]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - sys/kern/kern_thread.c
MFC r240813:
[FreeBSD/stable/9.git] / sys / kern / kern_thread.c
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28
29 #include "opt_witness.h"
30 #include "opt_kdtrace.h"
31 #include "opt_hwpmc_hooks.h"
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/kernel.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/proc.h>
42 #include <sys/rangelock.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sdt.h>
45 #include <sys/smp.h>
46 #include <sys/sched.h>
47 #include <sys/sleepqueue.h>
48 #include <sys/selinfo.h>
49 #include <sys/turnstile.h>
50 #include <sys/ktr.h>
51 #include <sys/rwlock.h>
52 #include <sys/umtx.h>
53 #include <sys/cpuset.h>
54 #ifdef  HWPMC_HOOKS
55 #include <sys/pmckern.h>
56 #endif
57
58 #include <security/audit/audit.h>
59
60 #include <vm/vm.h>
61 #include <vm/vm_extern.h>
62 #include <vm/uma.h>
63 #include <sys/eventhandler.h>
64
65 SDT_PROVIDER_DECLARE(proc);
66 SDT_PROBE_DEFINE(proc, , , lwp_exit, lwp-exit);
67
68
69 /*
70  * thread related storage.
71  */
72 static uma_zone_t thread_zone;
73
74 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
75 static struct mtx zombie_lock;
76 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
77
78 static void thread_zombie(struct thread *);
79
80 #define TID_BUFFER_SIZE 1024
81
82 struct mtx tid_lock;
83 static struct unrhdr *tid_unrhdr;
84 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
85 static int tid_head, tid_tail;
86 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
87
88 struct  tidhashhead *tidhashtbl;
89 u_long  tidhash;
90 struct  rwlock tidhash_lock;
91
92 static lwpid_t
93 tid_alloc(void)
94 {
95         lwpid_t tid;
96
97         tid = alloc_unr(tid_unrhdr);
98         if (tid != -1)
99                 return (tid);
100         mtx_lock(&tid_lock);
101         if (tid_head == tid_tail) {
102                 mtx_unlock(&tid_lock);
103                 return (-1);
104         }
105         tid = tid_buffer[tid_head];
106         tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
107         mtx_unlock(&tid_lock);
108         return (tid);
109 }
110
111 static void
112 tid_free(lwpid_t tid)
113 {
114         lwpid_t tmp_tid = -1;
115
116         mtx_lock(&tid_lock);
117         if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
118                 tmp_tid = tid_buffer[tid_head];
119                 tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
120         }
121         tid_buffer[tid_tail] = tid;
122         tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
123         mtx_unlock(&tid_lock);
124         if (tmp_tid != -1)
125                 free_unr(tid_unrhdr, tmp_tid);
126 }
127
128 /*
129  * Prepare a thread for use.
130  */
131 static int
132 thread_ctor(void *mem, int size, void *arg, int flags)
133 {
134         struct thread   *td;
135
136         td = (struct thread *)mem;
137         td->td_state = TDS_INACTIVE;
138         td->td_oncpu = NOCPU;
139
140         td->td_tid = tid_alloc();
141
142         /*
143          * Note that td_critnest begins life as 1 because the thread is not
144          * running and is thereby implicitly waiting to be on the receiving
145          * end of a context switch.
146          */
147         td->td_critnest = 1;
148         td->td_lend_user_pri = PRI_MAX;
149         EVENTHANDLER_INVOKE(thread_ctor, td);
150 #ifdef AUDIT
151         audit_thread_alloc(td);
152 #endif
153         umtx_thread_alloc(td);
154         return (0);
155 }
156
157 /*
158  * Reclaim a thread after use.
159  */
160 static void
161 thread_dtor(void *mem, int size, void *arg)
162 {
163         struct thread *td;
164
165         td = (struct thread *)mem;
166
167 #ifdef INVARIANTS
168         /* Verify that this thread is in a safe state to free. */
169         switch (td->td_state) {
170         case TDS_INHIBITED:
171         case TDS_RUNNING:
172         case TDS_CAN_RUN:
173         case TDS_RUNQ:
174                 /*
175                  * We must never unlink a thread that is in one of
176                  * these states, because it is currently active.
