]> CyberLeo.Net >> Repos - FreeBSD/stable/8.git/blob - sys/kern/subr_witness.c
MFC r248563:
[FreeBSD/stable/8.git] / sys / kern / subr_witness.c
1 /*-
2  * Copyright (c) 2008 Isilon Systems, Inc.
3  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
4  * Copyright (c) 1998 Berkeley Software Design, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Berkeley Software Design Inc's name may not be used to endorse or
16  *    promote products derived from this software without specific prior
17  *    written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
32  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
33  */
34
35 /*
36  * Implementation of the `witness' lock verifier.  Originally implemented for
37  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
38  * classes in FreeBSD.
39  */
40
41 /*
42  *      Main Entry: witness
43  *      Pronunciation: 'wit-n&s
44  *      Function: noun
45  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
46  *          testimony, witness, from 2wit
47  *      Date: before 12th century
48  *      1 : attestation of a fact or event : TESTIMONY
49  *      2 : one that gives evidence; specifically : one who testifies in
50  *          a cause or before a judicial tribunal
51  *      3 : one asked to be present at a transaction so as to be able to
52  *          testify to its having taken place
53  *      4 : one who has personal knowledge of something
54  *      5 a : something serving as evidence or proof : SIGN
55  *        b : public affirmation by word or example of usually
56  *            religious faith or conviction <the heroic witness to divine
57  *            life -- Pilot>
58  *      6 capitalized : a member of the Jehovah's Witnesses 
59  */
60
61 /*
62  * Special rules concerning Giant and lock orders:
63  *
64  * 1) Giant must be acquired before any other mutexes.  Stated another way,
65  *    no other mutex may be held when Giant is acquired.
66  *
67  * 2) Giant must be released when blocking on a sleepable lock.
68  *
69  * This rule is less obvious, but is a result of Giant providing the same
70  * semantics as spl().  Basically, when a thread sleeps, it must release
71  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
72  * 2).
73  *
74  * 3) Giant may be acquired before or after sleepable locks.
75  *
76  * This rule is also not quite as obvious.  Giant may be acquired after
77  * a sleepable lock because it is a non-sleepable lock and non-sleepable
78  * locks may always be acquired while holding a sleepable lock.  The second
79  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
80  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
81  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
82  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
83  * execute.  Thus, acquiring Giant both before and after a sleepable lock
84  * will not result in a lock order reversal.
85  */
86
87 #include <sys/cdefs.h>
88 __FBSDID("$FreeBSD$");
89
90 #include "opt_ddb.h"
91 #include "opt_hwpmc_hooks.h"
92 #include "opt_stack.h"
93 #include "opt_witness.h"
94
95 #include <sys/param.h>
96 #include <sys/bus.h>
97 #include <sys/kdb.h>
98 #include <sys/kernel.h>
99 #include <sys/ktr.h>
100 #include <sys/lock.h>
101 #include <sys/malloc.h>
102 #include <sys/mutex.h>
103 #include <sys/priv.h>
104 #include <sys/proc.h>
105 #include <sys/sbuf.h>
106 #include <sys/sched.h>
107 #include <sys/stack.h>
108 #include <sys/sysctl.h>
109 #include <sys/systm.h>
110
111 #ifdef DDB
112 #include <ddb/ddb.h>
113 #endif
114
115 #include <machine/stdarg.h>
116
117 #if !defined(DDB) && !defined(STACK)
118 #error "DDB or STACK options are required for WITNESS"
119 #endif
120
121 /* Note that these traces do not work with KTR_ALQ. */
122 #if 0
123 #define KTR_WITNESS     KTR_SUBSYS
124 #else
125 #define KTR_WITNESS     0
126 #endif
127
128 #define LI_RECURSEMASK  0x0000ffff      /* Recursion depth of lock instance. */
129 #define LI_EXCLUSIVE    0x00010000      /* Exclusive lock instance. */
130 #define LI_NORELEASE    0x00020000      /* Lock not allowed to be released. */
131
132 /* Define this to check for blessed mutexes */
133 #undef BLESSING
134
135 #define WITNESS_COUNT           1024
136 #define WITNESS_CHILDCOUNT      (WITNESS_COUNT * 4)
137 #define WITNESS_HASH_SIZE       251     /* Prime, gives load factor < 2 */
138 #define WITNESS_PENDLIST        768
139
140 /* Allocate 256 KB of stack data space */
141 #define WITNESS_LO_DATA_COUNT   2048
142
143 /* Prime, gives load factor of ~2 at full load */
144 #define WITNESS_LO_HASH_SIZE    1021
145
146 /*
147  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
148  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
149  * probably be safe for the most part, but it's still a SWAG.
150  */
151 #define LOCK_NCHILDREN  5
152 #define LOCK_CHILDCOUNT 2048
153
154 #define MAX_W_NAME      64
155
156 #define BADSTACK_SBUF_SIZE      (256 * WITNESS_COUNT)
157 #define CYCLEGRAPH_SBUF_SIZE    8192
158 #define FULLGRAPH_SBUF_SIZE     32768
159
160 /*
161  * These flags go in the witness relationship matrix and describe the
162  * relationship between any two struct witness objects.
163  */
164 #define WITNESS_UNRELATED        0x00    /* No lock order relation. */
165 #define WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
166 #define WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
167 #define WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
168 #define WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
169 #define WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
170 #define WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
171 #define WITNESS_RELATED_MASK                                            \
172         (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
173 #define WITNESS_REVERSAL         0x10    /* A lock order reversal has been
174                                           * observed. */
175 #define WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
176 #define WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
177 #define WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
178
179 /* Descendant to ancestor flags */
180 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
181
182 /* Ancestor to descendant flags */
183 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
184
185 #define WITNESS_INDEX_ASSERT(i)                                         \
186         MPASS((i) > 0 && (i) <= w_max_used_index && (i) < WITNESS_COUNT)
187
188 MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
189
190 /*
191  * Lock instances.  A lock instance is the data associated with a lock while
192  * it is held by witness.  For example, a lock instance will hold the
193  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
194  * are held in a per-cpu list while sleep locks are held in per-thread list.
195  */
196 struct lock_instance {
197         struct lock_object      *li_lock;
198         const char              *li_file;
199         int                     li_line;
200         u_int                   li_flags;
201 };
202
203 /*
204  * A simple list type used to build the list of locks held by a thread
205  * or CPU.  We can't simply embed the list in struct lock_object since a
206  * lock may be held by more than one thread if it is a shared lock.  Locks
207  * are added to the head of the list, so we fill up each list entry from
208  * "the back" logically.  To ease some of the arithmetic, we actually fill
209  * in each list entry the normal way (children[0] then children[1], etc.) but
210  * when we traverse the list we read children[count-1] as the first entry
211  * down to children[0] as the final entry.
212  */
213 struct lock_list_entry {
214         struct lock_list_entry  *ll_next;
215         struct lock_instance    ll_children[LOCK_NCHILDREN];
216         u_int                   ll_count;
217 };
218
219 /*
220  * The main witness structure. One of these per named lock type in the system
221  * (for example, "vnode interlock").
222  */
223 struct witness {
224         char                    w_name[MAX_W_NAME];
225         uint32_t                w_index;  /* Index in the relationship matrix */
226         struct lock_class       *w_class;
227         STAILQ_ENTRY(witness)   w_list;         /* List of all witnesses. */
228         STAILQ_ENTRY(witness)   w_typelist;     /* Witnesses of a type. */
229         struct witness          *w_hash_next; /* Linked list in hash buckets. */
230         const char              *w_file; /* File where last acquired */
231         uint32_t                w_line; /* Line where last acquired */
232         uint32_t                w_refcount;
233         uint16_t                w_num_ancestors; /* direct/indirect
234                                                   * ancestor count */
235         uint16_t                w_num_descendants; /* direct/indirect
236                                                     * descendant count */
237         int16_t                 w_ddb_level;
238         unsigned                w_displayed:1;
239         unsigned                w_reversed:1;
240 };
241
242 STAILQ_HEAD(witness_list, witness);
243
244 /*
245  * The witness hash table. Keys are witness names (const char *), elements are
246  * witness objects (struct witness *).
247  */
248 struct witness_hash {
249         struct witness  *wh_array[WITNESS_HASH_SIZE];
250         uint32_t        wh_size;
251         uint32_t        wh_count;
252 };
253
254 /*
255  * Key type for the lock order data hash table.
256  */
257 struct witness_lock_order_key {
258         uint16_t        from;
259         uint16_t        to;
260 };
261
262 struct witness_lock_order_data {
263         struct stack                    wlod_stack;
264         struct witness_lock_order_key   wlod_key;
265         struct witness_lock_order_data  *wlod_next;
266 };
267
268 /*
269  * The witness lock order data hash table. Keys are witness index tuples
270  * (struct witness_lock_order_key), elements are lock order data objects
271  * (struct witness_lock_order_data). 
272  */
273 struct witness_lock_order_hash {
274         struct witness_lock_order_data  *wloh_array[WITNESS_LO_HASH_SIZE];
275         u_int   wloh_size;
276         u_int   wloh_count;
277 };
278
279 #ifdef BLESSING
280 struct witness_blessed {
281         const char      *b_lock1;
282         const char      *b_lock2;
283 };
284 #endif
285
286 struct witness_pendhelp {
287         const char              *wh_type;
288         struct lock_object      *wh_lock;
289 };
290
291 struct witness_order_list_entry {
292         const char              *w_name;
293         struct lock_class       *w_class;
294 };
295
296 /*
297  * Returns 0 if one of the locks is a spin lock and the other is not.
298  * Returns 1 otherwise.
299  */
300 static __inline int
301 witness_lock_type_equal(struct witness *w1, struct witness *w2)
302 {
303
304         return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
305                 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
306 }
307
308 static __inline int
309 witness_lock_order_key_empty(const struct witness_lock_order_key *key)
310 {
311
312         return (key->from == 0 && key->to == 0);
313 }
314
315 static __inline int
316 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
317     const struct witness_lock_order_key *b)
318 {
319
320         return (a->from == b->from && a->to == b->to);
321 }
322
323 static int      _isitmyx(struct witness *w1, struct witness *w2, int rmask,
324                     const char *fname);
325 #ifdef KDB
326 static void     _witness_debugger(int cond, const char *msg);
327 #endif
328 static void     adopt(struct witness *parent, struct witness *child);
329 #ifdef BLESSING
330 static int      blessed(struct witness *, struct witness *);
331 #endif
332 static void     depart(struct witness *w);
333 static struct witness   *enroll(const char *description,
334                             struct lock_class *lock_class);
335 static struct lock_instance     *find_instance(struct lock_list_entry *list,
336                                     struct lock_object *lock);
337 static int      isitmychild(struct witness *parent, struct witness *child);
338 static int      isitmydescendant(struct witness *parent, struct witness *child);
339 static void     itismychild(struct witness *parent, struct witness *child);
340 static int      sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
341 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
342 static int      sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
343 static void     witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
344 #ifdef DDB
345 static void     witness_ddb_compute_levels(void);
346 static void     witness_ddb_display(int(*)(const char *fmt, ...));
347 static void     witness_ddb_display_descendants(int(*)(const char *fmt, ...),
348                     struct witness *, int indent);
349 static void     witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
350                     struct witness_list *list);
351 static void     witness_ddb_level_descendants(struct witness *parent, int l);
352 static void     witness_ddb_list(struct thread *td);
353 #endif
354 static void     witness_free(struct witness *m);
355 static struct witness   *witness_get(void);
356 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
357 static struct witness   *witness_hash_get(const char *key);
358 static void     witness_hash_put(struct witness *w);
359 static void     witness_init_hash_tables(void);
360 static void     witness_increment_graph_generation(void);
361 static void     witness_lock_list_free(struct lock_list_entry *lle);
362 static struct lock_list_entry   *witness_lock_list_get(void);
363 static int      witness_lock_order_add(struct witness *parent,
364                     struct witness *child);
365 static int      witness_lock_order_check(struct witness *parent,
366                     struct witness *child);
367 static struct witness_lock_order_data   *witness_lock_order_get(
368                                             struct witness *parent,
369                                             struct witness *child);
370 static void     witness_list_lock(struct lock_instance *instance,
371                     int (*prnt)(const char *fmt, ...));
372 static void     witness_setflag(struct lock_object *lock, int flag, int set);
373
374 #ifdef KDB
375 #define witness_debugger(c)     _witness_debugger(c, __func__)
376 #else
377 #define witness_debugger(c)
378 #endif
379
380 SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL, "Witness Locking");
381
382 /*
383  * If set to 0, lock order checking is disabled.  If set to -1,
384  * witness is completely disabled.  Otherwise witness performs full
385  * lock order checking for all locks.  At runtime, lock order checking
386  * may be toggled.  However, witness cannot be reenabled once it is
387  * completely disabled.
