]> CyberLeo.Net >> Repos - FreeBSD/stable/8.git/blob - sys/kern/subr_witness.c
MFC 238424:
[FreeBSD/stable/8.git] / sys / kern / subr_witness.c
1 /*-
2  * Copyright (c) 2008 Isilon Systems, Inc.
3  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
4  * Copyright (c) 1998 Berkeley Software Design, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Berkeley Software Design Inc's name may not be used to endorse or
16  *    promote products derived from this software without specific prior
17  *    written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
32  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
33  */
34
35 /*
36  * Implementation of the `witness' lock verifier.  Originally implemented for
37  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
38  * classes in FreeBSD.
39  */
40
41 /*
42  *      Main Entry: witness
43  *      Pronunciation: 'wit-n&s
44  *      Function: noun
45  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
46  *          testimony, witness, from 2wit
47  *      Date: before 12th century
48  *      1 : attestation of a fact or event : TESTIMONY
49  *      2 : one that gives evidence; specifically : one who testifies in
50  *          a cause or before a judicial tribunal
51  *      3 : one asked to be present at a transaction so as to be able to
52  *          testify to its having taken place
53  *      4 : one who has personal knowledge of something
54  *      5 a : something serving as evidence or proof : SIGN
55  *        b : public affirmation by word or example of usually
56  *            religious faith or conviction <the heroic witness to divine
57  *            life -- Pilot>
58  *      6 capitalized : a member of the Jehovah's Witnesses 
59  */
60
61 /*
62  * Special rules concerning Giant and lock orders:
63  *
64  * 1) Giant must be acquired before any other mutexes.  Stated another way,
65  *    no other mutex may be held when Giant is acquired.
66  *
67  * 2) Giant must be released when blocking on a sleepable lock.
68  *
69  * This rule is less obvious, but is a result of Giant providing the same
70  * semantics as spl().  Basically, when a thread sleeps, it must release
71  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
72  * 2).
73  *
74  * 3) Giant may be acquired before or after sleepable locks.
75  *
76  * This rule is also not quite as obvious.  Giant may be acquired after
77  * a sleepable lock because it is a non-sleepable lock and non-sleepable
78  * locks may always be acquired while holding a sleepable lock.  The second
79  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
80  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
81  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
82  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
83  * execute.  Thus, acquiring Giant both before and after a sleepable lock
84  * will not result in a lock order reversal.
85  */
86
87 #include <sys/cdefs.h>
88 __FBSDID("$FreeBSD$");
89
90 #include "opt_ddb.h"
91 #include "opt_hwpmc_hooks.h"
92 #include "opt_stack.h"
93 #include "opt_witness.h"
94
95 #include <sys/param.h>
96 #include <sys/bus.h>
97 #include <sys/kdb.h>
98 #include <sys/kernel.h>
99 #include <sys/ktr.h>
100 #include <sys/lock.h>
101 #include <sys/malloc.h>
102 #include <sys/mutex.h>
103 #include <sys/priv.h>
104 #include <sys/proc.h>
105 #include <sys/sbuf.h>
106 #include <sys/sched.h>
107 #include <sys/stack.h>
108 #include <sys/sysctl.h>
109 #include <sys/systm.h>
110
111 #ifdef DDB
112 #include <ddb/ddb.h>
113 #endif
114
115 #include <machine/stdarg.h>
116
117 #if !defined(DDB) && !defined(STACK)
118 #error "DDB or STACK options are required for WITNESS"
119 #endif
120
121 /* Note that these traces do not work with KTR_ALQ. */
122 #if 0
123 #define KTR_WITNESS     KTR_SUBSYS
124 #else
125 #define KTR_WITNESS     0
126 #endif
127
128 #define LI_RECURSEMASK  0x0000ffff      /* Recursion depth of lock instance. */
129 #define LI_EXCLUSIVE    0x00010000      /* Exclusive lock instance. */
130 #define LI_NORELEASE    0x00020000      /* Lock not allowed to be released. */
131
132 /* Define this to check for blessed mutexes */
133 #undef BLESSING
134
135 #define WITNESS_COUNT           1024
136 #define WITNESS_CHILDCOUNT      (WITNESS_COUNT * 4)
137 #define WITNESS_HASH_SIZE       251     /* Prime, gives load factor < 2 */
138 #define WITNESS_PENDLIST        768
139
140 /* Allocate 256 KB of stack data space */
141 #define WITNESS_LO_DATA_COUNT   2048
142
143 /* Prime, gives load factor of ~2 at full load */
144 #define WITNESS_LO_HASH_SIZE    1021
145
146 /*
147  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
148  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
149  * probably be safe for the most part, but it's still a SWAG.
150  */
151 #define LOCK_NCHILDREN  5
152 #define LOCK_CHILDCOUNT 2048
153
154 #define MAX_W_NAME      64
155
156 #define BADSTACK_SBUF_SIZE      (256 * WITNESS_COUNT)
157 #define CYCLEGRAPH_SBUF_SIZE    8192
158 #define FULLGRAPH_SBUF_SIZE     32768
159
160 /*
161  * These flags go in the witness relationship matrix and describe the
162  * relationship between any two struct witness objects.
163  */
164 #define WITNESS_UNRELATED        0x00    /* No lock order relation. */
165 #define WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
166 #define WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
167 #define WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
168 #define WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
169 #define WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
170 #define WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
171 #define WITNESS_RELATED_MASK                                            \
172         (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
173 #define WITNESS_REVERSAL         0x10    /* A lock order reversal has been
174                                           * observed. */
175 #define WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
176 #define WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
177 #define WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
178
179 /* Descendant to ancestor flags */
180 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
181
182 /* Ancestor to descendant flags */
183 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
184
185 #define WITNESS_INDEX_ASSERT(i)                                         \
186         MPASS((i) > 0 && (i) <= w_max_used_index && (i) < WITNESS_COUNT)
187
188 MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
189
190 /*
191  * Lock instances.  A lock instance is the data associated with a lock while
192  * it is held by witness.  For example, a lock instance will hold the
193  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
194  * are held in a per-cpu list while sleep locks are held in per-thread list.
195  */
196 struct lock_instance {
197         struct lock_object      *li_lock;
198         const char              *li_file;
199         int                     li_line;
200         u_int                   li_flags;
201 };
202
203 /*
204  * A simple list type used to build the list of locks held by a thread
205  * or CPU.  We can't simply embed the list in struct lock_object since a
206  * lock may be held by more than one thread if it is a shared lock.  Locks
207  * are added to the head of the list, so we fill up each list entry from
208  * "the back" logically.  To ease some of the arithmetic, we actually fill
209  * in each list entry the normal way (children[0] then children[1], etc.) but
210  * when we traverse the list we read children[count-1] as the first entry
211  * down to children[0] as the final entry.
212  */
213 struct lock_list_entry {
214         struct lock_list_entry  *ll_next;
215         struct lock_instance    ll_children[LOCK_NCHILDREN];
216         u_int                   ll_count;
217 };
218
219 /*
220  * The main witness structure. One of these per named lock type in the system
221  * (for example, "vnode interlock").
222  */
223 struct witness {
224         char                    w_name[MAX_W_NAME];
225         uint32_t                w_index;  /* Index in the relationship matrix */
226         struct lock_class       *w_class;
227         STAILQ_ENTRY(witness)   w_list;         /* List of all witnesses. */
228         STAILQ_ENTRY(witness)   w_typelist;     /* Witnesses of a type. */
229         struct witness          *w_hash_next; /* Linked list in hash buckets. */
230         const char              *w_file; /* File where last acquired */
231         uint32_t                w_line; /* Line where last acquired */
232         uint32_t                w_refcount;
233         uint16_t                w_num_ancestors; /* direct/indirect
234                                                   * ancestor count */
235         uint16_t                w_num_descendants; /* direct/indirect
236                                                     * descendant count */
237         int16_t                 w_ddb_level;
238         unsigned                w_displayed:1;
239         unsigned                w_reversed:1;
240 };
241
242 STAILQ_HEAD(witness_list, witness);
243
244 /*
245  * The witness hash table. Keys are witness names (const char *), elements are
246  * witness objects (struct witness *).
247  */
248 struct witness_hash {
249         struct witness  *wh_array[WITNESS_HASH_SIZE];
250         uint32_t        wh_size;
251         uint32_t        wh_count;
252 };
253
254 /*
255  * Key type for the lock order data hash table.
256  */
257 struct witness_lock_order_key {
258         uint16_t        from;
259         uint16_t        to;
260 };
261
262 struct witness_lock_order_data {
263         struct stack                    wlod_stack;
264         struct witness_lock_order_key   wlod_key;
265         struct witness_lock_order_data  *wlod_next;
266 };
267
268 /*
269  * The witness lock order data hash table. Keys are witness index tuples
270  * (struct witness_lock_order_key), elements are lock order data objects
271  * (struct witness_lock_order_data). 
272  */
273 struct witness_lock_order_hash {
274         struct witness_lock_order_data  *wloh_array[WITNESS_LO_HASH_SIZE];
275         u_int   wloh_size;
276         u_int   wloh_count;
277 };
278
279 #ifdef BLESSING
280 struct witness_blessed {
281         const char      *b_lock1;
282         const char      *b_lock2;
283 };
284 #endif
285
286 struct witness_pendhelp {
287         const char              *wh_type;
288         struct lock_object      *wh_lock;
289 };
290
291 struct witness_order_list_entry {
292         const char              *w_name;
293         struct lock_class       *w_class;
294 };
295
296 /*
297  * Returns 0 if one of the locks is a spin lock and the other is not.
298  * Returns 1 otherwise.
299  */
300 static __inline int
301 witness_lock_type_equal(struct witness *w1, struct witness *w2)
302 {
303
304         return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
305                 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
306 }
307
308 static __inline int
309 witness_lock_order_key_empty(const struct witness_lock_order_key *key)
310 {
311
312         return (key->from == 0 && key->to == 0);
313 }
314
315 static __inline int
316 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
317     const struct witness_lock_order_key *b)
318 {
319
320         return (a->from == b->from && a->to == b->to);
321 }
322
323 static int      _isitmyx(struct witness *w1, struct witness *w2, int rmask,
324                     const char *fname);
325 #ifdef KDB
326 static void     _witness_debugger(int cond, const char *msg);
327 #endif
328 static void     adopt(struct witness *parent, struct witness *child);
329 #ifdef BLESSING
330 static int      blessed(struct witness *, struct witness *);
331 #endif
332 static void     depart(struct witness *w);
333 static struct witness   *enroll(const char *description,
334                             struct lock_class *lock_class);
335 static struct lock_instance     *find_instance(struct lock_list_entry *list,
336                                     struct lock_object *lock);
337 static int      isitmychild(struct witness *parent, struct witness *child);
338 static int      isitmydescendant(struct witness *parent, struct witness *child);
339 static void     itismychild(struct witness *parent, struct witness *child);
340 static int      sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
341 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
342 static int      sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
343 static void     witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
344 #ifdef DDB
345 static void     witness_ddb_compute_levels(void);
346 static void     witness_ddb_display(int(*)(const char *fmt, ...));
347 static void     witness_ddb_display_descendants(int(*)(const char *fmt, ...),
348                     struct witness *, int indent);
349 static void     witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
350                     struct witness_list *list);
351 static void     witness_ddb_level_descendants(struct witness *parent, int l);
352 static void     witness_ddb_list(struct thread *td);
353 #endif
354 static void     witness_free(struct witness *m);
355 static struct witness   *witness_get(void);
356 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
357 static struct witness   *witness_hash_get(const char *key);
358 static void     witness_hash_put(struct witness *w);
359 static void     witness_init_hash_tables(void);
360 static void     witness_increment_graph_generation(void);
361 static void     witness_lock_list_free(struct lock_list_entry *lle);
362 static struct lock_list_entry   *witness_lock_list_get(void);
363 static int      witness_lock_order_add(struct witness *parent,
364                     struct witness *child);
365 static int      witness_lock_order_check(struct witness *parent,
366                     struct witness *child);
367 static struct witness_lock_order_data   *witness_lock_order_get(
368                                             struct witness *parent,
369                                             struct witness *child);
370 static void     witness_list_lock(struct lock_instance *instance,
371                     int (*prnt)(const char *fmt, ...));
372 static void     witness_setflag(struct lock_object *lock, int flag, int set);
373
374 #ifdef KDB
375 #define witness_debugger(c)     _witness_debugger(c, __func__)
376 #else
377 #define witness_debugger(c)
378 #endif
379
380 SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL, "Witness Locking");
381
382 /*
383  * If set to 0, lock order checking is disabled.  If set to -1,
384  * witness is completely disabled.  Otherwise witness performs full
385  * lock order checking for all locks.  At runtime, lock order checking
386  * may be toggled.  However, witness cannot be reenabled once it is
387  * completely disabled.
