]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - sys/kern/kern_thread.c
MFC r241556:
[FreeBSD/stable/9.git] / sys / kern / kern_thread.c
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28
29 #include "opt_witness.h"
30 #include "opt_kdtrace.h"
31 #include "opt_hwpmc_hooks.h"
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/kernel.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/proc.h>
42 #include <sys/rangelock.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sdt.h>
45 #include <sys/smp.h>
46 #include <sys/sched.h>
47 #include <sys/sleepqueue.h>
48 #include <sys/selinfo.h>
49 #include <sys/turnstile.h>
50 #include <sys/ktr.h>
51 #include <sys/rwlock.h>
52 #include <sys/umtx.h>
53 #include <sys/cpuset.h>
54 #ifdef  HWPMC_HOOKS
55 #include <sys/pmckern.h>
56 #endif
57
58 #include <security/audit/audit.h>
59
60 #include <vm/vm.h>
61 #include <vm/vm_extern.h>
62 #include <vm/uma.h>
63 #include <sys/eventhandler.h>
64
65 SDT_PROVIDER_DECLARE(proc);
66 SDT_PROBE_DEFINE(proc, , , lwp_exit, lwp-exit);
67
68
69 /*
70  * thread related storage.
71  */
72 static uma_zone_t thread_zone;
73
74 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
75 static struct mtx zombie_lock;
76 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
77
78 static void thread_zombie(struct thread *);
79
80 #define TID_BUFFER_SIZE 1024
81
82 struct mtx tid_lock;
83 static struct unrhdr *tid_unrhdr;
84 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
85 static int tid_head, tid_tail;
86 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
87
88 struct  tidhashhead *tidhashtbl;
89 u_long  tidhash;
90 struct  rwlock tidhash_lock;
91
92 static lwpid_t
93 tid_alloc(void)
94 {
95         lwpid_t tid;
96
97         tid = alloc_unr(tid_unrhdr);
98         if (tid != -1)
99                 return (tid);
100         mtx_lock(&tid_lock);
101         if (tid_head == tid_tail) {
102                 mtx_unlock(&tid_lock);
103                 return (-1);
104         }
105         tid = tid_buffer[tid_head];
106         tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
107         mtx_unlock(&tid_lock);
108         return (tid);
109 }
110
111 static void
112 tid_free(lwpid_t tid)
113 {
114         lwpid_t tmp_tid = -1;
115
116         mtx_lock(&tid_lock);
117         if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
118                 tmp_tid = tid_buffer[tid_head];
119                 tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
120         }
121         tid_buffer[tid_tail] = tid;
122         tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
123         mtx_unlock(&tid_lock);
124         if (tmp_tid != -1)
125                 free_unr(tid_unrhdr, tmp_tid);
126 }
127
128 /*
129  * Prepare a thread for use.
130  */
131 static int
132 thread_ctor(void *mem, int size, void *arg, int flags)
133 {
134         struct thread   *td;
135
136         td = (struct thread *)mem;
137         td->td_state = TDS_INACTIVE;
138         td->td_oncpu = NOCPU;
139
140         td->td_tid = tid_alloc();
141
142         /*
143          * Note that td_critnest begins life as 1 because the thread is not
144          * running and is thereby implicitly waiting to be on the receiving
145          * end of a context switch.
146          */
147         td->td_critnest = 1;
148         td->td_lend_user_pri = PRI_MAX;
149         EVENTHANDLER_INVOKE(thread_ctor, td);
150 #ifdef AUDIT
151         audit_thread_alloc(td);
152 #endif
153         umtx_thread_alloc(td);
154         return (0);
155 }
156
157 /*
158  * Reclaim a thread after use.
159  */
160 static void
161 thread_dtor(void *mem, int size, void *arg)
162 {
163         struct thread *td;
164
165         td = (struct thread *)mem;
166
167 #ifdef INVARIANTS
168         /* Verify that this thread is in a safe state to free. */
169         switch (td->td_state) {
170         case TDS_INHIBITED:
171         case TDS_RUNNING:
172         case TDS_CAN_RUN:
173         case TDS_RUNQ:
174                 /*
175                  * We must never unlink a thread that is in one of
176                  * these states, because it is currently active.
