]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - sys/kern/kern_clocksource.c
MFC r321985:
[FreeBSD/stable/9.git] / sys / kern / kern_clocksource.c
1 /*-
2  * Copyright (c) 2010-2012 Alexander Motin <mav@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification, immediately at the beginning of the file.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 /*
31  * Common routines to manage event timers hardware.
32  */
33
34 #include "opt_device_polling.h"
35 #include "opt_kdtrace.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/bus.h>
40 #include <sys/lock.h>
41 #include <sys/kdb.h>
42 #include <sys/ktr.h>
43 #include <sys/mutex.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/sched.h>
47 #include <sys/smp.h>
48 #include <sys/sysctl.h>
49 #include <sys/timeet.h>
50 #include <sys/timetc.h>
51
52 #include <machine/atomic.h>
53 #include <machine/clock.h>
54 #include <machine/cpu.h>
55 #include <machine/smp.h>
56
57 #ifdef KDTRACE_HOOKS
58 #include <sys/dtrace_bsd.h>
59 cyclic_clock_func_t     cyclic_clock_func = NULL;
60 #endif
61
62 int                     cpu_deepest_sleep = 0;  /* Deepest Cx state available. */
63 int                     cpu_disable_c2_sleep = 0; /* Timer dies in C2. */
64 int                     cpu_disable_c3_sleep = 0; /* Timer dies in C3. */
65
66 static void             setuptimer(void);
67 static void             loadtimer(struct bintime *now, int first);
68 static int              doconfigtimer(void);
69 static void             configtimer(int start);
70 static int              round_freq(struct eventtimer *et, int freq);
71
72 static void             getnextcpuevent(struct bintime *event, int idle);
73 static void             getnextevent(struct bintime *event);
74 static int              handleevents(struct bintime *now, int fake);
75 #ifdef SMP
76 static void             cpu_new_callout(int cpu, int ticks);
77 #endif
78
79 static struct mtx       et_hw_mtx;
80
81 #define ET_HW_LOCK(state)                                               \
82         {                                                               \
83                 if (timer->et_flags & ET_FLAGS_PERCPU)                  \
84                         mtx_lock_spin(&(state)->et_hw_mtx);             \
85                 else                                                    \
86                         mtx_lock_spin(&et_hw_mtx);                      \
87         }
88
89 #define ET_HW_UNLOCK(state)                                             \
90         {                                                               \
91                 if (timer->et_flags & ET_FLAGS_PERCPU)                  \
92                         mtx_unlock_spin(&(state)->et_hw_mtx);           \
93                 else                                                    \
94                         mtx_unlock_spin(&et_hw_mtx);                    \
95         }
96
97 static struct eventtimer *timer = NULL;
98 static struct bintime   timerperiod;    /* Timer period for periodic mode. */
99 static struct bintime   hardperiod;     /* hardclock() events period. */
100 static struct bintime   statperiod;     /* statclock() events period. */
101 static struct bintime   profperiod;     /* profclock() events period. */
102 static struct bintime   nexttick;       /* Next global timer tick time. */
103 static struct bintime   nexthard;       /* Next global hardlock() event. */
104 static u_int            busy = 0;       /* Reconfiguration is in progress. */
105 static int              profiling = 0;  /* Profiling events enabled. */
106
107 static char             timername[32];  /* Wanted timer. */
108 TUNABLE_STR("kern.eventtimer.timer", timername, sizeof(timername));
109
110 static int              singlemul = 0;  /* Multiplier for periodic mode. */
111 TUNABLE_INT("kern.eventtimer.singlemul", &singlemul);
112 SYSCTL_INT(_kern_eventtimer, OID_AUTO, singlemul, CTLFLAG_RW, &singlemul,
113     0, "Multiplier for periodic mode");
114
115 static u_int            idletick = 0;   /* Run periodic events when idle. */
116 TUNABLE_INT("kern.eventtimer.idletick", &idletick);
117 SYSCTL_UINT(_kern_eventtimer, OID_AUTO, idletick, CTLFLAG_RW, &idletick,
118     0, "Run periodic events when idle");
119
120 static u_int            activetick = 1; /* Run all periodic events when active. */
121 TUNABLE_INT("kern.eventtimer.activetick", &activetick);
122 SYSCTL_UINT(_kern_eventtimer, OID_AUTO, activetick, CTLFLAG_RW, &activetick,
123     0, "Run all periodic events when active");
124
125 static int              periodic = 0;   /* Periodic or one-shot mode. */
126 static int              want_periodic = 0; /* What mode to prefer. */
127 TUNABLE_INT("kern.eventtimer.periodic", &want_periodic);
128
129 struct pcpu_state {
130         struct mtx      et_hw_mtx;      /* Per-CPU timer mutex. */
131         u_int           action;         /* Reconfiguration requests. */
132         u_int           handle;         /* Immediate handle resuests. */
