]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - sys/ia64/ia64/mp_machdep.c
MFC 257475: Respect the kern.smp.disabled tunable.
[FreeBSD/stable/10.git] / sys / ia64 / ia64 / mp_machdep.c
1 /*-
2  * Copyright (c) 2001-2005 Marcel Moolenaar
3  * Copyright (c) 2000 Doug Rabson
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include "opt_kstack_pages.h"
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/ktr.h>
36 #include <sys/proc.h>
37 #include <sys/bus.h>
38 #include <sys/kthread.h>
39 #include <sys/lock.h>
40 #include <sys/malloc.h>
41 #include <sys/mutex.h>
42 #include <sys/kernel.h>
43 #include <sys/pcpu.h>
44 #include <sys/sched.h>
45 #include <sys/smp.h>
46 #include <sys/sysctl.h>
47 #include <sys/uuid.h>
48
49 #include <machine/atomic.h>
50 #include <machine/bootinfo.h>
51 #include <machine/cpu.h>
52 #include <machine/fpu.h>
53 #include <machine/intr.h>
54 #include <machine/mca.h>
55 #include <machine/md_var.h>
56 #include <machine/pal.h>
57 #include <machine/pcb.h>
58 #include <machine/sal.h>
59 #include <machine/smp.h>
60
61 #include <vm/vm.h>
62 #include <vm/pmap.h>
63 #include <vm/vm_extern.h>
64 #include <vm/vm_kern.h>
65
66 extern uint64_t bdata[];
67
68 extern int smp_disabled;
69
70 MALLOC_DEFINE(M_SMP, "SMP", "SMP related allocations");
71
72 void ia64_ap_startup(void);
73
74 #define SAPIC_ID_GET_ID(x)      ((u_int)((x) >> 8) & 0xff)
75 #define SAPIC_ID_GET_EID(x)     ((u_int)(x) & 0xff)
76 #define SAPIC_ID_SET(id, eid)   ((u_int)(((id) & 0xff) << 8) | ((eid) & 0xff))
77
78 /* State used to wake and bootstrap APs. */
79 struct ia64_ap_state ia64_ap_state;
80
81 int ia64_ipi_ast;
82 int ia64_ipi_hardclock;
83 int ia64_ipi_highfp;
84 int ia64_ipi_nmi;
85 int ia64_ipi_preempt;
86 int ia64_ipi_rndzvs;
87 int ia64_ipi_stop;
88
89 static u_int
90 sz2shft(uint64_t sz)
91 {
92         uint64_t s;
93         u_int shft;
94
95         shft = 12;      /* Start with 4K */
96         s = 1 << shft;
97         while (s < sz) {
98                 shft++;
99                 s <<= 1;
100         }
101         return (shft);
102 }
103
104 static u_int
105 ia64_ih_ast(struct thread *td, u_int xiv, struct trapframe *tf)
106 {
107
108         PCPU_INC(md.stats.pcs_nasts);
109         CTR1(KTR_SMP, "IPI_AST, cpuid=%d", PCPU_GET(cpuid));
110         return (0);
111 }
112
113 static u_int
114 ia64_ih_hardclock(struct thread *td, u_int xiv, struct trapframe *tf)
115 {
116
117         PCPU_INC(md.stats.pcs_nhardclocks);
118         CTR1(KTR_SMP, "IPI_HARDCLOCK, cpuid=%d", PCPU_GET(cpuid));
119         hardclockintr();
120         return (0);
121 }
122
123 static u_int
124 ia64_ih_highfp(struct thread *td, u_int xiv, struct trapframe *tf)
125 {
126
127         PCPU_INC(md.stats.pcs_nhighfps);
128         ia64_highfp_save_ipi();
129         return (0);
130 }
131
132 static u_int
133 ia64_ih_preempt(struct thread *td, u_int xiv, struct trapframe *tf)
134 {
135
136         PCPU_INC(md.stats.pcs_npreempts);
137         CTR1(KTR_SMP, "IPI_PREEMPT, cpuid=%d", PCPU_GET(cpuid));
138         sched_preempt(curthread);
139         return (0);
140 }
141
142 static u_int
143 ia64_ih_rndzvs(struct thread *td, u_int xiv, struct trapframe *tf)
144 {
145
146         PCPU_INC(md.stats.pcs_nrdvs);
147         CTR1(KTR_SMP, "IPI_RENDEZVOUS, cpuid=%d", PCPU_GET(cpuid));
148         smp_rendezvous_action();
149         return (0);
150 }
151
152 static u_int
153 ia64_ih_stop(struct thread *td, u_int xiv, struct trapframe *tf)
154 {
155         u_int cpuid;
156
157         PCPU_INC(md.stats.pcs_nstops);
158         cpuid = PCPU_GET(cpuid);
159
160         savectx(PCPU_PTR(md.pcb));
161
162         CPU_SET_ATOMIC(cpuid, &stopped_cpus);
163         while (!CPU_ISSET(cpuid, &started_cpus))
164                 cpu_spinwait();
165         CPU_CLR_ATOMIC(cpuid, &started_cpus);
166         CPU_CLR_ATOMIC(cpuid, &stopped_cpus);
167         return (0);
168 }
169
170 struct cpu_group *
171 cpu_topo(void)
172 {
173
174         return smp_topo_none();
175 }
176
177 static void
178 ia64_store_mca_state(void* arg)
179 {
180         struct pcpu *pc = arg;
181         struct thread *td = curthread;
182
183         /*
184          * ia64_mca_save_state() is CPU-sensitive, so bind ourself to our
185          * target CPU.
