]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - sys/kern/subr_witness.c
MFC 280222:
[FreeBSD/stable/10.git] / sys / kern / subr_witness.c
1 /*-
2  * Copyright (c) 2008 Isilon Systems, Inc.
3  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
4  * Copyright (c) 1998 Berkeley Software Design, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Berkeley Software Design Inc's name may not be used to endorse or
16  *    promote products derived from this software without specific prior
17  *    written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
32  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
33  */
34
35 /*
36  * Implementation of the `witness' lock verifier.  Originally implemented for
37  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
38  * classes in FreeBSD.
39  */
40
41 /*
42  *      Main Entry: witness
43  *      Pronunciation: 'wit-n&s
44  *      Function: noun
45  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
46  *          testimony, witness, from 2wit
47  *      Date: before 12th century
48  *      1 : attestation of a fact or event : TESTIMONY
49  *      2 : one that gives evidence; specifically : one who testifies in
50  *          a cause or before a judicial tribunal
51  *      3 : one asked to be present at a transaction so as to be able to
52  *          testify to its having taken place
53  *      4 : one who has personal knowledge of something
54  *      5 a : something serving as evidence or proof : SIGN
55  *        b : public affirmation by word or example of usually
56  *            religious faith or conviction <the heroic witness to divine
57  *            life -- Pilot>
58  *      6 capitalized : a member of the Jehovah's Witnesses 
59  */
60
61 /*
62  * Special rules concerning Giant and lock orders:
63  *
64  * 1) Giant must be acquired before any other mutexes.  Stated another way,
65  *    no other mutex may be held when Giant is acquired.
66  *
67  * 2) Giant must be released when blocking on a sleepable lock.
68  *
69  * This rule is less obvious, but is a result of Giant providing the same
70  * semantics as spl().  Basically, when a thread sleeps, it must release
71  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
72  * 2).
73  *
74  * 3) Giant may be acquired before or after sleepable locks.
75  *
76  * This rule is also not quite as obvious.  Giant may be acquired after
77  * a sleepable lock because it is a non-sleepable lock and non-sleepable
78  * locks may always be acquired while holding a sleepable lock.  The second
79  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
80  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
81  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
82  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
83  * execute.  Thus, acquiring Giant both before and after a sleepable lock
84  * will not result in a lock order reversal.
85  */
86
87 #include <sys/cdefs.h>
88 __FBSDID("$FreeBSD$");
89
90 #include "opt_ddb.h"
91 #include "opt_hwpmc_hooks.h"
92 #include "opt_stack.h"
93 #include "opt_witness.h"
94
95 #include <sys/param.h>
96 #include <sys/bus.h>
97 #include <sys/kdb.h>
98 #include <sys/kernel.h>
99 #include <sys/ktr.h>
100 #include <sys/lock.h>
101 #include <sys/malloc.h>
102 #include <sys/mutex.h>
103 #include <sys/priv.h>
104 #include <sys/proc.h>
105 #include <sys/sbuf.h>
106 #include <sys/sched.h>
107 #include <sys/stack.h>
108 #include <sys/sysctl.h>
109 #include <sys/systm.h>
110
111 #ifdef DDB
112 #include <ddb/ddb.h>
113 #endif
114
115 #include <machine/stdarg.h>
116
117 #if !defined(DDB) && !defined(STACK)
118 #error "DDB or STACK options are required for WITNESS"
119 #endif
120
121 /* Note that these traces do not work with KTR_ALQ. */
122 #if 0
123 #define KTR_WITNESS     KTR_SUBSYS
124 #else
125 #define KTR_WITNESS     0
126 #endif
127
128 #define LI_RECURSEMASK  0x0000ffff      /* Recursion depth of lock instance. */
129 #define LI_EXCLUSIVE    0x00010000      /* Exclusive lock instance. */
130 #define LI_NORELEASE    0x00020000      /* Lock not allowed to be released. */
131
132 /* Define this to check for blessed mutexes */
133 #undef BLESSING
134
135 #define WITNESS_COUNT           1024
136 #define WITNESS_CHILDCOUNT      (WITNESS_COUNT * 4)
137 #define WITNESS_HASH_SIZE       251     /* Prime, gives load factor < 2 */
138 #define WITNESS_PENDLIST        (1024 + MAXCPU)
139
140 /* Allocate 256 KB of stack data space */
141 #define WITNESS_LO_DATA_COUNT   2048
142
143 /* Prime, gives load factor of ~2 at full load */
144 #define WITNESS_LO_HASH_SIZE    1021
145
146 /*
147  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
148  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
149  * probably be safe for the most part, but it's still a SWAG.
150  */
151 #define LOCK_NCHILDREN  5
152 #define LOCK_CHILDCOUNT 2048
153
154 #define MAX_W_NAME      64
155
156 #define BADSTACK_SBUF_SIZE      (256 * WITNESS_COUNT)
157 #define FULLGRAPH_SBUF_SIZE     512
158
159 /*
160  * These flags go in the witness relationship matrix and describe the
161  * relationship between any two struct witness objects.
162  */
163 #define WITNESS_UNRELATED        0x00    /* No lock order relation. */
164 #define WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
165 #define WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
166 #define WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
167 #define WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
168 #define WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
169 #define WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
170 #define WITNESS_RELATED_MASK                                            \
171         (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
172 #define WITNESS_REVERSAL         0x10    /* A lock order reversal has been
173                                           * observed. */
174 #define WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
175 #define WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
176 #define WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
177
178 /* Descendant to ancestor flags */
179 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
180
181 /* Ancestor to descendant flags */
182 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
183
184 #define WITNESS_INDEX_ASSERT(i)                                         \
185         MPASS((i) > 0 && (i) <= w_max_used_index && (i) < WITNESS_COUNT)
186
187 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
188
189 /*
190  * Lock instances.  A lock instance is the data associated with a lock while
191  * it is held by witness.  For example, a lock instance will hold the
192  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
193  * are held in a per-cpu list while sleep locks are held in per-thread list.
194  */
195 struct lock_instance {
196         struct lock_object      *li_lock;
197         const char              *li_file;
198         int                     li_line;
199         u_int                   li_flags;
200 };
201
202 /*
203  * A simple list type used to build the list of locks held by a thread
204  * or CPU.  We can't simply embed the list in struct lock_object since a
205  * lock may be held by more than one thread if it is a shared lock.  Locks
206  * are added to the head of the list, so we fill up each list entry from
207  * "the back" logically.  To ease some of the arithmetic, we actually fill
208  * in each list entry the normal way (children[0] then children[1], etc.) but
209  * when we traverse the list we read children[count-1] as the first entry
210  * down to children[0] as the final entry.
211  */
212 struct lock_list_entry {
213         struct lock_list_entry  *ll_next;
214         struct lock_instance    ll_children[LOCK_NCHILDREN];
215         u_int                   ll_count;
216 };
217
218 /*
219  * The main witness structure. One of these per named lock type in the system
220  * (for example, "vnode interlock").
221  */
222 struct witness {
223         char                    w_name[MAX_W_NAME];
224         uint32_t                w_index;  /* Index in the relationship matrix */
225         struct lock_class       *w_class;
226         STAILQ_ENTRY(witness)   w_list;         /* List of all witnesses. */
227         STAILQ_ENTRY(witness)   w_typelist;     /* Witnesses of a type. */
228         struct witness          *w_hash_next; /* Linked list in hash buckets. */
229         const char              *w_file; /* File where last acquired */
230         uint32_t                w_line; /* Line where last acquired */
231         uint32_t                w_refcount;
232         uint16_t                w_num_ancestors; /* direct/indirect
233                                                   * ancestor count */
234         uint16_t                w_num_descendants; /* direct/indirect
235                                                     * descendant count */
236         int16_t                 w_ddb_level;
237         unsigned                w_displayed:1;
238         unsigned                w_reversed:1;
239 };
240
241 STAILQ_HEAD(witness_list, witness);
242
243 /*
244  * The witness hash table. Keys are witness names (const char *), elements are
245  * witness objects (struct witness *).
246  */
247 struct witness_hash {
248         struct witness  *wh_array[WITNESS_HASH_SIZE];
249         uint32_t        wh_size;
250         uint32_t        wh_count;
251 };
252
253 /*
254  * Key type for the lock order data hash table.
255  */
256 struct witness_lock_order_key {
257         uint16_t        from;
258         uint16_t        to;
259 };
260
261 struct witness_lock_order_data {
262         struct stack                    wlod_stack;
263         struct witness_lock_order_key   wlod_key;
264         struct witness_lock_order_data  *wlod_next;
265 };
266
267 /*
268  * The witness lock order data hash table. Keys are witness index tuples
269  * (struct witness_lock_order_key), elements are lock order data objects
270  * (struct witness_lock_order_data). 
271  */
272 struct witness_lock_order_hash {
273         struct witness_lock_order_data  *wloh_array[WITNESS_LO_HASH_SIZE];
274         u_int   wloh_size;
275         u_int   wloh_count;
276 };
277
278 #ifdef BLESSING
279 struct witness_blessed {
280         const char      *b_lock1;
281         const char      *b_lock2;
282 };
283 #endif
284
285 struct witness_pendhelp {
286         const char              *wh_type;
287         struct lock_object      *wh_lock;
288 };
289
290 struct witness_order_list_entry {
291         const char              *w_name;
292         struct lock_class       *w_class;
293 };
294
295 /*
296  * Returns 0 if one of the locks is a spin lock and the other is not.
297  * Returns 1 otherwise.
298  */
299 static __inline int
300 witness_lock_type_equal(struct witness *w1, struct witness *w2)
301 {
302
303         return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
304                 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
305 }
306
307 static __inline int
308 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
309     const struct witness_lock_order_key *b)
310 {
311
312         return (a->from == b->from && a->to == b->to);
313 }
314
315 static int      _isitmyx(struct witness *w1, struct witness *w2, int rmask,
316                     const char *fname);
317 #ifdef KDB
318 static void     _witness_debugger(int cond, const char *msg);
319 #endif
320 static void     adopt(struct witness *parent, struct witness *child);
321 #ifdef BLESSING
322 static int      blessed(struct witness *, struct witness *);
323 #endif
324 static void     depart(struct witness *w);
325 static struct witness   *enroll(const char *description,
326                             struct lock_class *lock_class);
327 static struct lock_instance     *find_instance(struct lock_list_entry *list,
328                                     const struct lock_object *lock);
329 static int      isitmychild(struct witness *parent, struct witness *child);
330 static int      isitmydescendant(struct witness *parent, struct witness *child);
331 static void     itismychild(struct witness *parent, struct witness *child);
332 static int      sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
333 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
334 static int      sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
335 static void     witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
336 #ifdef DDB
337 static void     witness_ddb_compute_levels(void);
338 static void     witness_ddb_display(int(*)(const char *fmt, ...));
339 static void     witness_ddb_display_descendants(int(*)(const char *fmt, ...),
340                     struct witness *, int indent);
341 static void     witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
342                     struct witness_list *list);
343 static void     witness_ddb_level_descendants(struct witness *parent, int l);
344 static void     witness_ddb_list(struct thread *td);
345 #endif
346 static void     witness_free(struct witness *m);
347 static struct witness   *witness_get(void);
348 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
349 static struct witness   *witness_hash_get(const char *key);
350 static void     witness_hash_put(struct witness *w);
351 static void     witness_init_hash_tables(void);
352 static void     witness_increment_graph_generation(void);
353 static void     witness_lock_list_free(struct lock_list_entry *lle);
354 static struct lock_list_entry   *witness_lock_list_get(void);
355 static int      witness_lock_order_add(struct witness *parent,
356                     struct witness *child);
357 static int      witness_lock_order_check(struct witness *parent,
358                     struct witness *child);
359 static struct witness_lock_order_data   *witness_lock_order_get(
360                                             struct witness *parent,
361                                             struct witness *child);
362 static void     witness_list_lock(struct lock_instance *instance,
363                     int (*prnt)(const char *fmt, ...));
364 static void     witness_setflag(struct lock_object *lock, int flag, int set);
365
366 #ifdef KDB
367 #define witness_debugger(c)     _witness_debugger(c, __func__)
368 #else
369 #define witness_debugger(c)
370 #endif
371
372 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL,
373     "Witness Locking");
374
375 /*
376  * If set to 0, lock order checking is disabled.  If set to -1,
377  * witness is completely disabled.  Otherwise witness performs full
378  * lock order checking for all locks.  At runtime, lock order checking
379  * may be toggled.  However, witness cannot be reenabled once it is
380  * completely disabled.
