REBUILD:
427                 return ("REBUILD");
428         case INTEL_MT_VERIFY:
429                 return ("VERIFY");
430         case INTEL_MT_GEN_MIGR:
431                 return ("GEN_MIGR");
432         case INTEL_MT_STATE_CHANGE:
433                 return ("STATE_CHANGE");
434         case INTEL_MT_REPAIR:
435                 return ("REPAIR");
436         default:
437                 return ("UNKNOWN");
438         }
439 }
440
441 static void
442 g_raid_md_intel_print(struct intel_raid_conf *meta)
443 {
444         struct intel_raid_vol *mvol;
445         struct intel_raid_map *mmap;
446         int i, j, k;
447
448         if (g_raid_debug < 1)
449                 return;
450
451         printf("********* ATA Intel MatrixRAID Metadata *********\n");
452         printf("intel_id            <%.24s>\n", meta->intel_id);
453         printf("version             <%.6s>\n", meta->version);
454         printf("checksum            0x%08x\n", meta->checksum);
455         printf("config_size         0x%08x\n", meta->config_size);
456         printf("config_id           0x%08x\n", meta->config_id);
457         printf("generation          0x%08x\n", meta->generation);
458         printf("error_log_size      %d\n", meta->error_log_size);
459         printf("attributes          0x%b\n", meta->attributes,
460                 "\020"
461                 "\001RAID0"
462                 "\002RAID1"
463                 "\003RAID10"
464                 "\004RAID1E"
465                 "\005RAID15"
466                 "\006RAIDCNG"
467                 "\007EXT_STRIP"
468                 "\032NVM_CACHE"
469                 "\0332TB_DISK"
470                 "\034BBM"
471                 "\035NVM_CACHE"
472                 "\0362TB"
473                 "\037PM"
474                 "\040CHECKSUM");
475         printf("total_disks         %u\n", meta->total_disks);
476         printf("total_volumes       %u\n", meta->total_volumes);
477         printf("error_log_pos       %u\n", meta->error_log_pos);
478         printf("cache_size          %u\n", meta->cache_size);
479         printf("orig_config_id      0x%08x\n", meta->orig_config_id);
480         printf("pwr_cycle_count     %u\n", meta->pwr_cycle_count);
481         printf("bbm_log_size        %u\n", meta->bbm_log_size);
482         printf("Flags: S - Spare, A - Assigned, F - Failed, O - Online, D - Disabled\n");
483         printf("DISK#   serial disk_sectors disk_sectors_hi disk_id flags owner\n");
484         for (i = 0; i < meta->total_disks; i++ ) {
485                 printf("    %d   <%.16s> %u %u 0x%08x 0x%b %08x\n", i,
486                     meta->disk[i].serial, meta->disk[i].sectors,
487                     meta->disk[i].sectors_hi, meta->disk[i].id,
488                     meta->disk[i].flags, "\20\01S\02A\03F\04O\05D",
489                     meta->disk[i].owner_cfg_num);
490         }
491         for (i = 0; i < meta->total_volumes; i++) {
492                 mvol = intel_get_volume(meta, i);
493                 printf(" ****** Volume %d ******\n", i);
494                 printf(" name               %.16s\n", mvol->name);
495                 printf(" total_sectors      %ju\n", mvol->total_sectors);
496                 printf(" state              0x%b\n", mvol->state,
497                         "\020"
498                         "\001BOOTABLE"
499                         "\002BOOT_DEVICE"
500                         "\003READ_COALESCING"
501                         "\004WRITE_COALESCING"
502                         "\005LAST_SHUTDOWN_DIRTY"
503                         "\006HIDDEN_AT_BOOT"
504                         "\007CURRENTLY_HIDDEN"
505                         "\010VERIFY_AND_FIX"
506                         "\011MAP_STATE_UNINIT"
507                         "\012NO_AUTO_RECOVERY"
508                         "\013CLONE_N_GO"
509                         "\014CLONE_MAN_SYNC"
510                         "\015CNG_MASTER_DISK_NUM");
511                 printf(" reserved           %u\n", mvol->reserved);
512                 printf(" migr_priority      %u\n", mvol->migr_priority);
513                 printf(" num_sub_vols       %u\n", mvol->num_sub_vols);
514                 printf(" tid                %u\n", mvol->tid);
515                 printf(" cng_master_disk    %u\n", mvol->cng_master_disk);
516                 printf(" cache_policy       %u\n", mvol->cache_policy);
517                 printf(" cng_state          %u (%s)\n", mvol->cng_state,
518                         intel_cngst2str(mvol->cng_state));
519                 printf(" cng_sub_state      %u\n", mvol->cng_sub_state);
520                 printf(" curr_migr_unit     %u\n", mvol->curr_migr_unit);
521                 printf(" curr_migr_unit_hi  %u\n", mvol->curr_migr_unit_hi);
522                 printf(" checkpoint_id      %u\n", mvol->checkpoint_id);
523                 printf(" migr_state         %u\n", mvol->migr_state);
524                 printf(" migr_type          %u (%s)\n", mvol->migr_type,
525                         intel_mt2str(mvol->migr_type));
526                 printf(" dirty              %u\n", mvol->dirty);
527                 printf(" fs_state           %u\n", mvol->fs_state);
528                 printf(" verify_errors      %u\n", mvol->verify_errors);
529                 printf(" bad_blocks         %u\n", mvol->bad_blocks);
530
531                 for (j = 0; j < (mvol->migr_state ? 2 : 1); j++) {
532                         printf("  *** Map %d ***\n", j);
533                         mmap = intel_get_map(mvol, j);
534                         printf("  offset            %u\n", mmap->offset);
535                         printf("  offset_hi         %u\n", mmap->offset_hi);
536                         printf("  disk_sectors      %u\n", mmap->disk_sectors);
537                         printf("  disk_sectors_hi   %u\n", mmap->disk_sectors_hi);
538                         printf("  stripe_count      %u\n", mmap->stripe_count);
539                         printf("  stripe_count_hi   %u\n", mmap->stripe_count_hi);
540                         printf("  strip_sectors     %u\n", mmap->strip_sectors);
541                         printf("  status            %u (%s)\n", mmap->status,
542                                 intel_status2str(mmap->status));
543                         printf("  type              %u (%s)\n", mmap->type,
544                                 intel_type2str(mmap->type));
545                         printf("  total_disks       %u\n", mmap->total_disks);
546                         printf("  total_domains     %u\n", mmap->total_domains);
547                         printf("  failed_disk_num   %u\n", mmap->failed_disk_num);
548                         printf("  ddf               %u\n", mmap->ddf);
549                         printf("  disk_idx         ");
550                         for (k = 0; k < mmap->total_disks; k++)
551                                 printf(" 0x%08x", mmap->disk_idx[k]);
552                         printf("\n");
553                 }
554         }
555         printf("=================================================\n");
556 }
557
558 static struct intel_raid_conf *
559 intel_meta_copy(struct intel_raid_conf *meta)
560 {
561         struct intel_raid_conf *nmeta;
562
563         nmeta = malloc(meta->config_size, M_MD_INTEL, M_WAITOK);
564         memcpy(nmeta, meta, meta->config_size);
565         return (nmeta);
566 }
567
568 static int
569 intel_meta_find_disk(struct intel_raid_conf *meta, char *serial)
570 {
571         int pos;
572
573         for (pos = 0; pos < meta->total_disks; pos++) {
574                 if (strncmp(meta->disk[pos].serial,
575                     serial, INTEL_SERIAL_LEN) == 0)
576                         return (pos);
577         }
578         return (-1);
579 }
580
581 static struct intel_raid_conf *
582 intel_meta_read(struct g_consumer *cp)
583 {
584         struct g_provider *pp;
585         struct intel_raid_conf *meta;
586         struct intel_raid_vol *mvol;
587         struct intel_raid_map *mmap, *mmap1;
588         char *buf;
589         int error, i, j, k, left, size;
590         uint32_t checksum, *ptr;
591
592         pp = cp->provider;
593
594         /* Read the anchor sector. */
595         buf = g_read_data(cp,
596             pp->mediasize - pp->sectorsize * 2, pp->sectorsize, &error);
597         if (buf == NULL) {
598                 G_RAID_DEBUG(1, "Cannot read metadata from %s (error=%d).",
599                     pp->name, error);
600                 return (NULL);
601         }
602         meta = (struct intel_raid_conf *)buf;
603
604         /* Check if this is an Intel RAID struct */
605         if (strncmp(meta->intel_id, INTEL_MAGIC, strlen(INTEL_MAGIC))) {
606                 G_RAID_DEBUG(1, "Intel signature check failed on %s", pp->name);
607                 g_free(buf);
608                 return (NULL);
609         }
610         if (meta->config_size > 65536 ||
611             meta->config_size < sizeof(struct intel_raid_conf)) {
612                 G_RAID_DEBUG(1, "Intel metadata size looks wrong: %d",
613                     meta->config_size);
614                 g_free(buf);
615                 return (NULL);
616         }
617         size = meta->config_size;
618         meta = malloc(size, M_MD_INTEL, M_WAITOK);
619         memcpy(meta, buf, min(size, pp->sectorsize));
620         g_free(buf);
621
622         /* Read all the rest, if needed. */
623         if (meta->config_size > pp->sectorsize) {
624                 left = (meta->config_size - 1) / pp->sectorsize;
625                 buf = g_read_data(cp,
626                     pp->mediasize - pp->sectorsize * (2 + left),
627                     pp->sectorsize * left, &error);
628                 if (buf == NULL) {
629                         G_RAID_DEBUG(1, "Cannot read remaining metadata"
630                             " part from %s (error=%d).",
631                             pp->name, error);
632                         free(meta, M_MD_INTEL);
633                         return (NULL);
634                 }
635                 memcpy(((char *)meta) + pp->sectorsize, buf,
636                     pp->sectorsize * left);
637                 g_free(buf);
638         }
639
640         /* Check metadata checksum. */
641         for (checksum = 0, ptr = (uint32_t *)meta, i = 0;
642             i < (meta->config_size / sizeof(uint32_t)); i++) {
643                 checksum += *ptr++;
644         }
645         checksum -= meta->checksum;
646         if (checksum != meta->checksum) {
647                 G_RAID_DEBUG(1, "Intel checksum check failed on %s", pp->name);
648                 free(meta, M_MD_INTEL);
649                 return (NULL);
650         }
651
652         /* Validate metadata size. */
653         size = sizeof(struct intel_raid_conf) +
654             sizeof(struct intel_raid_disk) * (meta->total_disks - 1) +
655             sizeof(struct intel_raid_vol) * meta->total_volumes;
656         if (size > meta->config_size) {
657 badsize:
658                 G_RAID_DEBUG(1, "Intel metadata size incorrect %d < %d",
659                     meta->config_size, size);
660                 free(meta, M_MD_INTEL);
661                 return (NULL);
662         }
663         for (i = 0; i < meta->total_volumes; i++) {
664                 mvol = intel_get_volume(meta, i);
665                 mmap = intel_get_map(mvol, 0);
666                 size += 4 * (mmap->total_disks - 1);