177                  */
178                 panic("bad state for thread unlinking");
179                 /* NOTREACHED */
180         case TDS_INACTIVE:
181                 break;
182         default:
183                 panic("bad thread state");
184                 /* NOTREACHED */
185         }
186 #endif
187 #ifdef AUDIT
188         audit_thread_free(td);
189 #endif
190         /* Free all OSD associated to this thread. */
191         osd_thread_exit(td);
192
193         EVENTHANDLER_INVOKE(thread_dtor, td);
194         tid_free(td->td_tid);
195 }
196
197 /*
198  * Initialize type-stable parts of a thread (when newly created).
199  */
200 static int
201 thread_init(void *mem, int size, int flags)
202 {
203         struct thread *td;
204
205         td = (struct thread *)mem;
206
207         td->td_sleepqueue = sleepq_alloc();
208         td->td_turnstile = turnstile_alloc();
209         td->td_rlqe = NULL;
210         EVENTHANDLER_INVOKE(thread_init, td);
211         td->td_sched = (struct td_sched *)&td[1];
212         umtx_thread_init(td);
213         td->td_kstack = 0;
214         return (0);
215 }
216
217 /*
218  * Tear down type-stable parts of a thread (just before being discarded).
219  */
220 static void
221 thread_fini(void *mem, int size)
222 {
223         struct thread *td;
224
225         td = (struct thread *)mem;
226         EVENTHANDLER_INVOKE(thread_fini, td);
227         rlqentry_free(td->td_rlqe);
228         turnstile_free(td->td_turnstile);
229         sleepq_free(td->td_sleepqueue);
230         umtx_thread_fini(td);
231         seltdfini(td);
232 }
233
234 /*
235  * For a newly created process,
236  * link up all the structures and its initial threads etc.
237  * called from:
238  * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
239  * proc_dtor() (should go away)
240  * proc_init()
241  */
242 void
243 proc_linkup0(struct proc *p, struct thread *td)
244 {
245         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
246         proc_linkup(p, td);
247 }
248
249 void
250 proc_linkup(struct proc *p, struct thread *td)
251 {
252
253         sigqueue_init(&p->p_sigqueue, p);
254         p->p_ksi = ksiginfo_alloc(1);
255         if (p->p_ksi != NULL) {
256                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
257                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
258         }
259         LIST_INIT(&p->p_mqnotifier);
260         p->p_numthreads = 0;
261         thread_link(td, p);
262 }
263
264 /*
265  * Initialize global thread allocation resources.
266  */
267 void
268 threadinit(void)
269 {
270
271         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
272
273         /*
274          * pid_max cannot be greater than PID_MAX.
275          * leave one number for thread0.
276          */
277         tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
278
279         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
280             thread_ctor, thread_dtor, thread_init, thread_fini,
281             16 - 1, 0);
282         tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
283         rw_init(&tidhash_lock, "tidhash");
284 }
285
286 /*
287  * Place an unused thread on the zombie list.
288  * Use the slpq as that must be unused by now.
289  */
290 void
291 thread_zombie(struct thread *td)
292 {
293         mtx_lock_spin(&zombie_lock);
294         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
295         mtx_unlock_spin(&zombie_lock);
296 }
297
298 /*
299  * Release a thread that has exited after cpu_throw().
300  */
301 void
302 thread_stash(struct thread *td)
303 {
304         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
305         thread_zombie(td);
306 }
307
308 /*
309  * Reap zombie resources.
310  */
311 void
312 thread_reap(void)
313 {
314         struct thread *td_first, *td_next;
315
316         /*
317          * Don't even bother to lock if none at this instant,
318          * we really don't care about the next instant..
