]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - sys/kern/subr_taskqueue.c
MFC r310096: reaper: Make REAPER_KILL_SUBTREE actually work.
[FreeBSD/stable/10.git] / sys / kern / subr_taskqueue.c
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bus.h>
33 #include <sys/interrupt.h>
34 #include <sys/kernel.h>
35 #include <sys/kthread.h>
36 #include <sys/limits.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/sched.h>
42 #include <sys/taskqueue.h>
43 #include <sys/unistd.h>
44 #include <machine/stdarg.h>
45
46 static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues");
47 static void     *taskqueue_giant_ih;
48 static void     *taskqueue_ih;
49 static void      taskqueue_fast_enqueue(void *);
50 static void      taskqueue_swi_enqueue(void *);
51 static void      taskqueue_swi_giant_enqueue(void *);
52
53 struct taskqueue_busy {
54         struct task     *tb_running;
55         TAILQ_ENTRY(taskqueue_busy) tb_link;
56 };
57
58 struct taskqueue {
59         STAILQ_HEAD(, task)     tq_queue;
60         taskqueue_enqueue_fn    tq_enqueue;
61         void                    *tq_context;
62         TAILQ_HEAD(, taskqueue_busy) tq_active;
63         struct mtx              tq_mutex;
64         struct thread           **tq_threads;
65         int                     tq_tcount;
66         int                     tq_spin;
67         int                     tq_flags;
68         int                     tq_callouts;
69         taskqueue_callback_fn   tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
70         void                    *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
71 };
72
73 #define TQ_FLAGS_ACTIVE         (1 << 0)
74 #define TQ_FLAGS_BLOCKED        (1 << 1)
75 #define TQ_FLAGS_UNLOCKED_ENQUEUE       (1 << 2)
76
77 #define DT_CALLOUT_ARMED        (1 << 0)
78 #define DT_DRAIN_IN_PROGRESS    (1 << 1)
79
80 #define TQ_LOCK(tq)                                                     \
81         do {                                                            \
82                 if ((tq)->tq_spin)                                      \
83                         mtx_lock_spin(&(tq)->tq_mutex);                 \
84                 else                                                    \
85                         mtx_lock(&(tq)->tq_mutex);                      \
86         } while (0)
87 #define TQ_ASSERT_LOCKED(tq)    mtx_assert(&(tq)->tq_mutex, MA_OWNED)
88
89 #define TQ_UNLOCK(tq)                                                   \
90         do {                                                            \
91                 if ((tq)->tq_spin)                                      \
92                         mtx_unlock_spin(&(tq)->tq_mutex);               \
93                 else                                                    \
94                         mtx_unlock(&(tq)->tq_mutex);                    \
95         } while (0)
96 #define TQ_ASSERT_UNLOCKED(tq)  mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
97
98 void
99 _timeout_task_init(struct taskqueue *queue, struct timeout_task *timeout_task,
100     int priority, task_fn_t func, void *context)
101 {
102
103         TASK_INIT(&timeout_task->t, priority, func, context);
104         callout_init_mtx(&timeout_task->c, &queue->tq_mutex,
105             CALLOUT_RETURNUNLOCKED);
106         timeout_task->q = queue;
107         timeout_task->f = 0;
108 }
109
110 static __inline int
111 TQ_SLEEP(struct taskqueue *tq, void *p, struct mtx *m, int pri, const char *wm,
112     int t)
113 {
114         if (tq->tq_spin)
115                 return (msleep_spin(p, m, wm, t));
116         return (msleep(p, m, pri, wm, t));
117 }
118
119 static struct taskqueue *
120 _taskqueue_create(const char *name __unused, int mflags,
121                  taskqueue_enqueue_fn enqueue, void *context,
122                  int mtxflags, const char *mtxname)
123 {
124         struct taskqueue *queue;
125
126         queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO);
127         if (!queue)
128                 return NULL;
129
130         STAILQ_INIT(&queue->tq_queue);
131         TAILQ_INIT(&queue->tq_active);
132         queue->tq_enqueue = enqueue;
133         queue->tq_context = context;
134         queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
135         queue->tq_flags |= TQ_FLAGS_ACTIVE;
136         if (enqueue == taskqueue_fast_enqueue ||
137             enqueue == taskqueue_swi_enqueue ||
138             enqueue == taskqueue_swi_giant_enqueue ||
139             enqueue == taskqueue_thread_enqueue)
140                 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
141         mtx_init(&queue->tq_mutex, mtxname, NULL, mtxflags);
142
143         return queue;
144 }
145
146 struct taskqueue *
147 taskqueue_create(const char *name, int mflags,
148                  taskqueue_enqueue_fn enqueue, void *context)
149 {
150         return _taskqueue_create(name, mflags, enqueue, context,
151                         MTX_DEF, "taskqueue");
152 }
153
154 void
155 taskqueue_set_callback(struct taskqueue *queue,
156     enum taskqueue_callback_type cb_type, taskqueue_callback_fn callback,
157     void *context)
158 {
159
160         KASSERT(((cb_type >= TASKQUEUE_CALLBACK_TYPE_MIN) &&
161             (cb_type <= TASKQUEUE_CALLBACK_TYPE_MAX)),
162             ("Callback type %d not valid, must be %d-%d", cb_type,
163             TASKQUEUE_CALLBACK_TYPE_MIN, TASKQUEUE_CALLBACK_TYPE_MAX));
164         KASSERT((queue->tq_callbacks[cb_type] == NULL),
165             ("Re-initialization of taskqueue callback?"));
166
167         queue->tq_callbacks[cb_type] = callback;
168         queue->tq_cb_contexts[cb_type] = context;
169 }
170
171 /*
172  * Signal a taskqueue thread to terminate.
