]> CyberLeo.Net >> Repos - FreeBSD/stable/8.git/blob - sys/pci/if_rl.c
MFC r211648:
[FreeBSD/stable/8.git] / sys / pci / if_rl.c
1 /*-
2  * Copyright (c) 1997, 1998
3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *      This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35
36 /*
37  * RealTek 8129/8139 PCI NIC driver
38  *
39  * Supports several extremely cheap PCI 10/100 adapters based on
40  * the RealTek chipset. Datasheets can be obtained from
41  * www.realtek.com.tw.
42  *
43  * Written by Bill Paul <wpaul@ctr.columbia.edu>
44  * Electrical Engineering Department
45  * Columbia University, New York City
46  */
47 /*
48  * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
49  * probably the worst PCI ethernet controller ever made, with the possible
50  * exception of the FEAST chip made by SMC. The 8139 supports bus-master
51  * DMA, but it has a terrible interface that nullifies any performance
52  * gains that bus-master DMA usually offers.
53  *
54  * For transmission, the chip offers a series of four TX descriptor
55  * registers. Each transmit frame must be in a contiguous buffer, aligned
56  * on a longword (32-bit) boundary. This means we almost always have to
57  * do mbuf copies in order to transmit a frame, except in the unlikely
58  * case where a) the packet fits into a single mbuf, and b) the packet
59  * is 32-bit aligned within the mbuf's data area. The presence of only
60  * four descriptor registers means that we can never have more than four
61  * packets queued for transmission at any one time.
62  *
63  * Reception is not much better. The driver has to allocate a single large
64  * buffer area (up to 64K in size) into which the chip will DMA received
65  * frames. Because we don't know where within this region received packets
66  * will begin or end, we have no choice but to copy data from the buffer
67  * area into mbufs in order to pass the packets up to the higher protocol
68  * levels.
69  *
70  * It's impossible given this rotten design to really achieve decent
71  * performance at 100Mbps, unless you happen to have a 400Mhz PII or
72  * some equally overmuscled CPU to drive it.
73  *
74  * On the bright side, the 8139 does have a built-in PHY, although
75  * rather than using an MDIO serial interface like most other NICs, the
76  * PHY registers are directly accessible through the 8139's register
77  * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
78  * filter.
79  *
80  * The 8129 chip is an older version of the 8139 that uses an external PHY
81  * chip. The 8129 has a serial MDIO interface for accessing the MII where
82  * the 8139 lets you directly access the on-board PHY registers. We need
83  * to select which interface to use depending on the chip type.
84  */
85
86 #ifdef HAVE_KERNEL_OPTION_HEADERS
87 #include "opt_device_polling.h"
88 #endif
89
90 #include <sys/param.h>
91 #include <sys/endian.h>
92 #include <sys/systm.h>
93 #include <sys/sockio.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/kernel.h>
97 #include <sys/module.h>
98 #include <sys/socket.h>
99 #include <sys/sysctl.h>
100
101 #include <net/if.h>
102 #include <net/if_arp.h>
103 #include <net/ethernet.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 #include <net/if_types.h>
107
108 #include <net/bpf.h>
109
110 #include <machine/bus.h>
111 #include <machine/resource.h>
112 #include <sys/bus.h>
113 #include <sys/rman.h>
114
115 #include <dev/mii/mii.h>
116 #include <dev/mii/miivar.h>
117
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120
121 MODULE_DEPEND(rl, pci, 1, 1, 1);
122 MODULE_DEPEND(rl, ether, 1, 1, 1);
123 MODULE_DEPEND(rl, miibus, 1, 1, 1);
124
125 /* "device miibus" required.  See GENERIC if you get errors here. */
126 #include "miibus_if.h"
127
128 #include <pci/if_rlreg.h>
129
130 /*
131  * Various supported device vendors/types and their names.
132  */
133 static struct rl_type rl_devs[] = {
134         { RT_VENDORID, RT_DEVICEID_8129, RL_8129,
135                 "RealTek 8129 10/100BaseTX" },
136         { RT_VENDORID, RT_DEVICEID_8139, RL_8139,
137                 "RealTek 8139 10/100BaseTX" },
138         { RT_VENDORID, RT_DEVICEID_8139D, RL_8139,
139                 "RealTek 8139 10/100BaseTX" },
140         { RT_VENDORID, RT_DEVICEID_8138, RL_8139,
141                 "RealTek 8139 10/100BaseTX CardBus" },
142         { RT_VENDORID, RT_DEVICEID_8100, RL_8139,
143                 "RealTek 8100 10/100BaseTX" },
144         { ACCTON_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
145                 "Accton MPX 5030/5038 10/100BaseTX" },
146         { DELTA_VENDORID, DELTA_DEVICEID_8139, RL_8139,
147                 "Delta Electronics 8139 10/100BaseTX" },
148         { ADDTRON_VENDORID, ADDTRON_DEVICEID_8139, RL_8139,
149                 "Addtron Technology 8139 10/100BaseTX" },
150         { DLINK_VENDORID, DLINK_DEVICEID_530TXPLUS, RL_8139,
151                 "D-Link DFE-530TX+ 10/100BaseTX" },
152         { DLINK_VENDORID, DLINK_DEVICEID_690TXD, RL_8139,
153                 "D-Link DFE-690TXD 10/100BaseTX" },
154         { NORTEL_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
155                 "Nortel Networks 10/100BaseTX" },
156         { COREGA_VENDORID, COREGA_DEVICEID_FETHERCBTXD, RL_8139,
157                 "Corega FEther CB-TXD" },
158         { COREGA_VENDORID, COREGA_DEVICEID_FETHERIICBTXD, RL_8139,
159                 "Corega FEtherII CB-TXD" },
160         { PEPPERCON_VENDORID, PEPPERCON_DEVICEID_ROLF, RL_8139,
161                 "Peppercon AG ROL-F" },
162         { PLANEX_VENDORID, PLANEX_DEVICEID_FNW3603TX, RL_8139,
163                 "Planex FNW-3603-TX" },
164         { PLANEX_VENDORID, PLANEX_DEVICEID_FNW3800TX, RL_8139,
165                 "Planex FNW-3800-TX" },
166         { CP_VENDORID, RT_DEVICEID_8139, RL_8139,
167                 "Compaq HNE-300" },
168         { LEVEL1_VENDORID, LEVEL1_DEVICEID_FPC0106TX, RL_8139,
169                 "LevelOne FPC-0106TX" },
170         { EDIMAX_VENDORID, EDIMAX_DEVICEID_EP4103DL, RL_8139,
171                 "Edimax EP-4103DL CardBus" }
172 };
173
174 static int rl_attach(device_t);
175 static int rl_detach(device_t);
176 static void rl_dmamap_cb(void *, bus_dma_segment_t *, int, int);
177 static int rl_dma_alloc(struct rl_softc *);
178 static void rl_dma_free(struct rl_softc *);
179 static void rl_eeprom_putbyte(struct rl_softc *, int);
180 static void rl_eeprom_getword(struct rl_softc *, int, uint16_t *);
181 static int rl_encap(struct rl_softc *, struct mbuf **);
182 static int rl_list_tx_init(struct rl_softc *);
183 static int rl_list_rx_init(struct rl_softc *);
184 static int rl_ifmedia_upd(struct ifnet *);
185 static void rl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
186 static int rl_ioctl(struct ifnet *, u_long, caddr_t);
187 static void rl_intr(void *);
188 static void rl_init(void *);
189 static void rl_init_locked(struct rl_softc *sc);
190 static void rl_mii_send(struct rl_softc *, uint32_t, int);
191 static void rl_mii_sync(struct rl_softc *);
192 static int rl_mii_readreg(struct rl_softc *, struct rl_mii_frame *);
193 static int rl_mii_writereg(struct rl_softc *, struct rl_mii_frame *);
194 static int rl_miibus_readreg(device_t, int, int);
195 static void rl_miibus_statchg(device_t);
196 static int rl_miibus_writereg(device_t, int, int, int);
197 #ifdef DEVICE_POLLING
198 static int rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
199 static int rl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count);
200 #endif
201 static int rl_probe(device_t);
202 static void rl_read_eeprom(struct rl_softc *, uint8_t *, int, int, int);
203 static void rl_reset(struct rl_softc *);
204 static int rl_resume(device_t);
205 static int rl_rxeof(struct rl_softc *);
206 static void rl_setmulti(struct rl_softc *);
207 static int rl_shutdown(device_t);
208 static void rl_start(struct ifnet *);
209 static void rl_start_locked(struct ifnet *);
210 static void rl_stop(struct rl_softc *);
211 static int rl_suspend(device_t);
212 static void rl_tick(void *);
213 static void rl_txeof(struct rl_softc *);
214 static void rl_watchdog(struct rl_softc *);
215 static void rl_setwol(struct rl_softc *);
216 static void rl_clrwol(struct rl_softc *);
217
218 static device_method_t rl_methods[] = {
219         /* Device interface */
220         DEVMETHOD(device_probe,         rl_probe),
221         DEVMETHOD(device_attach,        rl_attach),
222         DEVMETHOD(device_detach,        rl_detach),
223         DEVMETHOD(device_suspend,       rl_suspend),
224         DEVMETHOD(device_resume,        rl_resume),
225         DEVMETHOD(device_shutdown,      rl_shutdown),
226
227         /* bus interface */
228         DEVMETHOD(bus_print_child,      bus_generic_print_child),
229         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
230
231         /* MII interface */
232         DEVMETHOD(miibus_readreg,       rl_miibus_readreg),
233         DEVMETHOD(miibus_writereg,      rl_miibus_writereg),
234         DEVMETHOD(miibus_statchg,       rl_miibus_statchg),
235
236         { 0, 0 }
237 };
238
239 static driver_t rl_driver = {
240         "rl",
241         rl_methods,
242         sizeof(struct rl_softc)
243 };
244
245 static devclass_t rl_devclass;
246
247 DRIVER_MODULE(rl, pci, rl_driver, rl_devclass, 0, 0);
248 DRIVER_MODULE(rl, cardbus, rl_driver, rl_devclass, 0, 0);
249 DRIVER_MODULE(miibus, rl, miibus_driver, miibus_devclass, 0, 0);
250
251 #define EE_SET(x)                                       \
252         CSR_WRITE_1(sc, RL_EECMD,                       \
253                 CSR_READ_1(sc, RL_EECMD) | x)
254
255 #define EE_CLR(x)                                       \
256         CSR_WRITE_1(sc, RL_EECMD,                       \
257                 CSR_READ_1(sc, RL_EECMD) & ~x)
258
259 /*
260  * Send a read command and address to the EEPROM, check for ACK.
