]> CyberLeo.Net >> Repos - FreeBSD/stable/8.git/blob - sys/kern/kern_thread.c
MFC r362623:
[FreeBSD/stable/8.git] / sys / kern / kern_thread.c
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28
29 #include "opt_witness.h"
30 #include "opt_kdtrace.h"
31 #include "opt_hwpmc_hooks.h"
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/kernel.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/proc.h>
42 #include <sys/resourcevar.h>
43 #include <sys/sdt.h>
44 #include <sys/smp.h>
45 #include <sys/sched.h>
46 #include <sys/sleepqueue.h>
47 #include <sys/selinfo.h>
48 #include <sys/turnstile.h>
49 #include <sys/ktr.h>
50 #include <sys/umtx.h>
51 #include <sys/cpuset.h>
52 #ifdef  HWPMC_HOOKS
53 #include <sys/pmckern.h>
54 #endif
55
56 #include <security/audit/audit.h>
57
58 #include <vm/vm.h>
59 #include <vm/vm_extern.h>
60 #include <vm/uma.h>
61 #include <sys/eventhandler.h>
62
63 SDT_PROVIDER_DECLARE(proc);
64 SDT_PROBE_DEFINE(proc, , , lwp_exit, lwp-exit);
65
66
67 /*
68  * thread related storage.
69  */
70 static uma_zone_t thread_zone;
71
72 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
73 static struct mtx zombie_lock;
74 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
75
76 static void thread_zombie(struct thread *);
77
78 struct mtx tid_lock;
79 static struct unrhdr *tid_unrhdr;
80
81 /*
82  * Prepare a thread for use.
83  */
84 static int
85 thread_ctor(void *mem, int size, void *arg, int flags)
86 {
87         struct thread   *td;
88
89         td = (struct thread *)mem;
90         td->td_state = TDS_INACTIVE;
91         td->td_oncpu = NOCPU;
92
93         td->td_tid = alloc_unr(tid_unrhdr);
94         td->td_syscalls = 0;
95
96         /*
97          * Note that td_critnest begins life as 1 because the thread is not
98          * running and is thereby implicitly waiting to be on the receiving
99          * end of a context switch.
100          */
101         td->td_critnest = 1;
102         EVENTHANDLER_INVOKE(thread_ctor, td);
103 #ifdef AUDIT
104         audit_thread_alloc(td);
105 #endif
106         umtx_thread_alloc(td);
107         return (0);
108 }
109
110 /*
111  * Reclaim a thread after use.
112  */
113 static void
114 thread_dtor(void *mem, int size, void *arg)
115 {
116         struct thread *td;
117
118         td = (struct thread *)mem;
119
120 #ifdef INVARIANTS
121         /* Verify that this thread is in a safe state to free. */
122         switch (td->td_state) {
123         case TDS_INHIBITED:
124         case TDS_RUNNING:
125         case TDS_CAN_RUN:
126         case TDS_RUNQ:
127                 /*
128                  * We must never unlink a thread that is in one of
129                  * these states, because it is currently active.
130                  */
131                 panic("bad state for thread unlinking");
132                 /* NOTREACHED */
133         case TDS_INACTIVE:
134                 break;
135         default:
136                 panic("bad thread state");
137                 /* NOTREACHED */
138         }
139 #endif
140 #ifdef AUDIT
141         audit_thread_free(td);
142 #endif
143         /* Free all OSD associated to this thread. */
144         osd_thread_exit(td);
145
146         EVENTHANDLER_INVOKE(thread_dtor, td);
147         free_unr(tid_unrhdr, td->td_tid);
148 }
149
150 /*
151  * Initialize type-stable parts of a thread (when newly created).
152  */
153 static int
154 thread_init(void *mem, int size, int flags)
155 {
156         struct thread *td;
157
158         td = (struct thread *)mem;
159
160         td->td_sleepqueue = sleepq_alloc();
161         td->td_turnstile = turnstile_alloc();
162         td->td_vp_reserv = 0;
163         EVENTHANDLER_INVOKE(thread_init, td);
164         td->td_sched = (struct td_sched *)&td[1];
165         umtx_thread_init(td);
166         td->td_kstack = 0;
167         return (0);
168 }
169
170 /*
171  * Tear down type-stable parts of a thread (just before being discarded).
