]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - sys/kern/uipc_usrreq.c
MFC r263116
[FreeBSD/stable/10.git] / sys / kern / uipc_usrreq.c
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *      The Regents of the University of California.
4  * Copyright (c) 2004-2009 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 4. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *      From: @(#)uipc_usrreq.c 8.3 (Berkeley) 1/4/94
32  */
33
34 /*
35  * UNIX Domain (Local) Sockets
36  *
37  * This is an implementation of UNIX (local) domain sockets.  Each socket has
38  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
39  * may be connected to 0 or 1 other socket.  Datagram sockets may be
40  * connected to 0, 1, or many other sockets.  Sockets may be created and
41  * connected in pairs (socketpair(2)), or bound/connected to using the file
42  * system name space.  For most purposes, only the receive socket buffer is
43  * used, as sending on one socket delivers directly to the receive socket
44  * buffer of a second socket.
45  *
46  * The implementation is substantially complicated by the fact that
47  * "ancillary data", such as file descriptors or credentials, may be passed
48  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
49  * over other UNIX domain sockets requires the implementation of a simple
50  * garbage collector to find and tear down cycles of disconnected sockets.
51  *
52  * TODO:
53  *      RDM
54  *      rethink name space problems
55  *      need a proper out-of-band
56  */
57
58 #include <sys/cdefs.h>
59 __FBSDID("$FreeBSD$");
60
61 #include "opt_ddb.h"
62
63 #include <sys/param.h>
64 #include <sys/capability.h>
65 #include <sys/domain.h>
66 #include <sys/fcntl.h>
67 #include <sys/malloc.h>         /* XXX must be before <sys/file.h> */
68 #include <sys/eventhandler.h>
69 #include <sys/file.h>
70 #include <sys/filedesc.h>
71 #include <sys/kernel.h>
72 #include <sys/lock.h>
73 #include <sys/mbuf.h>
74 #include <sys/mount.h>
75 #include <sys/mutex.h>
76 #include <sys/namei.h>
77 #include <sys/proc.h>
78 #include <sys/protosw.h>
79 #include <sys/queue.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/socket.h>
83 #include <sys/socketvar.h>
84 #include <sys/signalvar.h>
85 #include <sys/stat.h>
86 #include <sys/sx.h>
87 #include <sys/sysctl.h>
88 #include <sys/systm.h>
89 #include <sys/taskqueue.h>
90 #include <sys/un.h>
91 #include <sys/unpcb.h>
92 #include <sys/vnode.h>
93
94 #include <net/vnet.h>
95
96 #ifdef DDB
97 #include <ddb/ddb.h>
98 #endif
99
100 #include <security/mac/mac_framework.h>
101
102 #include <vm/uma.h>
103
104 MALLOC_DECLARE(M_FILECAPS);
105
106 /*
107  * Locking key:
108  * (l)  Locked using list lock
109  * (g)  Locked using linkage lock
110  */
111
112 static uma_zone_t       unp_zone;
113 static unp_gen_t        unp_gencnt;     /* (l) */
114 static u_int            unp_count;      /* (l) Count of local sockets. */
115 static ino_t            unp_ino;        /* Prototype for fake inode numbers. */
116 static int              unp_rights;     /* (g) File descriptors in flight. */
117 static struct unp_head  unp_shead;      /* (l) List of stream sockets. */
118 static struct unp_head  unp_dhead;      /* (l) List of datagram sockets. */
119 static struct unp_head  unp_sphead;     /* (l) List of seqpacket sockets. */
120
121 struct unp_defer {
122         SLIST_ENTRY(unp_defer) ud_link;
123         struct file *ud_fp;
124 };
125 static SLIST_HEAD(, unp_defer) unp_defers;
126 static int unp_defers_count;
127
128 static const struct sockaddr    sun_noname = { sizeof(sun_noname), AF_LOCAL };
129
130 /*
131  * Garbage collection of cyclic file descriptor/socket references occurs
132  * asynchronously in a taskqueue context in order to avoid recursion and
133  * reentrance in the UNIX domain socket, file descriptor, and socket layer
134  * code.  See unp_gc() for a full description.
135  */
136 static struct timeout_task unp_gc_task;
137
138 /*
139  * The close of unix domain sockets attached as SCM_RIGHTS is
140  * postponed to the taskqueue, to avoid arbitrary recursion depth.
141  * The attached sockets might have another sockets attached.
142  */
143 static struct task      unp_defer_task;
144
145 /*
146  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
147  * stream sockets, although the total for sender and receiver is actually
148  * only PIPSIZ.
149  *
150  * Datagram sockets really use the sendspace as the maximum datagram size,
151  * and don't really want to reserve the sendspace.  Their recvspace should be
152  * large enough for at least one max-size datagram plus address.
153  */
154 #ifndef PIPSIZ
155 #define PIPSIZ  8192
156 #endif
157 static u_long   unpst_sendspace = PIPSIZ;
158 static u_long   unpst_recvspace = PIPSIZ;
159 static u_long   unpdg_sendspace = 2*1024;       /* really max datagram size */
160 static u_long   unpdg_recvspace = 4*1024;
161 static u_long   unpsp_sendspace = PIPSIZ;       /* really max datagram size */
162 static u_long   unpsp_recvspace = PIPSIZ;
163
164 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
165 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0,
166     "SOCK_STREAM");
167 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
168 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0,
169     "SOCK_SEQPACKET");
170
171 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
172            &unpst_sendspace, 0, "Default stream send space.");
173 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
174            &unpst_recvspace, 0, "Default stream receive space.");
175 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
176            &unpdg_sendspace, 0, "Default datagram send space.");
177 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
178            &unpdg_recvspace, 0, "Default datagram receive space.");
179 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
180            &unpsp_sendspace, 0, "Default seqpacket send space.");
181 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
182            &unpsp_recvspace, 0, "Default seqpacket receive space.");
183 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
184     "File descriptors in flight.");
185 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
186     &unp_defers_count, 0,
187     "File descriptors deferred to taskqueue for close.");
188
189 /*
190  * Locking and synchronization:
191  *
192  * Three types of locks exit in the local domain socket implementation: a
193  * global list mutex, a global linkage rwlock, and per-unpcb mutexes.  Of the
194  * global locks, the list lock protects the socket count, global generation
195  * number, and stream/datagram global lists.  The linkage lock protects the
196  * interconnection of unpcbs, the v_socket and unp_vnode pointers, and can be
197  * held exclusively over the acquisition of multiple unpcb locks to prevent
198  * deadlock.
199  *
200  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
201  * allocated in pru_attach() and freed in pru_detach().  The validity of that
202  * pointer is an invariant, so no lock is required to dereference the so_pcb
203  * pointer if a valid socket reference is held by the caller.  In practice,
204  * this is always true during operations performed on a socket.  Each unpcb
205  * has a back-pointer to its socket, unp_socket, which will be stable under
206  * the same circumstances.
207  *
208  * This pointer may only be safely dereferenced as long as a valid reference
209  * to the unpcb is held.  Typically, this reference will be from the socket,
210  * or from another unpcb when the referring unpcb's lock is held (in order
211  * that the reference not be invalidated during use).  For example, to follow
212  * unp->unp_conn->unp_socket, you need unlock the lock on unp, not unp_conn,
213  * as unp_socket remains valid as long as the reference to unp_conn is valid.
214  *
215  * Fields of unpcbss are locked using a per-unpcb lock, unp_mtx.  Individual
216  * atomic reads without the lock may be performed "lockless", but more
217  * complex reads and read-modify-writes require the mutex to be held.  No
218  * lock order is defined between unpcb locks -- multiple unpcb locks may be
219  * acquired at the same time only when holding the linkage rwlock
220  * exclusively, which prevents deadlocks.
221  *
222  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
223  * protocols, bind() is a non-atomic operation, and connect() requires
224  * potential sleeping in the protocol, due to potentially waiting on local or
225  * distributed file systems.  We try to separate "lookup" operations, which
226  * may sleep, and the IPC operations themselves, which typically can occur
227  * with relative atomicity as locks can be held over the entire operation.
228  *
229  * Another tricky issue is simultaneous multi-threaded or multi-process
230  * access to a single UNIX domain socket.  These are handled by the flags
231  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
232  * binding, both of which involve dropping UNIX domain socket locks in order
233  * to perform namei() and other file system operations.
234  */
235 static struct rwlock    unp_link_rwlock;
236 static struct mtx       unp_list_lock;
237 static struct mtx       unp_defers_lock;
238
239 #define UNP_LINK_LOCK_INIT()            rw_init(&unp_link_rwlock,       \
240                                             "unp_link_rwlock")
241
242 #define UNP_LINK_LOCK_ASSERT()  rw_assert(&unp_link_rwlock,     \
243                                             RA_LOCKED)
244 #define UNP_LINK_UNLOCK_ASSERT()        rw_assert(&unp_link_rwlock,     \
245                                             RA_UNLOCKED)
246
247 #define UNP_LINK_RLOCK()                rw_rlock(&unp_link_rwlock)
248 #define UNP_LINK_RUNLOCK()              rw_runlock(&unp_link_rwlock)
249 #define UNP_LINK_WLOCK()                rw_wlock(&unp_link_rwlock)
250 #define UNP_LINK_WUNLOCK()              rw_wunlock(&unp_link_rwlock)
251 #define UNP_LINK_WLOCK_ASSERT()         rw_assert(&unp_link_rwlock,     \
252                                             RA_WLOCKED)
253
254 #define UNP_LIST_LOCK_INIT()            mtx_init(&unp_list_lock,        \
255                                             "unp_list_lock", NULL, MTX_DEF)
256 #define UNP_LIST_LOCK()                 mtx_lock(&unp_list_lock)
257 #define UNP_LIST_UNLOCK()               mtx_unlock(&unp_list_lock)
258
259 #define UNP_DEFERRED_LOCK_INIT()        mtx_init(&unp_defers_lock, \
260                                             "unp_defer", NULL, MTX_DEF)
261 #define UNP_DEFERRED_LOCK()             mtx_lock(&unp_defers_lock)
262 #define UNP_DEFERRED_UNLOCK()           mtx_unlock(&unp_defers_lock)
263
264 #define UNP_PCB_LOCK_INIT(unp)          mtx_init(&(unp)->unp_mtx,       \
265                                             "unp_mtx", "unp_mtx",       \
266                                             MTX_DUPOK|MTX_DEF|MTX_RECURSE)
267 #define UNP_PCB_LOCK_DESTROY(unp)       mtx_destroy(&(unp)->unp_mtx)
268 #define UNP_PCB_LOCK(unp)               mtx_lock(&(unp)->unp_mtx)
269 #define UNP_PCB_UNLOCK(unp)             mtx_unlock(&(unp)->unp_mtx)
270 #define UNP_PCB_LOCK_ASSERT(unp)        mtx_assert(&(unp)->unp_mtx, MA_OWNED)
271
272 static int      uipc_connect2(struct socket *, struct socket *);
273 static int      uipc_ctloutput(struct socket *, struct sockopt *);
274 static int      unp_connect(struct socket *, struct sockaddr *,
275                     struct thread *);
276 static int      unp_connectat(int, struct socket *, struct sockaddr *,
277                     struct thread *);
278 static int      unp_connect2(struct socket *so, struct socket *so2, int);
279 static void     unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
280 static void     unp_dispose(struct mbuf *);
281 static void     unp_shutdown(struct unpcb *);
282 static void     unp_drop(struct unpcb *, int);
283 static void     unp_gc(__unused void *, int);
284 static void     unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
285 static void     unp_discard(struct file *);
286 static void     unp_freerights(struct filedescent **, int);
287 static void     unp_init(void);
288 static int      unp_internalize(struct mbuf **, struct thread *);
289 static void     unp_internalize_fp(struct file *);
290 static int      unp_externalize(struct mbuf *, struct mbuf **, int);
291 static int      unp_externalize_fp(struct file *);
292 static struct mbuf      *unp_addsockcred(struct thread *, struct mbuf *);
293 static void     unp_process_defers(void * __unused, int);
294
295 /*
296  * Definitions of protocols supported in the LOCAL domain.