261  */
262 static void
263 rl_eeprom_putbyte(struct rl_softc *sc, int addr)
264 {
265         register int            d, i;
266
267         d = addr | sc->rl_eecmd_read;
268
269         /*
270          * Feed in each bit and strobe the clock.
271          */
272         for (i = 0x400; i; i >>= 1) {
273                 if (d & i) {
274                         EE_SET(RL_EE_DATAIN);
275                 } else {
276                         EE_CLR(RL_EE_DATAIN);
277                 }
278                 DELAY(100);
279                 EE_SET(RL_EE_CLK);
280                 DELAY(150);
281                 EE_CLR(RL_EE_CLK);
282                 DELAY(100);
283         }
284 }
285
286 /*
287  * Read a word of data stored in the EEPROM at address 'addr.'
288  */
289 static void
290 rl_eeprom_getword(struct rl_softc *sc, int addr, uint16_t *dest)
291 {
292         register int            i;
293         uint16_t                word = 0;
294
295         /* Enter EEPROM access mode. */
296         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
297
298         /*
299          * Send address of word we want to read.
300          */
301         rl_eeprom_putbyte(sc, addr);
302
303         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
304
305         /*
306          * Start reading bits from EEPROM.
307          */
308         for (i = 0x8000; i; i >>= 1) {
309                 EE_SET(RL_EE_CLK);
310                 DELAY(100);
311                 if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
312                         word |= i;
313                 EE_CLR(RL_EE_CLK);
314                 DELAY(100);
315         }
316
317         /* Turn off EEPROM access mode. */
318         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
319
320         *dest = word;
321 }
322
323 /*
324  * Read a sequence of words from the EEPROM.
325  */
326 static void
327 rl_read_eeprom(struct rl_softc *sc, uint8_t *dest, int off, int cnt, int swap)
328 {
329         int                     i;
330         uint16_t                word = 0, *ptr;
331
332         for (i = 0; i < cnt; i++) {
333                 rl_eeprom_getword(sc, off + i, &word);
334                 ptr = (uint16_t *)(dest + (i * 2));
335                 if (swap)
336                         *ptr = ntohs(word);
337                 else
338                         *ptr = word;
339         }
340 }
341
342 /*
343  * MII access routines are provided for the 8129, which
344  * doesn't have a built-in PHY. For the 8139, we fake things
345  * up by diverting rl_phy_readreg()/rl_phy_writereg() to the
346  * direct access PHY registers.
347  */
348 #define MII_SET(x)                                      \
349         CSR_WRITE_1(sc, RL_MII,                         \
350                 CSR_READ_1(sc, RL_MII) | (x))
351
352 #define MII_CLR(x)                                      \
353         CSR_WRITE_1(sc, RL_MII,                         \
354                 CSR_READ_1(sc, RL_MII) & ~(x))
355
356 /*
357  * Sync the PHYs by setting data bit and strobing the clock 32 times.
358  */
359 static void
360 rl_mii_sync(struct rl_softc *sc)
361 {
362         register int            i;
363
364         MII_SET(RL_MII_DIR|RL_MII_DATAOUT);
365
366         for (i = 0; i < 32; i++) {
367                 MII_SET(RL_MII_CLK);
368                 DELAY(1);
369                 MII_CLR(RL_MII_CLK);
370                 DELAY(1);
371         }
372 }
373
374 /*
375  * Clock a series of bits through the MII.
376  */
377 static void
378 rl_mii_send(struct rl_softc *sc, uint32_t bits, int cnt)
379 {
380         int                     i;
381
382         MII_CLR(RL_MII_CLK);
383
384         for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
385                 if (bits & i) {
386                         MII_SET(RL_MII_DATAOUT);
387                 } else {
388                         MII_CLR(RL_MII_DATAOUT);
389                 }
390                 DELAY(1);
391                 MII_CLR(RL_MII_CLK);
392                 DELAY(1);
393                 MII_SET(RL_MII_CLK);
394         }
395 }
396
397 /*
398  * Read an PHY register through the MII.
399  */
400 static int
401 rl_mii_readreg(struct rl_softc *sc, struct rl_mii_frame *frame)
402 {
403         int                     i, ack;
404
405         /* Set up frame for RX. */
406         frame->mii_stdelim = RL_MII_STARTDELIM;
407         frame->mii_opcode = RL_MII_READOP;
408         frame->mii_turnaround = 0;
409         frame->mii_data = 0;
410
411         CSR_WRITE_2(sc, RL_MII, 0);
412
413         /* Turn on data xmit. */
414         MII_SET(RL_MII_DIR);
415
416         rl_mii_sync(sc);
417
418         /* Send command/address info. */
419         rl_mii_send(sc, frame->mii_stdelim, 2);
420         rl_mii_send(sc, frame->mii_opcode, 2);
421         rl_mii_send(sc, frame->mii_phyaddr, 5);
422         rl_mii_send(sc, frame->mii_regaddr, 5);
423
424         /* Idle bit */
425         MII_CLR((RL_MII_CLK|RL_MII_DATAOUT));
426         DELAY(1);
427         MII_SET(RL_MII_CLK);
428         DELAY(1);
429
430         /* Turn off xmit. */
431         MII_CLR(RL_MII_DIR);
432
433         /* Check for ack */
434         MII_CLR(RL_MII_CLK);
435         DELAY(1);
436         ack = CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN;
437         MII_SET(RL_MII_CLK);
438         DELAY(1);
439
440         /*
441          * Now try reading data bits. If the ack failed, we still
442          * need to clock through 16 cycles to keep the PHY(s) in sync.
443          */
444         if (ack) {
445                 for(i = 0; i < 16; i++) {
446                         MII_CLR(RL_MII_CLK);
447                         DELAY(1);
448                         MII_SET(RL_MII_CLK);
449                         DELAY(1);
450                 }
451                 goto fail;
452         }
453
454         for (i = 0x8000; i; i >>= 1) {
455                 MII_CLR(RL_MII_CLK);
456                 DELAY(1);
457                 if (!ack) {
458                         if (CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN)
459                                 frame->mii_data |= i;
460                         DELAY(1);
461                 }
462                 MII_SET(RL_MII_CLK);
463                 DELAY(1);
464         }
465
466 fail:
467         MII_CLR(RL_MII_CLK);
468         DELAY(1);
469         MII_SET(RL_MII_CLK);
470         DELAY(1);
471
472         return (ack ? 1 : 0);
473 }
474
475 /*
476  * Write to a PHY register through the MII.
477  */
478 static int
479 rl_mii_writereg(struct rl_softc *sc, struct rl_mii_frame *frame)
480 {
481
482         /* Set up frame for TX. */
483         frame->mii_stdelim = RL_MII_STARTDELIM;
484         frame->mii_opcode = RL_MII_WRITEOP;
485         frame->mii_turnaround = RL_MII_TURNAROUND;
486
487         /* Turn on data output. */
488         MII_SET(RL_MII_DIR);
489
490         rl_mii_sync(sc);
491
492         rl_mii_send(sc, frame->mii_stdelim, 2);
493         rl_mii_send(sc, frame->mii_opcode, 2);
494         rl_mii_send(sc, frame->mii_phyaddr, 5);
495         rl_mii_send(sc, frame->mii_regaddr, 5);
496         rl_mii_send(sc, frame->mii_turnaround, 2);
497         rl_mii_send(sc, frame->mii_data, 16);
498
499         /* Idle bit. */
500         MII_SET(RL_MII_CLK);
501         DELAY(1);
502         MII_CLR(RL_MII_CLK);
503         DELAY(1);
504
505         /* Turn off xmit. */
506         MII_CLR(RL_MII_DIR);
507
508         return (0);
509 }
510
511 static int
512 rl_miibus_readreg(device_t dev, int phy, int reg)
513 {
514         struct rl_softc         *sc;
515         struct rl_mii_frame     frame;
516         uint16_t                rval = 0;
517         uint16_t                rl8139_reg = 0;
518
519         sc = device_get_softc(dev);
520
521         if (sc->rl_type == RL_8139) {
522                 /* Pretend the internal PHY is only at address 0 */
523                 if (phy) {
524                         return (0);
525                 }
526                 switch (reg) {
527                 case MII_BMCR:
528                         rl8139_reg = RL_BMCR;
529                         break;
530                 case MII_BMSR:
531                         rl8139_reg = RL_BMSR;
532                         break;
533                 case MII_ANAR:
534                         rl8139_reg = RL_ANAR;
535                         break;
536                 case MII_ANER:
537                         rl8139_reg = RL_ANER;
538                         break;
539                 case MII_ANLPAR:
540                         rl8139_reg = RL_LPAR;
541                         break;
542                 case MII_PHYIDR1:
543                 case MII_PHYIDR2:
544                         return (0);
545                 /*
546                  * Allow the rlphy driver to read the media status
547                  * register. If we have a link partner which does not
548                  * support NWAY, this is the register which will tell
549                  * us the results of parallel detection.