172  */
173 static void
174 thread_fini(void *mem, int size)
175 {
176         struct thread *td;
177
178         td = (struct thread *)mem;
179         EVENTHANDLER_INVOKE(thread_fini, td);
180         turnstile_free(td->td_turnstile);
181         sleepq_free(td->td_sleepqueue);
182         umtx_thread_fini(td);
183         seltdfini(td);
184 }
185
186 /*
187  * For a newly created process,
188  * link up all the structures and its initial threads etc.
189  * called from:
190  * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
191  * proc_dtor() (should go away)
192  * proc_init()
193  */
194 void
195 proc_linkup0(struct proc *p, struct thread *td)
196 {
197         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
198         proc_linkup(p, td);
199 }
200
201 void
202 proc_linkup(struct proc *p, struct thread *td)
203 {
204
205         sigqueue_init(&p->p_sigqueue, p);
206         p->p_ksi = ksiginfo_alloc(1);
207         if (p->p_ksi != NULL) {
208                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
209                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
210         }
211         LIST_INIT(&p->p_mqnotifier);
212         p->p_numthreads = 0;
213         thread_link(td, p);
214 }
215
216 /*
217  * Initialize global thread allocation resources.
218  */
219 void
220 threadinit(void)
221 {
222
223         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
224         /* leave one number for thread0 */
225         tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
226
227         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
228             thread_ctor, thread_dtor, thread_init, thread_fini,
229             16 - 1, 0);
230 }
231
232 /*
233  * Place an unused thread on the zombie list.
234  * Use the slpq as that must be unused by now.
235  */
236 void
237 thread_zombie(struct thread *td)
238 {
239         mtx_lock_spin(&zombie_lock);
240         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
241         mtx_unlock_spin(&zombie_lock);
242 }
243
244 /*
245  * Release a thread that has exited after cpu_throw().
246  */
247 void
248 thread_stash(struct thread *td)
249 {
250         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
251         thread_zombie(td);
252 }
253
254 /*
255  * Reap zombie resources.
256  */
257 void
258 thread_reap(void)
259 {
260         struct thread *td_first, *td_next;
261
262         /*
263          * Don't even bother to lock if none at this instant,
264          * we really don't care about the next instant..
265          */
266         if (!TAILQ_EMPTY(&zombie_threads)) {
267                 mtx_lock_spin(&zombie_lock);
268                 td_first = TAILQ_FIRST(&zombie_threads);
269                 if (td_first)
270                         TAILQ_INIT(&zombie_threads);
271                 mtx_unlock_spin(&zombie_lock);
272                 while (td_first) {
273                         td_next = TAILQ_NEXT(td_first, td_slpq);
274                         if (td_first->td_ucred)
275                                 crfree(td_first->td_ucred);
276                         thread_free(td_first);
277                         td_first = td_next;
278                 }
279         }
280 }
281
282 /*
283  * Allocate a thread.
284  */
285 struct thread *
286 thread_alloc(int pages)
287 {
288         struct thread *td;
289
290         thread_reap(); /* check if any zombies to get */
291
292         td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
293         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
294         if (!vm_thread_new(td, pages)) {
295                 uma_zfree(thread_zone, td);
296                 return (NULL);
297         }
298         cpu_thread_alloc(td);
299         return (td);
300 }
301
302 int
303 thread_alloc_stack(struct thread *td, int pages)
304 {
305
306         KASSERT(td->td_kstack == 0,
307             ("thread_alloc_stack called on a thread with kstack"));
308         if (!vm_thread_new(td, pages))
309                 return (0);
310         cpu_thread_alloc(td);
311         return (1);
312 }
313
314 /*
315  * Deallocate a thread.
316  */
317 void
318 thread_free(struct thread *td)
319 {
320
321         lock_profile_thread_exit(td);
322         if (td->td_cpuset)
323                 cpuset_rel(td->td_cpuset);
324         td->td_cpuset = NULL;
325         cpu_thread_free(td);
326         if (td->td_kstack != 0)
327                 vm_thread_dispose(td);
328         uma_zfree(thread_zone, td);
329 }
330
331 /*
332  * Discard the current thread and exit from its context.
