]> CyberLeo.Net >> Repos - FreeBSD/stable/8.git/blob - sys/vm/vm_fault.c
MFC 230877:
[FreeBSD/stable/8.git] / sys / vm / vm_fault.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69
70 /*
71  *      Page fault handling module.
72  */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76
77 #include "opt_vm.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/lock.h>
83 #include <sys/mutex.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/sysctl.h>
87 #include <sys/vmmeter.h>
88 #include <sys/vnode.h>
89
90 #include <vm/vm.h>
91 #include <vm/vm_param.h>
92 #include <vm/pmap.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_pageout.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vnode_pager.h>
100 #include <vm/vm_extern.h>
101
102 #include <sys/mount.h>  /* XXX Temporary for VFS_LOCK_GIANT() */
103
104 #define PFBAK 4
105 #define PFFOR 4
106 #define PAGEORDER_SIZE (PFBAK+PFFOR)
107
108 static int prefault_pageorder[] = {
109         -1 * PAGE_SIZE, 1 * PAGE_SIZE,
110         -2 * PAGE_SIZE, 2 * PAGE_SIZE,
111         -3 * PAGE_SIZE, 3 * PAGE_SIZE,
112         -4 * PAGE_SIZE, 4 * PAGE_SIZE
113 };
114
115 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
116 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
117
118 #define VM_FAULT_READ_AHEAD 8
119 #define VM_FAULT_READ_BEHIND 7
120 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
121
122 struct faultstate {
123         vm_page_t m;
124         vm_object_t object;
125         vm_pindex_t pindex;
126         vm_page_t first_m;
127         vm_object_t     first_object;
128         vm_pindex_t first_pindex;
129         vm_map_t map;
130         vm_map_entry_t entry;
131         int lookup_still_valid;
132         struct vnode *vp;
133         int vfslocked;
134 };
135
136 static inline void
137 release_page(struct faultstate *fs)
138 {
139
140         vm_page_wakeup(fs->m);
141         vm_page_lock_queues();
142         vm_page_deactivate(fs->m);
143         vm_page_unlock_queues();
144         fs->m = NULL;
145 }
146
147 static inline void
148 unlock_map(struct faultstate *fs)
149 {
150
151         if (fs->lookup_still_valid) {
152                 vm_map_lookup_done(fs->map, fs->entry);
153                 fs->lookup_still_valid = FALSE;
154         }
155 }
156
157 static void
158 unlock_and_deallocate(struct faultstate *fs)
159 {
160
161         vm_object_pip_wakeup(fs->object);
162         VM_OBJECT_UNLOCK(fs->object);
163         if (fs->object != fs->first_object) {
164                 VM_OBJECT_LOCK(fs->first_object);
165                 vm_page_lock_queues();
166                 vm_page_free(fs->first_m);
167                 vm_page_unlock_queues();
168                 vm_object_pip_wakeup(fs->first_object);
169                 VM_OBJECT_UNLOCK(fs->first_object);
170                 fs->first_m = NULL;
171         }
172         vm_object_deallocate(fs->first_object);
173         unlock_map(fs); 
174         if (fs->vp != NULL) { 
175                 vput(fs->vp);
176                 fs->vp = NULL;
177         }
178         VFS_UNLOCK_GIANT(fs->vfslocked);
179         fs->vfslocked = 0;
180 }
181
182 /*
183  * TRYPAGER - used by vm_fault to calculate whether the pager for the
184  *            current object *might* contain the page.
185  *
186  *            default objects are zero-fill, there is no real pager.
187  */
188 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
189                         (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
190
191 /*
192  *      vm_fault:
193  *
194  *      Handle a page fault occurring at the given address,
195  *      requiring the given permissions, in the map specified.
196  *      If successful, the page is inserted into the
197  *      associated physical map.
198  *
199  *      NOTE: the given address should be truncated to the
200  *      proper page address.
201  *
202  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
203  *      a standard error specifying why the fault is fatal is returned.
204  *
205  *
206  *      The map in question must be referenced, and remains so.
207  *      Caller may hold no locks.
208  */
209 int
210 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
211          int fault_flags)
212 {
213         vm_prot_t prot;
214         int is_first_object_locked, result;
215         boolean_t are_queues_locked, growstack, wired;
216         int map_generation;
217         vm_object_t next_object;
218         vm_page_t marray[VM_FAULT_READ], mt, mt_prev;
219         int hardfault;
220         int faultcount, ahead, behind, alloc_req;
221         struct faultstate fs;
222         struct vnode *vp;
223         int locked, error;
224
225         hardfault = 0;
226         growstack = TRUE;
227         PCPU_INC(cnt.v_vm_faults);
228         fs.vp = NULL;
229         fs.vfslocked = 0;
230         faultcount = behind = 0;
231
232 RetryFault:;
233
234         /*
235          * Find the backing store object and offset into it to begin the
236          * search.
237          */
238         fs.map = map;
239         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
240             &fs.first_object, &fs.first_pindex, &prot, &wired);
241         if (result != KERN_SUCCESS) {
242                 if (result != KERN_PROTECTION_FAILURE ||
243                     (fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) {
244                         if (growstack && result == KERN_INVALID_ADDRESS &&
245                             map != kernel_map && curproc != NULL) {
246                                 result = vm_map_growstack(curproc, vaddr);
247                                 if (result != KERN_SUCCESS)
248                                         return (KERN_FAILURE);
249                                 growstack = FALSE;
250                                 goto RetryFault;
251                         }
252                         return (result);
253                 }
254
255                 /*
256                  * If we are user-wiring a r/w segment, and it is COW, then
257                  * we need to do the COW operation.  Note that we don't COW
258                  * currently RO sections now, because it is NOT desirable
259                  * to COW .text.  We simply keep .text from ever being COW'ed
260                  * and take the heat that one cannot debug wired .text sections.