297  */
298 static struct domain localdomain;
299 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
300 static struct pr_usrreqs uipc_usrreqs_seqpacket;
301 static struct protosw localsw[] = {
302 {
303         .pr_type =              SOCK_STREAM,
304         .pr_domain =            &localdomain,
305         .pr_flags =             PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
306         .pr_ctloutput =         &uipc_ctloutput,
307         .pr_usrreqs =           &uipc_usrreqs_stream
308 },
309 {
310         .pr_type =              SOCK_DGRAM,
311         .pr_domain =            &localdomain,
312         .pr_flags =             PR_ATOMIC|PR_ADDR|PR_RIGHTS,
313         .pr_ctloutput =         &uipc_ctloutput,
314         .pr_usrreqs =           &uipc_usrreqs_dgram
315 },
316 {
317         .pr_type =              SOCK_SEQPACKET,
318         .pr_domain =            &localdomain,
319
320         /*
321          * XXXRW: For now, PR_ADDR because soreceive will bump into them
322          * due to our use of sbappendaddr.  A new sbappend variants is needed
323          * that supports both atomic record writes and control data.
324          */
325         .pr_flags =             PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
326                                     PR_RIGHTS,
327         .pr_ctloutput =         &uipc_ctloutput,
328         .pr_usrreqs =           &uipc_usrreqs_seqpacket,
329 },
330 };
331
332 static struct domain localdomain = {
333         .dom_family =           AF_LOCAL,
334         .dom_name =             "local",
335         .dom_init =             unp_init,
336         .dom_externalize =      unp_externalize,
337         .dom_dispose =          unp_dispose,
338         .dom_protosw =          localsw,
339         .dom_protoswNPROTOSW =  &localsw[sizeof(localsw)/sizeof(localsw[0])]
340 };
341 DOMAIN_SET(local);
342
343 static void
344 uipc_abort(struct socket *so)
345 {
346         struct unpcb *unp, *unp2;
347
348         unp = sotounpcb(so);
349         KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
350
351         UNP_LINK_WLOCK();
352         UNP_PCB_LOCK(unp);
353         unp2 = unp->unp_conn;
354         if (unp2 != NULL) {
355                 UNP_PCB_LOCK(unp2);
356                 unp_drop(unp2, ECONNABORTED);
357                 UNP_PCB_UNLOCK(unp2);
358         }
359         UNP_PCB_UNLOCK(unp);
360         UNP_LINK_WUNLOCK();
361 }
362
363 static int
364 uipc_accept(struct socket *so, struct sockaddr **nam)
365 {
366         struct unpcb *unp, *unp2;
367         const struct sockaddr *sa;
368
369         /*
370          * Pass back name of connected socket, if it was bound and we are
371          * still connected (our peer may have closed already!).
372          */
373         unp = sotounpcb(so);
374         KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
375
376         *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
377         UNP_LINK_RLOCK();
378         unp2 = unp->unp_conn;
379         if (unp2 != NULL && unp2->unp_addr != NULL) {
380                 UNP_PCB_LOCK(unp2);
381                 sa = (struct sockaddr *) unp2->unp_addr;
382                 bcopy(sa, *nam, sa->sa_len);
383                 UNP_PCB_UNLOCK(unp2);
384         } else {
385                 sa = &sun_noname;
386                 bcopy(sa, *nam, sa->sa_len);
387         }
388         UNP_LINK_RUNLOCK();
389         return (0);
390 }
391
392 static int
393 uipc_attach(struct socket *so, int proto, struct thread *td)
394 {
395         u_long sendspace, recvspace;
396         struct unpcb *unp;
397         int error;
398
399         KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
400         if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
401                 switch (so->so_type) {
402                 case SOCK_STREAM:
403                         sendspace = unpst_sendspace;
404                         recvspace = unpst_recvspace;
405                         break;
406
407                 case SOCK_DGRAM:
408                         sendspace = unpdg_sendspace;
409                         recvspace = unpdg_recvspace;
410                         break;
411
412                 case SOCK_SEQPACKET:
413                         sendspace = unpsp_sendspace;
414                         recvspace = unpsp_recvspace;
415                         break;
416
417                 default:
418                         panic("uipc_attach");
419                 }
420                 error = soreserve(so, sendspace, recvspace);
421                 if (error)
422                         return (error);
423         }
424         unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
425         if (unp == NULL)
426                 return (ENOBUFS);
427         LIST_INIT(&unp->unp_refs);
428         UNP_PCB_LOCK_INIT(unp);
429         unp->unp_socket = so;
430         so->so_pcb = unp;
431         unp->unp_refcount = 1;
432
433         UNP_LIST_LOCK();
434         unp->unp_gencnt = ++unp_gencnt;
435         unp_count++;
436         switch (so->so_type) {
437         case SOCK_STREAM:
438                 LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
439                 break;
440
441         case SOCK_DGRAM:
442                 LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
443                 break;
444
445         case SOCK_SEQPACKET:
446                 LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
447                 break;
448
449         default:
450                 panic("uipc_attach");
451         }
452         UNP_LIST_UNLOCK();
453
454         return (0);
455 }
456
457 static int
458 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
459 {
460         struct sockaddr_un *soun = (struct sockaddr_un *)nam;
461         struct vattr vattr;
462         int error, namelen;
463         struct nameidata nd;
464         struct unpcb *unp;
465         struct vnode *vp;
466         struct mount *mp;
467         cap_rights_t rights;
468         char *buf;
469
470         unp = sotounpcb(so);
471         KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
472
473         if (soun->sun_len > sizeof(struct sockaddr_un))
474                 return (EINVAL);
475         namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
476         if (namelen <= 0)
477                 return (EINVAL);
478
479         /*
480          * We don't allow simultaneous bind() calls on a single UNIX domain
481          * socket, so flag in-progress operations, and return an error if an
482          * operation is already in progress.
483          *
484          * Historically, we have not allowed a socket to be rebound, so this
485          * also returns an error.  Not allowing re-binding simplifies the
486          * implementation and avoids a great many possible failure modes.
487          */
488         UNP_PCB_LOCK(unp);
489         if (unp->unp_vnode != NULL) {
490                 UNP_PCB_UNLOCK(unp);
491                 return (EINVAL);
492         }
493         if (unp->unp_flags & UNP_BINDING) {
494                 UNP_PCB_UNLOCK(unp);
495                 return (EALREADY);
496         }
497         unp->unp_flags |= UNP_BINDING;
498         UNP_PCB_UNLOCK(unp);
499
500         buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
501         bcopy(soun->sun_path, buf, namelen);
502         buf[namelen] = 0;
503
504 restart:
505         NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME,
506             UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td);
507 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
508         error = namei(&nd);
509         if (error)
510                 goto error;
511         vp = nd.ni_vp;
512         if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
513                 NDFREE(&nd, NDF_ONLY_PNBUF);
514                 if (nd.ni_dvp == vp)
515                         vrele(nd.ni_dvp);
516                 else
517                         vput(nd.ni_dvp);
518                 if (vp != NULL) {
519                         vrele(vp);
520                         error = EADDRINUSE;
521                         goto error;
522                 }
523                 error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
524                 if (error)
525                         goto error;
526                 goto restart;
527         }
528         VATTR_NULL(&vattr);
529         vattr.va_type = VSOCK;
530         vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
531 #ifdef MAC
532         error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
533             &vattr);
534 #endif
535         if (error == 0)
536                 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
537         NDFREE(&nd, NDF_ONLY_PNBUF);
538         vput(nd.ni_dvp);
539         if (error) {
540                 vn_finished_write(mp);
541                 goto error;
542         }
543         vp = nd.ni_vp;
544         ASSERT_VOP_ELOCKED(vp, "uipc_bind");
545         soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
546
547         UNP_LINK_WLOCK();
548         UNP_PCB_LOCK(unp);
549         VOP_UNP_BIND(vp, unp->unp_socket);
550         unp->unp_vnode = vp;
551         unp->unp_addr = soun;
552         unp->unp_flags &= ~UNP_BINDING;
553         UNP_PCB_UNLOCK(unp);
554         UNP_LINK_WUNLOCK();
555         VOP_UNLOCK(vp, 0);
556         vn_finished_write(mp);
557         free(buf, M_TEMP);
558         return (0);
559
560 error:
561         UNP_PCB_LOCK(unp);
562         unp->unp_flags &= ~UNP_BINDING;
563         UNP_PCB_UNLOCK(unp);
564         free(buf, M_TEMP);
565         return (error);
566 }
567
568 static int
569 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
570 {
571
572         return (uipc_bindat(AT_FDCWD, so, nam, td));
573 }
574
575 static int
576 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
577 {
578         int error;
579
580         KASSERT(td == curthread, ("uipc_connect: td != curthread"));
581         UNP_LINK_WLOCK();
582         error = unp_connect(so, nam, td);
583         UNP_LINK_WUNLOCK();
584         return (error);
585 }
586
587 static int
588 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
589     struct thread *td)
590 {
591         int error;
592
593         KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
594         UNP_LINK_WLOCK();
595         error = unp_connectat(fd, so, nam, td);
596         UNP_LINK_WUNLOCK();
597         return (error);
598 }
599
600 static void
601 uipc_close(struct socket *so)
602 {
603         struct unpcb *unp, *unp2;
604
605         unp = sotounpcb(so);
606         KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
607
608         UNP_LINK_WLOCK();
609         UNP_PCB_LOCK(unp);
610         unp2 = unp->unp_conn;
611         if (unp2 != NULL) {
612                 UNP_PCB_LOCK(unp2);
613                 unp_disconnect(unp, unp2);
614                 UNP_PCB_UNLOCK(unp2);
615         }
616         UNP_PCB_UNLOCK(unp);
617         UNP_LINK_WUNLOCK();
618 }
619
620 static int
621 uipc_connect2(struct socket *so1, struct socket *so2)
622 {
623         struct unpcb *unp, *unp2;
624         int error;
625
626         UNP_LINK_WLOCK();
627         unp = so1->so_pcb;
628         KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
629         UNP_PCB_LOCK(unp);
630         unp2 = so2->so_pcb;
631         KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
632         UNP_PCB_LOCK(unp2);
633         error = unp_connect2(so1, so2, PRU_CONNECT2);
634         UNP_PCB_UNLOCK(unp2);
635         UNP_PCB_UNLOCK(unp);
636         UNP_LINK_WUNLOCK();
637         return (error);
638 }
639
640 static void
641 uipc_detach(struct socket *so)
642 {
643         struct unpcb *unp, *unp2;
644         struct sockaddr_un *saved_unp_addr;
645         struct vnode *vp;
646         int freeunp, local_unp_rights;
647
648         unp = sotounpcb(so);
649         KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
650
651         UNP_LINK_WLOCK();
652         UNP_LIST_LOCK();
653         UNP_PCB_LOCK(unp);
654         LIST_REMOVE(unp, unp_link);
655         unp->unp_gencnt = ++unp_gencnt;
656         --unp_count;
657         UNP_LIST_UNLOCK();
658
659         /*
660          * XXXRW: Should assert vp->v_socket == so.