388  */
389 static int witness_watch = 1;
390 TUNABLE_INT("debug.witness.watch", &witness_watch);
391 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
392     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
393
394 #ifdef KDB
395 /*
396  * When KDB is enabled and witness_kdb is 1, it will cause the system
397  * to drop into kdebug() when:
398  *      - a lock hierarchy violation occurs
399  *      - locks are held when going to sleep.
400  */
401 #ifdef WITNESS_KDB
402 int     witness_kdb = 1;
403 #else
404 int     witness_kdb = 0;
405 #endif
406 TUNABLE_INT("debug.witness.kdb", &witness_kdb);
407 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
408
409 /*
410  * When KDB is enabled and witness_trace is 1, it will cause the system
411  * to print a stack trace:
412  *      - a lock hierarchy violation occurs
413  *      - locks are held when going to sleep.
414  */
415 int     witness_trace = 1;
416 TUNABLE_INT("debug.witness.trace", &witness_trace);
417 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
418 #endif /* KDB */
419
420 #ifdef WITNESS_SKIPSPIN
421 int     witness_skipspin = 1;
422 #else
423 int     witness_skipspin = 0;
424 #endif
425 TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
426 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin,
427     0, "");
428
429 /*
430  * Call this to print out the relations between locks.
431  */
432 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
433     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
434
435 /*
436  * Call this to print out the witness faulty stacks.
437  */
438 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
439     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
440
441 static struct mtx w_mtx;
442
443 /* w_list */
444 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
445 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
446
447 /* w_typelist */
448 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
449 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
450
451 /* lock list */
452 static struct lock_list_entry *w_lock_list_free = NULL;
453 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
454 static u_int pending_cnt;
455
456 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
457 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
458 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
459 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
460     "");
461
462 static struct witness *w_data;
463 static uint8_t w_rmatrix[WITNESS_COUNT+1][WITNESS_COUNT+1];
464 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
465 static struct witness_hash w_hash;      /* The witness hash table. */
466
467 /* The lock order data hash */
468 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
469 static struct witness_lock_order_data *w_lofree = NULL;
470 static struct witness_lock_order_hash w_lohash;
471 static int w_max_used_index = 0;
472 static unsigned int w_generation = 0;
473 static const char w_notrunning[] = "Witness not running\n";
474 static const char w_stillcold[] = "Witness is still cold\n";
475
476
477 static struct witness_order_list_entry order_lists[] = {
478         /*
479          * sx locks
480          */
481         { "proctree", &lock_class_sx },
482         { "allproc", &lock_class_sx },
483         { "allprison", &lock_class_sx },
484         { NULL, NULL },
485         /*
486          * Various mutexes
487          */
488         { "Giant", &lock_class_mtx_sleep },
489         { "pipe mutex", &lock_class_mtx_sleep },
490         { "sigio lock", &lock_class_mtx_sleep },
491         { "process group", &lock_class_mtx_sleep },
492         { "process lock", &lock_class_mtx_sleep },
493         { "session", &lock_class_mtx_sleep },
494         { "uidinfo hash", &lock_class_rw },
495 #ifdef  HWPMC_HOOKS
496         { "pmc-sleep", &lock_class_mtx_sleep },
497 #endif
498         { NULL, NULL },
499         /*
500          * Sockets
501          */
502         { "accept", &lock_class_mtx_sleep },
503         { "so_snd", &lock_class_mtx_sleep },
504         { "so_rcv", &lock_class_mtx_sleep },
505         { "sellck", &lock_class_mtx_sleep },
506         { NULL, NULL },
507         /*
508          * Routing
509          */
510         { "so_rcv", &lock_class_mtx_sleep },
511         { "radix node head", &lock_class_rw },
512         { "rtentry", &lock_class_mtx_sleep },
513         { "ifaddr", &lock_class_mtx_sleep },
514         { NULL, NULL },
515         /*
516          * IPv4 multicast:
517          * protocol locks before interface locks, after UDP locks.
518          */
519         { "udpinp", &lock_class_rw },
520         { "in_multi_mtx", &lock_class_mtx_sleep },
521         { "igmp_mtx", &lock_class_mtx_sleep },
522         { "if_addr_mtx", &lock_class_mtx_sleep },
523         { NULL, NULL },
524         /*
525          * IPv6 multicast:
526          * protocol locks before interface locks, after UDP locks.
527          */
528         { "udpinp", &lock_class_rw },
529         { "in6_multi_mtx", &lock_class_mtx_sleep },
530         { "mld_mtx", &lock_class_mtx_sleep },
531         { "if_addr_mtx", &lock_class_mtx_sleep },
532         { NULL, NULL },
533         /*
534          * UNIX Domain Sockets
535          */
536         { "unp_global_rwlock", &lock_class_rw },
537         { "unp_list_lock", &lock_class_mtx_sleep },
538         { "unp", &lock_class_mtx_sleep },
539         { "so_snd", &lock_class_mtx_sleep },
540         { NULL, NULL },
541         /*
542          * UDP/IP
543          */
544         { "udp", &lock_class_rw },
545         { "udpinp", &lock_class_rw },
546         { "so_snd", &lock_class_mtx_sleep },
547         { NULL, NULL },
548         /*
549          * TCP/IP
550          */
551         { "tcp", &lock_class_rw },
552         { "tcpinp", &lock_class_rw },
553         { "so_snd", &lock_class_mtx_sleep },
554         { NULL, NULL },
555         /*
556          * SLIP
557          */
558         { "slip_mtx", &lock_class_mtx_sleep },
559         { "slip sc_mtx", &lock_class_mtx_sleep },
560         { NULL, NULL },
561         /*
562          * netatalk
563          */
564         { "ddp_list_mtx", &lock_class_mtx_sleep },
565         { "ddp_mtx", &lock_class_mtx_sleep },
566         { NULL, NULL },
567         /*
568          * BPF
569          */
570         { "bpf global lock", &lock_class_mtx_sleep },
571         { "bpf interface lock", &lock_class_mtx_sleep },
572         { "bpf cdev lock", &lock_class_mtx_sleep },
573         { NULL, NULL },
574         /*
575          * NFS server
576          */
577         { "nfsd_mtx", &lock_class_mtx_sleep },
578         { "so_snd", &lock_class_mtx_sleep },
579         { NULL, NULL },
580
581         /*
582          * IEEE 802.11
583          */
584         { "802.11 com lock", &lock_class_mtx_sleep},
585         { NULL, NULL },
586         /*
587          * Network drivers
588          */
589         { "network driver", &lock_class_mtx_sleep},
590         { NULL, NULL },
591
592         /*
593          * Netgraph
594          */
595         { "ng_node", &lock_class_mtx_sleep },
596         { "ng_worklist", &lock_class_mtx_sleep },
597         { NULL, NULL },
598         /*
599          * CDEV
600          */
601         { "system map", &lock_class_mtx_sleep },
602         { "vm page queue mutex", &lock_class_mtx_sleep },
603         { "vnode interlock", &lock_class_mtx_sleep },
604         { "cdev", &lock_class_mtx_sleep },
605         { NULL, NULL },
606         /*
607          * kqueue/VFS interaction
608          */
609         { "kqueue", &lock_class_mtx_sleep },
610         { "struct mount mtx", &lock_class_mtx_sleep },
611         { "vnode interlock", &lock_class_mtx_sleep },
612         { NULL, NULL },
613         /*
614          * ZFS locking
615          */
616         { "dn->dn_mtx", &lock_class_sx },
617         { "dr->dt.di.dr_mtx", &lock_class_sx },
618         { "db->db_mtx", &lock_class_sx },
619         { NULL, NULL },
620         /*
621          * spin locks
622          */
623 #ifdef SMP
624         { "ap boot", &lock_class_mtx_spin },
625 #endif
626         { "rm.mutex_mtx", &lock_class_mtx_spin },
627         { "sio", &lock_class_mtx_spin },
628         { "scrlock", &lock_class_mtx_spin },
629 #ifdef __i386__
630         { "cy", &lock_class_mtx_spin },
631 #endif
632 #ifdef __sparc64__
633         { "pcib_mtx", &lock_class_mtx_spin },
634         { "rtc_mtx", &lock_class_mtx_spin },
635 #endif
636         { "scc_hwmtx", &lock_class_mtx_spin },
637         { "uart_hwmtx", &lock_class_mtx_spin },
638         { "fast_taskqueue", &lock_class_mtx_spin },
639         { "intr table", &lock_class_mtx_spin },
640 #ifdef  HWPMC_HOOKS
641         { "pmc-per-proc", &lock_class_mtx_spin },
642 #endif
643         { "process slock", &lock_class_mtx_spin },
644         { "sleepq chain", &lock_class_mtx_spin },
645         { "umtx lock", &lock_class_mtx_spin },
646         { "rm_spinlock", &lock_class_mtx_spin },
647         { "turnstile chain", &lock_class_mtx_spin },
648         { "turnstile lock", &lock_class_mtx_spin },
649         { "sched lock", &lock_class_mtx_spin },
650         { "td_contested", &lock_class_mtx_spin },
651         { "callout", &lock_class_mtx_spin },
652         { "entropy harvest mutex", &lock_class_mtx_spin },
653         { "syscons video lock", &lock_class_mtx_spin },
654         { "time lock", &lock_class_mtx_spin },
655 #ifdef SMP
656         { "smp rendezvous", &lock_class_mtx_spin },
657 #endif
658 #ifdef __powerpc__
659         { "tlb0", &lock_class_mtx_spin },
660 #endif
661         /*
662          * leaf locks
663          */
664         { "intrcnt", &lock_class_mtx_spin },
665         { "icu", &lock_class_mtx_spin },
666 #if defined(SMP) && defined(__sparc64__)
667         { "ipi", &lock_class_mtx_spin },
668 #endif
669 #ifdef __i386__
670         { "allpmaps", &lock_class_mtx_spin },
671         { "descriptor tables", &lock_class_mtx_spin },
672 #endif
673         { "clk", &lock_class_mtx_spin },
674         { "cpuset", &lock_class_mtx_spin },
675         { "mprof lock", &lock_class_mtx_spin },
676         { "zombie lock", &lock_class_mtx_spin },
677         { "ALD Queue", &lock_class_mtx_spin },
678 #ifdef __ia64__
679         { "MCA spin lock", &lock_class_mtx_spin },
680 #endif
681 #if defined(__i386__) || defined(__amd64__)
682         { "pcicfg", &lock_class_mtx_spin },
683         { "NDIS thread lock", &lock_class_mtx_spin },
684 #endif
685         { "tw_osl_io_lock", &lock_class_mtx_spin },
686         { "tw_osl_q_lock", &lock_class_mtx_spin },
687         { "tw_cl_io_lock", &lock_class_mtx_spin },
688         { "tw_cl_intr_lock", &lock_class_mtx_spin },
689         { "tw_cl_gen_lock", &lock_class_mtx_spin },
690 #ifdef  HWPMC_HOOKS
691         { "pmc-leaf", &lock_class_mtx_spin },
692 #endif
693         { "blocked lock", &lock_class_mtx_spin },
694         { NULL, NULL },
695         { NULL, NULL }
696 };
697
698 #ifdef BLESSING
699 /*
700  * Pairs of locks which have been blessed
701  * Don't complain about order problems with blessed locks
702  */
703 static struct witness_blessed blessed_list[] = {
704 };
705 static int blessed_count =
706         sizeof(blessed_list) / sizeof(struct witness_blessed);
707 #endif
708
709 /*
710  * This global is set to 0 once it becomes safe to use the witness code.