173  */
174 static void
175 taskqueue_terminate(struct thread **pp, struct taskqueue *tq)
176 {
177
178         while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
179                 wakeup(tq);
180                 TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0);
181         }
182 }
183
184 void
185 taskqueue_free(struct taskqueue *queue)
186 {
187
188         TQ_LOCK(queue);
189         queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
190         taskqueue_terminate(queue->tq_threads, queue);
191         KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?"));
192         KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
193         mtx_destroy(&queue->tq_mutex);
194         free(queue->tq_threads, M_TASKQUEUE);
195         free(queue, M_TASKQUEUE);
196 }
197
198 static int
199 taskqueue_enqueue_locked(struct taskqueue *queue, struct task *task)
200 {
201         struct task *ins;
202         struct task *prev;
203
204         /*
205          * Count multiple enqueues.
206          */
207         if (task->ta_pending) {
208                 if (task->ta_pending < USHRT_MAX)
209                         task->ta_pending++;
210                 TQ_UNLOCK(queue);
211                 return (0);
212         }
213
214         /*
215          * Optimise the case when all tasks have the same priority.
216          */
217         prev = STAILQ_LAST(&queue->tq_queue, task, ta_link);
218         if (!prev || prev->ta_priority >= task->ta_priority) {
219                 STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
220         } else {
221                 prev = NULL;
222                 for (ins = STAILQ_FIRST(&queue->tq_queue); ins;
223                      prev = ins, ins = STAILQ_NEXT(ins, ta_link))
224                         if (ins->ta_priority < task->ta_priority)
225                                 break;
226
227                 if (prev)
228                         STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link);
229                 else
230                         STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link);
231         }
232
233         task->ta_pending = 1;
234         if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) != 0)
235                 TQ_UNLOCK(queue);
236         if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
237                 queue->tq_enqueue(queue->tq_context);
238         if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) == 0)
239                 TQ_UNLOCK(queue);
240
241         /* Return with lock released. */
242         return (0);
243 }
244 int
245 taskqueue_enqueue(struct taskqueue *queue, struct task *task)
246 {
247         int res;
248
249         TQ_LOCK(queue);
250         res = taskqueue_enqueue_locked(queue, task);
251         /* The lock is released inside. */
252
253         return (res);
254 }
255
256 static void
257 taskqueue_timeout_func(void *arg)
258 {
259         struct taskqueue *queue;
260         struct timeout_task *timeout_task;
261
262         timeout_task = arg;
263         queue = timeout_task->q;
264         KASSERT((timeout_task->f & DT_CALLOUT_ARMED) != 0, ("Stray timeout"));
265         timeout_task->f &= ~DT_CALLOUT_ARMED;
266         queue->tq_callouts--;
267         taskqueue_enqueue_locked(timeout_task->q, &timeout_task->t);
268         /* The lock is released inside. */
269 }
270
271 int
272 taskqueue_enqueue_timeout(struct taskqueue *queue,
273     struct timeout_task *timeout_task, int ticks)
274 {
275         int res;
276
277         TQ_LOCK(queue);
278         KASSERT(timeout_task->q == NULL || timeout_task->q == queue,
279             ("Migrated queue"));
280         KASSERT(!queue->tq_spin, ("Timeout for spin-queue"));
281         timeout_task->q = queue;
282         res = timeout_task->t.ta_pending;
283         if (timeout_task->f & DT_DRAIN_IN_PROGRESS) {
284                 /* Do nothing */
285                 TQ_UNLOCK(queue);
286                 res = -1;
287         } else if (ticks == 0) {