388  */
389 static int witness_watch = 1;
390 TUNABLE_INT("debug.witness.watch", &witness_watch);
391 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
392     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
393
394 #ifdef KDB
395 /*
396  * When KDB is enabled and witness_kdb is 1, it will cause the system
397  * to drop into kdebug() when:
398  *      - a lock hierarchy violation occurs
399  *      - locks are held when going to sleep.
400  */
401 #ifdef WITNESS_KDB
402 int     witness_kdb = 1;
403 #else
404 int     witness_kdb = 0;
405 #endif
406 TUNABLE_INT("debug.witness.kdb", &witness_kdb);
407 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
408
409 /*
410  * When KDB is enabled and witness_trace is 1, it will cause the system
411  * to print a stack trace:
412  *      - a lock hierarchy violation occurs
413  *      - locks are held when going to sleep.
414  */
415 int     witness_trace = 1;
416 TUNABLE_INT("debug.witness.trace", &witness_trace);
417 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
418 #endif /* KDB */
419
420 #ifdef WITNESS_SKIPSPIN
421 int     witness_skipspin = 1;
422 #else
423 int     witness_skipspin = 0;
424 #endif
425 TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
426 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin,
427     0, "");
428
429 /*
430  * Call this to print out the relations between locks.
431  */
432 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
433     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
434
435 /*
436  * Call this to print out the witness faulty stacks.
437  */
438 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
439     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
440
441 static struct mtx w_mtx;
442
443 /* w_list */
444 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
445 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
446
447 /* w_typelist */
448 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
449 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
450
451 /* lock list */
452 static struct lock_list_entry *w_lock_list_free = NULL;
453 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
454 static u_int pending_cnt;
455
456 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
457 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
458 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
459 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
460     "");
461
462 static struct witness *w_data;
463 static uint8_t w_rmatrix[WITNESS_COUNT+1][WITNESS_COUNT+1];
464 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
465 static struct witness_hash w_hash;      /* The witness hash table. */
466
467 /* The lock order data hash */
468 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
469 static struct witness_lock_order_data *w_lofree = NULL;
470 static struct witness_lock_order_hash w_lohash;
471 static int w_max_used_index = 0;
472 static unsigned int w_generation = 0;
473 static const char w_notrunning[] = "Witness not running\n";
474 static const char w_stillcold[] = "Witness is still cold\n";
475
476
477 static struct witness_order_list_entry order_lists[] = {
478         /*
479          * sx locks
480          */
481         { "proctree", &lock_class_sx },
482         { "allproc", &lock_class_sx },
483         { "allprison", &lock_class_sx },
484         { NULL, NULL },
485         /*
486          * Various mutexes
487          */
488         { "Giant", &lock_class_mtx_sleep },
489         { "pipe mutex", &lock_class_mtx_sleep },
490         { "sigio lock", &lock_class_mtx_sleep },
491         { "process group", &lock_class_mtx_sleep },
492         { "process lock", &lock_class_mtx_sleep },
493         { "session", &lock_class_mtx_sleep },
494         { "uidinfo hash", &lock_class_rw },
495 #ifdef  HWPMC_HOOKS
496         { "pmc-sleep", &lock_class_mtx_sleep },
497 #endif
498         { NULL, NULL },
499         /*
500          * Sockets
501          */
502         { "accept", &lock_class_mtx_sleep },
503         { "so_snd", &lock_class_mtx_sleep },
504         { "so_rcv", &lock_class_mtx_sleep },
505         { "sellck", &lock_class_mtx_sleep },
506         { NULL, NULL },
507         /*
508          * Routing
509          */
510         { "so_rcv", &lock_class_mtx_sleep },
511         { "radix node head", &lock_class_rw },
512         { "rtentry", &lock_class_mtx_sleep },
513         { "ifaddr", &lock_class_mtx_sleep },
514         { NULL, NULL },
515         /*
516          * IPv4 multicast:
517          * protocol locks before interface locks, after UDP locks.
518          */
519         { "udpinp", &lock_class_rw },
520         { "in_multi_mtx", &lock_class_mtx_sleep },
521         { "igmp_mtx", &lock_class_mtx_sleep },
522         { "if_addr_mtx", &lock_class_mtx_sleep },
523         { NULL, NULL },
524         /*
525          * IPv6 multicast:
526          * protocol locks before interface locks, after UDP locks.
527          */
528         { "udpinp", &lock_class_rw },
529         { "in6_multi_mtx", &lock_class_mtx_sleep },
530         { "mld_mtx", &lock_class_mtx_sleep },
531         { "if_addr_mtx", &lock_class_mtx_sleep },
532         { NULL, NULL },
533         /*
534          * UNIX Domain Sockets
535          */
536         { "unp_global_rwlock", &lock_class_rw },
537         { "unp_list_lock", &lock_class_mtx_sleep },
538         { "unp", &lock_class_mtx_sleep },
539         { "so_snd", &lock_class_mtx_sleep },
540         { NULL, NULL },
541         /*
542          * UDP/IP
543          */
544         { "udp", &lock_class_rw },
545         { "udpinp", &lock_class_rw },
546         { "so_snd", &lock_class_mtx_sleep },
547         { NULL, NULL },
548         /*
549          * TCP/IP
550          */
551         { "tcp", &lock_class_rw },
552         { "tcpinp", &lock_class_rw },
553         { "so_snd", &lock_class_mtx_sleep },
554         { NULL, NULL },
555         /*
556          * SLIP
557          */
558         { "slip_mtx", &lock_class_mtx_sleep },
559         { "slip sc_mtx", &lock_class_mtx_sleep },
560         { NULL, NULL },
561         /*
562          * netatalk
563          */
564         { "ddp_list_mtx", &lock_class_mtx_sleep },
565         { "ddp_mtx", &lock_class_mtx_sleep },
566         { NULL, NULL },
567         /*
568          * BPF
569          */
570         { "bpf global lock", &lock_class_mtx_sleep },
571         { "bpf interface lock", &lock_class_rw },
572         { "bpf cdev lock", &lock_class_mtx_sleep },
573         { NULL, NULL },
574         /*
575          * NFS server
576          */
577         { "nfsd_mtx", &lock_class_mtx_sleep },
578         { "so_snd", &lock_class_mtx_sleep },
579         { NULL, NULL },
580
581         /*
582          * IEEE 802.11
583          */
584         { "802.11 com lock", &lock_class_mtx_sleep},
585         { NULL, NULL },
586         /*
587          * Network drivers
588          */
589         { "network driver", &lock_class_mtx_sleep},
590         { NULL, NULL },
591
592         /*
593          * Netgraph
594          */
595         { "ng_node", &lock_class_mtx_sleep },
596         { "ng_worklist", &lock_class_mtx_sleep },
597         { NULL, NULL },
598         /*
599          * CDEV
600          */
601         { "system map", &lock_class_mtx_sleep },
602         { "vm page queue mutex", &lock_class_mtx_sleep },
603         { "vnode interlock", &lock_class_mtx_sleep },
604         { "cdev", &lock_class_mtx_sleep },
605         { NULL, NULL },
606         /*
607          * kqueue/VFS interaction
608          */
609         { "kqueue", &lock_class_mtx_sleep },
610         { "struct mount mtx", &lock_class_mtx_sleep },
611         { "vnode interlock", &lock_class_mtx_sleep },
612         { NULL, NULL },
613         /*
614          * ZFS locking
615          */
616         { "dn->dn_mtx", &lock_class_sx },
617         { "dr->dt.di.dr_mtx", &lock_class_sx },
618         { "db->db_mtx", &lock_class_sx },
619         { NULL, NULL },
620         /*
621          * spin locks
622          */
623 #ifdef SMP
624         { "ap boot", &lock_class_mtx_spin },
625 #endif
626         { "rm.mutex_mtx", &lock_class_mtx_spin },
627         { "sio", &lock_class_mtx_spin },
628         { "scrlock", &lock_class_mtx_spin },
629 #ifdef __i386__
630         { "cy", &lock_class_mtx_spin },
631 #endif
632 #ifdef __sparc64__
633         { "pcib_mtx", &lock_class_mtx_spin },
634         { "rtc_mtx", &lock_class_mtx_spin },
635 #endif
636         { "scc_hwmtx", &lock_class_mtx_spin },
637         { "uart_hwmtx", &lock_class_mtx_spin },
638         { "fast_taskqueue", &lock_class_mtx_spin },
639         { "intr table", &lock_class_mtx_spin },
640 #ifdef  HWPMC_HOOKS
641         { "pmc-per-proc", &lock_class_mtx_spin },
642 #endif
643         { "process slock", &lock_class_mtx_spin },
644         { "sleepq chain", &lock_class_mtx_spin },
645         { "umtx lock", &lock_class_mtx_spin },
646         { "rm_spinlock", &lock_class_mtx_spin },
647         { "turnstile chain", &lock_class_mtx_spin },
648         { "turnstile lock", &lock_class_mtx_spin },
649         { "sched lock", &lock_class_mtx_spin },
650         { "td_contested", &lock_class_mtx_spin },
651         { "callout", &lock_class_mtx_spin },
652         { "entropy harvest mutex", &lock_class_mtx_spin },
653         { "syscons video lock", &lock_class_mtx_spin },
654         { "time lock", &lock_class_mtx_spin },
655 #ifdef SMP
656         { "smp rendezvous", &lock_class_mtx_spin },
657 #endif
658 #ifdef __powerpc__
659         { "tlb0", &lock_class_mtx_spin },
660 #endif
661         /*
662          * leaf locks
663          */
664         { "intrcnt", &lock_class_mtx_spin },
665         { "icu", &lock_class_mtx_spin },
666 #ifdef __i386__
667         { "allpmaps", &lock_class_mtx_spin },
668         { "descriptor tables", &lock_class_mtx_spin },
669 #endif
670         { "clk", &lock_class_mtx_spin },
671         { "cpuset", &lock_class_mtx_spin },
672         { "mprof lock", &lock_class_mtx_spin },
673         { "zombie lock", &lock_class_mtx_spin },
674         { "ALD Queue", &lock_class_mtx_spin },
675 #ifdef __ia64__
676         { "MCA spin lock", &lock_class_mtx_spin },
677 #endif
678 #if defined(__i386__) || defined(__amd64__)
679         { "pcicfg", &lock_class_mtx_spin },
680         { "NDIS thread lock", &lock_class_mtx_spin },
681 #endif
682         { "tw_osl_io_lock", &lock_class_mtx_spin },
683         { "tw_osl_q_lock", &lock_class_mtx_spin },
684         { "tw_cl_io_lock", &lock_class_mtx_spin },
685         { "tw_cl_intr_lock", &lock_class_mtx_spin },
686         { "tw_cl_gen_lock", &lock_class_mtx_spin },
687 #ifdef  HWPMC_HOOKS
688         { "pmc-leaf", &lock_class_mtx_spin },
689 #endif
690         { "blocked lock", &lock_class_mtx_spin },
691         { NULL, NULL },
692         { NULL, NULL }
693 };
694
695 #ifdef BLESSING
696 /*
697  * Pairs of locks which have been blessed
698  * Don't complain about order problems with blessed locks
699  */
700 static struct witness_blessed blessed_list[] = {
701 };
702 static int blessed_count =
703         sizeof(blessed_list) / sizeof(struct witness_blessed);
704 #endif
705
706 /*
707  * This global is set to 0 once it becomes safe to use the witness code.