550                  */
551                 case RL_MEDIASTAT:
552                         rval = CSR_READ_1(sc, RL_MEDIASTAT);
553                         return (rval);
554                 default:
555                         device_printf(sc->rl_dev, "bad phy register\n");
556                         return (0);
557                 }
558                 rval = CSR_READ_2(sc, rl8139_reg);
559                 return (rval);
560         }
561
562         bzero((char *)&frame, sizeof(frame));
563         frame.mii_phyaddr = phy;
564         frame.mii_regaddr = reg;
565         rl_mii_readreg(sc, &frame);
566
567         return (frame.mii_data);
568 }
569
570 static int
571 rl_miibus_writereg(device_t dev, int phy, int reg, int data)
572 {
573         struct rl_softc         *sc;
574         struct rl_mii_frame     frame;
575         uint16_t                rl8139_reg = 0;
576
577         sc = device_get_softc(dev);
578
579         if (sc->rl_type == RL_8139) {
580                 /* Pretend the internal PHY is only at address 0 */
581                 if (phy) {
582                         return (0);
583                 }
584                 switch (reg) {
585                 case MII_BMCR:
586                         rl8139_reg = RL_BMCR;
587                         break;
588                 case MII_BMSR:
589                         rl8139_reg = RL_BMSR;
590                         break;
591                 case MII_ANAR:
592                         rl8139_reg = RL_ANAR;
593                         break;
594                 case MII_ANER:
595                         rl8139_reg = RL_ANER;
596                         break;
597                 case MII_ANLPAR:
598                         rl8139_reg = RL_LPAR;
599                         break;
600                 case MII_PHYIDR1:
601                 case MII_PHYIDR2:
602                         return (0);
603                         break;
604                 default:
605                         device_printf(sc->rl_dev, "bad phy register\n");
606                         return (0);
607                 }
608                 CSR_WRITE_2(sc, rl8139_reg, data);
609                 return (0);
610         }
611
612         bzero((char *)&frame, sizeof(frame));
613         frame.mii_phyaddr = phy;
614         frame.mii_regaddr = reg;
615         frame.mii_data = data;
616         rl_mii_writereg(sc, &frame);
617
618         return (0);
619 }
620
621 static void
622 rl_miibus_statchg(device_t dev)
623 {
624         struct rl_softc         *sc;
625         struct ifnet            *ifp;
626         struct mii_data         *mii;
627
628         sc = device_get_softc(dev);
629         mii = device_get_softc(sc->rl_miibus);
630         ifp = sc->rl_ifp;
631         if (mii == NULL || ifp == NULL ||
632             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
633                 return;
634
635         sc->rl_flags &= ~RL_FLAG_LINK;
636         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
637             (IFM_ACTIVE | IFM_AVALID)) {
638                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
639                 case IFM_10_T:
640                 case IFM_100_TX:
641                         sc->rl_flags |= RL_FLAG_LINK;
642                         break;
643                 default:
644                         break;
645                 }
646         }
647         /*
648          * RealTek controllers do not provide any interface to
649          * Tx/Rx MACs for resolved speed, duplex and flow-control
650          * parameters.
651          */
652 }
653
654 /*
655  * Program the 64-bit multicast hash filter.
656  */
657 static void
658 rl_setmulti(struct rl_softc *sc)
659 {
660         struct ifnet            *ifp = sc->rl_ifp;
661         int                     h = 0;
662         uint32_t                hashes[2] = { 0, 0 };
663         struct ifmultiaddr      *ifma;
664         uint32_t                rxfilt;
665         int                     mcnt = 0;
666
667         RL_LOCK_ASSERT(sc);
668
669         rxfilt = CSR_READ_4(sc, RL_RXCFG);
670
671         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
672                 rxfilt |= RL_RXCFG_RX_MULTI;
673                 CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
674                 CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
675                 CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
676                 return;
677         }
678
679         /* first, zot all the existing hash bits */
680         CSR_WRITE_4(sc, RL_MAR0, 0);
681         CSR_WRITE_4(sc, RL_MAR4, 0);
682
683         /* now program new ones */
684         if_maddr_rlock(ifp);
685         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
686                 if (ifma->ifma_addr->sa_family != AF_LINK)
687                         continue;
688                 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
689                     ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
690                 if (h < 32)
691                         hashes[0] |= (1 << h);
692                 else
693                         hashes[1] |= (1 << (h - 32));
694                 mcnt++;
695         }
696         if_maddr_runlock(ifp);
697
698         if (mcnt)
699                 rxfilt |= RL_RXCFG_RX_MULTI;
700         else
701                 rxfilt &= ~RL_RXCFG_RX_MULTI;
702
703         CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
704         CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
705         CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
706 }
707
708 static void
709 rl_reset(struct rl_softc *sc)
710 {
711         register int            i;
712
713         RL_LOCK_ASSERT(sc);
714
715         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
716
717         for (i = 0; i < RL_TIMEOUT; i++) {
718                 DELAY(10);
719                 if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
720                         break;
721         }
722         if (i == RL_TIMEOUT)
723                 device_printf(sc->rl_dev, "reset never completed!\n");
724 }
725
726 /*
727  * Probe for a RealTek 8129/8139 chip. Check the PCI vendor and device
728  * IDs against our list and return a device name if we find a match.
729  */
730 static int
731 rl_probe(device_t dev)
732 {
733         struct rl_type          *t;
734         uint16_t                devid, revid, vendor;
735         int                     i;
736         
737         vendor = pci_get_vendor(dev);
738         devid = pci_get_device(dev);
739         revid = pci_get_revid(dev);
740
741         if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
742                 if (revid == 0x20) {
743                         /* 8139C+, let re(4) take care of this device. */
744                         return (ENXIO);
745                 }
746         }
747         t = rl_devs;
748         for (i = 0; i < sizeof(rl_devs) / sizeof(rl_devs[0]); i++, t++) {
749                 if (vendor == t->rl_vid && devid == t->rl_did) {
750                         device_set_desc(dev, t->rl_name);
751                         return (BUS_PROBE_DEFAULT);
752                 }
753         }
754
755         return (ENXIO);
756 }
757
758 struct rl_dmamap_arg {
759         bus_addr_t      rl_busaddr;
760 };
761
762 static void
763 rl_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
764 {
765         struct rl_dmamap_arg    *ctx;
766
767         if (error != 0)
768                 return;
769
770         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
771
772         ctx = (struct rl_dmamap_arg *)arg;
773         ctx->rl_busaddr = segs[0].ds_addr;
774 }
775
776 /*
777  * Attach the interface. Allocate softc structures, do ifmedia
778  * setup and ethernet/BPF attach.
779  */
780 static int
781 rl_attach(device_t dev)
782 {
783         uint8_t                 eaddr[ETHER_ADDR_LEN];
784         uint16_t                as[3];
785         struct ifnet            *ifp;
786         struct rl_softc         *sc;
787         struct rl_type          *t;
788         struct sysctl_ctx_list  *ctx;
789         struct sysctl_oid_list  *children;
790         int                     error = 0, hwrev, i, pmc, rid;
791         int                     prefer_iomap, unit;
792         uint16_t                rl_did = 0;
793         char                    tn[32];
794
795         sc = device_get_softc(dev);
796         unit = device_get_unit(dev);
797         sc->rl_dev = dev;
798
799         sc->rl_twister_enable = 0;
800         snprintf(tn, sizeof(tn), "dev.rl.%d.twister_enable", unit);
801         TUNABLE_INT_FETCH(tn, &sc->rl_twister_enable);
802         ctx = device_get_sysctl_ctx(sc->rl_dev);
803         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev));
804         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "twister_enable", CTLFLAG_RD,
805            &sc->rl_twister_enable, 0, "");
806
807         mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
808             MTX_DEF);
809         callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
810
811         pci_enable_busmaster(dev);
812
813
814         /*
815          * Map control/status registers.
816          * Default to using PIO access for this driver. On SMP systems,
817          * there appear to be problems with memory mapped mode: it looks
818          * like doing too many memory mapped access back to back in rapid
819          * succession can hang the bus. I'm inclined to blame this on
820          * crummy design/construction on the part of RealTek. Memory
821          * mapped mode does appear to work on uniprocessor systems though.
822          */
823         prefer_iomap = 1;
824         snprintf(tn, sizeof(tn), "dev.rl.%d.prefer_iomap", unit);
825         TUNABLE_INT_FETCH(tn, &prefer_iomap);
826         if (prefer_iomap) {
827                 sc->rl_res_id = PCIR_BAR(0);
828                 sc->rl_res_type = SYS_RES_IOPORT;
829                 sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
830                     &sc->rl_res_id, RF_ACTIVE);
831         }
832         if (prefer_iomap == 0 || sc->rl_res == NULL) {
833                 sc->rl_res_id = PCIR_BAR(1);
834                 sc->rl_res_type = SYS_RES_MEMORY;
835                 sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
836                     &sc->rl_res_id, RF_ACTIVE);
837         }
838         if (sc->rl_res == NULL) {
839                 device_printf(dev, "couldn't map ports/memory\n");
840                 error = ENXIO;
841                 goto fail;
842         }
843
844 #ifdef notdef
845         /*
846          * Detect the Realtek 8139B. For some reason, this chip is very
847          * unstable when left to autoselect the media
848          * The best workaround is to set the device to the required
849          * media type or to set it to the 10 Meg speed.
850          */
851         if ((rman_get_end(sc->rl_res) - rman_get_start(sc->rl_res)) == 0xFF)
852                 device_printf(dev,
853 "Realtek 8139B detected. Warning, this may be unstable in autoselect mode\n");
854 #endif
855
856         sc->rl_btag = rman_get_bustag(sc->rl_res);
857         sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
858
859         /* Allocate interrupt */
860         rid = 0;
861         sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
862             RF_SHAREABLE | RF_ACTIVE);
863
864         if (sc->rl_irq[0] == NULL) {
865                 device_printf(dev, "couldn't map interrupt\n");
866                 error = ENXIO;
867                 goto fail;
868         }
869
870         /*
871          * Reset the adapter. Only take the lock here as it's needed in
872          * order to call rl_reset().
873          */
874         RL_LOCK(sc);
875         rl_reset(sc);
876         RL_UNLOCK(sc);
877
878         sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
879         rl_read_eeprom(sc, (uint8_t *)&rl_did, 0, 1, 0);
880         if (rl_did != 0x8129)
881                 sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
882
883         /*
884          * Get station address from the EEPROM.