261                  */
262                 result = vm_map_lookup(&fs.map, vaddr,
263                         VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
264                         &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
265                 if (result != KERN_SUCCESS)
266                         return (result);
267
268                 /*
269                  * If we don't COW now, on a user wire, the user will never
270                  * be able to write to the mapping.  If we don't make this
271                  * restriction, the bookkeeping would be nearly impossible.
272                  *
273                  * XXX The following assignment modifies the map without
274                  * holding a write lock on it.
275                  */
276                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
277                         fs.entry->max_protection &= ~VM_PROT_WRITE;
278         }
279
280         map_generation = fs.map->timestamp;
281
282         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
283                 panic("vm_fault: fault on nofault entry, addr: %lx",
284                     (u_long)vaddr);
285         }
286
287         /*
288          * Make a reference to this object to prevent its disposal while we
289          * are messing with it.  Once we have the reference, the map is free
290          * to be diddled.  Since objects reference their shadows (and copies),
291          * they will stay around as well.
292          *
293          * Bump the paging-in-progress count to prevent size changes (e.g. 
294          * truncation operations) during I/O.  This must be done after
295          * obtaining the vnode lock in order to avoid possible deadlocks.
296          */
297         VM_OBJECT_LOCK(fs.first_object);
298         vm_object_reference_locked(fs.first_object);
299         vm_object_pip_add(fs.first_object, 1);
300
301         fs.lookup_still_valid = TRUE;
302
303         if (wired)
304                 fault_type = prot;
305
306         fs.first_m = NULL;
307
308         /*
309          * Search for the page at object/offset.
310          */
311         fs.object = fs.first_object;
312         fs.pindex = fs.first_pindex;
313         while (TRUE) {
314                 /*
315                  * If the object is dead, we stop here
316                  */
317                 if (fs.object->flags & OBJ_DEAD) {
318                         unlock_and_deallocate(&fs);
319                         return (KERN_PROTECTION_FAILURE);
320                 }
321
322                 /*
323                  * See if page is resident
324                  */
325                 fs.m = vm_page_lookup(fs.object, fs.pindex);
326                 if (fs.m != NULL) {
327                         /* 
328                          * check for page-based copy on write.
329                          * We check fs.object == fs.first_object so
330                          * as to ensure the legacy COW mechanism is
331                          * used when the page in question is part of
332                          * a shadow object.  Otherwise, vm_page_cowfault()
333                          * removes the page from the backing object, 
334                          * which is not what we want.
335                          */
336                         vm_page_lock_queues();
337                         if ((fs.m->cow) && 
338                             (fault_type & VM_PROT_WRITE) &&
339                             (fs.object == fs.first_object)) {
340                                 vm_page_cowfault(fs.m);
341                                 vm_page_unlock_queues();
342                                 unlock_and_deallocate(&fs);
343                                 goto RetryFault;
344                         }
345
346                         /*
347                          * Wait/Retry if the page is busy.  We have to do this
348                          * if the page is busy via either VPO_BUSY or 
349                          * vm_page_t->busy because the vm_pager may be using
350                          * vm_page_t->busy for pageouts ( and even pageins if
351                          * it is the vnode pager ), and we could end up trying
352                          * to pagein and pageout the same page simultaneously.
353                          *
354                          * We can theoretically allow the busy case on a read
355                          * fault if the page is marked valid, but since such
356                          * pages are typically already pmap'd, putting that
357                          * special case in might be more effort then it is 
358                          * worth.  We cannot under any circumstances mess
359                          * around with a vm_page_t->busy page except, perhaps,
360                          * to pmap it.
361                          */
362                         if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) {
363                                 vm_page_unlock_queues();
364                                 if (fs.object != fs.first_object) {
365                                         if (!VM_OBJECT_TRYLOCK(
366                                             fs.first_object)) {
367                                                 VM_OBJECT_UNLOCK(fs.object);
368                                                 VM_OBJECT_LOCK(fs.first_object);
369                                                 VM_OBJECT_LOCK(fs.object);
370                                         }
371                                         vm_page_lock_queues();
372                                         vm_page_free(fs.first_m);
373                                         vm_page_unlock_queues();
374                                         vm_object_pip_wakeup(fs.first_object);
375                                         VM_OBJECT_UNLOCK(fs.first_object);
376                                         fs.first_m = NULL;
377                                 }
378                                 unlock_map(&fs);
379                                 if (fs.m == vm_page_lookup(fs.object,
380                                     fs.pindex)) {
381                                         vm_page_sleep_if_busy(fs.m, TRUE,
382                                             "vmpfw");
383                                 }
384                                 vm_object_pip_wakeup(fs.object);
385                                 VM_OBJECT_UNLOCK(fs.object);
386                                 PCPU_INC(cnt.v_intrans);
387                                 vm_object_deallocate(fs.first_object);
388                                 goto RetryFault;
389                         }
390                         vm_pageq_remove(fs.m);
391                         vm_page_unlock_queues();
392
393                         /*
394                          * Mark page busy for other processes, and the 
395                          * pagedaemon.  If it still isn't completely valid
396                          * (readable), jump to readrest, else break-out ( we
397                          * found the page ).
398                          */
399                         vm_page_busy(fs.m);
400                         if (fs.m->valid != VM_PAGE_BITS_ALL)
401                                 goto readrest;
402                         break;
403                 }
404
405                 /*
406                  * Page is not resident, If this is the search termination
407                  * or the pager might contain the page, allocate a new page.