333  * Always called with scheduler locked.
334  *
335  * Because we can't free a thread while we're operating under its context,
336  * push the current thread into our CPU's deadthread holder. This means
337  * we needn't worry about someone else grabbing our context before we
338  * do a cpu_throw().
339  */
340 void
341 thread_exit(void)
342 {
343         uint64_t runtime, new_switchtime;
344         struct thread *td;
345         struct thread *td2;
346         struct proc *p;
347         int wakeup_swapper;
348
349         td = curthread;
350         p = td->td_proc;
351
352         PROC_SLOCK_ASSERT(p, MA_OWNED);
353         mtx_assert(&Giant, MA_NOTOWNED);
354
355         PROC_LOCK_ASSERT(p, MA_OWNED);
356         KASSERT(p != NULL, ("thread exiting without a process"));
357         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
358             (long)p->p_pid, td->td_name);
359         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
360
361 #ifdef AUDIT
362         AUDIT_SYSCALL_EXIT(0, td);
363 #endif
364         umtx_thread_exit(td);
365         /*
366          * drop FPU & debug register state storage, or any other
367          * architecture specific resources that
368          * would not be on a new untouched process.
369          */
370         cpu_thread_exit(td);    /* XXXSMP */
371
372         /*
373          * The last thread is left attached to the process
374          * So that the whole bundle gets recycled. Skip
375          * all this stuff if we never had threads.
376          * EXIT clears all sign of other threads when
377          * it goes to single threading, so the last thread always
378          * takes the short path.
379          */
380         if (p->p_flag & P_HADTHREADS) {
381                 if (p->p_numthreads > 1) {
382                         thread_unlink(td);
383                         td2 = FIRST_THREAD_IN_PROC(p);
384                         sched_exit_thread(td2, td);
385
386                         /*
387                          * The test below is NOT true if we are the
388                          * sole exiting thread. P_STOPPED_SINGLE is unset
389                          * in exit1() after it is the only survivor.
390                          */
391                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
392                                 if (p->p_numthreads == p->p_suspcount) {
393                                         thread_lock(p->p_singlethread);
394                                         wakeup_swapper = thread_unsuspend_one(
395                                                 p->p_singlethread);
396                                         thread_unlock(p->p_singlethread);
397                                         if (wakeup_swapper)
398                                                 kick_proc0();
399                                 }
400                         }
401
402                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
403                         PCPU_SET(deadthread, td);
404                 } else {
405                         /*
406                          * The last thread is exiting.. but not through exit()
407                          */
408                         panic ("thread_exit: Last thread exiting on its own");
409                 }
410         } 
411 #ifdef  HWPMC_HOOKS
412         /*
413          * If this thread is part of a process that is being tracked by hwpmc(4),
414          * inform the module of the thread's impending exit.
415          */
416         if (PMC_PROC_IS_USING_PMCS(td->td_proc))
417                 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
418 #endif
419         PROC_UNLOCK(p);
420
421         /* Do the same timestamp bookkeeping that mi_switch() would do. */
422         new_switchtime = cpu_ticks();
423         runtime = new_switchtime - PCPU_GET(switchtime);
424         td->td_runtime += runtime;
425         td->td_incruntime += runtime;
426         PCPU_SET(switchtime, new_switchtime);
427         PCPU_SET(switchticks, ticks);
428         PCPU_INC(cnt.v_swtch);
429
430         /* Save our resource usage in our process. */
431         td->td_ru.ru_nvcsw++;
432         ruxagg(p, td);
433         rucollect(&p->p_ru, &td->td_ru);
434
435         thread_lock(td);
436         PROC_SUNLOCK(p);
437         td->td_state = TDS_INACTIVE;
438 #ifdef WITNESS
439         witness_thread_exit(td);
440 #endif
441         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
442         sched_throw(td);
443         panic("I'm a teapot!");
444         /* NOTREACHED */
445 }
446
447 /*
448  * Do any thread specific cleanups that may be needed in wait()
449  * called with Giant, proc and schedlock not held.