381  */
382 static int witness_watch = 1;
383 TUNABLE_INT("debug.witness.watch", &witness_watch);
384 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
385     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
386
387 #ifdef KDB
388 /*
389  * When KDB is enabled and witness_kdb is 1, it will cause the system
390  * to drop into kdebug() when:
391  *      - a lock hierarchy violation occurs
392  *      - locks are held when going to sleep.
393  */
394 #ifdef WITNESS_KDB
395 int     witness_kdb = 1;
396 #else
397 int     witness_kdb = 0;
398 #endif
399 TUNABLE_INT("debug.witness.kdb", &witness_kdb);
400 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
401
402 /*
403  * When KDB is enabled and witness_trace is 1, it will cause the system
404  * to print a stack trace:
405  *      - a lock hierarchy violation occurs
406  *      - locks are held when going to sleep.
407  */
408 int     witness_trace = 1;
409 TUNABLE_INT("debug.witness.trace", &witness_trace);
410 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
411 #endif /* KDB */
412
413 #ifdef WITNESS_SKIPSPIN
414 int     witness_skipspin = 1;
415 #else
416 int     witness_skipspin = 0;
417 #endif
418 TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
419 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin,
420     0, "");
421
422 /*
423  * Call this to print out the relations between locks.
424  */
425 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
426     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
427
428 /*
429  * Call this to print out the witness faulty stacks.
430  */
431 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
432     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
433
434 static struct mtx w_mtx;
435
436 /* w_list */
437 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
438 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
439
440 /* w_typelist */
441 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
442 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
443
444 /* lock list */
445 static struct lock_list_entry *w_lock_list_free = NULL;
446 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
447 static u_int pending_cnt;
448
449 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
450 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
451 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
452 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
453     "");
454
455 static struct witness *w_data;
456 static uint8_t w_rmatrix[WITNESS_COUNT+1][WITNESS_COUNT+1];
457 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
458 static struct witness_hash w_hash;      /* The witness hash table. */
459
460 /* The lock order data hash */
461 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
462 static struct witness_lock_order_data *w_lofree = NULL;
463 static struct witness_lock_order_hash w_lohash;
464 static int w_max_used_index = 0;
465 static unsigned int w_generation = 0;
466 static const char w_notrunning[] = "Witness not running\n";
467 static const char w_stillcold[] = "Witness is still cold\n";
468
469
470 static struct witness_order_list_entry order_lists[] = {
471         /*
472          * sx locks
473          */
474         { "proctree", &lock_class_sx },
475         { "allproc", &lock_class_sx },
476         { "allprison", &lock_class_sx },
477         { NULL, NULL },
478         /*
479          * Various mutexes
480          */
481         { "Giant", &lock_class_mtx_sleep },
482         { "pipe mutex", &lock_class_mtx_sleep },
483         { "sigio lock", &lock_class_mtx_sleep },
484         { "process group", &lock_class_mtx_sleep },
485         { "process lock", &lock_class_mtx_sleep },
486         { "session", &lock_class_mtx_sleep },
487         { "uidinfo hash", &lock_class_rw },
488 #ifdef  HWPMC_HOOKS
489         { "pmc-sleep", &lock_class_mtx_sleep },
490 #endif
491         { "time lock", &lock_class_mtx_sleep },
492         { NULL, NULL },
493         /*
494          * umtx
495          */
496         { "umtx lock", &lock_class_mtx_sleep },
497         { NULL, NULL },
498         /*
499          * Sockets
500          */
501         { "accept", &lock_class_mtx_sleep },
502         { "so_snd", &lock_class_mtx_sleep },
503         { "so_rcv", &lock_class_mtx_sleep },
504         { "sellck", &lock_class_mtx_sleep },
505         { NULL, NULL },
506         /*
507          * Routing
508          */
509         { "so_rcv", &lock_class_mtx_sleep },
510         { "radix node head", &lock_class_rw },
511         { "rtentry", &lock_class_mtx_sleep },
512         { "ifaddr", &lock_class_mtx_sleep },
513         { NULL, NULL },
514         /*
515          * IPv4 multicast:
516          * protocol locks before interface locks, after UDP locks.
517          */
518         { "udpinp", &lock_class_rw },
519         { "in_multi_mtx", &lock_class_mtx_sleep },
520         { "igmp_mtx", &lock_class_mtx_sleep },
521         { "if_addr_lock", &lock_class_rw },
522         { NULL, NULL },
523         /*
524          * IPv6 multicast:
525          * protocol locks before interface locks, after UDP locks.
526          */
527         { "udpinp", &lock_class_rw },
528         { "in6_multi_mtx", &lock_class_mtx_sleep },
529         { "mld_mtx", &lock_class_mtx_sleep },
530         { "if_addr_lock", &lock_class_rw },
531         { NULL, NULL },
532         /*
533          * UNIX Domain Sockets
534          */
535         { "unp_link_rwlock", &lock_class_rw },
536         { "unp_list_lock", &lock_class_mtx_sleep },
537         { "unp", &lock_class_mtx_sleep },
538         { "so_snd", &lock_class_mtx_sleep },
539         { NULL, NULL },
540         /*
541          * UDP/IP
542          */
543         { "udp", &lock_class_rw },
544         { "udpinp", &lock_class_rw },
545         { "so_snd", &lock_class_mtx_sleep },
546         { NULL, NULL },
547         /*
548          * TCP/IP
549          */
550         { "tcp", &lock_class_rw },
551         { "tcpinp", &lock_class_rw },
552         { "so_snd", &lock_class_mtx_sleep },
553         { NULL, NULL },
554         /*
555          * netatalk
556          */
557         { "ddp_list_mtx", &lock_class_mtx_sleep },
558         { "ddp_mtx", &lock_class_mtx_sleep },
559         { NULL, NULL },
560         /*
561          * BPF
562          */
563         { "bpf global lock", &lock_class_mtx_sleep },
564         { "bpf interface lock", &lock_class_rw },
565         { "bpf cdev lock", &lock_class_mtx_sleep },
566         { NULL, NULL },
567         /*
568          * NFS server
569          */
570         { "nfsd_mtx", &lock_class_mtx_sleep },
571         { "so_snd", &lock_class_mtx_sleep },
572         { NULL, NULL },
573
574         /*
575          * IEEE 802.11
576          */
577         { "802.11 com lock", &lock_class_mtx_sleep},
578         { NULL, NULL },
579         /*
580          * Network drivers
581          */
582         { "network driver", &lock_class_mtx_sleep},
583         { NULL, NULL },
584
585         /*
586          * Netgraph
587          */
588         { "ng_node", &lock_class_mtx_sleep },
589         { "ng_worklist", &lock_class_mtx_sleep },
590         { NULL, NULL },
591         /*
592          * CDEV
593          */
594         { "vm map (system)", &lock_class_mtx_sleep },
595         { "vm page queue", &lock_class_mtx_sleep },
596         { "vnode interlock", &lock_class_mtx_sleep },
597         { "cdev", &lock_class_mtx_sleep },
598         { NULL, NULL },
599         /*
600          * VM
601          */
602         { "vm map (user)", &lock_class_sx },
603         { "vm object", &lock_class_rw },
604         { "vm page", &lock_class_mtx_sleep },
605         { "vm page queue", &lock_class_mtx_sleep },
606         { "pmap pv global", &lock_class_rw },
607         { "pmap", &lock_class_mtx_sleep },
608         { "pmap pv list", &lock_class_rw },
609         { "vm page free queue", &lock_class_mtx_sleep },
610         { NULL, NULL },
611         /*
612          * kqueue/VFS interaction
613          */
614         { "kqueue", &lock_class_mtx_sleep },
615         { "struct mount mtx", &lock_class_mtx_sleep },
616         { "vnode interlock", &lock_class_mtx_sleep },
617         { NULL, NULL },
618         /*
619          * ZFS locking
620          */
621         { "dn->dn_mtx", &lock_class_sx },
622         { "dr->dt.di.dr_mtx", &lock_class_sx },
623         { "db->db_mtx", &lock_class_sx },
624         { NULL, NULL },
625         /*
626          * spin locks
627          */
628 #ifdef SMP
629         { "ap boot", &lock_class_mtx_spin },
630 #endif
631         { "rm.mutex_mtx", &lock_class_mtx_spin },
632         { "sio", &lock_class_mtx_spin },
633         { "scrlock", &lock_class_mtx_spin },
634 #ifdef __i386__
635         { "cy", &lock_class_mtx_spin },
636 #endif
637 #ifdef __sparc64__
638         { "pcib_mtx", &lock_class_mtx_spin },
639         { "rtc_mtx", &lock_class_mtx_spin },
640 #endif
641         { "scc_hwmtx", &lock_class_mtx_spin },
642         { "uart_hwmtx", &lock_class_mtx_spin },
643         { "fast_taskqueue", &lock_class_mtx_spin },
644         { "intr table", &lock_class_mtx_spin },
645 #ifdef  HWPMC_HOOKS
646         { "pmc-per-proc", &lock_class_mtx_spin },
647 #endif
648         { "process slock", &lock_class_mtx_spin },
649         { "sleepq chain", &lock_class_mtx_spin },
650         { "rm_spinlock", &lock_class_mtx_spin },
651         { "turnstile chain", &lock_class_mtx_spin },
652         { "turnstile lock", &lock_class_mtx_spin },
653         { "sched lock", &lock_class_mtx_spin },
654         { "td_contested", &lock_class_mtx_spin },
655         { "callout", &lock_class_mtx_spin },
656         { "entropy harvest mutex", &lock_class_mtx_spin },
657         { "syscons video lock", &lock_class_mtx_spin },
658 #ifdef SMP
659         { "smp rendezvous", &lock_class_mtx_spin },
660 #endif
661 #ifdef __powerpc__
662         { "tlb0", &lock_class_mtx_spin },
663 #endif
664         /*
665          * leaf locks
666          */
667         { "intrcnt", &lock_class_mtx_spin },
668         { "icu", &lock_class_mtx_spin },
669 #ifdef __i386__
670         { "allpmaps", &lock_class_mtx_spin },
671         { "descriptor tables", &lock_class_mtx_spin },
672 #endif
673         { "clk", &lock_class_mtx_spin },
674         { "cpuset", &lock_class_mtx_spin },
675         { "mprof lock", &lock_class_mtx_spin },
676         { "zombie lock", &lock_class_mtx_spin },
677         { "ALD Queue", &lock_class_mtx_spin },
678 #ifdef __ia64__
679         { "MCA spin lock", &lock_class_mtx_spin },
680 #endif
681 #if defined(__i386__) || defined(__amd64__)
682         { "pcicfg", &lock_class_mtx_spin },
683         { "NDIS thread lock", &lock_class_mtx_spin },
684 #endif
685         { "tw_osl_io_lock", &lock_class_mtx_spin },
686         { "tw_osl_q_lock", &lock_class_mtx_spin },
687         { "tw_cl_io_lock", &lock_class_mtx_spin },
688         { "tw_cl_intr_lock", &lock_class_mtx_spin },
689         { "tw_cl_gen_lock", &lock_class_mtx_spin },
690 #ifdef  HWPMC_HOOKS
691         { "pmc-leaf", &lock_class_mtx_spin },
692 #endif
693         { "blocked lock", &lock_class_mtx_spin },
694         { NULL, NULL },
695         { NULL, NULL }
696 };
697
698 #ifdef BLESSING
699 /*
700  * Pairs of locks which have been blessed
701  * Don't complain about order problems with blessed locks
702  */
703 static struct witness_blessed blessed_list[] = {
704 };
705 static int blessed_count =
706         sizeof(blessed_list) / sizeof(struct witness_blessed);
707 #endif
708
709 /*
710  * This global is set to 0 once it becomes safe to use the witness code.