708  */
709 static int witness_cold = 1;
710
711 /*
712  * This global is set to 1 once the static lock orders have been enrolled
713  * so that a warning can be issued for any spin locks enrolled later.
714  */
715 static int witness_spin_warn = 0;
716
717 /*
718  * The WITNESS-enabled diagnostic code.  Note that the witness code does
719  * assume that the early boot is single-threaded at least until after this
720  * routine is completed.
721  */
722 static void
723 witness_initialize(void *dummy __unused)
724 {
725         struct lock_object *lock;
726         struct witness_order_list_entry *order;
727         struct witness *w, *w1;
728         int i;
729
730         w_data = malloc(sizeof (struct witness) * WITNESS_COUNT, M_WITNESS,
731             M_NOWAIT | M_ZERO);
732
733         /*
734          * We have to release Giant before initializing its witness
735          * structure so that WITNESS doesn't get confused.
736          */
737         mtx_unlock(&Giant);
738         mtx_assert(&Giant, MA_NOTOWNED);
739
740         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
741         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
742             MTX_NOWITNESS | MTX_NOPROFILE);
743         for (i = WITNESS_COUNT - 1; i >= 0; i--) {
744                 w = &w_data[i];
745                 memset(w, 0, sizeof(*w));
746                 w_data[i].w_index = i;  /* Witness index never changes. */
747                 witness_free(w);
748         }
749         KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
750             ("%s: Invalid list of free witness objects", __func__));
751
752         /* Witness with index 0 is not used to aid in debugging. */
753         STAILQ_REMOVE_HEAD(&w_free, w_list);
754         w_free_cnt--;
755
756         memset(w_rmatrix, 0,
757             (sizeof(**w_rmatrix) * (WITNESS_COUNT+1) * (WITNESS_COUNT+1)));
758
759         for (i = 0; i < LOCK_CHILDCOUNT; i++)
760                 witness_lock_list_free(&w_locklistdata[i]);
761         witness_init_hash_tables();
762
763         /* First add in all the specified order lists. */
764         for (order = order_lists; order->w_name != NULL; order++) {
765                 w = enroll(order->w_name, order->w_class);
766                 if (w == NULL)
767                         continue;
768                 w->w_file = "order list";
769                 for (order++; order->w_name != NULL; order++) {
770                         w1 = enroll(order->w_name, order->w_class);
771                         if (w1 == NULL)
772                                 continue;
773                         w1->w_file = "order list";
774                         itismychild(w, w1);
775                         w = w1;
776                 }
777         }
778         witness_spin_warn = 1;
779
780         /* Iterate through all locks and add them to witness. */
781         for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
782                 lock = pending_locks[i].wh_lock;
783                 KASSERT(lock->lo_flags & LO_WITNESS,
784                     ("%s: lock %s is on pending list but not LO_WITNESS",
785                     __func__, lock->lo_name));
786                 lock->lo_witness = enroll(pending_locks[i].wh_type,
787                     LOCK_CLASS(lock));
788         }
789
790         /* Mark the witness code as being ready for use. */
791         witness_cold = 0;
792
793         mtx_lock(&Giant);
794 }
795 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
796     NULL);
797
798 void
799 witness_init(struct lock_object *lock, const char *type)
800 {
801         struct lock_class *class;
802
803         /* Various sanity checks. */
804         class = LOCK_CLASS(lock);
805         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
806             (class->lc_flags & LC_RECURSABLE) == 0)
807                 panic("%s: lock (%s) %s can not be recursable", __func__,
808                     class->lc_name, lock->lo_name);
809         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
810             (class->lc_flags & LC_SLEEPABLE) == 0)
811                 panic("%s: lock (%s) %s can not be sleepable", __func__,
812                     class->lc_name, lock->lo_name);
813         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
814             (class->lc_flags & LC_UPGRADABLE) == 0)
815                 panic("%s: lock (%s) %s can not be upgradable", __func__,
816                     class->lc_name, lock->lo_name);
817
818         /*
819          * If we shouldn't watch this lock, then just clear lo_witness.
820          * Otherwise, if witness_cold is set, then it is too early to
821          * enroll this lock, so defer it to witness_initialize() by adding
822          * it to the pending_locks list.  If it is not too early, then enroll
823          * the lock now.
824          */
825         if (witness_watch < 1 || panicstr != NULL ||
826             (lock->lo_flags & LO_WITNESS) == 0)
827                 lock->lo_witness = NULL;
828         else if (witness_cold) {
829                 pending_locks[pending_cnt].wh_lock = lock;
830                 pending_locks[pending_cnt++].wh_type = type;
831                 if (pending_cnt > WITNESS_PENDLIST)
832                         panic("%s: pending locks list is too small, bump it\n",
833                             __func__);
834         } else
835                 lock->lo_witness = enroll(type, class);
836 }
837
838 void
839 witness_destroy(struct lock_object *lock)
840 {
841         struct lock_class *class;
842         struct witness *w;
843
844         class = LOCK_CLASS(lock);
845
846         if (witness_cold)
847                 panic("lock (%s) %s destroyed while witness_cold",
848                     class->lc_name, lock->lo_name);
849
850         /* XXX: need to verify that no one holds the lock */
851         if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
852                 return;
853         w = lock->lo_witness;
854
855         mtx_lock_spin(&w_mtx);
856         MPASS(w->w_refcount > 0);
857         w->w_refcount--;
858
859         if (w->w_refcount == 0)
860                 depart(w);
861         mtx_unlock_spin(&w_mtx);
862 }
863
864 #ifdef DDB
865 static void
866 witness_ddb_compute_levels(void)
867 {
868         struct witness *w;
869
870         /*
871          * First clear all levels.
872          */
873         STAILQ_FOREACH(w, &w_all, w_list)
874                 w->w_ddb_level = -1;
875
876         /*
877          * Look for locks with no parents and level all their descendants.
878          */
879         STAILQ_FOREACH(w, &w_all, w_list) {
880
881                 /* If the witness has ancestors (is not a root), skip it. */
882                 if (w->w_num_ancestors > 0)
883                         continue;
884                 witness_ddb_level_descendants(w, 0);
885         }
886 }
887
888 static void
889 witness_ddb_level_descendants(struct witness *w, int l)
890 {
891         int i;
892
893         if (w->w_ddb_level >= l)
894                 return;
895
896         w->w_ddb_level = l;
897         l++;
898
899         for (i = 1; i <= w_max_used_index; i++) {
900                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
901                         witness_ddb_level_descendants(&w_data[i], l);
902         }
903 }
904
905 static void
906 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
907     struct witness *w, int indent)
908 {
909         int i;
910
911         for (i = 0; i < indent; i++)
912                 prnt(" ");
913         prnt("%s (type: %s, depth: %d, active refs: %d)",
914              w->w_name, w->w_class->lc_name,
915              w->w_ddb_level, w->w_refcount);
916         if (w->w_displayed) {
917                 prnt(" -- (already displayed)\n");
918                 return;
919         }
920         w->w_displayed = 1;
921         if (w->w_file != NULL && w->w_line != 0)
922                 prnt(" -- last acquired @ %s:%d\n", w->w_file,
923                     w->w_line);
924         else
925                 prnt(" -- never acquired\n");
926         indent++;
927         WITNESS_INDEX_ASSERT(w->w_index);
928         for (i = 1; i <= w_max_used_index; i++) {
929                 if (db_pager_quit)
930                         return;
931                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
932                         witness_ddb_display_descendants(prnt, &w_data[i],
933                             indent);
934         }
935 }
936
937 static void
938 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
939     struct witness_list *list)
940 {
941         struct witness *w;
942
943         STAILQ_FOREACH(w, list, w_typelist) {
944                 if (w->w_file == NULL || w->w_ddb_level > 0)
945                         continue;
946
947                 /* This lock has no anscestors - display its descendants. */
948                 witness_ddb_display_descendants(prnt, w, 0);
949                 if (db_pager_quit)
950                         return;
951         }
952 }
953         
954 static void
955 witness_ddb_display(int(*prnt)(const char *fmt, ...))
956 {
957         struct witness *w;
958
959         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
960         witness_ddb_compute_levels();
961
962         /* Clear all the displayed flags. */
963         STAILQ_FOREACH(w, &w_all, w_list)
964                 w->w_displayed = 0;
965
966         /*
967          * First, handle sleep locks which have been acquired at least
968          * once.
969          */
970         prnt("Sleep locks:\n");
971         witness_ddb_display_list(prnt, &w_sleep);
972         if (db_pager_quit)
973                 return;
974         
975         /*
976          * Now do spin locks which have been acquired at least once.
977          */
978         prnt("\nSpin locks:\n");
979         witness_ddb_display_list(prnt, &w_spin);
980         if (db_pager_quit)
981                 return;
982         
983         /*
984          * Finally, any locks which have not been acquired yet.
985          */
986         prnt("\nLocks which were never acquired:\n");
987         STAILQ_FOREACH(w, &w_all, w_list) {
988                 if (w->w_file != NULL || w->w_refcount == 0)
989                         continue;
990                 prnt("%s (type: %s, depth: %d)\n", w->w_name,
991                     w->w_class->lc_name, w->w_ddb_level);
992                 if (db_pager_quit)
993                         return;
994         }
995 }
996 #endif /* DDB */
997
998 /* Trim useless garbage from filenames. */
999 static const char *
1000 fixup_filename(const char *file)
1001 {
1002
1003         if (file == NULL)
1004                 return (NULL);
1005         while (strncmp(file, "../", 3) == 0)
1006                 file += 3;
1007         return (file);
1008 }
1009
1010 int
1011 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1012 {
1013
1014         if (witness_watch == -1 || panicstr != NULL)
1015                 return (0);
1016
1017         /* Require locks that witness knows about. */
1018         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1019             lock2->lo_witness == NULL)
1020                 return (EINVAL);
1021
1022         mtx_assert(&w_mtx, MA_NOTOWNED);
1023         mtx_lock_spin(&w_mtx);
1024
1025         /*
1026          * If we already have either an explicit or implied lock order that
1027          * is the other way around, then return an error.
1028          */
1029         if (witness_watch &&
1030             isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1031                 mtx_unlock_spin(&w_mtx);
1032                 return (EDOOFUS);
1033         }
1034         
1035         /* Try to add the new order. */
1036         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1037             lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1038         itismychild(lock1->lo_witness, lock2->lo_witness);
1039         mtx_unlock_spin(&w_mtx);
1040         return (0);
1041 }
1042
1043 void
1044 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1045     int line, struct lock_object *interlock)
1046 {
1047         struct lock_list_entry *lock_list, *lle;
1048         struct lock_instance *lock1, *lock2, *plock;
1049         struct lock_class *class;
1050         struct witness *w, *w1;
1051         struct thread *td;
1052         int i, j;
1053
1054         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1055             panicstr != NULL)
1056                 return;
1057
1058         w = lock->lo_witness;
1059         class = LOCK_CLASS(lock);
1060         td = curthread;
1061         file = fixup_filename(file);
1062
1063         if (class->lc_flags & LC_SLEEPLOCK) {
1064
1065                 /*
1066                  * Since spin locks include a critical section, this check
1067                  * implicitly enforces a lock order of all sleep locks before
1068                  * all spin locks.
