]> CyberLeo.Net >> Repos - FreeBSD/stable/8.git/blob - sys/kern/subr_taskqueue.c
MFC r245457:
[FreeBSD/stable/8.git] / sys / kern / subr_taskqueue.c
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bus.h>
33 #include <sys/interrupt.h>
34 #include <sys/kernel.h>
35 #include <sys/kthread.h>
36 #include <sys/limits.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/sched.h>
42 #include <sys/taskqueue.h>
43 #include <sys/unistd.h>
44 #include <machine/stdarg.h>
45
46 static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues");
47 static void     *taskqueue_giant_ih;
48 static void     *taskqueue_ih;
49
50 struct taskqueue_busy {
51         struct task     *tb_running;
52         TAILQ_ENTRY(taskqueue_busy) tb_link;
53 };
54
55 struct taskqueue {
56         STAILQ_HEAD(, task)     tq_queue;
57         taskqueue_enqueue_fn    tq_enqueue;
58         void                    *tq_context;
59         TAILQ_HEAD(, taskqueue_busy) tq_active;
60         struct mtx              tq_mutex;
61         struct thread           **tq_threads;
62         int                     tq_tcount;
63         int                     tq_spin;
64         int                     tq_flags;
65 };
66
67 #define TQ_FLAGS_ACTIVE         (1 << 0)
68 #define TQ_FLAGS_BLOCKED        (1 << 1)
69 #define TQ_FLAGS_PENDING        (1 << 2)
70
71 static void     taskqueue_run_locked(struct taskqueue *);
72
73 static __inline void
74 TQ_LOCK(struct taskqueue *tq)
75 {
76         if (tq->tq_spin)
77                 mtx_lock_spin(&tq->tq_mutex);
78         else
79                 mtx_lock(&tq->tq_mutex);
80 }
81
82 static __inline void
83 TQ_UNLOCK(struct taskqueue *tq)
84 {
85         if (tq->tq_spin)
86                 mtx_unlock_spin(&tq->tq_mutex);
87         else
88                 mtx_unlock(&tq->tq_mutex);
89 }
90
91 static __inline int
92 TQ_SLEEP(struct taskqueue *tq, void *p, struct mtx *m, int pri, const char *wm,
93     int t)
94 {
95         if (tq->tq_spin)
96                 return (msleep_spin(p, m, wm, t));
97         return (msleep(p, m, pri, wm, t));
98 }
99
100 static struct taskqueue *
101 _taskqueue_create(const char *name __unused, int mflags,
102                  taskqueue_enqueue_fn enqueue, void *context,
103                  int mtxflags, const char *mtxname)
104 {
105         struct taskqueue *queue;
106
107         queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO);
108         if (!queue)
109                 return NULL;
110
111         STAILQ_INIT(&queue->tq_queue);
112         TAILQ_INIT(&queue->tq_active);
113         queue->tq_enqueue = enqueue;
114         queue->tq_context = context;
115         queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
116         queue->tq_flags |= TQ_FLAGS_ACTIVE;
117         mtx_init(&queue->tq_mutex, mtxname, NULL, mtxflags);
118
119         return queue;
120 }
121
122 struct taskqueue *
123 taskqueue_create(const char *name, int mflags,
124                  taskqueue_enqueue_fn enqueue, void *context)
125 {
126         return _taskqueue_create(name, mflags, enqueue, context,
127                         MTX_DEF, "taskqueue");
128 }
129
130 /*
131  * Signal a taskqueue thread to terminate.
132  */
133 static void
134 taskqueue_terminate(struct thread **pp, struct taskqueue *tq)
135 {
136
137         while (tq->tq_tcount > 0) {
138                 wakeup(tq);
139                 TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0);
140         }
141 }
142
143 void
144 taskqueue_free(struct taskqueue *queue)
145 {
146
147         TQ_LOCK(queue);
148         queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
149         taskqueue_run_locked(queue);
150         taskqueue_terminate(queue->tq_threads, queue);
151         KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?"));
152         mtx_destroy(&queue->tq_mutex);
153         free(queue->tq_threads, M_TASKQUEUE);
154         free(queue, M_TASKQUEUE);
155 }
156
157 int
158 taskqueue_enqueue(struct taskqueue *queue, struct task *task)
159 {
160         struct task *ins;
161         struct task *prev;
162
163         TQ_LOCK(queue);
164
165         /*
166          * Count multiple enqueues.
167          */
168         if (task->ta_pending) {
169                 if (task->ta_pending < USHRT_MAX)
170                         task->ta_pending++;
171                 TQ_UNLOCK(queue);
172                 return 0;
173         }
174
175         /*
176          * Optimise the case when all tasks have the same priority.
