]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - sys/kern/kern_thread.c
MFC r239301:
[FreeBSD/stable/9.git] / sys / kern / kern_thread.c
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28
29 #include "opt_witness.h"
30 #include "opt_kdtrace.h"
31 #include "opt_hwpmc_hooks.h"
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/kernel.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/proc.h>
42 #include <sys/resourcevar.h>
43 #include <sys/sdt.h>
44 #include <sys/smp.h>
45 #include <sys/sched.h>
46 #include <sys/sleepqueue.h>
47 #include <sys/selinfo.h>
48 #include <sys/turnstile.h>
49 #include <sys/ktr.h>
50 #include <sys/rwlock.h>
51 #include <sys/umtx.h>
52 #include <sys/cpuset.h>
53 #ifdef  HWPMC_HOOKS
54 #include <sys/pmckern.h>
55 #endif
56
57 #include <security/audit/audit.h>
58
59 #include <vm/vm.h>
60 #include <vm/vm_extern.h>
61 #include <vm/uma.h>
62 #include <sys/eventhandler.h>
63
64 SDT_PROVIDER_DECLARE(proc);
65 SDT_PROBE_DEFINE(proc, , , lwp_exit, lwp-exit);
66
67
68 /*
69  * thread related storage.
70  */
71 static uma_zone_t thread_zone;
72
73 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
74 static struct mtx zombie_lock;
75 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
76
77 static void thread_zombie(struct thread *);
78
79 #define TID_BUFFER_SIZE 1024
80
81 struct mtx tid_lock;
82 static struct unrhdr *tid_unrhdr;
83 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
84 static int tid_head, tid_tail;
85 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
86
87 struct  tidhashhead *tidhashtbl;
88 u_long  tidhash;
89 struct  rwlock tidhash_lock;
90
91 static lwpid_t
92 tid_alloc(void)
93 {
94         lwpid_t tid;
95
96         tid = alloc_unr(tid_unrhdr);
97         if (tid != -1)
98                 return (tid);
99         mtx_lock(&tid_lock);
100         if (tid_head == tid_tail) {
101                 mtx_unlock(&tid_lock);
102                 return (-1);
103         }
104         tid = tid_buffer[tid_head++];
105         tid_head %= TID_BUFFER_SIZE;
106         mtx_unlock(&tid_lock);
107         return (tid);
108 }
109
110 static void
111 tid_free(lwpid_t tid)
112 {
113         lwpid_t tmp_tid = -1;
114
115         mtx_lock(&tid_lock);
116         if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
117                 tmp_tid = tid_buffer[tid_head++];
118                 tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
119         }
120         tid_buffer[tid_tail++] = tid;
121         tid_tail %= TID_BUFFER_SIZE;
122         mtx_unlock(&tid_lock);
123         if (tmp_tid != -1)
124                 free_unr(tid_unrhdr, tmp_tid);
125 }
126
127 /*
128  * Prepare a thread for use.
129  */
130 static int
131 thread_ctor(void *mem, int size, void *arg, int flags)
132 {
133         struct thread   *td;
134
135         td = (struct thread *)mem;
136         td->td_state = TDS_INACTIVE;
137         td->td_oncpu = NOCPU;
138
139         td->td_tid = tid_alloc();
140
141         /*
142          * Note that td_critnest begins life as 1 because the thread is not
143          * running and is thereby implicitly waiting to be on the receiving
144          * end of a context switch.
145          */
146         td->td_critnest = 1;
147         td->td_lend_user_pri = PRI_MAX;
148         EVENTHANDLER_INVOKE(thread_ctor, td);
149 #ifdef AUDIT
150         audit_thread_alloc(td);
151 #endif
152         umtx_thread_alloc(td);
153         return (0);
154 }
155
156 /*
157  * Reclaim a thread after use.