885          */
886         rl_read_eeprom(sc, (uint8_t *)as, RL_EE_EADDR, 3, 0);
887         for (i = 0; i < 3; i++) {
888                 eaddr[(i * 2) + 0] = as[i] & 0xff;
889                 eaddr[(i * 2) + 1] = as[i] >> 8;
890         }
891
892         /*
893          * Now read the exact device type from the EEPROM to find
894          * out if it's an 8129 or 8139.
895          */
896         rl_read_eeprom(sc, (uint8_t *)&rl_did, RL_EE_PCI_DID, 1, 0);
897
898         t = rl_devs;
899         sc->rl_type = 0;
900         while(t->rl_name != NULL) {
901                 if (rl_did == t->rl_did) {
902                         sc->rl_type = t->rl_basetype;
903                         break;
904                 }
905                 t++;
906         }
907
908         if (sc->rl_type == 0) {
909                 device_printf(dev, "unknown device ID: %x assuming 8139\n",
910                     rl_did);
911                 sc->rl_type = RL_8139;
912                 /*
913                  * Read RL_IDR register to get ethernet address as accessing
914                  * EEPROM may not extract correct address.
915                  */
916                 for (i = 0; i < ETHER_ADDR_LEN; i++)
917                         eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
918         }
919
920         if ((error = rl_dma_alloc(sc)) != 0)
921                 goto fail;
922
923         ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
924         if (ifp == NULL) {
925                 device_printf(dev, "can not if_alloc()\n");
926                 error = ENOSPC;
927                 goto fail;
928         }
929
930         /* Do MII setup */
931         if (mii_phy_probe(dev, &sc->rl_miibus,
932             rl_ifmedia_upd, rl_ifmedia_sts)) {
933                 device_printf(dev, "MII without any phy!\n");
934                 error = ENXIO;
935                 goto fail;
936         }
937
938         ifp->if_softc = sc;
939         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
940         ifp->if_mtu = ETHERMTU;
941         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
942         ifp->if_ioctl = rl_ioctl;
943         ifp->if_start = rl_start;
944         ifp->if_init = rl_init;
945         ifp->if_capabilities = IFCAP_VLAN_MTU;
946         /* Check WOL for RTL8139B or newer controllers. */
947         if (sc->rl_type == RL_8139 &&
948             pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) == 0) {
949                 hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
950                 switch (hwrev) {
951                 case RL_HWREV_8139B:
952                 case RL_HWREV_8130:
953                 case RL_HWREV_8139C:
954                 case RL_HWREV_8139D:
955                 case RL_HWREV_8101:
956                 case RL_HWREV_8100:
957                         ifp->if_capabilities |= IFCAP_WOL;
958                         /* Disable WOL. */
959                         rl_clrwol(sc);
960                         break;
961                 default:
962                         break;
963                 }
964         }
965         ifp->if_capenable = ifp->if_capabilities;
966 #ifdef DEVICE_POLLING
967         ifp->if_capabilities |= IFCAP_POLLING;
968 #endif
969         IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
970         ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
971         IFQ_SET_READY(&ifp->if_snd);
972
973         /*
974          * Call MI attach routine.
975          */
976         ether_ifattach(ifp, eaddr);
977
978         /* Hook interrupt last to avoid having to lock softc */
979         error = bus_setup_intr(dev, sc->rl_irq[0], INTR_TYPE_NET | INTR_MPSAFE,
980             NULL, rl_intr, sc, &sc->rl_intrhand[0]);
981         if (error) {
982                 device_printf(sc->rl_dev, "couldn't set up irq\n");
983                 ether_ifdetach(ifp);
984         }
985
986 fail:
987         if (error)
988                 rl_detach(dev);
989
990         return (error);
991 }
992
993 /*
994  * Shutdown hardware and free up resources. This can be called any
995  * time after the mutex has been initialized. It is called in both
996  * the error case in attach and the normal detach case so it needs
997  * to be careful about only freeing resources that have actually been
998  * allocated.
999  */
1000 static int
1001 rl_detach(device_t dev)
1002 {
1003         struct rl_softc         *sc;
1004         struct ifnet            *ifp;
1005
1006         sc = device_get_softc(dev);
1007         ifp = sc->rl_ifp;
1008
1009         KASSERT(mtx_initialized(&sc->rl_mtx), ("rl mutex not initialized"));
1010
1011 #ifdef DEVICE_POLLING
1012         if (ifp->if_capenable & IFCAP_POLLING)
1013                 ether_poll_deregister(ifp);
1014 #endif
1015         /* These should only be active if attach succeeded */
1016         if (device_is_attached(dev)) {
1017                 RL_LOCK(sc);
1018                 rl_stop(sc);
1019                 RL_UNLOCK(sc);
1020                 callout_drain(&sc->rl_stat_callout);
1021                 ether_ifdetach(ifp);
1022         }
1023 #if 0
1024         sc->suspended = 1;
1025 #endif
1026         if (sc->rl_miibus)
1027                 device_delete_child(dev, sc->rl_miibus);
1028         bus_generic_detach(dev);
1029
1030         if (sc->rl_intrhand[0])
1031                 bus_teardown_intr(dev, sc->rl_irq[0], sc->rl_intrhand[0]);
1032         if (sc->rl_irq[0])
1033                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq[0]);
1034         if (sc->rl_res)
1035                 bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
1036                     sc->rl_res);
1037
1038         if (ifp)
1039                 if_free(ifp);
1040
1041         rl_dma_free(sc);
1042
1043         mtx_destroy(&sc->rl_mtx);
1044
1045         return (0);
1046 }
1047
1048 static int
1049 rl_dma_alloc(struct rl_softc *sc)
1050 {
1051         struct rl_dmamap_arg    ctx;
1052         int                     error, i;
1053
1054         /*
1055          * Allocate the parent bus DMA tag appropriate for PCI.
1056          */
1057         error = bus_dma_tag_create(bus_get_dma_tag(sc->rl_dev), /* parent */
1058             1, 0,                       /* alignment, boundary */
1059             BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
1060             BUS_SPACE_MAXADDR,          /* highaddr */
1061             NULL, NULL,                 /* filter, filterarg */
1062             BUS_SPACE_MAXSIZE_32BIT, 0, /* maxsize, nsegments */
1063             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
1064             0,                          /* flags */
1065             NULL, NULL,                 /* lockfunc, lockarg */
1066             &sc->rl_parent_tag);
1067         if (error) {
1068                 device_printf(sc->rl_dev,
1069                     "failed to create parent DMA tag.\n");
1070                 goto fail;
1071         }
1072         /* Create DMA tag for Rx memory block. */
1073         error = bus_dma_tag_create(sc->rl_parent_tag,   /* parent */
1074             RL_RX_8139_BUF_ALIGN, 0,    /* alignment, boundary */
1075             BUS_SPACE_MAXADDR,          /* lowaddr */
1076             BUS_SPACE_MAXADDR,          /* highaddr */
1077             NULL, NULL,                 /* filter, filterarg */
1078             RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, 1,   /* maxsize,nsegments */
1079             RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ,      /* maxsegsize */
1080             0,                          /* flags */
1081             NULL, NULL,                 /* lockfunc, lockarg */
1082             &sc->rl_cdata.rl_rx_tag);
1083         if (error) {
1084                 device_printf(sc->rl_dev,
1085                     "failed to create Rx memory block DMA tag.\n");
1086                 goto fail;
1087         }
1088         /* Create DMA tag for Tx buffer. */
1089         error = bus_dma_tag_create(sc->rl_parent_tag,   /* parent */
1090             RL_TX_8139_BUF_ALIGN, 0,    /* alignment, boundary */
1091             BUS_SPACE_MAXADDR,          /* lowaddr */
1092             BUS_SPACE_MAXADDR,          /* highaddr */
1093             NULL, NULL,                 /* filter, filterarg */
1094             MCLBYTES, 1,                /* maxsize, nsegments */
1095             MCLBYTES,                   /* maxsegsize */
1096             0,                          /* flags */
1097             NULL, NULL,                 /* lockfunc, lockarg */
1098             &sc->rl_cdata.rl_tx_tag);
1099         if (error) {
1100                 device_printf(sc->rl_dev, "failed to create Tx DMA tag.\n");
1101                 goto fail;
1102         }
1103
1104         /*
1105          * Allocate DMA'able memory and load DMA map for Rx memory block.