711  */
712 static int witness_cold = 1;
713
714 /*
715  * This global is set to 1 once the static lock orders have been enrolled
716  * so that a warning can be issued for any spin locks enrolled later.
717  */
718 static int witness_spin_warn = 0;
719
720 /*
721  * The WITNESS-enabled diagnostic code.  Note that the witness code does
722  * assume that the early boot is single-threaded at least until after this
723  * routine is completed.
724  */
725 static void
726 witness_initialize(void *dummy __unused)
727 {
728         struct lock_object *lock;
729         struct witness_order_list_entry *order;
730         struct witness *w, *w1;
731         int i;
732
733         w_data = malloc(sizeof (struct witness) * WITNESS_COUNT, M_WITNESS,
734             M_NOWAIT | M_ZERO);
735
736         /*
737          * We have to release Giant before initializing its witness
738          * structure so that WITNESS doesn't get confused.
739          */
740         mtx_unlock(&Giant);
741         mtx_assert(&Giant, MA_NOTOWNED);
742
743         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
744         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
745             MTX_NOWITNESS | MTX_NOPROFILE);
746         for (i = WITNESS_COUNT - 1; i >= 0; i--) {
747                 w = &w_data[i];
748                 memset(w, 0, sizeof(*w));
749                 w_data[i].w_index = i;  /* Witness index never changes. */
750                 witness_free(w);
751         }
752         KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
753             ("%s: Invalid list of free witness objects", __func__));
754
755         /* Witness with index 0 is not used to aid in debugging. */
756         STAILQ_REMOVE_HEAD(&w_free, w_list);
757         w_free_cnt--;
758
759         memset(w_rmatrix, 0,
760             (sizeof(**w_rmatrix) * (WITNESS_COUNT+1) * (WITNESS_COUNT+1)));
761
762         for (i = 0; i < LOCK_CHILDCOUNT; i++)
763                 witness_lock_list_free(&w_locklistdata[i]);
764         witness_init_hash_tables();
765
766         /* First add in all the specified order lists. */
767         for (order = order_lists; order->w_name != NULL; order++) {
768                 w = enroll(order->w_name, order->w_class);
769                 if (w == NULL)
770                         continue;
771                 w->w_file = "order list";
772                 for (order++; order->w_name != NULL; order++) {
773                         w1 = enroll(order->w_name, order->w_class);
774                         if (w1 == NULL)
775                                 continue;
776                         w1->w_file = "order list";
777                         itismychild(w, w1);
778                         w = w1;
779                 }
780         }
781         witness_spin_warn = 1;
782
783         /* Iterate through all locks and add them to witness. */
784         for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
785                 lock = pending_locks[i].wh_lock;
786                 KASSERT(lock->lo_flags & LO_WITNESS,
787                     ("%s: lock %s is on pending list but not LO_WITNESS",
788                     __func__, lock->lo_name));
789                 lock->lo_witness = enroll(pending_locks[i].wh_type,
790                     LOCK_CLASS(lock));
791         }
792
793         /* Mark the witness code as being ready for use. */
794         witness_cold = 0;
795
796         mtx_lock(&Giant);
797 }
798 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
799     NULL);
800
801 void
802 witness_init(struct lock_object *lock, const char *type)
803 {
804         struct lock_class *class;
805
806         /* Various sanity checks. */
807         class = LOCK_CLASS(lock);
808         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
809             (class->lc_flags & LC_RECURSABLE) == 0)
810                 panic("%s: lock (%s) %s can not be recursable", __func__,
811                     class->lc_name, lock->lo_name);
812         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
813             (class->lc_flags & LC_SLEEPABLE) == 0)
814                 panic("%s: lock (%s) %s can not be sleepable", __func__,
815                     class->lc_name, lock->lo_name);
816         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
817             (class->lc_flags & LC_UPGRADABLE) == 0)
818                 panic("%s: lock (%s) %s can not be upgradable", __func__,
819                     class->lc_name, lock->lo_name);
820
821         /*
822          * If we shouldn't watch this lock, then just clear lo_witness.
823          * Otherwise, if witness_cold is set, then it is too early to
824          * enroll this lock, so defer it to witness_initialize() by adding
825          * it to the pending_locks list.  If it is not too early, then enroll
826          * the lock now.
827          */
828         if (witness_watch < 1 || panicstr != NULL ||
829             (lock->lo_flags & LO_WITNESS) == 0)
830                 lock->lo_witness = NULL;
831         else if (witness_cold) {
832                 pending_locks[pending_cnt].wh_lock = lock;
833                 pending_locks[pending_cnt++].wh_type = type;
834                 if (pending_cnt > WITNESS_PENDLIST)
835                         panic("%s: pending locks list is too small, bump it\n",
836                             __func__);
837         } else
838                 lock->lo_witness = enroll(type, class);
839 }
840
841 void
842 witness_destroy(struct lock_object *lock)
843 {
844         struct lock_class *class;
845         struct witness *w;
846
847         class = LOCK_CLASS(lock);
848
849         if (witness_cold)
850                 panic("lock (%s) %s destroyed while witness_cold",
851                     class->lc_name, lock->lo_name);
852
853         /* XXX: need to verify that no one holds the lock */
854         if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
855                 return;
856         w = lock->lo_witness;
857
858         mtx_lock_spin(&w_mtx);
859         MPASS(w->w_refcount > 0);
860         w->w_refcount--;
861
862         if (w->w_refcount == 0)
863                 depart(w);
864         mtx_unlock_spin(&w_mtx);
865 }
866
867 #ifdef DDB
868 static void
869 witness_ddb_compute_levels(void)
870 {
871         struct witness *w;
872
873         /*
874          * First clear all levels.
875          */
876         STAILQ_FOREACH(w, &w_all, w_list)
877                 w->w_ddb_level = -1;
878
879         /*
880          * Look for locks with no parents and level all their descendants.
881          */
882         STAILQ_FOREACH(w, &w_all, w_list) {
883
884                 /* If the witness has ancestors (is not a root), skip it. */
885                 if (w->w_num_ancestors > 0)
886                         continue;
887                 witness_ddb_level_descendants(w, 0);
888         }
889 }
890
891 static void
892 witness_ddb_level_descendants(struct witness *w, int l)
893 {
894         int i;
895
896         if (w->w_ddb_level >= l)
897                 return;
898
899         w->w_ddb_level = l;
900         l++;
901
902         for (i = 1; i <= w_max_used_index; i++) {
903                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
904                         witness_ddb_level_descendants(&w_data[i], l);
905         }
906 }
907
908 static void
909 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
910     struct witness *w, int indent)
911 {
912         int i;
913
914         for (i = 0; i < indent; i++)
915                 prnt(" ");
916         prnt("%s (type: %s, depth: %d, active refs: %d)",
917              w->w_name, w->w_class->lc_name,
918              w->w_ddb_level, w->w_refcount);
919         if (w->w_displayed) {
920                 prnt(" -- (already displayed)\n");
921                 return;
922         }
923         w->w_displayed = 1;
924         if (w->w_file != NULL && w->w_line != 0)
925                 prnt(" -- last acquired @ %s:%d\n", w->w_file,
926                     w->w_line);
927         else
928                 prnt(" -- never acquired\n");
929         indent++;
930         WITNESS_INDEX_ASSERT(w->w_index);
931         for (i = 1; i <= w_max_used_index; i++) {
932                 if (db_pager_quit)
933                         return;
934                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
935                         witness_ddb_display_descendants(prnt, &w_data[i],
936                             indent);
937         }
938 }
939
940 static void
941 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
942     struct witness_list *list)
943 {
944         struct witness *w;
945
946         STAILQ_FOREACH(w, list, w_typelist) {
947                 if (w->w_file == NULL || w->w_ddb_level > 0)
948                         continue;
949
950                 /* This lock has no anscestors - display its descendants. */
951                 witness_ddb_display_descendants(prnt, w, 0);
952                 if (db_pager_quit)
953                         return;
954         }
955 }
956         
957 static void
958 witness_ddb_display(int(*prnt)(const char *fmt, ...))
959 {
960         struct witness *w;
961
962         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
963         witness_ddb_compute_levels();
964
965         /* Clear all the displayed flags. */
966         STAILQ_FOREACH(w, &w_all, w_list)
967                 w->w_displayed = 0;
968
969         /*
970          * First, handle sleep locks which have been acquired at least
971          * once.
972          */
973         prnt("Sleep locks:\n");
974         witness_ddb_display_list(prnt, &w_sleep);
975         if (db_pager_quit)
976                 return;
977         
978         /*
979          * Now do spin locks which have been acquired at least once.
980          */
981         prnt("\nSpin locks:\n");
982         witness_ddb_display_list(prnt, &w_spin);
983         if (db_pager_quit)
984                 return;
985         
986         /*
987          * Finally, any locks which have not been acquired yet.
988          */
989         prnt("\nLocks which were never acquired:\n");
990         STAILQ_FOREACH(w, &w_all, w_list) {
991                 if (w->w_file != NULL || w->w_refcount == 0)
992                         continue;
993                 prnt("%s (type: %s, depth: %d)\n", w->w_name,
994                     w->w_class->lc_name, w->w_ddb_level);
995                 if (db_pager_quit)
996                         return;
997         }
998 }
999 #endif /* DDB */
1000
1001 /* Trim useless garbage from filenames. */
1002 static const char *
1003 fixup_filename(const char *file)
1004 {
1005
1006         if (file == NULL)
1007                 return (NULL);
1008         while (strncmp(file, "../", 3) == 0)
1009                 file += 3;
1010         return (file);
1011 }
1012
1013 int
1014 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1015 {
1016
1017         if (witness_watch == -1 || panicstr != NULL)
1018                 return (0);
1019
1020         /* Require locks that witness knows about. */
1021         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1022             lock2->lo_witness == NULL)
1023                 return (EINVAL);
1024
1025         mtx_assert(&w_mtx, MA_NOTOWNED);
1026         mtx_lock_spin(&w_mtx);
1027
1028         /*
1029          * If we already have either an explicit or implied lock order that
1030          * is the other way around, then return an error.
1031          */
1032         if (witness_watch &&
1033             isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1034                 mtx_unlock_spin(&w_mtx);
1035                 return (EDOOFUS);
1036         }
1037         
1038         /* Try to add the new order. */
1039         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1040             lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1041         itismychild(lock1->lo_witness, lock2->lo_witness);
1042         mtx_unlock_spin(&w_mtx);
1043         return (0);
1044 }
1045
1046 void
1047 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1048     int line, struct lock_object *interlock)
1049 {
1050         struct lock_list_entry *lock_list, *lle;
1051         struct lock_instance *lock1, *lock2, *plock;
1052         struct lock_class *class;
1053         struct witness *w, *w1;
1054         struct thread *td;
1055         int i, j;
1056
1057         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1058             panicstr != NULL)
1059                 return;
1060
1061         w = lock->lo_witness;
1062         class = LOCK_CLASS(lock);
1063         td = curthread;
1064         file = fixup_filename(file);
1065
1066         if (class->lc_flags & LC_SLEEPLOCK) {
1067
1068                 /*
1069                  * Since spin locks include a critical section, this check
1070                  * implicitly enforces a lock order of all sleep locks before
1071                  * all spin locks.