711  */
712 static int witness_cold = 1;
713
714 /*
715  * This global is set to 1 once the static lock orders have been enrolled
716  * so that a warning can be issued for any spin locks enrolled later.
717  */
718 static int witness_spin_warn = 0;
719
720 /* Trim useless garbage from filenames. */
721 static const char *
722 fixup_filename(const char *file)
723 {
724
725         if (file == NULL)
726                 return (NULL);
727         while (strncmp(file, "../", 3) == 0)
728                 file += 3;
729         return (file);
730 }
731
732 /*
733  * The WITNESS-enabled diagnostic code.  Note that the witness code does
734  * assume that the early boot is single-threaded at least until after this
735  * routine is completed.
736  */
737 static void
738 witness_initialize(void *dummy __unused)
739 {
740         struct lock_object *lock;
741         struct witness_order_list_entry *order;
742         struct witness *w, *w1;
743         int i;
744
745         w_data = malloc(sizeof (struct witness) * WITNESS_COUNT, M_WITNESS,
746             M_NOWAIT | M_ZERO);
747
748         /*
749          * We have to release Giant before initializing its witness
750          * structure so that WITNESS doesn't get confused.
751          */
752         mtx_unlock(&Giant);
753         mtx_assert(&Giant, MA_NOTOWNED);
754
755         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
756         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
757             MTX_NOWITNESS | MTX_NOPROFILE);
758         for (i = WITNESS_COUNT - 1; i >= 0; i--) {
759                 w = &w_data[i];
760                 memset(w, 0, sizeof(*w));
761                 w_data[i].w_index = i;  /* Witness index never changes. */
762                 witness_free(w);
763         }
764         KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
765             ("%s: Invalid list of free witness objects", __func__));
766
767         /* Witness with index 0 is not used to aid in debugging. */
768         STAILQ_REMOVE_HEAD(&w_free, w_list);
769         w_free_cnt--;
770
771         memset(w_rmatrix, 0,
772             (sizeof(**w_rmatrix) * (WITNESS_COUNT+1) * (WITNESS_COUNT+1)));
773
774         for (i = 0; i < LOCK_CHILDCOUNT; i++)
775                 witness_lock_list_free(&w_locklistdata[i]);
776         witness_init_hash_tables();
777
778         /* First add in all the specified order lists. */
779         for (order = order_lists; order->w_name != NULL; order++) {
780                 w = enroll(order->w_name, order->w_class);
781                 if (w == NULL)
782                         continue;
783                 w->w_file = "order list";
784                 for (order++; order->w_name != NULL; order++) {
785                         w1 = enroll(order->w_name, order->w_class);
786                         if (w1 == NULL)
787                                 continue;
788                         w1->w_file = "order list";
789                         itismychild(w, w1);
790                         w = w1;
791                 }
792         }
793         witness_spin_warn = 1;
794
795         /* Iterate through all locks and add them to witness. */
796         for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
797                 lock = pending_locks[i].wh_lock;
798                 KASSERT(lock->lo_flags & LO_WITNESS,
799                     ("%s: lock %s is on pending list but not LO_WITNESS",
800                     __func__, lock->lo_name));
801                 lock->lo_witness = enroll(pending_locks[i].wh_type,
802                     LOCK_CLASS(lock));
803         }
804
805         /* Mark the witness code as being ready for use. */
806         witness_cold = 0;
807
808         mtx_lock(&Giant);
809 }
810 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
811     NULL);
812
813 void
814 witness_init(struct lock_object *lock, const char *type)
815 {
816         struct lock_class *class;
817
818         /* Various sanity checks. */
819         class = LOCK_CLASS(lock);
820         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
821             (class->lc_flags & LC_RECURSABLE) == 0)
822                 kassert_panic("%s: lock (%s) %s can not be recursable",
823                     __func__, class->lc_name, lock->lo_name);
824         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
825             (class->lc_flags & LC_SLEEPABLE) == 0)
826                 kassert_panic("%s: lock (%s) %s can not be sleepable",
827                     __func__, class->lc_name, lock->lo_name);
828         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
829             (class->lc_flags & LC_UPGRADABLE) == 0)
830                 kassert_panic("%s: lock (%s) %s can not be upgradable",
831                     __func__, class->lc_name, lock->lo_name);
832
833         /*
834          * If we shouldn't watch this lock, then just clear lo_witness.
835          * Otherwise, if witness_cold is set, then it is too early to
836          * enroll this lock, so defer it to witness_initialize() by adding
837          * it to the pending_locks list.  If it is not too early, then enroll
838          * the lock now.
839          */
840         if (witness_watch < 1 || panicstr != NULL ||
841             (lock->lo_flags & LO_WITNESS) == 0)
842                 lock->lo_witness = NULL;
843         else if (witness_cold) {
844                 pending_locks[pending_cnt].wh_lock = lock;
845                 pending_locks[pending_cnt++].wh_type = type;
846                 if (pending_cnt > WITNESS_PENDLIST)
847                         panic("%s: pending locks list is too small, "
848                             "increase WITNESS_PENDLIST\n",
849                             __func__);
850         } else
851                 lock->lo_witness = enroll(type, class);
852 }
853
854 void
855 witness_destroy(struct lock_object *lock)
856 {
857         struct lock_class *class;
858         struct witness *w;
859
860         class = LOCK_CLASS(lock);
861
862         if (witness_cold)
863                 panic("lock (%s) %s destroyed while witness_cold",
864                     class->lc_name, lock->lo_name);
865
866         /* XXX: need to verify that no one holds the lock */
867         if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
868                 return;
869         w = lock->lo_witness;
870
871         mtx_lock_spin(&w_mtx);
872         MPASS(w->w_refcount > 0);
873         w->w_refcount--;
874
875         if (w->w_refcount == 0)
876                 depart(w);
877         mtx_unlock_spin(&w_mtx);
878 }
879
880 #ifdef DDB
881 static void
882 witness_ddb_compute_levels(void)
883 {
884         struct witness *w;
885
886         /*
887          * First clear all levels.
888          */
889         STAILQ_FOREACH(w, &w_all, w_list)
890                 w->w_ddb_level = -1;
891
892         /*
893          * Look for locks with no parents and level all their descendants.
894          */
895         STAILQ_FOREACH(w, &w_all, w_list) {
896
897                 /* If the witness has ancestors (is not a root), skip it. */
898                 if (w->w_num_ancestors > 0)
899                         continue;
900                 witness_ddb_level_descendants(w, 0);
901         }
902 }
903
904 static void
905 witness_ddb_level_descendants(struct witness *w, int l)
906 {
907         int i;
908
909         if (w->w_ddb_level >= l)
910                 return;
911
912         w->w_ddb_level = l;
913         l++;
914
915         for (i = 1; i <= w_max_used_index; i++) {
916                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
917                         witness_ddb_level_descendants(&w_data[i], l);
918         }
919 }
920
921 static void
922 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
923     struct witness *w, int indent)
924 {
925         int i;
926
927         for (i = 0; i < indent; i++)
928                 prnt(" ");
929         prnt("%s (type: %s, depth: %d, active refs: %d)",
930              w->w_name, w->w_class->lc_name,
931              w->w_ddb_level, w->w_refcount);
932         if (w->w_displayed) {
933                 prnt(" -- (already displayed)\n");
934                 return;
935         }
936         w->w_displayed = 1;
937         if (w->w_file != NULL && w->w_line != 0)
938                 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
939                     w->w_line);
940         else
941                 prnt(" -- never acquired\n");
942         indent++;
943         WITNESS_INDEX_ASSERT(w->w_index);
944         for (i = 1; i <= w_max_used_index; i++) {
945                 if (db_pager_quit)
946                         return;
947                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
948                         witness_ddb_display_descendants(prnt, &w_data[i],
949                             indent);
950         }
951 }
952
953 static void
954 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
955     struct witness_list *list)
956 {
957         struct witness *w;
958
959         STAILQ_FOREACH(w, list, w_typelist) {
960                 if (w->w_file == NULL || w->w_ddb_level > 0)
961                         continue;
962
963                 /* This lock has no anscestors - display its descendants. */
964                 witness_ddb_display_descendants(prnt, w, 0);
965                 if (db_pager_quit)
966                         return;
967         }
968 }
969         
970 static void
971 witness_ddb_display(int(*prnt)(const char *fmt, ...))
972 {
973         struct witness *w;
974
975         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
976         witness_ddb_compute_levels();
977
978         /* Clear all the displayed flags. */
979         STAILQ_FOREACH(w, &w_all, w_list)
980                 w->w_displayed = 0;
981
982         /*
983          * First, handle sleep locks which have been acquired at least
984          * once.
985          */
986         prnt("Sleep locks:\n");
987         witness_ddb_display_list(prnt, &w_sleep);
988         if (db_pager_quit)
989                 return;
990         
991         /*
992          * Now do spin locks which have been acquired at least once.
993          */
994         prnt("\nSpin locks:\n");
995         witness_ddb_display_list(prnt, &w_spin);
996         if (db_pager_quit)
997                 return;
998         
999         /*
1000          * Finally, any locks which have not been acquired yet.
1001          */
1002         prnt("\nLocks which were never acquired:\n");
1003         STAILQ_FOREACH(w, &w_all, w_list) {
1004                 if (w->w_file != NULL || w->w_refcount == 0)
1005                         continue;
1006                 prnt("%s (type: %s, depth: %d)\n", w->w_name,
1007                     w->w_class->lc_name, w->w_ddb_level);
1008                 if (db_pager_quit)
1009                         return;
1010         }
1011 }
1012 #endif /* DDB */
1013
1014 int
1015 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1016 {
1017
1018         if (witness_watch == -1 || panicstr != NULL)
1019                 return (0);
1020
1021         /* Require locks that witness knows about. */
1022         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1023             lock2->lo_witness == NULL)
1024                 return (EINVAL);
1025
1026         mtx_assert(&w_mtx, MA_NOTOWNED);
1027         mtx_lock_spin(&w_mtx);
1028
1029         /*
1030          * If we already have either an explicit or implied lock order that
1031          * is the other way around, then return an error.
1032          */
1033         if (witness_watch &&
1034             isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1035                 mtx_unlock_spin(&w_mtx);
1036                 return (EDOOFUS);
1037         }
1038         
1039         /* Try to add the new order. */
1040         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1041             lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1042         itismychild(lock1->lo_witness, lock2->lo_witness);
1043         mtx_unlock_spin(&w_mtx);
1044         return (0);
1045 }
1046
1047 void
1048 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1049     int line, struct lock_object *interlock)
1050 {
1051         struct lock_list_entry *lock_list, *lle;
1052         struct lock_instance *lock1, *lock2, *plock;
1053         struct lock_class *class, *iclass;
1054         struct witness *w, *w1;
1055         struct thread *td;
1056         int i, j;
1057
1058         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1059             panicstr != NULL)
1060                 return;
1061
1062         w = lock->lo_witness;
1063         class = LOCK_CLASS(lock);
1064         td = curthread;
1065
1066         if (class->lc_flags & LC_SLEEPLOCK) {
1067
1068                 /*
1069                  * Since spin locks include a critical section, this check
1070                  * implicitly enforces a lock order of all sleep locks before
1071                  * all spin locks.
1072                  */
1073                 if (td->td_critnest != 0 && !kdb_active)
1074                         kassert_panic("acquiring blockable sleep lock with "
1075                             "spinlock or critical section held (%s) %s @ %s:%d",
1076                             class->lc_name, lock->lo_name,
1077                             fixup_filename(file), line);
1078
1079                 /*
1080                  * If this is the first lock acquired then just return as
1081                  * no order checking is needed.