158  */
159 static void
160 thread_dtor(void *mem, int size, void *arg)
161 {
162         struct thread *td;
163
164         td = (struct thread *)mem;
165
166 #ifdef INVARIANTS
167         /* Verify that this thread is in a safe state to free. */
168         switch (td->td_state) {
169         case TDS_INHIBITED:
170         case TDS_RUNNING:
171         case TDS_CAN_RUN:
172         case TDS_RUNQ:
173                 /*
174                  * We must never unlink a thread that is in one of
175                  * these states, because it is currently active.
176                  */
177                 panic("bad state for thread unlinking");
178                 /* NOTREACHED */
179         case TDS_INACTIVE:
180                 break;
181         default:
182                 panic("bad thread state");
183                 /* NOTREACHED */
184         }
185 #endif
186 #ifdef AUDIT
187         audit_thread_free(td);
188 #endif
189         /* Free all OSD associated to this thread. */
190         osd_thread_exit(td);
191
192         EVENTHANDLER_INVOKE(thread_dtor, td);
193         tid_free(td->td_tid);
194 }
195
196 /*
197  * Initialize type-stable parts of a thread (when newly created).
198  */
199 static int
200 thread_init(void *mem, int size, int flags)
201 {
202         struct thread *td;
203
204         td = (struct thread *)mem;
205
206         td->td_sleepqueue = sleepq_alloc();
207         td->td_turnstile = turnstile_alloc();
208         EVENTHANDLER_INVOKE(thread_init, td);
209         td->td_sched = (struct td_sched *)&td[1];
210         umtx_thread_init(td);
211         td->td_kstack = 0;
212         return (0);
213 }
214
215 /*
216  * Tear down type-stable parts of a thread (just before being discarded).
217  */
218 static void
219 thread_fini(void *mem, int size)
220 {
221         struct thread *td;
222
223         td = (struct thread *)mem;
224         EVENTHANDLER_INVOKE(thread_fini, td);
225         turnstile_free(td->td_turnstile);
226         sleepq_free(td->td_sleepqueue);
227         umtx_thread_fini(td);
228         seltdfini(td);
229 }
230
231 /*
232  * For a newly created process,
233  * link up all the structures and its initial threads etc.
234  * called from:
235  * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
236  * proc_dtor() (should go away)
237  * proc_init()
238  */
239 void
240 proc_linkup0(struct proc *p, struct thread *td)
241 {
242         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
243         proc_linkup(p, td);
244 }
245
246 void
247 proc_linkup(struct proc *p, struct thread *td)
248 {
249
250         sigqueue_init(&p->p_sigqueue, p);
251         p->p_ksi = ksiginfo_alloc(1);
252         if (p->p_ksi != NULL) {
253                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
254                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
255         }
256         LIST_INIT(&p->p_mqnotifier);
257         p->p_numthreads = 0;
258         thread_link(td, p);
259 }
260
261 /*
262  * Initialize global thread allocation resources.
263  */
264 void
265 threadinit(void)
266 {
267
268         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
269
270         /*
271          * pid_max cannot be greater than PID_MAX.
272          * leave one number for thread0.
273          */
274         tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
275
276         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
277             thread_ctor, thread_dtor, thread_init, thread_fini,
278             16 - 1, 0);
279         tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
280         rw_init(&tidhash_lock, "tidhash");
281 }
282
283 /*
284  * Place an unused thread on the zombie list.
285  * Use the slpq as that must be unused by now.
286  */
287 void
288 thread_zombie(struct thread *td)
289 {
290         mtx_lock_spin(&zombie_lock);
291         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
292         mtx_unlock_spin(&zombie_lock);
293 }
294
295 /*
296  * Release a thread that has exited after cpu_throw().
297  */
298 void
299 thread_stash(struct thread *td)
300 {
301         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
302         thread_zombie(td);
303 }
304
305 /*
306  * Reap zombie resources.
307  */
308 void
309 thread_reap(void)
310 {
311         struct thread *td_first, *td_next;
312
313         /*
314          * Don't even bother to lock if none at this instant,
315          * we really don't care about the next instant..