177                  */
178                 panic("bad state for thread unlinking");
179                 /* NOTREACHED */
180         case TDS_INACTIVE:
181                 break;
182         default:
183                 panic("bad thread state");
184                 /* NOTREACHED */
185         }
186 #endif
187 #ifdef AUDIT
188         audit_thread_free(td);
189 #endif
190         /* Free all OSD associated to this thread. */
191         osd_thread_exit(td);
192
193         EVENTHANDLER_INVOKE(thread_dtor, td);
194         tid_free(td->td_tid);
195 }
196
197 /*
198  * Initialize type-stable parts of a thread (when newly created).
199  */
200 static int
201 thread_init(void *mem, int size, int flags)
202 {
203         struct thread *td;
204
205         td = (struct thread *)mem;
206
207         td->td_sleepqueue = sleepq_alloc();
208         td->td_turnstile = turnstile_alloc();
209         td->td_rlqe = NULL;
210         td->td_vp_reserv = 0;
211         EVENTHANDLER_INVOKE(thread_init, td);
212         td->td_sched = (struct td_sched *)&td[1];
213         umtx_thread_init(td);
214         td->td_kstack = 0;
215         return (0);
216 }
217
218 /*
219  * Tear down type-stable parts of a thread (just before being discarded).
220  */
221 static void
222 thread_fini(void *mem, int size)
223 {
224         struct thread *td;
225
226         td = (struct thread *)mem;
227         EVENTHANDLER_INVOKE(thread_fini, td);
228         rlqentry_free(td->td_rlqe);
229         turnstile_free(td->td_turnstile);
230         sleepq_free(td->td_sleepqueue);
231         umtx_thread_fini(td);
232         seltdfini(td);
233 }
234
235 /*
236  * For a newly created process,
237  * link up all the structures and its initial threads etc.
238  * called from:
239  * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
240  * proc_dtor() (should go away)
241  * proc_init()
242  */
243 void
244 proc_linkup0(struct proc *p, struct thread *td)
245 {
246         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
247         proc_linkup(p, td);
248 }
249
250 void
251 proc_linkup(struct proc *p, struct thread *td)
252 {
253
254         sigqueue_init(&p->p_sigqueue, p);
255         p->p_ksi = ksiginfo_alloc(1);
256         if (p->p_ksi != NULL) {
257                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
258                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
259         }
260         LIST_INIT(&p->p_mqnotifier);
261         p->p_numthreads = 0;
262         thread_link(td, p);
263 }
264
265 /*
266  * Initialize global thread allocation resources.
267  */
268 void
269 threadinit(void)
270 {
271
272         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
273
274         /*
275          * pid_max cannot be greater than PID_MAX.
276          * leave one number for thread0.
277          */
278         tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
279
280         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
281             thread_ctor, thread_dtor, thread_init, thread_fini,
282             16 - 1, 0);
283         tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
284         rw_init(&tidhash_lock, "tidhash");
285 }
286
287 /*
288  * Place an unused thread on the zombie list.
289  * Use the slpq as that must be unused by now.
290  */
291 void
292 thread_zombie(struct thread *td)
293 {
294         mtx_lock_spin(&zombie_lock);
295         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
296         mtx_unlock_spin(&zombie_lock);
297 }
298
299 /*
300  * Release a thread that has exited after cpu_throw().
301  */
302 void
303 thread_stash(struct thread *td)
304 {
305         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
306         thread_zombie(td);
307 }
308
309 /*
310  * Reap zombie resources.
311  */
312 void
313 thread_reap(void)
314 {
315         struct thread *td_first, *td_next;
316
317         /*
318          * Don't even bother to lock if none at this instant,
319          * we really don't care about the next instant..