1082                  */
1083                 lock_list = td->td_sleeplocks;
1084                 if (lock_list == NULL || lock_list->ll_count == 0)
1085                         return;
1086         } else {
1087
1088                 /*
1089                  * If this is the first lock, just return as no order
1090                  * checking is needed.  Avoid problems with thread
1091                  * migration pinning the thread while checking if
1092                  * spinlocks are held.  If at least one spinlock is held
1093                  * the thread is in a safe path and it is allowed to
1094                  * unpin it.
1095                  */
1096                 sched_pin();
1097                 lock_list = PCPU_GET(spinlocks);
1098                 if (lock_list == NULL || lock_list->ll_count == 0) {
1099                         sched_unpin();
1100                         return;
1101                 }
1102                 sched_unpin();
1103         }
1104
1105         /*
1106          * Check to see if we are recursing on a lock we already own.  If
1107          * so, make sure that we don't mismatch exclusive and shared lock
1108          * acquires.
1109          */
1110         lock1 = find_instance(lock_list, lock);
1111         if (lock1 != NULL) {
1112                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1113                     (flags & LOP_EXCLUSIVE) == 0) {
1114                         printf("shared lock of (%s) %s @ %s:%d\n",
1115                             class->lc_name, lock->lo_name,
1116                             fixup_filename(file), line);
1117                         printf("while exclusively locked from %s:%d\n",
1118                             fixup_filename(lock1->li_file), lock1->li_line);
1119                         kassert_panic("excl->share");
1120                 }
1121                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1122                     (flags & LOP_EXCLUSIVE) != 0) {
1123                         printf("exclusive lock of (%s) %s @ %s:%d\n",
1124                             class->lc_name, lock->lo_name,
1125                             fixup_filename(file), line);
1126                         printf("while share locked from %s:%d\n",
1127                             fixup_filename(lock1->li_file), lock1->li_line);
1128                         kassert_panic("share->excl");
1129                 }
1130                 return;
1131         }
1132
1133         /* Warn if the interlock is not locked exactly once. */
1134         if (interlock != NULL) {
1135                 iclass = LOCK_CLASS(interlock);
1136                 lock1 = find_instance(lock_list, interlock);
1137                 if (lock1 == NULL)
1138                         kassert_panic("interlock (%s) %s not locked @ %s:%d",
1139                             iclass->lc_name, interlock->lo_name,
1140                             fixup_filename(file), line);
1141                 else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
1142                         kassert_panic("interlock (%s) %s recursed @ %s:%d",
1143                             iclass->lc_name, interlock->lo_name,
1144                             fixup_filename(file), line);
1145         }
1146
1147         /*
1148          * Find the previously acquired lock, but ignore interlocks.
1149          */
1150         plock = &lock_list->ll_children[lock_list->ll_count - 1];
1151         if (interlock != NULL && plock->li_lock == interlock) {
1152                 if (lock_list->ll_count > 1)
1153                         plock =
1154                             &lock_list->ll_children[lock_list->ll_count - 2];
1155                 else {
1156                         lle = lock_list->ll_next;
1157
1158                         /*
1159                          * The interlock is the only lock we hold, so
1160                          * simply return.
1161                          */
1162                         if (lle == NULL)
1163                                 return;
1164                         plock = &lle->ll_children[lle->ll_count - 1];
1165                 }
1166         }
1167         
1168         /*
1169          * Try to perform most checks without a lock.  If this succeeds we
1170          * can skip acquiring the lock and return success.
1171          */
1172         w1 = plock->li_lock->lo_witness;
1173         if (witness_lock_order_check(w1, w))
1174                 return;
1175
1176         /*
1177          * Check for duplicate locks of the same type.  Note that we only
1178          * have to check for this on the last lock we just acquired.  Any
1179          * other cases will be caught as lock order violations.
1180          */
1181         mtx_lock_spin(&w_mtx);
1182         witness_lock_order_add(w1, w);
1183         if (w1 == w) {
1184                 i = w->w_index;
1185                 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1186                     !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1187                     w_rmatrix[i][i] |= WITNESS_REVERSAL;
1188                         w->w_reversed = 1;
1189                         mtx_unlock_spin(&w_mtx);
1190                         printf(
1191                             "acquiring duplicate lock of same type: \"%s\"\n", 
1192                             w->w_name);
1193                         printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1194                             fixup_filename(plock->li_file), plock->li_line);
1195                         printf(" 2nd %s @ %s:%d\n", lock->lo_name,
1196                             fixup_filename(file), line);
1197                         witness_debugger(1);
1198                 } else
1199                         mtx_unlock_spin(&w_mtx);
1200                 return;
1201         }
1202         mtx_assert(&w_mtx, MA_OWNED);
1203
1204         /*
1205          * If we know that the lock we are acquiring comes after
1206          * the lock we most recently acquired in the lock order tree,
1207          * then there is no need for any further checks.
1208          */
1209         if (isitmychild(w1, w))
1210                 goto out;
1211
1212         for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1213                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1214
1215                         MPASS(j < WITNESS_COUNT);
1216                         lock1 = &lle->ll_children[i];
1217
1218                         /*
1219                          * Ignore the interlock.
1220                          */
1221                         if (interlock == lock1->li_lock)
1222                                 continue;
1223
1224                         /*
1225                          * If this lock doesn't undergo witness checking,
1226                          * then skip it.
1227                          */
1228                         w1 = lock1->li_lock->lo_witness;
1229                         if (w1 == NULL) {
1230                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1231                                     ("lock missing witness structure"));
1232                                 continue;
1233                         }
1234
1235                         /*
1236                          * If we are locking Giant and this is a sleepable
1237                          * lock, then skip it.
1238                          */
1239                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1240                             lock == &Giant.lock_object)
1241                                 continue;
1242
1243                         /*
1244                          * If we are locking a sleepable lock and this lock
1245                          * is Giant, then skip it.
1246                          */
1247                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1248                             lock1->li_lock == &Giant.lock_object)
1249                                 continue;
1250
1251                         /*
1252                          * If we are locking a sleepable lock and this lock
1253                          * isn't sleepable, we want to treat it as a lock
1254                          * order violation to enfore a general lock order of
1255                          * sleepable locks before non-sleepable locks.
1256                          */
1257                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1258                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1259                                 goto reversal;
1260
1261                         /*
1262                          * If we are locking Giant and this is a non-sleepable
1263                          * lock, then treat it as a reversal.
1264                          */
1265                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1266                             lock == &Giant.lock_object)
1267                                 goto reversal;
1268
1269                         /*
1270                          * Check the lock order hierarchy for a reveresal.
1271                          */
1272                         if (!isitmydescendant(w, w1))
1273                                 continue;
1274                 reversal:
1275
1276                         /*
1277                          * We have a lock order violation, check to see if it
1278                          * is allowed or has already been yelled about.
1279                          */
1280 #ifdef BLESSING
1281
1282                         /*
1283                          * If the lock order is blessed, just bail.  We don't
1284                          * look for other lock order violations though, which
1285                          * may be a bug.
1286                          */
1287                         if (blessed(w, w1))
1288                                 goto out;
1289 #endif
1290
1291                         /* Bail if this violation is known */
1292                         if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1293                                 goto out;
1294
1295                         /* Record this as a violation */
1296                         w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1297                         w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1298                         w->w_reversed = w1->w_reversed = 1;
1299                         witness_increment_graph_generation();
1300                         mtx_unlock_spin(&w_mtx);
1301
1302 #ifdef WITNESS_NO_VNODE
1303                         /*
1304                          * There are known LORs between VNODE locks. They are
1305                          * not an indication of a bug. VNODE locks are flagged
1306                          * as such (LO_IS_VNODE) and we don't yell if the LOR
1307                          * is between 2 VNODE locks.
1308                          */
1309                         if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
1310                             (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
1311                                 return;
1312 #endif
1313
1314                         /*
1315                          * Ok, yell about it.
1316                          */
1317                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1318                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1319                                 printf(
1320                 "lock order reversal: (sleepable after non-sleepable)\n");
1321                         else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1322                             && lock == &Giant.lock_object)
1323                                 printf(
1324                 "lock order reversal: (Giant after non-sleepable)\n");
1325                         else
1326                                 printf("lock order reversal:\n");
1327
1328                         /*
1329                          * Try to locate an earlier lock with
1330                          * witness w in our list.
1331                          */
1332                         do {
1333                                 lock2 = &lle->ll_children[i];
1334                                 MPASS(lock2->li_lock != NULL);
1335                                 if (lock2->li_lock->lo_witness == w)
1336                                         break;
1337                                 if (i == 0 && lle->ll_next != NULL) {
1338                                         lle = lle->ll_next;
1339                                         i = lle->ll_count - 1;
1340                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
1341                                 } else
1342                                         i--;
1343                         } while (i >= 0);
1344                         if (i < 0) {
1345                                 printf(" 1st %p %s (%s) @ %s:%d\n",
1346                                     lock1->li_lock, lock1->li_lock->lo_name,
1347                                     w1->w_name, fixup_filename(lock1->li_file),
1348                                     lock1->li_line);
1349                                 printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
1350                                     lock->lo_name, w->w_name,
1351                                     fixup_filename(file), line);
1352                         } else {
1353                                 printf(" 1st %p %s (%s) @ %s:%d\n",
1354                                     lock2->li_lock, lock2->li_lock->lo_name,
1355                                     lock2->li_lock->lo_witness->w_name,
1356                                     fixup_filename(lock2->li_file),
1357                                     lock2->li_line);
1358                                 printf(" 2nd %p %s (%s) @ %s:%d\n",
1359                                     lock1->li_lock, lock1->li_lock->lo_name,
1360                                     w1->w_name, fixup_filename(lock1->li_file),
1361                                     lock1->li_line);
1362                                 printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
1363                                     lock->lo_name, w->w_name,
1364                                     fixup_filename(file), line);
1365                         }
1366                         witness_debugger(1);
1367                         return;
1368                 }
1369         }
1370
1371         /*
1372          * If requested, build a new lock order.  However, don't build a new
1373          * relationship between a sleepable lock and Giant if it is in the
1374          * wrong direction.  The correct lock order is that sleepable locks
1375          * always come before Giant.