319          */
320         if (!TAILQ_EMPTY(&zombie_threads)) {
321                 mtx_lock_spin(&zombie_lock);
322                 td_first = TAILQ_FIRST(&zombie_threads);
323                 if (td_first)
324                         TAILQ_INIT(&zombie_threads);
325                 mtx_unlock_spin(&zombie_lock);
326                 while (td_first) {
327                         td_next = TAILQ_NEXT(td_first, td_slpq);
328                         if (td_first->td_ucred)
329                                 crfree(td_first->td_ucred);
330                         thread_free(td_first);
331                         td_first = td_next;
332                 }
333         }
334 }
335
336 /*
337  * Allocate a thread.
338  */
339 struct thread *
340 thread_alloc(int pages)
341 {
342         struct thread *td;
343
344         thread_reap(); /* check if any zombies to get */
345
346         td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
347         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
348         if (!vm_thread_new(td, pages)) {
349                 uma_zfree(thread_zone, td);
350                 return (NULL);
351         }
352         cpu_thread_alloc(td);
353         return (td);
354 }
355
356 int
357 thread_alloc_stack(struct thread *td, int pages)
358 {
359
360         KASSERT(td->td_kstack == 0,
361             ("thread_alloc_stack called on a thread with kstack"));
362         if (!vm_thread_new(td, pages))
363                 return (0);
364         cpu_thread_alloc(td);
365         return (1);
366 }
367
368 /*
369  * Deallocate a thread.
370  */
371 void
372 thread_free(struct thread *td)
373 {
374
375         lock_profile_thread_exit(td);
376         if (td->td_cpuset)
377                 cpuset_rel(td->td_cpuset);
378         td->td_cpuset = NULL;
379         cpu_thread_free(td);
380         if (td->td_kstack != 0)
381                 vm_thread_dispose(td);
382         uma_zfree(thread_zone, td);
383 }
384
385 /*
386  * Discard the current thread and exit from its context.
387  * Always called with scheduler locked.
388  *
389  * Because we can't free a thread while we're operating under its context,
390  * push the current thread into our CPU's deadthread holder. This means
391  * we needn't worry about someone else grabbing our context before we
392  * do a cpu_throw().
393  */
394 void
395 thread_exit(void)
396 {
397         uint64_t runtime, new_switchtime;
398         struct thread *td;
399         struct thread *td2;
400         struct proc *p;
401         int wakeup_swapper;
402
403         td = curthread;
404         p = td->td_proc;
405
406         PROC_SLOCK_ASSERT(p, MA_OWNED);
407         mtx_assert(&Giant, MA_NOTOWNED);
408
409         PROC_LOCK_ASSERT(p, MA_OWNED);
410         KASSERT(p != NULL, ("thread exiting without a process"));
411         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
412             (long)p->p_pid, td->td_name);
413         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
414
415 #ifdef AUDIT
416         AUDIT_SYSCALL_EXIT(0, td);
417 #endif
418         umtx_thread_exit(td);
419         /*
420          * drop FPU & debug register state storage, or any other
421          * architecture specific resources that
422          * would not be on a new untouched process.
423          */
424         cpu_thread_exit(td);    /* XXXSMP */
425
426         /*
427          * The last thread is left attached to the process
428          * So that the whole bundle gets recycled. Skip
429          * all this stuff if we never had threads.
430          * EXIT clears all sign of other threads when
431          * it goes to single threading, so the last thread always
432          * takes the short path.
433          */
434         if (p->p_flag & P_HADTHREADS) {
435                 if (p->p_numthreads > 1) {
436                         thread_unlink(td);
437                         td2 = FIRST_THREAD_IN_PROC(p);
438                         sched_exit_thread(td2, td);
439
440                         /*
441                          * The test below is NOT true if we are the
442                          * sole exiting thread. P_STOPPED_SINGLE is unset
443                          * in exit1() after it is the only survivor.