1106          */
1107         error = bus_dmamem_alloc(sc->rl_cdata.rl_rx_tag,
1108             (void **)&sc->rl_cdata.rl_rx_buf, BUS_DMA_WAITOK |
1109             BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->rl_cdata.rl_rx_dmamap);
1110         if (error != 0) {
1111                 device_printf(sc->rl_dev,
1112                     "failed to allocate Rx DMA memory block.\n");
1113                 goto fail;
1114         }
1115         ctx.rl_busaddr = 0;
1116         error = bus_dmamap_load(sc->rl_cdata.rl_rx_tag,
1117             sc->rl_cdata.rl_rx_dmamap, sc->rl_cdata.rl_rx_buf,
1118             RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, rl_dmamap_cb, &ctx,
1119             BUS_DMA_NOWAIT);
1120         if (error != 0 || ctx.rl_busaddr == 0) {
1121                 device_printf(sc->rl_dev,
1122                     "could not load Rx DMA memory block.\n");
1123                 goto fail;
1124         }
1125         sc->rl_cdata.rl_rx_buf_paddr = ctx.rl_busaddr;
1126
1127         /* Create DMA maps for Tx buffers. */
1128         for (i = 0; i < RL_TX_LIST_CNT; i++) {
1129                 sc->rl_cdata.rl_tx_chain[i] = NULL;
1130                 sc->rl_cdata.rl_tx_dmamap[i] = NULL;
1131                 error = bus_dmamap_create(sc->rl_cdata.rl_tx_tag, 0,
1132                     &sc->rl_cdata.rl_tx_dmamap[i]);
1133                 if (error != 0) {
1134                         device_printf(sc->rl_dev,
1135                             "could not create Tx dmamap.\n");
1136                         goto fail;
1137                 }
1138         }
1139
1140         /* Leave a few bytes before the start of the RX ring buffer. */
1141         sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf;
1142         sc->rl_cdata.rl_rx_buf += RL_RX_8139_BUF_RESERVE;
1143
1144 fail:
1145         return (error);
1146 }
1147
1148 static void
1149 rl_dma_free(struct rl_softc *sc)
1150 {
1151         int                     i;
1152
1153         /* Rx memory block. */
1154         if (sc->rl_cdata.rl_rx_tag != NULL) {
1155                 if (sc->rl_cdata.rl_rx_dmamap != NULL)
1156                         bus_dmamap_unload(sc->rl_cdata.rl_rx_tag,
1157                             sc->rl_cdata.rl_rx_dmamap);
1158                 if (sc->rl_cdata.rl_rx_dmamap != NULL &&
1159                     sc->rl_cdata.rl_rx_buf_ptr != NULL)
1160                         bus_dmamem_free(sc->rl_cdata.rl_rx_tag,
1161                             sc->rl_cdata.rl_rx_buf_ptr,
1162                             sc->rl_cdata.rl_rx_dmamap);
1163                 sc->rl_cdata.rl_rx_buf_ptr = NULL;
1164                 sc->rl_cdata.rl_rx_buf = NULL;
1165                 sc->rl_cdata.rl_rx_dmamap = NULL;
1166                 bus_dma_tag_destroy(sc->rl_cdata.rl_rx_tag);
1167                 sc->rl_cdata.rl_tx_tag = NULL;
1168         }
1169
1170         /* Tx buffers. */
1171         if (sc->rl_cdata.rl_tx_tag != NULL) {
1172                 for (i = 0; i < RL_TX_LIST_CNT; i++) {
1173                         if (sc->rl_cdata.rl_tx_dmamap[i] != NULL) {
1174                                 bus_dmamap_destroy(
1175                                     sc->rl_cdata.rl_tx_tag,
1176                                     sc->rl_cdata.rl_tx_dmamap[i]);
1177                                 sc->rl_cdata.rl_tx_dmamap[i] = NULL;
1178                         }
1179                 }
1180                 bus_dma_tag_destroy(sc->rl_cdata.rl_tx_tag);
1181                 sc->rl_cdata.rl_tx_tag = NULL;
1182         }
1183
1184         if (sc->rl_parent_tag != NULL) {
1185                 bus_dma_tag_destroy(sc->rl_parent_tag);
1186                 sc->rl_parent_tag = NULL;
1187         }
1188 }
1189
1190 /*
1191  * Initialize the transmit descriptors.
1192  */
1193 static int
1194 rl_list_tx_init(struct rl_softc *sc)
1195 {
1196         struct rl_chain_data    *cd;
1197         int                     i;
1198
1199         RL_LOCK_ASSERT(sc);
1200
1201         cd = &sc->rl_cdata;
1202         for (i = 0; i < RL_TX_LIST_CNT; i++) {
1203                 cd->rl_tx_chain[i] = NULL;
1204                 CSR_WRITE_4(sc,
1205                     RL_TXADDR0 + (i * sizeof(uint32_t)), 0x0000000);
1206         }
1207
1208         sc->rl_cdata.cur_tx = 0;
1209         sc->rl_cdata.last_tx = 0;
1210
1211         return (0);
1212 }
1213
1214 static int
1215 rl_list_rx_init(struct rl_softc *sc)
1216 {
1217
1218         RL_LOCK_ASSERT(sc);
1219
1220         bzero(sc->rl_cdata.rl_rx_buf_ptr,
1221             RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ);
1222         bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, sc->rl_cdata.rl_rx_dmamap,
1223             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1224
1225         return (0);
1226 }
1227
1228 /*
1229  * A frame has been uploaded: pass the resulting mbuf chain up to
1230  * the higher level protocols.
1231  *
1232  * You know there's something wrong with a PCI bus-master chip design
1233  * when you have to use m_devget().
1234  *
1235  * The receive operation is badly documented in the datasheet, so I'll
1236  * attempt to document it here. The driver provides a buffer area and
1237  * places its base address in the RX buffer start address register.
1238  * The chip then begins copying frames into the RX buffer. Each frame
1239  * is preceded by a 32-bit RX status word which specifies the length
1240  * of the frame and certain other status bits. Each frame (starting with
1241  * the status word) is also 32-bit aligned. The frame length is in the
1242  * first 16 bits of the status word; the lower 15 bits correspond with
1243  * the 'rx status register' mentioned in the datasheet.
1244  *
1245  * Note: to make the Alpha happy, the frame payload needs to be aligned
1246  * on a 32-bit boundary. To achieve this, we pass RL_ETHER_ALIGN (2 bytes)
1247  * as the offset argument to m_devget().
1248  */
1249 static int
1250 rl_rxeof(struct rl_softc *sc)
1251 {
1252         struct mbuf             *m;
1253         struct ifnet            *ifp = sc->rl_ifp;
1254         uint8_t                 *rxbufpos;
1255         int                     total_len = 0;
1256         int                     wrap = 0;
1257         int                     rx_npkts = 0;
1258         uint32_t                rxstat;
1259         uint16_t                cur_rx;
1260         uint16_t                limit;
1261         uint16_t                max_bytes, rx_bytes = 0;
1262
1263         RL_LOCK_ASSERT(sc);
1264
1265         bus_dmamap_sync(sc->rl_cdata.rl_rx_tag, sc->rl_cdata.rl_rx_dmamap,
1266             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1267
1268         cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN;
1269
1270         /* Do not try to read past this point. */
1271         limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
1272
1273         if (limit < cur_rx)
1274                 max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
1275         else
1276                 max_bytes = limit - cur_rx;
1277
1278         while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) {
1279 #ifdef DEVICE_POLLING
1280                 if (ifp->if_capenable & IFCAP_POLLING) {
1281                         if (sc->rxcycles <= 0)
1282                                 break;
1283                         sc->rxcycles--;
1284                 }
1285 #endif
1286                 rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
1287                 rxstat = le32toh(*(uint32_t *)rxbufpos);
1288
1289                 /*
1290                  * Here's a totally undocumented fact for you. When the
1291                  * RealTek chip is in the process of copying a packet into
1292                  * RAM for you, the length will be 0xfff0. If you spot a
1293                  * packet header with this value, you need to stop. The
1294                  * datasheet makes absolutely no mention of this and
1295                  * RealTek should be shot for this.
1296                  */
1297                 total_len = rxstat >> 16;
1298                 if (total_len == RL_RXSTAT_UNFINISHED)
1299                         break;
1300
1301                 if (!(rxstat & RL_RXSTAT_RXOK) ||
1302                     total_len < ETHER_MIN_LEN ||
1303                     total_len > ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN) {
1304                         ifp->if_ierrors++;
1305                         rl_init_locked(sc);
1306                         return (rx_npkts);
1307                 }
1308
1309                 /* No errors; receive the packet. */
1310                 rx_bytes += total_len + 4;
1311
1312                 /*
1313                  * XXX The RealTek chip includes the CRC with every
1314                  * received frame, and there's no way to turn this
1315                  * behavior off (at least, I can't find anything in
1316                  * the manual that explains how to do it) so we have
1317                  * to trim off the CRC manually.
1318                  */
1319                 total_len -= ETHER_CRC_LEN;
1320
1321                 /*
1322                  * Avoid trying to read more bytes than we know
1323                  * the chip has prepared for us.
1324                  */
1325                 if (rx_bytes > max_bytes)
1326                         break;
1327
1328                 rxbufpos = sc->rl_cdata.rl_rx_buf +
1329                         ((cur_rx + sizeof(uint32_t)) % RL_RXBUFLEN);
1330                 if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
1331                         rxbufpos = sc->rl_cdata.rl_rx_buf;
1332
1333                 wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
1334                 if (total_len > wrap) {
1335                         m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
1336                             NULL);
1337                         if (m != NULL)
1338                                 m_copyback(m, wrap, total_len - wrap,
1339                                         sc->rl_cdata.rl_rx_buf);
1340                         cur_rx = (total_len - wrap + ETHER_CRC_LEN);
1341                 } else {
1342                         m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
1343                             NULL);
1344                         cur_rx += total_len + 4 + ETHER_CRC_LEN;
1345                 }
1346
1347                 /* Round up to 32-bit boundary. */
1348                 cur_rx = (cur_rx + 3) & ~3;
1349                 CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
1350
1351                 if (m == NULL) {
1352                         ifp->if_iqdrops++;
1353                         continue;
1354                 }
1355
1356                 ifp->if_ipackets++;
1357                 RL_UNLOCK(sc);
1358                 (*ifp->if_input)(ifp, m);
1359                 RL_LOCK(sc);
1360                 rx_npkts++;
1361         }
1362
1363         /* No need to sync Rx memory block as we didn't modify it. */
1364         return (rx_npkts);
1365 }
1366
1367 /*
1368  * A frame was downloaded to the chip. It's safe for us to clean up
1369  * the list buffers.
1370  */
1371 static void
1372 rl_txeof(struct rl_softc *sc)
1373 {
1374         struct ifnet            *ifp = sc->rl_ifp;
1375         uint32_t                txstat;
1376
1377         RL_LOCK_ASSERT(sc);
1378
1379         /*
1380          * Go through our tx list and free mbufs for those
1381          * frames that have been uploaded.
1382          */
1383         do {
1384                 if (RL_LAST_TXMBUF(sc) == NULL)
1385                         break;
1386                 txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc));
1387                 if (!(txstat & (RL_TXSTAT_TX_OK|
1388                     RL_TXSTAT_TX_UNDERRUN|RL_TXSTAT_TXABRT)))
1389                         break;
1390
1391                 ifp->if_collisions += (txstat & RL_TXSTAT_COLLCNT) >> 24;
1392
1393                 bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, RL_LAST_DMAMAP(sc),
1394                     BUS_DMASYNC_POSTWRITE);
1395                 bus_dmamap_unload(sc->rl_cdata.rl_tx_tag, RL_LAST_DMAMAP(sc));
1396                 m_freem(RL_LAST_TXMBUF(sc));
1397                 RL_LAST_TXMBUF(sc) = NULL;
1398                 /*
1399                  * If there was a transmit underrun, bump the TX threshold.