316          */
317         if (!TAILQ_EMPTY(&zombie_threads)) {
318                 mtx_lock_spin(&zombie_lock);
319                 td_first = TAILQ_FIRST(&zombie_threads);
320                 if (td_first)
321                         TAILQ_INIT(&zombie_threads);
322                 mtx_unlock_spin(&zombie_lock);
323                 while (td_first) {
324                         td_next = TAILQ_NEXT(td_first, td_slpq);
325                         if (td_first->td_ucred)
326                                 crfree(td_first->td_ucred);
327                         thread_free(td_first);
328                         td_first = td_next;
329                 }
330         }
331 }
332
333 /*
334  * Allocate a thread.
335  */
336 struct thread *
337 thread_alloc(int pages)
338 {
339         struct thread *td;
340
341         thread_reap(); /* check if any zombies to get */
342
343         td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
344         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
345         if (!vm_thread_new(td, pages)) {
346                 uma_zfree(thread_zone, td);
347                 return (NULL);
348         }
349         cpu_thread_alloc(td);
350         return (td);
351 }
352
353 int
354 thread_alloc_stack(struct thread *td, int pages)
355 {
356
357         KASSERT(td->td_kstack == 0,
358             ("thread_alloc_stack called on a thread with kstack"));
359         if (!vm_thread_new(td, pages))
360                 return (0);
361         cpu_thread_alloc(td);
362         return (1);
363 }
364
365 /*
366  * Deallocate a thread.
367  */
368 void
369 thread_free(struct thread *td)
370 {
371
372         lock_profile_thread_exit(td);
373         if (td->td_cpuset)
374                 cpuset_rel(td->td_cpuset);
375         td->td_cpuset = NULL;
376         cpu_thread_free(td);
377         if (td->td_kstack != 0)
378                 vm_thread_dispose(td);
379         uma_zfree(thread_zone, td);
380 }
381
382 /*
383  * Discard the current thread and exit from its context.
384  * Always called with scheduler locked.
385  *
386  * Because we can't free a thread while we're operating under its context,
387  * push the current thread into our CPU's deadthread holder. This means
388  * we needn't worry about someone else grabbing our context before we
389  * do a cpu_throw().
390  */
391 void
392 thread_exit(void)
393 {
394         uint64_t runtime, new_switchtime;
395         struct thread *td;
396         struct thread *td2;
397         struct proc *p;
398         int wakeup_swapper;
399
400         td = curthread;
401         p = td->td_proc;
402
403         PROC_SLOCK_ASSERT(p, MA_OWNED);
404         mtx_assert(&Giant, MA_NOTOWNED);
405
406         PROC_LOCK_ASSERT(p, MA_OWNED);
407         KASSERT(p != NULL, ("thread exiting without a process"));
408         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
409             (long)p->p_pid, td->td_name);
410         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
411
412 #ifdef AUDIT
413         AUDIT_SYSCALL_EXIT(0, td);
414 #endif
415         umtx_thread_exit(td);
416         /*
417          * drop FPU & debug register state storage, or any other
418          * architecture specific resources that
419          * would not be on a new untouched process.
420          */
421         cpu_thread_exit(td);    /* XXXSMP */
422
423         /*
424          * The last thread is left attached to the process
425          * So that the whole bundle gets recycled. Skip
426          * all this stuff if we never had threads.
427          * EXIT clears all sign of other threads when
428          * it goes to single threading, so the last thread always
429          * takes the short path.
430          */
431         if (p->p_flag & P_HADTHREADS) {
432                 if (p->p_numthreads > 1) {
433                         thread_unlink(td);
434                         td2 = FIRST_THREAD_IN_PROC(p);
435                         sched_exit_thread(td2, td);
436
437                         /*
438                          * The test below is NOT true if we are the
439                          * sole exiting thread. P_STOPPED_SINGLE is unset
440                          * in exit1() after it is the only survivor.