667                 if (size > meta->config_size)
668                         goto badsize;
669                 if (mvol->migr_state) {
670                         size += sizeof(struct intel_raid_map);
671                         if (size > meta->config_size)
672                                 goto badsize;
673                         mmap = intel_get_map(mvol, 1);
674                         size += 4 * (mmap->total_disks - 1);
675                         if (size > meta->config_size)
676                                 goto badsize;
677                 }
678         }
679
680         g_raid_md_intel_print(meta);
681
682         if (strncmp(meta->version, INTEL_VERSION_1300, 6) > 0) {
683                 G_RAID_DEBUG(1, "Intel unsupported version: '%.6s'",
684                     meta->version);
685                 free(meta, M_MD_INTEL);
686                 return (NULL);
687         }
688
689         if (strncmp(meta->version, INTEL_VERSION_1300, 6) >= 0 &&
690             (meta->attributes & ~INTEL_ATTR_SUPPORTED) != 0) {
691                 G_RAID_DEBUG(1, "Intel unsupported attributes: 0x%08x",
692                     meta->attributes & ~INTEL_ATTR_SUPPORTED);
693                 free(meta, M_MD_INTEL);
694                 return (NULL);
695         }
696
697         /* Validate disk indexes. */
698         for (i = 0; i < meta->total_volumes; i++) {
699                 mvol = intel_get_volume(meta, i);
700                 for (j = 0; j < (mvol->migr_state ? 2 : 1); j++) {
701                         mmap = intel_get_map(mvol, j);
702                         for (k = 0; k < mmap->total_disks; k++) {
703                                 if ((mmap->disk_idx[k] & INTEL_DI_IDX) >
704                                     meta->total_disks) {
705                                         G_RAID_DEBUG(1, "Intel metadata disk"
706                                             " index %d too big (>%d)",
707                                             mmap->disk_idx[k] & INTEL_DI_IDX,
708                                             meta->total_disks);
709                                         free(meta, M_MD_INTEL);
710                                         return (NULL);
711                                 }
712                         }
713                 }
714         }
715
716         /* Validate migration types. */
717         for (i = 0; i < meta->total_volumes; i++) {
718                 mvol = intel_get_volume(meta, i);
719                 /* Deny unknown migration types. */
720                 if (mvol->migr_state &&
721                     mvol->migr_type != INTEL_MT_INIT &&
722                     mvol->migr_type != INTEL_MT_REBUILD &&
723                     mvol->migr_type != INTEL_MT_VERIFY &&
724                     mvol->migr_type != INTEL_MT_GEN_MIGR &&
725                     mvol->migr_type != INTEL_MT_REPAIR) {
726                         G_RAID_DEBUG(1, "Intel metadata has unsupported"
727                             " migration type %d", mvol->migr_type);
728                         free(meta, M_MD_INTEL);
729                         return (NULL);
730                 }
731                 /* Deny general migrations except SINGLE->RAID1. */
732                 if (mvol->migr_state &&
733                     mvol->migr_type == INTEL_MT_GEN_MIGR) {
734                         mmap = intel_get_map(mvol, 0);
735                         mmap1 = intel_get_map(mvol, 1);
736                         if (mmap1->total_disks != 1 ||
737                             mmap->type != INTEL_T_RAID1 ||
738                             mmap->total_disks != 2 ||
739                             mmap->offset != mmap1->offset ||
740                             mmap->disk_sectors != mmap1->disk_sectors ||
741                             mmap->total_domains != mmap->total_disks ||
742                             mmap->offset_hi != mmap1->offset_hi ||
743                             mmap->disk_sectors_hi != mmap1->disk_sectors_hi ||
744                             (mmap->disk_idx[0] != mmap1->disk_idx[0] &&
745                              mmap->disk_idx[0] != mmap1->disk_idx[1])) {
746                                 G_RAID_DEBUG(1, "Intel metadata has unsupported"
747                                     " variant of general migration");
748                                 free(meta, M_MD_INTEL);
749                                 return (NULL);
750                         }
751                 }
752         }
753
754         return (meta);
755 }
756
757 static int
758 intel_meta_write(struct g_consumer *cp, struct intel_raid_conf *meta)
759 {
760         struct g_provider *pp;
761         char *buf;
762         int error, i, sectors;
763         uint32_t checksum, *ptr;
764
765         pp = cp->provider;
766
767         /* Recalculate checksum for case if metadata were changed. */
768         meta->checksum = 0;
769         for (checksum = 0, ptr = (uint32_t *)meta, i = 0;
770             i < (meta->config_size / sizeof(uint32_t)); i++) {
771                 checksum += *ptr++;
772         }
773         meta->checksum = checksum;
774
775         /* Create and fill buffer. */
776         sectors = (meta->config_size + pp->sectorsize - 1) / pp->sectorsize;
777         buf = malloc(sectors * pp->sectorsize, M_MD_INTEL, M_WAITOK | M_ZERO);
778         if (sectors > 1) {
779                 memcpy(buf, ((char *)meta) + pp->sectorsize,
780                     (sectors - 1) * pp->sectorsize);
781         }
782         memcpy(buf + (sectors - 1) * pp->sectorsize, meta, pp->sectorsize);
783
784         error = g_write_data(cp,
785             pp->mediasize - pp->sectorsize * (1 + sectors),
786             buf, pp->sectorsize * sectors);
787         if (error != 0) {
788                 G_RAID_DEBUG(1, "Cannot write metadata to %s (error=%d).",
789                     pp->name, error);
790         }
791
792         free(buf, M_MD_INTEL);
793         return (error);
794 }
795
796 static int
797 intel_meta_erase(struct g_consumer *cp)
798 {
799         struct g_provider *pp;
800         char *buf;
801         int error;
802
803         pp = cp->provider;
804         buf = malloc(pp->sectorsize, M_MD_INTEL, M_WAITOK | M_ZERO);
805         error = g_write_data(cp,
806             pp->mediasize - 2 * pp->sectorsize,
807             buf, pp->sectorsize);
808         if (error != 0) {
809                 G_RAID_DEBUG(1, "Cannot erase metadata on %s (error=%d).",
810                     pp->name, error);
811         }
812         free(buf, M_MD_INTEL);
813         return (error);
814 }
815
816 static int
817 intel_meta_write_spare(struct g_consumer *cp, struct intel_raid_disk *d)
818 {
819         struct intel_raid_conf *meta;
820         int error;
821
822         /* Fill anchor and single disk. */
823         meta = malloc(INTEL_MAX_MD_SIZE(1), M_MD_INTEL, M_WAITOK | M_ZERO);
824         memcpy(&meta->intel_id[0], INTEL_MAGIC, sizeof(INTEL_MAGIC) - 1);
825         memcpy(&meta->version[0], INTEL_VERSION_1000,
826             sizeof(INTEL_VERSION_1000) - 1);
827         meta->config_size = INTEL_MAX_MD_SIZE(1);
828         meta->config_id = meta->orig_config_id = arc4random();
829         meta->generation = 1;
830         meta->total_disks = 1;
831         meta->disk[0] = *d;
832         error = intel_meta_write(cp, meta);
833         free(meta, M_MD_INTEL);
834         return (error);
835 }
836
837 static struct g_raid_disk *
838 g_raid_md_intel_get_disk(struct g_raid_softc *sc, int id)
839 {
840         struct g_raid_disk      *disk;
841         struct g_raid_md_intel_perdisk *pd;
842
843         TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
844                 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
845                 if (pd->pd_disk_pos == id)
846                         break;
847         }
848         return (disk);
849 }
850
851 static int
852 g_raid_md_intel_supported(int level, int qual, int disks, int force)
853 {
854
855         switch (level) {
856         case G_RAID_VOLUME_RL_RAID0:
857                 if (disks < 1)
858                         return (0);
859                 if (!force && (disks < 2 || disks > 6))
860                         return (0);
861                 break;
862         case G_RAID_VOLUME_RL_RAID1:
863                 if (disks < 1)
864                         return (0);
865                 if (!force && (disks != 2))
866                         return (0);
867                 break;
868         case G_RAID_VOLUME_RL_RAID1E:
869                 if (disks < 2)
870                         return (0);
871                 if (!force && (disks != 4))
872                         return (0);
873                 break;
874         case G_RAID_VOLUME_RL_RAID5:
875                 if (disks < 3)
876                         return (0);
877                 if (!force && disks > 6)
878                         return (0);
879                 if (qual != G_RAID_VOLUME_RLQ_R5LA)
880                         return (0);
881                 break;
882         default:
883                 return (0);
884         }
885         if (level != G_RAID_VOLUME_RL_RAID5 && qual != G_RAID_VOLUME_RLQ_NONE)
886                 return (0);
887         return (1);
888 }
889
890 static struct g_raid_volume *
891 g_raid_md_intel_get_volume(struct g_raid_softc *sc, int id)
892 {
893         struct g_raid_volume    *mvol;
894         struct g_raid_md_intel_pervolume *pv;
895
896         TAILQ_FOREACH(mvol, &sc->sc_volumes, v_next) {
897                 pv = mvol->v_md_data;
898                 if (pv->pv_volume_pos == id)
899                         break;
900         }
901         return (mvol);
902 }
903
904 static int
905 g_raid_md_intel_start_disk(struct g_raid_disk *disk)
906 {
907         struct g_raid_softc *sc;
908         struct g_raid_subdisk *sd, *tmpsd;
909         struct g_raid_disk *olddisk, *tmpdisk;
910         struct g_raid_md_object *md;
911         struct g_raid_md_intel_object *mdi;
912         struct g_raid_md_intel_pervolume *pv;
913         struct g_raid_md_intel_perdisk *pd, *oldpd;
914         struct intel_raid_conf *meta;
915         struct intel_raid_vol *mvol;
916         struct intel_raid_map *mmap0, *mmap1;
917         int disk_pos, resurrection = 0, migr_global, i;
918
919         sc = disk->d_softc;
920         md = sc->sc_md;
921         mdi = (struct g_raid_md_intel_object *)md;
922         meta = mdi->mdio_meta;
923         pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
924         olddisk = NULL;
925
926         /* Find disk position in metadata by it's serial. */
927         disk_pos = intel_meta_find_disk(meta, pd->pd_disk_meta.serial);
928         if (disk_pos < 0) {
929                 G_RAID_DEBUG1(1, sc, "Unknown, probably new or stale disk");
930                 /* Failed stale disk is useless for us. */
931                 if ((pd->pd_disk_meta.flags & INTEL_F_FAILED) &&
932                     !(pd->pd_disk_meta.flags & INTEL_F_DISABLED)) {
933                         g_raid_change_disk_state(disk, G_RAID_DISK_S_STALE_FAILED);
934                         return (0);
935                 }
936                 /* If we are in the start process, that's all for now. */
937                 if (!mdi->mdio_started)
938                         goto nofit;
939                 /*
940                  * If we have already started - try to get use of the disk.
941                  * Try to replace OFFLINE disks first, then FAILED.