408                  */
409                 if (TRYPAGER || fs.object == fs.first_object) {
410                         if (fs.pindex >= fs.object->size) {
411                                 unlock_and_deallocate(&fs);
412                                 return (KERN_PROTECTION_FAILURE);
413                         }
414
415                         /*
416                          * Allocate a new page for this object/offset pair.
417                          *
418                          * Unlocked read of the p_flag is harmless. At
419                          * worst, the P_KILLED might be not observed
420                          * there, and allocation can fail, causing
421                          * restart and new reading of the p_flag.
422                          */
423                         fs.m = NULL;
424                         if (!vm_page_count_severe() || P_KILLED(curproc)) {
425 #if VM_NRESERVLEVEL > 0
426                                 if ((fs.object->flags & OBJ_COLORED) == 0) {
427                                         fs.object->flags |= OBJ_COLORED;
428                                         fs.object->pg_color = atop(vaddr) -
429                                             fs.pindex;
430                                 }
431 #endif
432                                 alloc_req = P_KILLED(curproc) ?
433                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
434                                 if (fs.object->type != OBJT_VNODE &&
435                                     fs.object->backing_object == NULL)
436                                         alloc_req |= VM_ALLOC_ZERO;
437                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
438                                     alloc_req);
439                         }
440                         if (fs.m == NULL) {
441                                 unlock_and_deallocate(&fs);
442                                 VM_WAITPFAULT;
443                                 goto RetryFault;
444                         } else if (fs.m->valid == VM_PAGE_BITS_ALL)
445                                 break;
446                 }
447
448 readrest:
449                 /*
450                  * We have found a valid page or we have allocated a new page.
451                  * The page thus may not be valid or may not be entirely 
452                  * valid.
453                  *
454                  * Attempt to fault-in the page if there is a chance that the
455                  * pager has it, and potentially fault in additional pages
456                  * at the same time.
457                  */
458                 if (TRYPAGER) {
459                         int rv;
460                         int reqpage = 0;
461                         u_char behavior = vm_map_entry_behavior(fs.entry);
462
463                         if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
464                             P_KILLED(curproc)) {
465                                 ahead = 0;
466                                 behind = 0;
467                         } else {
468                                 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
469                                 if (behind > VM_FAULT_READ_BEHIND)
470                                         behind = VM_FAULT_READ_BEHIND;
471
472                                 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
473                                 if (ahead > VM_FAULT_READ_AHEAD)
474                                         ahead = VM_FAULT_READ_AHEAD;
475                         }
476                         is_first_object_locked = FALSE;
477                         if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
478                              (behavior != MAP_ENTRY_BEHAV_RANDOM &&
479                               fs.pindex >= fs.entry->lastr &&
480                               fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
481                             (fs.first_object == fs.object ||
482                              (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
483                             fs.first_object->type != OBJT_DEVICE &&
484                             fs.first_object->type != OBJT_PHYS &&
485                             fs.first_object->type != OBJT_SG) {
486                                 vm_pindex_t firstpindex;
487
488                                 if (fs.first_pindex < 2 * VM_FAULT_READ)
489                                         firstpindex = 0;
490                                 else
491                                         firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
492                                 mt = fs.first_object != fs.object ?
493                                     fs.first_m : fs.m;
494                                 KASSERT(mt != NULL, ("vm_fault: missing mt"));
495                                 KASSERT((mt->oflags & VPO_BUSY) != 0,
496                                     ("vm_fault: mt %p not busy", mt));
497                                 mt_prev = vm_page_prev(mt);
498
499                                 are_queues_locked = FALSE;
500                                 /*
501                                  * note: partially valid pages cannot be 
502                                  * included in the lookahead - NFS piecemeal
503                                  * writes will barf on it badly.
504                                  */
505                                 while ((mt = mt_prev) != NULL &&
506                                     mt->pindex >= firstpindex &&
507                                     mt->valid == VM_PAGE_BITS_ALL) {
508                                         mt_prev = vm_page_prev(mt);
509                                         if (mt->busy ||
510                                             (mt->oflags & VPO_BUSY))
511                                                 continue;
512                                         if (!are_queues_locked) {
513                                                 are_queues_locked = TRUE;
514                                                 vm_page_lock_queues();
515                                         }
516                                         if (mt->hold_count ||
517                                                 mt->wire_count) 
518                                                 continue;
519                                         pmap_remove_all(mt);
520                                         if (mt->dirty) {
521                                                 vm_page_deactivate(mt);
522                                         } else {
523                                                 vm_page_cache(mt);
524                                         }
525                                 }
526                                 if (are_queues_locked)
527                                         vm_page_unlock_queues();
528                                 ahead += behind;
529                                 behind = 0;
530                         }
531                         if (is_first_object_locked)
532                                 VM_OBJECT_UNLOCK(fs.first_object);
533
534                         /*
535                          * Call the pager to retrieve the data, if any, after
536                          * releasing the lock on the map.  We hold a ref on
537                          * fs.object and the pages are VPO_BUSY'd.