177          */
178         prev = STAILQ_LAST(&queue->tq_queue, task, ta_link);
179         if (!prev || prev->ta_priority >= task->ta_priority) {
180                 STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
181         } else {
182                 prev = NULL;
183                 for (ins = STAILQ_FIRST(&queue->tq_queue); ins;
184                      prev = ins, ins = STAILQ_NEXT(ins, ta_link))
185                         if (ins->ta_priority < task->ta_priority)
186                                 break;
187
188                 if (prev)
189                         STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link);
190                 else
191                         STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link);
192         }
193
194         task->ta_pending = 1;
195         if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
196                 queue->tq_enqueue(queue->tq_context);
197         else
198                 queue->tq_flags |= TQ_FLAGS_PENDING;
199
200         TQ_UNLOCK(queue);
201
202         return 0;
203 }
204
205 void
206 taskqueue_block(struct taskqueue *queue)
207 {
208
209         TQ_LOCK(queue);
210         queue->tq_flags |= TQ_FLAGS_BLOCKED;
211         TQ_UNLOCK(queue);
212 }
213
214 void
215 taskqueue_unblock(struct taskqueue *queue)
216 {
217
218         TQ_LOCK(queue);
219         queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
220         if (queue->tq_flags & TQ_FLAGS_PENDING) {
221                 queue->tq_flags &= ~TQ_FLAGS_PENDING;
222                 queue->tq_enqueue(queue->tq_context);
223         }
224         TQ_UNLOCK(queue);
225 }
226
227 static void
228 taskqueue_run_locked(struct taskqueue *queue)
229 {
230         struct taskqueue_busy tb;
231         struct task *task;
232         int pending;
233
234         mtx_assert(&queue->tq_mutex, MA_OWNED);
235         tb.tb_running = NULL;
236         TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link);
237
238         while (STAILQ_FIRST(&queue->tq_queue)) {
239                 /*
240                  * Carefully remove the first task from the queue and
241                  * zero its pending count.
242                  */
243                 task = STAILQ_FIRST(&queue->tq_queue);
244                 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
245                 pending = task->ta_pending;
246                 task->ta_pending = 0;
247                 tb.tb_running = task;
248                 TQ_UNLOCK(queue);
249
250                 task->ta_func(task->ta_context, pending);
251
252                 TQ_LOCK(queue);
253                 tb.tb_running = NULL;
254                 wakeup(task);
255         }
256         TAILQ_REMOVE(&queue->tq_active, &tb, tb_link);
257 }
258
259 void
260 taskqueue_run(struct taskqueue *queue)
261 {
262
263         TQ_LOCK(queue);
264         taskqueue_run_locked(queue);
265         TQ_UNLOCK(queue);
266 }
267
268 static int
269 task_is_running(struct taskqueue *queue, struct task *task)
270 {
271         struct taskqueue_busy *tb;
272
273         mtx_assert(&queue->tq_mutex, MA_OWNED);
274         TAILQ_FOREACH(tb, &queue->tq_active, tb_link) {
275                 if (tb->tb_running == task)
276                         return (1);
277         }
278         return (0);
279 }
280
281 void
282 taskqueue_drain(struct taskqueue *queue, struct task *task)
283 {
284         if (queue->tq_spin) {           /* XXX */
285                 mtx_lock_spin(&queue->tq_mutex);
286                 while (task->ta_pending != 0 || task_is_running(queue, task))
287                         msleep_spin(task, &queue->tq_mutex, "-", 0);
288                 mtx_unlock_spin(&queue->tq_mutex);
289         } else {
290                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
291
292                 mtx_lock(&queue->tq_mutex);
293                 while (task->ta_pending != 0 || task_is_running(queue, task))
294                         msleep(task, &queue->tq_mutex, PWAIT, "-", 0);
295                 mtx_unlock(&queue->tq_mutex);
296         }
297 }
298
299 static void
300 taskqueue_swi_enqueue(void *context)
301 {
302         swi_sched(taskqueue_ih, 0);
303 }
304
305 static void
306 taskqueue_swi_run(void *dummy)
307 {
308         taskqueue_run(taskqueue_swi);
309 }
310
311 static void
312 taskqueue_swi_giant_enqueue(void *context)
313 {
314         swi_sched(taskqueue_giant_ih, 0);
315 }
316
317 static void
318 taskqueue_swi_giant_run(void *dummy)
319 {
320         taskqueue_run(taskqueue_swi_giant);
321 }
322
323 int
324 taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
325                         const char *name, ...)