186          */
187         thread_lock(td);
188         sched_bind(td, pc->pc_cpuid);
189         thread_unlock(td);
190
191         ia64_mca_init_ap();
192
193         /*
194          * Get and save the CPU specific MCA records. Should we get the
195          * MCA state for each processor, or just the CMC state?
196          */
197         ia64_mca_save_state(SAL_INFO_MCA);
198         ia64_mca_save_state(SAL_INFO_CMC);
199
200         kproc_exit(0);
201 }
202
203 void
204 ia64_ap_startup(void)
205 {
206         uint64_t vhpt;
207
208         ia64_ap_state.as_trace = 0x100;
209
210         ia64_set_rr(IA64_RR_BASE(5), (5 << 8) | (PAGE_SHIFT << 2) | 1);
211         ia64_set_rr(IA64_RR_BASE(6), (6 << 8) | (LOG2_ID_PAGE_SIZE << 2));
212         ia64_set_rr(IA64_RR_BASE(7), (7 << 8) | (LOG2_ID_PAGE_SIZE << 2));
213         ia64_srlz_d();
214
215         pcpup = ia64_ap_state.as_pcpu;
216         ia64_set_k4((intptr_t)pcpup);
217
218         ia64_ap_state.as_trace = 0x108;
219
220         vhpt = PCPU_GET(md.vhpt);
221         map_vhpt(vhpt);
222         ia64_set_pta(vhpt + (1 << 8) + (pmap_vhpt_log2size << 2) + 1);
223         ia64_srlz_i();
224
225         ia64_ap_state.as_trace = 0x110;
226
227         ia64_ap_state.as_awake = 1;
228         ia64_ap_state.as_delay = 0;
229
230         map_pal_code();
231         map_gateway_page();
232
233         ia64_set_fpsr(IA64_FPSR_DEFAULT);
234
235         /* Wait until it's time for us to be unleashed */
236         while (ia64_ap_state.as_spin)
237                 cpu_spinwait();
238
239         /* Initialize curthread. */
240         KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
241         PCPU_SET(curthread, PCPU_GET(idlethread));
242
243         atomic_add_int(&ia64_ap_state.as_awake, 1);
244         while (!smp_started)
245                 cpu_spinwait();
246
247         CTR1(KTR_SMP, "SMP: cpu%d launched", PCPU_GET(cpuid));
248
249         cpu_initclocks();
250
251         ia64_set_tpr(0);
252         ia64_srlz_d();
253
254         sched_throw(NULL);
255         /* NOTREACHED */
256 }
257
258 void
259 cpu_mp_setmaxid(void)
260 {
261
262         /*
263          * Count the number of processors in the system by walking the ACPI
264          * tables. Note that we record the actual number of processors, even
265          * if this is larger than MAXCPU. We only activate MAXCPU processors.
266          */
267         mp_ncpus = ia64_count_cpus();
268
269         /*
270          * Set the largest cpuid we're going to use. This is necessary for
271          * VM initialization.
272          */
273         mp_maxid = min(mp_ncpus, MAXCPU) - 1;
274 }
275
276 int
277 cpu_mp_probe(void)
278 {
279
280         /*
281          * If there's only 1 processor, or we don't have a wake-up vector,
282          * we're not going to enable SMP. Note that no wake-up vector can
283          * also mean that the wake-up mechanism is not supported. In this
284          * case we can have multiple processors, but we simply can't wake
285          * them up...