538                          */
539                         unlock_map(&fs);
540
541 vnode_lock:
542                         if (fs.object->type == OBJT_VNODE) {
543                                 vp = fs.object->handle;
544                                 if (vp == fs.vp)
545                                         goto vnode_locked;
546                                 else if (fs.vp != NULL) {
547                                         vput(fs.vp);
548                                         fs.vp = NULL;
549                                 }
550                                 locked = VOP_ISLOCKED(vp);
551
552                                 if (VFS_NEEDSGIANT(vp->v_mount) && !fs.vfslocked) {
553                                         fs.vfslocked = 1;
554                                         if (!mtx_trylock(&Giant)) {
555                                                 VM_OBJECT_UNLOCK(fs.object);
556                                                 mtx_lock(&Giant);
557                                                 VM_OBJECT_LOCK(fs.object);
558                                                 goto vnode_lock;
559                                         }
560                                 }
561                                 if (locked != LK_EXCLUSIVE)
562                                         locked = LK_SHARED;
563                                 /* Do not sleep for vnode lock while fs.m is busy */
564                                 error = vget(vp, locked | LK_CANRECURSE |
565                                     LK_NOWAIT, curthread);
566                                 if (error != 0) {
567                                         int vfslocked;
568
569                                         vfslocked = fs.vfslocked;
570                                         fs.vfslocked = 0; /* Keep Giant */
571                                         vhold(vp);
572                                         release_page(&fs);
573                                         unlock_and_deallocate(&fs);
574                                         error = vget(vp, locked | LK_RETRY |
575                                             LK_CANRECURSE, curthread);
576                                         vdrop(vp);
577                                         fs.vp = vp;
578                                         fs.vfslocked = vfslocked;
579                                         KASSERT(error == 0,
580                                             ("vm_fault: vget failed"));
581                                         goto RetryFault;
582                                 }
583                                 fs.vp = vp;
584                         }
585 vnode_locked:
586                         KASSERT(fs.vp == NULL || !fs.map->system_map,
587                             ("vm_fault: vnode-backed object mapped by system map"));
588
589                         /*
590                          * now we find out if any other pages should be paged
591                          * in at this time this routine checks to see if the
592                          * pages surrounding this fault reside in the same
593                          * object as the page for this fault.  If they do,
594                          * then they are faulted in also into the object.  The
595                          * array "marray" returned contains an array of
596                          * vm_page_t structs where one of them is the
597                          * vm_page_t passed to the routine.  The reqpage
598                          * return value is the index into the marray for the
599                          * vm_page_t passed to the routine.
600                          *
601                          * fs.m plus the additional pages are VPO_BUSY'd.
602                          */
603                         faultcount = vm_fault_additional_pages(
604                             fs.m, behind, ahead, marray, &reqpage);
605
606                         rv = faultcount ?
607                             vm_pager_get_pages(fs.object, marray, faultcount,
608                                 reqpage) : VM_PAGER_FAIL;
609
610                         if (rv == VM_PAGER_OK) {
611                                 /*
612                                  * Found the page. Leave it busy while we play
613                                  * with it.
614                                  */
615
616                                 /*
617                                  * Relookup in case pager changed page. Pager
618                                  * is responsible for disposition of old page
619                                  * if moved.
620                                  */
621                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
622                                 if (!fs.m) {
623                                         unlock_and_deallocate(&fs);
624                                         goto RetryFault;
625                                 }
626
627                                 hardfault++;
628                                 break; /* break to PAGE HAS BEEN FOUND */
629                         }
630                         /*
631                          * Remove the bogus page (which does not exist at this
632                          * object/offset); before doing so, we must get back
633                          * our object lock to preserve our invariant.
634                          *
635                          * Also wake up any other process that may want to bring
636                          * in this page.
637                          *
638                          * If this is the top-level object, we must leave the
639                          * busy page to prevent another process from rushing
640                          * past us, and inserting the page in that object at
641                          * the same time that we are.
642                          */
643                         if (rv == VM_PAGER_ERROR)
644                                 printf("vm_fault: pager read error, pid %d (%s)\n",
645                                     curproc->p_pid, curproc->p_comm);
646                         /*
647                          * Data outside the range of the pager or an I/O error
648                          */
649                         /*
650                          * XXX - the check for kernel_map is a kludge to work
651                          * around having the machine panic on a kernel space
652                          * fault w/ I/O error.
653                          */
654                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
655                                 (rv == VM_PAGER_BAD)) {
656                                 vm_page_lock_queues();
657                                 vm_page_free(fs.m);
658                                 vm_page_unlock_queues();
659                                 fs.m = NULL;
660                                 unlock_and_deallocate(&fs);
661                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
662                         }
663                         if (fs.object != fs.first_object) {
664                                 vm_page_lock_queues();
665                                 vm_page_free(fs.m);
666                                 vm_page_unlock_queues();
667                                 fs.m = NULL;
668                                 /*
669                                  * XXX - we cannot just fall out at this
670                                  * point, m has been freed and is invalid!
671                                  */
672                         }
673                 }
674
675                 /*
676                  * We get here if the object has default pager (or unwiring) 
677                  * or the pager doesn't have the page.
678                  */
679                 if (fs.object == fs.first_object)
680                         fs.first_m = fs.m;
681
682                 /*
683                  * Move on to the next object.  Lock the next object before
684                  * unlocking the current one.
685                  */
686                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
687                 next_object = fs.object->backing_object;
688                 if (next_object == NULL) {
689                         /*
690                          * If there's no object left, fill the page in the top
691                          * object with zeros.
692                          */
693                         if (fs.object != fs.first_object) {
694                                 vm_object_pip_wakeup(fs.object);
695                                 VM_OBJECT_UNLOCK(fs.object);
696
697                                 fs.object = fs.first_object;
698                                 fs.pindex = fs.first_pindex;
699                                 fs.m = fs.first_m;
700                                 VM_OBJECT_LOCK(fs.object);
701                         }
702                         fs.first_m = NULL;
703
704                         /*
705                          * Zero the page if necessary and mark it valid.