1400                  * Make sure not to overflow the 63 * 32byte we can address
1401                  * with the 6 available bit.
1402                  */
1403                 if ((txstat & RL_TXSTAT_TX_UNDERRUN) &&
1404                     (sc->rl_txthresh < 2016))
1405                         sc->rl_txthresh += 32;
1406                 if (txstat & RL_TXSTAT_TX_OK)
1407                         ifp->if_opackets++;
1408                 else {
1409                         int                     oldthresh;
1410                         ifp->if_oerrors++;
1411                         if ((txstat & RL_TXSTAT_TXABRT) ||
1412                             (txstat & RL_TXSTAT_OUTOFWIN))
1413                                 CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1414                         oldthresh = sc->rl_txthresh;
1415                         /* error recovery */
1416                         rl_init_locked(sc);
1417                         /* restore original threshold */
1418                         sc->rl_txthresh = oldthresh;
1419                         return;
1420                 }
1421                 RL_INC(sc->rl_cdata.last_tx);
1422                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1423         } while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx);
1424
1425         if (RL_LAST_TXMBUF(sc) == NULL)
1426                 sc->rl_watchdog_timer = 0;
1427 }
1428
1429 static void
1430 rl_twister_update(struct rl_softc *sc)
1431 {
1432         uint16_t linktest;
1433         /*
1434          * Table provided by RealTek (Kinston <shangh@realtek.com.tw>) for
1435          * Linux driver.  Values undocumented otherwise.
1436          */
1437         static const uint32_t param[4][4] = {
1438                 {0xcb39de43, 0xcb39ce43, 0xfb38de03, 0xcb38de43},
1439                 {0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83},
1440                 {0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83},
1441                 {0xbb39de43, 0xbb39ce43, 0xbb39ce83, 0xbb39ce83}
1442         };
1443
1444         /*
1445          * Tune the so-called twister registers of the RTL8139.  These
1446          * are used to compensate for impedance mismatches.  The
1447          * method for tuning these registers is undocumented and the
1448          * following procedure is collected from public sources.
1449          */
1450         switch (sc->rl_twister)
1451         {
1452         case CHK_LINK:
1453                 /*
1454                  * If we have a sufficient link, then we can proceed in
1455                  * the state machine to the next stage.  If not, then
1456                  * disable further tuning after writing sane defaults.
1457                  */
1458                 if (CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_LINK_OK) {
1459                         CSR_WRITE_2(sc, RL_CSCFG, RL_CSCFG_LINK_DOWN_OFF_CMD);
1460                         sc->rl_twister = FIND_ROW;
1461                 } else {
1462                         CSR_WRITE_2(sc, RL_CSCFG, RL_CSCFG_LINK_DOWN_CMD);
1463                         CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_CBL_TEST);
1464                         CSR_WRITE_4(sc, RL_PARA78, RL_PARA78_DEF);
1465                         CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_DEF);
1466                         sc->rl_twister = DONE;
1467                 }
1468                 break;
1469         case FIND_ROW:
1470                 /*
1471                  * Read how long it took to see the echo to find the tuning
1472                  * row to use.
1473                  */
1474                 linktest = CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_STATUS;
1475                 if (linktest == RL_CSCFG_ROW3)
1476                         sc->rl_twist_row = 3;
1477                 else if (linktest == RL_CSCFG_ROW2)
1478                         sc->rl_twist_row = 2;
1479                 else if (linktest == RL_CSCFG_ROW1)
1480                         sc->rl_twist_row = 1;
1481                 else
1482                         sc->rl_twist_row = 0;
1483                 sc->rl_twist_col = 0;
1484                 sc->rl_twister = SET_PARAM;
1485                 break;
1486         case SET_PARAM:
1487                 if (sc->rl_twist_col == 0)
1488                         CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_RESET);
1489                 CSR_WRITE_4(sc, RL_PARA7C,
1490                     param[sc->rl_twist_row][sc->rl_twist_col]);
1491                 if (++sc->rl_twist_col == 4) {
1492                         if (sc->rl_twist_row == 3)
1493                                 sc->rl_twister = RECHK_LONG;
1494                         else
1495                                 sc->rl_twister = DONE;
1496                 }
1497                 break;
1498         case RECHK_LONG:
1499                 /*
1500                  * For long cables, we have to double check to make sure we
1501                  * don't mistune.
1502                  */
1503                 linktest = CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_STATUS;
1504                 if (linktest == RL_CSCFG_ROW3)
1505                         sc->rl_twister = DONE;
1506                 else {
1507                         CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_RETUNE);
1508                         sc->rl_twister = RETUNE;
1509                 }
1510                 break;
1511         case RETUNE:
1512                 /* Retune for a shorter cable (try column 2) */
1513                 CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_CBL_TEST);
1514                 CSR_WRITE_4(sc, RL_PARA78, RL_PARA78_DEF);
1515                 CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_DEF);
1516                 CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_RESET);
1517                 sc->rl_twist_row--;
1518                 sc->rl_twist_col = 0;
1519                 sc->rl_twister = SET_PARAM;
1520                 break;
1521
1522         case DONE:
1523                 break;
1524         }
1525         
1526 }
1527
1528 static void
1529 rl_tick(void *xsc)
1530 {
1531         struct rl_softc         *sc = xsc;
1532         struct mii_data         *mii;
1533         int ticks;
1534
1535         RL_LOCK_ASSERT(sc);
1536         /*
1537          * If we're doing the twister cable calibration, then we need to defer
1538          * watchdog timeouts.  This is a no-op in normal operations, but
1539          * can falsely trigger when the cable calibration takes a while and
1540          * there was traffic ready to go when rl was started.
1541          *
1542          * We don't defer mii_tick since that updates the mii status, which
1543          * helps the twister process, at least according to similar patches
1544          * for the Linux driver I found online while doing the fixes.  Worst
1545          * case is a few extra mii reads during calibration.
1546          */
1547         mii = device_get_softc(sc->rl_miibus);
1548         mii_tick(mii);
1549         if ((sc->rl_flags & RL_FLAG_LINK) == 0)
1550                 rl_miibus_statchg(sc->rl_dev);
1551         if (sc->rl_twister_enable) {
1552                 if (sc->rl_twister == DONE)
1553                         rl_watchdog(sc);
1554                 else
1555                         rl_twister_update(sc);
1556                 if (sc->rl_twister == DONE)
1557                         ticks = hz;
1558                 else
1559                         ticks = hz / 10;
1560         } else {
1561                 rl_watchdog(sc);
1562                 ticks = hz;
1563         }
1564
1565         callout_reset(&sc->rl_stat_callout, ticks, rl_tick, sc);
1566 }
1567
1568 #ifdef DEVICE_POLLING
1569 static int
1570 rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1571 {
1572         struct rl_softc *sc = ifp->if_softc;
1573         int rx_npkts = 0;
1574
1575         RL_LOCK(sc);
1576         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1577                 rx_npkts = rl_poll_locked(ifp, cmd, count);
1578         RL_UNLOCK(sc);
1579         return (rx_npkts);
1580 }
1581
1582 static int
1583 rl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1584 {
1585         struct rl_softc *sc = ifp->if_softc;
1586         int rx_npkts;
1587
1588         RL_LOCK_ASSERT(sc);
1589
1590         sc->rxcycles = count;
1591         rx_npkts = rl_rxeof(sc);
1592         rl_txeof(sc);
1593
1594         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1595                 rl_start_locked(ifp);
1596
1597         if (cmd == POLL_AND_CHECK_STATUS) {
1598                 uint16_t        status;
1599
1600                 /* We should also check the status register. */
1601                 status = CSR_READ_2(sc, RL_ISR);
1602                 if (status == 0xffff)
1603                         return (rx_npkts);
1604                 if (status != 0)
1605                         CSR_WRITE_2(sc, RL_ISR, status);
1606
1607                 /* XXX We should check behaviour on receiver stalls. */
1608
1609                 if (status & RL_ISR_SYSTEM_ERR)
1610                         rl_init_locked(sc);
1611         }
1612         return (rx_npkts);
1613 }
1614 #endif /* DEVICE_POLLING */
1615
1616 static void
1617 rl_intr(void *arg)
1618 {
1619         struct rl_softc         *sc = arg;
1620         struct ifnet            *ifp = sc->rl_ifp;
1621         uint16_t                status;
1622
1623         RL_LOCK(sc);
1624
1625         if (sc->suspended)
1626                 goto done_locked;
1627
1628 #ifdef DEVICE_POLLING
1629         if  (ifp->if_capenable & IFCAP_POLLING)
1630                 goto done_locked;
1631 #endif
1632
1633         for (;;) {
1634                 status = CSR_READ_2(sc, RL_ISR);
1635                 /* If the card has gone away, the read returns 0xffff. */
1636                 if (status == 0xffff)
1637                         break;
1638                 if (status != 0)
1639                         CSR_WRITE_2(sc, RL_ISR, status);
1640                 if ((status & RL_INTRS) == 0)
1641                         break;
1642                 if (status & RL_ISR_RX_OK)
1643                         rl_rxeof(sc);
1644                 if (status & RL_ISR_RX_ERR)
1645                         rl_rxeof(sc);
1646                 if ((status & RL_ISR_TX_OK) || (status & RL_ISR_TX_ERR))
1647                         rl_txeof(sc);
1648                 if (status & RL_ISR_SYSTEM_ERR)
1649                         rl_init_locked(sc);
1650         }
1651
1652         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1653                 rl_start_locked(ifp);
1654
1655 done_locked:
1656         RL_UNLOCK(sc);
1657 }
1658
1659 /*
1660  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1661  * pointers to the fragment pointers.
1662  */
1663 static int
1664 rl_encap(struct rl_softc *sc, struct mbuf **m_head)
1665 {
1666         struct mbuf             *m;
1667         bus_dma_segment_t       txsegs[1];
1668         int                     error, nsegs, padlen;
1669
1670         RL_LOCK_ASSERT(sc);
1671
1672         m = *m_head;
1673         padlen = 0;
1674         /*
1675          * Hardware doesn't auto-pad, so we have to make sure
1676          * pad short frames out to the minimum frame length.