1069                  */
1070                 if (td->td_critnest != 0 && !kdb_active)
1071                         panic("blockable sleep lock (%s) %s @ %s:%d",
1072                             class->lc_name, lock->lo_name, file, line);
1073
1074                 /*
1075                  * If this is the first lock acquired then just return as
1076                  * no order checking is needed.
1077                  */
1078                 lock_list = td->td_sleeplocks;
1079                 if (lock_list == NULL || lock_list->ll_count == 0)
1080                         return;
1081         } else {
1082
1083                 /*
1084                  * If this is the first lock, just return as no order
1085                  * checking is needed.  Avoid problems with thread
1086                  * migration pinning the thread while checking if
1087                  * spinlocks are held.  If at least one spinlock is held
1088                  * the thread is in a safe path and it is allowed to
1089                  * unpin it.
1090                  */
1091                 sched_pin();
1092                 lock_list = PCPU_GET(spinlocks);
1093                 if (lock_list == NULL || lock_list->ll_count == 0) {
1094                         sched_unpin();
1095                         return;
1096                 }
1097                 sched_unpin();
1098         }
1099
1100         /*
1101          * Check to see if we are recursing on a lock we already own.  If
1102          * so, make sure that we don't mismatch exclusive and shared lock
1103          * acquires.
1104          */
1105         lock1 = find_instance(lock_list, lock);
1106         if (lock1 != NULL) {
1107                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1108                     (flags & LOP_EXCLUSIVE) == 0) {
1109                         printf("shared lock of (%s) %s @ %s:%d\n",
1110                             class->lc_name, lock->lo_name, file, line);
1111                         printf("while exclusively locked from %s:%d\n",
1112                             lock1->li_file, lock1->li_line);
1113                         panic("share->excl");
1114                 }
1115                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1116                     (flags & LOP_EXCLUSIVE) != 0) {
1117                         printf("exclusive lock of (%s) %s @ %s:%d\n",
1118                             class->lc_name, lock->lo_name, file, line);
1119                         printf("while share locked from %s:%d\n",
1120                             lock1->li_file, lock1->li_line);
1121                         panic("excl->share");
1122                 }
1123                 return;
1124         }
1125
1126         /*
1127          * Find the previously acquired lock, but ignore interlocks.
1128          */
1129         plock = &lock_list->ll_children[lock_list->ll_count - 1];
1130         if (interlock != NULL && plock->li_lock == interlock) {
1131                 if (lock_list->ll_count > 1)
1132                         plock =
1133                             &lock_list->ll_children[lock_list->ll_count - 2];
1134                 else {
1135                         lle = lock_list->ll_next;
1136
1137                         /*
1138                          * The interlock is the only lock we hold, so
1139                          * simply return.
1140                          */
1141                         if (lle == NULL)
1142                                 return;
1143                         plock = &lle->ll_children[lle->ll_count - 1];
1144                 }
1145         }
1146         
1147         /*
1148          * Try to perform most checks without a lock.  If this succeeds we
1149          * can skip acquiring the lock and return success.
1150          */
1151         w1 = plock->li_lock->lo_witness;
1152         if (witness_lock_order_check(w1, w))
1153                 return;
1154
1155         /*
1156          * Check for duplicate locks of the same type.  Note that we only
1157          * have to check for this on the last lock we just acquired.  Any
1158          * other cases will be caught as lock order violations.
1159          */
1160         mtx_lock_spin(&w_mtx);
1161         witness_lock_order_add(w1, w);
1162         if (w1 == w) {
1163                 i = w->w_index;
1164                 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1165                     !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1166                     w_rmatrix[i][i] |= WITNESS_REVERSAL;
1167                         w->w_reversed = 1;
1168                         mtx_unlock_spin(&w_mtx);
1169                         printf(
1170                             "acquiring duplicate lock of same type: \"%s\"\n", 
1171                             w->w_name);
1172                         printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1173                                plock->li_file, plock->li_line);
1174                         printf(" 2nd %s @ %s:%d\n", lock->lo_name, file, line);
1175                         witness_debugger(1);
1176                     } else
1177                             mtx_unlock_spin(&w_mtx);
1178                 return;
1179         }
1180         mtx_assert(&w_mtx, MA_OWNED);
1181
1182         /*
1183          * If we know that the lock we are acquiring comes after
1184          * the lock we most recently acquired in the lock order tree,
1185          * then there is no need for any further checks.
1186          */
1187         if (isitmychild(w1, w))
1188                 goto out;
1189
1190         for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1191                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1192
1193                         MPASS(j < WITNESS_COUNT);
1194                         lock1 = &lle->ll_children[i];
1195
1196                         /*
1197                          * Ignore the interlock the first time we see it.
1198                          */
1199                         if (interlock != NULL && interlock == lock1->li_lock) {
1200                                 interlock = NULL;
1201                                 continue;
1202                         }
1203
1204                         /*
1205                          * If this lock doesn't undergo witness checking,
1206                          * then skip it.
1207                          */
1208                         w1 = lock1->li_lock->lo_witness;
1209                         if (w1 == NULL) {
1210                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1211                                     ("lock missing witness structure"));
1212                                 continue;
1213                         }
1214
1215                         /*
1216                          * If we are locking Giant and this is a sleepable
1217                          * lock, then skip it.
1218                          */
1219                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1220                             lock == &Giant.lock_object)
1221                                 continue;
1222
1223                         /*
1224                          * If we are locking a sleepable lock and this lock
1225                          * is Giant, then skip it.
1226                          */
1227                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1228                             lock1->li_lock == &Giant.lock_object)
1229                                 continue;
1230
1231                         /*
1232                          * If we are locking a sleepable lock and this lock
1233                          * isn't sleepable, we want to treat it as a lock
1234                          * order violation to enfore a general lock order of
1235                          * sleepable locks before non-sleepable locks.
1236                          */
1237                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1238                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1239                                 goto reversal;
1240
1241                         /*
1242                          * If we are locking Giant and this is a non-sleepable
1243                          * lock, then treat it as a reversal.
1244                          */
1245                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1246                             lock == &Giant.lock_object)
1247                                 goto reversal;
1248
1249                         /*
1250                          * Check the lock order hierarchy for a reveresal.
1251                          */
1252                         if (!isitmydescendant(w, w1))
1253                                 continue;
1254                 reversal:
1255
1256                         /*
1257                          * We have a lock order violation, check to see if it
1258                          * is allowed or has already been yelled about.
1259                          */
1260 #ifdef BLESSING
1261
1262                         /*
1263                          * If the lock order is blessed, just bail.  We don't
1264                          * look for other lock order violations though, which
1265                          * may be a bug.
1266                          */
1267                         if (blessed(w, w1))
1268                                 goto out;
1269 #endif
1270
1271                         /* Bail if this violation is known */
1272                         if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1273                                 goto out;
1274
1275                         /* Record this as a violation */
1276                         w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1277                         w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1278                         w->w_reversed = w1->w_reversed = 1;
1279                         witness_increment_graph_generation();
1280                         mtx_unlock_spin(&w_mtx);
1281                         
1282                         /*
1283                          * Ok, yell about it.
1284                          */
1285                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1286                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1287                                 printf(
1288                 "lock order reversal: (sleepable after non-sleepable)\n");
1289                         else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1290                             && lock == &Giant.lock_object)
1291                                 printf(
1292                 "lock order reversal: (Giant after non-sleepable)\n");
1293                         else
1294                                 printf("lock order reversal:\n");
1295
1296                         /*
1297                          * Try to locate an earlier lock with
1298                          * witness w in our list.
1299                          */
1300                         do {
1301                                 lock2 = &lle->ll_children[i];
1302                                 MPASS(lock2->li_lock != NULL);
1303                                 if (lock2->li_lock->lo_witness == w)
1304                                         break;
1305                                 if (i == 0 && lle->ll_next != NULL) {
1306                                         lle = lle->ll_next;
1307                                         i = lle->ll_count - 1;
1308                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
1309                                 } else
1310                                         i--;
1311                         } while (i >= 0);
1312                         if (i < 0) {
1313                                 printf(" 1st %p %s (%s) @ %s:%d\n",
1314                                     lock1->li_lock, lock1->li_lock->lo_name,
1315                                     w1->w_name, lock1->li_file, lock1->li_line);
1316                                 printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
1317                                     lock->lo_name, w->w_name, file, line);
1318                         } else {
1319                                 printf(" 1st %p %s (%s) @ %s:%d\n",
1320                                     lock2->li_lock, lock2->li_lock->lo_name,
1321                                     lock2->li_lock->lo_witness->w_name,
1322                                     lock2->li_file, lock2->li_line);
1323                                 printf(" 2nd %p %s (%s) @ %s:%d\n",
1324                                     lock1->li_lock, lock1->li_lock->lo_name,
1325                                     w1->w_name, lock1->li_file, lock1->li_line);
1326                                 printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
1327                                     lock->lo_name, w->w_name, file, line);
1328                         }
1329                         witness_debugger(1);
1330                         return;
1331                 }
1332         }
1333
1334         /*
1335          * If requested, build a new lock order.  However, don't build a new
1336          * relationship between a sleepable lock and Giant if it is in the
1337          * wrong direction.  The correct lock order is that sleepable locks
1338          * always come before Giant.