706                          */
707                         if ((fs.m->flags & PG_ZERO) == 0) {
708                                 pmap_zero_page(fs.m);
709                         } else {
710                                 PCPU_INC(cnt.v_ozfod);
711                         }
712                         PCPU_INC(cnt.v_zfod);
713                         fs.m->valid = VM_PAGE_BITS_ALL;
714                         break;  /* break to PAGE HAS BEEN FOUND */
715                 } else {
716                         KASSERT(fs.object != next_object,
717                             ("object loop %p", next_object));
718                         VM_OBJECT_LOCK(next_object);
719                         vm_object_pip_add(next_object, 1);
720                         if (fs.object != fs.first_object)
721                                 vm_object_pip_wakeup(fs.object);
722                         VM_OBJECT_UNLOCK(fs.object);
723                         fs.object = next_object;
724                 }
725         }
726
727         KASSERT((fs.m->oflags & VPO_BUSY) != 0,
728             ("vm_fault: not busy after main loop"));
729
730         /*
731          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
732          * is held.]
733          */
734
735         /*
736          * If the page is being written, but isn't already owned by the
737          * top-level object, we have to copy it into a new page owned by the
738          * top-level object.
739          */
740         if (fs.object != fs.first_object) {
741                 /*
742                  * We only really need to copy if we want to write it.
743                  */
744                 if (fault_type & VM_PROT_WRITE) {
745                         /*
746                          * This allows pages to be virtually copied from a 
747                          * backing_object into the first_object, where the 
748                          * backing object has no other refs to it, and cannot
749                          * gain any more refs.  Instead of a bcopy, we just 
750                          * move the page from the backing object to the 
751                          * first object.  Note that we must mark the page 
752                          * dirty in the first object so that it will go out 
753                          * to swap when needed.
754                          */
755                         is_first_object_locked = FALSE;
756                         if (
757                                 /*
758                                  * Only one shadow object
759                                  */
760                                 (fs.object->shadow_count == 1) &&
761                                 /*
762                                  * No COW refs, except us
763                                  */
764                                 (fs.object->ref_count == 1) &&
765                                 /*
766                                  * No one else can look this object up
767                                  */
768                                 (fs.object->handle == NULL) &&
769                                 /*
770                                  * No other ways to look the object up
771                                  */
772                                 ((fs.object->type == OBJT_DEFAULT) ||
773                                  (fs.object->type == OBJT_SWAP)) &&
774                             (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
775                                 /*
776                                  * We don't chase down the shadow chain
777                                  */
778                             fs.object == fs.first_object->backing_object) {
779                                 vm_page_lock_queues();
780                                 /*
781                                  * get rid of the unnecessary page
782                                  */
783                                 vm_page_free(fs.first_m);
784                                 /*
785                                  * grab the page and put it into the 
786                                  * process'es object.  The page is 
787                                  * automatically made dirty.
788                                  */
789                                 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
790                                 vm_page_unlock_queues();
791                                 vm_page_busy(fs.m);
792                                 fs.first_m = fs.m;
793                                 fs.m = NULL;
794                                 PCPU_INC(cnt.v_cow_optim);
795                         } else {
796                                 /*
797                                  * Oh, well, lets copy it.
798                                  */
799                                 pmap_copy_page(fs.m, fs.first_m);
800                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
801                         }
802                         if (fs.m) {
803                                 /*
804                                  * We no longer need the old page or object.
805                                  */
806                                 release_page(&fs);
807                         }
808                         /*
809                          * fs.object != fs.first_object due to above 
810                          * conditional
811                          */
812                         vm_object_pip_wakeup(fs.object);
813                         VM_OBJECT_UNLOCK(fs.object);
814                         /*
815                          * Only use the new page below...
816                          */
817                         fs.object = fs.first_object;
818                         fs.pindex = fs.first_pindex;
819                         fs.m = fs.first_m;
820                         if (!is_first_object_locked)
821                                 VM_OBJECT_LOCK(fs.object);
822                         PCPU_INC(cnt.v_cow_faults);
823                 } else {
824                         prot &= ~VM_PROT_WRITE;
825                 }
826         }
827
828         /*
829          * We must verify that the maps have not changed since our last
830          * lookup.
831          */
832         if (!fs.lookup_still_valid) {
833                 vm_object_t retry_object;
834                 vm_pindex_t retry_pindex;
835                 vm_prot_t retry_prot;
836
837                 if (!vm_map_trylock_read(fs.map)) {
838                         release_page(&fs);
839                         unlock_and_deallocate(&fs);
840                         goto RetryFault;
841                 }
842                 fs.lookup_still_valid = TRUE;
843                 if (fs.map->timestamp != map_generation) {
844                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
845                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
846
847                         /*
848                          * If we don't need the page any longer, put it on the inactive
849                          * list (the easiest thing to do here).  If no one needs it,
850                          * pageout will grab it eventually.
851                          */
852                         if (result != KERN_SUCCESS) {
853                                 release_page(&fs);
854                                 unlock_and_deallocate(&fs);
855
856                                 /*
857                                  * If retry of map lookup would have blocked then
858                                  * retry fault from start.
859                                  */
860                                 if (result == KERN_FAILURE)
861                                         goto RetryFault;
862                                 return (result);
863                         }
864                         if ((retry_object != fs.first_object) ||
865                             (retry_pindex != fs.first_pindex)) {
866                                 release_page(&fs);
867                                 unlock_and_deallocate(&fs);
868                                 goto RetryFault;
869                         }
870
871                         /*
872                          * Check whether the protection has changed or the object has
873                          * been copied while we left the map unlocked. Changing from
874                          * read to write permission is OK - we leave the page
875                          * write-protected, and catch the write fault. Changing from
876                          * write to read permission means that we can't mark the page
877                          * write-enabled after all.
878                          */
879                         prot &= retry_prot;
880                 }
881         }
882         /*
883          * If the page was filled by a pager, update the map entry's
884          * last read offset.  Since the pager does not return the
885          * actual set of pages that it read, this update is based on
886          * the requested set.  Typically, the requested and actual
887          * sets are the same.