444                          */
445                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
446                                 if (p->p_numthreads == p->p_suspcount) {
447                                         thread_lock(p->p_singlethread);
448                                         wakeup_swapper = thread_unsuspend_one(
449                                                 p->p_singlethread);
450                                         thread_unlock(p->p_singlethread);
451                                         if (wakeup_swapper)
452                                                 kick_proc0();
453                                 }
454                         }
455
456                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
457                         PCPU_SET(deadthread, td);
458                 } else {
459                         /*
460                          * The last thread is exiting.. but not through exit()
461                          */
462                         panic ("thread_exit: Last thread exiting on its own");
463                 }
464         } 
465 #ifdef  HWPMC_HOOKS
466         /*
467          * If this thread is part of a process that is being tracked by hwpmc(4),
468          * inform the module of the thread's impending exit.
469          */
470         if (PMC_PROC_IS_USING_PMCS(td->td_proc))
471                 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
472 #endif
473         PROC_UNLOCK(p);
474
475         /* Do the same timestamp bookkeeping that mi_switch() would do. */
476         new_switchtime = cpu_ticks();
477         runtime = new_switchtime - PCPU_GET(switchtime);
478         td->td_runtime += runtime;
479         td->td_incruntime += runtime;
480         PCPU_SET(switchtime, new_switchtime);
481         PCPU_SET(switchticks, ticks);
482         PCPU_INC(cnt.v_swtch);
483
484         /* Save our resource usage in our process. */
485         td->td_ru.ru_nvcsw++;
486         ruxagg(p, td);
487         rucollect(&p->p_ru, &td->td_ru);
488
489         thread_lock(td);
490         PROC_SUNLOCK(p);
491         td->td_state = TDS_INACTIVE;
492 #ifdef WITNESS
493         witness_thread_exit(td);
494 #endif
495         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
496         sched_throw(td);
497         panic("I'm a teapot!");
498         /* NOTREACHED */
499 }
500
501 /*
502  * Do any thread specific cleanups that may be needed in wait()
503  * called with Giant, proc and schedlock not held.
504  */
505 void
506 thread_wait(struct proc *p)
507 {
508         struct thread *td;
509
510         mtx_assert(&Giant, MA_NOTOWNED);
511         KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()"));
512         td = FIRST_THREAD_IN_PROC(p);
513         /* Lock the last thread so we spin until it exits cpu_throw(). */
514         thread_lock(td);
515         thread_unlock(td);
516         /* Wait for any remaining threads to exit cpu_throw(). */
517         while (p->p_exitthreads)
518                 sched_relinquish(curthread);
519         lock_profile_thread_exit(td);
520         cpuset_rel(td->td_cpuset);
521         td->td_cpuset = NULL;
522         cpu_thread_clean(td);
523         crfree(td->td_ucred);
524         thread_reap();  /* check for zombie threads etc. */
525 }
526
527 /*
528  * Link a thread to a process.
529  * set up anything that needs to be initialized for it to
530  * be used by the process.
531  */
532 void
533 thread_link(struct thread *td, struct proc *p)
534 {
535
536         /*
537          * XXX This can't be enabled because it's called for proc0 before
538          * its lock has been created.
539          * PROC_LOCK_ASSERT(p, MA_OWNED);
540          */
541         td->td_state    = TDS_INACTIVE;
542         td->td_proc     = p;
543         td->td_flags    = TDF_INMEM;
544
545         LIST_INIT(&td->td_contested);
546         LIST_INIT(&td->td_lprof[0]);
547         LIST_INIT(&td->td_lprof[1]);
548         sigqueue_init(&td->td_sigqueue, p);
549         callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
550         TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
551         p->p_numthreads++;
552 }
553
554 /*
555  * Convert a process with one thread to an unthreaded process.