450  */
451 void
452 thread_wait(struct proc *p)
453 {
454         struct thread *td;
455
456         mtx_assert(&Giant, MA_NOTOWNED);
457         KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()"));
458         td = FIRST_THREAD_IN_PROC(p);
459         /* Lock the last thread so we spin until it exits cpu_throw(). */
460         thread_lock(td);
461         thread_unlock(td);
462         /* Wait for any remaining threads to exit cpu_throw(). */
463         while (p->p_exitthreads)
464                 sched_relinquish(curthread);
465         lock_profile_thread_exit(td);
466         cpuset_rel(td->td_cpuset);
467         td->td_cpuset = NULL;
468         cpu_thread_clean(td);
469         crfree(td->td_ucred);
470         thread_reap();  /* check for zombie threads etc. */
471 }
472
473 /*
474  * Link a thread to a process.
475  * set up anything that needs to be initialized for it to
476  * be used by the process.
477  */
478 void
479 thread_link(struct thread *td, struct proc *p)
480 {
481
482         /*
483          * XXX This can't be enabled because it's called for proc0 before
484          * its lock has been created.
485          * PROC_LOCK_ASSERT(p, MA_OWNED);
486          */
487         td->td_state    = TDS_INACTIVE;
488         td->td_proc     = p;
489         td->td_flags    = TDF_INMEM;
490
491         LIST_INIT(&td->td_contested);
492         LIST_INIT(&td->td_lprof[0]);
493         LIST_INIT(&td->td_lprof[1]);
494         sigqueue_init(&td->td_sigqueue, p);
495         callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
496         TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
497         p->p_numthreads++;
498 }
499
500 /*
501  * Convert a process with one thread to an unthreaded process.
502  */
503 void
504 thread_unthread(struct thread *td)
505 {
506         struct proc *p = td->td_proc;
507
508         KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads"));
509         p->p_flag &= ~P_HADTHREADS;
510 }
511
512 /*
513  * Called from:
514  *  thread_exit()
515  */
516 void
517 thread_unlink(struct thread *td)
518 {
519         struct proc *p = td->td_proc;
520
521         PROC_LOCK_ASSERT(p, MA_OWNED);
522         TAILQ_REMOVE(&p->p_threads, td, td_plist);
523         p->p_numthreads--;
524         /* could clear a few other things here */
525         /* Must  NOT clear links to proc! */
526 }
527
528 static int
529 calc_remaining(struct proc *p, int mode)
530 {
531         int remaining;
532
533         PROC_LOCK_ASSERT(p, MA_OWNED);
534         PROC_SLOCK_ASSERT(p, MA_OWNED);
535         if (mode == SINGLE_EXIT)
536                 remaining = p->p_numthreads;
537         else if (mode == SINGLE_BOUNDARY)
538                 remaining = p->p_numthreads - p->p_boundary_count;
539         else if (mode == SINGLE_NO_EXIT)
540                 remaining = p->p_numthreads - p->p_suspcount;
541         else
542                 panic("calc_remaining: wrong mode %d", mode);
543         return (remaining);
544 }
545
546 /*
547  * Enforce single-threading.
548  *
549  * Returns 1 if the caller must abort (another thread is waiting to
550  * exit the process or similar). Process is locked!
551  * Returns 0 when you are successfully the only thread running.
552  * A process has successfully single threaded in the suspend mode when
553  * There are no threads in user mode. Threads in the kernel must be
554  * allowed to continue until they get to the user boundary. They may even
555  * copy out their return values and data before suspending. They may however be
556  * accelerated in reaching the user boundary as we will wake up
557  * any sleeping threads that are interruptable. (PCATCH).