888          *
889          * XXX The following assignment modifies the map
890          * without holding a write lock on it.
891          */
892         if (hardfault)
893                 fs.entry->lastr = fs.pindex + faultcount - behind;
894
895         if (prot & VM_PROT_WRITE) {
896                 vm_object_set_writeable_dirty(fs.object);
897
898                 /*
899                  * If the fault is a write, we know that this page is being
900                  * written NOW so dirty it explicitly to save on 
901                  * pmap_is_modified() calls later.
902                  *
903                  * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
904                  * if the page is already dirty to prevent data written with
905                  * the expectation of being synced from not being synced.
906                  * Likewise if this entry does not request NOSYNC then make
907                  * sure the page isn't marked NOSYNC.  Applications sharing
908                  * data should use the same flags to avoid ping ponging.
909                  *
910                  * Also tell the backing pager, if any, that it should remove
911                  * any swap backing since the page is now dirty.
912                  */
913                 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
914                         if (fs.m->dirty == 0)
915                                 fs.m->oflags |= VPO_NOSYNC;
916                 } else {
917                         fs.m->oflags &= ~VPO_NOSYNC;
918                 }
919                 if (fault_flags & VM_FAULT_DIRTY) {
920                         vm_page_dirty(fs.m);
921                         vm_pager_page_unswapped(fs.m);
922                 }
923         }
924
925         /*
926          * Page had better still be busy
927          */
928         KASSERT(fs.m->oflags & VPO_BUSY,
929                 ("vm_fault: page %p not busy!", fs.m));
930         /*
931          * Page must be completely valid or it is not fit to
932          * map into user space.  vm_pager_get_pages() ensures this.
933          */
934         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
935             ("vm_fault: page %p partially invalid", fs.m));
936         VM_OBJECT_UNLOCK(fs.object);
937
938         /*
939          * Put this page into the physical map.  We had to do the unlock above
940          * because pmap_enter() may sleep.  We don't put the page
941          * back on the active queue until later so that the pageout daemon
942          * won't find it (yet).
943          */
944         pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
945         if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
946                 vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
947         }
948         VM_OBJECT_LOCK(fs.object);
949         vm_page_lock_queues();
950         vm_page_flag_set(fs.m, PG_REFERENCED);
951
952         /*
953          * If the page is not wired down, then put it where the pageout daemon
954          * can find it.
955          */
956         if (fault_flags & VM_FAULT_WIRE_MASK) {
957                 if (wired)
958                         vm_page_wire(fs.m);
959                 else
960                         vm_page_unwire(fs.m, 1);
961         } else {
962                 vm_page_activate(fs.m);
963         }
964         vm_page_unlock_queues();
965         vm_page_wakeup(fs.m);
966
967         /*
968          * Unlock everything, and return
969          */
970         unlock_and_deallocate(&fs);
971         if (hardfault)
972                 curthread->td_ru.ru_majflt++;
973         else
974                 curthread->td_ru.ru_minflt++;
975
976         return (KERN_SUCCESS);
977 }
978
979 /*
980  * vm_fault_prefault provides a quick way of clustering
981  * pagefaults into a processes address space.  It is a "cousin"
982  * of vm_map_pmap_enter, except it runs at page fault time instead
983  * of mmap time.
984  */
985 static void
986 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
987 {
988         int i;
989         vm_offset_t addr, starta;
990         vm_pindex_t pindex;
991         vm_page_t m;
992         vm_object_t object;
993
994         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
995                 return;
996
997         object = entry->object.vm_object;
998
999         starta = addra - PFBAK * PAGE_SIZE;
1000         if (starta < entry->start) {
1001                 starta = entry->start;
1002         } else if (starta > addra) {
1003                 starta = 0;
1004         }
1005
1006         for (i = 0; i < PAGEORDER_SIZE; i++) {
1007                 vm_object_t backing_object, lobject;
1008
1009                 addr = addra + prefault_pageorder[i];
1010                 if (addr > addra + (PFFOR * PAGE_SIZE))
1011                         addr = 0;
1012
1013                 if (addr < starta || addr >= entry->end)
1014                         continue;
1015
1016                 if (!pmap_is_prefaultable(pmap, addr))
1017                         continue;
1018
1019                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1020                 lobject = object;
1021                 VM_OBJECT_LOCK(lobject);
1022                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1023                     lobject->type == OBJT_DEFAULT &&
1024                     (backing_object = lobject->backing_object) != NULL) {
1025                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1026                             0, ("vm_fault_prefault: unaligned object offset"));
1027                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1028                         VM_OBJECT_LOCK(backing_object);
1029                         VM_OBJECT_UNLOCK(lobject);
1030                         lobject = backing_object;
1031                 }
1032                 /*
1033                  * give-up when a page is not in memory
1034                  */
1035                 if (m == NULL) {
1036                         VM_OBJECT_UNLOCK(lobject);
1037                         break;
1038                 }
1039                 if (m->valid == VM_PAGE_BITS_ALL &&
1040                     (m->flags & PG_FICTITIOUS) == 0) {
1041                         vm_page_lock_queues();
1042                         pmap_enter_quick(pmap, addr, m, entry->protection);
1043                         vm_page_unlock_queues();
1044                 }
1045                 VM_OBJECT_UNLOCK(lobject);
1046         }
1047 }
1048
1049 /*
1050  *      vm_fault_quick:
1051  *
1052  *      Ensure that the requested virtual address, which may be in userland,
1053  *      is valid.  Fault-in the page if necessary.  Return -1 on failure.