320          */
321         if (!TAILQ_EMPTY(&zombie_threads)) {
322                 mtx_lock_spin(&zombie_lock);
323                 td_first = TAILQ_FIRST(&zombie_threads);
324                 if (td_first)
325                         TAILQ_INIT(&zombie_threads);
326                 mtx_unlock_spin(&zombie_lock);
327                 while (td_first) {
328                         td_next = TAILQ_NEXT(td_first, td_slpq);
329                         if (td_first->td_ucred)
330                                 crfree(td_first->td_ucred);
331                         thread_free(td_first);
332                         td_first = td_next;
333                 }
334         }
335 }
336
337 /*
338  * Allocate a thread.
339  */
340 struct thread *
341 thread_alloc(int pages)
342 {
343         struct thread *td;
344
345         thread_reap(); /* check if any zombies to get */
346
347         td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
348         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
349         if (!vm_thread_new(td, pages)) {
350                 uma_zfree(thread_zone, td);
351                 return (NULL);
352         }
353         cpu_thread_alloc(td);
354         return (td);
355 }
356
357 int
358 thread_alloc_stack(struct thread *td, int pages)
359 {
360
361         KASSERT(td->td_kstack == 0,
362             ("thread_alloc_stack called on a thread with kstack"));
363         if (!vm_thread_new(td, pages))
364                 return (0);
365         cpu_thread_alloc(td);
366         return (1);
367 }
368
369 /*
370  * Deallocate a thread.
371  */
372 void
373 thread_free(struct thread *td)
374 {
375
376         lock_profile_thread_exit(td);
377         if (td->td_cpuset)
378                 cpuset_rel(td->td_cpuset);
379         td->td_cpuset = NULL;
380         cpu_thread_free(td);
381         if (td->td_kstack != 0)
382                 vm_thread_dispose(td);
383         uma_zfree(thread_zone, td);
384 }
385
386 /*
387  * Discard the current thread and exit from its context.
388  * Always called with scheduler locked.
389  *
390  * Because we can't free a thread while we're operating under its context,
391  * push the current thread into our CPU's deadthread holder. This means
392  * we needn't worry about someone else grabbing our context before we
393  * do a cpu_throw().
394  */
395 void
396 thread_exit(void)
397 {
398         uint64_t runtime, new_switchtime;
399         struct thread *td;
400         struct thread *td2;
401         struct proc *p;
402         int wakeup_swapper;
403
404         td = curthread;
405         p = td->td_proc;
406
407         PROC_SLOCK_ASSERT(p, MA_OWNED);
408         mtx_assert(&Giant, MA_NOTOWNED);
409
410         PROC_LOCK_ASSERT(p, MA_OWNED);
411         KASSERT(p != NULL, ("thread exiting without a process"));
412         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
413             (long)p->p_pid, td->td_name);
414         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
415
416 #ifdef AUDIT
417         AUDIT_SYSCALL_EXIT(0, td);
418 #endif
419         umtx_thread_exit(td);
420         /*
421          * drop FPU & debug register state storage, or any other
422          * architecture specific resources that
423          * would not be on a new untouched process.
424          */
425         cpu_thread_exit(td);    /* XXXSMP */
426
427         /*
428          * The last thread is left attached to the process
429          * So that the whole bundle gets recycled. Skip
430          * all this stuff if we never had threads.
431          * EXIT clears all sign of other threads when
432          * it goes to single threading, so the last thread always
433          * takes the short path.
434          */
435         if (p->p_flag & P_HADTHREADS) {
436                 if (p->p_numthreads > 1) {
437                         thread_unlink(td);
438                         td2 = FIRST_THREAD_IN_PROC(p);
439                         sched_exit_thread(td2, td);
440
441                         /*
442                          * The test below is NOT true if we are the
443                          * sole exiting thread. P_STOPPED_SINGLE is unset
444                          * in exit1() after it is the only survivor.