661          */
662         if ((vp = unp->unp_vnode) != NULL) {
663                 VOP_UNP_DETACH(vp);
664                 unp->unp_vnode = NULL;
665         }
666         unp2 = unp->unp_conn;
667         if (unp2 != NULL) {
668                 UNP_PCB_LOCK(unp2);
669                 unp_disconnect(unp, unp2);
670                 UNP_PCB_UNLOCK(unp2);
671         }
672
673         /*
674          * We hold the linkage lock exclusively, so it's OK to acquire
675          * multiple pcb locks at a time.
676          */
677         while (!LIST_EMPTY(&unp->unp_refs)) {
678                 struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
679
680                 UNP_PCB_LOCK(ref);
681                 unp_drop(ref, ECONNRESET);
682                 UNP_PCB_UNLOCK(ref);
683         }
684         local_unp_rights = unp_rights;
685         UNP_LINK_WUNLOCK();
686         unp->unp_socket->so_pcb = NULL;
687         saved_unp_addr = unp->unp_addr;
688         unp->unp_addr = NULL;
689         unp->unp_refcount--;
690         freeunp = (unp->unp_refcount == 0);
691         if (saved_unp_addr != NULL)
692                 free(saved_unp_addr, M_SONAME);
693         if (freeunp) {
694                 UNP_PCB_LOCK_DESTROY(unp);
695                 uma_zfree(unp_zone, unp);
696         } else
697                 UNP_PCB_UNLOCK(unp);
698         if (vp)
699                 vrele(vp);
700         if (local_unp_rights)
701                 taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
702 }
703
704 static int
705 uipc_disconnect(struct socket *so)
706 {
707         struct unpcb *unp, *unp2;
708
709         unp = sotounpcb(so);
710         KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
711
712         UNP_LINK_WLOCK();
713         UNP_PCB_LOCK(unp);
714         unp2 = unp->unp_conn;
715         if (unp2 != NULL) {
716                 UNP_PCB_LOCK(unp2);
717                 unp_disconnect(unp, unp2);
718                 UNP_PCB_UNLOCK(unp2);
719         }
720         UNP_PCB_UNLOCK(unp);
721         UNP_LINK_WUNLOCK();
722         return (0);
723 }
724
725 static int
726 uipc_listen(struct socket *so, int backlog, struct thread *td)
727 {
728         struct unpcb *unp;
729         int error;
730
731         unp = sotounpcb(so);
732         KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
733
734         UNP_PCB_LOCK(unp);
735         if (unp->unp_vnode == NULL) {
736                 UNP_PCB_UNLOCK(unp);
737                 return (EINVAL);
738         }
739
740         SOCK_LOCK(so);
741         error = solisten_proto_check(so);
742         if (error == 0) {
743                 cru2x(td->td_ucred, &unp->unp_peercred);
744                 unp->unp_flags |= UNP_HAVEPCCACHED;
745                 solisten_proto(so, backlog);
746         }
747         SOCK_UNLOCK(so);
748         UNP_PCB_UNLOCK(unp);
749         return (error);
750 }
751
752 static int
753 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
754 {
755         struct unpcb *unp, *unp2;
756         const struct sockaddr *sa;
757
758         unp = sotounpcb(so);
759         KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
760
761         *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
762         UNP_LINK_RLOCK();
763         /*
764          * XXX: It seems that this test always fails even when connection is
765          * established.  So, this else clause is added as workaround to
766          * return PF_LOCAL sockaddr.
767          */
768         unp2 = unp->unp_conn;
769         if (unp2 != NULL) {
770                 UNP_PCB_LOCK(unp2);
771                 if (unp2->unp_addr != NULL)
772                         sa = (struct sockaddr *) unp2->unp_addr;
773                 else
774                         sa = &sun_noname;
775                 bcopy(sa, *nam, sa->sa_len);
776                 UNP_PCB_UNLOCK(unp2);
777         } else {
778                 sa = &sun_noname;
779                 bcopy(sa, *nam, sa->sa_len);
780         }
781         UNP_LINK_RUNLOCK();
782         return (0);
783 }
784
785 static int
786 uipc_rcvd(struct socket *so, int flags)
787 {
788         struct unpcb *unp, *unp2;
789         struct socket *so2;
790         u_int mbcnt, sbcc;
791
792         unp = sotounpcb(so);
793         KASSERT(unp != NULL, ("uipc_rcvd: unp == NULL"));
794
795         if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
796                 panic("uipc_rcvd socktype %d", so->so_type);
797
798         /*
799          * Adjust backpressure on sender and wakeup any waiting to write.
800          *
801          * The unp lock is acquired to maintain the validity of the unp_conn
802          * pointer; no lock on unp2 is required as unp2->unp_socket will be
803          * static as long as we don't permit unp2 to disconnect from unp,
804          * which is prevented by the lock on unp.  We cache values from
805          * so_rcv to avoid holding the so_rcv lock over the entire
806          * transaction on the remote so_snd.
807          */
808         SOCKBUF_LOCK(&so->so_rcv);
809         mbcnt = so->so_rcv.sb_mbcnt;
810         sbcc = so->so_rcv.sb_cc;
811         SOCKBUF_UNLOCK(&so->so_rcv);
812         /*
813          * There is a benign race condition at this point.  If we're planning to
814          * clear SB_STOP, but uipc_send is called on the connected socket at
815          * this instant, it might add data to the sockbuf and set SB_STOP.  Then
816          * we would erroneously clear SB_STOP below, even though the sockbuf is
817          * full.  The race is benign because the only ill effect is to allow the
818          * sockbuf to exceed its size limit, and the size limits are not
819          * strictly guaranteed anyway.
820          */
821         UNP_PCB_LOCK(unp);
822         unp2 = unp->unp_conn;
823         if (unp2 == NULL) {
824                 UNP_PCB_UNLOCK(unp);
825                 return (0);
826         }
827         so2 = unp2->unp_socket;
828         SOCKBUF_LOCK(&so2->so_snd);
829         if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax)
830                 so2->so_snd.sb_flags &= ~SB_STOP;
831         sowwakeup_locked(so2);
832         UNP_PCB_UNLOCK(unp);
833         return (0);
834 }
835
836 static int
837 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
838     struct mbuf *control, struct thread *td)
839 {
840         struct unpcb *unp, *unp2;
841         struct socket *so2;
842         u_int mbcnt, sbcc;
843         int error = 0;
844
845         unp = sotounpcb(so);
846         KASSERT(unp != NULL, ("uipc_send: unp == NULL"));
847
848         if (flags & PRUS_OOB) {
849                 error = EOPNOTSUPP;
850                 goto release;
851         }
852         if (control != NULL && (error = unp_internalize(&control, td)))
853                 goto release;
854         if ((nam != NULL) || (flags & PRUS_EOF))
855                 UNP_LINK_WLOCK();
856         else
857                 UNP_LINK_RLOCK();
858         switch (so->so_type) {
859         case SOCK_DGRAM:
860         {
861                 const struct sockaddr *from;
862
863                 unp2 = unp->unp_conn;
864                 if (nam != NULL) {
865                         UNP_LINK_WLOCK_ASSERT();
866                         if (unp2 != NULL) {
867                                 error = EISCONN;
868                                 break;
869                         }
870                         error = unp_connect(so, nam, td);
871                         if (error)
872                                 break;
873                         unp2 = unp->unp_conn;
874                 }
875
876                 /*
877                  * Because connect() and send() are non-atomic in a sendto()
878                  * with a target address, it's possible that the socket will
879                  * have disconnected before the send() can run.  In that case
880                  * return the slightly counter-intuitive but otherwise
881                  * correct error that the socket is not connected.
882                  */
883                 if (unp2 == NULL) {
884                         error = ENOTCONN;
885                         break;
886                 }
887                 /* Lockless read. */
888                 if (unp2->unp_flags & UNP_WANTCRED)
889                         control = unp_addsockcred(td, control);
890                 UNP_PCB_LOCK(unp);
891                 if (unp->unp_addr != NULL)
892                         from = (struct sockaddr *)unp->unp_addr;
893                 else
894                         from = &sun_noname;
895                 so2 = unp2->unp_socket;
896                 SOCKBUF_LOCK(&so2->so_rcv);
897                 if (sbappendaddr_nospacecheck_locked(&so2->so_rcv, from, m,
898                     control)) {
899                         sorwakeup_locked(so2);
900                         m = NULL;
901                         control = NULL;
902                 } else {
903                         SOCKBUF_UNLOCK(&so2->so_rcv);
904                         error = ENOBUFS;
905                 }
906                 if (nam != NULL) {
907                         UNP_LINK_WLOCK_ASSERT();
908                         UNP_PCB_LOCK(unp2);
909                         unp_disconnect(unp, unp2);
910                         UNP_PCB_UNLOCK(unp2);
911                 }
912                 UNP_PCB_UNLOCK(unp);
913                 break;
914         }
915
916         case SOCK_SEQPACKET:
917         case SOCK_STREAM:
918                 if ((so->so_state & SS_ISCONNECTED) == 0) {
919                         if (nam != NULL) {
920                                 UNP_LINK_WLOCK_ASSERT();
921                                 error = unp_connect(so, nam, td);
922                                 if (error)
923                                         break;  /* XXX */
924                         } else {
925                                 error = ENOTCONN;
926                                 break;
927                         }
928                 }
929
930                 /* Lockless read. */
931                 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
932                         error = EPIPE;
933                         break;
934                 }
935
936                 /*
937                  * Because connect() and send() are non-atomic in a sendto()
938                  * with a target address, it's possible that the socket will
939                  * have disconnected before the send() can run.  In that case
940                  * return the slightly counter-intuitive but otherwise
941                  * correct error that the socket is not connected.