133         struct bintime  now;            /* Last tick time. */
134         struct bintime  nextevent;      /* Next scheduled event on this CPU. */
135         struct bintime  nexttick;       /* Next timer tick time. */
136         struct bintime  nexthard;       /* Next hardlock() event. */
137         struct bintime  nextstat;       /* Next statclock() event. */
138         struct bintime  nextprof;       /* Next profclock() event. */
139 #ifdef KDTRACE_HOOKS
140         struct bintime  nextcyc;        /* Next OpenSolaris cyclics event. */
141 #endif
142         int             ipi;            /* This CPU needs IPI. */
143         int             idle;           /* This CPU is in idle mode. */
144 };
145
146 static DPCPU_DEFINE(struct pcpu_state, timerstate);
147
148 #define FREQ2BT(freq, bt)                                               \
149 {                                                                       \
150         (bt)->sec = 0;                                                  \
151         (bt)->frac = ((uint64_t)0x8000000000000000  / (freq)) << 1;     \
152 }
153 #define BT2FREQ(bt)                                                     \
154         (((uint64_t)0x8000000000000000 + ((bt)->frac >> 2)) /           \
155             ((bt)->frac >> 1))
156
157 /*
158  * Timer broadcast IPI handler.
159  */
160 int
161 hardclockintr(void)
162 {
163         struct bintime now;
164         struct pcpu_state *state;
165         int done;
166
167         if (doconfigtimer() || busy)
168                 return (FILTER_HANDLED);
169         state = DPCPU_PTR(timerstate);
170         now = state->now;
171         CTR4(KTR_SPARE2, "ipi  at %d:    now  %d.%08x%08x",
172             curcpu, now.sec, (unsigned int)(now.frac >> 32),
173                              (unsigned int)(now.frac & 0xffffffff));
174         done = handleevents(&now, 0);
175         return (done ? FILTER_HANDLED : FILTER_STRAY);
176 }
177
178 /*
179  * Handle all events for specified time on this CPU
180  */
181 static int
182 handleevents(struct bintime *now, int fake)
183 {
184         struct bintime t;
185         struct trapframe *frame;
186         struct pcpu_state *state;
187         uintfptr_t pc;
188         int usermode;
189         int done, runs;
190
191         CTR4(KTR_SPARE2, "handle at %d:  now  %d.%08x%08x",
192             curcpu, now->sec, (unsigned int)(now->frac >> 32),
193                      (unsigned int)(now->frac & 0xffffffff));
194         done = 0;
195         if (fake) {
196                 frame = NULL;
197                 usermode = 0;
198                 pc = 0;
199         } else {
200                 frame = curthread->td_intr_frame;
201                 usermode = TRAPF_USERMODE(frame);
202                 pc = TRAPF_PC(frame);
203         }
204
205         state = DPCPU_PTR(timerstate);
206
207         runs = 0;
208         while (bintime_cmp(now, &state->nexthard, >=)) {
209                 bintime_add(&state->nexthard, &hardperiod);
210                 runs++;
211         }
212         if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 &&
213             bintime_cmp(&state->nexthard, &nexthard, >))
214                 nexthard = state->nexthard;
215         if (runs && fake < 2) {
216                 hardclock_cnt(runs, usermode);
217                 done = 1;
218         }
219         runs = 0;
220         while (bintime_cmp(now, &state->nextstat, >=)) {
221                 bintime_add(&state->nextstat, &statperiod);
222                 runs++;
223         }
224         if (runs && fake < 2) {
225                 statclock_cnt(runs, usermode);
226                 done = 1;
227         }
228         if (profiling) {
229                 runs = 0;
230                 while (bintime_cmp(now, &state->nextprof, >=)) {
231                         bintime_add(&state->nextprof, &profperiod);
232                         runs++;
233                 }
234                 if (runs && !fake) {
235                         profclock_cnt(runs, usermode, pc);
236                         done = 1;
237                 }
238         } else
239                 state->nextprof = state->nextstat;
240
241 #ifdef KDTRACE_HOOKS
242         if (fake == 0 && cyclic_clock_func != NULL &&
243             state->nextcyc.sec != -1 &&
244             bintime_cmp(now, &state->nextcyc, >=)) {
245                 state->nextcyc.sec = -1;
246                 (*cyclic_clock_func)(frame);
247         }
248 #endif
249
250         getnextcpuevent(&t, 0);
251         if (fake == 2) {
252                 state->nextevent = t;
253                 return (done);
254         }
255         ET_HW_LOCK(state);
256         if (!busy) {
257                 state->idle = 0;
258                 state->nextevent = t;
259                 loadtimer(now, 0);
260         }
261         ET_HW_UNLOCK(state);
262         return (done);
263 }
264
265 /*
266  * Schedule binuptime of the next event on current CPU.