1339          */
1340         if (flags & LOP_NEWORDER &&
1341             !(plock->li_lock == &Giant.lock_object &&
1342             (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1343                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1344                     w->w_name, plock->li_lock->lo_witness->w_name);
1345                 itismychild(plock->li_lock->lo_witness, w);
1346         }
1347 out:
1348         mtx_unlock_spin(&w_mtx);
1349 }
1350
1351 void
1352 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1353 {
1354         struct lock_list_entry **lock_list, *lle;
1355         struct lock_instance *instance;
1356         struct witness *w;
1357         struct thread *td;
1358
1359         if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1360             panicstr != NULL)
1361                 return;
1362         w = lock->lo_witness;
1363         td = curthread;
1364         file = fixup_filename(file);
1365
1366         /* Determine lock list for this lock. */
1367         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1368                 lock_list = &td->td_sleeplocks;
1369         else
1370                 lock_list = PCPU_PTR(spinlocks);
1371
1372         /* Check to see if we are recursing on a lock we already own. */
1373         instance = find_instance(*lock_list, lock);
1374         if (instance != NULL) {
1375                 instance->li_flags++;
1376                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1377                     td->td_proc->p_pid, lock->lo_name,
1378                     instance->li_flags & LI_RECURSEMASK);
1379                 instance->li_file = file;
1380                 instance->li_line = line;
1381                 return;
1382         }
1383
1384         /* Update per-witness last file and line acquire. */
1385         w->w_file = file;
1386         w->w_line = line;
1387
1388         /* Find the next open lock instance in the list and fill it. */
1389         lle = *lock_list;
1390         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1391                 lle = witness_lock_list_get();
1392                 if (lle == NULL)
1393                         return;
1394                 lle->ll_next = *lock_list;
1395                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1396                     td->td_proc->p_pid, lle);
1397                 *lock_list = lle;
1398         }
1399         instance = &lle->ll_children[lle->ll_count++];
1400         instance->li_lock = lock;
1401         instance->li_line = line;
1402         instance->li_file = file;
1403         if ((flags & LOP_EXCLUSIVE) != 0)
1404                 instance->li_flags = LI_EXCLUSIVE;
1405         else
1406                 instance->li_flags = 0;
1407         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1408             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1409 }
1410
1411 void
1412 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1413 {
1414         struct lock_instance *instance;
1415         struct lock_class *class;
1416
1417         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1418         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1419                 return;
1420         class = LOCK_CLASS(lock);
1421         file = fixup_filename(file);
1422         if (witness_watch) {
1423                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1424                         panic("upgrade of non-upgradable lock (%s) %s @ %s:%d",
1425                             class->lc_name, lock->lo_name, file, line);
1426                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1427                         panic("upgrade of non-sleep lock (%s) %s @ %s:%d",
1428                             class->lc_name, lock->lo_name, file, line);
1429         }
1430         instance = find_instance(curthread->td_sleeplocks, lock);
1431         if (instance == NULL)
1432                 panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1433                     class->lc_name, lock->lo_name, file, line);
1434         if (witness_watch) {
1435                 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1436                         panic("upgrade of exclusive lock (%s) %s @ %s:%d",
1437                             class->lc_name, lock->lo_name, file, line);
1438                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1439                         panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1440                             class->lc_name, lock->lo_name,
1441                             instance->li_flags & LI_RECURSEMASK, file, line);
1442         }
1443         instance->li_flags |= LI_EXCLUSIVE;
1444 }
1445
1446 void
1447 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1448     int line)
1449 {
1450         struct lock_instance *instance;
1451         struct lock_class *class;
1452
1453         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1454         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1455                 return;
1456         class = LOCK_CLASS(lock);
1457         file = fixup_filename(file);
1458         if (witness_watch) {
1459                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1460                 panic("downgrade of non-upgradable lock (%s) %s @ %s:%d",
1461                             class->lc_name, lock->lo_name, file, line);
1462                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1463                         panic("downgrade of non-sleep lock (%s) %s @ %s:%d",
1464                             class->lc_name, lock->lo_name, file, line);
1465         }
1466         instance = find_instance(curthread->td_sleeplocks, lock);
1467         if (instance == NULL)
1468                 panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1469                     class->lc_name, lock->lo_name, file, line);
1470         if (witness_watch) {
1471                 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1472                         panic("downgrade of shared lock (%s) %s @ %s:%d",
1473                             class->lc_name, lock->lo_name, file, line);
1474                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1475                         panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1476                             class->lc_name, lock->lo_name,
1477                             instance->li_flags & LI_RECURSEMASK, file, line);
1478         }
1479         instance->li_flags &= ~LI_EXCLUSIVE;
1480 }
1481
1482 void
1483 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1484 {
1485         struct lock_list_entry **lock_list, *lle;
1486         struct lock_instance *instance;
1487         struct lock_class *class;
1488         struct thread *td;
1489         register_t s;
1490         int i, j;
1491
1492         if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1493                 return;
1494         td = curthread;
1495         class = LOCK_CLASS(lock);
1496         file = fixup_filename(file);
1497
1498         /* Find lock instance associated with this lock. */
1499         if (class->lc_flags & LC_SLEEPLOCK)
1500                 lock_list = &td->td_sleeplocks;
1501         else
1502                 lock_list = PCPU_PTR(spinlocks);
1503         lle = *lock_list;
1504         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1505                 for (i = 0; i < (*lock_list)->ll_count; i++) {
1506                         instance = &(*lock_list)->ll_children[i];
1507                         if (instance->li_lock == lock)
1508                                 goto found;
1509                 }
1510
1511         /*
1512          * When disabling WITNESS through witness_watch we could end up in
1513          * having registered locks in the td_sleeplocks queue.
1514          * We have to make sure we flush these queues, so just search for
1515          * eventual register locks and remove them.
1516          */
1517         if (witness_watch > 0)
1518                 panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1519                     lock->lo_name, file, line);
1520         else
1521                 return;
1522 found:
1523
1524         /* First, check for shared/exclusive mismatches. */
1525         if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1526             (flags & LOP_EXCLUSIVE) == 0) {
1527                 printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1528                     lock->lo_name, file, line);
1529                 printf("while exclusively locked from %s:%d\n",
1530                     instance->li_file, instance->li_line);
1531                 panic("excl->ushare");
1532         }
1533         if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1534             (flags & LOP_EXCLUSIVE) != 0) {
1535                 printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1536                     lock->lo_name, file, line);
1537                 printf("while share locked from %s:%d\n", instance->li_file,
1538                     instance->li_line);
1539                 panic("share->uexcl");
1540         }
1541         /* If we are recursed, unrecurse. */
1542         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1543                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1544                     td->td_proc->p_pid, instance->li_lock->lo_name,
1545                     instance->li_flags);
1546                 instance->li_flags--;
1547                 return;
1548         }
1549         /* The lock is now being dropped, check for NORELEASE flag */
1550         if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1551                 printf("forbidden unlock of (%s) %s @ %s:%d\n", class->lc_name,
1552                     lock->lo_name, file, line);
1553                 panic("lock marked norelease");
1554         }
1555
1556         /* Otherwise, remove this item from the list. */
1557         s = intr_disable();
1558         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1559             td->td_proc->p_pid, instance->li_lock->lo_name,
1560             (*lock_list)->ll_count - 1);
1561         for (j = i; j < (*lock_list)->ll_count - 1; j++)
1562                 (*lock_list)->ll_children[j] =
1563                     (*lock_list)->ll_children[j + 1];
1564         (*lock_list)->ll_count--;
1565         intr_restore(s);
1566
1567         /*
1568          * In order to reduce contention on w_mtx, we want to keep always an
1569          * head object into lists so that frequent allocation from the 
1570          * free witness pool (and subsequent locking) is avoided.
1571          * In order to maintain the current code simple, when the head
1572          * object is totally unloaded it means also that we do not have
1573          * further objects in the list, so the list ownership needs to be
1574          * hand over to another object if the current head needs to be freed.
1575          */
1576         if ((*lock_list)->ll_count == 0) {
1577                 if (*lock_list == lle) {
1578                         if (lle->ll_next == NULL)
1579                                 return;
1580                 } else
1581                         lle = *lock_list;
1582                 *lock_list = lle->ll_next;
1583                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1584                     td->td_proc->p_pid, lle);
1585                 witness_lock_list_free(lle);
1586         }
1587 }
1588
1589 void
1590 witness_thread_exit(struct thread *td)
1591 {
1592         struct lock_list_entry *lle;
1593         int i, n;
1594
1595         lle = td->td_sleeplocks;
1596         if (lle == NULL || panicstr != NULL)
1597                 return;
1598         if (lle->ll_count != 0) {
1599                 for (n = 0; lle != NULL; lle = lle->ll_next)
1600                         for (i = lle->ll_count - 1; i >= 0; i--) {
1601                                 if (n == 0)
1602                 printf("Thread %p exiting with the following locks held:\n",
1603                                             td);
1604                                 n++;
1605                                 witness_list_lock(&lle->ll_children[i], printf);
1606                                 
1607                         }
1608                 panic("Thread %p cannot exit while holding sleeplocks\n", td);
1609         }
1610         witness_lock_list_free(lle);
1611 }
1612
1613 /*
1614  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1615  * exempt Giant and sleepable locks from the checks as well.  If any
1616  * non-exempt locks are held, then a supplied message is printed to the
1617  * console along with a list of the offending locks.  If indicated in the
1618  * flags then a failure results in a panic as well.
1619  */
1620 int
1621 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1622 {
1623         struct lock_list_entry *lock_list, *lle;
1624         struct lock_instance *lock1;
1625         struct thread *td;
1626         va_list ap;
1627         int i, n;
1628
1629         if (witness_cold || witness_watch < 1 || panicstr != NULL)
1630                 return (0);
1631         n = 0;
1632         td = curthread;
1633         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1634                 for (i = lle->ll_count - 1; i >= 0; i--) {
1635                         lock1 = &lle->ll_children[i];
1636                         if (lock1->li_lock == lock)
1637                                 continue;
1638                         if (flags & WARN_GIANTOK &&
1639                             lock1->li_lock == &Giant.lock_object)
1640                                 continue;
1641                         if (flags & WARN_SLEEPOK &&
1642                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1643                                 continue;
1644                         if (n == 0) {
1645                                 va_start(ap, fmt);
1646                                 vprintf(fmt, ap);
1647                                 va_end(ap);
1648                                 printf(" with the following");
1649                                 if (flags & WARN_SLEEPOK)
1650                                         printf(" non-sleepable");
1651                                 printf(" locks held:\n");
1652                         }
1653                         n++;
1654                         witness_list_lock(lock1, printf);
1655                 }
1656
1657         /*
1658          * Pin the thread in order to avoid problems with thread migration.
1659          * Once that all verifies are passed about spinlocks ownership,
1660          * the thread is in a safe path and it can be unpinned.
1661          */
1662         sched_pin();
1663         lock_list = PCPU_GET(spinlocks);
1664         if (lock_list != NULL && lock_list->ll_count != 0) {
1665                 sched_unpin();
1666
1667                 /*
1668                  * We should only have one spinlock and as long as
1669                  * the flags cannot match for this locks class,
1670                  * check if the first spinlock is the one curthread
1671                  * should hold.
1672                  */
1673                 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1674                 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1675                     lock1->li_lock == lock && n == 0)
1676                         return (0);
1677
1678                 va_start(ap, fmt);
1679                 vprintf(fmt, ap);
1680                 va_end(ap);
1681                 printf(" with the following");
1682                 if (flags & WARN_SLEEPOK)
1683                         printf(" non-sleepable");
1684                 printf(" locks held:\n");
1685                 n += witness_list_locks(&lock_list, printf);
1686         } else
1687                 sched_unpin();
1688         if (flags & WARN_PANIC && n)
1689                 panic("%s", __func__);
1690         else
1691                 witness_debugger(n);
1692         return (n);
1693 }
1694
1695 const char *
1696 witness_file(struct lock_object *lock)
1697 {
1698         struct witness *w;
1699
1700         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1701                 return ("?");
1702         w = lock->lo_witness;
1703         return (w->w_file);
1704 }
1705
1706 int
1707 witness_line(struct lock_object *lock)
1708 {
1709         struct witness *w;
1710
1711         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1712                 return (0);
1713         w = lock->lo_witness;
1714         return (w->w_line);
1715 }
1716
1717 static struct witness *
1718 enroll(const char *description, struct lock_class *lock_class)
1719 {
1720         struct witness *w;
1721         struct witness_list *typelist;
1722
1723         MPASS(description != NULL);
1724
1725         if (witness_watch == -1 || panicstr != NULL)
1726                 return (NULL);
1727         if ((lock_class->lc_flags & LC_SPINLOCK)) {
1728                 if (witness_skipspin)
1729                         return (NULL);
1730                 else
1731                         typelist = &w_spin;
1732         } else if ((lock_class->lc_flags & LC_SLEEPLOCK))
1733                 typelist = &w_sleep;
1734         else
1735                 panic("lock class %s is not sleep or spin",
1736                     lock_class->lc_name);
1737
1738         mtx_lock_spin(&w_mtx);
1739         w = witness_hash_get(description);
1740         if (w)
1741                 goto found;
1742         if ((w = witness_get()) == NULL)
1743                 return (NULL);
1744         MPASS(strlen(description) < MAX_W_NAME);
1745         strcpy(w->w_name, description);
1746         w->w_class = lock_class;
1747         w->w_refcount = 1;
1748         STAILQ_INSERT_HEAD(&w_all, w, w_list);
1749         if (lock_class->lc_flags & LC_SPINLOCK) {
1750                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1751                 w_spin_cnt++;
1752         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1753                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1754                 w_sleep_cnt++;
1755         }
1756
1757         /* Insert new witness into the hash */
1758         witness_hash_put(w);
1759         witness_increment_graph_generation();
1760         mtx_unlock_spin(&w_mtx);
1761         return (w);
1762 found:
1763         w->w_refcount++;
1764         mtx_unlock_spin(&w_mtx);
1765         if (lock_class != w->w_class)
1766                 panic(
1767                         "lock (%s) %s does not match earlier (%s) lock",
1768                         description, lock_class->lc_name,
1769                         w->w_class->lc_name);
1770         return (w);
1771 }
1772
1773 static void
1774 depart(struct witness *w)
1775 {
1776         struct witness_list *list;
1777
1778         MPASS(w->w_refcount == 0);
1779         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1780                 list = &w_sleep;
1781                 w_sleep_cnt--;
1782         } else {
1783                 list = &w_spin;
1784                 w_spin_cnt--;
1785         }
1786         /*
1787          * Set file to NULL as it may point into a loadable module.