286          */
287         return (mp_ncpus > 1 && ia64_ipi_wakeup != 0);
288 }
289
290 void
291 cpu_mp_add(u_int acpi_id, u_int id, u_int eid)
292 {
293         struct pcpu *pc;
294         void *dpcpu;
295         u_int cpuid, sapic_id;
296
297         if (smp_disabled)
298                 return;
299
300         sapic_id = SAPIC_ID_SET(id, eid);
301         cpuid = (IA64_LID_GET_SAPIC_ID(ia64_get_lid()) == sapic_id)
302             ? 0 : smp_cpus++;
303
304         KASSERT(!CPU_ISSET(cpuid, &all_cpus),
305             ("%s: cpu%d already in CPU map", __func__, acpi_id));
306
307         if (cpuid != 0) {
308                 pc = (struct pcpu *)malloc(sizeof(*pc), M_SMP, M_WAITOK);
309                 pcpu_init(pc, cpuid, sizeof(*pc));
310                 dpcpu = (void *)kmem_malloc(kernel_arena, DPCPU_SIZE,
311                     M_WAITOK | M_ZERO);
312                 dpcpu_init(dpcpu, cpuid);
313         } else
314                 pc = pcpup;
315
316         cpu_pcpu_setup(pc, acpi_id, sapic_id);
317  
318         CPU_SET(pc->pc_cpuid, &all_cpus);
319 }
320
321 void
322 cpu_mp_announce()
323 {
324         struct pcpu *pc;
325         uint32_t sapic_id;
326         int i;
327
328         for (i = 0; i <= mp_maxid; i++) {
329                 pc = pcpu_find(i);
330                 if (pc != NULL) {
331                         sapic_id = IA64_LID_GET_SAPIC_ID(pc->pc_md.lid);
332                         printf("cpu%d: ACPI Id=%x, SAPIC Id=%x, SAPIC Eid=%x",
333                             i, pc->pc_acpi_id, SAPIC_ID_GET_ID(sapic_id),
334                             SAPIC_ID_GET_EID(sapic_id));
335                         if (i == 0)
336                                 printf(" (BSP)\n");
337                         else
338                                 printf("\n");
339                 }
340         }
341 }
342
343 void
344 cpu_mp_start()
345 {
346         struct ia64_sal_result result;
347         struct ia64_fdesc *fd;
348         struct pcpu *pc;
349         uintptr_t state;
350         u_char *stp;
351
352         state = ia64_tpa((uintptr_t)&ia64_ap_state);
353         fd = (struct ia64_fdesc *) os_boot_rendez;
354         result = ia64_sal_entry(SAL_SET_VECTORS, SAL_OS_BOOT_RENDEZ,
355             ia64_tpa(fd->func), state, 0, 0, 0, 0);
356
357         ia64_ap_state.as_pgtbl_pte = PTE_PRESENT | PTE_MA_WB |
358             PTE_ACCESSED | PTE_DIRTY | PTE_PL_KERN | PTE_AR_RW |
359             (bootinfo->bi_pbvm_pgtbl & PTE_PPN_MASK);
360         ia64_ap_state.as_pgtbl_itir = sz2shft(bootinfo->bi_pbvm_pgtblsz) << 2;
361         ia64_ap_state.as_text_va = IA64_PBVM_BASE;
362         ia64_ap_state.as_text_pte = PTE_PRESENT | PTE_MA_WB |
363             PTE_ACCESSED | PTE_DIRTY | PTE_PL_KERN | PTE_AR_RX |
364             (ia64_tpa(IA64_PBVM_BASE) & PTE_PPN_MASK);
365         ia64_ap_state.as_text_itir = bootinfo->bi_text_mapped << 2;
366         ia64_ap_state.as_data_va = (uintptr_t)bdata;
367         ia64_ap_state.as_data_pte = PTE_PRESENT | PTE_MA_WB |
368             PTE_ACCESSED | PTE_DIRTY | PTE_PL_KERN | PTE_AR_RW |
369             (ia64_tpa((uintptr_t)bdata) & PTE_PPN_MASK);
370         ia64_ap_state.as_data_itir = bootinfo->bi_data_mapped << 2;
371
372         /* Keep 'em spinning until we unleash them... */
373         ia64_ap_state.as_spin = 1;
374
375         STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
376                 pc->pc_md.current_pmap = kernel_pmap;
377                 /* The BSP is obviously running already. */
378                 if (pc->pc_cpuid == 0) {
379                         pc->pc_md.awake = 1;
380                         continue;
381                 }
382
383                 ia64_ap_state.as_pcpu = pc;
384                 pc->pc_md.vhpt = pmap_alloc_vhpt();
385                 if (pc->pc_md.vhpt == 0) {
386                         printf("SMP: WARNING: unable to allocate VHPT"
387                             " for cpu%d", pc->pc_cpuid);
388                         continue;
389                 }
390
391                 stp = malloc(KSTACK_PAGES * PAGE_SIZE, M_SMP, M_WAITOK);
392                 ia64_ap_state.as_kstack = stp;
393                 ia64_ap_state.as_kstack_top = stp + KSTACK_PAGES * PAGE_SIZE;
394