288                 taskqueue_enqueue_locked(queue, &timeout_task->t);
289                 /* The lock is released inside. */
290         } else {
291                 if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
292                         res++;
293                 } else {
294                         queue->tq_callouts++;
295                         timeout_task->f |= DT_CALLOUT_ARMED;
296                         if (ticks < 0)
297                                 ticks = -ticks; /* Ignore overflow. */
298                 }
299                 if (ticks > 0) {
300                         callout_reset(&timeout_task->c, ticks,
301                             taskqueue_timeout_func, timeout_task);
302                 }
303                 TQ_UNLOCK(queue);
304         }
305         return (res);
306 }
307
308 static void
309 taskqueue_drain_running(struct taskqueue *queue)
310 {
311
312         while (!TAILQ_EMPTY(&queue->tq_active))
313                 TQ_SLEEP(queue, &queue->tq_active, &queue->tq_mutex,
314                     PWAIT, "-", 0);
315 }
316
317 void
318 taskqueue_block(struct taskqueue *queue)
319 {
320
321         TQ_LOCK(queue);
322         queue->tq_flags |= TQ_FLAGS_BLOCKED;
323         TQ_UNLOCK(queue);
324 }
325
326 void
327 taskqueue_unblock(struct taskqueue *queue)
328 {
329
330         TQ_LOCK(queue);
331         queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
332         if (!STAILQ_EMPTY(&queue->tq_queue))
333                 queue->tq_enqueue(queue->tq_context);
334         TQ_UNLOCK(queue);
335 }
336
337 static void
338 taskqueue_run_locked(struct taskqueue *queue)
339 {
340         struct taskqueue_busy tb;
341         struct task *task;
342         int pending;
343
344         TQ_ASSERT_LOCKED(queue);
345         tb.tb_running = NULL;
346         TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link);
347
348         while (STAILQ_FIRST(&queue->tq_queue)) {
349                 /*
350                  * Carefully remove the first task from the queue and
351                  * zero its pending count.
352                  */
353                 task = STAILQ_FIRST(&queue->tq_queue);
354                 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
355                 pending = task->ta_pending;
356                 task->ta_pending = 0;
357                 tb.tb_running = task;
358                 TQ_UNLOCK(queue);
359
360                 task->ta_func(task->ta_context, pending);
361
362                 TQ_LOCK(queue);
363                 tb.tb_running = NULL;
364                 wakeup(task);
365         }
366         TAILQ_REMOVE(&queue->tq_active, &tb, tb_link);
367         if (TAILQ_EMPTY(&queue->tq_active))
368                 wakeup(&queue->tq_active);
369 }
370
371 void
372 taskqueue_run(struct taskqueue *queue)
373 {
374
375         TQ_LOCK(queue);
376         taskqueue_run_locked(queue);
377         TQ_UNLOCK(queue);
378 }
379
380 static int
381 task_is_running(struct taskqueue *queue, struct task *task)
382 {
383         struct taskqueue_busy *tb;
384
385         TQ_ASSERT_LOCKED(queue);
386         TAILQ_FOREACH(tb, &queue->tq_active, tb_link) {
387                 if (tb->tb_running == task)
388                         return (1);
389         }
390         return (0);
391 }
392
393 static int
394 taskqueue_cancel_locked(struct taskqueue *queue, struct task *task,
395     u_int *pendp)
396 {
397
398         if (task->ta_pending > 0)
399                 STAILQ_REMOVE(&queue->tq_queue, task, task, ta_link);
400         if (pendp != NULL)
401                 *pendp = task->ta_pending;
402         task->ta_pending = 0;
403         return (task_is_running(queue, task) ? EBUSY : 0);
404 }
405
406 int
407 taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp)
408 {
409         int error;
410
411         TQ_LOCK(queue);
412         error = taskqueue_cancel_locked(queue, task, pendp);
413         TQ_UNLOCK(queue);
414
415         return (error);
416 }
417