441                          */
442                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
443                                 if (p->p_numthreads == p->p_suspcount) {
444                                         thread_lock(p->p_singlethread);
445                                         wakeup_swapper = thread_unsuspend_one(
446                                                 p->p_singlethread);
447                                         thread_unlock(p->p_singlethread);
448                                         if (wakeup_swapper)
449                                                 kick_proc0();
450                                 }
451                         }
452
453                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
454                         PCPU_SET(deadthread, td);
455                 } else {
456                         /*
457                          * The last thread is exiting.. but not through exit()
458                          */
459                         panic ("thread_exit: Last thread exiting on its own");
460                 }
461         } 
462 #ifdef  HWPMC_HOOKS
463         /*
464          * If this thread is part of a process that is being tracked by hwpmc(4),
465          * inform the module of the thread's impending exit.
466          */
467         if (PMC_PROC_IS_USING_PMCS(td->td_proc))
468                 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
469 #endif
470         PROC_UNLOCK(p);
471
472         /* Do the same timestamp bookkeeping that mi_switch() would do. */
473         new_switchtime = cpu_ticks();
474         runtime = new_switchtime - PCPU_GET(switchtime);
475         td->td_runtime += runtime;
476         td->td_incruntime += runtime;
477         PCPU_SET(switchtime, new_switchtime);
478         PCPU_SET(switchticks, ticks);
479         PCPU_INC(cnt.v_swtch);
480
481         /* Save our resource usage in our process. */
482         td->td_ru.ru_nvcsw++;
483         ruxagg(p, td);
484         rucollect(&p->p_ru, &td->td_ru);
485
486         thread_lock(td);
487         PROC_SUNLOCK(p);
488         td->td_state = TDS_INACTIVE;
489 #ifdef WITNESS
490         witness_thread_exit(td);
491 #endif
492         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
493         sched_throw(td);
494         panic("I'm a teapot!");
495         /* NOTREACHED */
496 }
497
498 /*
499  * Do any thread specific cleanups that may be needed in wait()
500  * called with Giant, proc and schedlock not held.
501  */
502 void
503 thread_wait(struct proc *p)
504 {
505         struct thread *td;
506
507         mtx_assert(&Giant, MA_NOTOWNED);
508         KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()"));
509         td = FIRST_THREAD_IN_PROC(p);
510         /* Lock the last thread so we spin until it exits cpu_throw(). */
511         thread_lock(td);
512         thread_unlock(td);
513         /* Wait for any remaining threads to exit cpu_throw(). */
514         while (p->p_exitthreads)
515                 sched_relinquish(curthread);
516         lock_profile_thread_exit(td);
517         cpuset_rel(td->td_cpuset);
518         td->td_cpuset = NULL;
519         cpu_thread_clean(td);
520         crfree(td->td_ucred);
521         thread_reap();  /* check for zombie threads etc. */
522 }
523
524 /*
525  * Link a thread to a process.
526  * set up anything that needs to be initialized for it to
527  * be used by the process.
528  */
529 void
530 thread_link(struct thread *td, struct proc *p)
531 {
532
533         /*
534          * XXX This can't be enabled because it's called for proc0 before
535          * its lock has been created.
536          * PROC_LOCK_ASSERT(p, MA_OWNED);
537          */
538         td->td_state    = TDS_INACTIVE;
539         td->td_proc     = p;
540         td->td_flags    = TDF_INMEM;
541
542         LIST_INIT(&td->td_contested);
543         LIST_INIT(&td->td_lprof[0]);
544         LIST_INIT(&td->td_lprof[1]);
545         sigqueue_init(&td->td_sigqueue, p);
546         callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
547         TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
548         p->p_numthreads++;
549 }
550
551 /*
552  * Convert a process with one thread to an unthreaded process.