1376          */
1377         if (flags & LOP_NEWORDER &&
1378             !(plock->li_lock == &Giant.lock_object &&
1379             (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1380                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1381                     w->w_name, plock->li_lock->lo_witness->w_name);
1382                 itismychild(plock->li_lock->lo_witness, w);
1383         }
1384 out:
1385         mtx_unlock_spin(&w_mtx);
1386 }
1387
1388 void
1389 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1390 {
1391         struct lock_list_entry **lock_list, *lle;
1392         struct lock_instance *instance;
1393         struct witness *w;
1394         struct thread *td;
1395
1396         if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1397             panicstr != NULL)
1398                 return;
1399         w = lock->lo_witness;
1400         td = curthread;
1401
1402         /* Determine lock list for this lock. */
1403         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1404                 lock_list = &td->td_sleeplocks;
1405         else
1406                 lock_list = PCPU_PTR(spinlocks);
1407
1408         /* Check to see if we are recursing on a lock we already own. */
1409         instance = find_instance(*lock_list, lock);
1410         if (instance != NULL) {
1411                 instance->li_flags++;
1412                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1413                     td->td_proc->p_pid, lock->lo_name,
1414                     instance->li_flags & LI_RECURSEMASK);
1415                 instance->li_file = file;
1416                 instance->li_line = line;
1417                 return;
1418         }
1419
1420         /* Update per-witness last file and line acquire. */
1421         w->w_file = file;
1422         w->w_line = line;
1423
1424         /* Find the next open lock instance in the list and fill it. */
1425         lle = *lock_list;
1426         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1427                 lle = witness_lock_list_get();
1428                 if (lle == NULL)
1429                         return;
1430                 lle->ll_next = *lock_list;
1431                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1432                     td->td_proc->p_pid, lle);
1433                 *lock_list = lle;
1434         }
1435         instance = &lle->ll_children[lle->ll_count++];
1436         instance->li_lock = lock;
1437         instance->li_line = line;
1438         instance->li_file = file;
1439         if ((flags & LOP_EXCLUSIVE) != 0)
1440                 instance->li_flags = LI_EXCLUSIVE;
1441         else
1442                 instance->li_flags = 0;
1443         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1444             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1445 }
1446
1447 void
1448 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1449 {
1450         struct lock_instance *instance;
1451         struct lock_class *class;
1452
1453         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1454         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1455                 return;
1456         class = LOCK_CLASS(lock);
1457         if (witness_watch) {
1458                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1459                         kassert_panic(
1460                             "upgrade of non-upgradable lock (%s) %s @ %s:%d",
1461                             class->lc_name, lock->lo_name,
1462                             fixup_filename(file), line);
1463                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1464                         kassert_panic(
1465                             "upgrade of non-sleep lock (%s) %s @ %s:%d",
1466                             class->lc_name, lock->lo_name,
1467                             fixup_filename(file), line);
1468         }
1469         instance = find_instance(curthread->td_sleeplocks, lock);
1470         if (instance == NULL) {
1471                 kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1472                     class->lc_name, lock->lo_name,
1473                     fixup_filename(file), line);
1474                 return;
1475         }
1476         if (witness_watch) {
1477                 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1478                         kassert_panic(
1479                             "upgrade of exclusive lock (%s) %s @ %s:%d",
1480                             class->lc_name, lock->lo_name,
1481                             fixup_filename(file), line);
1482                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1483                         kassert_panic(
1484                             "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1485                             class->lc_name, lock->lo_name,
1486                             instance->li_flags & LI_RECURSEMASK,
1487                             fixup_filename(file), line);
1488         }
1489         instance->li_flags |= LI_EXCLUSIVE;
1490 }
1491
1492 void
1493 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1494     int line)
1495 {
1496         struct lock_instance *instance;
1497         struct lock_class *class;
1498
1499         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1500         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1501                 return;
1502         class = LOCK_CLASS(lock);
1503         if (witness_watch) {
1504                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1505                         kassert_panic(
1506                             "downgrade of non-upgradable lock (%s) %s @ %s:%d",
1507                             class->lc_name, lock->lo_name,
1508                             fixup_filename(file), line);
1509                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1510                         kassert_panic(
1511                             "downgrade of non-sleep lock (%s) %s @ %s:%d",
1512                             class->lc_name, lock->lo_name,
1513                             fixup_filename(file), line);
1514         }
1515         instance = find_instance(curthread->td_sleeplocks, lock);
1516         if (instance == NULL) {
1517                 kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1518                     class->lc_name, lock->lo_name,
1519                     fixup_filename(file), line);
1520                 return;
1521         }
1522         if (witness_watch) {
1523                 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1524                         kassert_panic(
1525                             "downgrade of shared lock (%s) %s @ %s:%d",
1526                             class->lc_name, lock->lo_name,
1527                             fixup_filename(file), line);
1528                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1529                         kassert_panic(
1530                             "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1531                             class->lc_name, lock->lo_name,
1532                             instance->li_flags & LI_RECURSEMASK,
1533                             fixup_filename(file), line);
1534         }
1535         instance->li_flags &= ~LI_EXCLUSIVE;
1536 }
1537
1538 void
1539 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1540 {
1541         struct lock_list_entry **lock_list, *lle;
1542         struct lock_instance *instance;
1543         struct lock_class *class;
1544         struct thread *td;
1545         register_t s;
1546         int i, j;
1547
1548         if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1549                 return;
1550         td = curthread;
1551         class = LOCK_CLASS(lock);
1552
1553         /* Find lock instance associated with this lock. */
1554         if (class->lc_flags & LC_SLEEPLOCK)
1555                 lock_list = &td->td_sleeplocks;
1556         else
1557                 lock_list = PCPU_PTR(spinlocks);
1558         lle = *lock_list;
1559         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1560                 for (i = 0; i < (*lock_list)->ll_count; i++) {
1561                         instance = &(*lock_list)->ll_children[i];
1562                         if (instance->li_lock == lock)
1563                                 goto found;
1564                 }
1565
1566         /*
1567          * When disabling WITNESS through witness_watch we could end up in
1568          * having registered locks in the td_sleeplocks queue.
1569          * We have to make sure we flush these queues, so just search for
1570          * eventual register locks and remove them.
1571          */
1572         if (witness_watch > 0) {
1573                 kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1574                     lock->lo_name, fixup_filename(file), line);
1575                 return;
1576         } else {
1577                 return;
1578         }
1579 found:
1580
1581         /* First, check for shared/exclusive mismatches. */
1582         if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1583             (flags & LOP_EXCLUSIVE) == 0) {
1584                 printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1585                     lock->lo_name, fixup_filename(file), line);
1586                 printf("while exclusively locked from %s:%d\n",
1587                     fixup_filename(instance->li_file), instance->li_line);
1588                 kassert_panic("excl->ushare");
1589         }
1590         if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1591             (flags & LOP_EXCLUSIVE) != 0) {
1592                 printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1593                     lock->lo_name, fixup_filename(file), line);
1594                 printf("while share locked from %s:%d\n",
1595                     fixup_filename(instance->li_file),
1596                     instance->li_line);
1597                 kassert_panic("share->uexcl");
1598         }
1599         /* If we are recursed, unrecurse. */
1600         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1601                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1602                     td->td_proc->p_pid, instance->li_lock->lo_name,
1603                     instance->li_flags);
1604                 instance->li_flags--;
1605                 return;
1606         }
1607         /* The lock is now being dropped, check for NORELEASE flag */
1608         if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1609                 printf("forbidden unlock of (%s) %s @ %s:%d\n", class->lc_name,
1610                     lock->lo_name, fixup_filename(file), line);
1611                 kassert_panic("lock marked norelease");
1612         }
1613
1614         /* Otherwise, remove this item from the list. */
1615         s = intr_disable();
1616         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1617             td->td_proc->p_pid, instance->li_lock->lo_name,
1618             (*lock_list)->ll_count - 1);
1619         for (j = i; j < (*lock_list)->ll_count - 1; j++)
1620                 (*lock_list)->ll_children[j] =
1621                     (*lock_list)->ll_children[j + 1];
1622         (*lock_list)->ll_count--;
1623         intr_restore(s);
1624
1625         /*
1626          * In order to reduce contention on w_mtx, we want to keep always an
1627          * head object into lists so that frequent allocation from the 
1628          * free witness pool (and subsequent locking) is avoided.
1629          * In order to maintain the current code simple, when the head
1630          * object is totally unloaded it means also that we do not have
1631          * further objects in the list, so the list ownership needs to be
1632          * hand over to another object if the current head needs to be freed.
1633          */
1634         if ((*lock_list)->ll_count == 0) {
1635                 if (*lock_list == lle) {
1636                         if (lle->ll_next == NULL)
1637                                 return;
1638                 } else
1639                         lle = *lock_list;
1640                 *lock_list = lle->ll_next;
1641                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1642                     td->td_proc->p_pid, lle);
1643                 witness_lock_list_free(lle);
1644         }
1645 }
1646
1647 void
1648 witness_thread_exit(struct thread *td)
1649 {
1650         struct lock_list_entry *lle;
1651         int i, n;
1652
1653         lle = td->td_sleeplocks;
1654         if (lle == NULL || panicstr != NULL)
1655                 return;
1656         if (lle->ll_count != 0) {
1657                 for (n = 0; lle != NULL; lle = lle->ll_next)
1658                         for (i = lle->ll_count - 1; i >= 0; i--) {
1659                                 if (n == 0)
1660                 printf("Thread %p exiting with the following locks held:\n",
1661                                             td);
1662                                 n++;
1663                                 witness_list_lock(&lle->ll_children[i], printf);
1664                                 
1665                         }
1666                 kassert_panic(
1667                     "Thread %p cannot exit while holding sleeplocks\n", td);
1668         }
1669         witness_lock_list_free(lle);
1670 }
1671
1672 /*
1673  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1674  * exempt Giant and sleepable locks from the checks as well.  If any
1675  * non-exempt locks are held, then a supplied message is printed to the
1676  * console along with a list of the offending locks.  If indicated in the
1677  * flags then a failure results in a panic as well.
1678  */
1679 int
1680 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1681 {
1682         struct lock_list_entry *lock_list, *lle;
1683         struct lock_instance *lock1;
1684         struct thread *td;
1685         va_list ap;
1686         int i, n;
1687
1688         if (witness_cold || witness_watch < 1 || panicstr != NULL)
1689                 return (0);
1690         n = 0;
1691         td = curthread;
1692         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1693                 for (i = lle->ll_count - 1; i >= 0; i--) {
1694                         lock1 = &lle->ll_children[i];
1695                         if (lock1->li_lock == lock)
1696                                 continue;
1697                         if (flags & WARN_GIANTOK &&
1698                             lock1->li_lock == &Giant.lock_object)
1699                                 continue;
1700                         if (flags & WARN_SLEEPOK &&
1701                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1702                                 continue;
1703                         if (n == 0) {
1704                                 va_start(ap, fmt);
1705                                 vprintf(fmt, ap);
1706                                 va_end(ap);
1707                                 printf(" with the following");
1708                                 if (flags & WARN_SLEEPOK)
1709                                         printf(" non-sleepable");
1710                                 printf(" locks held:\n");
1711                         }
1712                         n++;
1713                         witness_list_lock(lock1, printf);
1714                 }
1715
1716         /*
1717          * Pin the thread in order to avoid problems with thread migration.
1718          * Once that all verifies are passed about spinlocks ownership,
1719          * the thread is in a safe path and it can be unpinned.
1720          */
1721         sched_pin();
1722         lock_list = PCPU_GET(spinlocks);
1723         if (lock_list != NULL && lock_list->ll_count != 0) {
1724                 sched_unpin();
1725
1726                 /*
1727                  * We should only have one spinlock and as long as
1728                  * the flags cannot match for this locks class,
1729                  * check if the first spinlock is the one curthread
1730                  * should hold.