267  */
268 static void
269 getnextcpuevent(struct bintime *event, int idle)
270 {
271         struct bintime tmp;
272         struct pcpu_state *state;
273         int skip;
274
275         state = DPCPU_PTR(timerstate);
276         /* Handle hardclock() events. */
277         *event = state->nexthard;
278         if (idle || (!activetick && !profiling &&
279             (timer->et_flags & ET_FLAGS_PERCPU) == 0)) {
280                 skip = idle ? 4 : (stathz / 2);
281                 if (curcpu == CPU_FIRST() && tc_min_ticktock_freq > skip)
282                         skip = tc_min_ticktock_freq;
283                 skip = callout_tickstofirst(hz / skip) - 1;
284                 CTR2(KTR_SPARE2, "skip   at %d: %d", curcpu, skip);
285                 tmp = hardperiod;
286                 bintime_mul(&tmp, skip);
287                 bintime_add(event, &tmp);
288         }
289         if (!idle) { /* If CPU is active - handle other types of events. */
290                 if (bintime_cmp(event, &state->nextstat, >))
291                         *event = state->nextstat;
292                 if (profiling && bintime_cmp(event, &state->nextprof, >))
293                         *event = state->nextprof;
294         }
295 #ifdef KDTRACE_HOOKS
296         if (state->nextcyc.sec != -1 && bintime_cmp(event, &state->nextcyc, >))
297                 *event = state->nextcyc;
298 #endif
299 }
300
301 /*
302  * Schedule binuptime of the next event on all CPUs.
303  */
304 static void
305 getnextevent(struct bintime *event)
306 {
307         struct pcpu_state *state;
308 #ifdef SMP
309         int     cpu;
310 #endif
311         int     c, nonidle;
312
313         state = DPCPU_PTR(timerstate);
314         *event = state->nextevent;
315         c = curcpu;
316         nonidle = !state->idle;
317         if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) {
318 #ifdef SMP
319                 CPU_FOREACH(cpu) {
320                         if (curcpu == cpu)
321                                 continue;
322                         state = DPCPU_ID_PTR(cpu, timerstate);
323                         nonidle += !state->idle;
324                         if (bintime_cmp(event, &state->nextevent, >)) {
325                                 *event = state->nextevent;
326                                 c = cpu;
327                         }
328                 }
329 #endif
330                 if (nonidle != 0 && bintime_cmp(event, &nexthard, >))
331                         *event = nexthard;
332         }
333         CTR5(KTR_SPARE2, "next at %d:    next %d.%08x%08x by %d",
334             curcpu, event->sec, (unsigned int)(event->frac >> 32),
335                              (unsigned int)(event->frac & 0xffffffff), c);
336 }
337
338 /* Hardware timer callback function. */
339 static void
340 timercb(struct eventtimer *et, void *arg)
341 {
342         struct bintime now;
343         struct bintime *next;
344         struct pcpu_state *state;
345 #ifdef SMP
346         int cpu, bcast;
347 #endif
348
349         /* Do not touch anything if somebody reconfiguring timers. */
350         if (busy)
351                 return;
352         /* Update present and next tick times. */
353         state = DPCPU_PTR(timerstate);
354         if (et->et_flags & ET_FLAGS_PERCPU) {
355                 next = &state->nexttick;
356         } else
357                 next = &nexttick;
358         if (periodic) {
359                 now = *next;    /* Ex-next tick time becomes present time. */
360                 bintime_add(next, &timerperiod); /* Next tick in 1 period. */
361         } else {
362                 binuptime(&now);        /* Get present time from hardware. */
363                 next->sec = -1;         /* Next tick is not scheduled yet. */
364         }
365         state->now = now;
366         CTR4(KTR_SPARE2, "intr at %d:    now  %d.%08x%08x",