553  */
554 void
555 thread_unthread(struct thread *td)
556 {
557         struct proc *p = td->td_proc;
558
559         KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads"));
560         p->p_flag &= ~P_HADTHREADS;
561 }
562
563 /*
564  * Called from:
565  *  thread_exit()
566  */
567 void
568 thread_unlink(struct thread *td)
569 {
570         struct proc *p = td->td_proc;
571
572         PROC_LOCK_ASSERT(p, MA_OWNED);
573         TAILQ_REMOVE(&p->p_threads, td, td_plist);
574         p->p_numthreads--;
575         /* could clear a few other things here */
576         /* Must  NOT clear links to proc! */
577 }
578
579 static int
580 calc_remaining(struct proc *p, int mode)
581 {
582         int remaining;
583
584         PROC_LOCK_ASSERT(p, MA_OWNED);
585         PROC_SLOCK_ASSERT(p, MA_OWNED);
586         if (mode == SINGLE_EXIT)
587                 remaining = p->p_numthreads;
588         else if (mode == SINGLE_BOUNDARY)
589                 remaining = p->p_numthreads - p->p_boundary_count;
590         else if (mode == SINGLE_NO_EXIT)
591                 remaining = p->p_numthreads - p->p_suspcount;
592         else
593                 panic("calc_remaining: wrong mode %d", mode);
594         return (remaining);
595 }
596
597 /*
598  * Enforce single-threading.
599  *
600  * Returns 1 if the caller must abort (another thread is waiting to
601  * exit the process or similar). Process is locked!
602  * Returns 0 when you are successfully the only thread running.
603  * A process has successfully single threaded in the suspend mode when
604  * There are no threads in user mode. Threads in the kernel must be
605  * allowed to continue until they get to the user boundary. They may even
606  * copy out their return values and data before suspending. They may however be
607  * accelerated in reaching the user boundary as we will wake up
608  * any sleeping threads that are interruptable. (PCATCH).
609  */
610 int
611 thread_single(int mode)
612 {
613         struct thread *td;
614         struct thread *td2;
615         struct proc *p;
616         int remaining, wakeup_swapper;
617
618         td = curthread;
619         p = td->td_proc;
620         mtx_assert(&Giant, MA_NOTOWNED);
621         PROC_LOCK_ASSERT(p, MA_OWNED);
622         KASSERT((td != NULL), ("curthread is NULL"));
623
624         if ((p->p_flag & P_HADTHREADS) == 0)
625                 return (0);
626
627         /* Is someone already single threading? */
628         if (p->p_singlethread != NULL && p->p_singlethread != td)
629                 return (1);
630
631         if (mode == SINGLE_EXIT) {
632                 p->p_flag |= P_SINGLE_EXIT;
633                 p->p_flag &= ~P_SINGLE_BOUNDARY;
634         } else {
635                 p->p_flag &= ~P_SINGLE_EXIT;
636                 if (mode == SINGLE_BOUNDARY)
637                         p->p_flag |= P_SINGLE_BOUNDARY;
638                 else
639                         p->p_flag &= ~P_SINGLE_BOUNDARY;
640         }
641         p->p_flag |= P_STOPPED_SINGLE;
642         PROC_SLOCK(p);
643         p->p_singlethread = td;
644         remaining = calc_remaining(p, mode);
645         while (remaining != 1) {
646                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
647                         goto stopme;
648                 wakeup_swapper = 0;
649                 FOREACH_THREAD_IN_PROC(p, td2) {
650                         if (td2 == td)
651                                 continue;
652                         thread_lock(td2);
653                         td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
654                         if (TD_IS_INHIBITED(td2)) {
655                                 switch (mode) {
656                                 case SINGLE_EXIT:
657                                         if (TD_IS_SUSPENDED(td2))
658                                                 wakeup_swapper |=
659                                                     thread_unsuspend_one(td2);
660                                         if (TD_ON_SLEEPQ(td2) &&
661                                             (td2->td_flags & TDF_SINTR))
662                                                 wakeup_swapper |=
663                                                     sleepq_abort(td2, EINTR);
664                                         break;
665                                 case SINGLE_BOUNDARY:
666                                         if (TD_IS_SUSPENDED(td2) &&
667                                             !(td2->td_flags & TDF_BOUNDARY))
668                                                 wakeup_swapper |=
669                                                     thread_unsuspend_one(td2);
670                                         if (TD_ON_SLEEPQ(td2) &&
671                                             (td2->td_flags & TDF_SINTR))
672                                                 wakeup_swapper |=
673                                                     sleepq_abort(td2, ERESTART);
674                                         break;
675                                 case SINGLE_NO_EXIT:
676                                         if (TD_IS_SUSPENDED(td2) &&
677                                             !(td2->td_flags & TDF_BOUNDARY))
678                                                 wakeup_swapper |=
679                                                     thread_unsuspend_one(td2);
680                                         if (TD_ON_SLEEPQ(td2) &&
681                                             (td2->td_flags & TDF_SINTR))
682                                                 wakeup_swapper |=
683                                                     sleepq_abort(td2, ERESTART);
684                                         break;
685                                 default:
686                                         break;
687                                 }
688                         }
689 #ifdef SMP
690                         else if (TD_IS_RUNNING(td2) && td != td2) {
691                                 forward_signal(td2);
692                         }
693 #endif
694                         thread_unlock(td2);
695                 }
696                 if (wakeup_swapper)
697                         kick_proc0();
698                 remaining = calc_remaining(p, mode);
699
700                 /*
701                  * Maybe we suspended some threads.. was it enough?