445                          */
446                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
447                                 if (p->p_numthreads == p->p_suspcount) {
448                                         thread_lock(p->p_singlethread);
449                                         wakeup_swapper = thread_unsuspend_one(
450                                                 p->p_singlethread);
451                                         thread_unlock(p->p_singlethread);
452                                         if (wakeup_swapper)
453                                                 kick_proc0();
454                                 }
455                         }
456
457                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
458                         PCPU_SET(deadthread, td);
459                 } else {
460                         /*
461                          * The last thread is exiting.. but not through exit()
462                          */
463                         panic ("thread_exit: Last thread exiting on its own");
464                 }
465         } 
466 #ifdef  HWPMC_HOOKS
467         /*
468          * If this thread is part of a process that is being tracked by hwpmc(4),
469          * inform the module of the thread's impending exit.
470          */
471         if (PMC_PROC_IS_USING_PMCS(td->td_proc))
472                 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
473 #endif
474         PROC_UNLOCK(p);
475
476         /* Do the same timestamp bookkeeping that mi_switch() would do. */
477         new_switchtime = cpu_ticks();
478         runtime = new_switchtime - PCPU_GET(switchtime);
479         td->td_runtime += runtime;
480         td->td_incruntime += runtime;
481         PCPU_SET(switchtime, new_switchtime);
482         PCPU_SET(switchticks, ticks);
483         PCPU_INC(cnt.v_swtch);
484
485         /* Save our resource usage in our process. */
486         td->td_ru.ru_nvcsw++;
487         ruxagg(p, td);
488         rucollect(&p->p_ru, &td->td_ru);
489
490         thread_lock(td);
491         PROC_SUNLOCK(p);
492         td->td_state = TDS_INACTIVE;
493 #ifdef WITNESS
494         witness_thread_exit(td);
495 #endif
496         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
497         sched_throw(td);
498         panic("I'm a teapot!");
499         /* NOTREACHED */
500 }
501
502 /*
503  * Do any thread specific cleanups that may be needed in wait()
504  * called with Giant, proc and schedlock not held.
505  */
506 void
507 thread_wait(struct proc *p)
508 {
509         struct thread *td;
510
511         mtx_assert(&Giant, MA_NOTOWNED);
512         KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()"));
513         td = FIRST_THREAD_IN_PROC(p);
514         /* Lock the last thread so we spin until it exits cpu_throw(). */
515         thread_lock(td);
516         thread_unlock(td);
517         /* Wait for any remaining threads to exit cpu_throw(). */
518         while (p->p_exitthreads)
519                 sched_relinquish(curthread);
520         lock_profile_thread_exit(td);
521         cpuset_rel(td->td_cpuset);
522         td->td_cpuset = NULL;
523         cpu_thread_clean(td);
524         crfree(td->td_ucred);
525         thread_reap();  /* check for zombie threads etc. */
526 }
527
528 /*
529  * Link a thread to a process.
530  * set up anything that needs to be initialized for it to
531  * be used by the process.
532  */
533 void
534 thread_link(struct thread *td, struct proc *p)
535 {
536
537         /*
538          * XXX This can't be enabled because it's called for proc0 before
539          * its lock has been created.
540          * PROC_LOCK_ASSERT(p, MA_OWNED);
541          */
542         td->td_state    = TDS_INACTIVE;
543         td->td_proc     = p;
544         td->td_flags    = TDF_INMEM;
545
546         LIST_INIT(&td->td_contested);
547         LIST_INIT(&td->td_lprof[0]);
548         LIST_INIT(&td->td_lprof[1]);
549         sigqueue_init(&td->td_sigqueue, p);
550         callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
551         TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
552         p->p_numthreads++;
553 }
554
555 /*
556  * Convert a process with one thread to an unthreaded process.