556  */
557 void
558 thread_unthread(struct thread *td)
559 {
560         struct proc *p = td->td_proc;
561
562         KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads"));
563         p->p_flag &= ~P_HADTHREADS;
564 }
565
566 /*
567  * Called from:
568  *  thread_exit()
569  */
570 void
571 thread_unlink(struct thread *td)
572 {
573         struct proc *p = td->td_proc;
574
575         PROC_LOCK_ASSERT(p, MA_OWNED);
576         TAILQ_REMOVE(&p->p_threads, td, td_plist);
577         p->p_numthreads--;
578         /* could clear a few other things here */
579         /* Must  NOT clear links to proc! */
580 }
581
582 static int
583 calc_remaining(struct proc *p, int mode)
584 {
585         int remaining;
586
587         PROC_LOCK_ASSERT(p, MA_OWNED);
588         PROC_SLOCK_ASSERT(p, MA_OWNED);
589         if (mode == SINGLE_EXIT)
590                 remaining = p->p_numthreads;
591         else if (mode == SINGLE_BOUNDARY)
592                 remaining = p->p_numthreads - p->p_boundary_count;
593         else if (mode == SINGLE_NO_EXIT)
594                 remaining = p->p_numthreads - p->p_suspcount;
595         else
596                 panic("calc_remaining: wrong mode %d", mode);
597         return (remaining);
598 }
599
600 /*
601  * Enforce single-threading.
602  *
603  * Returns 1 if the caller must abort (another thread is waiting to
604  * exit the process or similar). Process is locked!
605  * Returns 0 when you are successfully the only thread running.
606  * A process has successfully single threaded in the suspend mode when
607  * There are no threads in user mode. Threads in the kernel must be
608  * allowed to continue until they get to the user boundary. They may even
609  * copy out their return values and data before suspending. They may however be
610  * accelerated in reaching the user boundary as we will wake up
611  * any sleeping threads that are interruptable. (PCATCH).
612  */
613 int
614 thread_single(int mode)
615 {
616         struct thread *td;
617         struct thread *td2;
618         struct proc *p;
619         int remaining, wakeup_swapper;
620
621         td = curthread;
622         p = td->td_proc;
623         mtx_assert(&Giant, MA_NOTOWNED);
624         PROC_LOCK_ASSERT(p, MA_OWNED);
625         KASSERT((td != NULL), ("curthread is NULL"));
626
627         if ((p->p_flag & P_HADTHREADS) == 0)
628                 return (0);
629
630         /* Is someone already single threading? */
631         if (p->p_singlethread != NULL && p->p_singlethread != td)
632                 return (1);
633
634         if (mode == SINGLE_EXIT) {
635                 p->p_flag |= P_SINGLE_EXIT;
636                 p->p_flag &= ~P_SINGLE_BOUNDARY;
637         } else {
638                 p->p_flag &= ~P_SINGLE_EXIT;
639                 if (mode == SINGLE_BOUNDARY)
640                         p->p_flag |= P_SINGLE_BOUNDARY;
641                 else
642                         p->p_flag &= ~P_SINGLE_BOUNDARY;
643         }
644         p->p_flag |= P_STOPPED_SINGLE;
645         PROC_SLOCK(p);
646         p->p_singlethread = td;
647         remaining = calc_remaining(p, mode);
648         while (remaining != 1) {
649                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
650                         goto stopme;
651                 wakeup_swapper = 0;
652                 FOREACH_THREAD_IN_PROC(p, td2) {
653                         if (td2 == td)
654                                 continue;
655                         thread_lock(td2);
656                         td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
657                         if (TD_IS_INHIBITED(td2)) {
658                                 switch (mode) {
659                                 case SINGLE_EXIT:
660                                         if (TD_IS_SUSPENDED(td2))
661                                                 wakeup_swapper |=
662                                                     thread_unsuspend_one(td2);
663                                         if (TD_ON_SLEEPQ(td2) &&
664                                             (td2->td_flags & TDF_SINTR))
665                                                 wakeup_swapper |=
666                                                     sleepq_abort(td2, EINTR);
667                                         break;
668                                 case SINGLE_BOUNDARY:
669                                         if (TD_IS_SUSPENDED(td2) &&
670                                             !(td2->td_flags & TDF_BOUNDARY))
671                                                 wakeup_swapper |=
672                                                     thread_unsuspend_one(td2);
673                                         if (TD_ON_SLEEPQ(td2) &&
674                                             (td2->td_flags & TDF_SINTR))
675                                                 wakeup_swapper |=
676                                                     sleepq_abort(td2, ERESTART);
677                                         break;
678                                 case SINGLE_NO_EXIT:
679                                         if (TD_IS_SUSPENDED(td2) &&
680                                             !(td2->td_flags & TDF_BOUNDARY))
681                                                 wakeup_swapper |=
682                                                     thread_unsuspend_one(td2);
683                                         if (TD_ON_SLEEPQ(td2) &&
684                                             (td2->td_flags & TDF_SINTR))
685                                                 wakeup_swapper |=
686                                                     sleepq_abort(td2, ERESTART);
687                                         break;
688                                 default:
689                                         break;
690                                 }
691                         }
692 #ifdef SMP
693                         else if (TD_IS_RUNNING(td2) && td != td2) {
694                                 forward_signal(td2);
695                         }
696 #endif
697                         thread_unlock(td2);
698                 }
699                 if (wakeup_swapper)
700                         kick_proc0();
701                 remaining = calc_remaining(p, mode);
702
703                 /*
704                  * Maybe we suspended some threads.. was it enough?