367             curcpu, now.sec, (unsigned int)(now.frac >> 32),
368                              (unsigned int)(now.frac & 0xffffffff));
369
370 #ifdef SMP
371         /* Prepare broadcasting to other CPUs for non-per-CPU timers. */
372         bcast = 0;
373         if ((et->et_flags & ET_FLAGS_PERCPU) == 0 && smp_started) {
374                 CPU_FOREACH(cpu) {
375                         state = DPCPU_ID_PTR(cpu, timerstate);
376                         ET_HW_LOCK(state);
377                         state->now = now;
378                         if (bintime_cmp(&now, &state->nextevent, >=)) {
379                                 state->nextevent.sec++;
380                                 if (curcpu != cpu) {
381                                         state->ipi = 1;
382                                         bcast = 1;
383                                 }
384                         }
385                         ET_HW_UNLOCK(state);
386                 }
387         }
388 #endif
389
390         /* Handle events for this time on this CPU. */
391         handleevents(&now, 0);
392
393 #ifdef SMP
394         /* Broadcast interrupt to other CPUs for non-per-CPU timers. */
395         if (bcast) {
396                 CPU_FOREACH(cpu) {
397                         if (curcpu == cpu)
398                                 continue;
399                         state = DPCPU_ID_PTR(cpu, timerstate);
400                         if (state->ipi) {
401                                 state->ipi = 0;
402                                 ipi_cpu(cpu, IPI_HARDCLOCK);
403                         }
404                 }
405         }
406 #endif
407 }
408
409 /*
410  * Load new value into hardware timer.
411  */
412 static void
413 loadtimer(struct bintime *now, int start)
414 {
415         struct pcpu_state *state;
416         struct bintime new;
417         struct bintime *next;
418         uint64_t tmp;
419         int eq;
420
421         if (timer->et_flags & ET_FLAGS_PERCPU) {
422                 state = DPCPU_PTR(timerstate);
423                 next = &state->nexttick;
424         } else
425                 next = &nexttick;
426         if (periodic) {
427                 if (start) {
428                         /*
429                          * Try to start all periodic timers aligned
430                          * to period to make events synchronous.
431                          */
432                         tmp = ((uint64_t)now->sec << 36) + (now->frac >> 28);
433                         tmp = (tmp % (timerperiod.frac >> 28)) << 28;
434                         new.sec = 0;
435                         new.frac = timerperiod.frac - tmp;
436                         if (new.frac < tmp)     /* Left less then passed. */
437                                 bintime_add(&new, &timerperiod);
438                         CTR5(KTR_SPARE2, "load p at %d:   now %d.%08x first in %d.%08x",
439                             curcpu, now->sec, (unsigned int)(now->frac >> 32),
440                             new.sec, (unsigned int)(new.frac >> 32));
441                         *next = new;
442                         bintime_add(next, now);
443                         et_start(timer, &new, &timerperiod);
444                 }
445         } else {
446                 getnextevent(&new);
447                 eq = bintime_cmp(&new, next, ==);
448                 CTR5(KTR_SPARE2, "load at %d:    next %d.%08x%08x eq %d",
449                     curcpu, new.sec, (unsigned int)(new.frac >> 32),
450                              (unsigned int)(new.frac & 0xffffffff),
451                              eq);
452                 if (!eq) {
453                         *next = new;
454                         bintime_sub(&new, now);
455                         et_start(timer, &new, NULL);
456                 }
457         }
458 }
459
460 /*
461  * Prepare event timer parameters after configuration changes.