702                  */
703                 if (remaining == 1)
704                         break;
705
706 stopme:
707                 /*
708                  * Wake us up when everyone else has suspended.
709                  * In the mean time we suspend as well.
710                  */
711                 thread_suspend_switch(td);
712                 remaining = calc_remaining(p, mode);
713         }
714         if (mode == SINGLE_EXIT) {
715                 /*
716                  * We have gotten rid of all the other threads and we
717                  * are about to either exit or exec. In either case,
718                  * we try our utmost  to revert to being a non-threaded
719                  * process.
720                  */
721                 p->p_singlethread = NULL;
722                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT);
723                 thread_unthread(td);
724         }
725         PROC_SUNLOCK(p);
726         return (0);
727 }
728
729 /*
730  * Called in from locations that can safely check to see
731  * whether we have to suspend or at least throttle for a
732  * single-thread event (e.g. fork).
733  *
734  * Such locations include userret().
735  * If the "return_instead" argument is non zero, the thread must be able to
736  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
737  *
738  * The 'return_instead' argument tells the function if it may do a
739  * thread_exit() or suspend, or whether the caller must abort and back
740  * out instead.
741  *
742  * If the thread that set the single_threading request has set the
743  * P_SINGLE_EXIT bit in the process flags then this call will never return
744  * if 'return_instead' is false, but will exit.
745  *
746  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
747  *---------------+--------------------+---------------------
748  *       0       | returns 0          |   returns 0 or 1
749  *               | when ST ends       |   immediatly
750  *---------------+--------------------+---------------------
751  *       1       | thread exits       |   returns 1
752  *               |                    |  immediatly
753  * 0 = thread_exit() or suspension ok,
754  * other = return error instead of stopping the thread.
755  *
756  * While a full suspension is under effect, even a single threading
757  * thread would be suspended if it made this call (but it shouldn't).
758  * This call should only be made from places where
759  * thread_exit() would be safe as that may be the outcome unless
760  * return_instead is set.
761  */
762 int
763 thread_suspend_check(int return_instead)
764 {
765         struct thread *td;
766         struct proc *p;
767         int wakeup_swapper;
768
769         td = curthread;
770         p = td->td_proc;
771         mtx_assert(&Giant, MA_NOTOWNED);
772         PROC_LOCK_ASSERT(p, MA_OWNED);
773         while (P_SHOULDSTOP(p) ||
774               ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND))) {
775                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
776                         KASSERT(p->p_singlethread != NULL,
777                             ("singlethread not set"));
778                         /*
779                          * The only suspension in action is a
780                          * single-threading. Single threader need not stop.
781                          * XXX Should be safe to access unlocked
782                          * as it can only be set to be true by us.
783                          */
784                         if (p->p_singlethread == td)
785                                 return (0);     /* Exempt from stopping. */
786                 }
787                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
788                         return (EINTR);
789
790                 /* Should we goto user boundary if we didn't come from there? */
791                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
792                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
793                         return (ERESTART);
794
795                 /*
796                  * If the process is waiting for us to exit,
797                  * this thread should just suicide.