705                  */
706                 if (remaining == 1)
707                         break;
708
709 stopme:
710                 /*
711                  * Wake us up when everyone else has suspended.
712                  * In the mean time we suspend as well.
713                  */
714                 thread_suspend_switch(td);
715                 remaining = calc_remaining(p, mode);
716         }
717         if (mode == SINGLE_EXIT) {
718                 /*
719                  * We have gotten rid of all the other threads and we
720                  * are about to either exit or exec. In either case,
721                  * we try our utmost  to revert to being a non-threaded
722                  * process.
723                  */
724                 p->p_singlethread = NULL;
725                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT);
726                 thread_unthread(td);
727         }
728         PROC_SUNLOCK(p);
729         return (0);
730 }
731
732 /*
733  * Called in from locations that can safely check to see
734  * whether we have to suspend or at least throttle for a
735  * single-thread event (e.g. fork).
736  *
737  * Such locations include userret().
738  * If the "return_instead" argument is non zero, the thread must be able to
739  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
740  *
741  * The 'return_instead' argument tells the function if it may do a
742  * thread_exit() or suspend, or whether the caller must abort and back
743  * out instead.
744  *
745  * If the thread that set the single_threading request has set the
746  * P_SINGLE_EXIT bit in the process flags then this call will never return
747  * if 'return_instead' is false, but will exit.
748  *
749  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
750  *---------------+--------------------+---------------------
751  *       0       | returns 0          |   returns 0 or 1
752  *               | when ST ends       |   immediatly
753  *---------------+--------------------+---------------------
754  *       1       | thread exits       |   returns 1
755  *               |                    |  immediatly
756  * 0 = thread_exit() or suspension ok,
757  * other = return error instead of stopping the thread.
758  *
759  * While a full suspension is under effect, even a single threading
760  * thread would be suspended if it made this call (but it shouldn't).
761  * This call should only be made from places where
762  * thread_exit() would be safe as that may be the outcome unless
763  * return_instead is set.
764  */
765 int
766 thread_suspend_check(int return_instead)
767 {
768         struct thread *td;
769         struct proc *p;
770         int wakeup_swapper;
771
772         td = curthread;
773         p = td->td_proc;
774         mtx_assert(&Giant, MA_NOTOWNED);
775         PROC_LOCK_ASSERT(p, MA_OWNED);
776         while (P_SHOULDSTOP(p) ||
777               ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND))) {
778                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
779                         KASSERT(p->p_singlethread != NULL,
780                             ("singlethread not set"));
781                         /*
782                          * The only suspension in action is a
783                          * single-threading. Single threader need not stop.
784                          * XXX Should be safe to access unlocked
785                          * as it can only be set to be true by us.
786                          */
787                         if (p->p_singlethread == td)
788                                 return (0);     /* Exempt from stopping. */
789                 }
790                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
791                         return (EINTR);
792
793                 /* Should we goto user boundary if we didn't come from there? */
794                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
795                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
796                         return (ERESTART);
797
798                 /*
799                  * If the process is waiting for us to exit,
800                  * this thread should just suicide.