1788          */
1789         w->w_file = NULL;
1790         w->w_line = 0;
1791         witness_increment_graph_generation();
1792 }
1793
1794
1795 static void
1796 adopt(struct witness *parent, struct witness *child)
1797 {
1798         int pi, ci, i, j;
1799
1800         if (witness_cold == 0)
1801                 mtx_assert(&w_mtx, MA_OWNED);
1802
1803         /* If the relationship is already known, there's no work to be done. */
1804         if (isitmychild(parent, child))
1805                 return;
1806
1807         /* When the structure of the graph changes, bump up the generation. */
1808         witness_increment_graph_generation();
1809
1810         /*
1811          * The hard part ... create the direct relationship, then propagate all
1812          * indirect relationships.
1813          */
1814         pi = parent->w_index;
1815         ci = child->w_index;
1816         WITNESS_INDEX_ASSERT(pi);
1817         WITNESS_INDEX_ASSERT(ci);
1818         MPASS(pi != ci);
1819         w_rmatrix[pi][ci] |= WITNESS_PARENT;
1820         w_rmatrix[ci][pi] |= WITNESS_CHILD;
1821
1822         /*
1823          * If parent was not already an ancestor of child,
1824          * then we increment the descendant and ancestor counters.
1825          */
1826         if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1827                 parent->w_num_descendants++;
1828                 child->w_num_ancestors++;
1829         }
1830
1831         /* 
1832          * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 
1833          * an ancestor of 'pi' during this loop.
1834          */
1835         for (i = 1; i <= w_max_used_index; i++) {
1836                 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 
1837                     (i != pi))
1838                         continue;
1839
1840                 /* Find each descendant of 'i' and mark it as a descendant. */
1841                 for (j = 1; j <= w_max_used_index; j++) {
1842
1843                         /* 
1844                          * Skip children that are already marked as
1845                          * descendants of 'i'.
1846                          */
1847                         if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1848                                 continue;
1849
1850                         /*
1851                          * We are only interested in descendants of 'ci'. Note
1852                          * that 'ci' itself is counted as a descendant of 'ci'.
1853                          */
1854                         if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 
1855                             (j != ci))
1856                                 continue;
1857                         w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1858                         w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1859                         w_data[i].w_num_descendants++;
1860                         w_data[j].w_num_ancestors++;
1861
1862                         /* 
1863                          * Make sure we aren't marking a node as both an
1864                          * ancestor and descendant. We should have caught 
1865                          * this as a lock order reversal earlier.
1866                          */
1867                         if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1868                             (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1869                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1870                                     "both ancestor and descendant\n",
1871                                     i, j, w_rmatrix[i][j]); 
1872                                 kdb_backtrace();
1873                                 printf("Witness disabled.\n");
1874                                 witness_watch = -1;
1875                         }
1876                         if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1877                             (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1878                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1879                                     "both ancestor and descendant\n",
1880                                     j, i, w_rmatrix[j][i]); 
1881                                 kdb_backtrace();
1882                                 printf("Witness disabled.\n");
1883                                 witness_watch = -1;
1884                         }
1885                 }
1886         }
1887 }
1888
1889 static void
1890 itismychild(struct witness *parent, struct witness *child)
1891 {
1892
1893         MPASS(child != NULL && parent != NULL);
1894         if (witness_cold == 0)
1895                 mtx_assert(&w_mtx, MA_OWNED);
1896
1897         if (!witness_lock_type_equal(parent, child)) {
1898                 if (witness_cold == 0)
1899                         mtx_unlock_spin(&w_mtx);
1900                 panic("%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
1901                     "the same lock type", __func__, parent->w_name,
1902                     parent->w_class->lc_name, child->w_name,
1903                     child->w_class->lc_name);
1904         }
1905         adopt(parent, child);
1906 }
1907
1908 /*
1909  * Generic code for the isitmy*() functions. The rmask parameter is the
1910  * expected relationship of w1 to w2.
1911  */
1912 static int
1913 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
1914 {
1915         unsigned char r1, r2;
1916         int i1, i2;
1917
1918         i1 = w1->w_index;
1919         i2 = w2->w_index;
1920         WITNESS_INDEX_ASSERT(i1);
1921         WITNESS_INDEX_ASSERT(i2);
1922         r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
1923         r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
1924
1925         /* The flags on one better be the inverse of the flags on the other */
1926         if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
1927                 (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
1928                 printf("%s: rmatrix mismatch between %s (index %d) and %s "
1929                     "(index %d): w_rmatrix[%d][%d] == %hhx but "
1930                     "w_rmatrix[%d][%d] == %hhx\n",
1931                     fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
1932                     i2, i1, r2);
1933                 kdb_backtrace();
1934                 printf("Witness disabled.\n");
1935                 witness_watch = -1;
1936         }
1937         return (r1 & rmask);
1938 }
1939
1940 /*
1941  * Checks if @child is a direct child of @parent.
1942  */
1943 static int
1944 isitmychild(struct witness *parent, struct witness *child)
1945 {
1946
1947         return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
1948 }
1949
1950 /*
1951  * Checks if @descendant is a direct or inderect descendant of @ancestor.
1952  */
1953 static int
1954 isitmydescendant(struct witness *ancestor, struct witness *descendant)
1955 {
1956
1957         return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
1958             __func__));
1959 }
1960
1961 #ifdef BLESSING
1962 static int
1963 blessed(struct witness *w1, struct witness *w2)
1964 {
1965         int i;
1966         struct witness_blessed *b;
1967
1968         for (i = 0; i < blessed_count; i++) {
1969                 b = &blessed_list[i];
1970                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
1971                         if (strcmp(w2->w_name, b->b_lock2) == 0)
1972                                 return (1);
1973                         continue;
1974                 }
1975                 if (strcmp(w1->w_name, b->b_lock2) == 0)
1976                         if (strcmp(w2->w_name, b->b_lock1) == 0)
1977                                 return (1);
1978         }
1979         return (0);
1980 }
1981 #endif
1982
1983 static struct witness *
1984 witness_get(void)
1985 {
1986         struct witness *w;
1987         int index;
1988
1989         if (witness_cold == 0)
1990                 mtx_assert(&w_mtx, MA_OWNED);
1991
1992         if (witness_watch == -1) {
1993                 mtx_unlock_spin(&w_mtx);
1994                 return (NULL);
1995         }
1996         if (STAILQ_EMPTY(&w_free)) {
1997                 witness_watch = -1;
1998                 mtx_unlock_spin(&w_mtx);
1999                 printf("WITNESS: unable to allocate a new witness object\n");
2000                 return (NULL);
2001         }
2002         w = STAILQ_FIRST(&w_free);
2003         STAILQ_REMOVE_HEAD(&w_free, w_list);
2004         w_free_cnt--;
2005         index = w->w_index;
2006         MPASS(index > 0 && index == w_max_used_index+1 &&
2007             index < WITNESS_COUNT);
2008         bzero(w, sizeof(*w));
2009         w->w_index = index;
2010         if (index > w_max_used_index)
2011                 w_max_used_index = index;
2012         return (w);
2013 }
2014
2015 static void
2016 witness_free(struct witness *w)
2017 {
2018
2019         STAILQ_INSERT_HEAD(&w_free, w, w_list);
2020         w_free_cnt++;
2021 }
2022
2023 static struct lock_list_entry *
2024 witness_lock_list_get(void)
2025 {
2026         struct lock_list_entry *lle;
2027
2028         if (witness_watch == -1)
2029                 return (NULL);
2030         mtx_lock_spin(&w_mtx);
2031         lle = w_lock_list_free;
2032         if (lle == NULL) {
2033                 witness_watch = -1;
2034                 mtx_unlock_spin(&w_mtx);
2035                 printf("%s: witness exhausted\n", __func__);
2036                 return (NULL);
2037         }
2038         w_lock_list_free = lle->ll_next;
2039         mtx_unlock_spin(&w_mtx);
2040         bzero(lle, sizeof(*lle));
2041         return (lle);
2042 }
2043                 
2044 static void
2045 witness_lock_list_free(struct lock_list_entry *lle)
2046 {
2047
2048         mtx_lock_spin(&w_mtx);
2049         lle->ll_next = w_lock_list_free;
2050         w_lock_list_free = lle;
2051         mtx_unlock_spin(&w_mtx);
2052 }
2053
2054 static struct lock_instance *
2055 find_instance(struct lock_list_entry *list, struct lock_object *lock)
2056 {
2057         struct lock_list_entry *lle;
2058         struct lock_instance *instance;
2059         int i;
2060
2061         for (lle = list; lle != NULL; lle = lle->ll_next)
2062                 for (i = lle->ll_count - 1; i >= 0; i--) {
2063                         instance = &lle->ll_children[i];
2064                         if (instance->li_lock == lock)
2065                                 return (instance);
2066                 }
2067         return (NULL);
2068 }
2069
2070 static void
2071 witness_list_lock(struct lock_instance *instance,
2072     int (*prnt)(const char *fmt, ...))
2073 {
2074         struct lock_object *lock;
2075
2076         lock = instance->li_lock;
2077         prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2078             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2079         if (lock->lo_witness->w_name != lock->lo_name)
2080                 prnt(" (%s)", lock->lo_witness->w_name);
2081         prnt(" r = %d (%p) locked @ %s:%d\n",
2082             instance->li_flags & LI_RECURSEMASK, lock, instance->li_file,
2083             instance->li_line);
2084 }
2085
2086 #ifdef DDB
2087 static int
2088 witness_thread_has_locks(struct thread *td)
2089 {
2090
2091         if (td->td_sleeplocks == NULL)
2092                 return (0);
2093         return (td->td_sleeplocks->ll_count != 0);
2094 }
2095
2096 static int
2097 witness_proc_has_locks(struct proc *p)
2098 {
2099         struct thread *td;
2100
2101         FOREACH_THREAD_IN_PROC(p, td) {
2102                 if (witness_thread_has_locks(td))
2103                         return (1);
2104         }
2105         return (0);
2106 }
2107 #endif
2108
2109 int
2110 witness_list_locks(struct lock_list_entry **lock_list,
2111     int (*prnt)(const char *fmt, ...))
2112 {
2113         struct lock_list_entry *lle;
2114         int i, nheld;
2115
2116         nheld = 0;
2117         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2118                 for (i = lle->ll_count - 1; i >= 0; i--) {
2119                         witness_list_lock(&lle->ll_children[i], prnt);
2120                         nheld++;
2121                 }
2122         return (nheld);
2123 }
2124
2125 /*
2126  * This is a bit risky at best.  We call this function when we have timed
2127  * out acquiring a spin lock, and we assume that the other CPU is stuck
2128  * with this lock held.  So, we go groveling around in the other CPU's
2129  * per-cpu data to try to find the lock instance for this spin lock to
2130  * see when it was last acquired.