557  */
558 void
559 thread_unthread(struct thread *td)
560 {
561         struct proc *p = td->td_proc;
562
563         KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads"));
564         p->p_flag &= ~P_HADTHREADS;
565 }
566
567 /*
568  * Called from:
569  *  thread_exit()
570  */
571 void
572 thread_unlink(struct thread *td)
573 {
574         struct proc *p = td->td_proc;
575
576         PROC_LOCK_ASSERT(p, MA_OWNED);
577         TAILQ_REMOVE(&p->p_threads, td, td_plist);
578         p->p_numthreads--;
579         /* could clear a few other things here */
580         /* Must  NOT clear links to proc! */
581 }
582
583 static int
584 calc_remaining(struct proc *p, int mode)
585 {
586         int remaining;
587
588         PROC_LOCK_ASSERT(p, MA_OWNED);
589         PROC_SLOCK_ASSERT(p, MA_OWNED);
590         if (mode == SINGLE_EXIT)
591                 remaining = p->p_numthreads;
592         else if (mode == SINGLE_BOUNDARY)
593                 remaining = p->p_numthreads - p->p_boundary_count;
594         else if (mode == SINGLE_NO_EXIT)
595                 remaining = p->p_numthreads - p->p_suspcount;
596         else
597                 panic("calc_remaining: wrong mode %d", mode);
598         return (remaining);
599 }
600
601 /*
602  * Enforce single-threading.
603  *
604  * Returns 1 if the caller must abort (another thread is waiting to
605  * exit the process or similar). Process is locked!
606  * Returns 0 when you are successfully the only thread running.
607  * A process has successfully single threaded in the suspend mode when
608  * There are no threads in user mode. Threads in the kernel must be
609  * allowed to continue until they get to the user boundary. They may even
610  * copy out their return values and data before suspending. They may however be
611  * accelerated in reaching the user boundary as we will wake up
612  * any sleeping threads that are interruptable. (PCATCH).
613  */
614 int
615 thread_single(int mode)
616 {
617         struct thread *td;
618         struct thread *td2;
619         struct proc *p;
620         int remaining, wakeup_swapper;
621
622         td = curthread;
623         p = td->td_proc;
624         mtx_assert(&Giant, MA_NOTOWNED);
625         PROC_LOCK_ASSERT(p, MA_OWNED);
626         KASSERT((td != NULL), ("curthread is NULL"));
627
628         if ((p->p_flag & P_HADTHREADS) == 0)
629                 return (0);
630
631         /* Is someone already single threading? */
632         if (p->p_singlethread != NULL && p->p_singlethread != td)
633                 return (1);
634
635         if (mode == SINGLE_EXIT) {
636                 p->p_flag |= P_SINGLE_EXIT;
637                 p->p_flag &= ~P_SINGLE_BOUNDARY;
638         } else {
639                 p->p_flag &= ~P_SINGLE_EXIT;
640                 if (mode == SINGLE_BOUNDARY)
641                         p->p_flag |= P_SINGLE_BOUNDARY;
642                 else
643                         p->p_flag &= ~P_SINGLE_BOUNDARY;
644         }
645         p->p_flag |= P_STOPPED_SINGLE;
646         PROC_SLOCK(p);
647         p->p_singlethread = td;
648         remaining = calc_remaining(p, mode);
649         while (remaining != 1) {
650                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
651                         goto stopme;
652                 wakeup_swapper = 0;
653                 FOREACH_THREAD_IN_PROC(p, td2) {
654                         if (td2 == td)
655                                 continue;
656                         thread_lock(td2);
657                         td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
658                         if (TD_IS_INHIBITED(td2)) {
659                                 switch (mode) {
660                                 case SINGLE_EXIT:
661                                         if (TD_IS_SUSPENDED(td2))
662                                                 wakeup_swapper |=
663                                                     thread_unsuspend_one(td2);
664                                         if (TD_ON_SLEEPQ(td2) &&
665                                             (td2->td_flags & TDF_SINTR))
666                                                 wakeup_swapper |=
667                                                     sleepq_abort(td2, EINTR);
668                                         break;
669                                 case SINGLE_BOUNDARY:
670                                         if (TD_IS_SUSPENDED(td2) &&
671                                             !(td2->td_flags & TDF_BOUNDARY))
672                                                 wakeup_swapper |=
673                                                     thread_unsuspend_one(td2);
674                                         if (TD_ON_SLEEPQ(td2) &&
675                                             (td2->td_flags & TDF_SINTR))
676                                                 wakeup_swapper |=
677                                                     sleepq_abort(td2, ERESTART);
678                                         break;
679                                 case SINGLE_NO_EXIT:
680                                         if (TD_IS_SUSPENDED(td2) &&
681                                             !(td2->td_flags & TDF_BOUNDARY))
682                                                 wakeup_swapper |=
683                                                     thread_unsuspend_one(td2);
684                                         if (TD_ON_SLEEPQ(td2) &&
685                                             (td2->td_flags & TDF_SINTR))
686                                                 wakeup_swapper |=
687                                                     sleepq_abort(td2, ERESTART);
688                                         break;
689                                 default:
690                                         break;
691                                 }
692                         }
693 #ifdef SMP
694                         else if (TD_IS_RUNNING(td2) && td != td2) {
695                                 forward_signal(td2);
696                         }
697 #endif
698                         thread_unlock(td2);
699                 }
700                 if (wakeup_swapper)
701                         kick_proc0();
702                 remaining = calc_remaining(p, mode);
703
704                 /*
705                  * Maybe we suspended some threads.. was it enough?