1054  */
1055 int
1056 vm_fault_quick(caddr_t v, int prot)
1057 {
1058         int r;
1059
1060         if (prot & VM_PROT_WRITE)
1061                 r = subyte(v, fubyte(v));
1062         else
1063                 r = fubyte(v);
1064         return(r);
1065 }
1066
1067 /*
1068  *      vm_fault_wire:
1069  *
1070  *      Wire down a range of virtual addresses in a map.
1071  */
1072 int
1073 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1074     boolean_t user_wire, boolean_t fictitious)
1075 {
1076         vm_offset_t va;
1077         int rv;
1078
1079         /*
1080          * We simulate a fault to get the page and enter it in the physical
1081          * map.  For user wiring, we only ask for read access on currently
1082          * read-only sections.
1083          */
1084         for (va = start; va < end; va += PAGE_SIZE) {
1085                 rv = vm_fault(map, va,
1086                     user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE,
1087                     user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING);
1088                 if (rv) {
1089                         if (va != start)
1090                                 vm_fault_unwire(map, start, va, fictitious);
1091                         return (rv);
1092                 }
1093         }
1094         return (KERN_SUCCESS);
1095 }
1096
1097 /*
1098  *      vm_fault_unwire:
1099  *
1100  *      Unwire a range of virtual addresses in a map.
1101  */
1102 void
1103 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1104     boolean_t fictitious)
1105 {
1106         vm_paddr_t pa;
1107         vm_offset_t va;
1108         pmap_t pmap;
1109
1110         pmap = vm_map_pmap(map);
1111
1112         /*
1113          * Since the pages are wired down, we must be able to get their
1114          * mappings from the physical map system.
1115          */
1116         for (va = start; va < end; va += PAGE_SIZE) {
1117                 pa = pmap_extract(pmap, va);
1118                 if (pa != 0) {
1119                         pmap_change_wiring(pmap, va, FALSE);
1120                         if (!fictitious) {
1121                                 vm_page_lock_queues();
1122                                 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1123                                 vm_page_unlock_queues();
1124                         }
1125                 }
1126         }
1127 }
1128
1129 /*
1130  *      Routine:
1131  *              vm_fault_copy_entry
1132  *      Function:
1133  *              Create new shadow object backing dst_entry with private copy of
1134  *              all underlying pages. When src_entry is equal to dst_entry,
1135  *              function implements COW for wired-down map entry. Otherwise,
1136  *              it forks wired entry into dst_map.
1137  *
1138  *      In/out conditions:
1139  *              The source and destination maps must be locked for write.
1140  *              The source map entry must be wired down (or be a sharing map
1141  *              entry corresponding to a main map entry that is wired down).
1142  */
1143 void
1144 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1145     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1146     vm_ooffset_t *fork_charge)
1147 {
1148         vm_object_t backing_object, dst_object, object, src_object;
1149         vm_pindex_t dst_pindex, pindex, src_pindex;
1150         vm_prot_t access, prot;
1151         vm_offset_t vaddr;
1152         vm_page_t dst_m;
1153         vm_page_t src_m;
1154         boolean_t src_readonly, upgrade;
1155
1156 #ifdef  lint
1157         src_map++;
1158 #endif  /* lint */
1159
1160         upgrade = src_entry == dst_entry;
1161
1162         src_object = src_entry->object.vm_object;
1163         src_pindex = OFF_TO_IDX(src_entry->offset);
1164         src_readonly = (src_entry->protection & VM_PROT_WRITE) == 0;
1165
1166         /*
1167          * Create the top-level object for the destination entry. (Doesn't
1168          * actually shadow anything - we copy the pages directly.)
1169          */
1170         dst_object = vm_object_allocate(OBJT_DEFAULT,
1171             OFF_TO_IDX(dst_entry->end - dst_entry->start));
1172 #if VM_NRESERVLEVEL > 0
1173         dst_object->flags |= OBJ_COLORED;
1174         dst_object->pg_color = atop(dst_entry->start);
1175 #endif
1176
1177         VM_OBJECT_LOCK(dst_object);
1178         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1179             ("vm_fault_copy_entry: vm_object not NULL"));
1180         dst_entry->object.vm_object = dst_object;
1181         dst_entry->offset = 0;
1182         dst_object->charge = dst_entry->end - dst_entry->start;
1183         if (fork_charge != NULL) {
1184                 KASSERT(dst_entry->uip == NULL,
1185                     ("vm_fault_copy_entry: leaked swp charge"));
1186                 dst_object->uip = curthread->td_ucred->cr_ruidinfo;
1187                 uihold(dst_object->uip);
1188                 *fork_charge += dst_object->charge;
1189         } else {
1190                 dst_object->uip = dst_entry->uip;
1191                 dst_entry->uip = NULL;
1192         }
1193         access = prot = dst_entry->max_protection;
1194         /*
1195          * If not an upgrade, then enter the mappings in the pmap as
1196          * read and/or execute accesses.  Otherwise, enter them as
1197          * write accesses.
1198          *
1199          * A writeable large page mapping is only created if all of
1200          * the constituent small page mappings are modified. Marking
1201          * PTEs as modified on inception allows promotion to happen
1202          * without taking potentially large number of soft faults.
1203          */
1204         if (!upgrade)
1205                 access &= ~VM_PROT_WRITE;
1206
1207         /*
1208          * Loop through all of the pages in the entry's range, copying each
1209          * one from the source object (it should be there) to the destination
1210          * object.
1211          */
1212         for (vaddr = dst_entry->start, dst_pindex = 0;
1213             vaddr < dst_entry->end;
1214             vaddr += PAGE_SIZE, dst_pindex++) {
1215
1216                 /*
1217                  * Allocate a page in the destination object.