1677          */
1678         if (m->m_pkthdr.len < RL_MIN_FRAMELEN)
1679                 padlen = RL_MIN_FRAMELEN - m->m_pkthdr.len;
1680         /*
1681          * The RealTek is brain damaged and wants longword-aligned
1682          * TX buffers, plus we can only have one fragment buffer
1683          * per packet. We have to copy pretty much all the time.
1684          */
1685         if (m->m_next != NULL || (mtod(m, uintptr_t) & 3) != 0 ||
1686             (padlen > 0 && M_TRAILINGSPACE(m) < padlen)) {
1687                 m = m_defrag(*m_head, M_DONTWAIT);
1688                 if (m == NULL) {
1689                         m_freem(*m_head);
1690                         *m_head = NULL;
1691                         return (ENOMEM);
1692                 }
1693         }
1694         *m_head = m;
1695
1696         if (padlen > 0) {
1697                 /*
1698                  * Make security-conscious people happy: zero out the
1699                  * bytes in the pad area, since we don't know what
1700                  * this mbuf cluster buffer's previous user might
1701                  * have left in it.
1702                  */
1703                 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1704                 m->m_pkthdr.len += padlen;
1705                 m->m_len = m->m_pkthdr.len;
1706         }
1707
1708         error = bus_dmamap_load_mbuf_sg(sc->rl_cdata.rl_tx_tag,
1709             RL_CUR_DMAMAP(sc), m, txsegs, &nsegs, 0);
1710         if (error != 0)
1711                 return (error);
1712         if (nsegs == 0) {
1713                 m_freem(*m_head);
1714                 *m_head = NULL;
1715                 return (EIO);
1716         }
1717
1718         RL_CUR_TXMBUF(sc) = m;
1719         bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, RL_CUR_DMAMAP(sc),
1720             BUS_DMASYNC_PREWRITE);
1721         CSR_WRITE_4(sc, RL_CUR_TXADDR(sc), RL_ADDR_LO(txsegs[0].ds_addr));
1722
1723         return (0);
1724 }
1725
1726 /*
1727  * Main transmit routine.
1728  */
1729 static void
1730 rl_start(struct ifnet *ifp)
1731 {
1732         struct rl_softc         *sc = ifp->if_softc;
1733
1734         RL_LOCK(sc);
1735         rl_start_locked(ifp);
1736         RL_UNLOCK(sc);
1737 }
1738
1739 static void
1740 rl_start_locked(struct ifnet *ifp)
1741 {
1742         struct rl_softc         *sc = ifp->if_softc;
1743         struct mbuf             *m_head = NULL;
1744
1745         RL_LOCK_ASSERT(sc);
1746
1747         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1748             IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0)
1749                 return;
1750
1751         while (RL_CUR_TXMBUF(sc) == NULL) {
1752
1753                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1754
1755                 if (m_head == NULL)
1756                         break;
1757
1758                 if (rl_encap(sc, &m_head)) {
1759                         if (m_head == NULL)
1760                                 break;
1761                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1762                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1763                         break;
1764                 }
1765
1766                 /* Pass a copy of this mbuf chain to the bpf subsystem. */
1767                 BPF_MTAP(ifp, RL_CUR_TXMBUF(sc));
1768
1769                 /* Transmit the frame. */
1770                 CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc),
1771                     RL_TXTHRESH(sc->rl_txthresh) |
1772                     RL_CUR_TXMBUF(sc)->m_pkthdr.len);
1773
1774                 RL_INC(sc->rl_cdata.cur_tx);
1775
1776                 /* Set a timeout in case the chip goes out to lunch. */
1777                 sc->rl_watchdog_timer = 5;
1778         }
1779
1780         /*
1781          * We broke out of the loop because all our TX slots are
1782          * full. Mark the NIC as busy until it drains some of the
1783          * packets from the queue.
1784          */
1785         if (RL_CUR_TXMBUF(sc) != NULL)
1786                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1787 }
1788
1789 static void
1790 rl_init(void *xsc)
1791 {
1792         struct rl_softc         *sc = xsc;
1793
1794         RL_LOCK(sc);
1795         rl_init_locked(sc);
1796         RL_UNLOCK(sc);
1797 }
1798
1799 static void
1800 rl_init_locked(struct rl_softc *sc)
1801 {
1802         struct ifnet            *ifp = sc->rl_ifp;
1803         struct mii_data         *mii;
1804         uint32_t                rxcfg = 0;
1805         uint32_t                eaddr[2];
1806
1807         RL_LOCK_ASSERT(sc);
1808
1809         mii = device_get_softc(sc->rl_miibus);
1810
1811         /*
1812          * Cancel pending I/O and free all RX/TX buffers.
1813          */
1814         rl_stop(sc);
1815
1816         rl_reset(sc);
1817         if (sc->rl_twister_enable) {
1818                 /*
1819                  * Reset twister register tuning state.  The twister
1820                  * registers and their tuning are undocumented, but
1821                  * are necessary to cope with bad links.  rl_twister =
1822                  * DONE here will disable this entirely.
1823                  */
1824                 sc->rl_twister = CHK_LINK;
1825         }
1826
1827         /*
1828          * Init our MAC address.  Even though the chipset
1829          * documentation doesn't mention it, we need to enter "Config
1830          * register write enable" mode to modify the ID registers.
1831          */
1832         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
1833         bzero(eaddr, sizeof(eaddr));
1834         bcopy(IF_LLADDR(sc->rl_ifp), eaddr, ETHER_ADDR_LEN);
1835         CSR_WRITE_STREAM_4(sc, RL_IDR0, eaddr[0]);
1836         CSR_WRITE_STREAM_4(sc, RL_IDR4, eaddr[1]);
1837         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1838
1839         /* Init the RX memory block pointer register. */
1840         CSR_WRITE_4(sc, RL_RXADDR, sc->rl_cdata.rl_rx_buf_paddr +
1841             RL_RX_8139_BUF_RESERVE);
1842         /* Init TX descriptors. */
1843         rl_list_tx_init(sc);
1844         /* Init Rx memory block. */
1845         rl_list_rx_init(sc);
1846
1847         /*
1848          * Enable transmit and receive.
1849          */
1850         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1851
1852         /*
1853          * Set the initial TX and RX configuration.
1854          */
1855         CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1856         CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
1857
1858         /* Set the individual bit to receive frames for this host only. */
1859         rxcfg = CSR_READ_4(sc, RL_RXCFG);
1860         rxcfg |= RL_RXCFG_RX_INDIV;
1861
1862         /* If we want promiscuous mode, set the allframes bit. */
1863         if (ifp->if_flags & IFF_PROMISC) {
1864                 rxcfg |= RL_RXCFG_RX_ALLPHYS;
1865                 CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1866         } else {
1867                 rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
1868                 CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1869         }
1870
1871         /* Set capture broadcast bit to capture broadcast frames. */
1872         if (ifp->if_flags & IFF_BROADCAST) {
1873                 rxcfg |= RL_RXCFG_RX_BROAD;
1874                 CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1875         } else {
1876                 rxcfg &= ~RL_RXCFG_RX_BROAD;
1877                 CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1878         }
1879
1880         /* Program the multicast filter, if necessary. */
1881         rl_setmulti(sc);
1882
1883 #ifdef DEVICE_POLLING
1884         /* Disable interrupts if we are polling. */
1885         if (ifp->if_capenable & IFCAP_POLLING)
1886                 CSR_WRITE_2(sc, RL_IMR, 0);
1887         else
1888 #endif
1889         /* Enable interrupts. */
1890         CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1891
1892         /* Set initial TX threshold */
1893         sc->rl_txthresh = RL_TX_THRESH_INIT;
1894
1895         /* Start RX/TX process. */
1896         CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
1897
1898         /* Enable receiver and transmitter. */
1899         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1900
1901         sc->rl_flags &= ~RL_FLAG_LINK;
1902         mii_mediachg(mii);
1903
1904         CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
1905
1906         ifp->if_drv_flags |= IFF_DRV_RUNNING;
1907         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1908
1909         callout_reset(&sc->rl_stat_callout, hz, rl_tick, sc);
1910 }
1911
1912 /*
1913  * Set media options.
1914  */
1915 static int
1916 rl_ifmedia_upd(struct ifnet *ifp)
1917 {
1918         struct rl_softc         *sc = ifp->if_softc;
1919         struct mii_data         *mii;
1920
1921         mii = device_get_softc(sc->rl_miibus);
1922
1923         RL_LOCK(sc);
1924         mii_mediachg(mii);
1925         RL_UNLOCK(sc);
1926
1927         return (0);
1928 }
1929
1930 /*
1931  * Report current media status.