462  */
463 static void
464 setuptimer(void)
465 {
466         int freq;
467
468         if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
469                 periodic = 0;
470         else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
471                 periodic = 1;
472         singlemul = MIN(MAX(singlemul, 1), 20);
473         freq = hz * singlemul;
474         while (freq < (profiling ? profhz : stathz))
475                 freq += hz;
476         freq = round_freq(timer, freq);
477         FREQ2BT(freq, &timerperiod);
478 }
479
480 /*
481  * Reconfigure specified per-CPU timer on other CPU. Called from IPI handler.
482  */
483 static int
484 doconfigtimer(void)
485 {
486         struct bintime now;
487         struct pcpu_state *state;
488
489         state = DPCPU_PTR(timerstate);
490         switch (atomic_load_acq_int(&state->action)) {
491         case 1:
492                 binuptime(&now);
493                 ET_HW_LOCK(state);
494                 loadtimer(&now, 1);
495                 ET_HW_UNLOCK(state);
496                 state->handle = 0;
497                 atomic_store_rel_int(&state->action, 0);
498                 return (1);
499         case 2:
500                 ET_HW_LOCK(state);
501                 et_stop(timer);
502                 ET_HW_UNLOCK(state);
503                 state->handle = 0;
504                 atomic_store_rel_int(&state->action, 0);
505                 return (1);
506         }
507         if (atomic_readandclear_int(&state->handle) && !busy) {
508                 binuptime(&now);
509                 handleevents(&now, 0);
510                 return (1);
511         }
512         return (0);
513 }
514
515 /*
516  * Reconfigure specified timer.
517  * For per-CPU timers use IPI to make other CPUs to reconfigure.
518  */
519 static void
520 configtimer(int start)
521 {
522         struct bintime now, next;
523         struct pcpu_state *state;
524         int cpu;
525
526         if (start) {
527                 setuptimer();
528                 binuptime(&now);
529         }
530         critical_enter();
531         ET_HW_LOCK(DPCPU_PTR(timerstate));
532         if (start) {
533                 /* Initialize time machine parameters. */
534                 next = now;
535                 bintime_add(&next, &timerperiod);
536                 if (periodic)
537                         nexttick = next;
538                 else
539                         nexttick.sec = -1;
540                 CPU_FOREACH(cpu) {
541                         state = DPCPU_ID_PTR(cpu, timerstate);
542                         state->now = now;
543                         state->nextevent = next;
544                         if (periodic)
545                                 state->nexttick = next;
546                         else
547                                 state->nexttick.sec = -1;
548                         state->nexthard = next;
549                         state->nextstat = next;
550                         state->nextprof = next;
551                         hardclock_sync(cpu);
552                 }
553                 busy = 0;
554                 /* Start global timer or per-CPU timer of this CPU. */
555                 loadtimer(&now, 1);
556         } else {
557                 busy = 1;
558                 /* Stop global timer or per-CPU timer of this CPU. */
559                 et_stop(timer);
560         }
561         ET_HW_UNLOCK(DPCPU_PTR(timerstate));
562 #ifdef SMP
563         /* If timer is global or there is no other CPUs yet - we are done. */
564         if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || !smp_started) {
565                 critical_exit();
566                 return;
567         }
568         /* Set reconfigure flags for other CPUs. */
569         CPU_FOREACH(cpu) {
570                 state = DPCPU_ID_PTR(cpu, timerstate);
571                 atomic_store_rel_int(&state->action,
572                     (cpu == curcpu) ? 0 : ( start ? 1 : 2));
573         }
574         /* Broadcast reconfigure IPI. */
575         ipi_all_but_self(IPI_HARDCLOCK);
576         /* Wait for reconfiguration completed. */
577 restart:
578         cpu_spinwait();
579         CPU_FOREACH(cpu) {
580                 if (cpu == curcpu)
581                         continue;
582                 state = DPCPU_ID_PTR(cpu, timerstate);
583                 if (atomic_load_acq_int(&state->action))
584                         goto restart;
585         }
586 #endif
587         critical_exit();
588 }
589
590 /*
591  * Calculate nearest frequency supported by hardware timer.