2131  */
2132 void
2133 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2134     int (*prnt)(const char *fmt, ...))
2135 {
2136         struct lock_instance *instance;
2137         struct pcpu *pc;
2138
2139         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2140                 return;
2141         pc = pcpu_find(owner->td_oncpu);
2142         instance = find_instance(pc->pc_spinlocks, lock);
2143         if (instance != NULL)
2144                 witness_list_lock(instance, prnt);
2145 }
2146
2147 void
2148 witness_save(struct lock_object *lock, const char **filep, int *linep)
2149 {
2150         struct lock_list_entry *lock_list;
2151         struct lock_instance *instance;
2152         struct lock_class *class;
2153
2154         /*
2155          * This function is used independently in locking code to deal with
2156          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2157          * is gone.
2158          */
2159         if (SCHEDULER_STOPPED())
2160                 return;
2161         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2162         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2163                 return;
2164         class = LOCK_CLASS(lock);
2165         if (class->lc_flags & LC_SLEEPLOCK)
2166                 lock_list = curthread->td_sleeplocks;
2167         else {
2168                 if (witness_skipspin)
2169                         return;
2170                 lock_list = PCPU_GET(spinlocks);
2171         }
2172         instance = find_instance(lock_list, lock);
2173         if (instance == NULL)
2174                 panic("%s: lock (%s) %s not locked", __func__,
2175                     class->lc_name, lock->lo_name);
2176         *filep = instance->li_file;
2177         *linep = instance->li_line;
2178 }
2179
2180 void
2181 witness_restore(struct lock_object *lock, const char *file, int line)
2182 {
2183         struct lock_list_entry *lock_list;
2184         struct lock_instance *instance;
2185         struct lock_class *class;
2186
2187         /*
2188          * This function is used independently in locking code to deal with
2189          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2190          * is gone.
2191          */
2192         if (SCHEDULER_STOPPED())
2193                 return;
2194         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2195         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2196                 return;
2197         class = LOCK_CLASS(lock);
2198         if (class->lc_flags & LC_SLEEPLOCK)
2199                 lock_list = curthread->td_sleeplocks;
2200         else {
2201                 if (witness_skipspin)
2202                         return;
2203                 lock_list = PCPU_GET(spinlocks);
2204         }
2205         instance = find_instance(lock_list, lock);
2206         if (instance == NULL)
2207                 panic("%s: lock (%s) %s not locked", __func__,
2208                     class->lc_name, lock->lo_name);
2209         lock->lo_witness->w_file = file;
2210         lock->lo_witness->w_line = line;
2211         instance->li_file = file;
2212         instance->li_line = line;
2213 }
2214
2215 void
2216 witness_assert(struct lock_object *lock, int flags, const char *file, int line)
2217 {
2218 #ifdef INVARIANT_SUPPORT
2219         struct lock_instance *instance;
2220         struct lock_class *class;
2221
2222         if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2223                 return;
2224         class = LOCK_CLASS(lock);
2225         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2226                 instance = find_instance(curthread->td_sleeplocks, lock);
2227         else if ((class->lc_flags & LC_SPINLOCK) != 0)
2228                 instance = find_instance(PCPU_GET(spinlocks), lock);
2229         else {
2230                 panic("Lock (%s) %s is not sleep or spin!",
2231                     class->lc_name, lock->lo_name);
2232         }
2233         file = fixup_filename(file);
2234         switch (flags) {
2235         case LA_UNLOCKED:
2236                 if (instance != NULL)
2237                         panic("Lock (%s) %s locked @ %s:%d.",
2238                             class->lc_name, lock->lo_name, file, line);
2239                 break;
2240         case LA_LOCKED:
2241         case LA_LOCKED | LA_RECURSED:
2242         case LA_LOCKED | LA_NOTRECURSED:
2243         case LA_SLOCKED:
2244         case LA_SLOCKED | LA_RECURSED:
2245         case LA_SLOCKED | LA_NOTRECURSED:
2246         case LA_XLOCKED:
2247         case LA_XLOCKED | LA_RECURSED:
2248         case LA_XLOCKED | LA_NOTRECURSED:
2249                 if (instance == NULL) {
2250                         panic("Lock (%s) %s not locked @ %s:%d.",
2251                             class->lc_name, lock->lo_name, file, line);
2252                         break;
2253                 }
2254                 if ((flags & LA_XLOCKED) != 0 &&
2255                     (instance->li_flags & LI_EXCLUSIVE) == 0)
2256                         panic("Lock (%s) %s not exclusively locked @ %s:%d.",
2257                             class->lc_name, lock->lo_name, file, line);
2258                 if ((flags & LA_SLOCKED) != 0 &&
2259                     (instance->li_flags & LI_EXCLUSIVE) != 0)
2260                         panic("Lock (%s) %s exclusively locked @ %s:%d.",
2261                             class->lc_name, lock->lo_name, file, line);
2262                 if ((flags & LA_RECURSED) != 0 &&
2263                     (instance->li_flags & LI_RECURSEMASK) == 0)
2264                         panic("Lock (%s) %s not recursed @ %s:%d.",
2265                             class->lc_name, lock->lo_name, file, line);
2266                 if ((flags & LA_NOTRECURSED) != 0 &&
2267                     (instance->li_flags & LI_RECURSEMASK) != 0)
2268                         panic("Lock (%s) %s recursed @ %s:%d.",
2269                             class->lc_name, lock->lo_name, file, line);
2270                 break;
2271         default:
2272                 panic("Invalid lock assertion at %s:%d.", file, line);
2273
2274         }
2275 #endif  /* INVARIANT_SUPPORT */
2276 }
2277
2278 static void
2279 witness_setflag(struct lock_object *lock, int flag, int set)
2280 {
2281         struct lock_list_entry *lock_list;
2282         struct lock_instance *instance;
2283         struct lock_class *class;
2284
2285         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2286                 return;
2287         class = LOCK_CLASS(lock);
2288         if (class->lc_flags & LC_SLEEPLOCK)
2289                 lock_list = curthread->td_sleeplocks;
2290         else {
2291                 if (witness_skipspin)
2292                         return;
2293                 lock_list = PCPU_GET(spinlocks);
2294         }
2295         instance = find_instance(lock_list, lock);
2296         if (instance == NULL)
2297                 panic("%s: lock (%s) %s not locked", __func__,
2298                     class->lc_name, lock->lo_name);
2299
2300         if (set)
2301                 instance->li_flags |= flag;
2302         else
2303                 instance->li_flags &= ~flag;
2304 }
2305
2306 void
2307 witness_norelease(struct lock_object *lock)
2308 {
2309
2310         witness_setflag(lock, LI_NORELEASE, 1);
2311 }
2312
2313 void
2314 witness_releaseok(struct lock_object *lock)
2315 {
2316
2317         witness_setflag(lock, LI_NORELEASE, 0);
2318 }
2319
2320 #ifdef DDB
2321 static void
2322 witness_ddb_list(struct thread *td)
2323 {
2324
2325         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2326         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2327
2328         if (witness_watch < 1)
2329                 return;
2330
2331         witness_list_locks(&td->td_sleeplocks, db_printf);
2332
2333         /*
2334          * We only handle spinlocks if td == curthread.  This is somewhat broken
2335          * if td is currently executing on some other CPU and holds spin locks
2336          * as we won't display those locks.  If we had a MI way of getting
2337          * the per-cpu data for a given cpu then we could use
2338          * td->td_oncpu to get the list of spinlocks for this thread
2339          * and "fix" this.
2340          *
2341          * That still wouldn't really fix this unless we locked the scheduler
2342          * lock or stopped the other CPU to make sure it wasn't changing the
2343          * list out from under us.  It is probably best to just not try to
2344          * handle threads on other CPU's for now.
2345          */
2346         if (td == curthread && PCPU_GET(spinlocks) != NULL)
2347                 witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2348 }
2349
2350 DB_SHOW_COMMAND(locks, db_witness_list)
2351 {
2352         struct thread *td;
2353
2354         if (have_addr)
2355                 td = db_lookup_thread(addr, TRUE);
2356         else
2357                 td = kdb_thread;
2358         witness_ddb_list(td);
2359 }
2360
2361 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2362 {
2363         struct thread *td;
2364         struct proc *p;
2365
2366         /*
2367          * It would be nice to list only threads and processes that actually
2368          * held sleep locks, but that information is currently not exported
2369          * by WITNESS.
2370          */
2371         FOREACH_PROC_IN_SYSTEM(p) {
2372                 if (!witness_proc_has_locks(p))
2373                         continue;
2374                 FOREACH_THREAD_IN_PROC(p, td) {
2375                         if (!witness_thread_has_locks(td))
2376                                 continue;
2377                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2378                             p->p_comm, td, td->td_tid);
2379                         witness_ddb_list(td);
2380                         if (db_pager_quit)
2381                                 return;
2382                 }
2383         }
2384 }
2385 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2386
2387 DB_SHOW_COMMAND(witness, db_witness_display)
2388 {
2389
2390         witness_ddb_display(db_printf);
2391 }
2392 #endif
2393
2394 static int
2395 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2396 {
2397         struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2398         struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2399         struct sbuf *sb;
2400         u_int w_rmatrix1, w_rmatrix2;
2401         int error, generation, i, j;
2402
2403         tmp_data1 = NULL;
2404         tmp_data2 = NULL;
2405         tmp_w1 = NULL;
2406         tmp_w2 = NULL;
2407         if (witness_watch < 1) {
2408                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2409                 return (error);
2410         }
2411         if (witness_cold) {
2412                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2413                 return (error);
2414         }
2415         error = 0;
2416         sb = sbuf_new(NULL, NULL, BADSTACK_SBUF_SIZE, SBUF_AUTOEXTEND);
2417         if (sb == NULL)
2418                 return (ENOMEM);
2419
2420         /* Allocate and init temporary storage space. */
2421         tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2422         tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2423         tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2424             M_WAITOK | M_ZERO);
2425         tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2426             M_WAITOK | M_ZERO);
2427         stack_zero(&tmp_data1->wlod_stack);
2428         stack_zero(&tmp_data2->wlod_stack);
2429
2430 restart:
2431         mtx_lock_spin(&w_mtx);
2432         generation = w_generation;
2433         mtx_unlock_spin(&w_mtx);
2434         sbuf_printf(sb, "Number of known direct relationships is %d\n",
2435             w_lohash.wloh_count);
2436         for (i = 1; i < w_max_used_index; i++) {
2437                 mtx_lock_spin(&w_mtx);
2438                 if (generation != w_generation) {
2439                         mtx_unlock_spin(&w_mtx);
2440
2441                         /* The graph has changed, try again. */
2442                         req->oldidx = 0;
2443                         sbuf_clear(sb);
2444                         goto restart;
2445                 }
2446
2447                 w1 = &w_data[i];
2448                 if (w1->w_reversed == 0) {
2449                         mtx_unlock_spin(&w_mtx);
2450                         continue;
2451                 }
2452
2453                 /* Copy w1 locally so we can release the spin lock. */
2454                 *tmp_w1 = *w1;
2455                 mtx_unlock_spin(&w_mtx);
2456
2457                 if (tmp_w1->w_reversed == 0)
2458                         continue;
2459                 for (j = 1; j < w_max_used_index; j++) {
2460                         if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2461                                 continue;
2462
2463                         mtx_lock_spin(&w_mtx);
2464                         if (generation != w_generation) {
2465                                 mtx_unlock_spin(&w_mtx);
2466
2467                                 /* The graph has changed, try again. */
2468                                 req->oldidx = 0;
2469                                 sbuf_clear(sb);
2470                                 goto restart;
2471                         }
2472
2473                         w2 = &w_data[j];
2474                         data1 = witness_lock_order_get(w1, w2);
2475                         data2 = witness_lock_order_get(w2, w1);
2476
2477                         /*
2478                          * Copy information locally so we can release the
2479                          * spin lock.