418 int
419 taskqueue_cancel_timeout(struct taskqueue *queue,
420     struct timeout_task *timeout_task, u_int *pendp)
421 {
422         u_int pending, pending1;
423         int error;
424
425         TQ_LOCK(queue);
426         pending = !!callout_stop(&timeout_task->c);
427         error = taskqueue_cancel_locked(queue, &timeout_task->t, &pending1);
428         if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
429                 timeout_task->f &= ~DT_CALLOUT_ARMED;
430                 queue->tq_callouts--;
431         }
432         TQ_UNLOCK(queue);
433
434         if (pendp != NULL)
435                 *pendp = pending + pending1;
436         return (error);
437 }
438
439 void
440 taskqueue_drain(struct taskqueue *queue, struct task *task)
441 {
442
443         if (!queue->tq_spin)
444                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
445
446         TQ_LOCK(queue);
447         while (task->ta_pending != 0 || task_is_running(queue, task))
448                 TQ_SLEEP(queue, task, &queue->tq_mutex, PWAIT, "-", 0);
449         TQ_UNLOCK(queue);
450 }
451
452 void
453 taskqueue_drain_all(struct taskqueue *queue)
454 {
455         struct task *task;
456
457         if (!queue->tq_spin)
458                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
459
460         TQ_LOCK(queue);
461         task = STAILQ_LAST(&queue->tq_queue, task, ta_link);
462         while (task != NULL && task->ta_pending != 0) {
463                 struct task *oldtask;
464                 TQ_SLEEP(queue, task, &queue->tq_mutex, PWAIT, "-", 0);
465                 /*
466                  * While we were asleeep the last entry may have been freed.
467                  * We need to check if it's still even in the queue.
468                  * Not perfect, but it's better than referencing bad memory.
469                  * first guess is the current 'end of queue' but if a new
470                  * item has been added we need to take the expensive path
471                  * Better fix in 11.
472                  */
473                 oldtask = task;
474                 if (oldtask !=
475                     (task = STAILQ_LAST(&queue->tq_queue, task, ta_link))) {
476                         STAILQ_FOREACH(task, &queue->tq_queue, ta_link) {
477                                 if (task == oldtask)
478                                         break;
479                         }
480                 }
481         }
482         taskqueue_drain_running(queue);
483         KASSERT(STAILQ_EMPTY(&queue->tq_queue),
484             ("taskqueue queue is not empty after draining"));
485         TQ_UNLOCK(queue);
486 }
487
488 void
489 taskqueue_drain_timeout(struct taskqueue *queue,
490     struct timeout_task *timeout_task)
491 {
492
493         /*
494          * Set flag to prevent timer from re-starting during drain:
495          */
496         TQ_LOCK(queue);
497         KASSERT((timeout_task->f & DT_DRAIN_IN_PROGRESS) == 0,
498             ("Drain already in progress"));
499         timeout_task->f |= DT_DRAIN_IN_PROGRESS;
500         TQ_UNLOCK(queue);
501
502         callout_drain(&timeout_task->c);
503         taskqueue_drain(queue, &timeout_task->t);
504
505         /*
506          * Clear flag to allow timer to re-start:
507          */
508         TQ_LOCK(queue);
509         timeout_task->f &= ~DT_DRAIN_IN_PROGRESS;
510         TQ_UNLOCK(queue);
511 }
512
513 static void
514 taskqueue_swi_enqueue(void *context)
515 {
516         swi_sched(taskqueue_ih, 0);
517 }
518
519 static void
520 taskqueue_swi_run(void *dummy)
521 {
522         taskqueue_run(taskqueue_swi);
523 }
524
525 static void
526 taskqueue_swi_giant_enqueue(void *context)
527 {
528         swi_sched(taskqueue_giant_ih, 0);
529 }
530
531 static void
532 taskqueue_swi_giant_run(void *dummy)
533 {
534         taskqueue_run(taskqueue_swi_giant);
535 }
536
537 int
538 taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
539                         const char *name, ...)