942                  *
943                  * Locking here must be done carefully: the linkage lock
944                  * prevents interconnections between unpcbs from changing, so
945                  * we can traverse from unp to unp2 without acquiring unp's
946                  * lock.  Socket buffer locks follow unpcb locks, so we can
947                  * acquire both remote and lock socket buffer locks.
948                  */
949                 unp2 = unp->unp_conn;
950                 if (unp2 == NULL) {
951                         error = ENOTCONN;
952                         break;
953                 }
954                 so2 = unp2->unp_socket;
955                 UNP_PCB_LOCK(unp2);
956                 SOCKBUF_LOCK(&so2->so_rcv);
957                 if (unp2->unp_flags & UNP_WANTCRED) {
958                         /*
959                          * Credentials are passed only once on SOCK_STREAM
960                          * and SOCK_SEQPACKET.
961                          */
962                         unp2->unp_flags &= ~UNP_WANTCRED;
963                         control = unp_addsockcred(td, control);
964                 }
965                 /*
966                  * Send to paired receive port, and then reduce send buffer
967                  * hiwater marks to maintain backpressure.  Wake up readers.
968                  */
969                 switch (so->so_type) {
970                 case SOCK_STREAM:
971                         if (control != NULL) {
972                                 if (sbappendcontrol_locked(&so2->so_rcv, m,
973                                     control))
974                                         control = NULL;
975                         } else
976                                 sbappend_locked(&so2->so_rcv, m);
977                         break;
978
979                 case SOCK_SEQPACKET: {
980                         const struct sockaddr *from;
981
982                         from = &sun_noname;
983                         /*
984                          * Don't check for space available in so2->so_rcv.
985                          * Unix domain sockets only check for space in the
986                          * sending sockbuf, and that check is performed one
987                          * level up the stack.
988                          */
989                         if (sbappendaddr_nospacecheck_locked(&so2->so_rcv,
990                                 from, m, control))
991                                 control = NULL;
992                         break;
993                         }
994                 }
995
996                 mbcnt = so2->so_rcv.sb_mbcnt;
997                 sbcc = so2->so_rcv.sb_cc;
998                 sorwakeup_locked(so2);
999
1000                 /*
1001                  * The PCB lock on unp2 protects the SB_STOP flag.  Without it,
1002                  * it would be possible for uipc_rcvd to be called at this
1003                  * point, drain the receiving sockbuf, clear SB_STOP, and then
1004                  * we would set SB_STOP below.  That could lead to an empty
1005                  * sockbuf having SB_STOP set
1006                  */
1007                 SOCKBUF_LOCK(&so->so_snd);
1008                 if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax)
1009                         so->so_snd.sb_flags |= SB_STOP;
1010                 SOCKBUF_UNLOCK(&so->so_snd);
1011                 UNP_PCB_UNLOCK(unp2);
1012                 m = NULL;
1013                 break;
1014
1015         default:
1016                 panic("uipc_send unknown socktype");
1017         }
1018
1019         /*
1020          * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
1021          */
1022         if (flags & PRUS_EOF) {
1023                 UNP_PCB_LOCK(unp);
1024                 socantsendmore(so);
1025                 unp_shutdown(unp);
1026                 UNP_PCB_UNLOCK(unp);
1027         }
1028
1029         if ((nam != NULL) || (flags & PRUS_EOF))
1030                 UNP_LINK_WUNLOCK();
1031         else
1032                 UNP_LINK_RUNLOCK();
1033
1034         if (control != NULL && error != 0)
1035                 unp_dispose(control);
1036
1037 release:
1038         if (control != NULL)
1039                 m_freem(control);
1040         if (m != NULL)
1041                 m_freem(m);
1042         return (error);
1043 }
1044
1045 static int
1046 uipc_sense(struct socket *so, struct stat *sb)
1047 {
1048         struct unpcb *unp;
1049
1050         unp = sotounpcb(so);
1051         KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1052
1053         sb->st_blksize = so->so_snd.sb_hiwat;
1054         UNP_PCB_LOCK(unp);
1055         sb->st_dev = NODEV;
1056         if (unp->unp_ino == 0)
1057                 unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
1058         sb->st_ino = unp->unp_ino;
1059         UNP_PCB_UNLOCK(unp);
1060         return (0);
1061 }
1062
1063 static int
1064 uipc_shutdown(struct socket *so)
1065 {
1066         struct unpcb *unp;
1067
1068         unp = sotounpcb(so);
1069         KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1070
1071         UNP_LINK_WLOCK();
1072         UNP_PCB_LOCK(unp);
1073         socantsendmore(so);
1074         unp_shutdown(unp);
1075         UNP_PCB_UNLOCK(unp);
1076         UNP_LINK_WUNLOCK();
1077         return (0);
1078 }
1079
1080 static int
1081 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1082 {
1083         struct unpcb *unp;
1084         const struct sockaddr *sa;
1085
1086         unp = sotounpcb(so);
1087         KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1088
1089         *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1090         UNP_PCB_LOCK(unp);
1091         if (unp->unp_addr != NULL)
1092                 sa = (struct sockaddr *) unp->unp_addr;
1093         else
1094                 sa = &sun_noname;
1095         bcopy(sa, *nam, sa->sa_len);
1096         UNP_PCB_UNLOCK(unp);
1097         return (0);
1098 }
1099
1100 static struct pr_usrreqs uipc_usrreqs_dgram = {
1101         .pru_abort =            uipc_abort,
1102         .pru_accept =           uipc_accept,
1103         .pru_attach =           uipc_attach,
1104         .pru_bind =             uipc_bind,
1105         .pru_bindat =           uipc_bindat,
1106         .pru_connect =          uipc_connect,
1107         .pru_connectat =        uipc_connectat,
1108         .pru_connect2 =         uipc_connect2,
1109         .pru_detach =           uipc_detach,
1110         .pru_disconnect =       uipc_disconnect,
1111         .pru_listen =           uipc_listen,
1112         .pru_peeraddr =         uipc_peeraddr,
1113         .pru_rcvd =             uipc_rcvd,
1114         .pru_send =             uipc_send,
1115         .pru_sense =            uipc_sense,
1116         .pru_shutdown =         uipc_shutdown,
1117         .pru_sockaddr =         uipc_sockaddr,
1118         .pru_soreceive =        soreceive_dgram,
1119         .pru_close =            uipc_close,
1120 };
1121
1122 static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1123         .pru_abort =            uipc_abort,
1124         .pru_accept =           uipc_accept,
1125         .pru_attach =           uipc_attach,
1126         .pru_bind =             uipc_bind,
1127         .pru_bindat =           uipc_bindat,
1128         .pru_connect =          uipc_connect,
1129         .pru_connectat =        uipc_connectat,
1130         .pru_connect2 =         uipc_connect2,
1131         .pru_detach =           uipc_detach,
1132         .pru_disconnect =       uipc_disconnect,
1133         .pru_listen =           uipc_listen,
1134         .pru_peeraddr =         uipc_peeraddr,
1135         .pru_rcvd =             uipc_rcvd,
1136         .pru_send =             uipc_send,
1137         .pru_sense =            uipc_sense,
1138         .pru_shutdown =         uipc_shutdown,
1139         .pru_sockaddr =         uipc_sockaddr,
1140         .pru_soreceive =        soreceive_generic,      /* XXX: or...? */
1141         .pru_close =            uipc_close,
1142 };
1143
1144 static struct pr_usrreqs uipc_usrreqs_stream = {
1145         .pru_abort =            uipc_abort,
1146         .pru_accept =           uipc_accept,
1147         .pru_attach =           uipc_attach,
1148         .pru_bind =             uipc_bind,
1149         .pru_bindat =           uipc_bindat,
1150         .pru_connect =          uipc_connect,
1151         .pru_connectat =        uipc_connectat,
1152         .pru_connect2 =         uipc_connect2,
1153         .pru_detach =           uipc_detach,
1154         .pru_disconnect =       uipc_disconnect,
1155         .pru_listen =           uipc_listen,
1156         .pru_peeraddr =         uipc_peeraddr,
1157         .pru_rcvd =             uipc_rcvd,
1158         .pru_send =             uipc_send,
1159         .pru_sense =            uipc_sense,
1160         .pru_shutdown =         uipc_shutdown,
1161         .pru_sockaddr =         uipc_sockaddr,
1162         .pru_soreceive =        soreceive_generic,
1163         .pru_close =            uipc_close,
1164 };
1165
1166 static int
1167 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1168 {
1169         struct unpcb *unp;
1170         struct xucred xu;
1171         int error, optval;
1172
1173         if (sopt->sopt_level != 0)
1174                 return (EINVAL);
1175
1176         unp = sotounpcb(so);
1177         KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1178         error = 0;
1179         switch (sopt->sopt_dir) {
1180         case SOPT_GET:
1181                 switch (sopt->sopt_name) {
1182                 case LOCAL_PEERCRED:
1183                         UNP_PCB_LOCK(unp);
1184                         if (unp->unp_flags & UNP_HAVEPC)
1185                                 xu = unp->unp_peercred;
1186                         else {
1187                                 if (so->so_type == SOCK_STREAM)
1188                                         error = ENOTCONN;
1189                                 else
1190                                         error = EINVAL;
1191                         }
1192                         UNP_PCB_UNLOCK(unp);
1193                         if (error == 0)
1194                                 error = sooptcopyout(sopt, &xu, sizeof(xu));
1195                         break;
1196
1197                 case LOCAL_CREDS:
1198                         /* Unlocked read. */
1199                         optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1200                         error = sooptcopyout(sopt, &optval, sizeof(optval));
1201                         break;
1202
1203                 case LOCAL_CONNWAIT:
1204                         /* Unlocked read. */
1205                         optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1206                         error = sooptcopyout(sopt, &optval, sizeof(optval));
1207                         break;
1208
1209                 default:
1210                         error = EOPNOTSUPP;
1211                         break;
1212                 }
1213                 break;
1214
1215         case SOPT_SET:
1216                 switch (sopt->sopt_name) {
1217                 case LOCAL_CREDS:
1218                 case LOCAL_CONNWAIT:
1219                         error = sooptcopyin(sopt, &optval, sizeof(optval),
1220                                             sizeof(optval));
1221                         if (error)
1222                                 break;
1223
1224 #define OPTSET(bit) do {                                                \