1731                  */
1732                 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1733                 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1734                     lock1->li_lock == lock && n == 0)
1735                         return (0);
1736
1737                 va_start(ap, fmt);
1738                 vprintf(fmt, ap);
1739                 va_end(ap);
1740                 printf(" with the following");
1741                 if (flags & WARN_SLEEPOK)
1742                         printf(" non-sleepable");
1743                 printf(" locks held:\n");
1744                 n += witness_list_locks(&lock_list, printf);
1745         } else
1746                 sched_unpin();
1747         if (flags & WARN_PANIC && n)
1748                 kassert_panic("%s", __func__);
1749         else
1750                 witness_debugger(n);
1751         return (n);
1752 }
1753
1754 const char *
1755 witness_file(struct lock_object *lock)
1756 {
1757         struct witness *w;
1758
1759         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1760                 return ("?");
1761         w = lock->lo_witness;
1762         return (w->w_file);
1763 }
1764
1765 int
1766 witness_line(struct lock_object *lock)
1767 {
1768         struct witness *w;
1769
1770         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1771                 return (0);
1772         w = lock->lo_witness;
1773         return (w->w_line);
1774 }
1775
1776 static struct witness *
1777 enroll(const char *description, struct lock_class *lock_class)
1778 {
1779         struct witness *w;
1780         struct witness_list *typelist;
1781
1782         MPASS(description != NULL);
1783
1784         if (witness_watch == -1 || panicstr != NULL)
1785                 return (NULL);
1786         if ((lock_class->lc_flags & LC_SPINLOCK)) {
1787                 if (witness_skipspin)
1788                         return (NULL);
1789                 else
1790                         typelist = &w_spin;
1791         } else if ((lock_class->lc_flags & LC_SLEEPLOCK)) {
1792                 typelist = &w_sleep;
1793         } else {
1794                 kassert_panic("lock class %s is not sleep or spin",
1795                     lock_class->lc_name);
1796                 return (NULL);
1797         }
1798
1799         mtx_lock_spin(&w_mtx);
1800         w = witness_hash_get(description);
1801         if (w)
1802                 goto found;
1803         if ((w = witness_get()) == NULL)
1804                 return (NULL);
1805         MPASS(strlen(description) < MAX_W_NAME);
1806         strcpy(w->w_name, description);
1807         w->w_class = lock_class;
1808         w->w_refcount = 1;
1809         STAILQ_INSERT_HEAD(&w_all, w, w_list);
1810         if (lock_class->lc_flags & LC_SPINLOCK) {
1811                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1812                 w_spin_cnt++;
1813         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1814                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1815                 w_sleep_cnt++;
1816         }
1817
1818         /* Insert new witness into the hash */
1819         witness_hash_put(w);
1820         witness_increment_graph_generation();
1821         mtx_unlock_spin(&w_mtx);
1822         return (w);
1823 found:
1824         w->w_refcount++;
1825         mtx_unlock_spin(&w_mtx);
1826         if (lock_class != w->w_class)
1827                 kassert_panic(
1828                         "lock (%s) %s does not match earlier (%s) lock",
1829                         description, lock_class->lc_name,
1830                         w->w_class->lc_name);
1831         return (w);
1832 }
1833
1834 static void
1835 depart(struct witness *w)
1836 {
1837         struct witness_list *list;
1838
1839         MPASS(w->w_refcount == 0);
1840         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1841                 list = &w_sleep;
1842                 w_sleep_cnt--;
1843         } else {
1844                 list = &w_spin;
1845                 w_spin_cnt--;
1846         }
1847         /*
1848          * Set file to NULL as it may point into a loadable module.
1849          */
1850         w->w_file = NULL;
1851         w->w_line = 0;
1852         witness_increment_graph_generation();
1853 }
1854
1855
1856 static void
1857 adopt(struct witness *parent, struct witness *child)
1858 {
1859         int pi, ci, i, j;
1860
1861         if (witness_cold == 0)
1862                 mtx_assert(&w_mtx, MA_OWNED);
1863
1864         /* If the relationship is already known, there's no work to be done. */
1865         if (isitmychild(parent, child))
1866                 return;
1867
1868         /* When the structure of the graph changes, bump up the generation. */
1869         witness_increment_graph_generation();
1870
1871         /*
1872          * The hard part ... create the direct relationship, then propagate all
1873          * indirect relationships.
1874          */
1875         pi = parent->w_index;
1876         ci = child->w_index;
1877         WITNESS_INDEX_ASSERT(pi);
1878         WITNESS_INDEX_ASSERT(ci);
1879         MPASS(pi != ci);
1880         w_rmatrix[pi][ci] |= WITNESS_PARENT;
1881         w_rmatrix[ci][pi] |= WITNESS_CHILD;
1882
1883         /*
1884          * If parent was not already an ancestor of child,
1885          * then we increment the descendant and ancestor counters.
1886          */
1887         if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1888                 parent->w_num_descendants++;
1889                 child->w_num_ancestors++;
1890         }
1891
1892         /* 
1893          * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 
1894          * an ancestor of 'pi' during this loop.
1895          */
1896         for (i = 1; i <= w_max_used_index; i++) {
1897                 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 
1898                     (i != pi))
1899                         continue;
1900
1901                 /* Find each descendant of 'i' and mark it as a descendant. */
1902                 for (j = 1; j <= w_max_used_index; j++) {
1903
1904                         /* 
1905                          * Skip children that are already marked as
1906                          * descendants of 'i'.
1907                          */
1908                         if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1909                                 continue;
1910
1911                         /*
1912                          * We are only interested in descendants of 'ci'. Note
1913                          * that 'ci' itself is counted as a descendant of 'ci'.
1914                          */
1915                         if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 
1916                             (j != ci))
1917                                 continue;
1918                         w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1919                         w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1920                         w_data[i].w_num_descendants++;
1921                         w_data[j].w_num_ancestors++;
1922
1923                         /* 
1924                          * Make sure we aren't marking a node as both an
1925                          * ancestor and descendant. We should have caught 
1926                          * this as a lock order reversal earlier.
1927                          */
1928                         if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1929                             (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1930                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1931                                     "both ancestor and descendant\n",
1932                                     i, j, w_rmatrix[i][j]); 
1933                                 kdb_backtrace();
1934                                 printf("Witness disabled.\n");
1935                                 witness_watch = -1;
1936                         }
1937                         if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1938                             (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1939                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1940                                     "both ancestor and descendant\n",
1941                                     j, i, w_rmatrix[j][i]); 
1942                                 kdb_backtrace();
1943                                 printf("Witness disabled.\n");
1944                                 witness_watch = -1;
1945                         }
1946                 }
1947         }
1948 }
1949
1950 static void
1951 itismychild(struct witness *parent, struct witness *child)
1952 {
1953         int unlocked;
1954
1955         MPASS(child != NULL && parent != NULL);
1956         if (witness_cold == 0)
1957                 mtx_assert(&w_mtx, MA_OWNED);
1958
1959         if (!witness_lock_type_equal(parent, child)) {
1960                 if (witness_cold == 0) {
1961                         unlocked = 1;
1962                         mtx_unlock_spin(&w_mtx);
1963                 } else {
1964                         unlocked = 0;
1965                 }
1966                 kassert_panic(
1967                     "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
1968                     "the same lock type", __func__, parent->w_name,
1969                     parent->w_class->lc_name, child->w_name,
1970                     child->w_class->lc_name);
1971                 if (unlocked)
1972                         mtx_lock_spin(&w_mtx);
1973         }
1974         adopt(parent, child);
1975 }
1976
1977 /*
1978  * Generic code for the isitmy*() functions. The rmask parameter is the
1979  * expected relationship of w1 to w2.
1980  */
1981 static int
1982 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
1983 {
1984         unsigned char r1, r2;
1985         int i1, i2;
1986
1987         i1 = w1->w_index;
1988         i2 = w2->w_index;
1989         WITNESS_INDEX_ASSERT(i1);
1990         WITNESS_INDEX_ASSERT(i2);
1991         r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
1992         r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
1993
1994         /* The flags on one better be the inverse of the flags on the other */
1995         if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
1996                 (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
1997                 printf("%s: rmatrix mismatch between %s (index %d) and %s "
1998                     "(index %d): w_rmatrix[%d][%d] == %hhx but "
1999                     "w_rmatrix[%d][%d] == %hhx\n",
2000                     fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
2001                     i2, i1, r2);
2002                 kdb_backtrace();
2003                 printf("Witness disabled.\n");
2004                 witness_watch = -1;
2005         }
2006         return (r1 & rmask);
2007 }
2008
2009 /*
2010  * Checks if @child is a direct child of @parent.
2011  */
2012 static int
2013 isitmychild(struct witness *parent, struct witness *child)
2014 {
2015
2016         return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
2017 }
2018
2019 /*
2020  * Checks if @descendant is a direct or inderect descendant of @ancestor.
2021  */
2022 static int
2023 isitmydescendant(struct witness *ancestor, struct witness *descendant)
2024 {
2025
2026         return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
2027             __func__));
2028 }
2029
2030 #ifdef BLESSING
2031 static int
2032 blessed(struct witness *w1, struct witness *w2)
2033 {
2034         int i;
2035         struct witness_blessed *b;
2036
2037         for (i = 0; i < blessed_count; i++) {
2038                 b = &blessed_list[i];
2039                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
2040                         if (strcmp(w2->w_name, b->b_lock2) == 0)
2041                                 return (1);
2042                         continue;
2043                 }
2044                 if (strcmp(w1->w_name, b->b_lock2) == 0)
2045                         if (strcmp(w2->w_name, b->b_lock1) == 0)
2046                                 return (1);
2047         }
2048         return (0);
2049 }
2050 #endif
2051
2052 static struct witness *
2053 witness_get(void)
2054 {
2055         struct witness *w;
2056         int index;
2057
2058         if (witness_cold == 0)
2059                 mtx_assert(&w_mtx, MA_OWNED);
2060
2061         if (witness_watch == -1) {
2062                 mtx_unlock_spin(&w_mtx);
2063                 return (NULL);
2064         }
2065         if (STAILQ_EMPTY(&w_free)) {
2066                 witness_watch = -1;
2067                 mtx_unlock_spin(&w_mtx);
2068                 printf("WITNESS: unable to allocate a new witness object\n");
2069                 return (NULL);
2070         }
2071         w = STAILQ_FIRST(&w_free);
2072         STAILQ_REMOVE_HEAD(&w_free, w_list);
2073         w_free_cnt--;
2074         index = w->w_index;
2075         MPASS(index > 0 && index == w_max_used_index+1 &&
2076             index < WITNESS_COUNT);
2077         bzero(w, sizeof(*w));
2078         w->w_index = index;
2079         if (index > w_max_used_index)
2080                 w_max_used_index = index;
2081         return (w);
2082 }
2083
2084 static void
2085 witness_free(struct witness *w)
2086 {
2087
2088         STAILQ_INSERT_HEAD(&w_free, w, w_list);
2089         w_free_cnt++;
2090 }
2091
2092 static struct lock_list_entry *
2093 witness_lock_list_get(void)
2094 {
2095         struct lock_list_entry *lle;
2096
2097         if (witness_watch == -1)
2098                 return (NULL);
2099         mtx_lock_spin(&w_mtx);
2100         lle = w_lock_list_free;
2101         if (lle == NULL) {
2102                 witness_watch = -1;
2103                 mtx_unlock_spin(&w_mtx);
2104                 printf("%s: witness exhausted\n", __func__);
2105                 return (NULL);
2106         }
2107         w_lock_list_free = lle->ll_next;
2108         mtx_unlock_spin(&w_mtx);
2109         bzero(lle, sizeof(*lle));
2110         return (lle);
2111 }
2112                 
2113 static void
2114 witness_lock_list_free(struct lock_list_entry *lle)
2115 {
2116
2117         mtx_lock_spin(&w_mtx);
2118         lle->ll_next = w_lock_list_free;
2119         w_lock_list_free = lle;
2120         mtx_unlock_spin(&w_mtx);
2121 }
2122
2123 static struct lock_instance *
2124 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2125 {
2126         struct lock_list_entry *lle;
2127         struct lock_instance *instance;
2128         int i;
2129
2130         for (lle = list; lle != NULL; lle = lle->ll_next)
2131                 for (i = lle->ll_count - 1; i >= 0; i--) {
2132                         instance = &lle->ll_children[i];
2133                         if (instance->li_lock == lock)
2134                                 return (instance);
2135                 }
2136         return (NULL);
2137 }
2138
2139 static void
2140 witness_list_lock(struct lock_instance *instance,
2141     int (*prnt)(const char *fmt, ...))
2142 {
2143         struct lock_object *lock;
2144
2145         lock = instance->li_lock;
2146         prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2147             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2148         if (lock->lo_witness->w_name != lock->lo_name)
2149                 prnt(" (%s)", lock->lo_witness->w_name);
2150         prnt(" r = %d (%p) locked @ %s:%d\n",
2151             instance->li_flags & LI_RECURSEMASK, lock,
2152             fixup_filename(instance->li_file), instance->li_line);
2153 }
2154
2155 #ifdef DDB
2156 static int
2157 witness_thread_has_locks(struct thread *td)
2158 {
2159
2160         if (td->td_sleeplocks == NULL)
2161                 return (0);
2162         return (td->td_sleeplocks->ll_count != 0);
2163 }
2164
2165 static int
2166 witness_proc_has_locks(struct proc *p)
2167 {
2168         struct thread *td;
2169
2170         FOREACH_THREAD_IN_PROC(p, td) {
2171                 if (witness_thread_has_locks(td))
2172                         return (1);
2173         }
2174         return (0);
2175 }
2176 #endif
2177
2178 int
2179 witness_list_locks(struct lock_list_entry **lock_list,
2180     int (*prnt)(const char *fmt, ...))