1072                  */
1073                 if (td->td_critnest != 0 && !kdb_active)
1074                         panic("blockable sleep lock (%s) %s @ %s:%d",
1075                             class->lc_name, lock->lo_name, file, line);
1076
1077                 /*
1078                  * If this is the first lock acquired then just return as
1079                  * no order checking is needed.
1080                  */
1081                 lock_list = td->td_sleeplocks;
1082                 if (lock_list == NULL || lock_list->ll_count == 0)
1083                         return;
1084         } else {
1085
1086                 /*
1087                  * If this is the first lock, just return as no order
1088                  * checking is needed.  Avoid problems with thread
1089                  * migration pinning the thread while checking if
1090                  * spinlocks are held.  If at least one spinlock is held
1091                  * the thread is in a safe path and it is allowed to
1092                  * unpin it.
1093                  */
1094                 sched_pin();
1095                 lock_list = PCPU_GET(spinlocks);
1096                 if (lock_list == NULL || lock_list->ll_count == 0) {
1097                         sched_unpin();
1098                         return;
1099                 }
1100                 sched_unpin();
1101         }
1102
1103         /*
1104          * Check to see if we are recursing on a lock we already own.  If
1105          * so, make sure that we don't mismatch exclusive and shared lock
1106          * acquires.
1107          */
1108         lock1 = find_instance(lock_list, lock);
1109         if (lock1 != NULL) {
1110                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1111                     (flags & LOP_EXCLUSIVE) == 0) {
1112                         printf("shared lock of (%s) %s @ %s:%d\n",
1113                             class->lc_name, lock->lo_name, file, line);
1114                         printf("while exclusively locked from %s:%d\n",
1115                             lock1->li_file, lock1->li_line);
1116                         panic("share->excl");
1117                 }
1118                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1119                     (flags & LOP_EXCLUSIVE) != 0) {
1120                         printf("exclusive lock of (%s) %s @ %s:%d\n",
1121                             class->lc_name, lock->lo_name, file, line);
1122                         printf("while share locked from %s:%d\n",
1123                             lock1->li_file, lock1->li_line);
1124                         panic("excl->share");
1125                 }
1126                 return;
1127         }
1128
1129         /*
1130          * Find the previously acquired lock, but ignore interlocks.
1131          */
1132         plock = &lock_list->ll_children[lock_list->ll_count - 1];
1133         if (interlock != NULL && plock->li_lock == interlock) {
1134                 if (lock_list->ll_count > 1)
1135                         plock =
1136                             &lock_list->ll_children[lock_list->ll_count - 2];
1137                 else {
1138                         lle = lock_list->ll_next;
1139
1140                         /*
1141                          * The interlock is the only lock we hold, so
1142                          * simply return.
1143                          */
1144                         if (lle == NULL)
1145                                 return;
1146                         plock = &lle->ll_children[lle->ll_count - 1];
1147                 }
1148         }
1149         
1150         /*
1151          * Try to perform most checks without a lock.  If this succeeds we
1152          * can skip acquiring the lock and return success.
1153          */
1154         w1 = plock->li_lock->lo_witness;
1155         if (witness_lock_order_check(w1, w))
1156                 return;
1157
1158         /*
1159          * Check for duplicate locks of the same type.  Note that we only
1160          * have to check for this on the last lock we just acquired.  Any
1161          * other cases will be caught as lock order violations.
1162          */
1163         mtx_lock_spin(&w_mtx);
1164         witness_lock_order_add(w1, w);
1165         if (w1 == w) {
1166                 i = w->w_index;
1167                 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1168                     !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1169                     w_rmatrix[i][i] |= WITNESS_REVERSAL;
1170                         w->w_reversed = 1;
1171                         mtx_unlock_spin(&w_mtx);
1172                         printf(
1173                             "acquiring duplicate lock of same type: \"%s\"\n", 
1174                             w->w_name);
1175                         printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1176                                plock->li_file, plock->li_line);
1177                         printf(" 2nd %s @ %s:%d\n", lock->lo_name, file, line);
1178                         witness_debugger(1);
1179                     } else
1180                             mtx_unlock_spin(&w_mtx);
1181                 return;
1182         }
1183         mtx_assert(&w_mtx, MA_OWNED);
1184
1185         /*
1186          * If we know that the lock we are acquiring comes after
1187          * the lock we most recently acquired in the lock order tree,
1188          * then there is no need for any further checks.
1189          */
1190         if (isitmychild(w1, w))
1191                 goto out;
1192
1193         for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1194                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1195
1196                         MPASS(j < WITNESS_COUNT);
1197                         lock1 = &lle->ll_children[i];
1198
1199                         /*
1200                          * Ignore the interlock the first time we see it.
1201                          */
1202                         if (interlock != NULL && interlock == lock1->li_lock) {
1203                                 interlock = NULL;
1204                                 continue;
1205                         }
1206
1207                         /*
1208                          * If this lock doesn't undergo witness checking,
1209                          * then skip it.
1210                          */
1211                         w1 = lock1->li_lock->lo_witness;
1212                         if (w1 == NULL) {
1213                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1214                                     ("lock missing witness structure"));
1215                                 continue;
1216                         }
1217
1218                         /*
1219                          * If we are locking Giant and this is a sleepable
1220                          * lock, then skip it.
1221                          */
1222                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1223                             lock == &Giant.lock_object)
1224                                 continue;
1225
1226                         /*
1227                          * If we are locking a sleepable lock and this lock
1228                          * is Giant, then skip it.
1229                          */
1230                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1231                             lock1->li_lock == &Giant.lock_object)
1232                                 continue;
1233
1234                         /*
1235                          * If we are locking a sleepable lock and this lock
1236                          * isn't sleepable, we want to treat it as a lock
1237                          * order violation to enfore a general lock order of
1238                          * sleepable locks before non-sleepable locks.
1239                          */
1240                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1241                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1242                                 goto reversal;
1243
1244                         /*
1245                          * If we are locking Giant and this is a non-sleepable
1246                          * lock, then treat it as a reversal.
1247                          */
1248                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1249                             lock == &Giant.lock_object)
1250                                 goto reversal;
1251
1252                         /*
1253                          * Check the lock order hierarchy for a reveresal.
1254                          */
1255                         if (!isitmydescendant(w, w1))
1256                                 continue;
1257                 reversal:
1258
1259                         /*
1260                          * We have a lock order violation, check to see if it
1261                          * is allowed or has already been yelled about.
1262                          */
1263 #ifdef BLESSING
1264
1265                         /*
1266                          * If the lock order is blessed, just bail.  We don't
1267                          * look for other lock order violations though, which
1268                          * may be a bug.
1269                          */
1270                         if (blessed(w, w1))
1271                                 goto out;
1272 #endif
1273
1274                         /* Bail if this violation is known */
1275                         if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1276                                 goto out;
1277
1278                         /* Record this as a violation */
1279                         w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1280                         w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1281                         w->w_reversed = w1->w_reversed = 1;
1282                         witness_increment_graph_generation();
1283                         mtx_unlock_spin(&w_mtx);
1284                         
1285                         /*
1286                          * Ok, yell about it.
1287                          */
1288                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1289                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1290                                 printf(
1291                 "lock order reversal: (sleepable after non-sleepable)\n");
1292                         else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1293                             && lock == &Giant.lock_object)
1294                                 printf(
1295                 "lock order reversal: (Giant after non-sleepable)\n");
1296                         else
1297                                 printf("lock order reversal:\n");
1298
1299                         /*
1300                          * Try to locate an earlier lock with
1301                          * witness w in our list.
1302                          */
1303                         do {
1304                                 lock2 = &lle->ll_children[i];
1305                                 MPASS(lock2->li_lock != NULL);
1306                                 if (lock2->li_lock->lo_witness == w)
1307                                         break;
1308                                 if (i == 0 && lle->ll_next != NULL) {
1309                                         lle = lle->ll_next;
1310                                         i = lle->ll_count - 1;
1311                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
1312                                 } else
1313                                         i--;
1314                         } while (i >= 0);
1315                         if (i < 0) {
1316                                 printf(" 1st %p %s (%s) @ %s:%d\n",
1317                                     lock1->li_lock, lock1->li_lock->lo_name,
1318                                     w1->w_name, lock1->li_file, lock1->li_line);
1319                                 printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
1320                                     lock->lo_name, w->w_name, file, line);
1321                         } else {
1322                                 printf(" 1st %p %s (%s) @ %s:%d\n",
1323                                     lock2->li_lock, lock2->li_lock->lo_name,
1324                                     lock2->li_lock->lo_witness->w_name,
1325                                     lock2->li_file, lock2->li_line);
1326                                 printf(" 2nd %p %s (%s) @ %s:%d\n",
1327                                     lock1->li_lock, lock1->li_lock->lo_name,
1328                                     w1->w_name, lock1->li_file, lock1->li_line);
1329                                 printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
1330                                     lock->lo_name, w->w_name, file, line);
1331                         }
1332                         witness_debugger(1);
1333                         return;
1334                 }
1335         }
1336
1337         /*
1338          * If requested, build a new lock order.  However, don't build a new
1339          * relationship between a sleepable lock and Giant if it is in the
1340          * wrong direction.  The correct lock order is that sleepable locks
1341          * always come before Giant.