1225         UNP_PCB_LOCK(unp);                                              \
1226         if (optval)                                                     \
1227                 unp->unp_flags |= bit;                                  \
1228         else                                                            \
1229                 unp->unp_flags &= ~bit;                                 \
1230         UNP_PCB_UNLOCK(unp);                                            \
1231 } while (0)
1232
1233                         switch (sopt->sopt_name) {
1234                         case LOCAL_CREDS:
1235                                 OPTSET(UNP_WANTCRED);
1236                                 break;
1237
1238                         case LOCAL_CONNWAIT:
1239                                 OPTSET(UNP_CONNWAIT);
1240                                 break;
1241
1242                         default:
1243                                 break;
1244                         }
1245                         break;
1246 #undef  OPTSET
1247                 default:
1248                         error = ENOPROTOOPT;
1249                         break;
1250                 }
1251                 break;
1252
1253         default:
1254                 error = EOPNOTSUPP;
1255                 break;
1256         }
1257         return (error);
1258 }
1259
1260 static int
1261 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1262 {
1263
1264         return (unp_connectat(AT_FDCWD, so, nam, td));
1265 }
1266
1267 static int
1268 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
1269     struct thread *td)
1270 {
1271         struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1272         struct vnode *vp;
1273         struct socket *so2, *so3;
1274         struct unpcb *unp, *unp2, *unp3;
1275         struct nameidata nd;
1276         char buf[SOCK_MAXADDRLEN];
1277         struct sockaddr *sa;
1278         cap_rights_t rights;
1279         int error, len;
1280
1281         UNP_LINK_WLOCK_ASSERT();
1282
1283         unp = sotounpcb(so);
1284         KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1285
1286         if (nam->sa_len > sizeof(struct sockaddr_un))
1287                 return (EINVAL);
1288         len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1289         if (len <= 0)
1290                 return (EINVAL);
1291         bcopy(soun->sun_path, buf, len);
1292         buf[len] = 0;
1293
1294         UNP_PCB_LOCK(unp);
1295         if (unp->unp_flags & UNP_CONNECTING) {
1296                 UNP_PCB_UNLOCK(unp);
1297                 return (EALREADY);
1298         }
1299         UNP_LINK_WUNLOCK();
1300         unp->unp_flags |= UNP_CONNECTING;
1301         UNP_PCB_UNLOCK(unp);
1302
1303         sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1304         NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1305             UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td);
1306         error = namei(&nd);
1307         if (error)
1308                 vp = NULL;
1309         else
1310                 vp = nd.ni_vp;
1311         ASSERT_VOP_LOCKED(vp, "unp_connect");
1312         NDFREE(&nd, NDF_ONLY_PNBUF);
1313         if (error)
1314                 goto bad;
1315
1316         if (vp->v_type != VSOCK) {
1317                 error = ENOTSOCK;
1318                 goto bad;
1319         }
1320 #ifdef MAC
1321         error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1322         if (error)
1323                 goto bad;
1324 #endif
1325         error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1326         if (error)
1327                 goto bad;
1328
1329         unp = sotounpcb(so);
1330         KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1331
1332         /*
1333          * Lock linkage lock for two reasons: make sure v_socket is stable,
1334          * and to protect simultaneous locking of multiple pcbs.
1335          */
1336         UNP_LINK_WLOCK();
1337         VOP_UNP_CONNECT(vp, &so2);
1338         if (so2 == NULL) {
1339                 error = ECONNREFUSED;
1340                 goto bad2;
1341         }
1342         if (so->so_type != so2->so_type) {
1343                 error = EPROTOTYPE;
1344                 goto bad2;
1345         }
1346         if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1347                 if (so2->so_options & SO_ACCEPTCONN) {
1348                         CURVNET_SET(so2->so_vnet);
1349                         so3 = sonewconn(so2, 0);
1350                         CURVNET_RESTORE();
1351                 } else
1352                         so3 = NULL;
1353                 if (so3 == NULL) {
1354                         error = ECONNREFUSED;
1355                         goto bad2;
1356                 }
1357                 unp = sotounpcb(so);
1358                 unp2 = sotounpcb(so2);
1359                 unp3 = sotounpcb(so3);
1360                 UNP_PCB_LOCK(unp);
1361                 UNP_PCB_LOCK(unp2);
1362                 UNP_PCB_LOCK(unp3);
1363                 if (unp2->unp_addr != NULL) {
1364                         bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1365                         unp3->unp_addr = (struct sockaddr_un *) sa;
1366                         sa = NULL;
1367                 }
1368
1369                 /*
1370                  * The connector's (client's) credentials are copied from its
1371                  * process structure at the time of connect() (which is now).
1372                  */
1373                 cru2x(td->td_ucred, &unp3->unp_peercred);
1374                 unp3->unp_flags |= UNP_HAVEPC;
1375
1376                 /*
1377                  * The receiver's (server's) credentials are copied from the
1378                  * unp_peercred member of socket on which the former called
1379                  * listen(); uipc_listen() cached that process's credentials
1380                  * at that time so we can use them now.
1381                  */
1382                 KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
1383                     ("unp_connect: listener without cached peercred"));
1384                 memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1385                     sizeof(unp->unp_peercred));
1386                 unp->unp_flags |= UNP_HAVEPC;
1387                 if (unp2->unp_flags & UNP_WANTCRED)
1388                         unp3->unp_flags |= UNP_WANTCRED;
1389                 UNP_PCB_UNLOCK(unp3);
1390                 UNP_PCB_UNLOCK(unp2);
1391                 UNP_PCB_UNLOCK(unp);
1392 #ifdef MAC
1393                 mac_socketpeer_set_from_socket(so, so3);
1394                 mac_socketpeer_set_from_socket(so3, so);
1395 #endif
1396
1397                 so2 = so3;
1398         }
1399         unp = sotounpcb(so);
1400         KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1401         unp2 = sotounpcb(so2);
1402         KASSERT(unp2 != NULL, ("unp_connect: unp2 == NULL"));
1403         UNP_PCB_LOCK(unp);
1404         UNP_PCB_LOCK(unp2);
1405         error = unp_connect2(so, so2, PRU_CONNECT);
1406         UNP_PCB_UNLOCK(unp2);
1407         UNP_PCB_UNLOCK(unp);
1408 bad2:
1409         UNP_LINK_WUNLOCK();
1410 bad:
1411         if (vp != NULL)
1412                 vput(vp);
1413         free(sa, M_SONAME);
1414         UNP_LINK_WLOCK();
1415         UNP_PCB_LOCK(unp);
1416         unp->unp_flags &= ~UNP_CONNECTING;
1417         UNP_PCB_UNLOCK(unp);
1418         return (error);
1419 }
1420
1421 static int
1422 unp_connect2(struct socket *so, struct socket *so2, int req)
1423 {
1424         struct unpcb *unp;
1425         struct unpcb *unp2;
1426
1427         unp = sotounpcb(so);
1428         KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1429         unp2 = sotounpcb(so2);
1430         KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1431
1432         UNP_LINK_WLOCK_ASSERT();
1433         UNP_PCB_LOCK_ASSERT(unp);
1434         UNP_PCB_LOCK_ASSERT(unp2);
1435
1436         if (so2->so_type != so->so_type)
1437                 return (EPROTOTYPE);
1438         unp->unp_conn = unp2;
1439
1440         switch (so->so_type) {
1441         case SOCK_DGRAM:
1442                 LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1443                 soisconnected(so);
1444                 break;
1445
1446         case SOCK_STREAM:
1447         case SOCK_SEQPACKET:
1448                 unp2->unp_conn = unp;
1449                 if (req == PRU_CONNECT &&
1450                     ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1451                         soisconnecting(so);
1452                 else
1453                         soisconnected(so);
1454                 soisconnected(so2);
1455                 break;
1456
1457         default:
1458                 panic("unp_connect2");
1459         }
1460         return (0);
1461 }
1462
1463 static void
1464 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1465 {
1466         struct socket *so;
1467
1468         KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1469
1470         UNP_LINK_WLOCK_ASSERT();
1471         UNP_PCB_LOCK_ASSERT(unp);
1472         UNP_PCB_LOCK_ASSERT(unp2);
1473
1474         unp->unp_conn = NULL;
1475         switch (unp->unp_socket->so_type) {
1476         case SOCK_DGRAM:
1477                 LIST_REMOVE(unp, unp_reflink);
1478                 so = unp->unp_socket;
1479                 SOCK_LOCK(so);
1480                 so->so_state &= ~SS_ISCONNECTED;
1481                 SOCK_UNLOCK(so);
1482                 break;
1483
1484         case SOCK_STREAM:
1485         case SOCK_SEQPACKET:
1486                 soisdisconnected(unp->unp_socket);
1487                 unp2->unp_conn = NULL;
1488                 soisdisconnected(unp2->unp_socket);
1489                 break;
1490         }
1491 }
1492
1493 /*
1494  * unp_pcblist() walks the global list of struct unpcb's to generate a
1495  * pointer list, bumping the refcount on each unpcb.  It then copies them out
1496  * sequentially, validating the generation number on each to see if it has
1497  * been detached.  All of this is necessary because copyout() may sleep on
1498  * disk I/O.
1499  */
1500 static int
1501 unp_pcblist(SYSCTL_HANDLER_ARGS)
1502 {
1503         int error, i, n;
1504         int freeunp;
1505         struct unpcb *unp, **unp_list;
1506         unp_gen_t gencnt;
1507         struct xunpgen *xug;
1508         struct unp_head *head;
1509         struct xunpcb *xu;
1510
1511         switch ((intptr_t)arg1) {
1512         case SOCK_STREAM:
1513                 head = &unp_shead;
1514                 break;
1515
1516         case SOCK_DGRAM:
1517                 head = &unp_dhead;
1518                 break;
1519
1520         case SOCK_SEQPACKET:
1521                 head = &unp_sphead;
1522                 break;
1523
1524         default:
1525                 panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1526         }
1527
1528         /*
1529          * The process of preparing the PCB list is too time-consuming and
1530          * resource-intensive to repeat twice on every request.
1531          */
1532         if (req->oldptr == NULL) {
1533                 n = unp_count;
1534                 req->oldidx = 2 * (sizeof *xug)
1535                         + (n + n/8) * sizeof(struct xunpcb);
1536                 return (0);
1537         }
1538
1539         if (req->newptr != NULL)
1540                 return (EPERM);
1541
1542         /*
1543          * OK, now we're committed to doing something.