2181 {
2182         struct lock_list_entry *lle;
2183         int i, nheld;
2184
2185         nheld = 0;
2186         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2187                 for (i = lle->ll_count - 1; i >= 0; i--) {
2188                         witness_list_lock(&lle->ll_children[i], prnt);
2189                         nheld++;
2190                 }
2191         return (nheld);
2192 }
2193
2194 /*
2195  * This is a bit risky at best.  We call this function when we have timed
2196  * out acquiring a spin lock, and we assume that the other CPU is stuck
2197  * with this lock held.  So, we go groveling around in the other CPU's
2198  * per-cpu data to try to find the lock instance for this spin lock to
2199  * see when it was last acquired.
2200  */
2201 void
2202 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2203     int (*prnt)(const char *fmt, ...))
2204 {
2205         struct lock_instance *instance;
2206         struct pcpu *pc;
2207
2208         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2209                 return;
2210         pc = pcpu_find(owner->td_oncpu);
2211         instance = find_instance(pc->pc_spinlocks, lock);
2212         if (instance != NULL)
2213                 witness_list_lock(instance, prnt);
2214 }
2215
2216 void
2217 witness_save(struct lock_object *lock, const char **filep, int *linep)
2218 {
2219         struct lock_list_entry *lock_list;
2220         struct lock_instance *instance;
2221         struct lock_class *class;
2222
2223         /*
2224          * This function is used independently in locking code to deal with
2225          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2226          * is gone.
2227          */
2228         if (SCHEDULER_STOPPED())
2229                 return;
2230         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2231         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2232                 return;
2233         class = LOCK_CLASS(lock);
2234         if (class->lc_flags & LC_SLEEPLOCK)
2235                 lock_list = curthread->td_sleeplocks;
2236         else {
2237                 if (witness_skipspin)
2238                         return;
2239                 lock_list = PCPU_GET(spinlocks);
2240         }
2241         instance = find_instance(lock_list, lock);
2242         if (instance == NULL) {
2243                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2244                     class->lc_name, lock->lo_name);
2245                 return;
2246         }
2247         *filep = instance->li_file;
2248         *linep = instance->li_line;
2249 }
2250
2251 void
2252 witness_restore(struct lock_object *lock, const char *file, int line)
2253 {
2254         struct lock_list_entry *lock_list;
2255         struct lock_instance *instance;
2256         struct lock_class *class;
2257
2258         /*
2259          * This function is used independently in locking code to deal with
2260          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2261          * is gone.
2262          */
2263         if (SCHEDULER_STOPPED())
2264                 return;
2265         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2266         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2267                 return;
2268         class = LOCK_CLASS(lock);
2269         if (class->lc_flags & LC_SLEEPLOCK)
2270                 lock_list = curthread->td_sleeplocks;
2271         else {
2272                 if (witness_skipspin)
2273                         return;
2274                 lock_list = PCPU_GET(spinlocks);
2275         }
2276         instance = find_instance(lock_list, lock);
2277         if (instance == NULL)
2278                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2279                     class->lc_name, lock->lo_name);
2280         lock->lo_witness->w_file = file;
2281         lock->lo_witness->w_line = line;
2282         if (instance == NULL)
2283                 return;
2284         instance->li_file = file;
2285         instance->li_line = line;
2286 }
2287
2288 void
2289 witness_assert(const struct lock_object *lock, int flags, const char *file,
2290     int line)
2291 {
2292 #ifdef INVARIANT_SUPPORT
2293         struct lock_instance *instance;
2294         struct lock_class *class;
2295
2296         if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2297                 return;
2298         class = LOCK_CLASS(lock);
2299         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2300                 instance = find_instance(curthread->td_sleeplocks, lock);
2301         else if ((class->lc_flags & LC_SPINLOCK) != 0)
2302                 instance = find_instance(PCPU_GET(spinlocks), lock);
2303         else {
2304                 kassert_panic("Lock (%s) %s is not sleep or spin!",
2305                     class->lc_name, lock->lo_name);
2306                 return;
2307         }
2308         switch (flags) {
2309         case LA_UNLOCKED:
2310                 if (instance != NULL)
2311                         kassert_panic("Lock (%s) %s locked @ %s:%d.",
2312                             class->lc_name, lock->lo_name,
2313                             fixup_filename(file), line);
2314                 break;
2315         case LA_LOCKED:
2316         case LA_LOCKED | LA_RECURSED:
2317         case LA_LOCKED | LA_NOTRECURSED:
2318         case LA_SLOCKED:
2319         case LA_SLOCKED | LA_RECURSED:
2320         case LA_SLOCKED | LA_NOTRECURSED:
2321         case LA_XLOCKED:
2322         case LA_XLOCKED | LA_RECURSED:
2323         case LA_XLOCKED | LA_NOTRECURSED:
2324                 if (instance == NULL) {
2325                         kassert_panic("Lock (%s) %s not locked @ %s:%d.",
2326                             class->lc_name, lock->lo_name,
2327                             fixup_filename(file), line);
2328                         break;
2329                 }
2330                 if ((flags & LA_XLOCKED) != 0 &&
2331                     (instance->li_flags & LI_EXCLUSIVE) == 0)
2332                         kassert_panic(
2333                             "Lock (%s) %s not exclusively locked @ %s:%d.",
2334                             class->lc_name, lock->lo_name,
2335                             fixup_filename(file), line);
2336                 if ((flags & LA_SLOCKED) != 0 &&
2337                     (instance->li_flags & LI_EXCLUSIVE) != 0)
2338                         kassert_panic(
2339                             "Lock (%s) %s exclusively locked @ %s:%d.",
2340                             class->lc_name, lock->lo_name,
2341                             fixup_filename(file), line);
2342                 if ((flags & LA_RECURSED) != 0 &&
2343                     (instance->li_flags & LI_RECURSEMASK) == 0)
2344                         kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
2345                             class->lc_name, lock->lo_name,
2346                             fixup_filename(file), line);
2347                 if ((flags & LA_NOTRECURSED) != 0 &&
2348                     (instance->li_flags & LI_RECURSEMASK) != 0)
2349                         kassert_panic("Lock (%s) %s recursed @ %s:%d.",
2350                             class->lc_name, lock->lo_name,
2351                             fixup_filename(file), line);
2352                 break;
2353         default:
2354                 kassert_panic("Invalid lock assertion at %s:%d.",
2355                     fixup_filename(file), line);
2356
2357         }
2358 #endif  /* INVARIANT_SUPPORT */
2359 }
2360
2361 static void
2362 witness_setflag(struct lock_object *lock, int flag, int set)
2363 {
2364         struct lock_list_entry *lock_list;
2365         struct lock_instance *instance;
2366         struct lock_class *class;
2367
2368         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2369                 return;
2370         class = LOCK_CLASS(lock);
2371         if (class->lc_flags & LC_SLEEPLOCK)
2372                 lock_list = curthread->td_sleeplocks;
2373         else {
2374                 if (witness_skipspin)
2375                         return;
2376                 lock_list = PCPU_GET(spinlocks);
2377         }
2378         instance = find_instance(lock_list, lock);
2379         if (instance == NULL) {
2380                 kassert_panic("%s: lock (%s) %s not locked", __func__,
2381                     class->lc_name, lock->lo_name);
2382                 return;
2383         }
2384
2385         if (set)
2386                 instance->li_flags |= flag;
2387         else
2388                 instance->li_flags &= ~flag;
2389 }
2390
2391 void
2392 witness_norelease(struct lock_object *lock)
2393 {
2394
2395         witness_setflag(lock, LI_NORELEASE, 1);
2396 }
2397
2398 void
2399 witness_releaseok(struct lock_object *lock)
2400 {
2401
2402         witness_setflag(lock, LI_NORELEASE, 0);
2403 }
2404
2405 #ifdef DDB
2406 static void
2407 witness_ddb_list(struct thread *td)
2408 {
2409
2410         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2411         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2412
2413         if (witness_watch < 1)
2414                 return;
2415
2416         witness_list_locks(&td->td_sleeplocks, db_printf);
2417
2418         /*
2419          * We only handle spinlocks if td == curthread.  This is somewhat broken
2420          * if td is currently executing on some other CPU and holds spin locks
2421          * as we won't display those locks.  If we had a MI way of getting
2422          * the per-cpu data for a given cpu then we could use
2423          * td->td_oncpu to get the list of spinlocks for this thread
2424          * and "fix" this.
2425          *
2426          * That still wouldn't really fix this unless we locked the scheduler
2427          * lock or stopped the other CPU to make sure it wasn't changing the
2428          * list out from under us.  It is probably best to just not try to
2429          * handle threads on other CPU's for now.
2430          */
2431         if (td == curthread && PCPU_GET(spinlocks) != NULL)
2432                 witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2433 }
2434
2435 DB_SHOW_COMMAND(locks, db_witness_list)
2436 {
2437         struct thread *td;
2438
2439         if (have_addr)
2440                 td = db_lookup_thread(addr, TRUE);
2441         else
2442                 td = kdb_thread;
2443         witness_ddb_list(td);
2444 }
2445
2446 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2447 {
2448         struct thread *td;
2449         struct proc *p;
2450
2451         /*
2452          * It would be nice to list only threads and processes that actually
2453          * held sleep locks, but that information is currently not exported
2454          * by WITNESS.
2455          */
2456         FOREACH_PROC_IN_SYSTEM(p) {
2457                 if (!witness_proc_has_locks(p))
2458                         continue;
2459                 FOREACH_THREAD_IN_PROC(p, td) {
2460                         if (!witness_thread_has_locks(td))
2461                                 continue;
2462                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2463                             p->p_comm, td, td->td_tid);
2464                         witness_ddb_list(td);
2465                         if (db_pager_quit)
2466                                 return;
2467                 }
2468         }
2469 }
2470 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2471
2472 DB_SHOW_COMMAND(witness, db_witness_display)
2473 {
2474
2475         witness_ddb_display(db_printf);
2476 }
2477 #endif
2478
2479 static int
2480 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2481 {
2482         struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2483         struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2484         struct sbuf *sb;
2485         u_int w_rmatrix1, w_rmatrix2;
2486         int error, generation, i, j;
2487
2488         tmp_data1 = NULL;
2489         tmp_data2 = NULL;
2490         tmp_w1 = NULL;
2491         tmp_w2 = NULL;
2492         if (witness_watch < 1) {
2493                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2494                 return (error);
2495         }
2496         if (witness_cold) {
2497                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2498                 return (error);
2499         }
2500         error = 0;
2501         sb = sbuf_new(NULL, NULL, BADSTACK_SBUF_SIZE, SBUF_AUTOEXTEND);
2502         if (sb == NULL)
2503                 return (ENOMEM);
2504
2505         /* Allocate and init temporary storage space. */
2506         tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2507         tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2508         tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2509             M_WAITOK | M_ZERO);
2510         tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2511             M_WAITOK | M_ZERO);
2512         stack_zero(&tmp_data1->wlod_stack);
2513         stack_zero(&tmp_data2->wlod_stack);
2514
2515 restart:
2516         mtx_lock_spin(&w_mtx);
2517         generation = w_generation;
2518         mtx_unlock_spin(&w_mtx);
2519         sbuf_printf(sb, "Number of known direct relationships is %d\n",
2520             w_lohash.wloh_count);
2521         for (i = 1; i < w_max_used_index; i++) {
2522                 mtx_lock_spin(&w_mtx);
2523                 if (generation != w_generation) {
2524                         mtx_unlock_spin(&w_mtx);
2525
2526                         /* The graph has changed, try again. */
2527                         req->oldidx = 0;
2528                         sbuf_clear(sb);
2529                         goto restart;
2530                 }
2531
2532                 w1 = &w_data[i];
2533                 if (w1->w_reversed == 0) {
2534                         mtx_unlock_spin(&w_mtx);
2535                         continue;
2536                 }
2537
2538                 /* Copy w1 locally so we can release the spin lock. */
2539                 *tmp_w1 = *w1;
2540                 mtx_unlock_spin(&w_mtx);
2541
2542                 if (tmp_w1->w_reversed == 0)
2543                         continue;
2544                 for (j = 1; j < w_max_used_index; j++) {
2545                         if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2546                                 continue;
2547
2548                         mtx_lock_spin(&w_mtx);
2549                         if (generation != w_generation) {
2550                                 mtx_unlock_spin(&w_mtx);
2551
2552                                 /* The graph has changed, try again. */
2553                                 req->oldidx = 0;
2554                                 sbuf_clear(sb);
2555                                 goto restart;
2556                         }
2557
2558                         w2 = &w_data[j];
2559                         data1 = witness_lock_order_get(w1, w2);
2560                         data2 = witness_lock_order_get(w2, w1);
2561
2562                         /*
2563                          * Copy information locally so we can release the
2564                          * spin lock.