558  */
559 int
560 thread_single(int mode)
561 {
562         struct thread *td;
563         struct thread *td2;
564         struct proc *p;
565         int remaining, wakeup_swapper;
566
567         td = curthread;
568         p = td->td_proc;
569         mtx_assert(&Giant, MA_NOTOWNED);
570         PROC_LOCK_ASSERT(p, MA_OWNED);
571         KASSERT((td != NULL), ("curthread is NULL"));
572
573         if ((p->p_flag & P_HADTHREADS) == 0)
574                 return (0);
575
576         /* Is someone already single threading? */
577         if (p->p_singlethread != NULL && p->p_singlethread != td)
578                 return (1);
579
580         if (mode == SINGLE_EXIT) {
581                 p->p_flag |= P_SINGLE_EXIT;
582                 p->p_flag &= ~P_SINGLE_BOUNDARY;
583         } else {
584                 p->p_flag &= ~P_SINGLE_EXIT;
585                 if (mode == SINGLE_BOUNDARY)
586                         p->p_flag |= P_SINGLE_BOUNDARY;
587                 else
588                         p->p_flag &= ~P_SINGLE_BOUNDARY;
589         }
590         p->p_flag |= P_STOPPED_SINGLE;
591         PROC_SLOCK(p);
592         p->p_singlethread = td;
593         remaining = calc_remaining(p, mode);
594         while (remaining != 1) {
595                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
596                         goto stopme;
597                 wakeup_swapper = 0;
598                 FOREACH_THREAD_IN_PROC(p, td2) {
599                         if (td2 == td)
600                                 continue;
601                         thread_lock(td2);
602                         td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
603                         if (TD_IS_INHIBITED(td2)) {
604                                 switch (mode) {
605                                 case SINGLE_EXIT:
606                                         if (TD_IS_SUSPENDED(td2))
607                                                 wakeup_swapper |=
608                                                     thread_unsuspend_one(td2);
609                                         if (TD_ON_SLEEPQ(td2) &&
610                                             (td2->td_flags & TDF_SINTR))
611                                                 wakeup_swapper |=
612                                                     sleepq_abort(td2, EINTR);
613                                         break;
614                                 case SINGLE_BOUNDARY:
615                                         if (TD_IS_SUSPENDED(td2) &&
616                                             !(td2->td_flags & TDF_BOUNDARY))
617                                                 wakeup_swapper |=
618                                                     thread_unsuspend_one(td2);
619                                         if (TD_ON_SLEEPQ(td2) &&
620                                             (td2->td_flags & TDF_SINTR))
621                                                 wakeup_swapper |=
622                                                     sleepq_abort(td2, ERESTART);
623                                         break;
624                                 case SINGLE_NO_EXIT:
625                                         if (TD_IS_SUSPENDED(td2) &&
626                                             !(td2->td_flags & TDF_BOUNDARY))
627                                                 wakeup_swapper |=
628                                                     thread_unsuspend_one(td2);
629                                         if (TD_ON_SLEEPQ(td2) &&
630                                             (td2->td_flags & TDF_SINTR))
631                                                 wakeup_swapper |=
632                                                     sleepq_abort(td2, ERESTART);
633                                         break;
634                                 default:
635                                         break;
636                                 }
637                         }
638 #ifdef SMP
639                         else if (TD_IS_RUNNING(td2) && td != td2) {
640                                 forward_signal(td2);
641                         }
642 #endif
643                         thread_unlock(td2);
644                 }
645                 if (wakeup_swapper)
646                         kick_proc0();
647                 remaining = calc_remaining(p, mode);
648
649                 /*
650                  * Maybe we suspended some threads.. was it enough?
651                  */
652                 if (remaining == 1)
653                         break;
654
655 stopme:
656                 /*
657                  * Wake us up when everyone else has suspended.
658                  * In the mean time we suspend as well.
659                  */
660                 thread_suspend_switch(td);
661                 remaining = calc_remaining(p, mode);
662         }
663         if (mode == SINGLE_EXIT) {
664                 /*
665                  * We have gotten rid of all the other threads and we
666                  * are about to either exit or exec. In either case,
667                  * we try our utmost  to revert to being a non-threaded
668                  * process.
669                  */
670                 p->p_singlethread = NULL;
671                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT);
672                 thread_unthread(td);
673         }
674         PROC_SUNLOCK(p);
675         return (0);
676 }
677
678 /*
679  * Called in from locations that can safely check to see
680  * whether we have to suspend or at least throttle for a
681  * single-thread event (e.g. fork).
682  *
683  * Such locations include userret().
684  * If the "return_instead" argument is non zero, the thread must be able to
685  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
686  *
687  * The 'return_instead' argument tells the function if it may do a
688  * thread_exit() or suspend, or whether the caller must abort and back
689  * out instead.