801                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
802                  */
803                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
804                         PROC_UNLOCK(p);
805                         tidhash_remove(td);
806                         PROC_LOCK(p);
807                         tdsigcleanup(td);
808                         PROC_SLOCK(p);
809                         thread_stopped(p);
810                         thread_exit();
811                 }
812
813                 PROC_SLOCK(p);
814                 thread_stopped(p);
815                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
816                         if (p->p_numthreads == p->p_suspcount + 1) {
817                                 thread_lock(p->p_singlethread);
818                                 wakeup_swapper =
819                                     thread_unsuspend_one(p->p_singlethread);
820                                 thread_unlock(p->p_singlethread);
821                                 if (wakeup_swapper)
822                                         kick_proc0();
823                         }
824                 }
825                 PROC_UNLOCK(p);
826                 thread_lock(td);
827                 /*
828                  * When a thread suspends, it just
829                  * gets taken off all queues.
830                  */
831                 thread_suspend_one(td);
832                 if (return_instead == 0) {
833                         p->p_boundary_count++;
834                         td->td_flags |= TDF_BOUNDARY;
835                 }
836                 PROC_SUNLOCK(p);
837                 mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
838                 if (return_instead == 0)
839                         td->td_flags &= ~TDF_BOUNDARY;
840                 thread_unlock(td);
841                 PROC_LOCK(p);
842                 if (return_instead == 0) {
843                         PROC_SLOCK(p);
844                         p->p_boundary_count--;
845                         PROC_SUNLOCK(p);
846                 }
847         }
848         return (0);
849 }
850
851 void
852 thread_suspend_switch(struct thread *td)
853 {
854         struct proc *p;
855
856         p = td->td_proc;
857         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
858         PROC_LOCK_ASSERT(p, MA_OWNED);
859         PROC_SLOCK_ASSERT(p, MA_OWNED);
860         /*
861          * We implement thread_suspend_one in stages here to avoid
862          * dropping the proc lock while the thread lock is owned.
863          */
864         thread_stopped(p);
865         p->p_suspcount++;
866         PROC_UNLOCK(p);
867         thread_lock(td);
868         td->td_flags &= ~TDF_NEEDSUSPCHK;
869         TD_SET_SUSPENDED(td);
870         sched_sleep(td, 0);
871         PROC_SUNLOCK(p);
872         DROP_GIANT();
873         mi_switch(SW_VOL | SWT_SUSPEND, NULL);
874         thread_unlock(td);
875         PICKUP_GIANT();
876         PROC_LOCK(p);
877         PROC_SLOCK(p);
878 }
879
880 void
881 thread_suspend_one(struct thread *td)
882 {
883         struct proc *p = td->td_proc;
884
885         PROC_SLOCK_ASSERT(p, MA_OWNED);
886         THREAD_LOCK_ASSERT(td, MA_OWNED);
887         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
888         p->p_suspcount++;
889         td->td_flags &= ~TDF_NEEDSUSPCHK;
890         TD_SET_SUSPENDED(td);
891         sched_sleep(td, 0);
892 }
893
894 int
895 thread_unsuspend_one(struct thread *td)
896 {
897         struct proc *p = td->td_proc;
898
899         PROC_SLOCK_ASSERT(p, MA_OWNED);
900         THREAD_LOCK_ASSERT(td, MA_OWNED);
901         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
902         TD_CLR_SUSPENDED(td);
903         p->p_suspcount--;
904         return (setrunnable(td));
905 }
906
907 /*
908  * Allow all threads blocked by single threading to continue running.