1544          */
1545         xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
1546         UNP_LIST_LOCK();
1547         gencnt = unp_gencnt;
1548         n = unp_count;
1549         UNP_LIST_UNLOCK();
1550
1551         xug->xug_len = sizeof *xug;
1552         xug->xug_count = n;
1553         xug->xug_gen = gencnt;
1554         xug->xug_sogen = so_gencnt;
1555         error = SYSCTL_OUT(req, xug, sizeof *xug);
1556         if (error) {
1557                 free(xug, M_TEMP);
1558                 return (error);
1559         }
1560
1561         unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1562
1563         UNP_LIST_LOCK();
1564         for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1565              unp = LIST_NEXT(unp, unp_link)) {
1566                 UNP_PCB_LOCK(unp);
1567                 if (unp->unp_gencnt <= gencnt) {
1568                         if (cr_cansee(req->td->td_ucred,
1569                             unp->unp_socket->so_cred)) {
1570                                 UNP_PCB_UNLOCK(unp);
1571                                 continue;
1572                         }
1573                         unp_list[i++] = unp;
1574                         unp->unp_refcount++;
1575                 }
1576                 UNP_PCB_UNLOCK(unp);
1577         }
1578         UNP_LIST_UNLOCK();
1579         n = i;                  /* In case we lost some during malloc. */
1580
1581         error = 0;
1582         xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1583         for (i = 0; i < n; i++) {
1584                 unp = unp_list[i];
1585                 UNP_PCB_LOCK(unp);
1586                 unp->unp_refcount--;
1587                 if (unp->unp_refcount != 0 && unp->unp_gencnt <= gencnt) {
1588                         xu->xu_len = sizeof *xu;
1589                         xu->xu_unpp = unp;
1590                         /*
1591                          * XXX - need more locking here to protect against
1592                          * connect/disconnect races for SMP.
1593                          */
1594                         if (unp->unp_addr != NULL)
1595                                 bcopy(unp->unp_addr, &xu->xu_addr,
1596                                       unp->unp_addr->sun_len);
1597                         if (unp->unp_conn != NULL &&
1598                             unp->unp_conn->unp_addr != NULL)
1599                                 bcopy(unp->unp_conn->unp_addr,
1600                                       &xu->xu_caddr,
1601                                       unp->unp_conn->unp_addr->sun_len);
1602                         bcopy(unp, &xu->xu_unp, sizeof *unp);
1603                         sotoxsocket(unp->unp_socket, &xu->xu_socket);
1604                         UNP_PCB_UNLOCK(unp);
1605                         error = SYSCTL_OUT(req, xu, sizeof *xu);
1606                 } else {
1607                         freeunp = (unp->unp_refcount == 0);
1608                         UNP_PCB_UNLOCK(unp);
1609                         if (freeunp) {
1610                                 UNP_PCB_LOCK_DESTROY(unp);
1611                                 uma_zfree(unp_zone, unp);
1612                         }
1613                 }
1614         }
1615         free(xu, M_TEMP);
1616         if (!error) {
1617                 /*
1618                  * Give the user an updated idea of our state.  If the
1619                  * generation differs from what we told her before, she knows
1620                  * that something happened while we were processing this
1621                  * request, and it might be necessary to retry.
1622                  */
1623                 xug->xug_gen = unp_gencnt;
1624                 xug->xug_sogen = so_gencnt;
1625                 xug->xug_count = unp_count;
1626                 error = SYSCTL_OUT(req, xug, sizeof *xug);
1627         }
1628         free(unp_list, M_TEMP);
1629         free(xug, M_TEMP);
1630         return (error);
1631 }
1632
1633 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1634     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1635     "List of active local datagram sockets");
1636 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1637     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1638     "List of active local stream sockets");
1639 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1640     CTLTYPE_OPAQUE | CTLFLAG_RD,
1641     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1642     "List of active local seqpacket sockets");
1643
1644 static void
1645 unp_shutdown(struct unpcb *unp)
1646 {
1647         struct unpcb *unp2;
1648         struct socket *so;
1649
1650         UNP_LINK_WLOCK_ASSERT();
1651         UNP_PCB_LOCK_ASSERT(unp);
1652
1653         unp2 = unp->unp_conn;
1654         if ((unp->unp_socket->so_type == SOCK_STREAM ||
1655             (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1656                 so = unp2->unp_socket;
1657                 if (so != NULL)
1658                         socantrcvmore(so);
1659         }
1660 }
1661
1662 static void
1663 unp_drop(struct unpcb *unp, int errno)
1664 {
1665         struct socket *so = unp->unp_socket;
1666         struct unpcb *unp2;
1667
1668         UNP_LINK_WLOCK_ASSERT();
1669         UNP_PCB_LOCK_ASSERT(unp);
1670
1671         so->so_error = errno;
1672         unp2 = unp->unp_conn;
1673         if (unp2 == NULL)
1674                 return;
1675         UNP_PCB_LOCK(unp2);
1676         unp_disconnect(unp, unp2);
1677         UNP_PCB_UNLOCK(unp2);
1678 }
1679
1680 static void
1681 unp_freerights(struct filedescent **fdep, int fdcount)
1682 {
1683         struct file *fp;
1684         int i;
1685
1686         KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
1687
1688         for (i = 0; i < fdcount; i++) {
1689                 fp = fdep[i]->fde_file;
1690                 filecaps_free(&fdep[i]->fde_caps);
1691                 unp_discard(fp);
1692         }
1693         free(fdep[0], M_FILECAPS);
1694 }
1695
1696 static int
1697 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
1698 {
1699         struct thread *td = curthread;          /* XXX */
1700         struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1701         int i;
1702         int *fdp;
1703         struct filedesc *fdesc = td->td_proc->p_fd;
1704         struct filedescent *fde, **fdep;
1705         void *data;
1706         socklen_t clen = control->m_len, datalen;
1707         int error, newfds;
1708         u_int newlen;
1709
1710         UNP_LINK_UNLOCK_ASSERT();
1711
1712         error = 0;
1713         if (controlp != NULL) /* controlp == NULL => free control messages */
1714                 *controlp = NULL;
1715         while (cm != NULL) {
1716                 if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1717                         error = EINVAL;
1718                         break;
1719                 }
1720                 data = CMSG_DATA(cm);
1721                 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1722                 if (cm->cmsg_level == SOL_SOCKET
1723                     && cm->cmsg_type == SCM_RIGHTS) {
1724                         newfds = datalen / sizeof(*fdep);
1725                         if (newfds == 0)
1726                                 goto next;
1727                         fdep = data;
1728
1729                         /* If we're not outputting the descriptors free them. */
1730                         if (error || controlp == NULL) {
1731                                 unp_freerights(fdep, newfds);
1732                                 goto next;
1733                         }
1734                         FILEDESC_XLOCK(fdesc);
1735
1736                         /*
1737                          * Now change each pointer to an fd in the global
1738                          * table to an integer that is the index to the local
1739                          * fd table entry that we set up to point to the
1740                          * global one we are transferring.
1741                          */
1742                         newlen = newfds * sizeof(int);
1743                         *controlp = sbcreatecontrol(NULL, newlen,
1744                             SCM_RIGHTS, SOL_SOCKET);
1745                         if (*controlp == NULL) {
1746                                 FILEDESC_XUNLOCK(fdesc);
1747                                 error = E2BIG;
1748                                 unp_freerights(fdep, newfds);
1749                                 goto next;
1750                         }
1751
1752                         fdp = (int *)
1753                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1754                         if (fdallocn(td, 0, fdp, newfds) != 0) {
1755                                 FILEDESC_XUNLOCK(td->td_proc->p_fd);
1756                                 error = EMSGSIZE;
1757                                 unp_freerights(fdep, newfds);
1758                                 m_freem(*controlp);
1759                                 *controlp = NULL;
1760                                 goto next;
1761                         }
1762                         for (i = 0; i < newfds; i++, fdp++) {
1763                                 fde = &fdesc->fd_ofiles[*fdp];
1764                                 fde->fde_file = fdep[i]->fde_file;
1765                                 filecaps_move(&fdep[i]->fde_caps,
1766                                     &fde->fde_caps);
1767                                 if ((flags & MSG_CMSG_CLOEXEC) != 0)
1768                                         fde->fde_flags |= UF_EXCLOSE;
1769                                 unp_externalize_fp(fde->fde_file);
1770                         }
1771                         FILEDESC_XUNLOCK(fdesc);
1772                         free(fdep[0], M_FILECAPS);
1773                 } else {
1774                         /* We can just copy anything else across. */
1775                         if (error || controlp == NULL)
1776                                 goto next;
1777                         *controlp = sbcreatecontrol(NULL, datalen,
1778                             cm->cmsg_type, cm->cmsg_level);
1779                         if (*controlp == NULL) {
1780                                 error = ENOBUFS;
1781                                 goto next;
1782                         }
1783                         bcopy(data,
1784                             CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
1785                             datalen);
1786                 }
1787                 controlp = &(*controlp)->m_next;
1788
1789 next:
1790                 if (CMSG_SPACE(datalen) < clen) {
1791                         clen -= CMSG_SPACE(datalen);
1792                         cm = (struct cmsghdr *)
1793                             ((caddr_t)cm + CMSG_SPACE(datalen));
1794                 } else {
1795                         clen = 0;
1796                         cm = NULL;
1797                 }
1798         }
1799
1800         m_freem(control);
1801         return (error);
1802 }
1803
1804 static void
1805 unp_zone_change(void *tag)
1806 {
1807
1808         uma_zone_set_max(unp_zone, maxsockets);
1809 }
1810
1811 static void
1812 unp_init(void)
1813 {
1814
1815 #ifdef VIMAGE
1816         if (!IS_DEFAULT_VNET(curvnet))
1817                 return;
1818 #endif
1819         unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
1820             NULL, NULL, UMA_ALIGN_PTR, 0);
1821         if (unp_zone == NULL)
1822                 panic("unp_init");
1823         uma_zone_set_max(unp_zone, maxsockets);
1824         uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
1825         EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
1826             NULL, EVENTHANDLER_PRI_ANY);
1827         LIST_INIT(&unp_dhead);
1828         LIST_INIT(&unp_shead);
1829         LIST_INIT(&unp_sphead);
1830         SLIST_INIT(&unp_defers);
1831         TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
1832         TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
1833         UNP_LINK_LOCK_INIT();
1834         UNP_LIST_LOCK_INIT();
1835         UNP_DEFERRED_LOCK_INIT();
1836 }
1837
1838 static int
1839 unp_internalize(struct mbuf **controlp, struct thread *td)
1840 {
1841         struct mbuf *control = *controlp;
1842         struct proc *p = td->td_proc;
1843         struct filedesc *fdesc = p->p_fd;
1844         struct bintime *bt;
1845         struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1846         struct cmsgcred *cmcred;
1847         struct filedescent *fde, **fdep, *fdev;
1848         struct file *fp;
1849         struct timeval *tv;
1850         int i, fd, *fdp;
1851         void *data;
1852         socklen_t clen = control->m_len, datalen;
1853         int error, oldfds;
1854         u_int newlen;
1855
1856         UNP_LINK_UNLOCK_ASSERT();
1857
1858         error = 0;
1859         *controlp = NULL;
1860         while (cm != NULL) {
1861                 if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
1862                     || cm->cmsg_len > clen) {
1863                         error = EINVAL;
1864                         goto out;
1865                 }
1866                 data = CMSG_DATA(cm);
1867                 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1868
1869                 switch (cm->cmsg_type) {
1870                 /*
1871                  * Fill in credential information.