798                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
799                  */
800                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
801                         PROC_UNLOCK(p);
802                         tidhash_remove(td);
803                         PROC_LOCK(p);
804                         tdsigcleanup(td);
805                         PROC_SLOCK(p);
806                         thread_stopped(p);
807                         thread_exit();
808                 }
809
810                 PROC_SLOCK(p);
811                 thread_stopped(p);
812                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
813                         if (p->p_numthreads == p->p_suspcount + 1) {
814                                 thread_lock(p->p_singlethread);
815                                 wakeup_swapper =
816                                     thread_unsuspend_one(p->p_singlethread);
817                                 thread_unlock(p->p_singlethread);
818                                 if (wakeup_swapper)
819                                         kick_proc0();
820                         }
821                 }
822                 PROC_UNLOCK(p);
823                 thread_lock(td);
824                 /*
825                  * When a thread suspends, it just
826                  * gets taken off all queues.
827                  */
828                 thread_suspend_one(td);
829                 if (return_instead == 0) {
830                         p->p_boundary_count++;
831                         td->td_flags |= TDF_BOUNDARY;
832                 }
833                 PROC_SUNLOCK(p);
834                 mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
835                 if (return_instead == 0)
836                         td->td_flags &= ~TDF_BOUNDARY;
837                 thread_unlock(td);
838                 PROC_LOCK(p);
839                 if (return_instead == 0) {
840                         PROC_SLOCK(p);
841                         p->p_boundary_count--;
842                         PROC_SUNLOCK(p);
843                 }
844         }
845         return (0);
846 }
847
848 void
849 thread_suspend_switch(struct thread *td)
850 {
851         struct proc *p;
852
853         p = td->td_proc;
854         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
855         PROC_LOCK_ASSERT(p, MA_OWNED);
856         PROC_SLOCK_ASSERT(p, MA_OWNED);
857         /*
858          * We implement thread_suspend_one in stages here to avoid
859          * dropping the proc lock while the thread lock is owned.
860          */
861         thread_stopped(p);
862         p->p_suspcount++;
863         PROC_UNLOCK(p);
864         thread_lock(td);
865         td->td_flags &= ~TDF_NEEDSUSPCHK;
866         TD_SET_SUSPENDED(td);
867         sched_sleep(td, 0);
868         PROC_SUNLOCK(p);
869         DROP_GIANT();
870         mi_switch(SW_VOL | SWT_SUSPEND, NULL);
871         thread_unlock(td);
872         PICKUP_GIANT();
873         PROC_LOCK(p);
874         PROC_SLOCK(p);
875 }
876
877 void
878 thread_suspend_one(struct thread *td)
879 {
880         struct proc *p = td->td_proc;
881
882         PROC_SLOCK_ASSERT(p, MA_OWNED);
883         THREAD_LOCK_ASSERT(td, MA_OWNED);
884         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
885         p->p_suspcount++;
886         td->td_flags &= ~TDF_NEEDSUSPCHK;
887         TD_SET_SUSPENDED(td);
888         sched_sleep(td, 0);
889 }
890
891 int
892 thread_unsuspend_one(struct thread *td)
893 {
894         struct proc *p = td->td_proc;
895
896         PROC_SLOCK_ASSERT(p, MA_OWNED);
897         THREAD_LOCK_ASSERT(td, MA_OWNED);
898         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
899         TD_CLR_SUSPENDED(td);
900         p->p_suspcount--;
901         return (setrunnable(td));
902 }
903
904 /*
905  * Allow all threads blocked by single threading to continue running.