326 {
327         va_list ap;
328         struct thread *td;
329         struct taskqueue *tq;
330         int i, error;
331         char ktname[MAXCOMLEN + 1];
332
333         if (count <= 0)
334                 return (EINVAL);
335
336         tq = *tqp;
337
338         va_start(ap, name);
339         vsnprintf(ktname, sizeof(ktname), name, ap);
340         va_end(ap);
341
342         tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE,
343             M_NOWAIT | M_ZERO);
344         if (tq->tq_threads == NULL) {
345                 printf("%s: no memory for %s threads\n", __func__, ktname);
346                 return (ENOMEM);
347         }
348
349         for (i = 0; i < count; i++) {
350                 if (count == 1)
351                         error = kthread_add(taskqueue_thread_loop, tqp, NULL,
352                             &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
353                 else
354                         error = kthread_add(taskqueue_thread_loop, tqp, NULL,
355                             &tq->tq_threads[i], RFSTOPPED, 0,
356                             "%s_%d", ktname, i);
357                 if (error) {
358                         /* should be ok to continue, taskqueue_free will dtrt */
359                         printf("%s: kthread_add(%s): error %d", __func__,
360                             ktname, error);
361                         tq->tq_threads[i] = NULL;               /* paranoid */
362                 } else
363                         tq->tq_tcount++;
364         }
365         for (i = 0; i < count; i++) {
366                 if (tq->tq_threads[i] == NULL)
367                         continue;
368                 td = tq->tq_threads[i];
369                 thread_lock(td);
370                 sched_prio(td, pri);
371                 sched_add(td, SRQ_BORING);
372                 thread_unlock(td);
373         }
374
375         return (0);
376 }
377
378 void
379 taskqueue_thread_loop(void *arg)
380 {
381         struct taskqueue **tqp, *tq;
382
383         tqp = arg;
384         tq = *tqp;
385         TQ_LOCK(tq);
386         while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
387                 taskqueue_run_locked(tq);
388                 /*
389                  * Because taskqueue_run() can drop tq_mutex, we need to
390                  * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
391                  * meantime, which means we missed a wakeup.
392                  */
393                 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
394                         break;
395                 TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0);
396         }
397
398         /* rendezvous with thread that asked us to terminate */
399         tq->tq_tcount--;
400         wakeup_one(tq->tq_threads);
401         TQ_UNLOCK(tq);
402         kthread_exit();
403 }
404
405 void
406 taskqueue_thread_enqueue(void *context)
407 {
408         struct taskqueue **tqp, *tq;
409
410         tqp = context;
411         tq = *tqp;
412
413         mtx_assert(&tq->tq_mutex, MA_OWNED);
414         wakeup_one(tq);
415 }
416
417 TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL,
418                  swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ,
419                      INTR_MPSAFE, &taskqueue_ih)); 
420
421 TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL,
422                  swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run,
423                      NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih)); 
424
425 TASKQUEUE_DEFINE_THREAD(thread);
426
427 struct taskqueue *
428 taskqueue_create_fast(const char *name, int mflags,
429                  taskqueue_enqueue_fn enqueue, void *context)
430 {
431         return _taskqueue_create(name, mflags, enqueue, context,
432                         MTX_SPIN, "fast_taskqueue");
433 }
434
435 /* NB: for backwards compatibility */
436 int
437 taskqueue_enqueue_fast(struct taskqueue *queue, struct task *task)
438 {
439         return taskqueue_enqueue(queue, task);
440 }
441
442 static void     *taskqueue_fast_ih;
443
444 static void
445 taskqueue_fast_enqueue(void *context)
446 {
447         swi_sched(taskqueue_fast_ih, 0);
448 }
449
450 static void
451 taskqueue_fast_run(void *dummy)
452 {
453         taskqueue_run(taskqueue_fast);
454 }
455
456 TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL,
457         swi_add(NULL, "fast taskq", taskqueue_fast_run, NULL,
458         SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih));
459
460 int
461 taskqueue_member(struct taskqueue *queue, struct thread *td)
462 {
463         int i, j, ret = 0;
464
465         TQ_LOCK(queue);
466         for (i = 0, j = 0; ; i++) {
467                 if (queue->tq_threads[i] == NULL)
468                         continue;
469                 if (queue->tq_threads[i] == td) {
470                         ret = 1;
471                         break;
472                 }
473                 if (++j >= queue->tq_tcount)
474                         break;
475         }
476         TQ_UNLOCK(queue);
477         return (ret);
478 }