540 {
541         va_list ap;
542         struct thread *td;
543         struct taskqueue *tq;
544         int i, error;
545         char ktname[MAXCOMLEN + 1];
546
547         if (count <= 0)
548                 return (EINVAL);
549
550         tq = *tqp;
551
552         va_start(ap, name);
553         vsnprintf(ktname, sizeof(ktname), name, ap);
554         va_end(ap);
555
556         tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE,
557             M_NOWAIT | M_ZERO);
558         if (tq->tq_threads == NULL) {
559                 printf("%s: no memory for %s threads\n", __func__, ktname);
560                 return (ENOMEM);
561         }
562
563         for (i = 0; i < count; i++) {
564                 if (count == 1)
565                         error = kthread_add(taskqueue_thread_loop, tqp, NULL,
566                             &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
567                 else
568                         error = kthread_add(taskqueue_thread_loop, tqp, NULL,
569                             &tq->tq_threads[i], RFSTOPPED, 0,
570                             "%s_%d", ktname, i);
571                 if (error) {
572                         /* should be ok to continue, taskqueue_free will dtrt */
573                         printf("%s: kthread_add(%s): error %d", __func__,
574                             ktname, error);
575                         tq->tq_threads[i] = NULL;               /* paranoid */
576                 } else
577                         tq->tq_tcount++;
578         }
579         for (i = 0; i < count; i++) {
580                 if (tq->tq_threads[i] == NULL)
581                         continue;
582                 td = tq->tq_threads[i];
583                 thread_lock(td);
584                 sched_prio(td, pri);
585                 sched_add(td, SRQ_BORING);
586                 thread_unlock(td);
587         }
588
589         return (0);
590 }
591
592 static inline void
593 taskqueue_run_callback(struct taskqueue *tq,
594     enum taskqueue_callback_type cb_type)
595 {
596         taskqueue_callback_fn tq_callback;
597
598         TQ_ASSERT_UNLOCKED(tq);
599         tq_callback = tq->tq_callbacks[cb_type];
600         if (tq_callback != NULL)
601                 tq_callback(tq->tq_cb_contexts[cb_type]);
602 }
603
604 void
605 taskqueue_thread_loop(void *arg)
606 {
607         struct taskqueue **tqp, *tq;
608
609         tqp = arg;
610         tq = *tqp;
611         taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
612         TQ_LOCK(tq);
613         while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
614                 taskqueue_run_locked(tq);
615                 /*
616                  * Because taskqueue_run() can drop tq_mutex, we need to
617                  * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
618                  * meantime, which means we missed a wakeup.
619                  */
620                 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
621                         break;
622                 TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0);
623         }
624         taskqueue_run_locked(tq);
625
626         /*
627          * This thread is on its way out, so just drop the lock temporarily
628          * in order to call the shutdown callback.  This allows the callback
629          * to look at the taskqueue, even just before it dies.
630          */
631         TQ_UNLOCK(tq);
632         taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
633         TQ_LOCK(tq);
634
635         /* rendezvous with thread that asked us to terminate */
636         tq->tq_tcount--;
637         wakeup_one(tq->tq_threads);
638         TQ_UNLOCK(tq);
639         kthread_exit();
640 }
641
642 void
643 taskqueue_thread_enqueue(void *context)
644 {
645         struct taskqueue **tqp, *tq;
646
647         tqp = context;
648         tq = *tqp;
649
650         wakeup_one(tq);
651 }
652
653 TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL,
654                  swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ,
655                      INTR_MPSAFE, &taskqueue_ih)); 
656
657 TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL,
658                  swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run,
659                      NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih)); 
660
661 TASKQUEUE_DEFINE_THREAD(thread);
662
663 struct taskqueue *
664 taskqueue_create_fast(const char *name, int mflags,
665                  taskqueue_enqueue_fn enqueue, void *context)
666 {
667         return _taskqueue_create(name, mflags, enqueue, context,
668                         MTX_SPIN, "fast_taskqueue");
669 }
670
671 /* NB: for backwards compatibility */
672 int
673 taskqueue_enqueue_fast(struct taskqueue *queue, struct task *task)
674 {
675         return taskqueue_enqueue(queue, task);
676 }
677
678 static void     *taskqueue_fast_ih;
679
680 static void
681 taskqueue_fast_enqueue(void *context)
682 {
683         swi_sched(taskqueue_fast_ih, 0);
684 }
685
686 static void
687 taskqueue_fast_run(void *dummy)
688 {
689         taskqueue_run(taskqueue_fast);
690 }
691
692 TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL,
693         swi_add(NULL, "fast taskq", taskqueue_fast_run, NULL,
694         SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih));
695
696 int
697 taskqueue_member(struct taskqueue *queue, struct thread *td)
698 {
699         int i, j, ret = 0;
700
701         for (i = 0, j = 0; ; i++) {
702                 if (queue->tq_threads[i] == NULL)
703                         continue;
704                 if (queue->tq_threads[i] == td) {
705                         ret = 1;
706                         break;
707                 }
708                 if (++j >= queue->tq_tcount)
709                         break;
710         }
711         return (ret);
712 }