909  */
910 void
911 thread_unsuspend(struct proc *p)
912 {
913         struct thread *td;
914         int wakeup_swapper;
915
916         PROC_LOCK_ASSERT(p, MA_OWNED);
917         PROC_SLOCK_ASSERT(p, MA_OWNED);
918         wakeup_swapper = 0;
919         if (!P_SHOULDSTOP(p)) {
920                 FOREACH_THREAD_IN_PROC(p, td) {
921                         thread_lock(td);
922                         if (TD_IS_SUSPENDED(td)) {
923                                 wakeup_swapper |= thread_unsuspend_one(td);
924                         }
925                         thread_unlock(td);
926                 }
927         } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
928             (p->p_numthreads == p->p_suspcount)) {
929                 /*
930                  * Stopping everything also did the job for the single
931                  * threading request. Now we've downgraded to single-threaded,
932                  * let it continue.
933                  */
934                 thread_lock(p->p_singlethread);
935                 wakeup_swapper = thread_unsuspend_one(p->p_singlethread);
936                 thread_unlock(p->p_singlethread);
937         }
938         if (wakeup_swapper)
939                 kick_proc0();
940 }
941
942 /*
943  * End the single threading mode..
944  */
945 void
946 thread_single_end(void)
947 {
948         struct thread *td;
949         struct proc *p;
950         int wakeup_swapper;
951
952         td = curthread;
953         p = td->td_proc;
954         PROC_LOCK_ASSERT(p, MA_OWNED);
955         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY);
956         PROC_SLOCK(p);
957         p->p_singlethread = NULL;
958         wakeup_swapper = 0;
959         /*
960          * If there are other threads they may now run,
961          * unless of course there is a blanket 'stop order'
962          * on the process. The single threader must be allowed
963          * to continue however as this is a bad place to stop.
964          */
965         if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
966                 FOREACH_THREAD_IN_PROC(p, td) {
967                         thread_lock(td);
968                         if (TD_IS_SUSPENDED(td)) {
969                                 wakeup_swapper |= thread_unsuspend_one(td);
970                         }
971                         thread_unlock(td);
972                 }
973         }
974         PROC_SUNLOCK(p);
975         if (wakeup_swapper)
976                 kick_proc0();
977 }
978
979 struct thread *
980 thread_find(struct proc *p, lwpid_t tid)
981 {
982         struct thread *td;
983
984         PROC_LOCK_ASSERT(p, MA_OWNED);
985         FOREACH_THREAD_IN_PROC(p, td) {
986                 if (td->td_tid == tid)
987                         break;
988         }
989         return (td);
990 }
991
992 /* Locate a thread by number; return with proc lock held. */
993 struct thread *
994 tdfind(lwpid_t tid, pid_t pid)
995 {
996 #define RUN_THRESH      16
997         struct thread *td;
998         int run = 0;
999
1000         rw_rlock(&tidhash_lock);
1001         LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1002                 if (td->td_tid == tid) {
1003                         if (pid != -1 && td->td_proc->p_pid != pid) {
1004                                 td = NULL;
1005                                 break;
1006                         }
1007                         PROC_LOCK(td->td_proc);
1008                         if (td->td_proc->p_state == PRS_NEW) {
1009                                 PROC_UNLOCK(td->td_proc);
1010                                 td = NULL;
1011                                 break;
1012                         }
1013                         if (run > RUN_THRESH) {
1014                                 if (rw_try_upgrade(&tidhash_lock)) {
1015                                         LIST_REMOVE(td, td_hash);
1016                                         LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1017                                                 td, td_hash);
1018                                         rw_wunlock(&tidhash_lock);
1019                                         return (td);
1020                                 }
1021                         }
1022                         break;
1023                 }
1024                 run++;
1025         }
1026         rw_runlock(&tidhash_lock);
1027         return (td);
1028 }
1029
1030 void
1031 tidhash_add(struct thread *td)
1032 {
1033         rw_wlock(&tidhash_lock);
1034         LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1035         rw_wunlock(&tidhash_lock);
1036 }
1037
1038 void
1039 tidhash_remove(struct thread *td)
1040 {
1041         rw_wlock(&tidhash_lock);
1042         LIST_REMOVE(td, td_hash);
1043         rw_wunlock(&tidhash_lock);
1044 }