2565                          */
2566                         *tmp_w2 = *w2;
2567                         w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
2568                         w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
2569
2570                         if (data1) {
2571                                 stack_zero(&tmp_data1->wlod_stack);
2572                                 stack_copy(&data1->wlod_stack,
2573                                     &tmp_data1->wlod_stack);
2574                         }
2575                         if (data2 && data2 != data1) {
2576                                 stack_zero(&tmp_data2->wlod_stack);
2577                                 stack_copy(&data2->wlod_stack,
2578                                     &tmp_data2->wlod_stack);
2579                         }
2580                         mtx_unlock_spin(&w_mtx);
2581
2582                         sbuf_printf(sb,
2583             "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2584                             tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2585                             tmp_w2->w_name, tmp_w2->w_class->lc_name);
2586 #if 0
2587                         sbuf_printf(sb,
2588                         "w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n",
2589                             tmp_w1->name, tmp_w2->w_name, w_rmatrix1,
2590                             tmp_w2->name, tmp_w1->w_name, w_rmatrix2);
2591 #endif
2592                         if (data1) {
2593                                 sbuf_printf(sb,
2594                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2595                                     tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2596                                     tmp_w2->w_name, tmp_w2->w_class->lc_name);
2597                                 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2598                                 sbuf_printf(sb, "\n");
2599                         }
2600                         if (data2 && data2 != data1) {
2601                                 sbuf_printf(sb,
2602                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2603                                     tmp_w2->w_name, tmp_w2->w_class->lc_name, 
2604                                     tmp_w1->w_name, tmp_w1->w_class->lc_name);
2605                                 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2606                                 sbuf_printf(sb, "\n");
2607                         }
2608                 }
2609         }
2610         mtx_lock_spin(&w_mtx);
2611         if (generation != w_generation) {
2612                 mtx_unlock_spin(&w_mtx);
2613
2614                 /*
2615                  * The graph changed while we were printing stack data,
2616                  * try again.
2617                  */
2618                 req->oldidx = 0;
2619                 sbuf_clear(sb);
2620                 goto restart;
2621         }
2622         mtx_unlock_spin(&w_mtx);
2623
2624         /* Free temporary storage space. */
2625         free(tmp_data1, M_TEMP);
2626         free(tmp_data2, M_TEMP);
2627         free(tmp_w1, M_TEMP);
2628         free(tmp_w2, M_TEMP);
2629
2630         sbuf_finish(sb);
2631         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2632         sbuf_delete(sb);
2633
2634         return (error);
2635 }
2636
2637 static int
2638 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2639 {
2640         struct witness *w;
2641         struct sbuf *sb;
2642         int error;
2643
2644         if (witness_watch < 1) {
2645                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2646                 return (error);
2647         }
2648         if (witness_cold) {
2649                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2650                 return (error);
2651         }
2652         error = 0;
2653
2654         error = sysctl_wire_old_buffer(req, 0);
2655         if (error != 0)
2656                 return (error);
2657         sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2658         if (sb == NULL)
2659                 return (ENOMEM);
2660         sbuf_printf(sb, "\n");
2661
2662         mtx_lock_spin(&w_mtx);
2663         STAILQ_FOREACH(w, &w_all, w_list)
2664                 w->w_displayed = 0;
2665         STAILQ_FOREACH(w, &w_all, w_list)
2666                 witness_add_fullgraph(sb, w);
2667         mtx_unlock_spin(&w_mtx);
2668
2669         /*
2670          * Close the sbuf and return to userland.
2671          */
2672         error = sbuf_finish(sb);
2673         sbuf_delete(sb);
2674
2675         return (error);
2676 }
2677
2678 static int
2679 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2680 {
2681         int error, value;
2682
2683         value = witness_watch;
2684         error = sysctl_handle_int(oidp, &value, 0, req);
2685         if (error != 0 || req->newptr == NULL)
2686                 return (error);
2687         if (value > 1 || value < -1 ||
2688             (witness_watch == -1 && value != witness_watch))
2689                 return (EINVAL);
2690         witness_watch = value;
2691         return (0);
2692 }
2693
2694 static void
2695 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2696 {
2697         int i;
2698
2699         if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2700                 return;
2701         w->w_displayed = 1;
2702
2703         WITNESS_INDEX_ASSERT(w->w_index);
2704         for (i = 1; i <= w_max_used_index; i++) {
2705                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2706                         sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2707                             w_data[i].w_name);
2708                         witness_add_fullgraph(sb, &w_data[i]);
2709                 }
2710         }
2711 }
2712
2713 /*
2714  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2715  * interprets the key as a string and reads until the null
2716  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2717  * hash value computed from the key.
2718  */
2719 static uint32_t
2720 witness_hash_djb2(const uint8_t *key, uint32_t size)
2721 {
2722         unsigned int hash = 5381;
2723         int i;
2724
2725         /* hash = hash * 33 + key[i] */
2726         if (size)
2727                 for (i = 0; i < size; i++)
2728                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2729         else
2730                 for (i = 0; key[i] != 0; i++)
2731                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2732
2733         return (hash);
2734 }
2735
2736
2737 /*
2738  * Initializes the two witness hash tables. Called exactly once from
2739  * witness_initialize().
2740  */
2741 static void
2742 witness_init_hash_tables(void)
2743 {
2744         int i;
2745
2746         MPASS(witness_cold);
2747
2748         /* Initialize the hash tables. */
2749         for (i = 0; i < WITNESS_HASH_SIZE; i++)
2750                 w_hash.wh_array[i] = NULL;
2751
2752         w_hash.wh_size = WITNESS_HASH_SIZE;
2753         w_hash.wh_count = 0;
2754
2755         /* Initialize the lock order data hash. */
2756         w_lofree = NULL;
2757         for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2758                 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2759                 w_lodata[i].wlod_next = w_lofree;
2760                 w_lofree = &w_lodata[i];
2761         }
2762         w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2763         w_lohash.wloh_count = 0;
2764         for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2765                 w_lohash.wloh_array[i] = NULL;
2766 }
2767
2768 static struct witness *
2769 witness_hash_get(const char *key)
2770 {
2771         struct witness *w;
2772         uint32_t hash;
2773         
2774         MPASS(key != NULL);
2775         if (witness_cold == 0)
2776                 mtx_assert(&w_mtx, MA_OWNED);
2777         hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2778         w = w_hash.wh_array[hash];
2779         while (w != NULL) {
2780                 if (strcmp(w->w_name, key) == 0)
2781                         goto out;
2782                 w = w->w_hash_next;
2783         }
2784
2785 out:
2786         return (w);
2787 }
2788
2789 static void
2790 witness_hash_put(struct witness *w)
2791 {
2792         uint32_t hash;
2793
2794         MPASS(w != NULL);
2795         MPASS(w->w_name != NULL);
2796         if (witness_cold == 0)
2797                 mtx_assert(&w_mtx, MA_OWNED);
2798         KASSERT(witness_hash_get(w->w_name) == NULL,
2799             ("%s: trying to add a hash entry that already exists!", __func__));
2800         KASSERT(w->w_hash_next == NULL,
2801             ("%s: w->w_hash_next != NULL", __func__));
2802
2803         hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2804         w->w_hash_next = w_hash.wh_array[hash];
2805         w_hash.wh_array[hash] = w;
2806         w_hash.wh_count++;
2807 }
2808
2809
2810 static struct witness_lock_order_data *
2811 witness_lock_order_get(struct witness *parent, struct witness *child)
2812 {
2813         struct witness_lock_order_data *data = NULL;
2814         struct witness_lock_order_key key;
2815         unsigned int hash;
2816
2817         MPASS(parent != NULL && child != NULL);
2818         key.from = parent->w_index;
2819         key.to = child->w_index;
2820         WITNESS_INDEX_ASSERT(key.from);
2821         WITNESS_INDEX_ASSERT(key.to);
2822         if ((w_rmatrix[parent->w_index][child->w_index]
2823             & WITNESS_LOCK_ORDER_KNOWN) == 0)
2824                 goto out;
2825
2826         hash = witness_hash_djb2((const char*)&key,
2827             sizeof(key)) % w_lohash.wloh_size;
2828         data = w_lohash.wloh_array[hash];
2829         while (data != NULL) {
2830                 if (witness_lock_order_key_equal(&data->wlod_key, &key))
2831                         break;
2832                 data = data->wlod_next;
2833         }
2834
2835 out:
2836         return (data);
2837 }
2838
2839 /*
2840  * Verify that parent and child have a known relationship, are not the same,
2841  * and child is actually a child of parent.  This is done without w_mtx
2842  * to avoid contention in the common case.
2843  */
2844 static int
2845 witness_lock_order_check(struct witness *parent, struct witness *child)
2846 {
2847
2848         if (parent != child &&
2849             w_rmatrix[parent->w_index][child->w_index]
2850             & WITNESS_LOCK_ORDER_KNOWN &&
2851             isitmychild(parent, child))
2852                 return (1);
2853
2854         return (0);
2855 }
2856
2857 static int
2858 witness_lock_order_add(struct witness *parent, struct witness *child)
2859 {
2860         struct witness_lock_order_data *data = NULL;
2861         struct witness_lock_order_key key;
2862         unsigned int hash;
2863         
2864         MPASS(parent != NULL && child != NULL);
2865         key.from = parent->w_index;
2866         key.to = child->w_index;
2867         WITNESS_INDEX_ASSERT(key.from);
2868         WITNESS_INDEX_ASSERT(key.to);
2869         if (w_rmatrix[parent->w_index][child->w_index]
2870             & WITNESS_LOCK_ORDER_KNOWN)
2871                 return (1);
2872
2873         hash = witness_hash_djb2((const char*)&key,
2874             sizeof(key)) % w_lohash.wloh_size;
2875         w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
2876         data = w_lofree;
2877         if (data == NULL)
2878                 return (0);
2879         w_lofree = data->wlod_next;
2880         data->wlod_next = w_lohash.wloh_array[hash];
2881         data->wlod_key = key;
2882         w_lohash.wloh_array[hash] = data;
2883         w_lohash.wloh_count++;
2884         stack_zero(&data->wlod_stack);
2885         stack_save(&data->wlod_stack);
2886         return (1);
2887 }
2888
2889 /* Call this whenver the structure of the witness graph changes. */
2890 static void
2891 witness_increment_graph_generation(void)
2892 {
2893
2894         if (witness_cold == 0)
2895                 mtx_assert(&w_mtx, MA_OWNED);
2896         w_generation++;
2897 }
2898
2899 #ifdef KDB
2900 static void
2901 _witness_debugger(int cond, const char *msg)
2902 {
2903
2904         if (witness_trace && cond)
2905                 kdb_backtrace();
2906         if (witness_kdb && cond)
2907                 kdb_enter(KDB_WHY_WITNESS, msg);
2908 }
2909 #endif