1342          */
1343         if (flags & LOP_NEWORDER &&
1344             !(plock->li_lock == &Giant.lock_object &&
1345             (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1346                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1347                     w->w_name, plock->li_lock->lo_witness->w_name);
1348                 itismychild(plock->li_lock->lo_witness, w);
1349         }
1350 out:
1351         mtx_unlock_spin(&w_mtx);
1352 }
1353
1354 void
1355 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1356 {
1357         struct lock_list_entry **lock_list, *lle;
1358         struct lock_instance *instance;
1359         struct witness *w;
1360         struct thread *td;
1361
1362         if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1363             panicstr != NULL)
1364                 return;
1365         w = lock->lo_witness;
1366         td = curthread;
1367         file = fixup_filename(file);
1368
1369         /* Determine lock list for this lock. */
1370         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1371                 lock_list = &td->td_sleeplocks;
1372         else
1373                 lock_list = PCPU_PTR(spinlocks);
1374
1375         /* Check to see if we are recursing on a lock we already own. */
1376         instance = find_instance(*lock_list, lock);
1377         if (instance != NULL) {
1378                 instance->li_flags++;
1379                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1380                     td->td_proc->p_pid, lock->lo_name,
1381                     instance->li_flags & LI_RECURSEMASK);
1382                 instance->li_file = file;
1383                 instance->li_line = line;
1384                 return;
1385         }
1386
1387         /* Update per-witness last file and line acquire. */
1388         w->w_file = file;
1389         w->w_line = line;
1390
1391         /* Find the next open lock instance in the list and fill it. */
1392         lle = *lock_list;
1393         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1394                 lle = witness_lock_list_get();
1395                 if (lle == NULL)
1396                         return;
1397                 lle->ll_next = *lock_list;
1398                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1399                     td->td_proc->p_pid, lle);
1400                 *lock_list = lle;
1401         }
1402         instance = &lle->ll_children[lle->ll_count++];
1403         instance->li_lock = lock;
1404         instance->li_line = line;
1405         instance->li_file = file;
1406         if ((flags & LOP_EXCLUSIVE) != 0)
1407                 instance->li_flags = LI_EXCLUSIVE;
1408         else
1409                 instance->li_flags = 0;
1410         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1411             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1412 }
1413
1414 void
1415 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1416 {
1417         struct lock_instance *instance;
1418         struct lock_class *class;
1419
1420         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1421         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1422                 return;
1423         class = LOCK_CLASS(lock);
1424         file = fixup_filename(file);
1425         if (witness_watch) {
1426                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1427                         panic("upgrade of non-upgradable lock (%s) %s @ %s:%d",
1428                             class->lc_name, lock->lo_name, file, line);
1429                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1430                         panic("upgrade of non-sleep lock (%s) %s @ %s:%d",
1431                             class->lc_name, lock->lo_name, file, line);
1432         }
1433         instance = find_instance(curthread->td_sleeplocks, lock);
1434         if (instance == NULL)
1435                 panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1436                     class->lc_name, lock->lo_name, file, line);
1437         if (witness_watch) {
1438                 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1439                         panic("upgrade of exclusive lock (%s) %s @ %s:%d",
1440                             class->lc_name, lock->lo_name, file, line);
1441                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1442                         panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1443                             class->lc_name, lock->lo_name,
1444                             instance->li_flags & LI_RECURSEMASK, file, line);
1445         }
1446         instance->li_flags |= LI_EXCLUSIVE;
1447 }
1448
1449 void
1450 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1451     int line)
1452 {
1453         struct lock_instance *instance;
1454         struct lock_class *class;
1455
1456         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1457         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1458                 return;
1459         class = LOCK_CLASS(lock);
1460         file = fixup_filename(file);
1461         if (witness_watch) {
1462                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1463                 panic("downgrade of non-upgradable lock (%s) %s @ %s:%d",
1464                             class->lc_name, lock->lo_name, file, line);
1465                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1466                         panic("downgrade of non-sleep lock (%s) %s @ %s:%d",
1467                             class->lc_name, lock->lo_name, file, line);
1468         }
1469         instance = find_instance(curthread->td_sleeplocks, lock);
1470         if (instance == NULL)
1471                 panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1472                     class->lc_name, lock->lo_name, file, line);
1473         if (witness_watch) {
1474                 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1475                         panic("downgrade of shared lock (%s) %s @ %s:%d",
1476                             class->lc_name, lock->lo_name, file, line);
1477                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1478                         panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1479                             class->lc_name, lock->lo_name,
1480                             instance->li_flags & LI_RECURSEMASK, file, line);
1481         }
1482         instance->li_flags &= ~LI_EXCLUSIVE;
1483 }
1484
1485 void
1486 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1487 {
1488         struct lock_list_entry **lock_list, *lle;
1489         struct lock_instance *instance;
1490         struct lock_class *class;
1491         struct thread *td;
1492         register_t s;
1493         int i, j;
1494
1495         if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1496                 return;
1497         td = curthread;
1498         class = LOCK_CLASS(lock);
1499         file = fixup_filename(file);
1500
1501         /* Find lock instance associated with this lock. */
1502         if (class->lc_flags & LC_SLEEPLOCK)
1503                 lock_list = &td->td_sleeplocks;
1504         else
1505                 lock_list = PCPU_PTR(spinlocks);
1506         lle = *lock_list;
1507         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1508                 for (i = 0; i < (*lock_list)->ll_count; i++) {
1509                         instance = &(*lock_list)->ll_children[i];
1510                         if (instance->li_lock == lock)
1511                                 goto found;
1512                 }
1513
1514         /*
1515          * When disabling WITNESS through witness_watch we could end up in
1516          * having registered locks in the td_sleeplocks queue.
1517          * We have to make sure we flush these queues, so just search for
1518          * eventual register locks and remove them.
1519          */
1520         if (witness_watch > 0)
1521                 panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1522                     lock->lo_name, file, line);
1523         else
1524                 return;
1525 found:
1526
1527         /* First, check for shared/exclusive mismatches. */
1528         if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1529             (flags & LOP_EXCLUSIVE) == 0) {
1530                 printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1531                     lock->lo_name, file, line);
1532                 printf("while exclusively locked from %s:%d\n",
1533                     instance->li_file, instance->li_line);
1534                 panic("excl->ushare");
1535         }
1536         if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1537             (flags & LOP_EXCLUSIVE) != 0) {
1538                 printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1539                     lock->lo_name, file, line);
1540                 printf("while share locked from %s:%d\n", instance->li_file,
1541                     instance->li_line);
1542                 panic("share->uexcl");
1543         }
1544         /* If we are recursed, unrecurse. */
1545         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1546                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1547                     td->td_proc->p_pid, instance->li_lock->lo_name,
1548                     instance->li_flags);
1549                 instance->li_flags--;
1550                 return;
1551         }
1552         /* The lock is now being dropped, check for NORELEASE flag */
1553         if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1554                 printf("forbidden unlock of (%s) %s @ %s:%d\n", class->lc_name,
1555                     lock->lo_name, file, line);
1556                 panic("lock marked norelease");
1557         }
1558
1559         /* Otherwise, remove this item from the list. */
1560         s = intr_disable();
1561         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1562             td->td_proc->p_pid, instance->li_lock->lo_name,
1563             (*lock_list)->ll_count - 1);
1564         for (j = i; j < (*lock_list)->ll_count - 1; j++)
1565                 (*lock_list)->ll_children[j] =
1566                     (*lock_list)->ll_children[j + 1];
1567         (*lock_list)->ll_count--;
1568         intr_restore(s);
1569
1570         /*
1571          * In order to reduce contention on w_mtx, we want to keep always an
1572          * head object into lists so that frequent allocation from the 
1573          * free witness pool (and subsequent locking) is avoided.
1574          * In order to maintain the current code simple, when the head
1575          * object is totally unloaded it means also that we do not have
1576          * further objects in the list, so the list ownership needs to be
1577          * hand over to another object if the current head needs to be freed.
1578          */
1579         if ((*lock_list)->ll_count == 0) {
1580                 if (*lock_list == lle) {
1581                         if (lle->ll_next == NULL)
1582                                 return;
1583                 } else
1584                         lle = *lock_list;
1585                 *lock_list = lle->ll_next;
1586                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1587                     td->td_proc->p_pid, lle);
1588                 witness_lock_list_free(lle);
1589         }
1590 }
1591
1592 void
1593 witness_thread_exit(struct thread *td)
1594 {
1595         struct lock_list_entry *lle;
1596         int i, n;
1597
1598         lle = td->td_sleeplocks;
1599         if (lle == NULL || panicstr != NULL)
1600                 return;
1601         if (lle->ll_count != 0) {
1602                 for (n = 0; lle != NULL; lle = lle->ll_next)
1603                         for (i = lle->ll_count - 1; i >= 0; i--) {
1604                                 if (n == 0)
1605                 printf("Thread %p exiting with the following locks held:\n",
1606                                             td);
1607                                 n++;
1608                                 witness_list_lock(&lle->ll_children[i], printf);
1609                                 
1610                         }
1611                 panic("Thread %p cannot exit while holding sleeplocks\n", td);
1612         }
1613         witness_lock_list_free(lle);
1614 }
1615
1616 /*
1617  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1618  * exempt Giant and sleepable locks from the checks as well.  If any
1619  * non-exempt locks are held, then a supplied message is printed to the
1620  * console along with a list of the offending locks.  If indicated in the
1621  * flags then a failure results in a panic as well.
1622  */
1623 int
1624 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1625 {
1626         struct lock_list_entry *lock_list, *lle;
1627         struct lock_instance *lock1;
1628         struct thread *td;
1629         va_list ap;
1630         int i, n;
1631
1632         if (witness_cold || witness_watch < 1 || panicstr != NULL)
1633                 return (0);
1634         n = 0;
1635         td = curthread;
1636         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1637                 for (i = lle->ll_count - 1; i >= 0; i--) {
1638                         lock1 = &lle->ll_children[i];
1639                         if (lock1->li_lock == lock)
1640                                 continue;
1641                         if (flags & WARN_GIANTOK &&
1642                             lock1->li_lock == &Giant.lock_object)
1643                                 continue;
1644                         if (flags & WARN_SLEEPOK &&
1645                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1646                                 continue;
1647                         if (n == 0) {
1648                                 va_start(ap, fmt);
1649                                 vprintf(fmt, ap);
1650                                 va_end(ap);
1651                                 printf(" with the following");
1652                                 if (flags & WARN_SLEEPOK)
1653                                         printf(" non-sleepable");
1654                                 printf(" locks held:\n");
1655                         }
1656                         n++;
1657                         witness_list_lock(lock1, printf);
1658                 }
1659
1660         /*
1661          * Pin the thread in order to avoid problems with thread migration.
1662          * Once that all verifies are passed about spinlocks ownership,
1663          * the thread is in a safe path and it can be unpinned.
1664          */
1665         sched_pin();
1666         lock_list = PCPU_GET(spinlocks);
1667         if (lock_list != NULL && lock_list->ll_count != 0) {
1668                 sched_unpin();
1669
1670                 /*
1671                  * We should only have one spinlock and as long as
1672                  * the flags cannot match for this locks class,
1673                  * check if the first spinlock is the one curthread
1674                  * should hold.
1675                  */
1676                 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1677                 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1678                     lock1->li_lock == lock && n == 0)
1679                         return (0);
1680
1681                 va_start(ap, fmt);
1682                 vprintf(fmt, ap);
1683                 va_end(ap);
1684                 printf(" with the following");
1685                 if (flags & WARN_SLEEPOK)
1686                         printf(" non-sleepable");
1687                 printf(" locks held:\n");
1688                 n += witness_list_locks(&lock_list, printf);
1689         } else
1690                 sched_unpin();
1691         if (flags & WARN_PANIC && n)
1692                 panic("%s", __func__);
1693         else
1694                 witness_debugger(n);
1695         return (n);
1696 }
1697
1698 const char *
1699 witness_file(struct lock_object *lock)
1700 {
1701         struct witness *w;
1702
1703         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1704                 return ("?");
1705         w = lock->lo_witness;
1706         return (w->w_file);
1707 }
1708
1709 int
1710 witness_line(struct lock_object *lock)
1711 {
1712         struct witness *w;
1713
1714         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1715                 return (0);
1716         w = lock->lo_witness;
1717         return (w->w_line);
1718 }
1719
1720 static struct witness *
1721 enroll(const char *description, struct lock_class *lock_class)
1722 {
1723         struct witness *w;
1724         struct witness_list *typelist;
1725
1726         MPASS(description != NULL);
1727
1728         if (witness_watch == -1 || panicstr != NULL)
1729                 return (NULL);
1730         if ((lock_class->lc_flags & LC_SPINLOCK)) {
1731                 if (witness_skipspin)
1732                         return (NULL);
1733                 else
1734                         typelist = &w_spin;
1735         } else if ((lock_class->lc_flags & LC_SLEEPLOCK))
1736                 typelist = &w_sleep;
1737         else
1738                 panic("lock class %s is not sleep or spin",
1739                     lock_class->lc_name);
1740
1741         mtx_lock_spin(&w_mtx);
1742         w = witness_hash_get(description);
1743         if (w)
1744                 goto found;
1745         if ((w = witness_get()) == NULL)
1746                 return (NULL);
1747         MPASS(strlen(description) < MAX_W_NAME);
1748         strcpy(w->w_name, description);
1749         w->w_class = lock_class;
1750         w->w_refcount = 1;
1751         STAILQ_INSERT_HEAD(&w_all, w, w_list);
1752         if (lock_class->lc_flags & LC_SPINLOCK) {
1753                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1754                 w_spin_cnt++;
1755         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1756                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1757                 w_sleep_cnt++;
1758         }
1759
1760         /* Insert new witness into the hash */
1761         witness_hash_put(w);
1762         witness_increment_graph_generation();
1763         mtx_unlock_spin(&w_mtx);
1764         return (w);
1765 found:
1766         w->w_refcount++;
1767         mtx_unlock_spin(&w_mtx);
1768         if (lock_class != w->w_class)
1769                 panic(
1770                         "lock (%s) %s does not match earlier (%s) lock",
1771                         description, lock_class->lc_name,
1772                         w->w_class->lc_name);
1773         return (w);
1774 }
1775
1776 static void
1777 depart(struct witness *w)
1778 {
1779         struct witness_list *list;
1780
1781         MPASS(w->w_refcount == 0);
1782         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1783                 list = &w_sleep;
1784                 w_sleep_cnt--;
1785         } else {
1786                 list = &w_spin;
1787                 w_spin_cnt--;
1788         }
1789         /*
1790          * Set file to NULL as it may point into a loadable module.