690  *
691  * If the thread that set the single_threading request has set the
692  * P_SINGLE_EXIT bit in the process flags then this call will never return
693  * if 'return_instead' is false, but will exit.
694  *
695  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
696  *---------------+--------------------+---------------------
697  *       0       | returns 0          |   returns 0 or 1
698  *               | when ST ends       |   immediatly
699  *---------------+--------------------+---------------------
700  *       1       | thread exits       |   returns 1
701  *               |                    |  immediatly
702  * 0 = thread_exit() or suspension ok,
703  * other = return error instead of stopping the thread.
704  *
705  * While a full suspension is under effect, even a single threading
706  * thread would be suspended if it made this call (but it shouldn't).
707  * This call should only be made from places where
708  * thread_exit() would be safe as that may be the outcome unless
709  * return_instead is set.
710  */
711 int
712 thread_suspend_check(int return_instead)
713 {
714         struct thread *td;
715         struct proc *p;
716         int wakeup_swapper;
717
718         td = curthread;
719         p = td->td_proc;
720         mtx_assert(&Giant, MA_NOTOWNED);
721         PROC_LOCK_ASSERT(p, MA_OWNED);
722         while (P_SHOULDSTOP(p) ||
723               ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND))) {
724                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
725                         KASSERT(p->p_singlethread != NULL,
726                             ("singlethread not set"));
727                         /*
728                          * The only suspension in action is a
729                          * single-threading. Single threader need not stop.
730                          * XXX Should be safe to access unlocked
731                          * as it can only be set to be true by us.
732                          */
733                         if (p->p_singlethread == td)
734                                 return (0);     /* Exempt from stopping. */
735                 }
736                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
737                         return (EINTR);
738
739                 /* Should we goto user boundary if we didn't come from there? */
740                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
741                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
742                         return (ERESTART);
743
744                 /*
745                  * Ignore suspend requests for stop signals if they
746                  * are deferred.
747                  */
748                 if (P_SHOULDSTOP(p) == P_STOPPED_SIG &&
749                     td->td_flags & TDF_SBDRY) {
750                         KASSERT(return_instead,
751                             ("TDF_SBDRY set for unsafe thread_suspend_check"));
752                         return (0);
753                 }
754
755                 /* If thread will exit, flush its pending signals */
756                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
757                         sigqueue_flush(&td->td_sigqueue);
758
759                 PROC_SLOCK(p);
760                 thread_stopped(p);
761                 /*
762                  * If the process is waiting for us to exit,
763                  * this thread should just suicide.
764                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
765                  */
766                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
767                         thread_exit();
768                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
769                         if (p->p_numthreads == p->p_suspcount + 1) {
770                                 thread_lock(p->p_singlethread);
771                                 wakeup_swapper =
772                                     thread_unsuspend_one(p->p_singlethread);
773                                 thread_unlock(p->p_singlethread);
774                                 if (wakeup_swapper)
775                                         kick_proc0();
776                         }
777                 }
778                 PROC_UNLOCK(p);
779                 thread_lock(td);
780                 /*
781                  * When a thread suspends, it just
782                  * gets taken off all queues.
783                  */
784                 thread_suspend_one(td);
785                 if (return_instead == 0) {
786                         p->p_boundary_count++;
787                         td->td_flags |= TDF_BOUNDARY;
788                 }
789                 PROC_SUNLOCK(p);
790                 mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
791                 if (return_instead == 0)
792                         td->td_flags &= ~TDF_BOUNDARY;
793                 thread_unlock(td);
794                 PROC_LOCK(p);
795                 if (return_instead == 0) {
796                         PROC_SLOCK(p);
797                         p->p_boundary_count--;
798                         PROC_SUNLOCK(p);
799                 }
800         }
801         return (0);
802 }
803
804 void
805 thread_suspend_switch(struct thread *td)
806 {
807         struct proc *p;
808
809         p = td->td_proc;
810         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
811         PROC_LOCK_ASSERT(p, MA_OWNED);
812         PROC_SLOCK_ASSERT(p, MA_OWNED);
813         /*
814          * We implement thread_suspend_one in stages here to avoid
815          * dropping the proc lock while the thread lock is owned.