1932  */
1933 static void
1934 rl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1935 {
1936         struct rl_softc         *sc = ifp->if_softc;
1937         struct mii_data         *mii;
1938
1939         mii = device_get_softc(sc->rl_miibus);
1940
1941         RL_LOCK(sc);
1942         mii_pollstat(mii);
1943         RL_UNLOCK(sc);
1944         ifmr->ifm_active = mii->mii_media_active;
1945         ifmr->ifm_status = mii->mii_media_status;
1946 }
1947
1948 static int
1949 rl_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1950 {
1951         struct ifreq            *ifr = (struct ifreq *)data;
1952         struct mii_data         *mii;
1953         struct rl_softc         *sc = ifp->if_softc;
1954         int                     error = 0, mask;
1955
1956         switch (command) {
1957         case SIOCSIFFLAGS:
1958                 RL_LOCK(sc);
1959                 if (ifp->if_flags & IFF_UP) {
1960                         rl_init_locked(sc);
1961                 } else {
1962                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1963                                 rl_stop(sc);
1964                 }
1965                 RL_UNLOCK(sc);
1966                 error = 0;
1967                 break;
1968         case SIOCADDMULTI:
1969         case SIOCDELMULTI:
1970                 RL_LOCK(sc);
1971                 rl_setmulti(sc);
1972                 RL_UNLOCK(sc);
1973                 error = 0;
1974                 break;
1975         case SIOCGIFMEDIA:
1976         case SIOCSIFMEDIA:
1977                 mii = device_get_softc(sc->rl_miibus);
1978                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1979                 break;
1980         case SIOCSIFCAP:
1981                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1982 #ifdef DEVICE_POLLING
1983                 if (ifr->ifr_reqcap & IFCAP_POLLING &&
1984                     !(ifp->if_capenable & IFCAP_POLLING)) {
1985                         error = ether_poll_register(rl_poll, ifp);
1986                         if (error)
1987                                 return(error);
1988                         RL_LOCK(sc);
1989                         /* Disable interrupts */
1990                         CSR_WRITE_2(sc, RL_IMR, 0x0000);
1991                         ifp->if_capenable |= IFCAP_POLLING;
1992                         RL_UNLOCK(sc);
1993                         return (error);
1994                         
1995                 }
1996                 if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
1997                     ifp->if_capenable & IFCAP_POLLING) {
1998                         error = ether_poll_deregister(ifp);
1999                         /* Enable interrupts. */
2000                         RL_LOCK(sc);
2001                         CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
2002                         ifp->if_capenable &= ~IFCAP_POLLING;
2003                         RL_UNLOCK(sc);
2004                         return (error);
2005                 }
2006 #endif /* DEVICE_POLLING */
2007                 if ((mask & IFCAP_WOL) != 0 &&
2008                     (ifp->if_capabilities & IFCAP_WOL) != 0) {
2009                         if ((mask & IFCAP_WOL_UCAST) != 0)
2010                                 ifp->if_capenable ^= IFCAP_WOL_UCAST;
2011                         if ((mask & IFCAP_WOL_MCAST) != 0)
2012                                 ifp->if_capenable ^= IFCAP_WOL_MCAST;
2013                         if ((mask & IFCAP_WOL_MAGIC) != 0)
2014                                 ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2015                 }
2016                 break;
2017         default:
2018                 error = ether_ioctl(ifp, command, data);
2019                 break;
2020         }
2021
2022         return (error);
2023 }
2024
2025 static void
2026 rl_watchdog(struct rl_softc *sc)
2027 {
2028
2029         RL_LOCK_ASSERT(sc);
2030
2031         if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer >0)
2032                 return;
2033
2034         device_printf(sc->rl_dev, "watchdog timeout\n");
2035         sc->rl_ifp->if_oerrors++;
2036
2037         rl_txeof(sc);
2038         rl_rxeof(sc);
2039         rl_init_locked(sc);
2040 }
2041
2042 /*
2043  * Stop the adapter and free any mbufs allocated to the
2044  * RX and TX lists.
2045  */
2046 static void
2047 rl_stop(struct rl_softc *sc)
2048 {
2049         register int            i;
2050         struct ifnet            *ifp = sc->rl_ifp;
2051
2052         RL_LOCK_ASSERT(sc);
2053
2054         sc->rl_watchdog_timer = 0;
2055         callout_stop(&sc->rl_stat_callout);
2056         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2057         sc->rl_flags &= ~RL_FLAG_LINK;
2058
2059         CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2060         CSR_WRITE_2(sc, RL_IMR, 0x0000);
2061         for (i = 0; i < RL_TIMEOUT; i++) {
2062                 DELAY(10);
2063                 if ((CSR_READ_1(sc, RL_COMMAND) &
2064                     (RL_CMD_RX_ENB | RL_CMD_TX_ENB)) == 0)
2065                         break;
2066         }
2067         if (i == RL_TIMEOUT)
2068                 device_printf(sc->rl_dev, "Unable to stop Tx/Rx MAC\n");
2069
2070         /*
2071          * Free the TX list buffers.
2072          */
2073         for (i = 0; i < RL_TX_LIST_CNT; i++) {
2074                 if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
2075                         if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
2076                                 bus_dmamap_sync(sc->rl_cdata.rl_tx_tag,
2077                                     sc->rl_cdata.rl_tx_dmamap[i],
2078                                     BUS_DMASYNC_POSTWRITE);
2079                                 bus_dmamap_unload(sc->rl_cdata.rl_tx_tag,
2080                                     sc->rl_cdata.rl_tx_dmamap[i]);
2081                                 m_freem(sc->rl_cdata.rl_tx_chain[i]);
2082                                 sc->rl_cdata.rl_tx_chain[i] = NULL;
2083                         }
2084                         CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(uint32_t)),
2085                             0x0000000);
2086                 }
2087         }
2088 }
2089
2090 /*
2091  * Device suspend routine.  Stop the interface and save some PCI
2092  * settings in case the BIOS doesn't restore them properly on
2093  * resume.
2094  */
2095 static int
2096 rl_suspend(device_t dev)
2097 {
2098         struct rl_softc         *sc;
2099
2100         sc = device_get_softc(dev);
2101
2102         RL_LOCK(sc);
2103         rl_stop(sc);
2104         rl_setwol(sc);
2105         sc->suspended = 1;
2106         RL_UNLOCK(sc);
2107
2108         return (0);
2109 }
2110
2111 /*
2112  * Device resume routine.  Restore some PCI settings in case the BIOS
2113  * doesn't, re-enable busmastering, and restart the interface if
2114  * appropriate.
2115  */
2116 static int
2117 rl_resume(device_t dev)
2118 {
2119         struct rl_softc         *sc;
2120         struct ifnet            *ifp;
2121         int                     pmc;
2122         uint16_t                pmstat;
2123
2124         sc = device_get_softc(dev);
2125         ifp = sc->rl_ifp;
2126
2127         RL_LOCK(sc);
2128
2129         if ((ifp->if_capabilities & IFCAP_WOL) != 0 &&
2130             pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) == 0) {
2131                 /* Disable PME and clear PME status. */
2132                 pmstat = pci_read_config(sc->rl_dev,
2133                     pmc + PCIR_POWER_STATUS, 2);
2134                 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2135                         pmstat &= ~PCIM_PSTAT_PMEENABLE;
2136                         pci_write_config(sc->rl_dev,
2137                             pmc + PCIR_POWER_STATUS, pmstat, 2);
2138                 }
2139                 /*
2140                  * Clear WOL matching such that normal Rx filtering
2141                  * wouldn't interfere with WOL patterns.
2142                  */
2143                 rl_clrwol(sc);
2144         }
2145
2146         /* reinitialize interface if necessary */
2147         if (ifp->if_flags & IFF_UP)
2148                 rl_init_locked(sc);
2149
2150         sc->suspended = 0;
2151
2152         RL_UNLOCK(sc);
2153
2154         return (0);
2155 }
2156
2157 /*
2158  * Stop all chip I/O so that the kernel's probe routines don't
2159  * get confused by errant DMAs when rebooting.
2160  */
2161 static int
2162 rl_shutdown(device_t dev)
2163 {
2164         struct rl_softc         *sc;
2165
2166         sc = device_get_softc(dev);
2167
2168         RL_LOCK(sc);
2169         rl_stop(sc);
2170         /*
2171          * Mark interface as down since otherwise we will panic if
2172          * interrupt comes in later on, which can happen in some
2173          * cases.
2174          */
2175         sc->rl_ifp->if_flags &= ~IFF_UP;
2176         rl_setwol(sc);
2177         RL_UNLOCK(sc);
2178
2179         return (0);
2180 }
2181
2182 static void
2183 rl_setwol(struct rl_softc *sc)
2184 {
2185         struct ifnet            *ifp;
2186         int                     pmc;
2187         uint16_t                pmstat;
2188         uint8_t                 v;
2189
2190         RL_LOCK_ASSERT(sc);
2191
2192         ifp = sc->rl_ifp;
2193         if ((ifp->if_capabilities & IFCAP_WOL) == 0)
2194                 return;
2195         if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
2196                 return;
2197
2198         /* Enable config register write. */
2199         CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
2200
2201         /* Enable PME. */
2202         v = CSR_READ_1(sc, RL_CFG1);
2203         v &= ~RL_CFG1_PME;
2204         if ((ifp->if_capenable & IFCAP_WOL) != 0)
2205                 v |= RL_CFG1_PME;
2206         CSR_WRITE_1(sc, RL_CFG1, v);
2207
2208         v = CSR_READ_1(sc, RL_CFG3);
2209         v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
2210         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2211                 v |= RL_CFG3_WOL_MAGIC;
2212         CSR_WRITE_1(sc, RL_CFG3, v);
2213
2214         /* Config register write done. */
2215         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2216
2217         v = CSR_READ_1(sc, RL_CFG5);
2218         v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
2219         v &= ~RL_CFG5_WOL_LANWAKE;
2220         if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2221                 v |= RL_CFG5_WOL_UCAST;
2222         if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2223                 v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
2224         if ((ifp->if_capenable & IFCAP_WOL) != 0)
2225                 v |= RL_CFG5_WOL_LANWAKE;
2226         CSR_WRITE_1(sc, RL_CFG5, v);
2227         /* Request PME if WOL is requested. */
2228         pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
2229         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2230         if ((ifp->if_capenable & IFCAP_WOL) != 0)
2231                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2232         pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2233 }
2234
2235 static void
2236 rl_clrwol(struct rl_softc *sc)
2237 {
2238         struct ifnet            *ifp;
2239         uint8_t                 v;
2240
2241         ifp = sc->rl_ifp;
2242         if ((ifp->if_capabilities & IFCAP_WOL) == 0)
2243                 return;
2244
2245         /* Enable config register write. */
2246         CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
2247
2248         v = CSR_READ_1(sc, RL_CFG3);
2249         v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
2250         CSR_WRITE_1(sc, RL_CFG3, v);
2251
2252         /* Config register write done. */
2253         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2254
2255         v = CSR_READ_1(sc, RL_CFG5);
2256         v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
2257         v &= ~RL_CFG5_WOL_LANWAKE;
2258         CSR_WRITE_1(sc, RL_CFG5, v);
2259 }