942                  */
943                 TAILQ_FOREACH(tmpdisk, &sc->sc_disks, d_next) {
944                         if (tmpdisk->d_state != G_RAID_DISK_S_OFFLINE &&
945                             tmpdisk->d_state != G_RAID_DISK_S_FAILED)
946                                 continue;
947                         /* Make sure this disk is big enough. */
948                         TAILQ_FOREACH(sd, &tmpdisk->d_subdisks, sd_next) {
949                                 off_t disk_sectors = 
950                                     intel_get_disk_sectors(&pd->pd_disk_meta);
951
952                                 if (sd->sd_offset + sd->sd_size + 4096 >
953                                     disk_sectors * 512) {
954                                         G_RAID_DEBUG1(1, sc,
955                                             "Disk too small (%llu < %llu)",
956                                             (unsigned long long)
957                                             disk_sectors * 512,
958                                             (unsigned long long)
959                                             sd->sd_offset + sd->sd_size + 4096);
960                                         break;
961                                 }
962                         }
963                         if (sd != NULL)
964                                 continue;
965                         if (tmpdisk->d_state == G_RAID_DISK_S_OFFLINE) {
966                                 olddisk = tmpdisk;
967                                 break;
968                         } else if (olddisk == NULL)
969                                 olddisk = tmpdisk;
970                 }
971                 if (olddisk == NULL) {
972 nofit:
973                         if (pd->pd_disk_meta.flags & INTEL_F_SPARE) {
974                                 g_raid_change_disk_state(disk,
975                                     G_RAID_DISK_S_SPARE);
976                                 return (1);
977                         } else {
978                                 g_raid_change_disk_state(disk,
979                                     G_RAID_DISK_S_STALE);
980                                 return (0);
981                         }
982                 }
983                 oldpd = (struct g_raid_md_intel_perdisk *)olddisk->d_md_data;
984                 disk_pos = oldpd->pd_disk_pos;
985                 resurrection = 1;
986         }
987
988         if (olddisk == NULL) {
989                 /* Find placeholder by position. */
990                 olddisk = g_raid_md_intel_get_disk(sc, disk_pos);
991                 if (olddisk == NULL)
992                         panic("No disk at position %d!", disk_pos);
993                 if (olddisk->d_state != G_RAID_DISK_S_OFFLINE) {
994                         G_RAID_DEBUG1(1, sc, "More then one disk for pos %d",
995                             disk_pos);
996                         g_raid_change_disk_state(disk, G_RAID_DISK_S_STALE);
997                         return (0);
998                 }
999                 oldpd = (struct g_raid_md_intel_perdisk *)olddisk->d_md_data;
1000         }
1001
1002         /* Replace failed disk or placeholder with new disk. */
1003         TAILQ_FOREACH_SAFE(sd, &olddisk->d_subdisks, sd_next, tmpsd) {
1004                 TAILQ_REMOVE(&olddisk->d_subdisks, sd, sd_next);
1005                 TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
1006                 sd->sd_disk = disk;
1007         }
1008         oldpd->pd_disk_pos = -2;
1009         pd->pd_disk_pos = disk_pos;
1010
1011         /* If it was placeholder -- destroy it. */
1012         if (olddisk->d_state == G_RAID_DISK_S_OFFLINE) {
1013                 g_raid_destroy_disk(olddisk);
1014         } else {
1015                 /* Otherwise, make it STALE_FAILED. */
1016                 g_raid_change_disk_state(olddisk, G_RAID_DISK_S_STALE_FAILED);
1017                 /* Update global metadata just in case. */
1018                 memcpy(&meta->disk[disk_pos], &pd->pd_disk_meta,
1019                     sizeof(struct intel_raid_disk));
1020         }
1021
1022         /* Welcome the new disk. */
1023         if ((meta->disk[disk_pos].flags & INTEL_F_DISABLED) &&
1024             !(pd->pd_disk_meta.flags & INTEL_F_SPARE))
1025                 g_raid_change_disk_state(disk, G_RAID_DISK_S_DISABLED);
1026         else if (resurrection)
1027                 g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE);
1028         else if (meta->disk[disk_pos].flags & INTEL_F_FAILED)
1029                 g_raid_change_disk_state(disk, G_RAID_DISK_S_FAILED);
1030         else if (meta->disk[disk_pos].flags & INTEL_F_SPARE)
1031                 g_raid_change_disk_state(disk, G_RAID_DISK_S_SPARE);
1032         else
1033                 g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE);
1034         TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
1035                 pv = sd->sd_volume->v_md_data;
1036                 mvol = intel_get_volume(meta, pv->pv_volume_pos);
1037                 mmap0 = intel_get_map(mvol, 0);
1038                 if (mvol->migr_state)
1039                         mmap1 = intel_get_map(mvol, 1);
1040                 else
1041                         mmap1 = mmap0;
1042
1043                 migr_global = 1;
1044                 for (i = 0; i < mmap0->total_disks; i++) {
1045                         if ((mmap0->disk_idx[i] & INTEL_DI_RBLD) == 0 &&
1046                             (mmap1->disk_idx[i] & INTEL_DI_RBLD) != 0)
1047                                 migr_global = 0;
1048                 }
1049
1050                 if ((meta->disk[disk_pos].flags & INTEL_F_DISABLED) &&
1051                     !(pd->pd_disk_meta.flags & INTEL_F_SPARE)) {
1052                         /* Disabled disk, useless. */
1053                         g_raid_change_subdisk_state(sd,
1054                             G_RAID_SUBDISK_S_NONE);
1055                 } else if (resurrection) {
1056                         /* Stale disk, almost same as new. */
1057                         g_raid_change_subdisk_state(sd,
1058                             G_RAID_SUBDISK_S_NEW);
1059                 } else if (meta->disk[disk_pos].flags & INTEL_F_FAILED) {
1060                         /* Failed disk, almost useless. */
1061                         g_raid_change_subdisk_state(sd,
1062                             G_RAID_SUBDISK_S_FAILED);
1063                 } else if (mvol->migr_state == 0) {
1064                         if (mmap0->status == INTEL_S_UNINITIALIZED &&
1065                             (!pv->pv_cng || pv->pv_cng_master_disk != disk_pos)) {
1066                                 /* Freshly created uninitialized volume. */
1067                                 g_raid_change_subdisk_state(sd,
1068                                     G_RAID_SUBDISK_S_UNINITIALIZED);
1069                         } else if (mmap0->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) {
1070                                 /* Freshly inserted disk. */
1071                                 g_raid_change_subdisk_state(sd,
1072                                     G_RAID_SUBDISK_S_NEW);
1073                         } else if (mvol->dirty && (!pv->pv_cng ||
1074                             pv->pv_cng_master_disk != disk_pos)) {
1075                                 /* Dirty volume (unclean shutdown). */
1076                                 g_raid_change_subdisk_state(sd,
1077                                     G_RAID_SUBDISK_S_STALE);
1078                         } else {
1079                                 /* Up to date disk. */
1080                                 g_raid_change_subdisk_state(sd,
1081                                     G_RAID_SUBDISK_S_ACTIVE);
1082                         }
1083                 } else if (mvol->migr_type == INTEL_MT_INIT ||
1084                            mvol->migr_type == INTEL_MT_REBUILD) {
1085                         if (mmap0->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) {
1086                                 /* Freshly inserted disk. */
1087                                 g_raid_change_subdisk_state(sd,
1088                                     G_RAID_SUBDISK_S_NEW);
1089                         } else if (mmap1->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) {
1090                                 /* Rebuilding disk. */
1091                                 g_raid_change_subdisk_state(sd,
1092                                     G_RAID_SUBDISK_S_REBUILD);
1093                                 if (mvol->dirty) {
1094                                         sd->sd_rebuild_pos = 0;
1095                                 } else {
1096                                         sd->sd_rebuild_pos =
1097                                             intel_get_vol_curr_migr_unit(mvol) *
1098                                             sd->sd_volume->v_strip_size *
1099                                             mmap0->total_domains;
1100                                 }
1101                         } else if (mvol->migr_type == INTEL_MT_INIT &&
1102                             migr_global) {
1103                                 /* Freshly created uninitialized volume. */
1104                                 g_raid_change_subdisk_state(sd,
1105                                     G_RAID_SUBDISK_S_UNINITIALIZED);
1106                         } else if (mvol->dirty && (!pv->pv_cng ||
1107                             pv->pv_cng_master_disk != disk_pos)) {
1108                                 /* Dirty volume (unclean shutdown). */
1109                                 g_raid_change_subdisk_state(sd,
1110                                     G_RAID_SUBDISK_S_STALE);
1111                         } else {
1112                                 /* Up to date disk. */
1113                                 g_raid_change_subdisk_state(sd,
1114                                     G_RAID_SUBDISK_S_ACTIVE);
1115                         }
1116                 } else if (mvol->migr_type == INTEL_MT_VERIFY ||
1117                            mvol->migr_type == INTEL_MT_REPAIR) {
1118                         if (mmap0->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) {
1119                                 /* Freshly inserted disk. */
1120                                 g_raid_change_subdisk_state(sd,
1121                                     G_RAID_SUBDISK_S_NEW);
1122                         } else if ((mmap1->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) ||
1123                             migr_global) {
1124                                 /* Resyncing disk. */
1125                                 g_raid_change_subdisk_state(sd,
1126                                     G_RAID_SUBDISK_S_RESYNC);
1127                                 if (mvol->dirty) {
1128                                         sd->sd_rebuild_pos = 0;
1129                                 } else {
1130                                         sd->sd_rebuild_pos =
1131                                             intel_get_vol_curr_migr_unit(mvol) *
1132                                             sd->sd_volume->v_strip_size *
1133                                             mmap0->total_domains;
1134                                 }
1135                         } else if (mvol->dirty) {
1136                                 /* Dirty volume (unclean shutdown). */
1137                                 g_raid_change_subdisk_state(sd,
1138                                     G_RAID_SUBDISK_S_STALE);
1139                         } else {
1140                                 /* Up to date disk. */
1141                                 g_raid_change_subdisk_state(sd,
1142                                     G_RAID_SUBDISK_S_ACTIVE);
1143                         }
1144                 } else if (mvol->migr_type == INTEL_MT_GEN_MIGR) {
1145                         if ((mmap1->disk_idx[0] & INTEL_DI_IDX) != disk_pos) {
1146                                 /* Freshly inserted disk. */
1147                                 g_raid_change_subdisk_state(sd,
1148                                     G_RAID_SUBDISK_S_NEW);
1149                         } else {
1150                                 /* Up to date disk. */
1151                                 g_raid_change_subdisk_state(sd,
1152                                     G_RAID_SUBDISK_S_ACTIVE);
1153                         }
1154                 }
1155                 g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
1156                     G_RAID_EVENT_SUBDISK);
1157         }
1158
1159         /* Update status of our need for spare. */
1160         if (mdi->mdio_started) {
1161                 mdi->mdio_incomplete =
1162                     (g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE) +
1163                      g_raid_ndisks(sc, G_RAID_DISK_S_DISABLED) <
1164                      meta->total_disks);
1165         }
1166
1167         return (resurrection);
1168 }
1169
1170 static void
1171 g_disk_md_intel_retaste(void *arg, int pending)
1172 {
1173
1174         G_RAID_DEBUG(1, "Array is not complete, trying to retaste.");
1175         g_retaste(&g_raid_class);
1176         free(arg, M_MD_INTEL);
1177 }
1178
1179 static void
1180 g_raid_md_intel_refill(struct g_raid_softc *sc)
1181 {
1182         struct g_raid_md_object *md;
1183         struct g_raid_md_intel_object *mdi;
1184         struct intel_raid_conf *meta;
1185         struct g_raid_disk *disk;
1186         struct task *task;
1187         int update, na;
1188
1189         md = sc->sc_md;
1190         mdi = (struct g_raid_md_intel_object *)md;
1191         meta = mdi->mdio_meta;
1192         update = 0;
1193         do {
1194                 /* Make sure we miss anything. */
1195                 na = g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE) +
1196                     g_raid_ndisks(sc, G_RAID_DISK_S_DISABLED);
1197                 if (na == meta->total_disks)
1198                         break;
1199
1200                 G_RAID_DEBUG1(1, md->mdo_softc,
1201                     "Array is not complete (%d of %d), "
1202                     "trying to refill.", na, meta->total_disks);
1203
1204                 /* Try to get use some of STALE disks. */
1205                 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1206                         if (disk->d_state == G_RAID_DISK_S_STALE) {
1207                                 update += g_raid_md_intel_start_disk(disk);