816          */
817         thread_stopped(p);
818         p->p_suspcount++;
819         PROC_UNLOCK(p);
820         thread_lock(td);
821         td->td_flags &= ~TDF_NEEDSUSPCHK;
822         TD_SET_SUSPENDED(td);
823         sched_sleep(td, 0);
824         PROC_SUNLOCK(p);
825         DROP_GIANT();
826         mi_switch(SW_VOL | SWT_SUSPEND, NULL);
827         thread_unlock(td);
828         PICKUP_GIANT();
829         PROC_LOCK(p);
830         PROC_SLOCK(p);
831 }
832
833 void
834 thread_suspend_one(struct thread *td)
835 {
836         struct proc *p = td->td_proc;
837
838         PROC_SLOCK_ASSERT(p, MA_OWNED);
839         THREAD_LOCK_ASSERT(td, MA_OWNED);
840         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
841         p->p_suspcount++;
842         td->td_flags &= ~TDF_NEEDSUSPCHK;
843         TD_SET_SUSPENDED(td);
844         sched_sleep(td, 0);
845 }
846
847 int
848 thread_unsuspend_one(struct thread *td)
849 {
850         struct proc *p = td->td_proc;
851
852         PROC_SLOCK_ASSERT(p, MA_OWNED);
853         THREAD_LOCK_ASSERT(td, MA_OWNED);
854         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
855         TD_CLR_SUSPENDED(td);
856         p->p_suspcount--;
857         return (setrunnable(td));
858 }
859
860 /*
861  * Allow all threads blocked by single threading to continue running.
862  */
863 void
864 thread_unsuspend(struct proc *p)
865 {
866         struct thread *td;
867         int wakeup_swapper;
868
869         PROC_LOCK_ASSERT(p, MA_OWNED);
870         PROC_SLOCK_ASSERT(p, MA_OWNED);
871         wakeup_swapper = 0;
872         if (!P_SHOULDSTOP(p)) {
873                 FOREACH_THREAD_IN_PROC(p, td) {
874                         thread_lock(td);
875                         if (TD_IS_SUSPENDED(td)) {
876                                 wakeup_swapper |= thread_unsuspend_one(td);
877                         }
878                         thread_unlock(td);
879                 }
880         } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
881             (p->p_numthreads == p->p_suspcount)) {
882                 /*
883                  * Stopping everything also did the job for the single
884                  * threading request. Now we've downgraded to single-threaded,
885                  * let it continue.
886                  */
887                 thread_lock(p->p_singlethread);
888                 wakeup_swapper = thread_unsuspend_one(p->p_singlethread);
889                 thread_unlock(p->p_singlethread);
890         }
891         if (wakeup_swapper)
892                 kick_proc0();
893 }
894
895 /*
896  * End the single threading mode..
897  */
898 void
899 thread_single_end(void)
900 {
901         struct thread *td;
902         struct proc *p;
903         int wakeup_swapper;
904
905         td = curthread;
906         p = td->td_proc;
907         PROC_LOCK_ASSERT(p, MA_OWNED);
908         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY);
909         PROC_SLOCK(p);
910         p->p_singlethread = NULL;
911         wakeup_swapper = 0;
912         /*
913          * If there are other threads they may now run,
914          * unless of course there is a blanket 'stop order'
915          * on the process. The single threader must be allowed
916          * to continue however as this is a bad place to stop.
917          */
918         if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
919                 FOREACH_THREAD_IN_PROC(p, td) {
920                         thread_lock(td);
921                         if (TD_IS_SUSPENDED(td)) {
922                                 wakeup_swapper |= thread_unsuspend_one(td);
923                         }
924                         thread_unlock(td);
925                 }
926         }
927         PROC_SUNLOCK(p);
928         if (wakeup_swapper)
929                 kick_proc0();
930 }
931
932 struct thread *
933 thread_find(struct proc *p, lwpid_t tid)
934 {
935         struct thread *td;
936
937         PROC_LOCK_ASSERT(p, MA_OWNED);
938         FOREACH_THREAD_IN_PROC(p, td) {
939                 if (td->td_tid == tid)
940                         break;
941         }
942         return (td);
943 }