1791          */
1792         w->w_file = NULL;
1793         w->w_line = 0;
1794         witness_increment_graph_generation();
1795 }
1796
1797
1798 static void
1799 adopt(struct witness *parent, struct witness *child)
1800 {
1801         int pi, ci, i, j;
1802
1803         if (witness_cold == 0)
1804                 mtx_assert(&w_mtx, MA_OWNED);
1805
1806         /* If the relationship is already known, there's no work to be done. */
1807         if (isitmychild(parent, child))
1808                 return;
1809
1810         /* When the structure of the graph changes, bump up the generation. */
1811         witness_increment_graph_generation();
1812
1813         /*
1814          * The hard part ... create the direct relationship, then propagate all
1815          * indirect relationships.
1816          */
1817         pi = parent->w_index;
1818         ci = child->w_index;
1819         WITNESS_INDEX_ASSERT(pi);
1820         WITNESS_INDEX_ASSERT(ci);
1821         MPASS(pi != ci);
1822         w_rmatrix[pi][ci] |= WITNESS_PARENT;
1823         w_rmatrix[ci][pi] |= WITNESS_CHILD;
1824
1825         /*
1826          * If parent was not already an ancestor of child,
1827          * then we increment the descendant and ancestor counters.
1828          */
1829         if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1830                 parent->w_num_descendants++;
1831                 child->w_num_ancestors++;
1832         }
1833
1834         /* 
1835          * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 
1836          * an ancestor of 'pi' during this loop.
1837          */
1838         for (i = 1; i <= w_max_used_index; i++) {
1839                 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 
1840                     (i != pi))
1841                         continue;
1842
1843                 /* Find each descendant of 'i' and mark it as a descendant. */
1844                 for (j = 1; j <= w_max_used_index; j++) {
1845
1846                         /* 
1847                          * Skip children that are already marked as
1848                          * descendants of 'i'.
1849                          */
1850                         if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1851                                 continue;
1852
1853                         /*
1854                          * We are only interested in descendants of 'ci'. Note
1855                          * that 'ci' itself is counted as a descendant of 'ci'.
1856                          */
1857                         if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 
1858                             (j != ci))
1859                                 continue;
1860                         w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1861                         w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1862                         w_data[i].w_num_descendants++;
1863                         w_data[j].w_num_ancestors++;
1864
1865                         /* 
1866                          * Make sure we aren't marking a node as both an
1867                          * ancestor and descendant. We should have caught 
1868                          * this as a lock order reversal earlier.
1869                          */
1870                         if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1871                             (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1872                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1873                                     "both ancestor and descendant\n",
1874                                     i, j, w_rmatrix[i][j]); 
1875                                 kdb_backtrace();
1876                                 printf("Witness disabled.\n");
1877                                 witness_watch = -1;
1878                         }
1879                         if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1880                             (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1881                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1882                                     "both ancestor and descendant\n",
1883                                     j, i, w_rmatrix[j][i]); 
1884                                 kdb_backtrace();
1885                                 printf("Witness disabled.\n");
1886                                 witness_watch = -1;
1887                         }
1888                 }
1889         }
1890 }
1891
1892 static void
1893 itismychild(struct witness *parent, struct witness *child)
1894 {
1895
1896         MPASS(child != NULL && parent != NULL);
1897         if (witness_cold == 0)
1898                 mtx_assert(&w_mtx, MA_OWNED);
1899
1900         if (!witness_lock_type_equal(parent, child)) {
1901                 if (witness_cold == 0)
1902                         mtx_unlock_spin(&w_mtx);
1903                 panic("%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
1904                     "the same lock type", __func__, parent->w_name,
1905                     parent->w_class->lc_name, child->w_name,
1906                     child->w_class->lc_name);
1907         }
1908         adopt(parent, child);
1909 }
1910
1911 /*
1912  * Generic code for the isitmy*() functions. The rmask parameter is the
1913  * expected relationship of w1 to w2.
1914  */
1915 static int
1916 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
1917 {
1918         unsigned char r1, r2;
1919         int i1, i2;
1920
1921         i1 = w1->w_index;
1922         i2 = w2->w_index;
1923         WITNESS_INDEX_ASSERT(i1);
1924         WITNESS_INDEX_ASSERT(i2);
1925         r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
1926         r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
1927
1928         /* The flags on one better be the inverse of the flags on the other */
1929         if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
1930                 (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
1931                 printf("%s: rmatrix mismatch between %s (index %d) and %s "
1932                     "(index %d): w_rmatrix[%d][%d] == %hhx but "
1933                     "w_rmatrix[%d][%d] == %hhx\n",
1934                     fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
1935                     i2, i1, r2);
1936                 kdb_backtrace();
1937                 printf("Witness disabled.\n");
1938                 witness_watch = -1;
1939         }
1940         return (r1 & rmask);
1941 }
1942
1943 /*
1944  * Checks if @child is a direct child of @parent.
1945  */
1946 static int
1947 isitmychild(struct witness *parent, struct witness *child)
1948 {
1949
1950         return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
1951 }
1952
1953 /*
1954  * Checks if @descendant is a direct or inderect descendant of @ancestor.
1955  */
1956 static int
1957 isitmydescendant(struct witness *ancestor, struct witness *descendant)
1958 {
1959
1960         return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
1961             __func__));
1962 }
1963
1964 #ifdef BLESSING
1965 static int
1966 blessed(struct witness *w1, struct witness *w2)
1967 {
1968         int i;
1969         struct witness_blessed *b;
1970
1971         for (i = 0; i < blessed_count; i++) {
1972                 b = &blessed_list[i];
1973                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
1974                         if (strcmp(w2->w_name, b->b_lock2) == 0)
1975                                 return (1);
1976                         continue;
1977                 }
1978                 if (strcmp(w1->w_name, b->b_lock2) == 0)
1979                         if (strcmp(w2->w_name, b->b_lock1) == 0)
1980                                 return (1);
1981         }
1982         return (0);
1983 }
1984 #endif
1985
1986 static struct witness *
1987 witness_get(void)
1988 {
1989         struct witness *w;
1990         int index;
1991
1992         if (witness_cold == 0)
1993                 mtx_assert(&w_mtx, MA_OWNED);
1994
1995         if (witness_watch == -1) {
1996                 mtx_unlock_spin(&w_mtx);
1997                 return (NULL);
1998         }
1999         if (STAILQ_EMPTY(&w_free)) {
2000                 witness_watch = -1;
2001                 mtx_unlock_spin(&w_mtx);
2002                 printf("WITNESS: unable to allocate a new witness object\n");
2003                 return (NULL);
2004         }
2005         w = STAILQ_FIRST(&w_free);
2006         STAILQ_REMOVE_HEAD(&w_free, w_list);
2007         w_free_cnt--;
2008         index = w->w_index;
2009         MPASS(index > 0 && index == w_max_used_index+1 &&
2010             index < WITNESS_COUNT);
2011         bzero(w, sizeof(*w));
2012         w->w_index = index;
2013         if (index > w_max_used_index)
2014                 w_max_used_index = index;
2015         return (w);
2016 }
2017
2018 static void
2019 witness_free(struct witness *w)
2020 {
2021
2022         STAILQ_INSERT_HEAD(&w_free, w, w_list);
2023         w_free_cnt++;
2024 }
2025
2026 static struct lock_list_entry *
2027 witness_lock_list_get(void)
2028 {
2029         struct lock_list_entry *lle;
2030
2031         if (witness_watch == -1)
2032                 return (NULL);
2033         mtx_lock_spin(&w_mtx);
2034         lle = w_lock_list_free;
2035         if (lle == NULL) {
2036                 witness_watch = -1;
2037                 mtx_unlock_spin(&w_mtx);
2038                 printf("%s: witness exhausted\n", __func__);
2039                 return (NULL);
2040         }
2041         w_lock_list_free = lle->ll_next;
2042         mtx_unlock_spin(&w_mtx);
2043         bzero(lle, sizeof(*lle));
2044         return (lle);
2045 }
2046                 
2047 static void
2048 witness_lock_list_free(struct lock_list_entry *lle)
2049 {
2050
2051         mtx_lock_spin(&w_mtx);
2052         lle->ll_next = w_lock_list_free;
2053         w_lock_list_free = lle;
2054         mtx_unlock_spin(&w_mtx);
2055 }
2056
2057 static struct lock_instance *
2058 find_instance(struct lock_list_entry *list, struct lock_object *lock)
2059 {
2060         struct lock_list_entry *lle;
2061         struct lock_instance *instance;
2062         int i;
2063
2064         for (lle = list; lle != NULL; lle = lle->ll_next)
2065                 for (i = lle->ll_count - 1; i >= 0; i--) {
2066                         instance = &lle->ll_children[i];
2067                         if (instance->li_lock == lock)
2068                                 return (instance);
2069                 }
2070         return (NULL);
2071 }
2072
2073 static void
2074 witness_list_lock(struct lock_instance *instance,
2075     int (*prnt)(const char *fmt, ...))
2076 {
2077         struct lock_object *lock;
2078
2079         lock = instance->li_lock;
2080         prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2081             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2082         if (lock->lo_witness->w_name != lock->lo_name)
2083                 prnt(" (%s)", lock->lo_witness->w_name);
2084         prnt(" r = %d (%p) locked @ %s:%d\n",
2085             instance->li_flags & LI_RECURSEMASK, lock, instance->li_file,
2086             instance->li_line);
2087 }
2088
2089 #ifdef DDB
2090 static int
2091 witness_thread_has_locks(struct thread *td)
2092 {
2093
2094         if (td->td_sleeplocks == NULL)
2095                 return (0);
2096         return (td->td_sleeplocks->ll_count != 0);
2097 }
2098
2099 static int
2100 witness_proc_has_locks(struct proc *p)
2101 {
2102         struct thread *td;
2103
2104         FOREACH_THREAD_IN_PROC(p, td) {
2105                 if (witness_thread_has_locks(td))
2106                         return (1);
2107         }
2108         return (0);
2109 }
2110 #endif
2111
2112 int
2113 witness_list_locks(struct lock_list_entry **lock_list,
2114     int (*prnt)(const char *fmt, ...))
2115 {
2116         struct lock_list_entry *lle;
2117         int i, nheld;
2118
2119         nheld = 0;
2120         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2121                 for (i = lle->ll_count - 1; i >= 0; i--) {
2122                         witness_list_lock(&lle->ll_children[i], prnt);
2123                         nheld++;
2124                 }
2125         return (nheld);
2126 }
2127
2128 /*
2129  * This is a bit risky at best.  We call this function when we have timed
2130  * out acquiring a spin lock, and we assume that the other CPU is stuck
2131  * with this lock held.  So, we go groveling around in the other CPU's
2132  * per-cpu data to try to find the lock instance for this spin lock to
2133  * see when it was last acquired.