395                 ia64_ap_state.as_trace = 0;
396                 ia64_ap_state.as_delay = 2000;
397                 ia64_ap_state.as_awake = 0;
398
399                 if (bootverbose)
400                         printf("SMP: waking up cpu%d\n", pc->pc_cpuid);
401
402                 /* Here she goes... */
403                 ipi_send(pc, ia64_ipi_wakeup);
404                 do {
405                         DELAY(1000);
406                 } while (--ia64_ap_state.as_delay > 0);
407
408                 pc->pc_md.awake = ia64_ap_state.as_awake;
409
410                 if (!ia64_ap_state.as_awake) {
411                         printf("SMP: WARNING: cpu%d did not wake up (code "
412                             "%#lx)\n", pc->pc_cpuid,
413                             ia64_ap_state.as_trace - state);
414                 }
415         }
416 }
417
418 static void
419 cpu_mp_unleash(void *dummy)
420 {
421         struct pcpu *pc;
422         int cpus;
423
424         if (mp_ncpus <= 1)
425                 return;
426
427         /* Allocate XIVs for IPIs */
428         ia64_ipi_ast = ia64_xiv_alloc(PI_DULL, IA64_XIV_IPI, ia64_ih_ast);
429         ia64_ipi_hardclock = ia64_xiv_alloc(PI_REALTIME, IA64_XIV_IPI,
430             ia64_ih_hardclock);
431         ia64_ipi_highfp = ia64_xiv_alloc(PI_AV, IA64_XIV_IPI, ia64_ih_highfp);
432         ia64_ipi_preempt = ia64_xiv_alloc(PI_SOFT, IA64_XIV_IPI,
433             ia64_ih_preempt);
434         ia64_ipi_rndzvs = ia64_xiv_alloc(PI_AV, IA64_XIV_IPI, ia64_ih_rndzvs);
435         ia64_ipi_stop = ia64_xiv_alloc(PI_REALTIME, IA64_XIV_IPI, ia64_ih_stop);
436
437         /* Reserve the NMI vector for IPI_STOP_HARD if possible */
438         ia64_ipi_nmi = (ia64_xiv_reserve(2, IA64_XIV_IPI, ia64_ih_stop) != 0)
439             ? ia64_ipi_stop : 0x400;    /* DM=NMI, Vector=n/a */
440
441         cpus = 0;
442         smp_cpus = 0;
443         STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
444                 cpus++;
445                 if (pc->pc_md.awake) {
446                         kproc_create(ia64_store_mca_state, pc, NULL, 0, 0,
447                             "mca %u", pc->pc_cpuid);
448                         smp_cpus++;
449                 }
450         }
451
452         ia64_ap_state.as_awake = 1;
453         ia64_ap_state.as_spin = 0;
454
455         while (ia64_ap_state.as_awake != smp_cpus)
456                 cpu_spinwait();
457
458         if (smp_cpus != cpus || cpus != mp_ncpus) {
459                 printf("SMP: %d CPUs found; %d CPUs usable; %d CPUs woken\n",
460                     mp_ncpus, cpus, smp_cpus);
461         }
462
463         /* XXX Atomic set operation? */
464         smp_started = 1;
465
466         /*
467          * Now that all CPUs are up and running, bind interrupts to each of
468          * them.
469          */
470         ia64_bind_intr();
471 }
472 SYSINIT(start_aps, SI_SUB_KICK_SCHEDULER, SI_ORDER_ANY, cpu_mp_unleash, NULL);
473
474 /*
475  * send an IPI to a set of cpus.
476  */
477 void
478 ipi_selected(cpuset_t cpus, int ipi)
479 {
480         struct pcpu *pc;
481
482         STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
483                 if (CPU_ISSET(pc->pc_cpuid, &cpus))
484                         ipi_send(pc, ipi);
485         }
486 }
487
488 /*
489  * send an IPI to a specific CPU.
490  */
491 void
492 ipi_cpu(int cpu, u_int ipi)
493 {
494
495         ipi_send(cpuid_to_pcpu[cpu], ipi);
496 }
497
498 /*
499  * send an IPI to all CPUs EXCEPT myself.
500  */
501 void
502 ipi_all_but_self(int ipi)
503 {
504         struct pcpu *pc;
505
506         STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
507                 if (pc != pcpup)
508                         ipi_send(pc, ipi);
509         }
510 }
511
512 /*
513  * Send an IPI to the specified processor.
514  */
515 void
516 ipi_send(struct pcpu *cpu, int xiv)
517 {
518         u_int sapic_id;
519
520         KASSERT(xiv != 0, ("ipi_send"));
521
522         sapic_id = IA64_LID_GET_SAPIC_ID(cpu->pc_md.lid);
523
524         ia64_mf();
525         ia64_st8(&(ia64_pib->ib_ipi[sapic_id][0]), xiv);
526         ia64_mf_a();
527         CTR3(KTR_SMP, "ipi_send(%p, %d): cpuid=%d", cpu, xiv, PCPU_GET(cpuid));
528 }