1218                  */
1219                 do {
1220                         dst_m = vm_page_alloc(dst_object, dst_pindex,
1221                             VM_ALLOC_NORMAL);
1222                         if (dst_m == NULL) {
1223                                 VM_OBJECT_UNLOCK(dst_object);
1224                                 VM_WAIT;
1225                                 VM_OBJECT_LOCK(dst_object);
1226                         }
1227                 } while (dst_m == NULL);
1228
1229                 /*
1230                  * Find the page in the source object, and copy it in.
1231                  * (Because the source is wired down, the page will be in
1232                  * memory.)
1233                  */
1234                 VM_OBJECT_LOCK(src_object);
1235                 object = src_object;
1236                 pindex = src_pindex + dst_pindex;
1237                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1238                     src_readonly &&
1239                     (backing_object = object->backing_object) != NULL) {
1240                         /*
1241                          * Allow fallback to backing objects if we are reading.
1242                          */
1243                         VM_OBJECT_LOCK(backing_object);
1244                         pindex += OFF_TO_IDX(object->backing_object_offset);
1245                         VM_OBJECT_UNLOCK(object);
1246                         object = backing_object;
1247                 }
1248                 if (src_m == NULL)
1249                         panic("vm_fault_copy_wired: page missing");
1250                 pmap_copy_page(src_m, dst_m);
1251                 VM_OBJECT_UNLOCK(object);
1252                 dst_m->valid = VM_PAGE_BITS_ALL;
1253                 VM_OBJECT_UNLOCK(dst_object);
1254
1255                 /*
1256                  * Enter it in the pmap. If a wired, copy-on-write
1257                  * mapping is being replaced by a write-enabled
1258                  * mapping, then wire that new mapping.
1259                  */
1260                 pmap_enter(dst_map->pmap, vaddr, access, dst_m, prot, upgrade);
1261
1262                 /*
1263                  * Mark it no longer busy, and put it on the active list.
1264                  */
1265                 VM_OBJECT_LOCK(dst_object);
1266                 vm_page_lock_queues();
1267                 if (upgrade) {
1268                         vm_page_unwire(src_m, 0);
1269                         vm_page_wire(dst_m);
1270                 } else
1271                         vm_page_activate(dst_m);
1272                 vm_page_unlock_queues();
1273                 vm_page_wakeup(dst_m);
1274         }
1275         VM_OBJECT_UNLOCK(dst_object);
1276         if (upgrade) {
1277                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1278                 vm_object_deallocate(src_object);
1279         }
1280 }
1281
1282
1283 /*
1284  * This routine checks around the requested page for other pages that
1285  * might be able to be faulted in.  This routine brackets the viable
1286  * pages for the pages to be paged in.
1287  *
1288  * Inputs:
1289  *      m, rbehind, rahead
1290  *
1291  * Outputs:
1292  *  marray (array of vm_page_t), reqpage (index of requested page)
1293  *
1294  * Return value:
1295  *  number of pages in marray
1296  */
1297 static int
1298 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1299         vm_page_t m;
1300         int rbehind;
1301         int rahead;
1302         vm_page_t *marray;
1303         int *reqpage;
1304 {
1305         int i,j;
1306         vm_object_t object;
1307         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1308         vm_page_t rtm;
1309         int cbehind, cahead;
1310
1311         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1312
1313         object = m->object;
1314         pindex = m->pindex;
1315         cbehind = cahead = 0;
1316
1317         /*
1318          * if the requested page is not available, then give up now
1319          */
1320         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1321                 return 0;
1322         }
1323
1324         if ((cbehind == 0) && (cahead == 0)) {
1325                 *reqpage = 0;
1326                 marray[0] = m;
1327                 return 1;
1328         }
1329
1330         if (rahead > cahead) {
1331                 rahead = cahead;
1332         }
1333
1334         if (rbehind > cbehind) {
1335                 rbehind = cbehind;
1336         }
1337
1338         /*
1339          * scan backward for the read behind pages -- in memory 
1340          */
1341         if (pindex > 0) {
1342                 if (rbehind > pindex) {
1343                         rbehind = pindex;
1344                         startpindex = 0;
1345                 } else {
1346                         startpindex = pindex - rbehind;
1347                 }
1348
1349                 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1350                     rtm->pindex >= startpindex)
1351                         startpindex = rtm->pindex + 1;
1352
1353                 /* tpindex is unsigned; beware of numeric underflow. */
1354                 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1355                     tpindex < pindex; i++, tpindex--) {
1356
1357                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1358                             VM_ALLOC_IFNOTCACHED);
1359                         if (rtm == NULL) {
1360                                 /*
1361                                  * Shift the allocated pages to the
1362                                  * beginning of the array.
1363                                  */
1364                                 for (j = 0; j < i; j++) {
1365                                         marray[j] = marray[j + tpindex + 1 -
1366                                             startpindex];
1367                                 }
1368                                 break;
1369                         }
1370
1371                         marray[tpindex - startpindex] = rtm;
1372                 }
1373         } else {
1374                 startpindex = 0;
1375                 i = 0;
1376         }
1377
1378         marray[i] = m;
1379         /* page offset of the required page */
1380         *reqpage = i;
1381
1382         tpindex = pindex + 1;
1383         i++;
1384
1385         /*
1386          * scan forward for the read ahead pages
1387          */
1388         endpindex = tpindex + rahead;
1389         if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1390                 endpindex = rtm->pindex;
1391         if (endpindex > object->size)
1392                 endpindex = object->size;
1393
1394         for (; tpindex < endpindex; i++, tpindex++) {
1395
1396                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1397                     VM_ALLOC_IFNOTCACHED);
1398                 if (rtm == NULL) {
1399                         break;
1400                 }
1401
1402                 marray[i] = rtm;
1403         }
1404
1405         /* return number of pages */
1406         return i;
1407 }