906  */
907 void
908 thread_unsuspend(struct proc *p)
909 {
910         struct thread *td;
911         int wakeup_swapper;
912
913         PROC_LOCK_ASSERT(p, MA_OWNED);
914         PROC_SLOCK_ASSERT(p, MA_OWNED);
915         wakeup_swapper = 0;
916         if (!P_SHOULDSTOP(p)) {
917                 FOREACH_THREAD_IN_PROC(p, td) {
918                         thread_lock(td);
919                         if (TD_IS_SUSPENDED(td)) {
920                                 wakeup_swapper |= thread_unsuspend_one(td);
921                         }
922                         thread_unlock(td);
923                 }
924         } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
925             (p->p_numthreads == p->p_suspcount)) {
926                 /*
927                  * Stopping everything also did the job for the single
928                  * threading request. Now we've downgraded to single-threaded,
929                  * let it continue.
930                  */
931                 thread_lock(p->p_singlethread);
932                 wakeup_swapper = thread_unsuspend_one(p->p_singlethread);
933                 thread_unlock(p->p_singlethread);
934         }
935         if (wakeup_swapper)
936                 kick_proc0();
937 }
938
939 /*
940  * End the single threading mode..
941  */
942 void
943 thread_single_end(void)
944 {
945         struct thread *td;
946         struct proc *p;
947         int wakeup_swapper;
948
949         td = curthread;
950         p = td->td_proc;
951         PROC_LOCK_ASSERT(p, MA_OWNED);
952         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY);
953         PROC_SLOCK(p);
954         p->p_singlethread = NULL;
955         wakeup_swapper = 0;
956         /*
957          * If there are other threads they may now run,
958          * unless of course there is a blanket 'stop order'
959          * on the process. The single threader must be allowed
960          * to continue however as this is a bad place to stop.
961          */
962         if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
963                 FOREACH_THREAD_IN_PROC(p, td) {
964                         thread_lock(td);
965                         if (TD_IS_SUSPENDED(td)) {
966                                 wakeup_swapper |= thread_unsuspend_one(td);
967                         }
968                         thread_unlock(td);
969                 }
970         }
971         PROC_SUNLOCK(p);
972         if (wakeup_swapper)
973                 kick_proc0();
974 }
975
976 struct thread *
977 thread_find(struct proc *p, lwpid_t tid)
978 {
979         struct thread *td;
980
981         PROC_LOCK_ASSERT(p, MA_OWNED);
982         FOREACH_THREAD_IN_PROC(p, td) {
983                 if (td->td_tid == tid)
984                         break;
985         }
986         return (td);
987 }
988
989 /* Locate a thread by number; return with proc lock held. */
990 struct thread *
991 tdfind(lwpid_t tid, pid_t pid)
992 {
993 #define RUN_THRESH      16
994         struct thread *td;
995         int run = 0;
996
997         rw_rlock(&tidhash_lock);
998         LIST_FOREACH(td, TIDHASH(tid), td_hash) {
999                 if (td->td_tid == tid) {
1000                         if (pid != -1 && td->td_proc->p_pid != pid) {
1001                                 td = NULL;
1002                                 break;
1003                         }
1004                         PROC_LOCK(td->td_proc);
1005                         if (td->td_proc->p_state == PRS_NEW) {
1006                                 PROC_UNLOCK(td->td_proc);
1007                                 td = NULL;
1008                                 break;
1009                         }
1010                         if (run > RUN_THRESH) {
1011                                 if (rw_try_upgrade(&tidhash_lock)) {
1012                                         LIST_REMOVE(td, td_hash);
1013                                         LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1014                                                 td, td_hash);
1015                                         rw_wunlock(&tidhash_lock);
1016                                         return (td);
1017                                 }
1018                         }
1019                         break;
1020                 }
1021                 run++;
1022         }
1023         rw_runlock(&tidhash_lock);
1024         return (td);
1025 }
1026
1027 void
1028 tidhash_add(struct thread *td)
1029 {
1030         rw_wlock(&tidhash_lock);
1031         LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1032         rw_wunlock(&tidhash_lock);
1033 }
1034
1035 void
1036 tidhash_remove(struct thread *td)
1037 {
1038         rw_wlock(&tidhash_lock);
1039         LIST_REMOVE(td, td_hash);
1040         rw_wunlock(&tidhash_lock);
1041 }