706                  */
707                 if (remaining == 1)
708                         break;
709
710 stopme:
711                 /*
712                  * Wake us up when everyone else has suspended.
713                  * In the mean time we suspend as well.
714                  */
715                 thread_suspend_switch(td);
716                 remaining = calc_remaining(p, mode);
717         }
718         if (mode == SINGLE_EXIT) {
719                 /*
720                  * We have gotten rid of all the other threads and we
721                  * are about to either exit or exec. In either case,
722                  * we try our utmost  to revert to being a non-threaded
723                  * process.
724                  */
725                 p->p_singlethread = NULL;
726                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT);
727                 thread_unthread(td);
728         }
729         PROC_SUNLOCK(p);
730         return (0);
731 }
732
733 /*
734  * Called in from locations that can safely check to see
735  * whether we have to suspend or at least throttle for a
736  * single-thread event (e.g. fork).
737  *
738  * Such locations include userret().
739  * If the "return_instead" argument is non zero, the thread must be able to
740  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
741  *
742  * The 'return_instead' argument tells the function if it may do a
743  * thread_exit() or suspend, or whether the caller must abort and back
744  * out instead.
745  *
746  * If the thread that set the single_threading request has set the
747  * P_SINGLE_EXIT bit in the process flags then this call will never return
748  * if 'return_instead' is false, but will exit.
749  *
750  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
751  *---------------+--------------------+---------------------
752  *       0       | returns 0          |   returns 0 or 1
753  *               | when ST ends       |   immediatly
754  *---------------+--------------------+---------------------
755  *       1       | thread exits       |   returns 1
756  *               |                    |  immediatly
757  * 0 = thread_exit() or suspension ok,
758  * other = return error instead of stopping the thread.
759  *
760  * While a full suspension is under effect, even a single threading
761  * thread would be suspended if it made this call (but it shouldn't).
762  * This call should only be made from places where
763  * thread_exit() would be safe as that may be the outcome unless
764  * return_instead is set.
765  */
766 int
767 thread_suspend_check(int return_instead)
768 {
769         struct thread *td;
770         struct proc *p;
771         int wakeup_swapper;
772
773         td = curthread;
774         p = td->td_proc;
775         mtx_assert(&Giant, MA_NOTOWNED);
776         PROC_LOCK_ASSERT(p, MA_OWNED);
777         while (P_SHOULDSTOP(p) ||
778               ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND))) {
779                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
780                         KASSERT(p->p_singlethread != NULL,
781                             ("singlethread not set"));
782                         /*
783                          * The only suspension in action is a
784                          * single-threading. Single threader need not stop.
785                          * XXX Should be safe to access unlocked
786                          * as it can only be set to be true by us.
787                          */
788                         if (p->p_singlethread == td)
789                                 return (0);     /* Exempt from stopping. */
790                 }
791                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
792                         return (EINTR);
793
794                 /* Should we goto user boundary if we didn't come from there? */
795                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
796                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
797                         return (ERESTART);
798
799                 /*
800                  * If the process is waiting for us to exit,
801                  * this thread should just suicide.