2480                          */
2481                         *tmp_w2 = *w2;
2482                         w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
2483                         w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
2484
2485                         if (data1) {
2486                                 stack_zero(&tmp_data1->wlod_stack);
2487                                 stack_copy(&data1->wlod_stack,
2488                                     &tmp_data1->wlod_stack);
2489                         }
2490                         if (data2 && data2 != data1) {
2491                                 stack_zero(&tmp_data2->wlod_stack);
2492                                 stack_copy(&data2->wlod_stack,
2493                                     &tmp_data2->wlod_stack);
2494                         }
2495                         mtx_unlock_spin(&w_mtx);
2496
2497                         sbuf_printf(sb,
2498             "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2499                             tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2500                             tmp_w2->w_name, tmp_w2->w_class->lc_name);
2501 #if 0
2502                         sbuf_printf(sb,
2503                         "w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n",
2504                             tmp_w1->name, tmp_w2->w_name, w_rmatrix1,
2505                             tmp_w2->name, tmp_w1->w_name, w_rmatrix2);
2506 #endif
2507                         if (data1) {
2508                                 sbuf_printf(sb,
2509                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2510                                     tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2511                                     tmp_w2->w_name, tmp_w2->w_class->lc_name);
2512                                 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2513                                 sbuf_printf(sb, "\n");
2514                         }
2515                         if (data2 && data2 != data1) {
2516                                 sbuf_printf(sb,
2517                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2518                                     tmp_w2->w_name, tmp_w2->w_class->lc_name, 
2519                                     tmp_w1->w_name, tmp_w1->w_class->lc_name);
2520                                 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2521                                 sbuf_printf(sb, "\n");
2522                         }
2523                 }
2524         }
2525         mtx_lock_spin(&w_mtx);
2526         if (generation != w_generation) {
2527                 mtx_unlock_spin(&w_mtx);
2528
2529                 /*
2530                  * The graph changed while we were printing stack data,
2531                  * try again.
2532                  */
2533                 req->oldidx = 0;
2534                 sbuf_clear(sb);
2535                 goto restart;
2536         }
2537         mtx_unlock_spin(&w_mtx);
2538
2539         /* Free temporary storage space. */
2540         free(tmp_data1, M_TEMP);
2541         free(tmp_data2, M_TEMP);
2542         free(tmp_w1, M_TEMP);
2543         free(tmp_w2, M_TEMP);
2544
2545         sbuf_finish(sb);
2546         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2547         sbuf_delete(sb);
2548
2549         return (error);
2550 }
2551
2552 static int
2553 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2554 {
2555         struct witness *w;
2556         struct sbuf *sb;
2557         int error;
2558
2559         if (witness_watch < 1) {
2560                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2561                 return (error);
2562         }
2563         if (witness_cold) {
2564                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2565                 return (error);
2566         }
2567         error = 0;
2568         sb = sbuf_new(NULL, NULL, FULLGRAPH_SBUF_SIZE, SBUF_FIXEDLEN);
2569         if (sb == NULL)
2570                 return (ENOMEM);
2571         sbuf_printf(sb, "\n");
2572
2573         mtx_lock_spin(&w_mtx);
2574         STAILQ_FOREACH(w, &w_all, w_list)
2575                 w->w_displayed = 0;
2576         STAILQ_FOREACH(w, &w_all, w_list)
2577                 witness_add_fullgraph(sb, w);
2578         mtx_unlock_spin(&w_mtx);
2579
2580         /*
2581          * While using SBUF_FIXEDLEN, check if the sbuf overflowed.
2582          */
2583         if (sbuf_overflowed(sb)) {
2584                 sbuf_delete(sb);
2585                 panic("%s: sbuf overflowed, bump FULLGRAPH_SBUF_SIZE value\n",
2586                     __func__);
2587         }
2588
2589         /*
2590          * Close the sbuf and return to userland.
2591          */
2592         sbuf_finish(sb);
2593         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2594         sbuf_delete(sb);
2595
2596         return (error);
2597 }
2598
2599 static int
2600 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2601 {
2602         int error, value;
2603
2604         value = witness_watch;
2605         error = sysctl_handle_int(oidp, &value, 0, req);
2606         if (error != 0 || req->newptr == NULL)
2607                 return (error);
2608         if (value > 1 || value < -1 ||
2609             (witness_watch == -1 && value != witness_watch))
2610                 return (EINVAL);
2611         witness_watch = value;
2612         return (0);
2613 }
2614
2615 static void
2616 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2617 {
2618         int i;
2619
2620         if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2621                 return;
2622         w->w_displayed = 1;
2623
2624         WITNESS_INDEX_ASSERT(w->w_index);
2625         for (i = 1; i <= w_max_used_index; i++) {
2626                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2627                         sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2628                             w_data[i].w_name);
2629                         witness_add_fullgraph(sb, &w_data[i]);
2630                 }
2631         }
2632 }
2633
2634 /*
2635  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2636  * interprets the key as a string and reads until the null
2637  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2638  * hash value computed from the key.
2639  */
2640 static uint32_t
2641 witness_hash_djb2(const uint8_t *key, uint32_t size)
2642 {
2643         unsigned int hash = 5381;
2644         int i;
2645
2646         /* hash = hash * 33 + key[i] */
2647         if (size)
2648                 for (i = 0; i < size; i++)
2649                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2650         else
2651                 for (i = 0; key[i] != 0; i++)
2652                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2653
2654         return (hash);
2655 }
2656
2657
2658 /*
2659  * Initializes the two witness hash tables. Called exactly once from
2660  * witness_initialize().
2661  */
2662 static void
2663 witness_init_hash_tables(void)
2664 {
2665         int i;
2666
2667         MPASS(witness_cold);
2668
2669         /* Initialize the hash tables. */
2670         for (i = 0; i < WITNESS_HASH_SIZE; i++)
2671                 w_hash.wh_array[i] = NULL;
2672
2673         w_hash.wh_size = WITNESS_HASH_SIZE;
2674         w_hash.wh_count = 0;
2675
2676         /* Initialize the lock order data hash. */
2677         w_lofree = NULL;
2678         for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2679                 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2680                 w_lodata[i].wlod_next = w_lofree;
2681                 w_lofree = &w_lodata[i];
2682         }
2683         w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2684         w_lohash.wloh_count = 0;
2685         for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2686                 w_lohash.wloh_array[i] = NULL;
2687 }
2688
2689 static struct witness *
2690 witness_hash_get(const char *key)
2691 {
2692         struct witness *w;
2693         uint32_t hash;
2694         
2695         MPASS(key != NULL);
2696         if (witness_cold == 0)
2697                 mtx_assert(&w_mtx, MA_OWNED);
2698         hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2699         w = w_hash.wh_array[hash];
2700         while (w != NULL) {
2701                 if (strcmp(w->w_name, key) == 0)
2702                         goto out;
2703                 w = w->w_hash_next;
2704         }
2705
2706 out:
2707         return (w);
2708 }
2709
2710 static void
2711 witness_hash_put(struct witness *w)
2712 {
2713         uint32_t hash;
2714
2715         MPASS(w != NULL);
2716         MPASS(w->w_name != NULL);
2717         if (witness_cold == 0)
2718                 mtx_assert(&w_mtx, MA_OWNED);
2719         KASSERT(witness_hash_get(w->w_name) == NULL,
2720             ("%s: trying to add a hash entry that already exists!", __func__));
2721         KASSERT(w->w_hash_next == NULL,
2722             ("%s: w->w_hash_next != NULL", __func__));
2723
2724         hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2725         w->w_hash_next = w_hash.wh_array[hash];
2726         w_hash.wh_array[hash] = w;
2727         w_hash.wh_count++;
2728 }
2729
2730
2731 static struct witness_lock_order_data *
2732 witness_lock_order_get(struct witness *parent, struct witness *child)
2733 {
2734         struct witness_lock_order_data *data = NULL;
2735         struct witness_lock_order_key key;
2736         unsigned int hash;
2737
2738         MPASS(parent != NULL && child != NULL);
2739         key.from = parent->w_index;
2740         key.to = child->w_index;
2741         WITNESS_INDEX_ASSERT(key.from);
2742         WITNESS_INDEX_ASSERT(key.to);
2743         if ((w_rmatrix[parent->w_index][child->w_index]
2744             & WITNESS_LOCK_ORDER_KNOWN) == 0)
2745                 goto out;
2746
2747         hash = witness_hash_djb2((const char*)&key,
2748             sizeof(key)) % w_lohash.wloh_size;
2749         data = w_lohash.wloh_array[hash];
2750         while (data != NULL) {
2751                 if (witness_lock_order_key_equal(&data->wlod_key, &key))
2752                         break;
2753                 data = data->wlod_next;
2754         }
2755
2756 out:
2757         return (data);
2758 }
2759
2760 /*
2761  * Verify that parent and child have a known relationship, are not the same,
2762  * and child is actually a child of parent.  This is done without w_mtx
2763  * to avoid contention in the common case.
2764  */
2765 static int
2766 witness_lock_order_check(struct witness *parent, struct witness *child)
2767 {
2768
2769         if (parent != child &&
2770             w_rmatrix[parent->w_index][child->w_index]
2771             & WITNESS_LOCK_ORDER_KNOWN &&
2772             isitmychild(parent, child))
2773                 return (1);
2774
2775         return (0);
2776 }
2777
2778 static int
2779 witness_lock_order_add(struct witness *parent, struct witness *child)
2780 {
2781         struct witness_lock_order_data *data = NULL;
2782         struct witness_lock_order_key key;
2783         unsigned int hash;
2784         
2785         MPASS(parent != NULL && child != NULL);
2786         key.from = parent->w_index;
2787         key.to = child->w_index;
2788         WITNESS_INDEX_ASSERT(key.from);
2789         WITNESS_INDEX_ASSERT(key.to);
2790         if (w_rmatrix[parent->w_index][child->w_index]
2791             & WITNESS_LOCK_ORDER_KNOWN)
2792                 return (1);
2793
2794         hash = witness_hash_djb2((const char*)&key,
2795             sizeof(key)) % w_lohash.wloh_size;
2796         w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
2797         data = w_lofree;
2798         if (data == NULL)
2799                 return (0);
2800         w_lofree = data->wlod_next;
2801         data->wlod_next = w_lohash.wloh_array[hash];
2802         data->wlod_key = key;
2803         w_lohash.wloh_array[hash] = data;
2804         w_lohash.wloh_count++;
2805         stack_zero(&data->wlod_stack);
2806         stack_save(&data->wlod_stack);
2807         return (1);
2808 }
2809
2810 /* Call this whenver the structure of the witness graph changes. */
2811 static void
2812 witness_increment_graph_generation(void)
2813 {
2814
2815         if (witness_cold == 0)
2816                 mtx_assert(&w_mtx, MA_OWNED);
2817         w_generation++;
2818 }
2819
2820 #ifdef KDB
2821 static void
2822 _witness_debugger(int cond, const char *msg)
2823 {
2824
2825         if (witness_trace && cond)
2826                 kdb_backtrace();
2827         if (witness_kdb && cond)
2828                 kdb_enter(KDB_WHY_WITNESS, msg);
2829 }
2830 #endif