1208                                 if (disk->d_state == G_RAID_DISK_S_ACTIVE ||
1209                                     disk->d_state == G_RAID_DISK_S_DISABLED)
1210                                         break;
1211                         }
1212                 }
1213                 if (disk != NULL)
1214                         continue;
1215
1216                 /* Try to get use some of SPARE disks. */
1217                 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1218                         if (disk->d_state == G_RAID_DISK_S_SPARE) {
1219                                 update += g_raid_md_intel_start_disk(disk);
1220                                 if (disk->d_state == G_RAID_DISK_S_ACTIVE)
1221                                         break;
1222                         }
1223                 }
1224         } while (disk != NULL);
1225
1226         /* Write new metadata if we changed something. */
1227         if (update) {
1228                 g_raid_md_write_intel(md, NULL, NULL, NULL);
1229                 meta = mdi->mdio_meta;
1230         }
1231
1232         /* Update status of our need for spare. */
1233         mdi->mdio_incomplete = (g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE) +
1234             g_raid_ndisks(sc, G_RAID_DISK_S_DISABLED) < meta->total_disks);
1235
1236         /* Request retaste hoping to find spare. */
1237         if (mdi->mdio_incomplete) {
1238                 task = malloc(sizeof(struct task),
1239                     M_MD_INTEL, M_WAITOK | M_ZERO);
1240                 TASK_INIT(task, 0, g_disk_md_intel_retaste, task);
1241                 taskqueue_enqueue(taskqueue_swi, task);
1242         }
1243 }
1244
1245 static void
1246 g_raid_md_intel_start(struct g_raid_softc *sc)
1247 {
1248         struct g_raid_md_object *md;
1249         struct g_raid_md_intel_object *mdi;
1250         struct g_raid_md_intel_pervolume *pv;
1251         struct g_raid_md_intel_perdisk *pd;
1252         struct intel_raid_conf *meta;
1253         struct intel_raid_vol *mvol;
1254         struct intel_raid_map *mmap;
1255         struct g_raid_volume *vol;
1256         struct g_raid_subdisk *sd;
1257         struct g_raid_disk *disk;
1258         int i, j, disk_pos;
1259
1260         md = sc->sc_md;
1261         mdi = (struct g_raid_md_intel_object *)md;
1262         meta = mdi->mdio_meta;
1263
1264         /* Create volumes and subdisks. */
1265         for (i = 0; i < meta->total_volumes; i++) {
1266                 mvol = intel_get_volume(meta, i);
1267                 mmap = intel_get_map(mvol, 0);
1268                 vol = g_raid_create_volume(sc, mvol->name, mvol->tid - 1);
1269                 pv = malloc(sizeof(*pv), M_MD_INTEL, M_WAITOK | M_ZERO);
1270                 pv->pv_volume_pos = i;
1271                 pv->pv_cng = (mvol->state & INTEL_ST_CLONE_N_GO) != 0;
1272                 pv->pv_cng_man_sync = (mvol->state & INTEL_ST_CLONE_MAN_SYNC) != 0;
1273                 if (mvol->cng_master_disk < mmap->total_disks)
1274                         pv->pv_cng_master_disk = mvol->cng_master_disk;
1275                 vol->v_md_data = pv;
1276                 vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_NONE;
1277                 if (mmap->type == INTEL_T_RAID0)
1278                         vol->v_raid_level = G_RAID_VOLUME_RL_RAID0;
1279                 else if (mmap->type == INTEL_T_RAID1 &&
1280                     mmap->total_domains >= 2 &&
1281                     mmap->total_domains <= mmap->total_disks) {
1282                         /* Assume total_domains is correct. */
1283                         if (mmap->total_domains == mmap->total_disks)
1284                                 vol->v_raid_level = G_RAID_VOLUME_RL_RAID1;
1285                         else
1286                                 vol->v_raid_level = G_RAID_VOLUME_RL_RAID1E;
1287                 } else if (mmap->type == INTEL_T_RAID1) {
1288                         /* total_domains looks wrong. */
1289                         if (mmap->total_disks <= 2)
1290                                 vol->v_raid_level = G_RAID_VOLUME_RL_RAID1;
1291                         else
1292                                 vol->v_raid_level = G_RAID_VOLUME_RL_RAID1E;
1293                 } else if (mmap->type == INTEL_T_RAID5) {
1294                         vol->v_raid_level = G_RAID_VOLUME_RL_RAID5;
1295                         vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_R5LA;
1296                 } else
1297                         vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN;
1298                 vol->v_strip_size = (u_int)mmap->strip_sectors * 512; //ZZZ
1299                 vol->v_disks_count = mmap->total_disks;
1300                 vol->v_mediasize = (off_t)mvol->total_sectors * 512; //ZZZ
1301                 vol->v_sectorsize = 512; //ZZZ
1302                 for (j = 0; j < vol->v_disks_count; j++) {
1303                         sd = &vol->v_subdisks[j];
1304                         sd->sd_offset = intel_get_map_offset(mmap) * 512; //ZZZ
1305                         sd->sd_size = intel_get_map_disk_sectors(mmap) * 512; //ZZZ
1306                 }
1307                 g_raid_start_volume(vol);
1308         }
1309
1310         /* Create disk placeholders to store data for later writing. */
1311         for (disk_pos = 0; disk_pos < meta->total_disks; disk_pos++) {
1312                 pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO);
1313                 pd->pd_disk_pos = disk_pos;
1314                 pd->pd_disk_meta = meta->disk[disk_pos];
1315                 disk = g_raid_create_disk(sc);
1316                 disk->d_md_data = (void *)pd;
1317                 disk->d_state = G_RAID_DISK_S_OFFLINE;
1318                 for (i = 0; i < meta->total_volumes; i++) {
1319                         mvol = intel_get_volume(meta, i);
1320                         mmap = intel_get_map(mvol, 0);
1321                         for (j = 0; j < mmap->total_disks; j++) {
1322                                 if ((mmap->disk_idx[j] & INTEL_DI_IDX) == disk_pos)
1323                                         break;
1324                         }
1325                         if (j == mmap->total_disks)
1326                                 continue;
1327                         vol = g_raid_md_intel_get_volume(sc, i);
1328                         sd = &vol->v_subdisks[j];
1329                         sd->sd_disk = disk;
1330                         TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
1331                 }
1332         }
1333
1334         /* Make all disks found till the moment take their places. */
1335         do {
1336                 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1337                         if (disk->d_state == G_RAID_DISK_S_NONE) {
1338                                 g_raid_md_intel_start_disk(disk);
1339                                 break;
1340                         }
1341                 }
1342         } while (disk != NULL);
1343
1344         mdi->mdio_started = 1;
1345         G_RAID_DEBUG1(0, sc, "Array started.");
1346         g_raid_md_write_intel(md, NULL, NULL, NULL);
1347
1348         /* Pickup any STALE/SPARE disks to refill array if needed. */
1349         g_raid_md_intel_refill(sc);
1350
1351         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1352                 g_raid_event_send(vol, G_RAID_VOLUME_E_START,
1353                     G_RAID_EVENT_VOLUME);
1354         }
1355
1356         callout_stop(&mdi->mdio_start_co);
1357         G_RAID_DEBUG1(1, sc, "root_mount_rel %p", mdi->mdio_rootmount);
1358         root_mount_rel(mdi->mdio_rootmount);
1359         mdi->mdio_rootmount = NULL;
1360 }
1361
1362 static void
1363 g_raid_md_intel_new_disk(struct g_raid_disk *disk)
1364 {
1365         struct g_raid_softc *sc;
1366         struct g_raid_md_object *md;
1367         struct g_raid_md_intel_object *mdi;
1368         struct intel_raid_conf *pdmeta;
1369         struct g_raid_md_intel_perdisk *pd;
1370
1371         sc = disk->d_softc;
1372         md = sc->sc_md;
1373         mdi = (struct g_raid_md_intel_object *)md;
1374         pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
1375         pdmeta = pd->pd_meta;
1376
1377         if (mdi->mdio_started) {
1378                 if (g_raid_md_intel_start_disk(disk))
1379                         g_raid_md_write_intel(md, NULL, NULL, NULL);
1380         } else {
1381                 /* If we haven't started yet - check metadata freshness. */
1382                 if (mdi->mdio_meta == NULL ||
1383                     ((int32_t)(pdmeta->generation - mdi->mdio_generation)) > 0) {
1384                         G_RAID_DEBUG1(1, sc, "Newer disk");
1385                         if (mdi->mdio_meta != NULL)
1386                                 free(mdi->mdio_meta, M_MD_INTEL);
1387                         mdi->mdio_meta = intel_meta_copy(pdmeta);
1388                         mdi->mdio_generation = mdi->mdio_meta->generation;
1389                         mdi->mdio_disks_present = 1;
1390                 } else if (pdmeta->generation == mdi->mdio_generation) {
1391                         mdi->mdio_disks_present++;
1392                         G_RAID_DEBUG1(1, sc, "Matching disk (%d of %d up)",
1393                             mdi->mdio_disks_present,
1394                             mdi->mdio_meta->total_disks);
1395                 } else {
1396                         G_RAID_DEBUG1(1, sc, "Older disk");
1397                 }
1398                 /* If we collected all needed disks - start array. */
1399                 if (mdi->mdio_disks_present == mdi->mdio_meta->total_disks)
1400                         g_raid_md_intel_start(sc);
1401         }
1402 }
1403
1404 static void
1405 g_raid_intel_go(void *arg)
1406 {
1407         struct g_raid_softc *sc;
1408         struct g_raid_md_object *md;
1409         struct g_raid_md_intel_object *mdi;
1410
1411         sc = arg;
1412         md = sc->sc_md;
1413         mdi = (struct g_raid_md_intel_object *)md;
1414         if (!mdi->mdio_started) {
1415                 G_RAID_DEBUG1(0, sc, "Force array start due to timeout.");
1416                 g_raid_event_send(sc, G_RAID_NODE_E_START, 0);
1417         }
1418 }
1419
1420 static int
1421 g_raid_md_create_intel(struct g_raid_md_object *md, struct g_class *mp,
1422     struct g_geom **gp)
1423 {
1424         struct g_raid_softc *sc;
1425         struct g_raid_md_intel_object *mdi;
1426         char name[16];
1427
1428         mdi = (struct g_raid_md_intel_object *)md;
1429         mdi->mdio_config_id = mdi->mdio_orig_config_id = arc4random();
1430         mdi->mdio_generation = 0;
1431         snprintf(name, sizeof(name), "Intel-%08x", mdi->mdio_config_id);
1432         sc = g_raid_create_node(mp, name, md);
1433         if (sc == NULL)
1434                 return (G_RAID_MD_TASTE_FAIL);
1435         md->mdo_softc = sc;
1436         *gp = sc->sc_geom;
1437         return (G_RAID_MD_TASTE_NEW);
1438 }
1439
1440 /*
1441  * Return the last N characters of the serial label.  The Linux and
1442  * ataraid(7) code always uses the last 16 characters of the label to
1443  * store into the Intel meta format.  Generalize this to N characters
1444  * since that's easy.  Labels can be up to 20 characters for SATA drives
1445  * and up 251 characters for SAS drives.  Since intel controllers don't
1446  * support SAS drives, just stick with the SATA limits for stack friendliness.
1447  */
1448 static int
1449 g_raid_md_get_label(struct g_consumer *cp, char *serial, int serlen)
1450 {
1451         char serial_buffer[24];
1452         int len, error;
1453         
1454         len = sizeof(serial_buffer);
1455         error = g_io_getattr("GEOM::ident", cp, &len, serial_buffer);
1456         if (error != 0)
1457                 return (error);
1458         len = strlen(serial_buffer);
1459         if (len > serlen)
1460                 len -= serlen;
1461         else
1462                 len = 0;
1463         strncpy(serial, serial_buffer + len, serlen);
1464         return (0);
1465 }
1466
1467 static int
1468 g_raid_md_taste_intel(struct g_raid_md_object *md, struct g_class *mp,
1469                               struct g_consumer *cp, struct g_geom **gp)
1470 {
1471         struct g_consumer *rcp;
1472         struct g_provider *pp;
1473         struct g_raid_md_intel_object *mdi, *mdi1;
1474         struct g_raid_softc *sc;
1475         struct g_raid_disk *disk;
1476         struct intel_raid_conf *meta;
1477         struct g_raid_md_intel_perdisk *pd;
1478         struct g_geom *geom;
1479         int error, disk_pos, result, spare, len;
1480         char serial[INTEL_SERIAL_LEN];
1481         char name[16];
1482         uint16_t vendor;
1483
1484         G_RAID_DEBUG(1, "Tasting Intel on %s", cp->provider->name);
1485         mdi = (struct g_raid_md_intel_object *)md;
1486         pp = cp->provider;
1487
1488         /* Read metadata from device. */
1489         meta = NULL;
1490         vendor = 0xffff;
1491         disk_pos = 0;
1492         g_topology_unlock();
1493         error = g_raid_md_get_label(cp, serial, sizeof(serial));
1494         if (error != 0) {
1495                 G_RAID_DEBUG(1, "Cannot get serial number from %s (error=%d).",
1496                     pp->name, error);
1497                 goto fail2;
1498         }
1499         len = 2;
1500         if (pp->geom->rank == 1)
1501                 g_io_getattr("GEOM::hba_vendor", cp, &len, &vendor);
1502         meta = intel_meta_read(cp);
1503         g_topology_lock();
1504         if (meta == NULL) {
1505                 if (g_raid_aggressive_spare) {
1506                         if (vendor != 0x8086) {
1507                                 G_RAID_DEBUG(1,
1508                                     "Intel vendor mismatch 0x%04x != 0x8086",
1509                                     vendor);
1510                         } else {
1511                                 G_RAID_DEBUG(1,
1512                                     "No Intel metadata, forcing spare.");
1513                                 spare = 2;
1514                                 goto search;
1515                         }
1516                 }
1517                 return (G_RAID_MD_TASTE_FAIL);
1518         }
1519
1520         /* Check this disk position in obtained metadata. */
1521         disk_pos = intel_meta_find_disk(meta, serial);
1522         if (disk_pos < 0) {
1523                 G_RAID_DEBUG(1, "Intel serial '%s' not found", serial);