2134  */
2135 void
2136 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2137     int (*prnt)(const char *fmt, ...))
2138 {
2139         struct lock_instance *instance;
2140         struct pcpu *pc;
2141
2142         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2143                 return;
2144         pc = pcpu_find(owner->td_oncpu);
2145         instance = find_instance(pc->pc_spinlocks, lock);
2146         if (instance != NULL)
2147                 witness_list_lock(instance, prnt);
2148 }
2149
2150 void
2151 witness_save(struct lock_object *lock, const char **filep, int *linep)
2152 {
2153         struct lock_list_entry *lock_list;
2154         struct lock_instance *instance;
2155         struct lock_class *class;
2156
2157         /*
2158          * This function is used independently in locking code to deal with
2159          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2160          * is gone.
2161          */
2162         if (SCHEDULER_STOPPED())
2163                 return;
2164         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2165         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2166                 return;
2167         class = LOCK_CLASS(lock);
2168         if (class->lc_flags & LC_SLEEPLOCK)
2169                 lock_list = curthread->td_sleeplocks;
2170         else {
2171                 if (witness_skipspin)
2172                         return;
2173                 lock_list = PCPU_GET(spinlocks);
2174         }
2175         instance = find_instance(lock_list, lock);
2176         if (instance == NULL)
2177                 panic("%s: lock (%s) %s not locked", __func__,
2178                     class->lc_name, lock->lo_name);
2179         *filep = instance->li_file;
2180         *linep = instance->li_line;
2181 }
2182
2183 void
2184 witness_restore(struct lock_object *lock, const char *file, int line)
2185 {
2186         struct lock_list_entry *lock_list;
2187         struct lock_instance *instance;
2188         struct lock_class *class;
2189
2190         /*
2191          * This function is used independently in locking code to deal with
2192          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2193          * is gone.
2194          */
2195         if (SCHEDULER_STOPPED())
2196                 return;
2197         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2198         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2199                 return;
2200         class = LOCK_CLASS(lock);
2201         if (class->lc_flags & LC_SLEEPLOCK)
2202                 lock_list = curthread->td_sleeplocks;
2203         else {
2204                 if (witness_skipspin)
2205                         return;
2206                 lock_list = PCPU_GET(spinlocks);
2207         }
2208         instance = find_instance(lock_list, lock);
2209         if (instance == NULL)
2210                 panic("%s: lock (%s) %s not locked", __func__,
2211                     class->lc_name, lock->lo_name);
2212         lock->lo_witness->w_file = file;
2213         lock->lo_witness->w_line = line;
2214         instance->li_file = file;
2215         instance->li_line = line;
2216 }
2217
2218 void
2219 witness_assert(struct lock_object *lock, int flags, const char *file, int line)
2220 {
2221 #ifdef INVARIANT_SUPPORT
2222         struct lock_instance *instance;
2223         struct lock_class *class;
2224
2225         if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2226                 return;
2227         class = LOCK_CLASS(lock);
2228         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2229                 instance = find_instance(curthread->td_sleeplocks, lock);
2230         else if ((class->lc_flags & LC_SPINLOCK) != 0)
2231                 instance = find_instance(PCPU_GET(spinlocks), lock);
2232         else {
2233                 panic("Lock (%s) %s is not sleep or spin!",
2234                     class->lc_name, lock->lo_name);
2235         }
2236         file = fixup_filename(file);
2237         switch (flags) {
2238         case LA_UNLOCKED:
2239                 if (instance != NULL)
2240                         panic("Lock (%s) %s locked @ %s:%d.",
2241                             class->lc_name, lock->lo_name, file, line);
2242                 break;
2243         case LA_LOCKED:
2244         case LA_LOCKED | LA_RECURSED:
2245         case LA_LOCKED | LA_NOTRECURSED:
2246         case LA_SLOCKED:
2247         case LA_SLOCKED | LA_RECURSED:
2248         case LA_SLOCKED | LA_NOTRECURSED:
2249         case LA_XLOCKED:
2250         case LA_XLOCKED | LA_RECURSED:
2251         case LA_XLOCKED | LA_NOTRECURSED:
2252                 if (instance == NULL) {
2253                         panic("Lock (%s) %s not locked @ %s:%d.",
2254                             class->lc_name, lock->lo_name, file, line);
2255                         break;
2256                 }
2257                 if ((flags & LA_XLOCKED) != 0 &&
2258                     (instance->li_flags & LI_EXCLUSIVE) == 0)
2259                         panic("Lock (%s) %s not exclusively locked @ %s:%d.",
2260                             class->lc_name, lock->lo_name, file, line);
2261                 if ((flags & LA_SLOCKED) != 0 &&
2262                     (instance->li_flags & LI_EXCLUSIVE) != 0)
2263                         panic("Lock (%s) %s exclusively locked @ %s:%d.",
2264                             class->lc_name, lock->lo_name, file, line);
2265                 if ((flags & LA_RECURSED) != 0 &&
2266                     (instance->li_flags & LI_RECURSEMASK) == 0)
2267                         panic("Lock (%s) %s not recursed @ %s:%d.",
2268                             class->lc_name, lock->lo_name, file, line);
2269                 if ((flags & LA_NOTRECURSED) != 0 &&
2270                     (instance->li_flags & LI_RECURSEMASK) != 0)
2271                         panic("Lock (%s) %s recursed @ %s:%d.",
2272                             class->lc_name, lock->lo_name, file, line);
2273                 break;
2274         default:
2275                 panic("Invalid lock assertion at %s:%d.", file, line);
2276
2277         }
2278 #endif  /* INVARIANT_SUPPORT */
2279 }
2280
2281 static void
2282 witness_setflag(struct lock_object *lock, int flag, int set)
2283 {
2284         struct lock_list_entry *lock_list;
2285         struct lock_instance *instance;
2286         struct lock_class *class;
2287
2288         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2289                 return;
2290         class = LOCK_CLASS(lock);
2291         if (class->lc_flags & LC_SLEEPLOCK)
2292                 lock_list = curthread->td_sleeplocks;
2293         else {
2294                 if (witness_skipspin)
2295                         return;
2296                 lock_list = PCPU_GET(spinlocks);
2297         }
2298         instance = find_instance(lock_list, lock);
2299         if (instance == NULL)
2300                 panic("%s: lock (%s) %s not locked", __func__,
2301                     class->lc_name, lock->lo_name);
2302
2303         if (set)
2304                 instance->li_flags |= flag;
2305         else
2306                 instance->li_flags &= ~flag;
2307 }
2308
2309 void
2310 witness_norelease(struct lock_object *lock)
2311 {
2312
2313         witness_setflag(lock, LI_NORELEASE, 1);
2314 }
2315
2316 void
2317 witness_releaseok(struct lock_object *lock)
2318 {
2319
2320         witness_setflag(lock, LI_NORELEASE, 0);
2321 }
2322
2323 #ifdef DDB
2324 static void
2325 witness_ddb_list(struct thread *td)
2326 {
2327
2328         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2329         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2330
2331         if (witness_watch < 1)
2332                 return;
2333
2334         witness_list_locks(&td->td_sleeplocks, db_printf);
2335
2336         /*
2337          * We only handle spinlocks if td == curthread.  This is somewhat broken
2338          * if td is currently executing on some other CPU and holds spin locks
2339          * as we won't display those locks.  If we had a MI way of getting
2340          * the per-cpu data for a given cpu then we could use
2341          * td->td_oncpu to get the list of spinlocks for this thread
2342          * and "fix" this.
2343          *
2344          * That still wouldn't really fix this unless we locked the scheduler
2345          * lock or stopped the other CPU to make sure it wasn't changing the
2346          * list out from under us.  It is probably best to just not try to
2347          * handle threads on other CPU's for now.
2348          */
2349         if (td == curthread && PCPU_GET(spinlocks) != NULL)
2350                 witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2351 }
2352
2353 DB_SHOW_COMMAND(locks, db_witness_list)
2354 {
2355         struct thread *td;
2356
2357         if (have_addr)
2358                 td = db_lookup_thread(addr, TRUE);
2359         else
2360                 td = kdb_thread;
2361         witness_ddb_list(td);
2362 }
2363
2364 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2365 {
2366         struct thread *td;
2367         struct proc *p;
2368
2369         /*
2370          * It would be nice to list only threads and processes that actually
2371          * held sleep locks, but that information is currently not exported
2372          * by WITNESS.
2373          */
2374         FOREACH_PROC_IN_SYSTEM(p) {
2375                 if (!witness_proc_has_locks(p))
2376                         continue;
2377                 FOREACH_THREAD_IN_PROC(p, td) {
2378                         if (!witness_thread_has_locks(td))
2379                                 continue;
2380                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2381                             p->p_comm, td, td->td_tid);
2382                         witness_ddb_list(td);
2383                         if (db_pager_quit)
2384                                 return;
2385                 }
2386         }
2387 }
2388 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2389
2390 DB_SHOW_COMMAND(witness, db_witness_display)
2391 {
2392
2393         witness_ddb_display(db_printf);
2394 }
2395 #endif
2396
2397 static int
2398 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2399 {
2400         struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2401         struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2402         struct sbuf *sb;
2403         u_int w_rmatrix1, w_rmatrix2;
2404         int error, generation, i, j;
2405
2406         tmp_data1 = NULL;
2407         tmp_data2 = NULL;
2408         tmp_w1 = NULL;
2409         tmp_w2 = NULL;
2410         if (witness_watch < 1) {
2411                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2412                 return (error);
2413         }
2414         if (witness_cold) {
2415                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2416                 return (error);
2417         }
2418         error = 0;
2419         sb = sbuf_new(NULL, NULL, BADSTACK_SBUF_SIZE, SBUF_AUTOEXTEND);
2420         if (sb == NULL)
2421                 return (ENOMEM);
2422
2423         /* Allocate and init temporary storage space. */
2424         tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2425         tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2426         tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2427             M_WAITOK | M_ZERO);
2428         tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2429             M_WAITOK | M_ZERO);
2430         stack_zero(&tmp_data1->wlod_stack);
2431         stack_zero(&tmp_data2->wlod_stack);
2432
2433 restart:
2434         mtx_lock_spin(&w_mtx);
2435         generation = w_generation;
2436         mtx_unlock_spin(&w_mtx);
2437         sbuf_printf(sb, "Number of known direct relationships is %d\n",
2438             w_lohash.wloh_count);
2439         for (i = 1; i < w_max_used_index; i++) {
2440                 mtx_lock_spin(&w_mtx);
2441                 if (generation != w_generation) {
2442                         mtx_unlock_spin(&w_mtx);
2443
2444                         /* The graph has changed, try again. */
2445                         req->oldidx = 0;
2446                         sbuf_clear(sb);
2447                         goto restart;
2448                 }
2449
2450                 w1 = &w_data[i];
2451                 if (w1->w_reversed == 0) {
2452                         mtx_unlock_spin(&w_mtx);
2453                         continue;
2454                 }
2455
2456                 /* Copy w1 locally so we can release the spin lock. */
2457                 *tmp_w1 = *w1;
2458                 mtx_unlock_spin(&w_mtx);
2459
2460                 if (tmp_w1->w_reversed == 0)
2461                         continue;
2462                 for (j = 1; j < w_max_used_index; j++) {
2463                         if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2464                                 continue;
2465
2466                         mtx_lock_spin(&w_mtx);
2467                         if (generation != w_generation) {
2468                                 mtx_unlock_spin(&w_mtx);
2469
2470                                 /* The graph has changed, try again. */
2471                                 req->oldidx = 0;
2472                                 sbuf_clear(sb);
2473                                 goto restart;
2474                         }
2475
2476                         w2 = &w_data[j];
2477                         data1 = witness_lock_order_get(w1, w2);
2478                         data2 = witness_lock_order_get(w2, w1);
2479
2480                         /*
2481                          * Copy information locally so we can release the
2482                          * spin lock.