1872                  */
1873                 case SCM_CREDS:
1874                         *controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
1875                             SCM_CREDS, SOL_SOCKET);
1876                         if (*controlp == NULL) {
1877                                 error = ENOBUFS;
1878                                 goto out;
1879                         }
1880                         cmcred = (struct cmsgcred *)
1881                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1882                         cmcred->cmcred_pid = p->p_pid;
1883                         cmcred->cmcred_uid = td->td_ucred->cr_ruid;
1884                         cmcred->cmcred_gid = td->td_ucred->cr_rgid;
1885                         cmcred->cmcred_euid = td->td_ucred->cr_uid;
1886                         cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
1887                             CMGROUP_MAX);
1888                         for (i = 0; i < cmcred->cmcred_ngroups; i++)
1889                                 cmcred->cmcred_groups[i] =
1890                                     td->td_ucred->cr_groups[i];
1891                         break;
1892
1893                 case SCM_RIGHTS:
1894                         oldfds = datalen / sizeof (int);
1895                         if (oldfds == 0)
1896                                 break;
1897                         /*
1898                          * Check that all the FDs passed in refer to legal
1899                          * files.  If not, reject the entire operation.
1900                          */
1901                         fdp = data;
1902                         FILEDESC_SLOCK(fdesc);
1903                         for (i = 0; i < oldfds; i++) {
1904                                 fd = *fdp++;
1905                                 if (fget_locked(fdesc, fd) == NULL) {
1906                                         FILEDESC_SUNLOCK(fdesc);
1907                                         error = EBADF;
1908                                         goto out;
1909                                 }
1910                                 fp = fdesc->fd_ofiles[fd].fde_file;
1911                                 if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
1912                                         FILEDESC_SUNLOCK(fdesc);
1913                                         error = EOPNOTSUPP;
1914                                         goto out;
1915                                 }
1916
1917                         }
1918
1919                         /*
1920                          * Now replace the integer FDs with pointers to the
1921                          * file structure and capability rights.
1922                          */
1923                         newlen = oldfds * sizeof(fdep[0]);
1924                         *controlp = sbcreatecontrol(NULL, newlen,
1925                             SCM_RIGHTS, SOL_SOCKET);
1926                         if (*controlp == NULL) {
1927                                 FILEDESC_SUNLOCK(fdesc);
1928                                 error = E2BIG;
1929                                 goto out;
1930                         }
1931                         fdp = data;
1932                         fdep = (struct filedescent **)
1933                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1934                         fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
1935                             M_WAITOK);
1936                         for (i = 0; i < oldfds; i++, fdev++, fdp++) {
1937                                 fde = &fdesc->fd_ofiles[*fdp];
1938                                 fdep[i] = fdev;
1939                                 fdep[i]->fde_file = fde->fde_file;
1940                                 filecaps_copy(&fde->fde_caps,
1941                                     &fdep[i]->fde_caps);
1942                                 unp_internalize_fp(fdep[i]->fde_file);
1943                         }
1944                         FILEDESC_SUNLOCK(fdesc);
1945                         break;
1946
1947                 case SCM_TIMESTAMP:
1948                         *controlp = sbcreatecontrol(NULL, sizeof(*tv),
1949                             SCM_TIMESTAMP, SOL_SOCKET);
1950                         if (*controlp == NULL) {
1951                                 error = ENOBUFS;
1952                                 goto out;
1953                         }
1954                         tv = (struct timeval *)
1955                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1956                         microtime(tv);
1957                         break;
1958
1959                 case SCM_BINTIME:
1960                         *controlp = sbcreatecontrol(NULL, sizeof(*bt),
1961                             SCM_BINTIME, SOL_SOCKET);
1962                         if (*controlp == NULL) {
1963                                 error = ENOBUFS;
1964                                 goto out;
1965                         }
1966                         bt = (struct bintime *)
1967                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1968                         bintime(bt);
1969                         break;
1970
1971                 default:
1972                         error = EINVAL;
1973                         goto out;
1974                 }
1975
1976                 controlp = &(*controlp)->m_next;
1977                 if (CMSG_SPACE(datalen) < clen) {
1978                         clen -= CMSG_SPACE(datalen);
1979                         cm = (struct cmsghdr *)
1980                             ((caddr_t)cm + CMSG_SPACE(datalen));
1981                 } else {
1982                         clen = 0;
1983                         cm = NULL;
1984                 }
1985         }
1986
1987 out:
1988         m_freem(control);
1989         return (error);
1990 }
1991
1992 static struct mbuf *
1993 unp_addsockcred(struct thread *td, struct mbuf *control)
1994 {
1995         struct mbuf *m, *n, *n_prev;
1996         struct sockcred *sc;
1997         const struct cmsghdr *cm;
1998         int ngroups;
1999         int i;
2000
2001         ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
2002         m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
2003         if (m == NULL)
2004                 return (control);
2005
2006         sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
2007         sc->sc_uid = td->td_ucred->cr_ruid;
2008         sc->sc_euid = td->td_ucred->cr_uid;
2009         sc->sc_gid = td->td_ucred->cr_rgid;
2010         sc->sc_egid = td->td_ucred->cr_gid;
2011         sc->sc_ngroups = ngroups;
2012         for (i = 0; i < sc->sc_ngroups; i++)
2013                 sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2014
2015         /*
2016          * Unlink SCM_CREDS control messages (struct cmsgcred), since just
2017          * created SCM_CREDS control message (struct sockcred) has another
2018          * format.
2019          */
2020         if (control != NULL)
2021                 for (n = control, n_prev = NULL; n != NULL;) {
2022                         cm = mtod(n, struct cmsghdr *);
2023                         if (cm->cmsg_level == SOL_SOCKET &&
2024                             cm->cmsg_type == SCM_CREDS) {
2025                                 if (n_prev == NULL)
2026                                         control = n->m_next;
2027                                 else
2028                                         n_prev->m_next = n->m_next;
2029                                 n = m_free(n);
2030                         } else {
2031                                 n_prev = n;
2032                                 n = n->m_next;
2033                         }
2034                 }
2035
2036         /* Prepend it to the head. */
2037         m->m_next = control;
2038         return (m);
2039 }
2040
2041 static struct unpcb *
2042 fptounp(struct file *fp)
2043 {
2044         struct socket *so;
2045
2046         if (fp->f_type != DTYPE_SOCKET)
2047                 return (NULL);
2048         if ((so = fp->f_data) == NULL)
2049                 return (NULL);
2050         if (so->so_proto->pr_domain != &localdomain)
2051                 return (NULL);
2052         return sotounpcb(so);
2053 }
2054
2055 static void
2056 unp_discard(struct file *fp)
2057 {
2058         struct unp_defer *dr;
2059
2060         if (unp_externalize_fp(fp)) {
2061                 dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2062                 dr->ud_fp = fp;
2063                 UNP_DEFERRED_LOCK();
2064                 SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2065                 UNP_DEFERRED_UNLOCK();
2066                 atomic_add_int(&unp_defers_count, 1);
2067                 taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2068         } else
2069                 (void) closef(fp, (struct thread *)NULL);
2070 }
2071
2072 static void
2073 unp_process_defers(void *arg __unused, int pending)
2074 {
2075         struct unp_defer *dr;
2076         SLIST_HEAD(, unp_defer) drl;
2077         int count;
2078
2079         SLIST_INIT(&drl);
2080         for (;;) {
2081                 UNP_DEFERRED_LOCK();
2082                 if (SLIST_FIRST(&unp_defers) == NULL) {
2083                         UNP_DEFERRED_UNLOCK();
2084                         break;
2085                 }
2086                 SLIST_SWAP(&unp_defers, &drl, unp_defer);
2087                 UNP_DEFERRED_UNLOCK();
2088                 count = 0;
2089                 while ((dr = SLIST_FIRST(&drl)) != NULL) {
2090                         SLIST_REMOVE_HEAD(&drl, ud_link);
2091                         closef(dr->ud_fp, NULL);
2092                         free(dr, M_TEMP);
2093                         count++;
2094                 }
2095                 atomic_add_int(&unp_defers_count, -count);
2096         }
2097 }
2098
2099 static void
2100 unp_internalize_fp(struct file *fp)
2101 {
2102         struct unpcb *unp;
2103
2104         UNP_LINK_WLOCK();
2105         if ((unp = fptounp(fp)) != NULL) {
2106                 unp->unp_file = fp;
2107                 unp->unp_msgcount++;
2108         }
2109         fhold(fp);
2110         unp_rights++;
2111         UNP_LINK_WUNLOCK();
2112 }
2113
2114 static int
2115 unp_externalize_fp(struct file *fp)
2116 {
2117         struct unpcb *unp;
2118         int ret;
2119
2120         UNP_LINK_WLOCK();
2121         if ((unp = fptounp(fp)) != NULL) {
2122                 unp->unp_msgcount--;
2123                 ret = 1;
2124         } else
2125                 ret = 0;
2126         unp_rights--;
2127         UNP_LINK_WUNLOCK();
2128         return (ret);
2129 }
2130
2131 /*
2132  * unp_defer indicates whether additional work has been defered for a future
2133  * pass through unp_gc().  It is thread local and does not require explicit
2134  * synchronization.
2135  */
2136 static int      unp_marked;
2137 static int      unp_unreachable;
2138
2139 static void
2140 unp_accessable(struct filedescent **fdep, int fdcount)
2141 {
2142         struct unpcb *unp;
2143         struct file *fp;
2144         int i;
2145
2146         for (i = 0; i < fdcount; i++) {
2147                 fp = fdep[i]->fde_file;
2148                 if ((unp = fptounp(fp)) == NULL)
2149                         continue;
2150                 if (unp->unp_gcflag & UNPGC_REF)
2151                         continue;
2152                 unp->unp_gcflag &= ~UNPGC_DEAD;
2153                 unp->unp_gcflag |= UNPGC_REF;
2154                 unp_marked++;
2155         }
2156 }
2157
2158 static void
2159 unp_gc_process(struct unpcb *unp)
2160 {
2161         struct socket *soa;
2162         struct socket *so;
2163         struct file *fp;
2164
2165         /* Already processed. */
2166         if (unp->unp_gcflag & UNPGC_SCANNED)
2167                 return;
2168         fp = unp->unp_file;
2169
2170         /*
2171          * Check for a socket potentially in a cycle.  It must be in a
2172          * queue as indicated by msgcount, and this must equal the file
2173          * reference count.  Note that when msgcount is 0 the file is NULL.