1524                 goto fail1;
1525         }
1526         if (intel_get_disk_sectors(&meta->disk[disk_pos]) !=
1527             (pp->mediasize / pp->sectorsize)) {
1528                 G_RAID_DEBUG(1, "Intel size mismatch %ju != %ju",
1529                     intel_get_disk_sectors(&meta->disk[disk_pos]),
1530                     (off_t)(pp->mediasize / pp->sectorsize));
1531                 goto fail1;
1532         }
1533
1534         G_RAID_DEBUG(1, "Intel disk position %d", disk_pos);
1535         spare = meta->disk[disk_pos].flags & INTEL_F_SPARE;
1536
1537 search:
1538         /* Search for matching node. */
1539         sc = NULL;
1540         mdi1 = NULL;
1541         LIST_FOREACH(geom, &mp->geom, geom) {
1542                 sc = geom->softc;
1543                 if (sc == NULL)
1544                         continue;
1545                 if (sc->sc_stopping != 0)
1546                         continue;
1547                 if (sc->sc_md->mdo_class != md->mdo_class)
1548                         continue;
1549                 mdi1 = (struct g_raid_md_intel_object *)sc->sc_md;
1550                 if (spare) {
1551                         if (mdi1->mdio_incomplete)
1552                                 break;
1553                 } else {
1554                         if (mdi1->mdio_config_id == meta->config_id)
1555                                 break;
1556                 }
1557         }
1558
1559         /* Found matching node. */
1560         if (geom != NULL) {
1561                 G_RAID_DEBUG(1, "Found matching array %s", sc->sc_name);
1562                 result = G_RAID_MD_TASTE_EXISTING;
1563
1564         } else if (spare) { /* Not found needy node -- left for later. */
1565                 G_RAID_DEBUG(1, "Spare is not needed at this time");
1566                 goto fail1;
1567
1568         } else { /* Not found matching node -- create one. */
1569                 result = G_RAID_MD_TASTE_NEW;
1570                 mdi->mdio_config_id = meta->config_id;
1571                 mdi->mdio_orig_config_id = meta->orig_config_id;
1572                 snprintf(name, sizeof(name), "Intel-%08x", meta->config_id);
1573                 sc = g_raid_create_node(mp, name, md);
1574                 md->mdo_softc = sc;
1575                 geom = sc->sc_geom;
1576                 callout_init(&mdi->mdio_start_co, 1);
1577                 callout_reset(&mdi->mdio_start_co, g_raid_start_timeout * hz,
1578                     g_raid_intel_go, sc);
1579                 mdi->mdio_rootmount = root_mount_hold("GRAID-Intel");
1580                 G_RAID_DEBUG1(1, sc, "root_mount_hold %p", mdi->mdio_rootmount);
1581         }
1582
1583         /* There is no return after this point, so we close passed consumer. */
1584         g_access(cp, -1, 0, 0);
1585
1586         rcp = g_new_consumer(geom);
1587         g_attach(rcp, pp);
1588         if (g_access(rcp, 1, 1, 1) != 0)
1589                 ; //goto fail1;
1590
1591         g_topology_unlock();
1592         sx_xlock(&sc->sc_lock);
1593
1594         pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO);
1595         pd->pd_meta = meta;
1596         pd->pd_disk_pos = -1;
1597         if (spare == 2) {
1598                 memcpy(&pd->pd_disk_meta.serial[0], serial, INTEL_SERIAL_LEN);
1599                 intel_set_disk_sectors(&pd->pd_disk_meta, 
1600                     pp->mediasize / pp->sectorsize);
1601                 pd->pd_disk_meta.id = 0;
1602                 pd->pd_disk_meta.flags = INTEL_F_SPARE;
1603         } else {
1604                 pd->pd_disk_meta = meta->disk[disk_pos];
1605         }
1606         disk = g_raid_create_disk(sc);
1607         disk->d_md_data = (void *)pd;
1608         disk->d_consumer = rcp;
1609         rcp->private = disk;
1610
1611         g_raid_get_disk_info(disk);
1612
1613         g_raid_md_intel_new_disk(disk);
1614
1615         sx_xunlock(&sc->sc_lock);
1616         g_topology_lock();
1617         *gp = geom;
1618         return (result);
1619 fail2:
1620         g_topology_lock();
1621 fail1:
1622         free(meta, M_MD_INTEL);
1623         return (G_RAID_MD_TASTE_FAIL);
1624 }
1625
1626 static int
1627 g_raid_md_event_intel(struct g_raid_md_object *md,
1628     struct g_raid_disk *disk, u_int event)
1629 {
1630         struct g_raid_softc *sc;
1631         struct g_raid_subdisk *sd;
1632         struct g_raid_md_intel_object *mdi;
1633         struct g_raid_md_intel_perdisk *pd;
1634
1635         sc = md->mdo_softc;
1636         mdi = (struct g_raid_md_intel_object *)md;
1637         if (disk == NULL) {
1638                 switch (event) {
1639                 case G_RAID_NODE_E_START:
1640                         if (!mdi->mdio_started)
1641                                 g_raid_md_intel_start(sc);
1642                         return (0);
1643                 }
1644                 return (-1);
1645         }
1646         pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
1647         switch (event) {
1648         case G_RAID_DISK_E_DISCONNECTED:
1649                 /* If disk was assigned, just update statuses. */
1650                 if (pd->pd_disk_pos >= 0) {
1651                         g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE);
1652                         if (disk->d_consumer) {
1653                                 g_raid_kill_consumer(sc, disk->d_consumer);
1654                                 disk->d_consumer = NULL;
1655                         }
1656                         TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
1657                                 g_raid_change_subdisk_state(sd,
1658                                     G_RAID_SUBDISK_S_NONE);
1659                                 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
1660                                     G_RAID_EVENT_SUBDISK);
1661                         }
1662                 } else {
1663                         /* Otherwise -- delete. */
1664                         g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE);
1665                         g_raid_destroy_disk(disk);
1666                 }
1667
1668                 /* Write updated metadata to all disks. */
1669                 g_raid_md_write_intel(md, NULL, NULL, NULL);
1670
1671                 /* Check if anything left except placeholders. */
1672                 if (g_raid_ndisks(sc, -1) ==
1673                     g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE))
1674                         g_raid_destroy_node(sc, 0);
1675                 else
1676                         g_raid_md_intel_refill(sc);
1677                 return (0);
1678         }
1679         return (-2);
1680 }
1681
1682 static int
1683 g_raid_md_ctl_intel(struct g_raid_md_object *md,
1684     struct gctl_req *req)
1685 {
1686         struct g_raid_softc *sc;
1687         struct g_raid_volume *vol, *vol1;
1688         struct g_raid_subdisk *sd;
1689         struct g_raid_disk *disk;
1690         struct g_raid_md_intel_object *mdi;
1691         struct g_raid_md_intel_pervolume *pv;
1692         struct g_raid_md_intel_perdisk *pd;
1693         struct g_consumer *cp;
1694         struct g_provider *pp;
1695         char arg[16], serial[INTEL_SERIAL_LEN];
1696         const char *nodename, *verb, *volname, *levelname, *diskname;
1697         char *tmp;
1698         int *nargs, *force;
1699         off_t off, size, sectorsize, strip, disk_sectors;
1700         intmax_t *sizearg, *striparg;
1701         int numdisks, i, len, level, qual, update;
1702         int error;
1703
1704         sc = md->mdo_softc;
1705         mdi = (struct g_raid_md_intel_object *)md;
1706         verb = gctl_get_param(req, "verb", NULL);
1707         nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs));
1708         error = 0;
1709         if (strcmp(verb, "label") == 0) {
1710
1711                 if (*nargs < 4) {
1712                         gctl_error(req, "Invalid number of arguments.");
1713                         return (-1);
1714                 }
1715                 volname = gctl_get_asciiparam(req, "arg1");
1716                 if (volname == NULL) {
1717                         gctl_error(req, "No volume name.");
1718                         return (-2);
1719                 }
1720                 levelname = gctl_get_asciiparam(req, "arg2");
1721                 if (levelname == NULL) {
1722                         gctl_error(req, "No RAID level.");
1723                         return (-3);
1724                 }
1725                 if (strcasecmp(levelname, "RAID5") == 0)
1726                         levelname = "RAID5-LA";
1727                 if (g_raid_volume_str2level(levelname, &level, &qual)) {
1728                         gctl_error(req, "Unknown RAID level '%s'.", levelname);
1729                         return (-4);
1730                 }
1731                 numdisks = *nargs - 3;
1732                 force = gctl_get_paraml(req, "force", sizeof(*force));
1733                 if (!g_raid_md_intel_supported(level, qual, numdisks,
1734                     force ? *force : 0)) {
1735                         gctl_error(req, "Unsupported RAID level "
1736                             "(0x%02x/0x%02x), or number of disks (%d).",
1737                             level, qual, numdisks);
1738                         return (-5);
1739                 }
1740
1741                 /* Search for disks, connect them and probe. */
1742                 size = 0x7fffffffffffffffllu;
1743                 sectorsize = 0;
1744                 for (i = 0; i < numdisks; i++) {
1745                         snprintf(arg, sizeof(arg), "arg%d", i + 3);
1746                         diskname = gctl_get_asciiparam(req, arg);
1747                         if (diskname == NULL) {
1748                                 gctl_error(req, "No disk name (%s).", arg);
1749                                 error = -6;
1750                                 break;
1751                         }
1752                         if (strcmp(diskname, "NONE") == 0) {
1753                                 cp = NULL;
1754                                 pp = NULL;
1755                         } else {
1756                                 g_topology_lock();
1757                                 cp = g_raid_open_consumer(sc, diskname);
1758                                 if (cp == NULL) {
1759                                         gctl_error(req, "Can't open disk '%s'.",
1760                                             diskname);
1761                                         g_topology_unlock();
1762                                         error = -7;
1763                                         break;
1764                                 }
1765                                 pp = cp->provider;
1766                         }
1767                         pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO);
1768                         pd->pd_disk_pos = i;
1769                         disk = g_raid_create_disk(sc);
1770                         disk->d_md_data = (void *)pd;
1771                         disk->d_consumer = cp;
1772                         if (cp == NULL) {
1773                                 strcpy(&pd->pd_disk_meta.serial[0], "NONE");
1774                                 pd->pd_disk_meta.id = 0xffffffff;
1775                                 pd->pd_disk_meta.flags = INTEL_F_ASSIGNED;
1776                                 continue;
1777                         }
1778                         cp->private = disk;
1779                         g_topology_unlock();
1780
1781                         error = g_raid_md_get_label(cp,
1782                             &pd->pd_disk_meta.serial[0], INTEL_SERIAL_LEN);
1783                         if (error != 0) {
1784                                 gctl_error(req,
1785                                     "Can't get serial for provider '%s'.",
1786                                     diskname);
1787                                 error = -8;
1788                                 break;
1789                         }
1790
1791                         g_raid_get_disk_info(disk);
1792
1793                         intel_set_disk_sectors(&pd->pd_disk_meta,
1794                             pp->mediasize / pp->sectorsize);
1795                         if (size > pp->mediasize)
1796                                 size = pp->mediasize;
1797                         if (sectorsize < pp->sectorsize)
1798                                 sectorsize = pp->sectorsize;
1799                         pd->pd_disk_meta.id = 0;
1800                         pd->pd_disk_meta.flags = INTEL_F_ASSIGNED | INTEL_F_ONLINE;
1801                 }
1802                 if (error != 0)
1803                         return (error);
1804
1805                 if (sectorsize <= 0) {
1806                         gctl_error(req, "Can't get sector size.");
1807                         return (-8);
1808                 }
1809
1810                 /* Reserve some space for metadata. */
1811                 size -= ((4096 + sectorsize - 1) / sectorsize) * sectorsize;
1812
1813                 /* Handle size argument. */
1814                 len = sizeof(*sizearg);
1815                 sizearg = gctl_get_param(req, "size", &len);
1816                 if (sizearg != NULL && len == sizeof(*sizearg) &&
1817                     *sizearg > 0) {
1818                         if (*sizearg > size) {
1819                                 gctl_error(req, "Size too big %lld > %lld.",
1820                                     (long long)*sizearg, (long long)size);
1821                                 return (-9);
1822                         }
1823                         size = *sizearg;
1824                 }
1825
1826                 /* Handle strip argument. */
1827                 strip = 131072;
1828                 len = sizeof(*striparg);
1829                 striparg = gctl_get_param(req, "strip", &len);
1830                 if (striparg != NULL && len == sizeof(*striparg) &&
1831                     *striparg > 0) {
1832                         if (*striparg < sectorsize) {
1833                                 gctl_error(req, "Strip size too small.");
1834                                 return (-10);
1835                         }
1836                         if (*striparg % sectorsize != 0) {
1837                                 gctl_error(req, "Incorrect strip size.");
1838                                 return (-11);
1839                         }
1840                         if (strip > 65535 * sectorsize) {