2483                          */
2484                         *tmp_w2 = *w2;
2485                         w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
2486                         w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
2487
2488                         if (data1) {
2489                                 stack_zero(&tmp_data1->wlod_stack);
2490                                 stack_copy(&data1->wlod_stack,
2491                                     &tmp_data1->wlod_stack);
2492                         }
2493                         if (data2 && data2 != data1) {
2494                                 stack_zero(&tmp_data2->wlod_stack);
2495                                 stack_copy(&data2->wlod_stack,
2496                                     &tmp_data2->wlod_stack);
2497                         }
2498                         mtx_unlock_spin(&w_mtx);
2499
2500                         sbuf_printf(sb,
2501             "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2502                             tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2503                             tmp_w2->w_name, tmp_w2->w_class->lc_name);
2504 #if 0
2505                         sbuf_printf(sb,
2506                         "w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n",
2507                             tmp_w1->name, tmp_w2->w_name, w_rmatrix1,
2508                             tmp_w2->name, tmp_w1->w_name, w_rmatrix2);
2509 #endif
2510                         if (data1) {
2511                                 sbuf_printf(sb,
2512                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2513                                     tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2514                                     tmp_w2->w_name, tmp_w2->w_class->lc_name);
2515                                 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2516                                 sbuf_printf(sb, "\n");
2517                         }
2518                         if (data2 && data2 != data1) {
2519                                 sbuf_printf(sb,
2520                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2521                                     tmp_w2->w_name, tmp_w2->w_class->lc_name, 
2522                                     tmp_w1->w_name, tmp_w1->w_class->lc_name);
2523                                 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2524                                 sbuf_printf(sb, "\n");
2525                         }
2526                 }
2527         }
2528         mtx_lock_spin(&w_mtx);
2529         if (generation != w_generation) {
2530                 mtx_unlock_spin(&w_mtx);
2531
2532                 /*
2533                  * The graph changed while we were printing stack data,
2534                  * try again.
2535                  */
2536                 req->oldidx = 0;
2537                 sbuf_clear(sb);
2538                 goto restart;
2539         }
2540         mtx_unlock_spin(&w_mtx);
2541
2542         /* Free temporary storage space. */
2543         free(tmp_data1, M_TEMP);
2544         free(tmp_data2, M_TEMP);
2545         free(tmp_w1, M_TEMP);
2546         free(tmp_w2, M_TEMP);
2547
2548         sbuf_finish(sb);
2549         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2550         sbuf_delete(sb);
2551
2552         return (error);
2553 }
2554
2555 static int
2556 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2557 {
2558         struct witness *w;
2559         struct sbuf *sb;
2560         int error;
2561
2562         if (witness_watch < 1) {
2563                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2564                 return (error);
2565         }
2566         if (witness_cold) {
2567                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2568                 return (error);
2569         }
2570         error = 0;
2571         sb = sbuf_new(NULL, NULL, FULLGRAPH_SBUF_SIZE, SBUF_FIXEDLEN);
2572         if (sb == NULL)
2573                 return (ENOMEM);
2574         sbuf_printf(sb, "\n");
2575
2576         mtx_lock_spin(&w_mtx);
2577         STAILQ_FOREACH(w, &w_all, w_list)
2578                 w->w_displayed = 0;
2579         STAILQ_FOREACH(w, &w_all, w_list)
2580                 witness_add_fullgraph(sb, w);
2581         mtx_unlock_spin(&w_mtx);
2582
2583         /*
2584          * While using SBUF_FIXEDLEN, check if the sbuf overflowed.
2585          */
2586         if (sbuf_overflowed(sb)) {
2587                 sbuf_delete(sb);
2588                 panic("%s: sbuf overflowed, bump FULLGRAPH_SBUF_SIZE value\n",
2589                     __func__);
2590         }
2591
2592         /*
2593          * Close the sbuf and return to userland.
2594          */
2595         sbuf_finish(sb);
2596         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2597         sbuf_delete(sb);
2598
2599         return (error);
2600 }
2601
2602 static int
2603 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2604 {
2605         int error, value;
2606
2607         value = witness_watch;
2608         error = sysctl_handle_int(oidp, &value, 0, req);
2609         if (error != 0 || req->newptr == NULL)
2610                 return (error);
2611         if (value > 1 || value < -1 ||
2612             (witness_watch == -1 && value != witness_watch))
2613                 return (EINVAL);
2614         witness_watch = value;
2615         return (0);
2616 }
2617
2618 static void
2619 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2620 {
2621         int i;
2622
2623         if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2624                 return;
2625         w->w_displayed = 1;
2626
2627         WITNESS_INDEX_ASSERT(w->w_index);
2628         for (i = 1; i <= w_max_used_index; i++) {
2629                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2630                         sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2631                             w_data[i].w_name);
2632                         witness_add_fullgraph(sb, &w_data[i]);
2633                 }
2634         }
2635 }
2636
2637 /*
2638  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2639  * interprets the key as a string and reads until the null
2640  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2641  * hash value computed from the key.
2642  */
2643 static uint32_t
2644 witness_hash_djb2(const uint8_t *key, uint32_t size)
2645 {
2646         unsigned int hash = 5381;
2647         int i;
2648
2649         /* hash = hash * 33 + key[i] */
2650         if (size)
2651                 for (i = 0; i < size; i++)
2652                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2653         else
2654                 for (i = 0; key[i] != 0; i++)
2655                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2656
2657         return (hash);
2658 }
2659
2660
2661 /*
2662  * Initializes the two witness hash tables. Called exactly once from
2663  * witness_initialize().
2664  */
2665 static void
2666 witness_init_hash_tables(void)
2667 {
2668         int i;
2669
2670         MPASS(witness_cold);
2671
2672         /* Initialize the hash tables. */
2673         for (i = 0; i < WITNESS_HASH_SIZE; i++)
2674                 w_hash.wh_array[i] = NULL;
2675
2676         w_hash.wh_size = WITNESS_HASH_SIZE;
2677         w_hash.wh_count = 0;
2678
2679         /* Initialize the lock order data hash. */
2680         w_lofree = NULL;
2681         for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2682                 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2683                 w_lodata[i].wlod_next = w_lofree;
2684                 w_lofree = &w_lodata[i];
2685         }
2686         w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2687         w_lohash.wloh_count = 0;
2688         for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2689                 w_lohash.wloh_array[i] = NULL;
2690 }
2691
2692 static struct witness *
2693 witness_hash_get(const char *key)
2694 {
2695         struct witness *w;
2696         uint32_t hash;
2697         
2698         MPASS(key != NULL);
2699         if (witness_cold == 0)
2700                 mtx_assert(&w_mtx, MA_OWNED);
2701         hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2702         w = w_hash.wh_array[hash];
2703         while (w != NULL) {
2704                 if (strcmp(w->w_name, key) == 0)
2705                         goto out;
2706                 w = w->w_hash_next;
2707         }
2708
2709 out:
2710         return (w);
2711 }
2712
2713 static void
2714 witness_hash_put(struct witness *w)
2715 {
2716         uint32_t hash;
2717
2718         MPASS(w != NULL);
2719         MPASS(w->w_name != NULL);
2720         if (witness_cold == 0)
2721                 mtx_assert(&w_mtx, MA_OWNED);
2722         KASSERT(witness_hash_get(w->w_name) == NULL,
2723             ("%s: trying to add a hash entry that already exists!", __func__));
2724         KASSERT(w->w_hash_next == NULL,
2725             ("%s: w->w_hash_next != NULL", __func__));
2726
2727         hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2728         w->w_hash_next = w_hash.wh_array[hash];
2729         w_hash.wh_array[hash] = w;
2730         w_hash.wh_count++;
2731 }
2732
2733
2734 static struct witness_lock_order_data *
2735 witness_lock_order_get(struct witness *parent, struct witness *child)
2736 {
2737         struct witness_lock_order_data *data = NULL;
2738         struct witness_lock_order_key key;
2739         unsigned int hash;
2740
2741         MPASS(parent != NULL && child != NULL);
2742         key.from = parent->w_index;
2743         key.to = child->w_index;
2744         WITNESS_INDEX_ASSERT(key.from);
2745         WITNESS_INDEX_ASSERT(key.to);
2746         if ((w_rmatrix[parent->w_index][child->w_index]
2747             & WITNESS_LOCK_ORDER_KNOWN) == 0)
2748                 goto out;
2749
2750         hash = witness_hash_djb2((const char*)&key,
2751             sizeof(key)) % w_lohash.wloh_size;
2752         data = w_lohash.wloh_array[hash];
2753         while (data != NULL) {
2754                 if (witness_lock_order_key_equal(&data->wlod_key, &key))
2755                         break;
2756                 data = data->wlod_next;
2757         }
2758
2759 out:
2760         return (data);
2761 }
2762
2763 /*
2764  * Verify that parent and child have a known relationship, are not the same,
2765  * and child is actually a child of parent.  This is done without w_mtx
2766  * to avoid contention in the common case.
2767  */
2768 static int
2769 witness_lock_order_check(struct witness *parent, struct witness *child)
2770 {
2771
2772         if (parent != child &&
2773             w_rmatrix[parent->w_index][child->w_index]
2774             & WITNESS_LOCK_ORDER_KNOWN &&
2775             isitmychild(parent, child))
2776                 return (1);
2777
2778         return (0);
2779 }
2780
2781 static int
2782 witness_lock_order_add(struct witness *parent, struct witness *child)
2783 {
2784         struct witness_lock_order_data *data = NULL;
2785         struct witness_lock_order_key key;
2786         unsigned int hash;
2787         
2788         MPASS(parent != NULL && child != NULL);
2789         key.from = parent->w_index;
2790         key.to = child->w_index;
2791         WITNESS_INDEX_ASSERT(key.from);
2792         WITNESS_INDEX_ASSERT(key.to);
2793         if (w_rmatrix[parent->w_index][child->w_index]
2794             & WITNESS_LOCK_ORDER_KNOWN)
2795                 return (1);
2796
2797         hash = witness_hash_djb2((const char*)&key,
2798             sizeof(key)) % w_lohash.wloh_size;
2799         w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
2800         data = w_lofree;
2801         if (data == NULL)
2802                 return (0);
2803         w_lofree = data->wlod_next;
2804         data->wlod_next = w_lohash.wloh_array[hash];
2805         data->wlod_key = key;
2806         w_lohash.wloh_array[hash] = data;
2807         w_lohash.wloh_count++;
2808         stack_zero(&data->wlod_stack);
2809         stack_save(&data->wlod_stack);
2810         return (1);
2811 }
2812
2813 /* Call this whenver the structure of the witness graph changes. */
2814 static void
2815 witness_increment_graph_generation(void)
2816 {
2817
2818         if (witness_cold == 0)
2819                 mtx_assert(&w_mtx, MA_OWNED);
2820         w_generation++;
2821 }
2822
2823 #ifdef KDB
2824 static void
2825 _witness_debugger(int cond, const char *msg)
2826 {
2827
2828         if (witness_trace && cond)
2829                 kdb_backtrace();
2830         if (witness_kdb && cond)
2831                 kdb_enter(KDB_WHY_WITNESS, msg);
2832 }
2833 #endif