2174          */
2175         if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
2176             unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
2177                 unp->unp_gcflag |= UNPGC_DEAD;
2178                 unp_unreachable++;
2179                 return;
2180         }
2181
2182         /*
2183          * Mark all sockets we reference with RIGHTS.
2184          */
2185         so = unp->unp_socket;
2186         SOCKBUF_LOCK(&so->so_rcv);
2187         unp_scan(so->so_rcv.sb_mb, unp_accessable);
2188         SOCKBUF_UNLOCK(&so->so_rcv);
2189
2190         /*
2191          * Mark all sockets in our accept queue.
2192          */
2193         ACCEPT_LOCK();
2194         TAILQ_FOREACH(soa, &so->so_comp, so_list) {
2195                 SOCKBUF_LOCK(&soa->so_rcv);
2196                 unp_scan(soa->so_rcv.sb_mb, unp_accessable);
2197                 SOCKBUF_UNLOCK(&soa->so_rcv);
2198         }
2199         ACCEPT_UNLOCK();
2200         unp->unp_gcflag |= UNPGC_SCANNED;
2201 }
2202
2203 static int unp_recycled;
2204 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0, 
2205     "Number of unreachable sockets claimed by the garbage collector.");
2206
2207 static int unp_taskcount;
2208 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0, 
2209     "Number of times the garbage collector has run.");
2210
2211 static void
2212 unp_gc(__unused void *arg, int pending)
2213 {
2214         struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2215                                     NULL };
2216         struct unp_head **head;
2217         struct file *f, **unref;
2218         struct unpcb *unp;
2219         int i, total;
2220
2221         unp_taskcount++;
2222         UNP_LIST_LOCK();
2223         /*
2224          * First clear all gc flags from previous runs.
2225          */
2226         for (head = heads; *head != NULL; head++)
2227                 LIST_FOREACH(unp, *head, unp_link)
2228                         unp->unp_gcflag = 0;
2229
2230         /*
2231          * Scan marking all reachable sockets with UNPGC_REF.  Once a socket
2232          * is reachable all of the sockets it references are reachable.
2233          * Stop the scan once we do a complete loop without discovering
2234          * a new reachable socket.
2235          */
2236         do {
2237                 unp_unreachable = 0;
2238                 unp_marked = 0;
2239                 for (head = heads; *head != NULL; head++)
2240                         LIST_FOREACH(unp, *head, unp_link)
2241                                 unp_gc_process(unp);
2242         } while (unp_marked);
2243         UNP_LIST_UNLOCK();
2244         if (unp_unreachable == 0)
2245                 return;
2246
2247         /*
2248          * Allocate space for a local list of dead unpcbs.
2249          */
2250         unref = malloc(unp_unreachable * sizeof(struct file *),
2251             M_TEMP, M_WAITOK);
2252
2253         /*
2254          * Iterate looking for sockets which have been specifically marked
2255          * as as unreachable and store them locally.
2256          */
2257         UNP_LINK_RLOCK();
2258         UNP_LIST_LOCK();
2259         for (total = 0, head = heads; *head != NULL; head++)
2260                 LIST_FOREACH(unp, *head, unp_link)
2261                         if ((unp->unp_gcflag & UNPGC_DEAD) != 0) {
2262                                 f = unp->unp_file;
2263                                 if (unp->unp_msgcount == 0 || f == NULL ||
2264                                     f->f_count != unp->unp_msgcount)
2265                                         continue;
2266                                 unref[total++] = f;
2267                                 fhold(f);
2268                                 KASSERT(total <= unp_unreachable,
2269                                     ("unp_gc: incorrect unreachable count."));
2270                         }
2271         UNP_LIST_UNLOCK();
2272         UNP_LINK_RUNLOCK();
2273
2274         /*
2275          * Now flush all sockets, free'ing rights.  This will free the
2276          * struct files associated with these sockets but leave each socket
2277          * with one remaining ref.
2278          */
2279         for (i = 0; i < total; i++) {
2280                 struct socket *so;
2281
2282                 so = unref[i]->f_data;
2283                 CURVNET_SET(so->so_vnet);
2284                 sorflush(so);
2285                 CURVNET_RESTORE();
2286         }
2287
2288         /*
2289          * And finally release the sockets so they can be reclaimed.
2290          */
2291         for (i = 0; i < total; i++)
2292                 fdrop(unref[i], NULL);
2293         unp_recycled += total;
2294         free(unref, M_TEMP);
2295 }
2296
2297 static void
2298 unp_dispose(struct mbuf *m)
2299 {
2300
2301         if (m)
2302                 unp_scan(m, unp_freerights);
2303 }
2304
2305 static void
2306 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
2307 {
2308         struct mbuf *m;
2309         struct cmsghdr *cm;
2310         void *data;
2311         socklen_t clen, datalen;
2312
2313         while (m0 != NULL) {
2314                 for (m = m0; m; m = m->m_next) {
2315                         if (m->m_type != MT_CONTROL)
2316                                 continue;
2317
2318                         cm = mtod(m, struct cmsghdr *);
2319                         clen = m->m_len;
2320
2321                         while (cm != NULL) {
2322                                 if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2323                                         break;
2324
2325                                 data = CMSG_DATA(cm);
2326                                 datalen = (caddr_t)cm + cm->cmsg_len
2327                                     - (caddr_t)data;
2328
2329                                 if (cm->cmsg_level == SOL_SOCKET &&
2330                                     cm->cmsg_type == SCM_RIGHTS) {
2331                                         (*op)(data, datalen /
2332                                             sizeof(struct filedescent *));
2333                                 }
2334
2335                                 if (CMSG_SPACE(datalen) < clen) {
2336                                         clen -= CMSG_SPACE(datalen);
2337                                         cm = (struct cmsghdr *)
2338                                             ((caddr_t)cm + CMSG_SPACE(datalen));
2339                                 } else {
2340                                         clen = 0;
2341                                         cm = NULL;
2342                                 }
2343                         }
2344                 }
2345                 m0 = m0->m_act;
2346         }
2347 }
2348
2349 /*
2350  * A helper function called by VFS before socket-type vnode reclamation.
2351  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
2352  * use count.
2353  */
2354 void
2355 vfs_unp_reclaim(struct vnode *vp)
2356 {
2357         struct socket *so;
2358         struct unpcb *unp;
2359         int active;
2360
2361         ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
2362         KASSERT(vp->v_type == VSOCK,
2363             ("vfs_unp_reclaim: vp->v_type != VSOCK"));
2364
2365         active = 0;
2366         UNP_LINK_WLOCK();
2367         VOP_UNP_CONNECT(vp, &so);
2368         if (so == NULL)
2369                 goto done;
2370         unp = sotounpcb(so);
2371         if (unp == NULL)
2372                 goto done;
2373         UNP_PCB_LOCK(unp);
2374         if (unp->unp_vnode == vp) {
2375                 VOP_UNP_DETACH(vp);
2376                 unp->unp_vnode = NULL;
2377                 active = 1;
2378         }
2379         UNP_PCB_UNLOCK(unp);
2380 done:
2381         UNP_LINK_WUNLOCK();
2382         if (active)
2383                 vunref(vp);
2384 }
2385
2386 #ifdef DDB
2387 static void
2388 db_print_indent(int indent)
2389 {
2390         int i;
2391
2392         for (i = 0; i < indent; i++)
2393                 db_printf(" ");
2394 }
2395
2396 static void
2397 db_print_unpflags(int unp_flags)
2398 {
2399         int comma;
2400
2401         comma = 0;
2402         if (unp_flags & UNP_HAVEPC) {
2403                 db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2404                 comma = 1;
2405         }
2406         if (unp_flags & UNP_HAVEPCCACHED) {
2407                 db_printf("%sUNP_HAVEPCCACHED", comma ? ", " : "");
2408                 comma = 1;
2409         }
2410         if (unp_flags & UNP_WANTCRED) {
2411                 db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2412                 comma = 1;
2413         }
2414         if (unp_flags & UNP_CONNWAIT) {
2415                 db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2416                 comma = 1;
2417         }
2418         if (unp_flags & UNP_CONNECTING) {
2419                 db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2420                 comma = 1;
2421         }
2422         if (unp_flags & UNP_BINDING) {
2423                 db_printf("%sUNP_BINDING", comma ? ", " : "");
2424                 comma = 1;
2425         }
2426 }
2427
2428 static void
2429 db_print_xucred(int indent, struct xucred *xu)
2430 {
2431         int comma, i;
2432
2433         db_print_indent(indent);
2434         db_printf("cr_version: %u   cr_uid: %u   cr_ngroups: %d\n",
2435             xu->cr_version, xu->cr_uid, xu->cr_ngroups);
2436         db_print_indent(indent);
2437         db_printf("cr_groups: ");
2438         comma = 0;
2439         for (i = 0; i < xu->cr_ngroups; i++) {
2440                 db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2441                 comma = 1;
2442         }
2443         db_printf("\n");
2444 }
2445
2446 static void
2447 db_print_unprefs(int indent, struct unp_head *uh)
2448 {
2449         struct unpcb *unp;
2450         int counter;
2451
2452         counter = 0;
2453         LIST_FOREACH(unp, uh, unp_reflink) {
2454                 if (counter % 4 == 0)
2455                         db_print_indent(indent);
2456                 db_printf("%p  ", unp);
2457                 if (counter % 4 == 3)
2458                         db_printf("\n");
2459                 counter++;
2460         }
2461         if (counter != 0 && counter % 4 != 0)
2462                 db_printf("\n");
2463 }
2464
2465 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2466 {
2467         struct unpcb *unp;
2468
2469         if (!have_addr) {
2470                 db_printf("usage: show unpcb <addr>\n");
2471                 return;
2472         }
2473         unp = (struct unpcb *)addr;
2474
2475         db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2476             unp->unp_vnode);
2477
2478         db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
2479             unp->unp_conn);
2480
2481         db_printf("unp_refs:\n");
2482         db_print_unprefs(2, &unp->unp_refs);
2483
2484         /* XXXRW: Would be nice to print the full address, if any. */
2485         db_printf("unp_addr: %p\n", unp->unp_addr);
2486
2487         db_printf("unp_gencnt: %llu\n",
2488             (unsigned long long)unp->unp_gencnt);
2489
2490         db_printf("unp_flags: %x (", unp->unp_flags);
2491         db_print_unpflags(unp->unp_flags);
2492         db_printf(")\n");
2493
2494         db_printf("unp_peercred:\n");
2495         db_print_xucred(2, &unp->unp_peercred);
2496
2497         db_printf("unp_refcount: %u\n", unp->unp_refcount);
2498 }
2499 #endif