1841                                 gctl_error(req, "Strip size too big.");
1842                                 return (-12);
1843                         }
1844                         strip = *striparg;
1845                 }
1846
1847                 /* Round size down to strip or sector. */
1848                 if (level == G_RAID_VOLUME_RL_RAID1)
1849                         size -= (size % sectorsize);
1850                 else if (level == G_RAID_VOLUME_RL_RAID1E &&
1851                     (numdisks & 1) != 0)
1852                         size -= (size % (2 * strip));
1853                 else
1854                         size -= (size % strip);
1855                 if (size <= 0) {
1856                         gctl_error(req, "Size too small.");
1857                         return (-13);
1858                 }
1859
1860                 /* We have all we need, create things: volume, ... */
1861                 mdi->mdio_started = 1;
1862                 vol = g_raid_create_volume(sc, volname, -1);
1863                 pv = malloc(sizeof(*pv), M_MD_INTEL, M_WAITOK | M_ZERO);
1864                 pv->pv_volume_pos = 0;
1865                 vol->v_md_data = pv;
1866                 vol->v_raid_level = level;
1867                 vol->v_raid_level_qualifier = qual;
1868                 vol->v_strip_size = strip;
1869                 vol->v_disks_count = numdisks;
1870                 if (level == G_RAID_VOLUME_RL_RAID0)
1871                         vol->v_mediasize = size * numdisks;
1872                 else if (level == G_RAID_VOLUME_RL_RAID1)
1873                         vol->v_mediasize = size;
1874                 else if (level == G_RAID_VOLUME_RL_RAID5)
1875                         vol->v_mediasize = size * (numdisks - 1);
1876                 else { /* RAID1E */
1877                         vol->v_mediasize = ((size * numdisks) / strip / 2) *
1878                             strip;
1879                 }
1880                 vol->v_sectorsize = sectorsize;
1881                 g_raid_start_volume(vol);
1882
1883                 /* , and subdisks. */
1884                 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1885                         pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
1886                         sd = &vol->v_subdisks[pd->pd_disk_pos];
1887                         sd->sd_disk = disk;
1888                         sd->sd_offset = 0;
1889                         sd->sd_size = size;
1890                         TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
1891                         if (sd->sd_disk->d_consumer != NULL) {
1892                                 g_raid_change_disk_state(disk,
1893                                     G_RAID_DISK_S_ACTIVE);
1894                                 if (level == G_RAID_VOLUME_RL_RAID5)
1895                                         g_raid_change_subdisk_state(sd,
1896                                             G_RAID_SUBDISK_S_UNINITIALIZED);
1897                                 else
1898                                         g_raid_change_subdisk_state(sd,
1899                                             G_RAID_SUBDISK_S_ACTIVE);
1900                                 g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
1901                                     G_RAID_EVENT_SUBDISK);
1902                         } else {
1903                                 g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE);
1904                         }
1905                 }
1906
1907                 /* Write metadata based on created entities. */
1908                 G_RAID_DEBUG1(0, sc, "Array started.");
1909                 g_raid_md_write_intel(md, NULL, NULL, NULL);
1910
1911                 /* Pickup any STALE/SPARE disks to refill array if needed. */
1912                 g_raid_md_intel_refill(sc);
1913
1914                 g_raid_event_send(vol, G_RAID_VOLUME_E_START,
1915                     G_RAID_EVENT_VOLUME);
1916                 return (0);
1917         }
1918         if (strcmp(verb, "add") == 0) {
1919
1920                 if (*nargs != 3) {
1921                         gctl_error(req, "Invalid number of arguments.");
1922                         return (-1);
1923                 }
1924                 volname = gctl_get_asciiparam(req, "arg1");
1925                 if (volname == NULL) {
1926                         gctl_error(req, "No volume name.");
1927                         return (-2);
1928                 }
1929                 levelname = gctl_get_asciiparam(req, "arg2");
1930                 if (levelname == NULL) {
1931                         gctl_error(req, "No RAID level.");
1932                         return (-3);
1933                 }
1934                 if (strcasecmp(levelname, "RAID5") == 0)
1935                         levelname = "RAID5-LA";
1936                 if (g_raid_volume_str2level(levelname, &level, &qual)) {
1937                         gctl_error(req, "Unknown RAID level '%s'.", levelname);
1938                         return (-4);
1939                 }
1940
1941                 /* Look for existing volumes. */
1942                 i = 0;
1943                 vol1 = NULL;
1944                 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1945                         vol1 = vol;
1946                         i++;
1947                 }
1948                 if (i > 1) {
1949                         gctl_error(req, "Maximum two volumes supported.");
1950                         return (-6);
1951                 }
1952                 if (vol1 == NULL) {
1953                         gctl_error(req, "At least one volume must exist.");
1954                         return (-7);
1955                 }
1956
1957                 numdisks = vol1->v_disks_count;
1958                 force = gctl_get_paraml(req, "force", sizeof(*force));
1959                 if (!g_raid_md_intel_supported(level, qual, numdisks,
1960                     force ? *force : 0)) {
1961                         gctl_error(req, "Unsupported RAID level "
1962                             "(0x%02x/0x%02x), or number of disks (%d).",
1963                             level, qual, numdisks);
1964                         return (-5);
1965                 }
1966
1967                 /* Collect info about present disks. */
1968                 size = 0x7fffffffffffffffllu;
1969                 sectorsize = 512;
1970                 for (i = 0; i < numdisks; i++) {
1971                         disk = vol1->v_subdisks[i].sd_disk;
1972                         pd = (struct g_raid_md_intel_perdisk *)
1973                             disk->d_md_data;
1974                         disk_sectors = 
1975                             intel_get_disk_sectors(&pd->pd_disk_meta);
1976
1977                         if (disk_sectors * 512 < size)
1978                                 size = disk_sectors * 512;
1979                         if (disk->d_consumer != NULL &&
1980                             disk->d_consumer->provider != NULL &&
1981                             disk->d_consumer->provider->sectorsize >
1982                              sectorsize) {
1983                                 sectorsize =
1984                                     disk->d_consumer->provider->sectorsize;
1985                         }
1986                 }
1987
1988                 /* Reserve some space for metadata. */
1989                 size -= ((4096 + sectorsize - 1) / sectorsize) * sectorsize;
1990
1991                 /* Decide insert before or after. */
1992                 sd = &vol1->v_subdisks[0];
1993                 if (sd->sd_offset >
1994                     size - (sd->sd_offset + sd->sd_size)) {
1995                         off = 0;
1996                         size = sd->sd_offset;
1997                 } else {
1998                         off = sd->sd_offset + sd->sd_size;
1999                         size = size - (sd->sd_offset + sd->sd_size);
2000                 }
2001
2002                 /* Handle strip argument. */
2003                 strip = 131072;
2004                 len = sizeof(*striparg);
2005                 striparg = gctl_get_param(req, "strip", &len);
2006                 if (striparg != NULL && len == sizeof(*striparg) &&
2007                     *striparg > 0) {
2008                         if (*striparg < sectorsize) {
2009                                 gctl_error(req, "Strip size too small.");
2010                                 return (-10);
2011                         }
2012                         if (*striparg % sectorsize != 0) {
2013                                 gctl_error(req, "Incorrect strip size.");
2014                                 return (-11);
2015                         }
2016                         if (strip > 65535 * sectorsize) {
2017                                 gctl_error(req, "Strip size too big.");
2018                                 return (-12);
2019                         }
2020                         strip = *striparg;
2021                 }
2022
2023                 /* Round offset up to strip. */
2024                 if (off % strip != 0) {
2025                         size -= strip - off % strip;
2026                         off += strip - off % strip;
2027                 }
2028
2029                 /* Handle size argument. */
2030                 len = sizeof(*sizearg);
2031                 sizearg = gctl_get_param(req, "size", &len);
2032                 if (sizearg != NULL && len == sizeof(*sizearg) &&
2033                     *sizearg > 0) {
2034                         if (*sizearg > size) {
2035                                 gctl_error(req, "Size too big %lld > %lld.",
2036                                     (long long)*sizearg, (long long)size);
2037                                 return (-9);
2038                         }
2039                         size = *sizearg;
2040                 }
2041
2042                 /* Round size down to strip or sector. */
2043                 if (level == G_RAID_VOLUME_RL_RAID1)
2044                         size -= (size % sectorsize);
2045                 else
2046                         size -= (size % strip);
2047                 if (size <= 0) {
2048                         gctl_error(req, "Size too small.");
2049                         return (-13);
2050                 }
2051                 if (size > 0xffffffffllu * sectorsize) {
2052                         gctl_error(req, "Size too big.");
2053                         return (-14);
2054                 }
2055
2056                 /* We have all we need, create things: volume, ... */
2057                 vol = g_raid_create_volume(sc, volname, -1);
2058                 pv = malloc(sizeof(*pv), M_MD_INTEL, M_WAITOK | M_ZERO);
2059                 pv->pv_volume_pos = i;
2060                 vol->v_md_data = pv;
2061                 vol->v_raid_level = level;
2062                 vol->v_raid_level_qualifier = qual;
2063                 vol->v_strip_size = strip;
2064                 vol->v_disks_count = numdisks;
2065                 if (level == G_RAID_VOLUME_RL_RAID0)
2066                         vol->v_mediasize = size * numdisks;
2067                 else if (level == G_RAID_VOLUME_RL_RAID1)
2068                         vol->v_mediasize = size;
2069                 else if (level == G_RAID_VOLUME_RL_RAID5)
2070                         vol->v_mediasize = size * (numdisks - 1);
2071                 else { /* RAID1E */
2072                         vol->v_mediasize = ((size * numdisks) / strip / 2) *
2073                             strip;
2074                 }
2075                 vol->v_sectorsize = sectorsize;
2076                 g_raid_start_volume(vol);
2077
2078                 /* , and subdisks. */
2079                 for (i = 0; i < numdisks; i++) {
2080                         disk = vol1->v_subdisks[i].sd_disk;
2081                         sd = &vol->v_subdisks[i];
2082                         sd->sd_disk = disk;
2083                         sd->sd_offset = off;
2084                         sd->sd_size = size;
2085                         TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
2086                         if (disk->d_state == G_RAID_DISK_S_ACTIVE) {
2087                                 if (level == G_RAID_VOLUME_RL_RAID5)
2088                                         g_raid_change_subdisk_state(sd,
2089                                             G_RAID_SUBDISK_S_UNINITIALIZED);
2090                                 else
2091                                         g_raid_change_subdisk_state(sd,
2092                                             G_RAID_SUBDISK_S_ACTIVE);
2093                                 g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
2094                                     G_RAID_EVENT_SUBDISK);
2095                         }
2096                 }
2097
2098                 /* Write metadata based on created entities. */
2099                 g_raid_md_write_intel(md, NULL, NULL, NULL);
2100
2101                 g_raid_event_send(vol, G_RAID_VOLUME_E_START,
2102                     G_RAID_EVENT_VOLUME);
2103                 return (0);
2104         }
2105         if (strcmp(verb, "delete") == 0) {
2106
2107                 nodename = gctl_get_asciiparam(req, "arg0");
2108                 if (nodename != NULL && strcasecmp(sc->sc_name, nodename) != 0)
2109                         nodename = NULL;
2110
2111                 /* Full node destruction. */
2112                 if (*nargs == 1 && nodename != NULL) {
2113                         /* Check if some volume is still open. */
2114                         force = gctl_get_paraml(req, "force", sizeof(*force));
2115                         if (force != NULL && *force == 0 &&
2116                             g_raid_nopens(sc) != 0) {
2117                                 gctl_error(req, "Some volume is still open.");
2118                                 return (-4);
2119                         }
2120
2121                         TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2122                                 if (disk->d_consumer)
2123                                         intel_meta_erase(disk->d_consumer);
2124                         }
2125                         g_raid_destroy_node(sc, 0);
2126                         return (0);
2127                 }
2128
2129                 /* Destroy specified volume. If it was last - all node. */
2130                 if (*nargs > 2) {