802                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
803                  */
804                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
805                         PROC_UNLOCK(p);
806                         tidhash_remove(td);
807                         PROC_LOCK(p);
808                         tdsigcleanup(td);
809                         PROC_SLOCK(p);
810                         thread_stopped(p);
811                         thread_exit();
812                 }
813
814                 PROC_SLOCK(p);
815                 thread_stopped(p);
816                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
817                         if (p->p_numthreads == p->p_suspcount + 1) {
818                                 thread_lock(p->p_singlethread);
819                                 wakeup_swapper =
820                                     thread_unsuspend_one(p->p_singlethread);
821                                 thread_unlock(p->p_singlethread);
822                                 if (wakeup_swapper)
823                                         kick_proc0();
824                         }
825                 }
826                 PROC_UNLOCK(p);
827                 thread_lock(td);
828                 /*
829                  * When a thread suspends, it just
830                  * gets taken off all queues.
831                  */
832                 thread_suspend_one(td);
833                 if (return_instead == 0) {
834                         p->p_boundary_count++;
835                         td->td_flags |= TDF_BOUNDARY;
836                 }
837                 PROC_SUNLOCK(p);
838                 mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
839                 if (return_instead == 0)
840                         td->td_flags &= ~TDF_BOUNDARY;
841                 thread_unlock(td);
842                 PROC_LOCK(p);
843                 if (return_instead == 0) {
844                         PROC_SLOCK(p);
845                         p->p_boundary_count--;
846                         PROC_SUNLOCK(p);
847                 }
848         }
849         return (0);
850 }
851
852 void
853 thread_suspend_switch(struct thread *td)
854 {
855         struct proc *p;
856
857         p = td->td_proc;
858         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
859         PROC_LOCK_ASSERT(p, MA_OWNED);
860         PROC_SLOCK_ASSERT(p, MA_OWNED);
861         /*
862          * We implement thread_suspend_one in stages here to avoid
863          * dropping the proc lock while the thread lock is owned.
864          */
865         thread_stopped(p);
866         p->p_suspcount++;
867         PROC_UNLOCK(p);
868         thread_lock(td);
869         td->td_flags &= ~TDF_NEEDSUSPCHK;
870         TD_SET_SUSPENDED(td);
871         sched_sleep(td, 0);
872         PROC_SUNLOCK(p);
873         DROP_GIANT();
874         mi_switch(SW_VOL | SWT_SUSPEND, NULL);
875         thread_unlock(td);
876         PICKUP_GIANT();
877         PROC_LOCK(p);
878         PROC_SLOCK(p);
879 }
880
881 void
882 thread_suspend_one(struct thread *td)
883 {
884         struct proc *p = td->td_proc;
885
886         PROC_SLOCK_ASSERT(p, MA_OWNED);
887         THREAD_LOCK_ASSERT(td, MA_OWNED);
888         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
889         p->p_suspcount++;
890         td->td_flags &= ~TDF_NEEDSUSPCHK;
891         TD_SET_SUSPENDED(td);
892         sched_sleep(td, 0);
893 }
894
895 int
896 thread_unsuspend_one(struct thread *td)
897 {
898         struct proc *p = td->td_proc;
899
900         PROC_SLOCK_ASSERT(p, MA_OWNED);
901         THREAD_LOCK_ASSERT(td, MA_OWNED);
902         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
903         TD_CLR_SUSPENDED(td);
904         p->p_suspcount--;
905         return (setrunnable(td));
906 }
907
908 /*
909  * Allow all threads blocked by single threading to continue running.