592  */
593 static int
594 round_freq(struct eventtimer *et, int freq)
595 {
596         uint64_t div;
597
598         if (et->et_frequency != 0) {
599                 div = lmax((et->et_frequency + freq / 2) / freq, 1);
600                 if (et->et_flags & ET_FLAGS_POW2DIV)
601                         div = 1 << (flsl(div + div / 2) - 1);
602                 freq = (et->et_frequency + div / 2) / div;
603         }
604         if (et->et_min_period.sec > 0)
605                 freq = 0;
606         else if (et->et_min_period.frac != 0)
607                 freq = min(freq, BT2FREQ(&et->et_min_period));
608         if (et->et_max_period.sec == 0 && et->et_max_period.frac != 0)
609                 freq = max(freq, BT2FREQ(&et->et_max_period));
610         return (freq);
611 }
612
613 /*
614  * Configure and start event timers (BSP part).
615  */
616 void
617 cpu_initclocks_bsp(void)
618 {
619         struct pcpu_state *state;
620         int base, div, cpu;
621
622         mtx_init(&et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
623         CPU_FOREACH(cpu) {
624                 state = DPCPU_ID_PTR(cpu, timerstate);
625                 mtx_init(&state->et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
626 #ifdef KDTRACE_HOOKS
627                 state->nextcyc.sec = -1;
628 #endif
629         }
630 #ifdef SMP
631         callout_new_inserted = cpu_new_callout;
632 #endif
633         periodic = want_periodic;
634         /* Grab requested timer or the best of present. */
635         if (timername[0])
636                 timer = et_find(timername, 0, 0);
637         if (timer == NULL && periodic) {
638                 timer = et_find(NULL,
639                     ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
640         }
641         if (timer == NULL) {
642                 timer = et_find(NULL,
643                     ET_FLAGS_ONESHOT, ET_FLAGS_ONESHOT);
644         }
645         if (timer == NULL && !periodic) {
646                 timer = et_find(NULL,
647                     ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
648         }
649         if (timer == NULL)
650                 panic("No usable event timer found!");
651         et_init(timer, timercb, NULL, NULL);
652
653         /* Adapt to timer capabilities. */
654         if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
655                 periodic = 0;
656         else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
657                 periodic = 1;
658         if (timer->et_flags & ET_FLAGS_C3STOP)
659                 cpu_disable_c3_sleep++;
660
661         /*
662          * We honor the requested 'hz' value.
663          * We want to run stathz in the neighborhood of 128hz.
664          * We would like profhz to run as often as possible.
665          */
666         if (singlemul <= 0 || singlemul > 20) {
667                 if (hz >= 1500 || (hz % 128) == 0)
668                         singlemul = 1;
669                 else if (hz >= 750)
670                         singlemul = 2;
671                 else
672                         singlemul = 4;
673         }
674         if (periodic) {
675                 base = round_freq(timer, hz * singlemul);
676                 singlemul = max((base + hz / 2) / hz, 1);
677                 hz = (base + singlemul / 2) / singlemul;
678                 if (base <= 128)
679                         stathz = base;
680                 else {
681                         div = base / 128;
682                         if (div >= singlemul && (div % singlemul) == 0)
683                                 div++;
684                         stathz = base / div;
685                 }
686                 profhz = stathz;
687                 while ((profhz + stathz) <= 128 * 64)
688                         profhz += stathz;
689                 profhz = round_freq(timer, profhz);
690         } else {
691                 hz = round_freq(timer, hz);
692                 stathz = round_freq(timer, 127);
693                 profhz = round_freq(timer, stathz * 64);
694         }
695         tick = 1000000 / hz;
696         FREQ2BT(hz, &hardperiod);
697         FREQ2BT(stathz, &statperiod);
698         FREQ2BT(profhz, &profperiod);
699         ET_LOCK();
700         configtimer(1);
701         ET_UNLOCK();
702 }
703
704 /*
705  * Start per-CPU event timers on APs.