2131                         gctl_error(req, "Invalid number of arguments.");
2132                         return (-1);
2133                 }
2134                 volname = gctl_get_asciiparam(req,
2135                     nodename != NULL ? "arg1" : "arg0");
2136                 if (volname == NULL) {
2137                         gctl_error(req, "No volume name.");
2138                         return (-2);
2139                 }
2140
2141                 /* Search for volume. */
2142                 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2143                         if (strcmp(vol->v_name, volname) == 0)
2144                                 break;
2145                         pp = vol->v_provider;
2146                         if (pp == NULL)
2147                                 continue;
2148                         if (strcmp(pp->name, volname) == 0)
2149                                 break;
2150                         if (strncmp(pp->name, "raid/", 5) == 0 &&
2151                             strcmp(pp->name + 5, volname) == 0)
2152                                 break;
2153                 }
2154                 if (vol == NULL) {
2155                         i = strtol(volname, &tmp, 10);
2156                         if (verb != volname && tmp[0] == 0) {
2157                                 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2158                                         if (vol->v_global_id == i)
2159                                                 break;
2160                                 }
2161                         }
2162                 }
2163                 if (vol == NULL) {
2164                         gctl_error(req, "Volume '%s' not found.", volname);
2165                         return (-3);
2166                 }
2167
2168                 /* Check if volume is still open. */
2169                 force = gctl_get_paraml(req, "force", sizeof(*force));
2170                 if (force != NULL && *force == 0 &&
2171                     vol->v_provider_open != 0) {
2172                         gctl_error(req, "Volume is still open.");
2173                         return (-4);
2174                 }
2175
2176                 /* Destroy volume and potentially node. */
2177                 i = 0;
2178                 TAILQ_FOREACH(vol1, &sc->sc_volumes, v_next)
2179                         i++;
2180                 if (i >= 2) {
2181                         g_raid_destroy_volume(vol);
2182                         g_raid_md_write_intel(md, NULL, NULL, NULL);
2183                 } else {
2184                         TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2185                                 if (disk->d_consumer)
2186                                         intel_meta_erase(disk->d_consumer);
2187                         }
2188                         g_raid_destroy_node(sc, 0);
2189                 }
2190                 return (0);
2191         }
2192         if (strcmp(verb, "remove") == 0 ||
2193             strcmp(verb, "fail") == 0) {
2194                 if (*nargs < 2) {
2195                         gctl_error(req, "Invalid number of arguments.");
2196                         return (-1);
2197                 }
2198                 for (i = 1; i < *nargs; i++) {
2199                         snprintf(arg, sizeof(arg), "arg%d", i);
2200                         diskname = gctl_get_asciiparam(req, arg);
2201                         if (diskname == NULL) {
2202                                 gctl_error(req, "No disk name (%s).", arg);
2203                                 error = -2;
2204                                 break;
2205                         }
2206                         if (strncmp(diskname, "/dev/", 5) == 0)
2207                                 diskname += 5;
2208
2209                         TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2210                                 if (disk->d_consumer != NULL && 
2211                                     disk->d_consumer->provider != NULL &&
2212                                     strcmp(disk->d_consumer->provider->name,
2213                                      diskname) == 0)
2214                                         break;
2215                         }
2216                         if (disk == NULL) {
2217                                 gctl_error(req, "Disk '%s' not found.",
2218                                     diskname);
2219                                 error = -3;
2220                                 break;
2221                         }
2222
2223                         if (strcmp(verb, "fail") == 0) {
2224                                 g_raid_md_fail_disk_intel(md, NULL, disk);
2225                                 continue;
2226                         }
2227
2228                         pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
2229
2230                         /* Erase metadata on deleting disk. */
2231                         intel_meta_erase(disk->d_consumer);
2232
2233                         /* If disk was assigned, just update statuses. */
2234                         if (pd->pd_disk_pos >= 0) {
2235                                 g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE);
2236                                 g_raid_kill_consumer(sc, disk->d_consumer);
2237                                 disk->d_consumer = NULL;
2238                                 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
2239                                         g_raid_change_subdisk_state(sd,
2240                                             G_RAID_SUBDISK_S_NONE);
2241                                         g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
2242                                             G_RAID_EVENT_SUBDISK);
2243                                 }
2244                         } else {
2245                                 /* Otherwise -- delete. */
2246                                 g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE);
2247                                 g_raid_destroy_disk(disk);
2248                         }
2249                 }
2250
2251                 /* Write updated metadata to remaining disks. */
2252                 g_raid_md_write_intel(md, NULL, NULL, NULL);
2253
2254                 /* Check if anything left except placeholders. */
2255                 if (g_raid_ndisks(sc, -1) ==
2256                     g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE))
2257                         g_raid_destroy_node(sc, 0);
2258                 else
2259                         g_raid_md_intel_refill(sc);
2260                 return (error);
2261         }
2262         if (strcmp(verb, "insert") == 0) {
2263                 if (*nargs < 2) {
2264                         gctl_error(req, "Invalid number of arguments.");
2265                         return (-1);
2266                 }
2267                 update = 0;
2268                 for (i = 1; i < *nargs; i++) {
2269                         /* Get disk name. */
2270                         snprintf(arg, sizeof(arg), "arg%d", i);
2271                         diskname = gctl_get_asciiparam(req, arg);
2272                         if (diskname == NULL) {
2273                                 gctl_error(req, "No disk name (%s).", arg);
2274                                 error = -3;
2275                                 break;
2276                         }
2277
2278                         /* Try to find provider with specified name. */
2279                         g_topology_lock();
2280                         cp = g_raid_open_consumer(sc, diskname);
2281                         if (cp == NULL) {
2282                                 gctl_error(req, "Can't open disk '%s'.",
2283                                     diskname);
2284                                 g_topology_unlock();
2285                                 error = -4;
2286                                 break;
2287                         }
2288                         pp = cp->provider;
2289                         g_topology_unlock();
2290
2291                         /* Read disk serial. */
2292                         error = g_raid_md_get_label(cp,
2293                             &serial[0], INTEL_SERIAL_LEN);
2294                         if (error != 0) {
2295                                 gctl_error(req,
2296                                     "Can't get serial for provider '%s'.",
2297                                     diskname);
2298                                 g_raid_kill_consumer(sc, cp);
2299                                 error = -7;
2300                                 break;
2301                         }
2302
2303                         pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO);
2304                         pd->pd_disk_pos = -1;
2305
2306                         disk = g_raid_create_disk(sc);
2307                         disk->d_consumer = cp;
2308                         disk->d_md_data = (void *)pd;
2309                         cp->private = disk;
2310
2311                         g_raid_get_disk_info(disk);
2312
2313                         memcpy(&pd->pd_disk_meta.serial[0], &serial[0],
2314                             INTEL_SERIAL_LEN);
2315                         intel_set_disk_sectors(&pd->pd_disk_meta,
2316                             pp->mediasize / pp->sectorsize);
2317                         pd->pd_disk_meta.id = 0;
2318                         pd->pd_disk_meta.flags = INTEL_F_SPARE;
2319
2320                         /* Welcome the "new" disk. */
2321                         update += g_raid_md_intel_start_disk(disk);
2322                         if (disk->d_state == G_RAID_DISK_S_SPARE) {
2323                                 intel_meta_write_spare(cp, &pd->pd_disk_meta);
2324                                 g_raid_destroy_disk(disk);
2325                         } else if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
2326                                 gctl_error(req, "Disk '%s' doesn't fit.",
2327                                     diskname);
2328                                 g_raid_destroy_disk(disk);
2329                                 error = -8;
2330                                 break;
2331                         }
2332                 }
2333
2334                 /* Write new metadata if we changed something. */
2335                 if (update)
2336                         g_raid_md_write_intel(md, NULL, NULL, NULL);
2337                 return (error);
2338         }
2339         return (-100);
2340 }
2341
2342 static int
2343 g_raid_md_write_intel(struct g_raid_md_object *md, struct g_raid_volume *tvol,
2344     struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk)
2345 {
2346         struct g_raid_softc *sc;
2347         struct g_raid_volume *vol;
2348         struct g_raid_subdisk *sd;
2349         struct g_raid_disk *disk;
2350         struct g_raid_md_intel_object *mdi;
2351         struct g_raid_md_intel_pervolume *pv;
2352         struct g_raid_md_intel_perdisk *pd;
2353         struct intel_raid_conf *meta;
2354         struct intel_raid_vol *mvol;
2355         struct intel_raid_map *mmap0, *mmap1;
2356         off_t sectorsize = 512, pos;
2357         const char *version, *cv;
2358         int vi, sdi, numdisks, len, state, stale;
2359
2360         sc = md->mdo_softc;
2361         mdi = (struct g_raid_md_intel_object *)md;
2362
2363         if (sc->sc_stopping == G_RAID_DESTROY_HARD)
2364                 return (0);
2365
2366         /* Bump generation. Newly written metadata may differ from previous. */
2367         mdi->mdio_generation++;
2368
2369         /* Count number of disks. */
2370         numdisks = 0;
2371         TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2372                 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
2373                 if (pd->pd_disk_pos < 0)
2374                         continue;
2375                 numdisks++;
2376                 if (disk->d_state == G_RAID_DISK_S_ACTIVE) {
2377                         pd->pd_disk_meta.flags =
2378                             INTEL_F_ONLINE | INTEL_F_ASSIGNED;
2379                 } else if (disk->d_state == G_RAID_DISK_S_FAILED) {
2380                         pd->pd_disk_meta.flags = INTEL_F_FAILED |
2381                             INTEL_F_ASSIGNED;
2382                 } else if (disk->d_state == G_RAID_DISK_S_DISABLED) {
2383                         pd->pd_disk_meta.flags = INTEL_F_FAILED |
2384                             INTEL_F_ASSIGNED | INTEL_F_DISABLED;
2385                 } else {
2386                         if (!(pd->pd_disk_meta.flags & INTEL_F_DISABLED))
2387                                 pd->pd_disk_meta.flags = INTEL_F_ASSIGNED;
2388                         if (pd->pd_disk_meta.id != 0xffffffff) {
2389                                 pd->pd_disk_meta.id = 0xffffffff;
2390                                 len = strlen(pd->pd_disk_meta.serial);
2391                                 len = min(len, INTEL_SERIAL_LEN - 3);
2392                                 strcpy(pd->pd_disk_meta.serial + len, ":0");
2393                         }
2394                 }
2395         }
2396
2397         /* Fill anchor and disks. */
2398         meta = malloc(INTEL_MAX_MD_SIZE(numdisks),
2399             M_MD_INTEL, M_WAITOK | M_ZERO);
2400         memcpy(&meta->intel_id[0], INTEL_MAGIC, sizeof(INTEL_MAGIC) - 1);
2401         meta->config_size = INTEL_MAX_MD_SIZE(numdisks);
2402         meta->config_id = mdi->mdio_config_id;
2403         meta->orig_config_id = mdi->mdio_orig_config_id;
2404         meta->generation = mdi->mdio_generation;
2405         meta->attributes = INTEL_ATTR_CHECKSUM;
2406         meta->total_disks = numdisks;
2407         TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2408                 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
2409                 if (pd->pd_disk_pos < 0)
2410                         continue;
2411                 meta->disk[pd->pd_disk_pos] = pd->pd_disk_meta;
2412                 if (pd->pd_disk_meta.sectors_hi != 0)
2413                         meta->attributes |= INTEL_ATTR_2TB_DISK;
2414         }
2415
2416         /* Fill volumes and maps. */
2417         vi = 0;
2418         version = INTEL_VERSION_1000;
2419         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2420                 pv = vol->v_md_data;
2421                 if (vol->v_stopping)
2422                         continue;
2423                 mvol = intel_get_volume(meta, vi);