910  */
911 void
912 thread_unsuspend(struct proc *p)
913 {
914         struct thread *td;
915         int wakeup_swapper;
916
917         PROC_LOCK_ASSERT(p, MA_OWNED);
918         PROC_SLOCK_ASSERT(p, MA_OWNED);
919         wakeup_swapper = 0;
920         if (!P_SHOULDSTOP(p)) {
921                 FOREACH_THREAD_IN_PROC(p, td) {
922                         thread_lock(td);
923                         if (TD_IS_SUSPENDED(td)) {
924                                 wakeup_swapper |= thread_unsuspend_one(td);
925                         }
926                         thread_unlock(td);
927                 }
928         } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
929             (p->p_numthreads == p->p_suspcount)) {
930                 /*
931                  * Stopping everything also did the job for the single
932                  * threading request. Now we've downgraded to single-threaded,
933                  * let it continue.
934                  */
935                 thread_lock(p->p_singlethread);
936                 wakeup_swapper = thread_unsuspend_one(p->p_singlethread);
937                 thread_unlock(p->p_singlethread);
938         }
939         if (wakeup_swapper)
940                 kick_proc0();
941 }
942
943 /*
944  * End the single threading mode..
945  */
946 void
947 thread_single_end(void)
948 {
949         struct thread *td;
950         struct proc *p;
951         int wakeup_swapper;
952
953         td = curthread;
954         p = td->td_proc;
955         PROC_LOCK_ASSERT(p, MA_OWNED);
956         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY);
957         PROC_SLOCK(p);
958         p->p_singlethread = NULL;
959         wakeup_swapper = 0;
960         /*
961          * If there are other threads they may now run,
962          * unless of course there is a blanket 'stop order'
963          * on the process. The single threader must be allowed
964          * to continue however as this is a bad place to stop.
965          */
966         if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
967                 FOREACH_THREAD_IN_PROC(p, td) {
968                         thread_lock(td);
969                         if (TD_IS_SUSPENDED(td)) {
970                                 wakeup_swapper |= thread_unsuspend_one(td);
971                         }
972                         thread_unlock(td);
973                 }
974         }
975         PROC_SUNLOCK(p);
976         if (wakeup_swapper)
977                 kick_proc0();
978 }
979
980 struct thread *
981 thread_find(struct proc *p, lwpid_t tid)
982 {
983         struct thread *td;
984
985         PROC_LOCK_ASSERT(p, MA_OWNED);
986         FOREACH_THREAD_IN_PROC(p, td) {
987                 if (td->td_tid == tid)
988                         break;
989         }
990         return (td);
991 }
992
993 /* Locate a thread by number; return with proc lock held. */
994 struct thread *
995 tdfind(lwpid_t tid, pid_t pid)
996 {
997 #define RUN_THRESH      16
998         struct thread *td;
999         int run = 0;
1000
1001         rw_rlock(&tidhash_lock);
1002         LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1003                 if (td->td_tid == tid) {
1004                         if (pid != -1 && td->td_proc->p_pid != pid) {
1005                                 td = NULL;
1006                                 break;
1007                         }
1008                         PROC_LOCK(td->td_proc);
1009                         if (td->td_proc->p_state == PRS_NEW) {
1010                                 PROC_UNLOCK(td->td_proc);
1011                                 td = NULL;
1012                                 break;
1013                         }
1014                         if (run > RUN_THRESH) {
1015                                 if (rw_try_upgrade(&tidhash_lock)) {
1016                                         LIST_REMOVE(td, td_hash);
1017                                         LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1018                                                 td, td_hash);
1019                                         rw_wunlock(&tidhash_lock);
1020                                         return (td);
1021                                 }
1022                         }
1023                         break;
1024                 }
1025                 run++;
1026         }
1027         rw_runlock(&tidhash_lock);
1028         return (td);
1029 }
1030
1031 void
1032 tidhash_add(struct thread *td)
1033 {
1034         rw_wlock(&tidhash_lock);
1035         LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1036         rw_wunlock(&tidhash_lock);
1037 }
1038
1039 void
1040 tidhash_remove(struct thread *td)
1041 {
1042         rw_wlock(&tidhash_lock);
1043         LIST_REMOVE(td, td_hash);
1044         rw_wunlock(&tidhash_lock);
1045 }