706  */
707 void
708 cpu_initclocks_ap(void)
709 {
710         struct bintime now;
711         struct pcpu_state *state;
712
713         state = DPCPU_PTR(timerstate);
714         binuptime(&now);
715         ET_HW_LOCK(state);
716         if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 && periodic) {
717                 state->now = nexttick;
718                 bintime_sub(&state->now, &timerperiod);
719         } else
720                 state->now = now;
721         hardclock_sync(curcpu);
722         handleevents(&state->now, 2);
723         if (timer->et_flags & ET_FLAGS_PERCPU)
724                 loadtimer(&now, 1);
725         ET_HW_UNLOCK(state);
726 }
727
728 /*
729  * Switch to profiling clock rates.
730  */
731 void
732 cpu_startprofclock(void)
733 {
734
735         ET_LOCK();
736         if (profiling == 0) {
737                 if (periodic) {
738                         configtimer(0);
739                         profiling = 1;
740                         configtimer(1);
741                 } else
742                         profiling = 1;
743         } else
744                 profiling++;
745         ET_UNLOCK();
746 }
747
748 /*
749  * Switch to regular clock rates.
750  */
751 void
752 cpu_stopprofclock(void)
753 {
754
755         ET_LOCK();
756         if (profiling == 1) {
757                 if (periodic) {
758                         configtimer(0);
759                         profiling = 0;
760                         configtimer(1);
761                 } else
762                 profiling = 0;
763         } else
764                 profiling--;
765         ET_UNLOCK();
766 }
767
768 /*
769  * Switch to idle mode (all ticks handled).
770  */
771 void
772 cpu_idleclock(void)
773 {
774         struct bintime now, t;
775         struct pcpu_state *state;
776
777         if (idletick || busy ||
778             (periodic && (timer->et_flags & ET_FLAGS_PERCPU))
779 #ifdef DEVICE_POLLING
780             || curcpu == CPU_FIRST()
781 #endif
782             )
783                 return;
784         state = DPCPU_PTR(timerstate);
785         if (periodic)
786                 now = state->now;
787         else
788                 binuptime(&now);
789         CTR4(KTR_SPARE2, "idle at %d:    now  %d.%08x%08x",
790             curcpu, now.sec, (unsigned int)(now.frac >> 32),
791                              (unsigned int)(now.frac & 0xffffffff));
792         getnextcpuevent(&t, 1);
793         ET_HW_LOCK(state);
794         state->idle = 1;
795         state->nextevent = t;
796         if (!periodic)
797                 loadtimer(&now, 0);
798         ET_HW_UNLOCK(state);
799 }
800
801 /*
802  * Switch to active mode (skip empty ticks).
803  */
804 void
805 cpu_activeclock(void)
806 {
807         struct bintime now;
808         struct pcpu_state *state;
809         struct thread *td;
810
811         state = DPCPU_PTR(timerstate);
812         if (state->idle == 0 || busy)
813                 return;
814         if (periodic)
815                 now = state->now;
816         else
817                 binuptime(&now);
818         CTR4(KTR_SPARE2, "active at %d:  now  %d.%08x%08x",
819             curcpu, now.sec, (unsigned int)(now.frac >> 32),
820                              (unsigned int)(now.frac & 0xffffffff));
821         spinlock_enter();
822         td = curthread;
823         td->td_intr_nesting_level++;
824         handleevents(&now, 1);
825         td->td_intr_nesting_level--;
826         spinlock_exit();
827 }
828
829 #ifdef KDTRACE_HOOKS
830 void
831 clocksource_cyc_set(const struct bintime *t)
832 {
833         struct bintime now;
834         struct pcpu_state *state;
835
836         state = DPCPU_PTR(timerstate);
837         if (periodic)
838                 now = state->now;
839         else
840                 binuptime(&now);
841
842         CTR4(KTR_SPARE2, "set_cyc at %d:  now  %d.%08x%08x",
843             curcpu, now.sec, (unsigned int)(now.frac >> 32),
844                              (unsigned int)(now.frac & 0xffffffff));
845         CTR4(KTR_SPARE2, "set_cyc at %d:  t  %d.%08x%08x",
846             curcpu, t->sec, (unsigned int)(t->frac >> 32),
847                              (unsigned int)(t->frac & 0xffffffff));
848
849         ET_HW_LOCK(state);
850         if (bintime_cmp(t, &state->nextcyc, ==)) {
851                 ET_HW_UNLOCK(state);
852                 return;
853         }
854         state->nextcyc = *t;
855         if (bintime_cmp(&state->nextcyc, &state->nextevent, >=)) {
856                 ET_HW_UNLOCK(state);
857                 return;
858         }
859         state->nextevent = state->nextcyc;
860         if (!periodic)
861                 loadtimer(&now, 0);
862         ET_HW_UNLOCK(state);
863 }
864 #endif
865
866 #ifdef SMP
867 static void
868 cpu_new_callout(int cpu, int ticks)
869 {
870         struct bintime tmp;
871         struct pcpu_state *state;
872
873         CTR3(KTR_SPARE2, "new co at %d:    on %d in %d",
874             curcpu, cpu, ticks);
875         state = DPCPU_ID_PTR(cpu, timerstate);
876         ET_HW_LOCK(state);
877         if (state->idle == 0 || busy) {
878                 ET_HW_UNLOCK(state);
879                 return;
880         }
881         /*
882          * If timer is periodic - just update next event time for target CPU.