2424
2425                 /* New metadata may have different volumes order. */
2426                 pv->pv_volume_pos = vi;
2427
2428                 for (sdi = 0; sdi < vol->v_disks_count; sdi++) {
2429                         sd = &vol->v_subdisks[sdi];
2430                         if (sd->sd_disk != NULL)
2431                                 break;
2432                 }
2433                 if (sdi >= vol->v_disks_count)
2434                         panic("No any filled subdisk in volume");
2435                 if (vol->v_mediasize >= 0x20000000000llu)
2436                         meta->attributes |= INTEL_ATTR_2TB;
2437                 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID0)
2438                         meta->attributes |= INTEL_ATTR_RAID0;
2439                 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1)
2440                         meta->attributes |= INTEL_ATTR_RAID1;
2441                 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID5)
2442                         meta->attributes |= INTEL_ATTR_RAID5;
2443                 else if ((vol->v_disks_count & 1) == 0)
2444                         meta->attributes |= INTEL_ATTR_RAID10;
2445                 else
2446                         meta->attributes |= INTEL_ATTR_RAID1E;
2447                 if (pv->pv_cng)
2448                         meta->attributes |= INTEL_ATTR_RAIDCNG;
2449                 if (vol->v_strip_size > 131072)
2450                         meta->attributes |= INTEL_ATTR_EXT_STRIP;
2451
2452                 if (pv->pv_cng)
2453                         cv = INTEL_VERSION_1206;
2454                 else if (vol->v_disks_count > 4)
2455                         cv = INTEL_VERSION_1204;
2456                 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID5)
2457                         cv = INTEL_VERSION_1202;
2458                 else if (vol->v_disks_count > 2)
2459                         cv = INTEL_VERSION_1201;
2460                 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1)
2461                         cv = INTEL_VERSION_1100;
2462                 else
2463                         cv = INTEL_VERSION_1000;
2464                 if (strcmp(cv, version) > 0)
2465                         version = cv;
2466
2467                 strlcpy(&mvol->name[0], vol->v_name, sizeof(mvol->name));
2468                 mvol->total_sectors = vol->v_mediasize / sectorsize;
2469                 mvol->state = (INTEL_ST_READ_COALESCING |
2470                     INTEL_ST_WRITE_COALESCING);
2471                 mvol->tid = vol->v_global_id + 1;
2472                 if (pv->pv_cng) {
2473                         mvol->state |= INTEL_ST_CLONE_N_GO;
2474                         if (pv->pv_cng_man_sync)
2475                                 mvol->state |= INTEL_ST_CLONE_MAN_SYNC;
2476                         mvol->cng_master_disk = pv->pv_cng_master_disk;
2477                         if (vol->v_subdisks[pv->pv_cng_master_disk].sd_state ==
2478                             G_RAID_SUBDISK_S_NONE)
2479                                 mvol->cng_state = INTEL_CNGST_MASTER_MISSING;
2480                         else if (vol->v_state != G_RAID_VOLUME_S_OPTIMAL)
2481                                 mvol->cng_state = INTEL_CNGST_NEEDS_UPDATE;
2482                         else
2483                                 mvol->cng_state = INTEL_CNGST_UPDATED;
2484                 }
2485
2486                 /* Check for any recovery in progress. */
2487                 state = G_RAID_SUBDISK_S_ACTIVE;
2488                 pos = 0x7fffffffffffffffllu;
2489                 stale = 0;
2490                 for (sdi = 0; sdi < vol->v_disks_count; sdi++) {
2491                         sd = &vol->v_subdisks[sdi];
2492                         if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD)
2493                                 state = G_RAID_SUBDISK_S_REBUILD;
2494                         else if (sd->sd_state == G_RAID_SUBDISK_S_RESYNC &&
2495                             state != G_RAID_SUBDISK_S_REBUILD)
2496                                 state = G_RAID_SUBDISK_S_RESYNC;
2497                         else if (sd->sd_state == G_RAID_SUBDISK_S_STALE)
2498                                 stale = 1;
2499                         if ((sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2500                             sd->sd_state == G_RAID_SUBDISK_S_RESYNC) &&
2501                              sd->sd_rebuild_pos < pos)
2502                                 pos = sd->sd_rebuild_pos;
2503                 }
2504                 if (state == G_RAID_SUBDISK_S_REBUILD) {
2505                         mvol->migr_state = 1;
2506                         mvol->migr_type = INTEL_MT_REBUILD;
2507                 } else if (state == G_RAID_SUBDISK_S_RESYNC) {
2508                         mvol->migr_state = 1;
2509                         /* mvol->migr_type = INTEL_MT_REPAIR; */
2510                         mvol->migr_type = INTEL_MT_VERIFY;
2511                         mvol->state |= INTEL_ST_VERIFY_AND_FIX;
2512                 } else
2513                         mvol->migr_state = 0;
2514                 mvol->dirty = (vol->v_dirty || stale);
2515
2516                 mmap0 = intel_get_map(mvol, 0);
2517
2518                 /* Write map / common part of two maps. */
2519                 intel_set_map_offset(mmap0, sd->sd_offset / sectorsize);
2520                 intel_set_map_disk_sectors(mmap0, sd->sd_size / sectorsize);
2521                 mmap0->strip_sectors = vol->v_strip_size / sectorsize;
2522                 if (vol->v_state == G_RAID_VOLUME_S_BROKEN)
2523                         mmap0->status = INTEL_S_FAILURE;
2524                 else if (vol->v_state == G_RAID_VOLUME_S_DEGRADED)
2525                         mmap0->status = INTEL_S_DEGRADED;
2526                 else if (g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_UNINITIALIZED)
2527                     == g_raid_nsubdisks(vol, -1))
2528                         mmap0->status = INTEL_S_UNINITIALIZED;
2529                 else
2530                         mmap0->status = INTEL_S_READY;
2531                 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID0)
2532                         mmap0->type = INTEL_T_RAID0;
2533                 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 ||
2534                     vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E)
2535                         mmap0->type = INTEL_T_RAID1;
2536                 else
2537                         mmap0->type = INTEL_T_RAID5;
2538                 mmap0->total_disks = vol->v_disks_count;
2539                 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1)
2540                         mmap0->total_domains = vol->v_disks_count;
2541                 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E)
2542                         mmap0->total_domains = 2;
2543                 else
2544                         mmap0->total_domains = 1;
2545                 intel_set_map_stripe_count(mmap0,
2546                     sd->sd_size / vol->v_strip_size / mmap0->total_domains);
2547                 mmap0->failed_disk_num = 0xff;
2548                 mmap0->ddf = 1;
2549
2550                 /* If there are two maps - copy common and update. */
2551                 if (mvol->migr_state) {
2552                         intel_set_vol_curr_migr_unit(mvol,
2553                             pos / vol->v_strip_size / mmap0->total_domains);
2554                         mmap1 = intel_get_map(mvol, 1);
2555                         memcpy(mmap1, mmap0, sizeof(struct intel_raid_map));
2556                         mmap0->status = INTEL_S_READY;
2557                 } else
2558                         mmap1 = NULL;
2559
2560                 /* Write disk indexes and put rebuild flags. */
2561                 for (sdi = 0; sdi < vol->v_disks_count; sdi++) {
2562                         sd = &vol->v_subdisks[sdi];
2563                         pd = (struct g_raid_md_intel_perdisk *)
2564                             sd->sd_disk->d_md_data;
2565                         mmap0->disk_idx[sdi] = pd->pd_disk_pos;
2566                         if (mvol->migr_state)
2567                                 mmap1->disk_idx[sdi] = pd->pd_disk_pos;
2568                         if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2569                             sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
2570                                 mmap1->disk_idx[sdi] |= INTEL_DI_RBLD;
2571                         } else if (sd->sd_state != G_RAID_SUBDISK_S_ACTIVE &&
2572                             sd->sd_state != G_RAID_SUBDISK_S_STALE &&
2573                             sd->sd_state != G_RAID_SUBDISK_S_UNINITIALIZED) {
2574                                 mmap0->disk_idx[sdi] |= INTEL_DI_RBLD;
2575                                 if (mvol->migr_state)
2576                                         mmap1->disk_idx[sdi] |= INTEL_DI_RBLD;
2577                         }
2578                         if ((sd->sd_state == G_RAID_SUBDISK_S_NONE ||
2579                              sd->sd_state == G_RAID_SUBDISK_S_FAILED ||
2580                              sd->sd_state == G_RAID_SUBDISK_S_REBUILD) &&
2581                             mmap0->failed_disk_num == 0xff) {
2582                                 mmap0->failed_disk_num = sdi;
2583                                 if (mvol->migr_state)
2584                                         mmap1->failed_disk_num = sdi;
2585                         }
2586                 }
2587                 vi++;
2588         }
2589         meta->total_volumes = vi;
2590         if (vi > 1 || meta->attributes &
2591              (INTEL_ATTR_EXT_STRIP | INTEL_ATTR_2TB_DISK | INTEL_ATTR_2TB))
2592                 version = INTEL_VERSION_1300;
2593         if (strcmp(version, INTEL_VERSION_1300) < 0)
2594                 meta->attributes &= INTEL_ATTR_CHECKSUM;
2595         memcpy(&meta->version[0], version, sizeof(INTEL_VERSION_1000) - 1);
2596
2597         /* We are done. Print meta data and store them to disks. */
2598         g_raid_md_intel_print(meta);
2599         if (mdi->mdio_meta != NULL)
2600                 free(mdi->mdio_meta, M_MD_INTEL);
2601         mdi->mdio_meta = meta;
2602         TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2603                 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
2604                 if (disk->d_state != G_RAID_DISK_S_ACTIVE)
2605                         continue;
2606                 if (pd->pd_meta != NULL) {
2607                         free(pd->pd_meta, M_MD_INTEL);
2608                         pd->pd_meta = NULL;
2609                 }
2610                 pd->pd_meta = intel_meta_copy(meta);
2611                 intel_meta_write(disk->d_consumer, meta);
2612         }
2613         return (0);
2614 }
2615
2616 static int
2617 g_raid_md_fail_disk_intel(struct g_raid_md_object *md,
2618     struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk)
2619 {
2620         struct g_raid_softc *sc;
2621         struct g_raid_md_intel_object *mdi;
2622         struct g_raid_md_intel_perdisk *pd;
2623         struct g_raid_subdisk *sd;
2624
2625         sc = md->mdo_softc;
2626         mdi = (struct g_raid_md_intel_object *)md;
2627         pd = (struct g_raid_md_intel_perdisk *)tdisk->d_md_data;
2628
2629         /* We can't fail disk that is not a part of array now. */
2630         if (pd->pd_disk_pos < 0)
2631                 return (-1);
2632
2633         /*
2634          * Mark disk as failed in metadata and try to write that metadata
2635          * to the disk itself to prevent it's later resurrection as STALE.
2636          */
2637         mdi->mdio_meta->disk[pd->pd_disk_pos].flags = INTEL_F_FAILED;
2638         pd->pd_disk_meta.flags = INTEL_F_FAILED;
2639         g_raid_md_intel_print(mdi->mdio_meta);
2640         if (tdisk->d_consumer)
2641                 intel_meta_write(tdisk->d_consumer, mdi->mdio_meta);
2642
2643         /* Change states. */
2644         g_raid_change_disk_state(tdisk, G_RAID_DISK_S_FAILED);
2645         TAILQ_FOREACH(sd, &tdisk->d_subdisks, sd_next) {
2646                 g_raid_change_subdisk_state(sd,
2647                     G_RAID_SUBDISK_S_FAILED);
2648                 g_raid_event_send(sd, G_RAID_SUBDISK_E_FAILED,
2649                     G_RAID_EVENT_SUBDISK);
2650         }
2651
2652         /* Write updated metadata to remaining disks. */
2653         g_raid_md_write_intel(md, NULL, NULL, tdisk);
2654
2655         /* Check if anything left except placeholders. */
2656         if (g_raid_ndisks(sc, -1) ==
2657             g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE))
2658                 g_raid_destroy_node(sc, 0);
2659         else
2660                 g_raid_md_intel_refill(sc);
2661         return (0);
2662 }
2663
2664 static int
2665 g_raid_md_free_disk_intel(struct g_raid_md_object *md,
2666     struct g_raid_disk *disk)
2667 {
2668         struct g_raid_md_intel_perdisk *pd;
2669
2670         pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
2671         if (pd->pd_meta != NULL) {
2672                 free(pd->pd_meta, M_MD_INTEL);
2673                 pd->pd_meta = NULL;
2674         }
2675         free(pd, M_MD_INTEL);
2676         disk->d_md_data = NULL;
2677         return (0);
2678 }
2679
2680 static int
2681 g_raid_md_free_volume_intel(struct g_raid_md_object *md,
2682     struct g_raid_volume *vol)
2683 {
2684         struct g_raid_md_intel_pervolume *pv;
2685
2686         pv = (struct g_raid_md_intel_pervolume *)vol->v_md_data;
2687         free(pv, M_MD_INTEL);
2688         vol->v_md_data = NULL;
2689         return (0);
2690 }
2691
2692 static int
2693 g_raid_md_free_intel(struct g_raid_md_object *md)
2694 {
2695         struct g_raid_md_intel_object *mdi;
2696
2697         mdi = (struct g_raid_md_intel_object *)md;
2698         if (!mdi->mdio_started) {
2699                 mdi->mdio_started = 0;
2700                 callout_stop(&mdi->mdio_start_co);
2701                 G_RAID_DEBUG1(1, md->mdo_softc,
2702                     "root_mount_rel %p", mdi->mdio_rootmount);
2703                 root_mount_rel(mdi->mdio_rootmount);
2704                 mdi->mdio_rootmount = NULL;
2705         }
2706         if (mdi->mdio_meta != NULL) {
2707                 free(mdi->mdio_meta, M_MD_INTEL);
2708                 mdi->mdio_meta = NULL;
2709         }
2710         return (0);
2711 }
2712
2713 G_RAID_MD_DECLARE(intel, "Intel");