883          * If timer is global - there is chance it is already programmed.
884          */
885         if (periodic || (timer->et_flags & ET_FLAGS_PERCPU) == 0) {
886                 tmp = hardperiod;
887                 bintime_mul(&tmp, ticks - 1);
888                 bintime_add(&tmp, &state->nexthard);
889                 if (bintime_cmp(&tmp, &state->nextevent, <))
890                         state->nextevent = tmp;
891                 if (periodic ||
892                     bintime_cmp(&state->nextevent, &nexttick, >=)) {
893                         ET_HW_UNLOCK(state);
894                         return;
895                 }
896         }
897         /*
898          * Otherwise we have to wake that CPU up, as we can't get present
899          * bintime to reprogram global timer from here. If timer is per-CPU,
900          * we by definition can't do it from here.
901          */
902         ET_HW_UNLOCK(state);
903         if (timer->et_flags & ET_FLAGS_PERCPU) {
904                 state->handle = 1;
905                 ipi_cpu(cpu, IPI_HARDCLOCK);
906         } else {
907                 if (!cpu_idle_wakeup(cpu))
908                         ipi_cpu(cpu, IPI_AST);
909         }
910 }
911 #endif
912
913 /*
914  * Report or change the active event timers hardware.
915  */
916 static int
917 sysctl_kern_eventtimer_timer(SYSCTL_HANDLER_ARGS)
918 {
919         char buf[32];
920         struct eventtimer *et;
921         int error;
922
923         ET_LOCK();
924         et = timer;
925         snprintf(buf, sizeof(buf), "%s", et->et_name);
926         ET_UNLOCK();
927         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
928         ET_LOCK();
929         et = timer;
930         if (error != 0 || req->newptr == NULL ||
931             strcasecmp(buf, et->et_name) == 0) {
932                 ET_UNLOCK();
933                 return (error);
934         }
935         et = et_find(buf, 0, 0);
936         if (et == NULL) {
937                 ET_UNLOCK();
938                 return (ENOENT);
939         }
940         configtimer(0);
941         et_free(timer);
942         if (et->et_flags & ET_FLAGS_C3STOP)
943                 cpu_disable_c3_sleep++;
944         if (timer->et_flags & ET_FLAGS_C3STOP)
945                 cpu_disable_c3_sleep--;
946         periodic = want_periodic;
947         timer = et;
948         et_init(timer, timercb, NULL, NULL);
949         configtimer(1);
950         ET_UNLOCK();
951         return (error);
952 }
953 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, timer,
954     CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
955     0, 0, sysctl_kern_eventtimer_timer, "A", "Chosen event timer");
956
957 /*
958  * Report or change the active event timer periodicity.
959  */
960 static int
961 sysctl_kern_eventtimer_periodic(SYSCTL_HANDLER_ARGS)
962 {
963         int error, val;
964
965         val = periodic;
966         error = sysctl_handle_int(oidp, &val, 0, req);
967         if (error != 0 || req->newptr == NULL)
968                 return (error);
969         ET_LOCK();
970         configtimer(0);
971         periodic = want_periodic = val;
972         configtimer(1);
973         ET_UNLOCK();
974         return (error);
975 }
976 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, periodic,
977     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
978     0, 0, sysctl_kern_eventtimer_periodic, "I", "Enable event timer periodic mode");